WO2019033711A1 - 一种热冲压与模具修边的集成工艺 - Google Patents

一种热冲压与模具修边的集成工艺 Download PDF

Info

Publication number
WO2019033711A1
WO2019033711A1 PCT/CN2018/073786 CN2018073786W WO2019033711A1 WO 2019033711 A1 WO2019033711 A1 WO 2019033711A1 CN 2018073786 W CN2018073786 W CN 2018073786W WO 2019033711 A1 WO2019033711 A1 WO 2019033711A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimming
die
hot stamping
mold
temperature
Prior art date
Application number
PCT/CN2018/073786
Other languages
English (en)
French (fr)
Inventor
韩先洪
李圆媛
陈军
崔振山
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2019033711A1 publication Critical patent/WO2019033711A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • the invention belongs to the field of hot stamping forming of metal sheets, in particular to an integrated process of hot stamping and trimming of molds.
  • ultra-high-strength steel For the purposes of weight reduction and environmental protection, the application of ultra-high-strength steel has become one of the mainstream development trends in the automotive and other manufacturing fields.
  • ultra-high-strength steel has high resistance at room temperature and poor deformation ability, and it is very difficult to adopt conventional cold stamping. Hot stamping forming has emerged as the times require, and has become one of the main production routes for ultra high strength steel parts.
  • the common process flow of the existing hot stamping forming technology is: blanking ⁇ heating to austenitizing temperature and holding for 3-6 minutes ⁇ rapid transfer into the mold ⁇ stamping in the mold and completing the pressure-hardening to close After the room temperature ⁇ after the mold is opened, the surface treatment such as descaling is completed; after the hot stamping is completed, the trimming and punching processes are performed.
  • the parts obtained by the above hot stamping forming process are martensite, and the strength is high, and can reach 1500 MPa or even higher; the disadvantage is that the plasticity is poor, and the elongation is generally about 5%, which leads to the comprehensive performance of the parts.
  • the energy absorption performance during the collision is not high.
  • the quenching-carbon distribution (Q&P) process is a relatively new heat treatment process in which the steel is first heated and completely austenitized; then quenched to the quenching temperature QT (the specific temperature value of the QT is related to the material used, it is between the materials The martensite transformation starting temperature Ms and the martensite transformation end temperature Mf are higher than room temperature); and then holding at another temperature PT for a period of time, called carbon distribution process (PT is called carbon distribution temperature, PT can Take equal to QT or higher than QT); finally quench to room temperature.
  • Q&P heat treatment a martensite + austenite composite structure can be obtained, which can effectively improve the plasticity and toughness of the steel while ensuring high strength.
  • the Q&P hot stamping process which combines Q&P heat treatment with stamping process, produces a new generation of ultra-high strength steel products with high strength and high plasticity.
  • the process flow is: blanking ⁇ heating to above austenitizing temperature and holding for 3-6 minutes ⁇ rapid transfer into the mold ⁇ stamping and forming in the mold and quenching to QT ⁇ heat preservation at PT temperature for carbon distribution ⁇ carbon distribution After the end, it is quenched by water quenching or other means to room temperature ⁇ complete surface treatment such as descaling; after hot stamping, trimming and punching are performed.
  • the carbon partitioning process at the PT temperature can be completed in the forming mold, or can be quickly transferred to the heating furnace outside the forming mold or the heating mold alone.
  • Q&P hot stamping can obtain ultra-high strength steel parts with high strength and high plasticity.
  • carbon distribution process usually about 10s ⁇ 300s
  • the production cycle is extended and the production efficiency is not as good as ordinary. Hot stamping.
  • the object of the present invention is to provide a process for integrating hot stamping and die trimming of ultra high strength steel in order to overcome the drawbacks of the prior art described above.
  • the following objectives can be achieved: firstly, obtaining ultra-high-strength steel products with high strength and good plasticity; secondly, simultaneously carrying out mold trimming at the carbon distribution stage, so that carbon distribution time can be more effectively utilized, and the production of Q&P hot stamping process is accelerated.
  • the third is that the deformation resistance of the sheet in the carbon distribution stage is low, which can significantly reduce the wear of the trimming mold, so that the mold trimming can replace the existing ultra-high-strength steel laser trimming method, thereby greatly shortening the production cycle.
  • Hot stamping forming and in-mold quenching start the press, control the down speed of the press, and complete the press forming quenching until the part temperature drops to the QT temperature;
  • Open mold and secondary quenching open the mold, take out the hot stamped parts, and reduce to room temperature by water quenching or natural cooling;
  • Step (7) specifically adopts the following steps: after the second material is transferred into the trimming mold, the press presses the mold to complete the trimming (punching) process, and then the mold continues to be closed, and the sheet is completed in the mold. Carbon allocation process.
  • the carbon partitioning temperature is from 200 to 500 ° C, preferably from 250 to 400 ° C; the carbon partitioning time is from 10 to 300 s, preferably from 25 to 120 s.
  • the PT temperature described in the step (2) is from 200 ° C to 500 ° C.
  • the heating speed in the step (3) is not lower than 5 ° C / s, the sheet is heated to 900 ° C to 950 ° C, and kept for 3 to 6 minutes.
  • the QT temperature described in the step (5) is from 200 ° C to 450 ° C, preferably from 250 ° C to 350 ° C.
  • the post-treatment in step (9) includes, but is not limited to, shot peening, finishing or pickling.
  • the sheet material is still in a high temperature state during the carbon distribution stage of Q&P hot stamping, and its strength and hardness are lower than the room temperature state after the quenching is completed. Therefore, if the trimming process is carried out at this moment, the wear problem of the trimming mold is solved. Will be effectively improved, and due to the low deformation resistance of the sheet, the tonnage requirements of the press are also reduced accordingly.
  • the mold trimming process is used to replace the laser trimming process, and the trimming process is integrated with the carbon distribution process required for Q&P hot stamping. After the trimming die is heated to the carbon distribution temperature PT, the trimming die is simultaneously realized. Trimming (punching) and carbon distribution.
  • the above process integration can still fully realize the Q&P hot stamping process, so the obtained product still has the characteristics of high strength and good plasticity; avoids the disadvantages of long carbon allocation process in the Q&P hot stamping process, so that the time of this stage is fully obtained. Utilizing; at the same time, due to the use of mold trimming instead of laser trimming, the trimming time is also greatly saved. Compared with the common hot stamping + laser trimming method currently used, the patent has a short production cycle, low energy consumption and good product comprehensive performance.
  • the method requires heating of the trimming mold, as the high temperature sheet material is sequentially moved into the mold for trimming and carbon distribution, the heat generated by the trimming mold is gradually accumulated, so that only a small number of heating modules and dynamic adjustment can be opened.
  • the trimming die is maintained near the PT temperature and the energy consumption is relatively low.
  • the present invention has the following advantages:
  • the hot stamping parts obtained by the process of the present invention have substantially the same strength as the existing hot stamping process parts, but the elongation rate is increased by 10% to 50%, so that the final part has better comprehensive mechanical properties.
  • the efficiency is much higher than the laser trimming; at the same time, it is integrated with the Q&P hot stamping process, and trimming is performed when the sheet temperature is high, which improves the service life of the trimming die and reduces the trimming resistance. Energy saving.
  • the hot stamping die can directly use the existing hot stamping die; while the trimming die has a heating device, the design is simple and the energy consumption is relatively low.
  • Figure 1 is a process flow diagram of the present invention.
  • the material is taken as an example of the hot stamping steel B1500HS produced by Baosteel. Based on an ultra-high-strength steel hot stamping and die trimming integration process, as shown in Figure 1, the following steps are included:
  • Hot stamping forming and in-mold quenching using 100 tons (T) hydraulic press for stamping and forming quenching, the mold remains closed, and the down speed of the press is controlled to complete the press forming quenching until the part temperature drops to 350 ° C;
  • the utility model is based on an integrated process of hot stamping and die trimming of ultra high strength steel, which is an integrated process of hot stamping forming process, Q&P heat treatment process and die trimming process, and specifically comprises the following steps:
  • Hot stamping forming and in-mold quenching using 200T servo press for hot stamping forming quenching, the mold remains closed, control the down speed of the press, and complete the press forming quenching until the part temperature drops to 310 ° C;
  • Carbon distribution and mold trimming trimming the hot stamping parts while maintaining the temperature of 400 °C and holding 80S;
  • the sheet is placed in a vacuum heating furnace for heating, the heating speed is not lower than 5 ° C / s, the sheet is heated to 900 ° C, and kept for 6 minutes to make the sheet austenitized uniformly;
  • Hot stamping forming and in-mold quenching start the press, control the down speed of the press, and complete the press forming quenching until the part temperature drops to 200 ° C;
  • Carbon distribution and mold trimming After the secondary material is transferred into the trimming die by the secondary transfer, the press presses the die to complete the trimming (punching) process, and then the die continues to be closed, and the sheet is in the mold. Complete the carbon partitioning process, control the carbon distribution treatment temperature to 200 ° C, the time is 300 s;
  • Open mold and secondary quenching open the mold, take out the hot stamped parts, and reduce to room temperature by water quenching or natural cooling;
  • Post-treatment Subsequent treatment processes such as shot peening, finishing, pickling, etc. are performed as needed, that is, the processing of the sheet material is completed.
  • the sheet is placed in a vacuum heating furnace for heating, the heating speed is not lower than 5 ° C / s, the sheet is heated to 900 ° C, and kept for 4 minutes to make the sheet austenitized uniformly;
  • Hot stamping forming and in-mold quenching start the press, control the down speed of the press, and complete the press forming quenching until the part temperature drops to 250 ° C;
  • Carbon distribution and mold trimming After the secondary material is transferred into the trimming die by the secondary transfer, the press presses the die to complete the trimming (punching) process, and then the die continues to be closed, and the sheet is in the mold. Complete the carbon partitioning process, control the temperature of the carbon distribution treatment to 250 ° C, the time is 120 s;
  • Open mold and secondary quenching open the mold, take out the hot stamped parts, and reduce to room temperature by water quenching or natural cooling;
  • Post-treatment Subsequent treatment processes such as shot peening, finishing, pickling, etc. are performed as needed, that is, the processing of the sheet material is completed.
  • the sheet is placed in a vacuum heating furnace for heating, the heating speed is not lower than 5 ° C / s, the sheet is heated to 950 ° C, and kept for 3 minutes to make the sheet austenitized uniformly;
  • Hot stamping forming and in-mold quenching start the press, control the down speed of the press, and complete the press forming quenching until the part temperature drops to 350 ° C;
  • Carbon distribution and mold trimming After the secondary material is transferred into the trimming die by the secondary transfer, the press presses the die to complete the trimming (punching) process, and then the die continues to be closed, and the sheet is in the mold. Complete the carbon partitioning process, control the temperature of the carbon distribution treatment to 400 ° C, the time is 25 s;
  • Open mold and secondary quenching open the mold, take out the hot stamped parts, and reduce to room temperature by water quenching or natural cooling;
  • Post-treatment Subsequent treatment processes such as shot peening, finishing, pickling, etc. are performed as needed, that is, the processing of the sheet material is completed.
  • the sheet is placed in a vacuum heating furnace for heating, the heating speed is not lower than 5 ° C / s, the sheet is heated to 950 ° C, and kept for 3 minutes to make the sheet austenitized uniformly;
  • Hot stamping forming and in-mold quenching start the press, control the down speed of the press, and complete the press forming quenching until the part temperature drops to 450 °C;
  • Carbon distribution and mold trimming After the secondary material is transferred into the trimming die by the secondary transfer, the press presses the die to complete the trimming (punching) process, and then the die continues to be closed, and the sheet is in the mold. Complete the carbon partitioning process, control the temperature of the carbon distribution treatment to 500 ° C, the time is 10 s;
  • Open mold and secondary quenching open the mold, take out the hot stamped parts, and reduce to room temperature by water quenching or natural cooling;
  • Post-treatment Subsequent treatment processes such as shot peening, finishing, pickling, etc. are performed as needed, that is, the processing of the sheet material is completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

一种热冲压与模具修边的集成工艺,包括落料、修边模具预热、加热、一次转运、热冲压成形与模内一次淬火、二次转运、碳分配与模具修边、开模与二次淬火、后处理等工艺。与现有技术相比,该工艺可以获得强度高且塑性好的超高强钢产品;在碳分配阶段同时开展模具修边,使碳分配时间得以更有效利用,加快Q&P热冲压工艺的生产节拍;板料在碳分配阶段的变形抗力较低,可显著降低修边模具的磨损,从而可使模具修边取代现有的超高强钢激光修边方法,进而大幅度缩短生产周期。

Description

一种热冲压与模具修边的集成工艺 技术领域
本发明属于金属板料热冲压成形加工领域,尤其是涉及一种热冲压与模具修边的集成工艺。
背景技术
基于减重和环保等目的,超高强钢的应用成为汽车及其他制造领域的主流发展趋势之一,但超高强钢在室温下抗力高、变形能力差,采用传统冷冲压成形非常困难,由此热冲压成形应运而生,现已成为超高强钢制件的主要生产途径之一。现有的热冲压成形技术采用的普遍工艺流程为:落料→加热至奥氏体化温度以上并保温3~6分钟→快速转移到模具内→在模具内冲压成形并完成保压淬火至接近室温→开模后完成去氧化皮等表面处理;热冲压完成后再进行修边、冲孔等工艺。利用上述热冲压成形工艺获得的零件,组织为马氏体,优点是强度很高,可以达到1500MPa甚至更高;缺点是塑性较差,延伸率一般在5%左右,导致制件的综合性能尤其是碰撞过程中的吸能性能并不高。
淬火-碳分配(Q&P)工艺是一种较新的热处理工艺,它将钢材先加热并完全奥氏体化;然后淬火至淬火温度QT(QT的具体温度值与所用材料相关,它介于材料的马氏体转变开始温度Ms与马氏体转变结束温度Mf之间,高于室温);然后在另一个温度PT上保温一段时间,称为碳分配过程(PT称为碳分配温度,PT可以取等于QT或者高于QT);最后淬火至室温。经Q&P热处理后获得马氏体+奥氏体的复合组织,能在确保高强度的同时有效提高钢的塑性和韧性。将Q&P热处理与冲压工艺结合形成的Q&P热冲压工艺,可生产出同时具有高强度和高塑性的新一代超高强钢产品。其工艺流程为:落料→加热至奥氏体化温度以上并保温3~6分钟→快速转移到模具内→在模具内冲压成形并淬火至QT→在PT温度上保温进行碳分配→碳分配结束后通过水淬或其他方式淬火至室温→完成去氧化皮等表面处理;热冲压完成后再进行修边、冲孔等工艺。其中PT温度下的碳分配过程可在成形模具内完成,也可快速转移至成形模具外的加热炉或加热模具单独完成。与普通热冲压相比,Q&P热冲压可以获得兼具 高强度和高塑性的超高强钢部件,但是由于引入碳分配过程(通常需要10s~300s左右),因此延长了生产周期,生产效率不如普通热冲压。
无论是普通热冲压还是Q&P热冲压,在冲压完成后均需要进行后续的加工处理,如修边、冲孔等,去除多余的材料。由于热冲压超高强钢部件的强度和硬度很高,若采用修边模具结合压力机进行修边(也称为机械修边),会导致严重的模具磨损问题;且冲裁抗力大,要求压力机吨位大,能耗高。因而目前热冲压超高强钢成形结束后,普遍采用激光修边方式。与模具修边工艺相比,激光修边虽然没有模具磨损的问题,但其效率要远低于模具修边,单件成本也高得多。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种超高强钢热冲压与模具修边集成的工艺。可实现如下几方面的目的:一是获得强度高且塑性好的超高强钢产品;二是在碳分配阶段同时开展模具修边,使碳分配时间得以更有效利用,加快Q&P热冲压工艺的生产节拍;三是板料在碳分配阶段的变形抗力较低,可显著降低修边模具的磨损,从而可使模具修边取代现有的超高强钢激光修边方法,进而大幅度缩短生产周期。
本发明的目的可以通过以下技术方案来实现:
一种热冲压与模具修边的集成工艺,采用以下步骤:
(1)落料:根据热冲压零件尺寸切割板料;
(2)修边模具预热:将修边模具加热到PT温度并保温;
(3)加热:将板料放入真空加热炉进行加热使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至QT温度;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:对热冲压零件进行修边,同时保温保压;
(8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
(9)后处理:根据需要进行后续处理。
步骤(7)具体采用以下步骤:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边(冲孔)工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程。
碳分配温度为200-500℃,优选250-400℃;碳分配时间为10-300s,优选25-120s。
步骤(2)中所述的PT温度为200℃~500℃。
步骤(3)中加热的速度不低于5℃/s,将板料加热至900℃~950℃,保温3~6分钟。
步骤(5)中所述的QT温度为200℃~450℃,优选250℃~350℃
步骤(9)中的后处理包括但不限于喷丸、精整或酸洗工序。
板料在Q&P热冲压的碳分配阶段时仍处于较高的温度状态,它的强度、硬度均低于淬火完成后的室温状态,因而若在此刻开展修边工序,则修边模具的磨损问题会有效改善,且由于板料的变形抗力低,压力机吨位要求也相应降低。基于上述思想,采用模具修边工艺替代激光修边工艺,且将修边过程与Q&P热冲压所需的碳分配过程集成,将修边模具加热至碳分配温度PT后,利用修边模具同时实现修边(冲孔)和碳分配。
上述工艺集成仍能完整实现Q&P热冲压工艺,因而所得到的产品仍具有强度高、塑性好的特点;规避了Q&P热冲压工艺中碳分配过程时间较长的弊端,使这个阶段的时间得到充分利用;同时由于采用模具修边代替了激光修边,修边时间也得到大幅度节省。与现普遍采用的普通热冲压+激光修边方式相比,本专利生产周期短,能耗低,且产品综合性能好。
本方法虽然要求修边模具加热,但随着高温板料依次移至模具内进行修边和碳分配,给修边模具带来的热量逐渐累积,因而仅需开启少量加热模块及动态调整即可使修边模具维持在PT温度附近,能耗相对较低。
与现有技术相比,本发明具有以下优点:
(1)本发明工艺得到的热冲压零件,强度与现有的热冲压工艺零件基本持 平,但延伸率提高10%~50%,因此最终制件具有更好的综合力学性能。
(2)采用模具修边工艺,效率远高于激光修边;同时与Q&P热冲压工艺集成,在板料温度较高时进行修边,提高了修边模具的使用寿命,降低修边抗力,节约能源。
(3)两幅模具中,热冲压模具可直接沿用现有的热冲压模具;而修边模具虽有加热装置,但设计简单,且能耗相对较低。
附图说明
图1为本发明的工艺流程图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
材料以宝钢生产的热冲压用钢B1500HS为例。基于一种超高强钢热冲压与模具修边集成工艺,如图1所示,包括以下步骤:
(1)落料:根据热冲压零件切割B1500HS板料;
(2)模具预热:将带有加热板的修边模具加热到350℃;
(3)加热:将板料放入加热炉,抽真空,以20℃/s的加热速度将板料加热到920℃,保温5分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:使用100吨(T)液压机进行冲压成形淬火,模具保持闭合,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至350℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:对热冲压零件进行修边,同时保温350℃保压40S;
(8)二次淬火:开模,取出碳分配保温之后的热冲压零件,并快速放入水中淬火到室温;
(9)后处理:通过酸洗工艺去除零件的氧化皮。
实施例2
基于一种超高强钢热冲压与模具修边集成工艺,该工艺为热冲压成形工艺、Q&P热处理工艺和模具修边工艺的集成工艺,具体包括以下步骤:
(1)落料:根据热冲压零件尺寸切割27SiMn板料;
(2)模具预热:将带有加热板的修边模具加热到400℃;
(3)加热:将板料放入加热炉,抽真空,以5℃/s的加热速度将板料加热到900℃,保温6分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:使用200T伺服压机进行热冲压成形淬火,模具保持闭合,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至310℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:对热冲压零件进行修边,同时保温400℃保压80S;
(8)二次淬火:开模,取出碳分配保温之后的热冲压零件,并快速放入冷却模具中淬火到室温;
(9)后处理:通过抛丸处理去除零件的氧化皮。
实施例3
一种热冲压与模具修边的集成工艺,其流程如图1所示,采用以下步骤:
(1)落料:根据热冲压零件尺寸切割板料;
(2)修边模具预热:将修边模具加热到200℃并保温;
(3)加热:将板料放入真空加热炉进行加热,加热的速度不低于5℃/s,将板料加热至900℃,保温6分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完 成冲压成形淬火,直到零件温度降至200℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边(冲孔)工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程,控制碳分配处理的温度为200℃,时间为300s;
(8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
(9)后处理:根据需要进行喷丸、精整、酸洗等后续处理工艺,即完成对板料的处理。
实施例4
一种热冲压与模具修边的集成工艺,采用以下步骤:
(1)落料:根据热冲压零件尺寸切割板料;
(2)修边模具预热:将修边模具加热到250℃并保温;
(3)加热:将板料放入真空加热炉进行加热,加热的速度不低于5℃/s,将板料加热至900℃,保温4分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至250℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边(冲孔)工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程,控制碳分配处理的温度为250℃,时间为120s;
(8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
(9)后处理:根据需要进行喷丸、精整、酸洗等后续处理工艺,即完成对板料的处理。
实施例5
一种热冲压与模具修边的集成工艺,采用以下步骤:
(1)落料:根据热冲压零件尺寸切割板料;
(2)修边模具预热:将修边模具加热到400℃并保温;
(3)加热:将板料放入真空加热炉进行加热,加热的速度不低于5℃/s,将板料加热至950℃,保温3分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至350℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边(冲孔)工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程,控制碳分配处理的温度为400℃,时间为25s;
(8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
(9)后处理:根据需要进行喷丸、精整、酸洗等后续处理工艺,即完成对板料的处理。
实施例6
一种热冲压与模具修边的集成工艺,采用以下步骤:
(1)落料:根据热冲压零件尺寸切割板料;
(2)修边模具预热:将修边模具加热到500℃并保温;
(3)加热:将板料放入真空加热炉进行加热,加热的速度不低于5℃/s,将板料加热至950℃,保温3分钟,使板料奥氏体化均匀;
(4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
(5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至450℃;
(6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
(7)碳分配与模具修边:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边(冲孔)工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程,控制碳分配处理的温度为500℃,时间为10s;
(8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
(9)后处理:根据需要进行喷丸、精整、酸洗等后续处理工艺,即完成对板料的处理。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (9)

  1. 一种热冲压与模具修边的集成工艺,其特征在于,该工艺采用以下步骤:
    (1)落料:根据热冲压零件尺寸切割板料;
    (2)修边模具预热:将修边模具加热到PT温度并保温;
    (3)加热:将板料放入真空加热炉进行加热使板料奥氏体化均匀;
    (4)一次转运:将加热好的板料移出真空加热炉,转运至热冲压成形模具中;
    (5)热冲压成形与模内一次淬火:启动压力机,控制压力机下行速度,完成冲压成形淬火,直到零件温度降至QT温度;
    (6)二次转运:将热冲压零件移出热冲压成形模具,快速转运至修边模具中;
    (7)碳分配与模具修边:对热冲压零件进行修边,同时保温保压;
    (8)开模与二次淬火:打开模具,取出热冲压零件,并通过水淬或自然冷却降至室温;
    (9)后处理:根据需要进行后续处理。
  2. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于,步骤(7)具体采用以下步骤:板料经二次转运进入修边模具后,压力机下压迅速合模完成修边和/或冲孔工艺,然后模具继续处于闭合状态,板料在模具内完成碳分配过程。
  3. 根据权利要求2所述的一种热冲压与模具修边的集成工艺,其特征在于,碳分配过程中,控制温度为200-500℃,时间为10-300s。
  4. 根据权利要求2或3所述的一种热冲压与模具修边的集成工艺,其特征在于,碳分配过程中,控制温度为250-400℃,时间为25-120s。
  5. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于,步骤(2)中所述的PT温度为200℃~500℃。
  6. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于,步骤(3)中加热的速度不低于5℃/s,将板料加热至900℃~950℃,保温3~6分钟。
  7. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于, 步骤(5)所述的QT温度为200℃~450℃,
  8. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于,步骤(5)所述的QT温度为250℃~350℃。
  9. 根据权利要求1所述的一种热冲压与模具修边的集成工艺,其特征在于,步骤(9)中的后处理包括但不限于喷丸、精整或酸洗工序。
PCT/CN2018/073786 2017-08-15 2018-01-23 一种热冲压与模具修边的集成工艺 WO2019033711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710696225.9 2017-08-15
CN201710696225.9A CN107597962A (zh) 2017-08-15 2017-08-15 一种热冲压与模具修边的集成工艺

Publications (1)

Publication Number Publication Date
WO2019033711A1 true WO2019033711A1 (zh) 2019-02-21

Family

ID=61065387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073786 WO2019033711A1 (zh) 2017-08-15 2018-01-23 一种热冲压与模具修边的集成工艺

Country Status (2)

Country Link
CN (1) CN107597962A (zh)
WO (1) WO2019033711A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528761A (zh) * 2021-06-16 2021-10-22 首钢集团有限公司 一种热成形件及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597962A (zh) * 2017-08-15 2018-01-19 上海交通大学 一种热冲压与模具修边的集成工艺
CN109365604A (zh) * 2018-11-16 2019-02-22 苏州普热斯勒先进成型技术有限公司 一种热冲压方法及采用真空加热的热冲压生产线
CN111229928B (zh) * 2020-03-02 2021-12-21 翟述基 高强钢型材热成形自动生产线
CN111299357B (zh) * 2020-03-02 2021-12-21 翟述基 高强钢型材热成形综合淬火整形系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
CN103394573A (zh) * 2013-08-02 2013-11-20 上海交通大学 一种基于q&p一步法的热冲压成形工艺
CN104550391A (zh) * 2015-01-15 2015-04-29 上海交通大学 集成分段冷却及碳分配过程的热冲压成形工艺
CN106424280A (zh) * 2016-11-30 2017-02-22 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
CN106734465A (zh) * 2016-12-12 2017-05-31 宁波大学 基于多层普通金属复合板热冲压成形制作汽车b柱的方法
WO2017108956A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
CN107597962A (zh) * 2017-08-15 2018-01-19 上海交通大学 一种热冲压与模具修边的集成工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015021057A2 (pt) * 2013-03-13 2017-07-18 Magna Int Inc método e aparelho para formar uma parte, e, parte formada a quente
JP6314926B2 (ja) * 2015-07-21 2018-04-25 マツダ株式会社 プレス加工装置
CN105107939B (zh) * 2015-09-18 2017-12-05 武汉理工大学 一种连续热冲压装置及工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
CN103394573A (zh) * 2013-08-02 2013-11-20 上海交通大学 一种基于q&p一步法的热冲压成形工艺
CN104550391A (zh) * 2015-01-15 2015-04-29 上海交通大学 集成分段冷却及碳分配过程的热冲压成形工艺
WO2017108956A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
CN106424280A (zh) * 2016-11-30 2017-02-22 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
CN106734465A (zh) * 2016-12-12 2017-05-31 宁波大学 基于多层普通金属复合板热冲压成形制作汽车b柱的方法
CN107597962A (zh) * 2017-08-15 2018-01-19 上海交通大学 一种热冲压与模具修边的集成工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG KUN ET AL.: "Experimental research on mechanical trimming process of ultra high strength steel", JOURNAL OF PLASTICITY ENGINEERING, vol. 22, no. 4, 31 August 2015 (2015-08-31), pages 99, 100, ISSN: 1007-2012 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528761A (zh) * 2021-06-16 2021-10-22 首钢集团有限公司 一种热成形件及其制备方法

Also Published As

Publication number Publication date
CN107597962A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019033711A1 (zh) 一种热冲压与模具修边的集成工艺
CN104668326B (zh) 一种高强度钢材零部件性能梯度化分布的热冲压方法
EP3702477B1 (en) Method for producing ultra high strength martensitic cold-rolled steel sheet by means of ultra fast heating process
CN101805821B (zh) 钢材冲压成形一体化处理方法
CN108380722A (zh) 一种轻量化铝合金车身构件的热冲压成形方法
CN106119688B (zh) 一种性能梯度分布的高强度q&p钢件制备方法
CN104550391B (zh) 集成分段冷却及碳分配过程的热冲压成形工艺
CN109622706B (zh) 用中厚硼合金钢板材热冲压成型制造汽车零件的工艺方法
CN104451082B (zh) 一种平均晶粒尺寸小于100nm的304奥氏体不锈钢的制备方法
KR101428168B1 (ko) 열간 프레스 성형(hpf) 제품의 제조방법
CN105479116B (zh) 一种高强度扭力梁横梁的制作方法
CN106734470B (zh) 汽车覆盖件热冲压成型方法
CN105986074A (zh) 一种模具钢加工工艺
CN103667612B (zh) 热处理桥壳的方法和制造桥壳的方法
CN103212950A (zh) 一种改善车用ahss热冲压结构件强韧化和成形性的工艺方法
CN104878323A (zh) 超大厚度SA387Gr11CL2钢板的生产方法
CN105251779B (zh) 一种热轧酸洗板表面氧化麻点缺陷的控制方法
CN103394573A (zh) 一种基于q&p一步法的热冲压成形工艺
CN102974742A (zh) 一种移动叉的加工方法
CN106825376A (zh) 一种阀体锻造工艺
CN103031489B (zh) 一种q345b钢板的生产方法
CN107866660A (zh) 一种模具钢材加工工艺
CN105171362A (zh) 森吉米尔中间辊的制造方法
CN104762460A (zh) 一种高强钢汽车板的轧制及深加工短流程集成制造方法
CN111229905B (zh) 一种基于液压成形装置的热冲压及淬火一体化处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18845861

Country of ref document: EP

Kind code of ref document: A1