WO2019030996A1 - Photovoltaic system and photovoltaic panel attitude control method - Google Patents

Photovoltaic system and photovoltaic panel attitude control method Download PDF

Info

Publication number
WO2019030996A1
WO2019030996A1 PCT/JP2018/017496 JP2018017496W WO2019030996A1 WO 2019030996 A1 WO2019030996 A1 WO 2019030996A1 JP 2018017496 W JP2018017496 W JP 2018017496W WO 2019030996 A1 WO2019030996 A1 WO 2019030996A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
photovoltaic
posture
panel
Prior art date
Application number
PCT/JP2018/017496
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 北山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019030996A1 publication Critical patent/WO2019030996A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic system and a posture control method of a photovoltaic panel.
  • Condenser type photovoltaic power generation (CPV: Concentrator Photovoltaic) is based on a configuration in which sunlight is condensed by a Fresnel lens or the like to be incident on a small power generation element with high power generation efficiency to generate power.
  • a large number of light collecting solar power generation modules configured by arranging a large number of this basic configuration in a matrix are further arranged in a large number to form a light collecting solar power generation panel (array) (see, for example, Patent Document 1).
  • a concentrator photovoltaic panel is supported by a support device that can be driven in two axes, elevation and azimuth, to track the sun.
  • a solar power generation system includes a solar power generation device group including a plurality of solar power generation devices arrayed including a light collecting solar power generation panel and a support device supporting the panel so as to be capable of attitude control. And a function of instructing the supporting device on the posture to be taken of the photovoltaic panel in each of the plurality of photovoltaic devices based on the information on the wind at the place where the photovoltaic group is installed. And the control unit is configured to set the solar cell panel in the retracted position when the solar panel needs to be in the predetermined retracted position based on the information.
  • Solar power generation system increasing the number of in stages to the required number.
  • a method of controlling the attitude of a photovoltaic power generation panel the solar power generation panel including a plurality of solar photovoltaic power generation devices supporting a concentration type solar power generation panel by a supporting device.
  • a posture control method for photovoltaic power generation panels which is executed by a control unit that comprehensively controls the postures of the respective photovoltaic power generation panels in the power generation equipment group, wherein wind at a place where the photovoltaic power generation equipment group is installed If there is a photovoltaic panel that needs to obtain information on the above and based on the information, it is necessary to take the number of the photovoltaic panels in the retracted position in a stepwise manner.
  • the concentrating solar power generation panel is supported by a single support for tracking the sun, for example, the light receiving surface of the panel as a whole is large. Therefore, when the wind pressure is applied, a large load is applied to the support. It takes. If the column is made extremely robust, it will be able to withstand large loads well, but there is also a trade-off with the cost, and in practice this means selecting a reasonable strength. Therefore, even if the weather is fine, if strong wind blows on the panel, it will temporarily shift to the retracted attitude (horizontal attitude) for safety of the equipment, and if the wind is cured, it will return to the original sun tracking attitude Control to return. In the retracted position, the wind pressure can be avoided as much as possible by leveling the panel.
  • this indication aims at alleviating the influence which it has on a power grid, even when the strong wind blows temporarily, in the photovoltaics system which adopts concentrating solar power generation.
  • the control unit may reduce the number of the photovoltaic panels in the retracted position in stages.
  • the number of photovoltaic panels taking the retreating posture is gradually reduced to restore the original posture. . Therefore, it is possible to prevent the sudden increase of the generated power and to mitigate the influence on the power grid.
  • the control unit is based on the information.
  • the number of the solar panels taking the retreat posture is gradually increased to the required number in order from the one with the lower strength. You may do so.
  • the photovoltaic power generation panel of the supporting device whose strength is relatively low can be quickly retracted and protected from strong wind.
  • the photovoltaic panel of the supporting device having a relatively high strength may not take a retreating posture depending on the wind strength.
  • the retracting posture is taken in consideration of the strength of the wind and the strength of the support device, the photovoltaic power generation device group as a whole loses the power generation capacity more than necessary while appropriately retracting.
  • the retracting posture is taken in consideration of the strength of the wind and the strength of the support device, the photovoltaic power generation device group as a whole loses the power generation capacity more than necessary while appropriately retracting.
  • the retracting posture is taken in consideration of the strength of the wind and the strength of the support device, the photovoltaic power generation device group as a whole loses the power generation capacity more
  • a solar power generation device mounted with a crystalline silicon solar power generation module is additionally provided separately from the solar power generation device group. It is also good. In this case, for example, when the light receiving surface faces upward and takes a horizontal retreating posture, a small but constant generated power can be obtained.
  • a signal of attitude control can be given to the drive control unit 3 also from the upper control unit 7.
  • the attitude control signal from the control unit 7 has priority over the local tracking operation performed by the solar power generation apparatus 100.
  • the wind speed of the place where the solar power generation device 100 is installed is detected by the wind speed sensor 7a.
  • the detection output of the wind speed sensor 7 a is given to the control unit 7. It can be said that the wind speed sensor 7 a is a part of the control unit 7.
  • the control unit 7 may be provided separately from the solar power generation device 100.
  • the control unit 7 includes, for example, a computer, and executes necessary software (computer program) to realize necessary control functions.
  • the software is stored in a storage device (not shown) of the control unit 7.
  • FIG. 4 is a perspective view showing an example of a state in which the light receiving surface of the solar panel 1 faces the sun.
  • the photovoltaic power generation panel 1 in the retracted position is, for example, horizontal, and the wind is likely to pass through, and the wind pressure is not easily received.
  • FIG. 5 is a schematic view showing a state of the solar power generation system 300 including, for example, a total of 64 solar power generation device groups 200, in which eight solar power generation devices 100 are arranged vertically and horizontally, for example.
  • the control unit 7 is communicably connected to all the solar power generation devices 100, and can control the attitude of each of the solar panels 1 individually and collectively. As described above, the attitude control by the control unit 7 is executed prior to the local sun tracking operation of each of the solar power generation devices 100.
  • FIG. 10 is a diagram showing a change in generated power when all the groups of the solar power generation device group 200 are simultaneously retracted due to strong wind, for comparison. In this case, at the start of evacuation, the generated power will be zero at a stretch. That is, the impact on the power grid is large.
  • a plurality of mechanical strengths of the support device 2 are mixed in the solar power generation device group 200, and the strength is low when it is necessary to take a retreating posture. Take a posture to evacuate to the required number in a step-by-step order from the one side.
  • the photovoltaic power generation panel 1 of the supporting device 2 having a relatively low strength can be quickly retracted and protected from strong winds.
  • the photovoltaic power generation panel 1 of the supporting device 2 having a relatively high strength may not take a retreating posture depending on the wind strength.
  • the retracting posture is taken in consideration of the strength of the wind and the strength of the support device 2, the photovoltaic power generation device group 200 as a whole can generate power more than necessary while appropriately retracting. There is no harm.
  • ⁇ Other devices common to each embodiment> For example, the following may be considered as another common measure that may be added to the above-described embodiments.
  • a solar power generation device carrying a crystalline silicon solar power generation module may be additionally provided.
  • several solar cells may be mixed in the solar power generation device group 200, or may be separately provided.
  • the supporting device 2 is the same as that of the solar power generation device having the crystalline silicon solar power generation module mounted thereon, and the same applies to the retraction posture.
  • the solar power generation system 300 includes the solar power generation device group 200 and a plurality of solar power generation devices based on the information on the wind at the location where the solar power generation device group 200 is installed. And a control unit 7 having a function of instructing the support device 2 on the posture to be taken of the photovoltaic panel 1 in each of 100. Then, when there is a photovoltaic panel 1 that needs to take a retreating posture based on wind information, the control unit 7 gradually requires the number of the photovoltaic panels 1 taking a retreating posture. Increase up to

Abstract

This photovoltaic system is provided with: a photovoltaic device group formed by arranging a plurality of photovoltaic devices including a concentrator photovoltaic panel and a support device for supporting this photovoltaic panel in an attitude controllable manner; and a control unit having a function of, on the basis of information about wind at the site where the photovoltaic device group is installed, instructing the support device on an attitude to be taken by the photovoltaic panel of each of the plurality of photovoltaic devices. When a photovoltaic panel is present that needs to take a predetermined standby attitude, the control unit increases, on the basis of the information, the number of photovoltaic panels taking the standby attitude to a required number in a step-by-step manner.

Description

太陽光発電システム及び、太陽光発電パネルの姿勢制御方法Photovoltaic system and attitude control method of photovoltaic panel
 本発明は、太陽光発電システム及び、太陽光発電パネルの姿勢制御方法に関する。
 本出願は、2017年8月9日出願の日本出願第2017-153873号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a photovoltaic system and a posture control method of a photovoltaic panel.
This application claims priority based on Japanese Patent Application No. 2017-153873 filed on Aug. 9, 2017, and incorporates all the contents described in the aforementioned Japanese application.
 集光型太陽光発電(CPV:Concentrator Photovoltaic)では、発電効率の高い小さな発電素子に、フレネルレンズ等で集光させた太陽光を入射させ、発電する構成を基本としている。この基本構成を、マトリックス状に多数並べて構成された集光型太陽光発電モジュールを、さらに多数並べて集光型太陽光発電パネル(アレイ)とする(例えば、特許文献1参照。)。集光型太陽光発電パネルは、太陽を追尾するため、仰角及び方位角の2軸に駆動できる支持装置によって支持されている。 Condenser type photovoltaic power generation (CPV: Concentrator Photovoltaic) is based on a configuration in which sunlight is condensed by a Fresnel lens or the like to be incident on a small power generation element with high power generation efficiency to generate power. A large number of light collecting solar power generation modules configured by arranging a large number of this basic configuration in a matrix are further arranged in a large number to form a light collecting solar power generation panel (array) (see, for example, Patent Document 1). A concentrator photovoltaic panel is supported by a support device that can be driven in two axes, elevation and azimuth, to track the sun.
特開2014-226025号公報JP 2014-226025 A
 本発明の一表現に係る太陽光発電システムは、集光型の太陽光発電パネル及びこれを姿勢制御可能に支持する支持装置を含む太陽光発電装置が複数基配列されて成る太陽光発電装置群と、前記太陽光発電装置群が設置されている場所における風に関する情報に基づいて、複数基の前記太陽光発電装置の各々における前記太陽光発電パネルのとるべき姿勢を前記支持装置に指示する機能を有する制御部と、を備え、前記制御部は、前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やす、太陽光発電システムである。 A solar power generation system according to an embodiment of the present invention includes a solar power generation device group including a plurality of solar power generation devices arrayed including a light collecting solar power generation panel and a support device supporting the panel so as to be capable of attitude control. And a function of instructing the supporting device on the posture to be taken of the photovoltaic panel in each of the plurality of photovoltaic devices based on the information on the wind at the place where the photovoltaic group is installed. And the control unit is configured to set the solar cell panel in the retracted position when the solar panel needs to be in the predetermined retracted position based on the information. Solar power generation system, increasing the number of in stages to the required number.
 また、本発明の一表現にかかる太陽光発電パネルの姿勢制御方法は、集光型の太陽光発電パネルを支持装置によって姿勢制御可能に支持する太陽光発電装置が複数基配列されて成る太陽光発電装置群における、各太陽光発電パネルの姿勢を統括的に制御する制御部が実行する、太陽光発電パネルの姿勢制御方法であって、前記太陽光発電装置群が設置されている場所における風に関する情報を取得し、前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やし、前記退避姿勢をとっている前記太陽光発電パネルがある状態から、前記情報に基づいて、前記退避姿勢をとる必要が無くなった場合、前記退避姿勢をとっている前記太陽光発電パネルの数を、段階的に減らす、太陽光発電パネルの姿勢制御方法である。 Further, according to one aspect of the present invention, there is provided a method of controlling the attitude of a photovoltaic power generation panel, the solar power generation panel including a plurality of solar photovoltaic power generation devices supporting a concentration type solar power generation panel by a supporting device. A posture control method for photovoltaic power generation panels, which is executed by a control unit that comprehensively controls the postures of the respective photovoltaic power generation panels in the power generation equipment group, wherein wind at a place where the photovoltaic power generation equipment group is installed If there is a photovoltaic panel that needs to obtain information on the above and based on the information, it is necessary to take the number of the photovoltaic panels in the retracted position in a stepwise manner. If the solar panel is in a state in which the solar panel is in the retracted position, it is in the retracted position when the need for the retracted position is eliminated based on the information. The number of serial photovoltaic panel, reducing stepwise, a posture control method for photovoltaic panels.
図1は、1基分の、集光型の太陽光発電装置を、受光面側から見た斜視図である。FIG. 1 is a perspective view of one concentrating solar power generation apparatus as viewed from the light receiving surface side. 図2は、1基分の、集光型の太陽光発電装置を、背面側から見た斜視図である。FIG. 2 is a perspective view of one concentrating solar power generation apparatus as viewed from the back side. 図3は、電気的な接続関係の概要を示す接続図である。FIG. 3 is a connection diagram showing an outline of the electrical connection relationship. 図4は、太陽光発電パネルの受光面が、太陽に正対した状態の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a state in which the light receiving surface of the photovoltaic panel faces the sun. 図5は、太陽光発電装置が例えば縦横にそれぞれ8基ずつ並び、合計64基の太陽光発電装置群を含む太陽光発電システムとなっている状態を示す略図である。FIG. 5 is a schematic view showing a solar power generation system including, for example, a total of 64 solar power generation device groups, in which eight solar power generation devices are arranged, for example, eight each vertically and horizontally. 図6は、太陽光発電装置を簡略化して正方形のシンボルで表した図であり、1列分が退避姿勢となっている状態の図である。FIG. 6 is a diagram showing the photovoltaic power generation system in a simplified manner and represented by square symbols, in which one row is in the retracted position. 図7は、太陽光発電装置を簡略化して正方形のシンボルで表した図であり、2列分が退避姿勢となっている状態の図である。FIG. 7 is a diagram showing the photovoltaic power generation system in a simplified manner and represented by square symbols, in which two rows are in the retracted position. 図8は、太陽光発電装置を簡略化して正方形のシンボルで表した図であり、7列分が退避姿勢となっている状態の図である。FIG. 8 is a diagram showing the photovoltaic power generation system in a simplified manner and represented by square symbols, in which seven rows are in the retracted position. 図9は、太陽光発電装置を簡略化して正方形のシンボルで表した図であり、全列分が退避姿勢となっている状態の図である。FIG. 9 is a diagram showing the photovoltaic power generation system in a simplified manner and represented by square symbols, and is a diagram showing a state in which all the rows are in the retracted posture. 図10は、比較のために、仮に、強風によって全基が一斉に退避姿勢をとった場合の発電電力の変化を示す図である。FIG. 10 is a diagram showing a change in generated power when all the units take a retreating posture simultaneously due to strong wind for comparison. 図11は、図6~図9の要領で1列ずつ段階的に退避姿勢をとった場合の発電電力の変化を示す図である。FIG. 11 is a diagram showing a change in generated power when the retracting posture is taken step by step in a row in the manner of FIG. 6 to FIG. 図12は、1基ずつ段階的に、かつ、1つの段階の時間は短くして、退避姿勢に移行させた場合の発電電力の変化を示す図である。FIG. 12 is a diagram showing a change in the generated power when shifting to the retracted posture in a step-by-step manner, with the time of one step shortened. 図13は、第2実施形態の太陽光発電システムとして、太陽光発電装置が例えば36基配置されている一例である。FIG. 13: is an example by which 36 solar power generation devices are arrange | positioned, for example as a solar power generation system of 2nd Embodiment.
 [本開示が解決しようとする課題]
 集光型の太陽光発電パネルは太陽を追尾するため、例えば、1本の支柱に支持されていて、しかも、パネル全体としての受光面は大きいため、風圧を受けた場合に支柱に大きな荷重がかかる。支柱を極めて頑丈なものにすれば大きな荷重にも十分耐えられるが、コストとの兼ね合いもあって、現実的には妥当な強度を選択することになる。
 そこで、晴天時であっても、パネルに対して強風が吹き付けた場合は、設備の安全上、一時的に退避姿勢(水平な姿勢)に移行し、風が治まれば元の太陽追尾姿勢に戻るよう制御する。退避姿勢では、パネルを水平にすることで、できるだけ風圧を回避できるようにする。
[Problems to be solved by the present disclosure]
Since the concentrating solar power generation panel is supported by a single support for tracking the sun, for example, the light receiving surface of the panel as a whole is large. Therefore, when the wind pressure is applied, a large load is applied to the support. It takes. If the column is made extremely robust, it will be able to withstand large loads well, but there is also a trade-off with the cost, and in practice this means selecting a reasonable strength.
Therefore, even if the weather is fine, if strong wind blows on the panel, it will temporarily shift to the retracted attitude (horizontal attitude) for safety of the equipment, and if the wind is cured, it will return to the original sun tracking attitude Control to return. In the retracted position, the wind pressure can be avoided as much as possible by leveling the panel.
 ところが、例えば大規模な太陽光発電システムにおいて、全てのパネルが一斉に退避姿勢になると、集光型太陽光発電の特性上、光軸が大きくずれて発電できなくなる。つまり、数十MWから数百MWの発電量が突然0になる。需要の大きな大都市部で電力網の容量が大きい場合は、需給調整能力が大きいので特に問題にならないかもしれない。しかしながら、そもそも太陽光発電システムの設置に適している高日射地域は砂漠などの僻地であることが多い。このような場所では地域全体の電力網の容量も小さい場合が多く、その場合、数十MWから数百MWの変動は地域の電力網に大きな影響を与える可能性がある。 However, for example, in a large-scale solar power generation system, when all the panels are in the retracted position at the same time, the optical axis is largely shifted due to the characteristics of the concentrated solar power generation, and power can not be generated. In other words, the generation of several tens of MW to several hundreds of MW suddenly becomes zero. If the capacity of the power grid is large in a large metropolitan area with large demand, it may not be a problem because there is a large demand-supply adjustment capacity. However, the high solar radiation area suitable for the installation of the solar power generation system is often a desert area such as a desert. In such places, the capacity of the power network in the whole area is often small, and in this case, fluctuations of several tens of MW to several hundreds of MW may have a great impact on the local power network.
 一方、電力会社は常に需要に合わせて発電量を調整している。ところが、上記のような太陽光発電システムでは、晴天であっても強風で突然発電量が0になることもあり、発電量の予測が難しい。突然、発電量が0になった場合、電力会社は、例えば火力発電等の発電電力を急速に増大させる制御を行って電力の需給バランスをとらなければならない。これは、電力会社にとっては、対応が難しい。 On the other hand, power companies are constantly adjusting the amount of power generation to meet demand. However, in the solar power generation system as described above, even if it is fine, the amount of power generation may suddenly become zero due to strong wind, and it is difficult to predict the amount of power generation. Suddenly, when the amount of power generation reaches zero, the power company must perform control to rapidly increase the generated power, such as thermal power generation, for example, to balance the supply and demand of power. This is difficult for power companies to handle.
 かかる課題に鑑み、本開示は、集光型太陽光発電を採用する太陽光発電システムにおいて、一時的に強風が吹いた場合でも電力網に与える影響を緩和することを目的とする。 In view of such a subject, this indication aims at alleviating the influence which it has on a power grid, even when the strong wind blows temporarily, in the photovoltaics system which adopts concentrating solar power generation.
 [本開示の効果]
 本開示によれば、集光型太陽光発電を採用する太陽光発電システムにおいて、一時的に強風が吹いた場合でも電力網に与える影響を緩和することができる。
[Effect of the present disclosure]
According to the present disclosure, in a solar power generation system that employs concentrated solar power generation, even when a strong wind temporarily blows, the influence on the power grid can be alleviated.
 [実施形態の要旨]
 本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
[Summary of the embodiment]
The subject matter of the embodiments of the present invention includes at least the following.
 (1)この太陽光発電システムは、集光型の太陽光発電パネル及びこれを姿勢制御可能に支持する支持装置を含む太陽光発電装置が複数基配列されて成る太陽光発電装置群と、前記太陽光発電装置群が設置されている場所における風に関する情報に基づいて、複数基の前記太陽光発電装置の各々における前記太陽光発電パネルのとるべき姿勢を前記支持装置に指示する機能を有する制御部と、を備え、前記制御部は、前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やす、太陽光発電システムである。 (1) The solar power generation system includes a solar power generation device group in which a plurality of solar power generation devices including a light collecting solar power generation panel and a support device supporting the light control panel in an attitude-controllable manner; A control having a function of instructing the supporting device on the posture to be taken of the photovoltaic panel in each of the plurality of photovoltaic devices based on the information on the wind at the place where the photovoltaic device group is installed. And the control unit, based on the information, determines the number of the photovoltaic panels in the retracted position when the photovoltaic panels are required to be in the predetermined retracted position. Solar power generation system, gradually increasing to the required number.
 このような太陽光発電システムでは、強風により一部の又は全部の太陽光発電パネルに退避姿勢をとる必要が生じた場合に、複数の太陽光発電パネルに、一斉に退避姿勢をとらせることなく、退避姿勢をとる数を段階的に必要数まで増やす。従って、発電電力の急減を防止し、電力網に与える影響を緩和することができる。 In such a solar power generation system, when it is necessary to take a retreating posture to some or all of the solar power generation panels due to strong wind, the plurality of solar power generation panels do not take a retreating posture all at once Increase the number of retract postures to the required number in stages. Therefore, it is possible to prevent a rapid decrease in generated power and to mitigate the influence on the power grid.
 (2)また、(1)の太陽光発電システムにおいて、前記退避姿勢をとっている前記太陽光発電パネルがある場合において、その状態から、前記情報に基づいて、前記退避姿勢をとる必要が無くなった場合、前記制御部は、前記退避姿勢をとっている前記太陽光発電パネルの数を、段階的に減らすようにしてもよい。
 この場合、例えば退避姿勢をとった後、強風が止むことで、退避姿勢をとる必要が無くなった場合には、段階的に退避姿勢をとる太陽光発電パネルの数を減らして元の姿勢に戻す。従って、発電電力の急増を防止し、電力網に与える影響を緩和することができる。
(2) In the solar power generation system according to (1), when there is the solar power generation panel taking the retreating posture, it is not necessary to take the retreating posture based on the information from that state. In this case, the control unit may reduce the number of the photovoltaic panels in the retracted position in stages.
In this case, for example, when the strong wind is stopped after taking the retreating posture, when it is not necessary to take the retreating posture, the number of photovoltaic panels taking the retreating posture is gradually reduced to restore the original posture. . Therefore, it is possible to prevent the sudden increase of the generated power and to mitigate the influence on the power grid.
 (3)また、(1)の太陽光発電システムにおいて、前記太陽光発電装置群の中で、前記支持装置の機械的な強度は複数種類混在しており、前記制御部は、前記情報に基づいて、前記退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、前記強度が低い方から順に、段階的に必要数まで増やすようにしてもよい。
 この場合、強度が比較的低い支持装置の太陽光発電パネルは早めに退避姿勢となって強風から保護することができる。強度が比較的高い支持装置の太陽光発電パネルは、風の強さによっては退避姿勢をとらなくてもよい。このように、風の強さと支持装置の強度とを勘案して退避姿勢をとるようにすれば、太陽光発電装置群全体としては、適切な退避をしつつ、必要以上に発電能力を損なうこともない。
(3) In the photovoltaic power generation system according to (1), in the photovoltaic power generation device group, a plurality of types of mechanical strengths of the support device are mixed, and the control unit is based on the information. When there is the solar panel which needs to take the retreat posture, the number of the solar panels taking the retreat posture is gradually increased to the required number in order from the one with the lower strength. You may do so.
In this case, the photovoltaic power generation panel of the supporting device whose strength is relatively low can be quickly retracted and protected from strong wind. The photovoltaic panel of the supporting device having a relatively high strength may not take a retreating posture depending on the wind strength. As described above, if the retracting posture is taken in consideration of the strength of the wind and the strength of the support device, the photovoltaic power generation device group as a whole loses the power generation capacity more than necessary while appropriately retracting. Nor.
 (4)また、(1)~(3)のいずれかの太陽光発電システムにおいて、前記太陽光発電装置群とは別に、結晶シリコン太陽光発電モジュールを搭載する太陽光発電装置が併設されていてもよい。
 この場合、例えば、受光面が上向きで水平な退避姿勢をとることにより、少ないものの一定の発電電力は得られる。
(4) Further, in the solar power generation system according to any one of (1) to (3), a solar power generation device mounted with a crystalline silicon solar power generation module is additionally provided separately from the solar power generation device group. It is also good.
In this case, for example, when the light receiving surface faces upward and takes a horizontal retreating posture, a small but constant generated power can be obtained.
 (5)一方、方法の観点からこれは、集光型の太陽光発電パネルを支持装置によって姿勢制御可能に支持する太陽光発電装置が複数基配列されて成る太陽光発電装置群における、各太陽光発電パネルの姿勢を統括的に制御する制御部が実行する、太陽光発電パネルの姿勢制御方法であって、前記太陽光発電装置群が設置されている場所における風に関する情報を取得し、前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やし、前記退避姿勢をとっている前記太陽光発電パネルがある状態から、前記情報に基づいて、前記退避姿勢をとる必要が無くなった場合、前記退避姿勢をとっている前記太陽光発電パネルの数を、段階的に減らす、太陽光発電パネルの姿勢制御方法である。 (5) On the other hand, from the viewpoint of the method, this is each solar power generation device group in which a plurality of solar power generation devices are arranged, in which a plurality of solar power generation devices supporting the concentration type solar power generation panel by the support device. It is a posture control method of a photovoltaics panel which a control part which controls a posture of a photovoltaics panel comprehensively, and acquires the information about the wind in the place where the above-mentioned photovoltaics group is installed, Based on the information, when there is the solar power generation panel that needs to take a predetermined retraction posture, the number of the solar power generation panels in the retraction posture is gradually increased to the required number, and the retraction posture is If it is not necessary to take the retreating posture based on the information from the state in which the solar power generation panel taking the moment is present, the number of the solar power generation panels taking the retreating posture is Reduce to Kaiteki, a posture control method for a solar power panel.
 このような太陽光発電パネルの姿勢制御方法では、強風により一部の又は全部の太陽光発電パネルに退避姿勢をとる必要が生じた場合に、複数の太陽光発電パネルに、一斉に退避姿勢をとらせることなく、退避姿勢をとる数を段階的に必要数まで増やす。従って、発電電力の急減を防止し、電力網に与える影響を緩和することができる。
 また、退避姿勢をとった後、強風が止むことで、退避姿勢をとる必要が無くなった場合には、段階的に退避姿勢をとる太陽光発電パネルの数を減らして元の姿勢に戻す。従って、発電電力の急増を防止し、電力網に与える影響を緩和することができる。
In such a posture control method of a solar panel, when it is necessary to take a retreating posture in some or all of the solar panels due to strong wind, the retreating posture is simultaneously performed on a plurality of solar panels. Increase the number of retractable postures to the required number in stages without making it take off. Therefore, it is possible to prevent a rapid decrease in generated power and to mitigate the influence on the power grid.
In addition, after the retracting posture is taken, when the strong wind is stopped and the need for the retreating posture is eliminated, the number of photovoltaic panels which are gradually retreated is reduced to return to the original posture. Therefore, it is possible to prevent the sudden increase of the generated power and to mitigate the influence on the power grid.
 [実施形態の詳細]
 以下、本発明の実施形態に係る太陽光発電システム及び太陽光発電パネルの姿勢制御方法について、図面を参照して説明する。
Details of Embodiment
Hereinafter, a photovoltaic power generation system and a posture control method of a photovoltaic power generation panel according to an embodiment of the present invention will be described with reference to the drawings.
 <第1実施形態>
 《太陽光発電装置》
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置を、受光面側及び背面側から見た斜視図である。図1において、太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状の太陽光発電パネル1と、その支持装置2とを備えている。太陽光発電パネル(アレイ)1は、背面側の架台11(図2)上に集光型太陽光発電モジュール1Mを並べて構成されている。図1の例では、例えば合計200個の集光型太陽光発電モジュール1Mの集合体として、太陽光発電パネル1が構成されている。
First Embodiment
<< solar power generation device >>
FIG.1 and FIG.2 is the perspective view which looked at the photovoltaic power generation apparatus of one group of condensing type from the light-receiving surface side and the back side, respectively. In FIG. 1, the solar power generation device 100 is provided with the solar power generation panel 1 of the shape which continued in the upper part side, and was divided into right and left by the lower part side, and its support apparatus 2. FIG. The solar power generation panel (array) 1 is configured by arranging the concentrating solar power generation modules 1M on a rack 11 (FIG. 2) on the back side. In the example of FIG. 1, the solar power generation panel 1 is comprised as an aggregate | assembly of a total of 200 condensing solar power generation modules 1M, for example.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。支柱21の下端近傍には、電気接続や電気回路収納のためのボックス13(図2)が設けられている。 The supporting device 2 includes a support 21, a foundation 22, a two-axis drive unit 23, and a horizontal shaft 24 (FIG. 2) as a drive shaft. The lower end of the column 21 is fixed to the base 22 and the upper end thereof is provided with a two-axis drive unit 23. In the vicinity of the lower end of the support 21, a box 13 (FIG. 2) for electrical connection and electrical circuit storage is provided.
 図2において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。水平軸24は、架台11を固定し補強する補強材12に直交するように、固定されている。従って、水平軸24が方位角又は仰角の方向に回動すれば、太陽光発電パネル1もその方向に回動する。 In FIG. 2, the foundation 22 is firmly buried in the ground to the extent that only the upper surface is visible. With the foundation 22 buried in the ground, the columns 21 become vertical and the horizontal axis 24 becomes horizontal. The two-axis drive unit 23 can rotate the horizontal axis 24 in two directions of an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal axis 24 as a central axis). The horizontal shaft 24 is fixed so as to be orthogonal to the reinforcing material 12 which fixes and reinforces the gantry 11. Therefore, when the horizontal axis 24 pivots in the azimuth or elevation direction, the photovoltaic panel 1 also pivots in that direction.
 なお、図1,図2では1本の支柱21で太陽光発電パネル1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、太陽光発電パネル1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。 In addition, although the support apparatus 2 which supports the solar energy power generation panel 1 by one support | pillar 21 was shown in FIG. 1, FIG. 2, the structure of the support apparatus 2 is not restricted to this. In short, any supporting device that can support the photovoltaic power generation panel 1 so as to be movable in two axes (azimuth, elevation) can be used.
 図3は、一例として、電気的な接続関係の概要を示す接続図である。ボックス13内には、例えば、駆動制御部3が設けられている。駆動制御部3は、方位角の駆動用のモータ23aと、仰角の駆動用のモータ23eとを駆動して、太陽光発電パネル1が太陽に正対するように、追尾動作を行わせる。通常の追尾動作は、このように、太陽光発電装置100ごとに、ローカルに行われている。 FIG. 3 is a connection diagram showing an outline of an electrical connection as an example. For example, a drive control unit 3 is provided in the box 13. The drive control unit 3 drives the motor 23a for driving the azimuth angle and the motor 23e for driving the elevation angle to perform the tracking operation so that the photovoltaic panel 1 faces the sun. The normal tracking operation is thus performed locally for each solar power generation apparatus 100.
 一方、駆動制御部3に対しては、上位の制御部7からも姿勢制御の信号を与えることができる。制御部7からの姿勢制御の信号は、太陽光発電装置100の行っているローカルな追尾動作に優先する。太陽光発電装置100が設置されている場所の風速は、風速センサ7aにより検出される。風速センサ7aの検出出力は、制御部7に与えられる。風速センサ7aは、制御部7の一部であるとも言える。但し、制御部7は、太陽光発電装置100から離れて設けられていてもよい。制御部7は例えば、コンピュータを含み、ソフトウェア(コンピュータプログラム)をコンピュータが実行することで、必要な制御機能を実現する。ソフトウェアは、制御部7の記憶装置(図示せず。)に格納される。 On the other hand, a signal of attitude control can be given to the drive control unit 3 also from the upper control unit 7. The attitude control signal from the control unit 7 has priority over the local tracking operation performed by the solar power generation apparatus 100. The wind speed of the place where the solar power generation device 100 is installed is detected by the wind speed sensor 7a. The detection output of the wind speed sensor 7 a is given to the control unit 7. It can be said that the wind speed sensor 7 a is a part of the control unit 7. However, the control unit 7 may be provided separately from the solar power generation device 100. The control unit 7 includes, for example, a computer, and executes necessary software (computer program) to realize necessary control functions. The software is stored in a storage device (not shown) of the control unit 7.
 また、太陽光発電パネル1の出力(直流)は、パワーコンディショナ6によって交流電力に変換され、交流電力は、図示しない変電機器へ送られる。パワーコンディショナ6は、例えば、太陽光発電装置100の1基ごとに設けられる。変電機器には、複数基の太陽光発電装置100から、それぞれの出力に基づく交流電力が送られて来る。 Moreover, the output (direct current) of the solar power generation panel 1 is converted into alternating current power by the power conditioner 6, and the alternating current power is sent to a substation equipment not shown. The power conditioner 6 is provided, for example, for each of the solar power generation devices 100. AC power based on each output is sent from the plurality of photovoltaic power generation devices 100 to the substation equipment.
 例えば、夜間の太陽光発電パネル1は、水平な姿勢となっている。日の出とともに、太陽光発電パネル1は地平線から昇ってくる太陽の方向を向いて図1の状態に近い概ね垂直な姿勢となる。その後、太陽の動きを追いかけるように、方位角及び仰角に動作し、常に受光面が太陽に正対する姿勢となる。日の入りの際は、太陽光発電パネル1は地平線に沈み行く太陽の方向を向いて再び図1の状態に近い概ね垂直な姿勢となる。日没後の太陽光発電パネル1は水平な姿勢となる。強風が吹くことがなければ、日々、このような動作が行われる。 For example, the solar panel 1 at night is in a horizontal position. Along with the sunrise, the solar panel 1 faces the direction of the sun rising from the horizon and assumes a generally vertical posture close to the state of FIG. After that, in order to follow the movement of the sun, it operates at an azimuth angle and an elevation angle so that the light receiving surface always faces the sun. When the sun goes down, the solar panel 1 turns to the direction of the sun sunk to the horizon and takes a substantially vertical posture close to the state of FIG. 1 again. After sunset, the solar panel 1 is in a horizontal position. Such an operation is performed every day unless a strong wind blows.
 図4は、太陽光発電パネル1の受光面が、太陽に正対した状態の一例を示す斜視図である。
 また、退避姿勢の太陽光発電パネル1は例えば水平になり、風が通り抜けやすく、風圧を受けにくい状態となる。
FIG. 4 is a perspective view showing an example of a state in which the light receiving surface of the solar panel 1 faces the sun.
In addition, the photovoltaic power generation panel 1 in the retracted position is, for example, horizontal, and the wind is likely to pass through, and the wind pressure is not easily received.
 《太陽光発電システム》
 図5は、太陽光発電装置100が、例えば縦横にそれぞれ8基ずつ並び、合計64基の太陽光発電装置群200を含む、太陽光発電システム300となっている状態を示す略図である。制御部7は、全ての太陽光発電装置100と通信可能に接続されており、各太陽光発電パネル1の姿勢を個別に、かつ、統括的に制御することができる。なお、前述のように、制御部7による姿勢制御は、個々の太陽光発電装置100のローカルな太陽追尾動作に優先して実行される。
"Solar power system"
FIG. 5 is a schematic view showing a state of the solar power generation system 300 including, for example, a total of 64 solar power generation device groups 200, in which eight solar power generation devices 100 are arranged vertically and horizontally, for example. The control unit 7 is communicably connected to all the solar power generation devices 100, and can control the attitude of each of the solar panels 1 individually and collectively. As described above, the attitude control by the control unit 7 is executed prior to the local sun tracking operation of each of the solar power generation devices 100.
 《強風時の退避》
 ここで例えば、64基の太陽光発電装置100は、全て同じタイプであるとし、支持装置2の強度も全て同じであるとする。
 図6~図9は、太陽光発電装置100を簡略化して正方形のシンボルで表している。白抜きのシンボルは太陽を追尾する姿勢であり、ハッチングを付したシンボルは退避姿勢であることを表している。
退避 Shipping at high winds》
Here, for example, it is assumed that the 64 solar power generation devices 100 are all the same type, and the strength of the support device 2 is also the same.
6 to 9 show the solar power generation device 100 in a simplified manner and represented by square symbols. The white symbols indicate the attitude to track the sun, and the hatched symbols indicate the retraction attitude.
 ここで、例えば、太陽光発電装置群200が設置されている現地の風速が、退避姿勢をとることを要する「強風」のレベルに達したとする。この場合、制御部7は、まず、図6に示すように、例えば、図の左側の1列の太陽光発電装置100について、太陽を追尾する姿勢から退避姿勢に移行させる。すなわち、退避姿勢は8基で、残りの56基はまだ太陽を追尾する姿勢である。 Here, for example, it is assumed that the wind speed at the site where the solar power generation device group 200 is installed has reached a level of “strong wind” that requires taking a retreat posture. In this case, first, as shown in FIG. 6, for example, the control unit 7 causes the solar power generation device 100 on the left side of the figure to shift from the posture for tracking the sun to the retracted posture. That is, there are eight retreating postures, and the remaining 56 are still postures to track the sun.
 次に、図7において、制御部7は、さらに2列目の太陽光発電装置100についても、太陽を追尾する姿勢から退避姿勢に移行させる。すなわち、退避姿勢は16基に増えて、残りの48基はまだ太陽を追尾する姿勢である。
 そして、強風が続いている限り、1列ずつ段階的に退避姿勢に移行させ、図8では、56基が退避姿勢となり、8基のみが太陽を追尾する姿勢である。
 最終的に、図9では、全ての太陽光発電パネル1が退避姿勢となる。
Next, in FIG. 7, the control unit 7 also shifts the attitude of tracking the sun from the attitude of tracking the sun to the retracted attitude also with respect to the photovoltaic power generation apparatus 100 in the second row. That is, the retraction attitude is increased to 16 and the remaining 48 are still in the attitude to track the sun.
Then, as long as strong wind continues, the attitude is shifted stepwise to the retreating posture one row at a time, and in FIG.
Finally, in FIG. 9, all the solar panels 1 are in the retracted position.
 実際の風はランダムに吹くので、常に図6~図9の順に移行するとは限らない。例えば図6~図9の状態の途中で、風が治まれば、元に戻る場合もある。しかし、最終的に全ての太陽光発電パネル1が退避姿勢になるとしても、同時に全てが退避姿勢になることはなく、段階的に退避姿勢に移行する数が、必要数まで増えることになる。 Since the actual wind blows at random, it does not always shift in the order of FIG. 6 to FIG. For example, if the wind recovers in the middle of the states of FIGS. However, even if all the photovoltaic panels 1 finally become in the retracted position, they do not all simultaneously move into the retracted position, and the number of shifting to the retracted position in stages will increase to the necessary number.
 ここで、太陽光発電パネル1の姿勢と発電電力との関係について説明する。集光型太陽光発電モジュール1Mによって構成された太陽光発電パネル1は、太陽光を集光して小さな発電素子に導く光学系の構成である。従って、退避姿勢になると発電量は0になる。 Here, the relationship between the attitude of the photovoltaic panel 1 and the generated power will be described. The photovoltaic power generation panel 1 configured by the concentrating solar power generation module 1M is a configuration of an optical system that condenses sunlight and guides it to a small power generation element. Therefore, the power generation amount is zero when the retraction attitude is reached.
 図10は、比較のために、仮に、強風によって太陽光発電装置群200の全基が一斉に退避姿勢をとった場合の発電電力の変化を示す図である。この場合、退避の開始とともに、一気に発電電力は0になる。すなわち、電力網に与える影響が大きい。 FIG. 10 is a diagram showing a change in generated power when all the groups of the solar power generation device group 200 are simultaneously retracted due to strong wind, for comparison. In this case, at the start of evacuation, the generated power will be zero at a stretch. That is, the impact on the power grid is large.
 図11は、前述の図6~図9の要領で1列ずつ段階的に退避姿勢をとった場合の発電電力の変化を示す図である。すなわち、発電電力は8段階で低下する。従って、電力網に与える影響を緩和することができる。なお、この場合、8段階で低下するまでの少なくとも時間Tの間は、支持装置2は、強風に耐え得る強度を有している必要がある。 FIG. 11 is a diagram showing a change in generated power when the retracting posture is taken step by step in the same manner as in FIGS. 6 to 9 described above. That is, the generated power decreases in eight stages. Therefore, the impact on the power grid can be mitigated. In this case, the support device 2 needs to have a strength capable of withstanding strong winds for at least a time T until it decreases in eight stages.
 図12は、太陽光発電装置100の1基ずつを段階的に、かつ、1つの段階の保持時間はなるべく短縮して、退避姿勢に移行させた場合の発電電力の変化を示す図である。この場合の発電電力の低下の特性は直線に近づくが、あくまで段階的に変化していることに変わりはない。 FIG. 12 is a diagram showing a change in generated power when the solar power generation apparatus 100 is shifted to the retracted posture by stepwise reducing the holding time of one stage as much as possible. In this case, the characteristic of the decrease in the generated power approaches a straight line, but there is no change in the gradual change.
 なお、上記の例(図6~図9)では、図の左側から1列ずつ、退避姿勢に入る太陽光発電パネル1の数を増やすようにしたが、これは説明の便宜上の一例に過ぎず、どの列からでもよい。また、列にこだわらずランダムに所定数ごと退避姿勢に入るようにしてもよい。要するに、退避姿勢をとる太陽光発電パネル1の数を段階的に必要数まで増やすことができればよい。 In the above example (FIGS. 6 to 9), the number of the solar panels 1 entering the retracted position is increased by one row from the left side of the figure, but this is merely an example for the convenience of description. , From any column. Also, the evacuation posture may be randomly entered at a predetermined number regardless of the row. In short, it is only necessary to increase the number of photovoltaic panels 1 in the retracted position stepwise to the required number.
 また、強風が止んだ場合は、例えば図9,図8,図7,図6の順で逆の工程をたどって、段階的に元の太陽追尾の姿勢に戻る太陽光発電パネル1の数を増やせばよい。
 すなわち、退避姿勢をとっている太陽光発電パネル1がある場合において、その状態から、風の情報に基づいて、退避姿勢をとる必要が無くなった場合、制御部7は、退避姿勢をとっている太陽光発電パネル1の数を、段階的に減らす。このように、強風が止むことで、退避姿勢をとる必要が無くなった場合には、段階的に退避姿勢をとる太陽光発電パネル1の数を減らして元の姿勢に戻す。従って、発電電力の急増を防止し、電力網に与える影響を緩和することができる。
In addition, when the strong wind stops, for example, the number of photovoltaic panels 1 that return to the original sun tracking posture in a stepwise manner by following the reverse process in the order of FIG. 9, FIG. 8, FIG. You can increase it.
That is, when there is the photovoltaic power generation panel 1 taking the retreating posture, the control unit 7 takes the retreating posture when it is not necessary to take the retreating posture based on the wind information from that state. Reduce the number of photovoltaic panels 1 gradually. As described above, when the strong wind stops and it is not necessary to take the retreating posture, the number of the photovoltaic panels 1 in the retreating posture is gradually reduced to return to the original posture. Therefore, it is possible to prevent the sudden increase of the generated power and to mitigate the influence on the power grid.
 <第2実施形態>
 次に、第2実施形態の太陽光発電システムでは、太陽光発電装置100の外観は図1と実質的に同じようなものであるが、風圧を受けた場合に、その荷重を支える支持装置2の強度を複数種類、混在するようにした。例えば、支柱21の直径、金属の肉厚、材質等を変えることで支柱21の強度を複数種類、用意することができる。また、応力が集中しやすい箇所の補強の程度を変えることによっても、支持装置2の強度を複数種類用意することができる。
Second Embodiment
Next, in the solar power generation system according to the second embodiment, the appearance of the solar power generation apparatus 100 is substantially the same as that of FIG. 1, but the support device 2 supports the load when receiving the wind pressure. It was made to mix two or more kinds of strength of. For example, it is possible to prepare a plurality of types of strengths of the support 21 by changing the diameter of the support 21, thickness of metal, material and the like. Also, the strength of the support device 2 can be prepared in a plurality of types by changing the degree of reinforcement of the portion where stress is likely to be concentrated.
 図13は、太陽光発電装置100が、例えば36基配置されている一例である。36基のうち、支持装置2の強度を例えば6段階設定し、各6基ずつとする。強度の高いものから太陽光発電装置100を、A,B,C,D,E,Fとランク分けして、強風時に退避姿勢に移行する閾値を、例えば最も強度が高いAは、風速20m/s以上が10秒続くことを閾値とし、逆に、最も強度が低いFは、風速14m/s以上が8秒続くことを閾値とする。B,C,D,Eは、AからFまでの間の強度とする。すなわち、強度の関係は、A>B>C>D>E>Fであるとする。なお、これらの数値は説明上の一例に過ぎない。また、図13のA~Fの配置も説明の便宜上の一例に過ぎない。 FIG. 13: is an example by which 36 solar power generation devices 100 are arrange | positioned, for example. Of the 36 groups, the strength of the supporting device 2 is set to, for example, six levels, and each group is set to six. The solar power generation apparatus 100 is classified into A, B, C, D, E, F from high strength ones, and the threshold for shifting to the retreat posture at the time of strong wind, for example, A with the highest strength, wind speed 20 m / m A threshold of 10 seconds or more lasting for s or more is used as the threshold, and F having the lowest intensity is a threshold for 8 seconds or more of the wind speed of 14 m / s or more. B, C, D, and E are intensities between A and F. That is, it is assumed that the relationship of strength is A> B> C> D> E> F. Note that these numerical values are merely an example for explanation. Further, the arrangement of A to F in FIG. 13 is merely an example for the convenience of description.
 例えば、風速がFの閾値に達するレベルであれば、Fが退避動作に入る。風速がEの閾値に達するレベルであれば、F,Eが退避動作に入る。風速がDの閾値に達するレベルであれば、F,E,Dが退避動作に入る。風速がCの閾値に達するレベルであれば、F,E,D,Cが退避動作に入る。風速がBの閾値に達するレベルであれば、F,E,D,C,Bが退避動作に入る。そして、風速がAの閾値に達するレベルであれば、F~Aの全てが退避動作に入る。 For example, if the wind speed reaches a threshold of F, F enters the evacuation operation. If the wind speed reaches a threshold of E, F and E enter the evacuation operation. If the wind speed reaches a threshold of D, F, E, D enter the evacuation operation. If the wind speed reaches a threshold of C, F, E, D, C enter the evacuation operation. If the wind speed reaches a threshold of B, F, E, D, C, B enter the evacuation operation. Then, if the wind speed reaches a threshold of A, all of F to A enter the evacuation operation.
 実際の風は、弱風の状態からいきなりAの閾値に達することは少なく、徐々に強くなるので、少なくとも全数がいきなり退避姿勢になることは、滅多に起こらず、段階的に退避姿勢に移行する数が増える。これにより、発電電力が突然0になることを防止できる。すなわち、電力網に与える影響を緩和することができる。強風が治まって、退避姿勢から復帰する場合も、段階的に復帰する数を増やすことで発電電力の急激な増加を抑制し、電力網に与える影響を緩和することができる。 The actual wind does not reach the threshold value of A suddenly from a weak wind state and gradually becomes stronger, so it is rare that at least all of them suddenly become in the withdrawal posture, and transition to the withdrawal posture in stages. The number increases. This can prevent the generated power from suddenly becoming zero. That is, the influence on the power grid can be mitigated. Even when the strong wind is relieved and return from the retreat posture, it is possible to suppress the rapid increase of the generated power and alleviate the influence on the power network by increasing the number of stepwise return.
 このように、第2実施形態では、太陽光発電装置群200の中で、支持装置2の機械的な強度は複数種類混在しており、退避姿勢をとる必要が生じた場合は、強度が低い方から順に、段階的に必要数まで退避姿勢をとる。この場合、強度が比較的低い支持装置2の太陽光発電パネル1は早めに退避姿勢となって強風から保護することができる。強度が比較的高い支持装置2の太陽光発電パネル1は、風の強さによっては退避姿勢をとらなくてもよい。このように、風の強さと支持装置2の強度とを勘案して退避姿勢をとるようにすれば、太陽光発電装置群200全体としては、適切な退避をしつつ、必要以上に発電能力を損なうこともない。 As described above, in the second embodiment, a plurality of mechanical strengths of the support device 2 are mixed in the solar power generation device group 200, and the strength is low when it is necessary to take a retreating posture. Take a posture to evacuate to the required number in a step-by-step order from the one side. In this case, the photovoltaic power generation panel 1 of the supporting device 2 having a relatively low strength can be quickly retracted and protected from strong winds. The photovoltaic power generation panel 1 of the supporting device 2 having a relatively high strength may not take a retreating posture depending on the wind strength. As described above, if the retracting posture is taken in consideration of the strength of the wind and the strength of the support device 2, the photovoltaic power generation device group 200 as a whole can generate power more than necessary while appropriately retracting. There is no harm.
 <各実施形態に共通のその他の工夫>
 上述の各実施形態に付加してもよい共通のその他の工夫として、例えば以下のことが考えられる。
 集光型の太陽光発電パネル100を搭載する太陽光発電装置群200とは別に、結晶シリコン太陽光発電モジュールを搭載した太陽光発電装置を併設してもよい。併設の仕方は、例えば太陽光発電装置群200の中に何基か混在させてもよいし、別途、隣接して設けてもよい。結晶シリコン太陽光発電モジュールを搭載した太陽光発電装置も、支持装置2は同様のものであり、退避姿勢をとるのも同様である。
<Other devices common to each embodiment>
For example, the following may be considered as another common measure that may be added to the above-described embodiments.
Aside from the solar power generation device group 200 carrying the light collection solar power generation panel 100, a solar power generation device carrying a crystalline silicon solar power generation module may be additionally provided. For example, several solar cells may be mixed in the solar power generation device group 200, or may be separately provided. The supporting device 2 is the same as that of the solar power generation device having the crystalline silicon solar power generation module mounted thereon, and the same applies to the retraction posture.
 このように、結晶シリコン太陽光発電モジュールを搭載する太陽光発電パネルが併設されていれば、例えば、受光面が上向きで水平な退避姿勢をとることにより、少ないものの一定の発電電力は得られる。すなわち、退避姿勢をとっても発電電力が0にはならない。従って、全ての太陽光発電パネルが退避姿勢をとったとしても、電力網に与える影響を緩和することができる。 As described above, if a solar panel is mounted on which a crystalline silicon solar power generation module is mounted, for example, a constant generated power can be obtained although the light receiving surface is directed upward and in a horizontal retraction posture. That is, the generated power does not become 0 even in the retreat posture. Therefore, even if all the solar panels are in the retracted position, the influence on the power grid can be mitigated.
 <まとめ>
 以上、詳述したように、この太陽光発電システム300は、太陽光発電装置群200と、太陽光発電装置群200が設置されている場所における風に関する情報に基づいて、複数の太陽光発電装置100の各々における太陽光発電パネル1のとるべき姿勢を支持装置2に指示する機能を有する制御部7と、を備えている。そして、制御部7は、風の情報に基づいて、退避姿勢をとることが必要となる太陽光発電パネル1がある場合、退避姿勢をとる太陽光発電パネル1の数を、段階的に必要数まで増やす。
<Summary>
As described above in detail, the solar power generation system 300 includes the solar power generation device group 200 and a plurality of solar power generation devices based on the information on the wind at the location where the solar power generation device group 200 is installed. And a control unit 7 having a function of instructing the support device 2 on the posture to be taken of the photovoltaic panel 1 in each of 100. Then, when there is a photovoltaic panel 1 that needs to take a retreating posture based on wind information, the control unit 7 gradually requires the number of the photovoltaic panels 1 taking a retreating posture. Increase up to
 このような太陽光発電システム300では、強風により一部の又は全部の太陽光発電パネル1に退避姿勢をとる必要が生じた場合に、複数の太陽光発電パネル1に、一斉に退避姿勢をとらせることなく、退避姿勢をとる数を段階的に必要数まで増やす。従って、発電電力の急減を防止し、電力網に与える影響を緩和することができる。 In such a solar power generation system 300, when it is necessary to take a retreating posture in some or all of the solar power generation panels 1 due to strong wind, the plurality of solar power generation panels 1 take a retreating posture all at once. The number of retractable postures is gradually increased to the required number without being reduced. Therefore, it is possible to prevent a rapid decrease in generated power and to mitigate the influence on the power grid.
 <補記>
 なお、上述の各実施形態については、その少なくとも一部を、相互に任意に組み合わせてもよい。
<Supplementary Note>
Note that at least a part of each of the above-described embodiments may be arbitrarily combined with one another.
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown by the claim, and it is intended that the meaning of a claim and equality and all the changes within the range are included.
 1 太陽光発電パネル
 1M 集光型太陽光発電モジュール
 1S 結晶シリコン太陽光発電モジュール
 2 支持装置
 3 駆動制御部
 6 パワーコンディショナ
 7 制御部
 7a 風速センサ
 11 架台
 12 補強材
 13 ボックス
 21 支柱
 22 基礎
 23 2軸駆動部
 23a モータ
 23e モータ
 24 水平軸
 100 太陽光発電装置
 200 太陽光発電装置群
 300 太陽光発電システム
DESCRIPTION OF SYMBOLS 1 solar power generation panel 1M condensing solar power generation module 1S crystal silicon solar power generation module 2 support apparatus 3 drive control part 6 power conditioner 7 control part 7a wind speed sensor 11 mount 12 reinforcement 12 box 21 support 22 foundation 23 2 Axis drive 23a Motor 23e Motor 24 Horizontal axis 100 Photovoltaic generator 200 Photovoltaic generator group 300 Photovoltaic system

Claims (5)

  1.  集光型の太陽光発電パネル及びこれを姿勢制御可能に支持する支持装置を含む太陽光発電装置が複数基配列されて成る太陽光発電装置群と、
     前記太陽光発電装置群が設置されている場所における風に関する情報に基づいて、複数基の前記太陽光発電装置の各々における前記太陽光発電パネルのとるべき姿勢を前記支持装置に指示する機能を有する制御部と、を備え、
     前記制御部は、前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やす、太陽光発電システム。
    A solar power generation device group including a plurality of solar power generation devices arrayed including a light collecting solar power generation panel and a support device supporting the light control panel in a posture-controllable manner;
    It has a function to instruct the supporting device on the posture to be taken of the photovoltaic panel in each of a plurality of the photovoltaic devices based on the information on the wind at the place where the photovoltaic group is installed And a control unit,
    When the solar power generation panel needs to take a predetermined retraction posture based on the information, the control unit needs the number of the solar power generation panels in the retraction posture in a stepwise manner. Solar power generation system to increase.
  2.  前記退避姿勢をとっている前記太陽光発電パネルがある場合において、その状態から、前記情報に基づいて、前記退避姿勢をとる必要が無くなった場合、前記制御部は、前記退避姿勢をとっている前記太陽光発電パネルの数を、段階的に減らす請求項1に記載の太陽光発電システム。 When there is the solar power generation panel taking the retreating posture, the control unit takes the retreating posture when it is not necessary to take the retreating posture based on the information from that state. The solar power generation system according to claim 1, wherein the number of the solar power generation panels is gradually reduced.
  3.  前記太陽光発電装置群の中で、前記支持装置の機械的な強度は複数種類混在しており、
     前記制御部は、前記情報に基づいて、前記退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、前記強度が低い方から順に、段階的に必要数まで増やす請求項1に記載の太陽光発電システム。
    In the group of solar power generation devices, a plurality of mechanical strengths of the support device are mixed,
    When there is the solar power generation panel which needs to take the retreating posture based on the information, the control unit counts the number of the solar power generation panels taking the retreating posture from the side with the lower strength The solar power generation system according to claim 1, wherein the number is increased stepwise to the required number in order.
  4.  前記太陽光発電装置群とは別に、結晶シリコン太陽光発電モジュールを搭載する太陽光発電装置が併設されている請求項1~請求項3のいずれか1項に記載の太陽光発電システム。 The solar power generation system according to any one of claims 1 to 3, wherein a solar power generation device carrying a crystalline silicon solar power generation module is provided separately from the solar power generation device group.
  5.  集光型の太陽光発電パネルを支持装置によって姿勢制御可能に支持する太陽光発電装置が複数基配列されて成る太陽光発電装置群における、各太陽光発電パネルの姿勢を統括的に制御する制御部が実行する、太陽光発電パネルの姿勢制御方法であって、
     前記太陽光発電装置群が設置されている場所における風に関する情報を取得し、
     前記情報に基づいて、所定の退避姿勢をとることが必要となる前記太陽光発電パネルがある場合、前記退避姿勢をとる前記太陽光発電パネルの数を、段階的に必要数まで増やし、
     前記退避姿勢をとっている前記太陽光発電パネルがある状態から、前記情報に基づいて、前記退避姿勢をとる必要が無くなった場合、前記退避姿勢をとっている前記太陽光発電パネルの数を、段階的に減らす、
     太陽光発電パネルの姿勢制御方法。
    Control that comprehensively controls the attitude of each photovoltaic panel in a photovoltaic power generation group in which a plurality of photovoltaic power generation apparatuses supporting a concentration type photovoltaic power generation panel supported by a supporting device so that attitude control is possible A method for controlling the posture of a solar panel, which is executed by
    Obtaining information on the wind at the place where the solar power generation device group is installed;
    In the case where there is the solar power generation panel that needs to take a predetermined retraction posture based on the information, the number of the solar power generation panels in the retraction posture is gradually increased to the necessary number,
    If it is not necessary to take the retreating posture based on the information from the state in which the solar power generation panel taking the retreating posture is present, the number of the solar power generation panels taking the retreating posture may be Reduce gradually
    Attitude control method of photovoltaic panel.
PCT/JP2018/017496 2017-08-09 2018-05-02 Photovoltaic system and photovoltaic panel attitude control method WO2019030996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153873 2017-08-09
JP2017153873 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019030996A1 true WO2019030996A1 (en) 2019-02-14

Family

ID=65270900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017496 WO2019030996A1 (en) 2017-08-09 2018-05-02 Photovoltaic system and photovoltaic panel attitude control method

Country Status (2)

Country Link
TW (1) TW201911733A (en)
WO (1) WO2019030996A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217947A1 (en) * 2019-04-26 2020-10-29 住友電気工業株式会社 Solar power generation system and array retraction method for same
FR3111492A1 (en) 2020-06-12 2021-12-17 Sarl Élio's PROCESS FOR INCREASING THE PROJECTED SHADING SURFACE OF AN ENVIRONMENTAL ENERGY CAPTURE SYSTEM AND ASSOCIATED DEVICES
IT202100009884A1 (en) * 2021-04-19 2022-10-19 Giuseppe Ragonese PLANT OF PHOTOVOLTAIC PANELS AND RELATED METHOD OF OPERATION IN SAFETY.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291890A (en) * 2000-04-07 2001-10-19 Fuji Electric Co Ltd Photovoltaic generating device
JP2011165898A (en) * 2010-02-09 2011-08-25 Global Esco Solution:Kk Strong-wind evacuation type photovoltaic power generation system
JP2011203959A (en) * 2010-03-25 2011-10-13 Toshiba Corp Solar power generating apparatus
JP2014175582A (en) * 2013-03-12 2014-09-22 Sumitomo Electric Ind Ltd Solar power generation device
WO2014162778A1 (en) * 2013-04-03 2014-10-09 住友電気工業株式会社 Solar tracking-type photovoltaic power generation system control device and solar tracking-type photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291890A (en) * 2000-04-07 2001-10-19 Fuji Electric Co Ltd Photovoltaic generating device
JP2011165898A (en) * 2010-02-09 2011-08-25 Global Esco Solution:Kk Strong-wind evacuation type photovoltaic power generation system
JP2011203959A (en) * 2010-03-25 2011-10-13 Toshiba Corp Solar power generating apparatus
JP2014175582A (en) * 2013-03-12 2014-09-22 Sumitomo Electric Ind Ltd Solar power generation device
WO2014162778A1 (en) * 2013-04-03 2014-10-09 住友電気工業株式会社 Solar tracking-type photovoltaic power generation system control device and solar tracking-type photovoltaic power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217947A1 (en) * 2019-04-26 2020-10-29 住友電気工業株式会社 Solar power generation system and array retraction method for same
FR3111492A1 (en) 2020-06-12 2021-12-17 Sarl Élio's PROCESS FOR INCREASING THE PROJECTED SHADING SURFACE OF AN ENVIRONMENTAL ENERGY CAPTURE SYSTEM AND ASSOCIATED DEVICES
IT202100009884A1 (en) * 2021-04-19 2022-10-19 Giuseppe Ragonese PLANT OF PHOTOVOLTAIC PANELS AND RELATED METHOD OF OPERATION IN SAFETY.
EP4080759A1 (en) * 2021-04-19 2022-10-26 Giuseppe Ragonese Photovoltaic panel system and respective method of safe operation

Also Published As

Publication number Publication date
TW201911733A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
US11251746B2 (en) Staged stowage of solar trackers and method thereof
WO2019030996A1 (en) Photovoltaic system and photovoltaic panel attitude control method
CN206060658U (en) A kind of photovoltaic generating system of new-generation efficiency high
CN1369956A (en) Photovoltaic electric generation system automatically tracking sun
WO2016199664A1 (en) Solar power generation device, method for installing solar power generation device, and method for operating solar power generation device
Lim et al. Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures
RU2377472C1 (en) Solar power plant
CN106357211A (en) Novel photovoltaic power generation system with high power generation efficiency
KR101175662B1 (en) Sun location tracking type solar generation apparatus
CN107040196A (en) A kind of movable solar photovoltaic bracket
SK500162009U1 (en) Set of photovoltaic cells on panels with an adjustable position
CN109245670A (en) A kind of wind light mutual complementing power generation umbrella of intelligent control
WO2017187259A1 (en) Sun position tracker for concentrated photo voltaic power generation system and the method for tracking thereof
CN202616242U (en) Multilayer folding type tracking photovoltaic module bracket
JP5507375B2 (en) Solar power plant
CN209913744U (en) Adjustable combined type independent photovoltaic power generation system
KR20190000481A (en) Solar power generation apparatus
CN109802629B (en) Single-column type angle-adjustable solar photovoltaic bracket and adjusting method thereof
KR20100115652A (en) Solar cell module assembly
CN207184401U (en) A kind of movable solar photovoltaic bracket
KR20120021493A (en) The track style sunlight production of electric power system
KR100764099B1 (en) A structure of sun-ray collecting board with reflector and the method of manufacturing sun-ray collecting board thereof
KR20190051189A (en) Solar power plant having angle adjustment device
KR101554483B1 (en) Angle variable Solar generator having a Fixing device for controlling height
JP5615209B2 (en) Solar power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP