WO2019029227A1 - 信号检测、发送方法及装置、远端用户设备及存储介质 - Google Patents

信号检测、发送方法及装置、远端用户设备及存储介质 Download PDF

Info

Publication number
WO2019029227A1
WO2019029227A1 PCT/CN2018/088277 CN2018088277W WO2019029227A1 WO 2019029227 A1 WO2019029227 A1 WO 2019029227A1 CN 2018088277 W CN2018088277 W CN 2018088277W WO 2019029227 A1 WO2019029227 A1 WO 2019029227A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing reference
information
discovery signal
signal
synchronization
Prior art date
Application number
PCT/CN2018/088277
Other languages
English (en)
French (fr)
Inventor
黄双红
卢有雄
陈杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/638,183 priority Critical patent/US11290971B2/en
Priority to EP18844580.3A priority patent/EP3668201B1/en
Publication of WO2019029227A1 publication Critical patent/WO2019029227A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal detection and transmission method and apparatus, a remote user equipment, and a storage medium.
  • FIG. 1 is a D2D in the related art. Schematic diagram of the communication mode, as shown in Figure 1, this communication mode can also be called Proximity Service (ProSeimity Service, referred to as ProSe).
  • ProSe Proximity Service
  • D2D not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network.
  • the user equipment (User Equipment, UE for short) needs to implement timing synchronization with the user equipment at the transmitting end to ensure that the receiving UE can correctly parse the data sent by the transmitting UE.
  • the UE obtains a synchronization timing reference by detecting a Sidelink Synchronisation Signal (SLSS) to implement timing synchronization with neighboring UEs.
  • SLSS Sidelink Synchronisation Signal
  • the UE participating in the D2D communication includes a Relay UE and a Remote UE.
  • the Remote UE may be within the network coverage or outside the network coverage, and the relay UE may implement the relay network and the cellular network.
  • Figure 2 is a schematic diagram of the architecture of the D2D technology in the related art, as shown in Figure 2.
  • Remote UE includes Internet of Things (IoT) devices and wearable devices. For these devices, low power consumption is a key requirement.
  • IoT Internet of Things
  • the SLSS when there is communication requirement for the remote UE outside the coverage, if the SLSS is not detected, the SLSS is sent based on its own timing for the timing at which the other D2D UE obtains the data for receiving the Remote UE. And the SLSS is transmitted periodically while still performing the process of detecting the SLSS until the SLSS transmitted by the high priority synchronization reference source is detected, and then synchronized to the synchronous reference source.
  • the embodiment of the invention provides a signal detection and transmission method and device, and a remote user equipment.
  • a signal detection method is provided, which is applied to a first device, including: transmitting a first synchronization signal based on a first timing reference; detecting a first discovery signal based on a first timing reference; wherein, the first The discovery signal carries synchronization information; after detecting the first discovery signal, detecting the second synchronization signal in a first time window corresponding to the synchronization information.
  • a signal sending method is provided, which is applied to a second device, comprising: detecting a first synchronization signal; transmitting a first discovery signal based on a first timing reference, wherein the first timing reference is detection a timing reference obtained by the first synchronization signal; the first discovery signal carries synchronization information, wherein the synchronization information is used by the first device to determine a first time window for detecting the second synchronization signal; and the second information is sent based on the second timing reference Synchronization signal.
  • a signal detecting apparatus which is located in a first device, and includes: a first sending module configured to send a first synchronization signal based on a first timing reference; a first detecting module configured to be based on The first timing reference detects the first discovery signal; wherein the first discovery signal carries the synchronization information; the second detection module is configured to detect the first time window corresponding to the synchronization information after detecting the first discovery signal Two sync signals.
  • a signal transmitting apparatus including: a detecting module configured to detect a first synchronization signal; and a first transmitting module configured to send a first discovery signal based on a first timing reference, where Referring to the timing reference obtained for detecting the first synchronization signal; the first discovery signal carries synchronization information, wherein the synchronization information is used by the first device to determine a first time window for detecting the second synchronization signal; And a module, configured to send a second synchronization signal based on the second timing reference.
  • a remote user device comprising: a processor, wherein the processor is configured to execute a program, wherein the program is executed to perform the method of any of the above.
  • a relay user equipment comprising: a processor, wherein the processor is configured to execute a program, wherein the program is executed to perform the method of any of the above.
  • a storage medium comprising a stored program, wherein the program is executed while performing the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the second synchronization signal is detected in the first time window corresponding to the synchronization information carried by the first discovery signal after detecting the first discovery signal, only at the first time
  • the second synchronization signal is detected in the window without continuously monitoring the synchronization signal at all times, thereby reducing the time and number of times the device detects the synchronization signal, thereby reducing the power consumption generated by the device detecting the synchronization signal, and thus, the related art can be solved.
  • the remote device continuously detects the synchronization signal, causing the remote device to consume a large amount of power, thereby reducing the power consumption of the device.
  • the standby time of the device can be extended, which is advantageous for achieving long standby.
  • FIG. 1 is a schematic structural diagram of a communication mode of D2D in the related art
  • FIG. 2 is a schematic structural diagram of an enhanced D2D technology in the related art
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal of a signal detecting method according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a signal detecting method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of a signaling method according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing the structure of a signal detecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a signal transmitting apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a solution 1 according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a solution 2 according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an example of determining a time window (or search window) provided in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart diagram of a method according to an embodiment of the present invention.
  • mobile terminal 30 may include one or more (only one shown) processor 302 (processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) for storage A memory 304 of data, and a transmission device 306 for communication functions.
  • processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) for storage
  • the structure shown in FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 304 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the signal detection method in the embodiment of the present invention, and the processor 302 executes each by executing a software program and a module stored in the memory 304.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 can further include memory remotely located relative to processor 302, which can be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is configured to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 306 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • RF Radio Frequency
  • the mobile device can be a remote UE and/or a relay UE.
  • the embodiment of the present application can be run on the network architecture shown in FIG. 4, as shown in FIG. 4, the network architecture includes: a base station (eNB1), a remote user terminal (W-UE), and a relay user terminal (R-UE). ).
  • eNB1 base station
  • W-UE remote user terminal
  • R-UE relay user terminal
  • FIG. 5 is a flowchart of a signal detection method according to an embodiment of the present invention. The process includes the following steps:
  • Step S502 transmitting a first synchronization signal based on the first timing reference
  • Step S504 detecting, according to the first timing reference, a first discovery signal, where the first discovery signal carries synchronization information;
  • Step S506 after detecting the first discovery signal, detecting a second synchronization signal in a first time window corresponding to the synchronization information.
  • the first timing reference may be pre-configured in a device such as a UE, or may be received from a network side device, for example, a base station on a network side broadcasts the first timing reference,
  • the first timing reference may be a time preset for transmitting the first synchronization signal in the time domain, for example, the base station sends a time pattern of the first reference signal, and thus, the first timing may be determined according to the time pattern. reference.
  • the time pattern may include: a time period or preset period or aperiodic timing information.
  • the base station may broadcast or multicast the first timing reference within a cell formed by the base station. For example, after the UE enters a cell, the first timing reference may be obtained from a system message, or the first timing reference may be obtained from a message relayed by the relay user equipment.
  • the first timing reference provides a reference time period for transmitting the first synchronization signal and detecting the first discovery signal, a sending time period of the first synchronization signal, and the first The detection period of the discovery signal may be one-to-one pairing.
  • the first synchronization signal is sent during the transmission period of the nth first synchronization signal, and then the first discovery in the nth The first discovery signal is detected during a detection period of the signal.
  • the transmission period and the detection period corresponding to the first synchronization signal and the first discovery signal are paired, which facilitates the transmission of the synchronization signal of the UE and the detection of the discovery signal, and has the characteristics of being simple and convenient to implement.
  • the transmission time period and the detection time period may be any length of time, for example, 1 second or 2 seconds or 5 ms, etc., one or more transmission symbols, and the like.
  • the first timing reference sets a transmission period of the first synchronization signal, and defines an offset of the first discovery signal and a preset detection duration; for example, Deviating backward by one offset in the time domain after transmitting the first synchronization signal is a start time of detection of the first discovery signal, and reaching the preset detection in an actual detection duration The detection of the first discovery signal is stopped after the duration. If the first discovery signal is detected, the D2D discovery can be considered to be successfully implemented. D2D communication synchronization is achieved by the synchronization information in the first discovery signal.
  • the first timing reference can be some discrete time point or time period in the time domain.
  • the foregoing is only some examples of the first synchronization signal and the first discovery signal transmission, and the specific implementation is various, and is not limited to any one of the foregoing.
  • the first discovery signal may be sent by the other D2D device based on the first synchronization signal sent by the current device.
  • the device A detects that the other device sends the first synchronization signal
  • the device B detects the
  • the first synchronization signal transmits the first discovery signal
  • the first discovery signal carries synchronization information.
  • the synchronization information can include a synchronization instruction that can be used to instruct the first time window to perform transmission and/or detection of the second synchronization signal.
  • the first time window may be preset or stored in the UE.
  • the synchronization information may also directly carry the parameters of the first time window, for example, the duration of the time window, the start and end time, the offset, and the like.
  • the second synchronization signal may be detected in a first time window corresponding to the synchronization information carried by the first discovery signal after detecting the first discovery signal, that is, since the second synchronization signal is detected only in the first time window,
  • the power consumption of the device can be reduced. Therefore, the problem that the remote device continuously detects the synchronization signal and causes the remote device to consume more power can be solved, and the power consumption of the device is reduced.
  • the synchronization signal is not detected at any time, and after detecting the first synchronization signal after the first timing reference is transmitted, the first time window for detecting the synchronization signal is determined by using the detection of the first discovery signal, so that only Detecting the second synchronization signal in the first time window, thereby reducing the duration of detecting the synchronization signal, thereby reducing the power consumption of detecting the synchronization signal; on the other hand, detecting the first discovery signal is performed based on the first timing reference, and It is carried out at any time, so that the detection time of the signal itself is shortened, and the detection power consumption of the signal is also reduced.
  • the detection of the signal and the synchronization signal is no longer independent and parallel.
  • the UE detects the second synchronization signal only in the first time window after detecting the first discovery signal carrying the synchronization information, thereby greatly reducing the blindness.
  • D2D discovery is realized by detecting the detection of signals, and on the other hand Detecting a synchronization signal within a defined time window, to achieve synchronization between the D2D communication devices, more important is the greatly reduced unwanted detection, reduced power consumption and extend the long standby mobile device.
  • first synchronization signal includes at least one of: a first side link synchronization signal (SLSS), a first physical side link broadcast channel (PSBCH); and the second synchronization signal includes at least the following: One: second (SLSS), second (PSBCH).
  • SLSS first side link synchronization signal
  • PSBCH first physical side link broadcast channel
  • the synchronization information may include: an offset value of the first timing reference and the second timing reference, or the synchronization information includes an offset value of the first timing reference and the second timing reference, and a first time a parameter of the window; wherein the second timing reference is a timing reference for the second device to transmit the second synchronization signal.
  • the parameters of the first time window may not be carried in the synchronization information, but in a predefined manner. Or obtain the parameters of the first time window according to configuration signaling or other methods.
  • the foregoing step S506 may be performed according to the synchronization according to the first timing reference. Determining, by the information and the parameter of the first time window, the first time window; detecting the second synchronization signal in the determined first time window;
  • the foregoing step S506 may be performed as follows: based on the first timing reference The synchronization information determines the first time window; the second synchronization signal is detected within the determined first time window.
  • the offset value may determine the location of the first time window, and the parameter of the first time window may be the size of the time window (window length), but is not limited thereto.
  • the window length here is the length of the time window in the time domain, which is instantaneous.
  • the method may further include: sending a second discovery signal based on the first timing reference, where the second discovery signal carries at least one of the following information:
  • the identification information is used to indicate that the first device has information for discovering the demand of the relay user equipment, the second device sends the delay information of the first discovery signal, and the second device sends the time window information of the first discovery signal.
  • the second device sends resource location information of the first discovery signal.
  • the foregoing step S504 may be performed as follows: in a case where the second discovery signal carries the delay information of the second discovery signal sent by the second device, based on the foregoing The first discovery signal is detected within a time delay corresponding to the delay information carried by the second discovery signal, and the second discovery signal carries a time window in which the second device sends the first discovery signal.
  • the first discovery signal In the case of information, detecting the first discovery signal in a time window corresponding to time window information carried by the second discovery signal based on the first timing reference; and carrying the second in the second discovery signal
  • the first discovery signal is detected on the resource location corresponding to the resource location information carried by the second discovery signal based on the first timing reference.
  • the first device may be the remote user equipment shown in FIG. 4, and the second device may be the relay user equipment shown in FIG. 4, but is not limited thereto.
  • the executor of the foregoing steps may be a terminal, such as the terminal described in FIG. 3, the remote user equipment shown in FIG. 4, and the like, but is not limited thereto.
  • the foregoing method may be applied to enhance the scenario in which the second device in the D2D is outside the coverage of the base station where the first device is located, but is not limited thereto.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • FIG. 6 is a schematic flowchart of a signal sending method according to an embodiment of the present invention. As shown in FIG. Can be applied to the second device, including:
  • Step S602 detecting a first synchronization signal, and transmitting a first discovery signal based on the first timing reference, where the first timing reference is a timing reference obtained by detecting the first synchronization signal; the first discovery signal carries synchronization information, where The synchronization information is used by the first device to determine a first time window for detecting the second synchronization signal;
  • Step S604 transmitting a second synchronization signal based on the second timing reference.
  • the synchronization information used by the first device to determine the time window for detecting the second synchronization signal can be sent to the first device by using the first discovery signal, so that the first device can detect the second time within the determined time window.
  • the synchronization signal can reduce the power consumption of the first device. Therefore, the problem that the remote device continuously detects the synchronization signal and causes the remote device to consume more power can be solved, and the power consumption of the first device is reduced.
  • first synchronization signal may include at least one of: a first side link synchronization signal (SLSS), a first physical side link broadcast channel (PSBCH), and a second synchronization signal including at least one of the following: Second (SLSS), second (PSBCH).
  • SLSS first side link synchronization signal
  • PSBCH first physical side link broadcast channel
  • second synchronization signal including at least one of the following: Second (SLSS), second (PSBCH).
  • the synchronization information may include an offset value of the first timing reference and the second timing reference, or the synchronization information includes: an offset value of the first timing reference and the second timing reference, and a first time The parameters of the window.
  • the method may further include: receiving, according to the first timing reference, a second discovery signal, where the second discovery signal carries at least one of the following information: the first The identification information of the device is used to indicate that the first device has information for discovering the requirement of the relay user equipment, the second device sends the delay information of the first discovery signal, and the time when the second device sends the first discovery signal Window information, the second device transmitting resource location information of the first discovery signal.
  • the method may further include: determining, according to the identification information, that the first device is found A remote user device that is required by the user equipment.
  • the method may further include the following at least a determining, according to the delay information, a delay of transmitting the first discovery signal, transmitting the first discovery signal within the determined time delay, determining, according to the time window information, a time window for transmitting the first discovery signal, and transmitting the first discovery signal in the determined manner
  • the first discovery signal is sent in the time window; the resource for transmitting the first discovery signal is determined according to the resource information, and the first discovery signal is sent on the determined resource.
  • first device may be a remote user device
  • second device may be a relay user device, but is not limited thereto.
  • execution body of the foregoing steps may be a relay user equipment, but is not limited thereto.
  • the foregoing method may be applied to enhance the scenario in which the first device in the D2D is outside the coverage of the base station where the second device is located, but is not limited thereto.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a signal detecting device is further provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram of a signal detecting apparatus according to an embodiment of the present invention.
  • the apparatus is located in a first device. As shown in FIG. 7, the apparatus includes:
  • the first sending module 72 is configured to send the first synchronization signal based on the first timing reference
  • the first detection module 74 is configured to detect the first discovery signal based on the first timing reference; wherein the first discovery signal carries synchronization information;
  • the second detecting module 76 is configured to detect the second synchronization signal within a first time window corresponding to the synchronization information after detecting the first discovery signal.
  • the first synchronization signal is detected in the first time window corresponding to the synchronization information carried by the first discovery signal after detecting the first discovery signal, that is, because only the first time window is detected.
  • the second synchronization signal can reduce the power consumption of the device. Therefore, the problem that the remote device continuously detects the synchronization signal and causes the remote device to consume more power can be solved, and the power consumption of the device is reduced.
  • first synchronization signal includes at least one of: a first edge link synchronization signal, a first physical edge link broadcast channel; and the second synchronization signal includes at least one of: a second SLSS , the second PSBCH.
  • the synchronization information may include: an offset value of the first timing reference and the second timing reference, or the synchronization information includes an offset value of the first timing reference and the second timing reference, and a first time a parameter of the window; wherein the second timing reference is a timing reference for the second device to send the second synchronization signal, the second detection module 76 further includes: a determining unit, configured to include the first timing reference and the In the case of the offset value of the second timing reference, the first time window is determined based on the synchronization information and the parameter of the first time window based on the first timing reference; or the synchronization information includes the first timing Referring to the offset value of the second timing reference and the parameter of the first time window, the first time window is determined according to the synchronization information based on the first timing reference; the detecting unit is connected to the determining unit Configuring to detect the second synchronization signal within the determined first time window.
  • the offset value may determine the location of the first time window, and the parameter of the first time window may be the size of the time window (window length), but is not limited thereto.
  • the offset value here may be an offset on the time axis relative to a certain time reference point, which may be: the current time, the time point at which the reference signal is received, or the transmission time point at which the reference signal is transmitted; It is only an example of a time reference point, and the specific implementation is not limited to any of the above.
  • the time reference point can be a pre-set time point.
  • the apparatus may further include: a second sending module, connected to the first detecting module 74, configured to send a second discovery signal based on the first timing reference, where the second discovery signal carries At least one of the following information: the identification information of the first device, configured to indicate that the first device has information for discovering the demand of the relay user equipment, and the second device sends the delay information of the first discovery signal, the second The device sends time window information of the first discovery signal, and the second device sends resource location information of the first discovery signal.
  • a second sending module connected to the first detecting module 74, configured to send a second discovery signal based on the first timing reference, where the second discovery signal carries At least one of the following information: the identification information of the first device, configured to indicate that the first device has information for discovering the demand of the relay user equipment, and the second device sends the delay information of the first discovery signal, the second The device sends time window information of the first discovery signal, and the second device sends resource location information of the first discovery signal.
  • the first device may be the remote user equipment shown in FIG. 4, and the second device may be the relay user equipment shown in FIG. 4, but is not limited thereto.
  • the upper device may be located in the first device, such as the terminal described in FIG. 3 above, the remote user device shown in FIG. 4, and the like, but is not limited thereto.
  • a remote user equipment comprising: a processor, wherein the processor is configured to run a program, wherein the method of the foregoing embodiment is executed when the program runs.
  • the remote user device may further include: a memory coupled to the processor, for example, connected by an integrated circuit bus or the like, the memory configured to store information, for example, stored The processor is running against the program.
  • the remote user equipment may further include: a transceiver; the transceiver may include: an antenna capable of transmitting and receiving wireless signals, etc., the transceiver is connected to the processor, and may be in the processor Under the control of the wireless signal transmission and reception.
  • the processor may be: a central processing unit, a microprocessor, a digital signal processor, a programmable array, an application specific integrated circuit, or the like, or an electronic device or an electronic circuit having information processing functions.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a signal transmitting device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 8 is a structural block diagram of a signal transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the detecting module 82 is configured to detect the first synchronization signal
  • the first sending module 84 is connected to the detecting module 82, and configured to send a first discovery signal based on the first timing reference, where the first timing reference is a timing reference obtained by detecting the first synchronization signal; Synchronization information, wherein the synchronization information is used by the first device to determine a first time window for detecting the second synchronization signal;
  • the second sending module 86 is connected to the first sending module 84, and configured to send the second synchronization signal based on the second timing reference.
  • the first device since the synchronization information for determining the time window for detecting the second synchronization signal by the first device can be transmitted to the first device by using the first discovery signal, the first device can detect the second time within the determined time window.
  • the synchronization signal can reduce the power consumption of the first device. Therefore, the problem that the remote device continuously detects the synchronization signal and causes the remote device to consume more power can be solved, and the power consumption of the first device is reduced.
  • first synchronization signal may include at least one of: a first side link synchronization signal SLSS, a first physical side link broadcast channel PSBCH, and a second synchronization signal including at least one of: a second SLSS, Second PSBCH.
  • the synchronization information may include an offset value of the first timing reference and the second timing reference, or the synchronization information includes: an offset value of the first timing reference and the second timing reference, and a time window. parameter.
  • the offset value may determine the location of the first time window, and the parameter of the time window may be the size of the time window (window length), but is not limited thereto.
  • the apparatus may further include: a receiving module, connected to the detecting module 82, configured to receive a second discovery signal based on the first timing reference, where the second discovery signal carries at least one of the following Information: the identification information of the first device is used to indicate that the first device has information for discovering the demand of the relay user equipment, and the second device sends the delay information of the first discovery signal, where the second device sends The time window information of the first discovery signal, where the second device sends the resource location information of the first discovery signal.
  • a receiving module connected to the detecting module 82, configured to receive a second discovery signal based on the first timing reference, where the second discovery signal carries at least one of the following Information: the identification information of the first device is used to indicate that the first device has information for discovering the demand of the relay user equipment, and the second device sends the delay information of the first discovery signal, where the second device sends The time window information of the first discovery signal, where the second device sends the resource location information of the first discovery signal.
  • the device in a case where the second discovery signal carries the identification information of the first device, the device further includes: a determining module, connected to the receiving module, configured to determine, according to the identification information, that the first device is There are remote user devices that discover the need to relay user equipment.
  • the first sending module 84 is further configured to be at least one of the following:
  • the delay information determines a delay of transmitting the first discovery signal, and sends a first discovery signal within the determined time delay; determining, according to the time window information, a time window for transmitting the first discovery signal, within the determined time window for transmitting the first discovery signal Sending a first discovery signal; determining, according to the resource information, a resource that sends the first discovery signal, and transmitting the first discovery signal on the determined resource.
  • the foregoing apparatus may be located in the relay user equipment, but is not limited thereto.
  • the embodiment of the invention further provides a relay user equipment, comprising: a processor, wherein the processor is used to run a program, wherein the method of the above embodiment is executed when the program runs.
  • the relay user device may further include: a memory connected to the processor, for example, connected through an integrated circuit bus or the like, the memory configured to store information, for example, stored for The processor is running against the program.
  • the relay user equipment may further include: a transceiver; the transceiver may include: an antenna capable of transmitting and receiving wireless signals, etc., the transceiver is connected to the processor, and may be in the processor Under the control of the wireless signal transmission and reception.
  • the processor may be: a central processing unit, a microprocessor, a digital signal processor, a programmable array, an application specific integrated circuit, or the like, or an electronic device or an electronic circuit having information processing functions.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the storage medium can be selected as a non-transitory storage medium.
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the embodiment of the present invention is applicable to the synchronization of the Remote UE (referred to as W-UE) to the Relay UE (referred to as R-UE) in the D2D communication. As shown in Figure 4.
  • the scenario based on the embodiment of the present invention is as shown in FIG. 4. It should be noted that the embodiment of the present invention does not assume that the Relay UE (referred to as R-UE) sends the SLSS/PSBCH unconditionally, but considers that the R-UE sends the SLSS.
  • the condition of /PSBCH is that the base station indicates to send (or stop transmitting) or meets the sending RSRP threshold (RSRP is less than the threshold). Therefore, the W-UE synchronization to the R-UE is mainly divided into two cases:
  • the neighboring R-UE transmits the SLSS/PSBCH
  • the W-UE can detect and synchronize to the R-UE, and perform discovery and communication based on the timing of the corresponding SLSS; in this case, the synchronization can be completed according to the prior art.
  • Solution 1 In another case, there is an R-UE adjacent to the R-UE, but the R-UE does not actively send the SLSS/PSBCH, and the W-UE cannot directly detect the SLSS/PSBCH of the R-UE, where sending the SLSS/PSBCH means transmitting the SLSS or sending SLSS and PSBCH.
  • the W-UE has a discovery or communication requirement, actively transmits the SLSS/PSBCH, and receives the discovery signal of the R-UE based on the timing of transmitting the SLSS/PSBCH (the R-UE is nearby and the synchronization signal of the W-UE is detected, and the discovery signal is transmitted. Otherwise, the W-UE also does not receive the discovery signal).
  • the R-UE After detecting the SLSS/PSBCH sent by the W-UE, the R-UE transmits a discovery signal based on the timing of the W-UE synchronization signal (timing 2), and carries the synchronization information of the R-UE, such as the SLSS timing of the R-UE ( Timing 1)
  • the offset value of the SLSS timing (timing 2) with the W-UE, and the SLSS/PSBCH is transmitted based on the R-UE's own transmission timing (timing 1).
  • the W-UE receives the discovery signal sent by the R-UE based on the timing 2, and can quickly detect the SLSS/PSBCH of the R-UE according to the carried synchronization information, for example, according to the delay corresponding to the timing offset, at a small time.
  • the SLSS/PSBCH of the R-UE can be detected in the window to synchronize to the R-UE, and the search for the SLSS/PSBCH is avoided for a long time.
  • the R-UE transmission discovery signal may be limited to a predefined time window (repeated to be repeated), based on the timing transmission of the SLSS/PSBCH transmitted by the W-UE, and the frequency domain resource is a predefined bandwidth, such as 6 physical resources in the middle.
  • a Physical Resource Block (PRB), or a frequency domain resource range in which a discovery signal is transmitted is determined centering on the 6 PRBs transmitting the synchronization signal according to the bandwidth indicated in the PSBCH transmitted by the W-UE. If the W-UE cannot receive the discovery signal within the predefined time window, it considers that there is no R-UE nearby, and ends the synchronization test.
  • the W-UE may initiate a synchronous probe by periodically transmitting or transmitting an SLSS/PSBCH by an event. If the W-UE synchronizes to the R-UE, the transmission of the SLSS/PSBCH is stopped.
  • FIG. 9 is a schematic flowchart of a solution 1 according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of solution 2 according to an embodiment of the present invention.
  • the W-UE when the W-UE sends the SLSS/PSBCH, it also sends a discovery signal (Discovery) for indicating that there is a synchronous R- The requirements of the UE, and the time window information and/or resource location information of the R-UE transmitting the discovery signal response.
  • the R-UE After detecting the SLSS/PSBCH sent by the W-UE, the R-UE receives the discovery signal sent by the W-UE based on the synchronization timing, determines that the corresponding W-UE has the requirement of discovering the R-UE, and then sends the discovery signal (based on Timing 2).
  • the synchronization information such as the timing offset between the W-UE and the R-UE, and/or the time window size of the W-UE to retrieve the R-UE synchronization signal are carried.
  • the SLSS/PSBCH is transmitted based on the R-UE's own transmission timing (Timing 1).
  • the W-UE detects the SLSS/PSBCH of the R-UE according to the indicated synchronization information according to the received discovery signal response sent by the R-UE.
  • the W-UE transmits the SLSS/PSBCH, with or without transmitting the discovery signal
  • the W-UE receives the discovery signal of the R-UE, and is received based on the timing at which the W-UE transmits the SLSS/PSBCH by itself (in this case, the R-UE transmission discovery signal is also the timing reference transmission of the W-UE based SLSS).
  • the R-UE uses the transmission timing of the W-UE as a reference, and determines the delay and time window of the R-UE transmitting the discovery signal itself within the time window of the fixed delay or according to the information indicated by the discovery signal sent by the S-UE.
  • a radio resource and sending a discovery signal within a determined time delay, a time window, or a radio resource, and the W-UE obtains a time window information for searching for a synchronization signal of the R-UE by receiving the discovery signal, thereby avoiding large-scale detection and reception. Conducive to saving power.
  • the discovery signal sent by the R-UE carries the synchronization information of the R-UE, including the timing offset information of the R-UE and the W-UE.
  • the timing reference of the W-UE transmitting the SLSS/PSBCH is timing2
  • the timing reference of the R-UE is timing1 (timing1 may be aligned with the timing of the cellular DL)
  • the discovery signal sent by the R-UE carries an offset value and a W value.
  • the offset value is the delay of timing1 relative to timing2
  • the value of W is the value of the response time window size
  • W may also be a predefined value, or determined by pre-configuration or configuration, and may be used to determine the foregoing time window, for example, The first time window.
  • the W-UE determines the time reference t based on the timing2 delay offset based on the offset value, and searches for the SLSS/PSBCH in the time window of [t-W, t+W] or [t, t+W] or [t-W, t].
  • the W-UE-based procedure includes: Step 1: Sending SLSS/PSBCH; (sending or not transmitting a discovery signal); Step 2: receiving a discovery signal within a predefined delay or within a delay indicated by the discovery signal, obtaining R- The synchronization signal indication information of the UE; Step 3: detecting the SLSS/PSBCH of the R-UE within a determined time window according to the synchronization signal indication information.
  • the discovery signal is transmitted within the predefined delay or within the time delay or time window indicated by the discovery signal or on the radio resource, and the discovery signal is found.
  • FIG. 11 is a schematic flowchart of a method according to an embodiment of the present invention. As shown in FIG. 11, the process of synchronizing a Remote UE to a Relay UE is as follows:
  • the first step the Remote UE sends the SLSS/PSBCH (SLSS/PSBCH 1), wherein the SLSS/PSBCH indicates that only the SLSS is included or includes the SLSS and the PSBCH; and the Remote UE sends the SLSS/PSBCH 1 based timing reference (the timing reference 2) as the internal timing.
  • Reference or external timing reference The internal timing reference is a timing reference determined by the Remote UE according to a clock generated by the device's own crystal oscillator component, and the external timing reference is a timing reference obtained by the Remote UE according to the detected SLSS/PSBCH, and the Remote UE can identify the timing reference. It is not a timing reference from the Relay UE, or based on the timing reference, the Remote UE cannot receive the discovery signal from the Relay UE.
  • Step 2 The Remote UE sends a discovery signal (discovery signal 1); the Remote UE transmits a discovery signal 1 based on the timing reference (timing reference 2) of the transmitting SLSS/PSBCH 1 described in the first step, and the discovery signal carries the Remote UE Identification information, or discovery information of the Relay UE. It may further include delay information indicating that the Relay UE transmits the discovery signal (discovery signal 2), or time window information, or radio resource information. This step is not a required step.
  • the third step the Remote UE detects the discovery signal (discovery signal 2) based on the timing reference 2; wherein the discovery signal 2 to be detected is sent by the Relay UE based on the timing reference 2, and carries information that assists the Remote UE to synchronize to the Relay UE, such as
  • the Relay UE transmits a timing reference (timing reference 1) of the signal and/or data and an offset value Q and/or a time window (also referred to as a search window) parameter w1 of the timing reference 2.
  • the condition that the Relay UE transmits the discovery signal 2 is that the discovery signal 1 is detected or the SLSS/PSBCH 1 is detected.
  • the Remote UE detects the SLSS and/or the PSBCH (SLSS/PSBCH 2) within a specific time window (or search window); the specific search window is synchronized according to the assisted Remote UE obtained from the discovery signal 2
  • the information to the Relay UE is determined.
  • the Remote UE determines the reference point m based on its own synchronization resource with the offset value Q as the delay, and constructs the time window [m-w1, m+w1] or [m, m+i*w1] or [mi] in combination with w1.
  • FIG. 12 is a schematic diagram of an example of determining a time window (or search window), as shown in FIG. 12, according to an embodiment of the present invention.
  • the resources of the SLSS/PSBCH are periodically distributed, and the Remote UE sends the SLSS/PSBCH 1 for periodic transmission or event trigger transmission.
  • the event triggering conditions include, but are not limited to, the Remote UE has data transmission or has a link with the Relay UE. , but not synchronized to Relay UE.
  • the Remote UE After the Remote UE synchronizes to the Relay UE, it stops transmitting the SLSS/PSBCH 1 and the discovery signal 1, and transmits the signal/data based on the timing reference of the Relay UE.
  • FIG. 13 is a schematic flowchart of a method according to an embodiment of the present invention. As shown in FIG. 13, the process of synchronizing a Remote UE to a Relay UE is as follows:
  • the first step the Remote UE sends the SLSS/PSBCH (SLSS/PSBCH 3), wherein the SLSS/PSBCH indicates that only the SLSS is included or includes the SLSS and the PSBCH; and the Remote UE sends the SLSS/PSBCH 3 based timing reference (the timing reference 2) as the internal timing.
  • Reference or external timing reference The internal timing reference is a timing reference determined by the Remote UE according to a clock generated by the device's own crystal oscillator component, and the external timing reference is a timing reference obtained by the Remote UE according to the detected SLSS/PSBCH, and the Remote UE can identify the timing reference. It is not a timing reference from the Relay UE, or based on the timing reference, the Remote UE cannot receive the discovery signal from the Relay UE.
  • the second step the Remote UE detects the discovery signal (discovery signal 3) based on the timing reference 2; wherein the discovery signal 3 to be detected is sent by the Relay UE based on the timing reference 2, and carries the information that assists the Remote UE to synchronize to the Relay UE,
  • the relay UE transmits a timing reference (timing reference 1) of the signal and/or data and an offset value Q and/or a time window (or search window) parameter w1 of the timing reference 2.
  • the parameter w1 can also be determined by pre-definition or pre-configuration or configuration.
  • the condition that the Relay UE sends the discovery signal 3 is that SLSS/PSBCH 3 is detected.
  • Step 3 The Remote UE detects the SLSS/PSBCH (SLSS/PSBCH 4) within a specific time window (or search window); the specific search window is synchronized to the Relay according to the assisted Remote UE obtained from the discovery signal 3
  • the information of the UE is determined.
  • the Remote UE determines the reference point m based on its own synchronization resource with the offset value Q as the delay, and constructs the time window [m-w1, m+w1] or [m, m+i*w1] or [mi] in combination with w1.
  • w1 may be indicated by a discovery signal sent by the Relay UE, or may be determined according to a predefined or pre-configured or configured. And detect SLSS/PSBCH (SLSS/PSBCH 4) within this time window.
  • SLSS/PSBCH SLSS/PSBCH 4
  • the resources of the SLSS/PSBCH are periodically distributed, and the Remote UE sends the SLSS/PSBCH 3 for periodic transmission or event trigger transmission.
  • the event triggering conditions include, but are not limited to, the Remote UE has data transmission or has a link with the Relay UE. , but not synchronized to Relay UE. After the Remote UE synchronizes to the Relay UE, it stops transmitting the SLSS/PSBCH 3, and transmits the signal/data based on the timing reference of the Relay UE.
  • the Relay UE detects SLSS/PSBCH (SLSS/PSBCH 5), where the SLSS/PSBCH indicates that only SLSS is included or includes SLSS and PSBCH, and the timing reference (timing reference 2) of the SLSS/PSBCH 5 and the Relay UE transmit signals and /
  • the timing reference of the data (timing reference 1) is different, or the Relay UE can identify that the SLSS/PSBCH 5 is transmitted for the Remote UE, and the Relay UE transmits the discovery signal (discovery signal 4) based on the timing reference 2.
  • the Relay UE receives the discovery signal (discovery signal 5), and the timing reference (timing reference 2) of the discovery signal is different from the timing reference (timing reference 1) of the Relay UE transmission signal and/or data, or according to the discovery
  • the identification information carried by the signal 5 determines that the discovery signal 5 is transmitted by the Remote UE, and the Relay UE transmits the discovery signal (the discovery signal 4) based on the timing reference 2.
  • the Relay UE sends the discovery signal 4 within a determined time delay or time window, the determined delay or time window is predefined, or determined according to configuration or pre-configuration, or determined according to the indication information of the discovery signal 5.
  • the discovery signal 4 carries information that assists the Remote UE to synchronize to the Relay UE, such as a timing reference (timing reference 1) of the relay UE transmitting signal and/or data, and an offset value Q of the timing reference 2 and/or a search window parameter w1. .
  • the Relay UE transmits the SLSS/PSBCH 6 based on the timing reference 1.
  • the Relay UE detects the SLSS/PSBCH (SLSS/PSBCH 7), where the SLSS/PSBCH indicates that only the SLSS is included or includes the SLSS and the PSBCH, and the timing reference (timing reference 2) of the SLSS/PSBCH 7 and the Relay UE transmit signals and /
  • the timing reference of the data (timing reference 1) is different, or the Relay UE can identify that the SLSS/PSBCH7 is transmitted for the Remote UE, and the Relay UE transmits the SLSS/PSBCH (SLSS/PSBCH 8) based on the timing reference 1.
  • the Relay UE receives the discovery signal (discovery signal 6), and the timing reference (timing reference 2) of the discovery signal is different from the timing reference (timing reference 1) of the Relay UE transmission signal and/or data, or according to the discovery
  • the identification information carried by the signal 6 determines that the discovery signal 6 is transmitted by the Remote UE, and the Relay UE transmits the SLSS/PSBCH (SLSS/PSBCH 8) based on the timing reference 1.
  • the Remote UE transmits the SLSS/PSBCH or also transmits a discovery signal; the discovery signal is used to indicate the requirement of the synchronized R-UE, and the time window information and/or resource location information of the R-UE transmitting the discovery signal response.
  • the remote UE receives the discovery signal in a predefined or configured or pre-configured or indicated time window, and detects the SLSS/PSBCH sent by the Relay UE within the determined time window according to the discovery signal indication content;
  • the Relay UE detects the SLSS/PSBCH sent by the Remote UE, or receives the discovery signal of the Remote UE, and sends a discovery signal response within the determined time window according to the predefined or configured or pre-configured, and carries the indication information of the SLSS/PSBCH.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the remote user equipment sends the first synchronization signal based on the first timing reference, and then detects the first discovery signal based on the first timing reference, and carries the synchronization information in the first discovery signal, based on
  • the synchronization information detects the second synchronization signal in the first time window, so that the second synchronization signal can be detected only in the first time window, instead of detecting the second synchronization signal at any time or at the start of the D2D discovery, thereby shortening the
  • the detection time of the second synchronization signal thereby reducing the detection power consumption of the second synchronization signal, has a positive industrial effect.
  • the method provided by the embodiment of the invention has the characteristics of being simple to implement and can be widely promoted in the industry.

Abstract

本发明提供了一种信号检测、发送方法及装置、远端用户设备;其中,信号检测方法包括:基于第一定时参考发送第一同步信号;基于第一定时参考检测第一发现信号;其中,第一发现信号中携带同步信息;在检测到第一发现信号后,在与同步信息对应的第一时间窗内检测第二同步信号。

Description

信号检测、发送方法及装置、远端用户设备及存储介质
相关申请的交叉引用
本申请基于申请号为201710686097.X、申请日为2017年08月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,尤其涉及一种信号检测、发送方法及装置、远端用户设备及存储介质。
背景技术
在设备到设备(Device-to-Device,简称D2D)通信中,业务数据不经过基站和核心网的转发,直接由源用户设备通过空口传输给目标用户设备,图1是相关技术中的D2D的通信模式的架构示意图,如图1所示,这种通信模式也可称之为邻近服务(Proximity Service,简称ProSe)。对于近距离通信的用户来说,D2D不但节省了无线频谱资源,而且降低了核心网的数据传输压力。
在D2D通信中,接收端用户设备(User Equipment,简称为UE)需要实现与发送端用户设备的定时同步,以确保接收端UE能正确解析出发送端UE发送的数据。
在相关的D2D技术中,UE通过检测边连(Sidelink)同步信号(Sidelink Synchronisation Signal,简称SLSS)获得同步定时参考,实现与邻近UE的定时同步。
在D2D技术中,参与D2D通信的UE包括中继(Relay)UE和远端 (Remote)UE,Remote UE可能在网络覆盖内,也可能在网络覆盖外,通过Relay UE的中继实现与蜂窝网络的通信,图2是相关技术中D2D技术的架构示意图,如图2所示。其中Remote UE包括物联网(Internet of Things,简称IoT)设备以及可穿戴设备,对这些设备而言,低功耗是一个需要重点考虑的需求。
按照相关技术的技术方案,当覆盖外的Remote UE有通信需求时,如果没有检测到SLSS,则基于自己的定时发送SLSS用于其它D2D UE获得接收所述Remote UE发送数据的定时。并保持周期发送SLSS,同时仍然进行检测SLSS的处理,直到检测到高优先级同步参考源发送的SLSS,则同步到所述同步参考源。
上述同步过程对于Remote UE来说,持续地检测SLSS显然不利于设备的功耗节省,故存在着功耗高的问题。
发明内容
本发明实施例提供了一种信号检测、发送方法及装置、远端用户设备。
根据本发明的一个实施例,提供了一种信号检测方法,应用于第一设备,包括:基于第一定时参考发送第一同步信号;基于第一定时参考检测第一发现信号;其中,第一发现信号中携带同步信息;在检测到第一发现信号后,在与同步信息对应的第一时间窗内检测第二同步信号。
根据本发明的一个实施例,提供了一种信号发送方法,应用于第二设备中,包括:检测第一同步信号;基于第一定时参考发送第一发现信号,其中,第一定时参考为检测到第一同步信号获得的定时参考;第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;基于第二定时参考发送第二同步信号。
根据本发明的一个实施例,提供了一种信号检测装置,位于第一设备中,包括:第一发送模块,配置为基于第一定时参考发送第一同步信号; 第一检测模块,配置为基于第一定时参考检测第一发现信号;其中,第一发现信号中携带同步信息;第二检测模块,配置为在检测到第一发现信号后,在与同步信息对应的第一时间窗内检测第二同步信号。
根据本发明的一个实施例,提供了一种信号发送装置,包括:检测模块,配置为检测第一同步信号;第一发送模块,配置为基于第一定时参考发送第一发现信号,其中,第一定时参考为检测到第一同步信号获得的定时参考;第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;第二发送模块,用于基于第二定时参考发送第二同步信号。
根据本发明的一个实施例,提供了一种远端用户设备,包括:处理器,其中,处理器用于运行程序,其中,程序运行时执行上述任一项的方法。
根据本发明的一个实施例,提供了一种中继用户设备,包括:处理器,其中,处理器用于运行程序,其中,程序运行时执行上述任一项的方法。
根据本发明的一个实施例,提供了一种存储介质,存储介质包括存储的程序,其中,程序运行时执行上述任一项所述的方法。
根据本发明的一个实施例,提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
在本发明的实施例中,由于可以在检测到第一发现信号后,在与该第一发现信号携带的同步信息对应的第一时间窗内检测第二同步信号,即可只在第一时间窗内检测第二同步信号而不用在所有时间内持续监测同步信号,进而可以减少设备检测同步信号的时间、次数等,从而降低设备检测同步信号所产生的功耗,因此,可以解决相关技术中远端设备持续检测同步信号导致远端设备功耗较大的问题,达到减少设备功耗的效果,对于移动设备而言可以延长设备的待机时长,有利于实现超长待机。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中的D2D的通信模式的架构示意图;
图2是相关技术中增强的D2D技术的架构示意图;
图3是本发明实施例的一种信号检测方法的移动终端的硬件结构框图;
图4是根据本发明实施例提供的网络架构的架构示意图;
图5是根据本发明实施例的信号检测方法的流程图;
图6是根据本发明实施例提供的信号发送方法的流程示意图;
图7是根据本发明实施例的信号检测装置的结构框图;
图8是根据本发明实施例的信号发送装置的结构框图;
图9是根据本发明实施例提供的方案1的流程示意图;
图10是根据本发明实施例提供的方案2的流程示意图;
图11是根据本发明实施例提供的方法的流程示意图;
图12是根据本发明实施例提供的确定时间窗(或搜索窗)的一个示例的示意图;
图13是根据本发明实施例提供的方法的流程示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者 类似的运算装置中执行。本发明实施例的一种信号检测方法的移动终端或基站的硬件结构框图。如图3所示,以运行在移动终端上为例,但是处理器、存储器及传输装置的硬件结构不局限于移动终端。例如,移动终端30可以包括一个或多个(图中仅示出一个)处理器302(处理器302可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器304、以及用于通信功能的传输装置306。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可配置为存储应用软件的软件程序以及模块,如本发明实施例中的信号检测方法对应的程序指令/模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
该移动设备可为远端UE和/或中继UE。
本申请实施例可以运行于图4所示的网络架构上,如图4所示,该网络架构包括:基站(eNB1),远端用户终端(W-UE),中继用户终端(R-UE)。
在本实施例中提供了一种运行于上述网络架构或上述终端的信号检测方法,该方法应用于第一设备,图5是根据本发明实施例的信号检测方法的流程图,如图5所示,该流程包括如下步骤:
步骤S502,基于第一定时参考发送第一同步信号;
步骤S504,基于所述第一定时参考检测第一发现信号;其中,所述第一发现信号中携带同步信息;
步骤S506,在检测到所述第一发现信号后,在与所述同步信息对应的第一时间窗内检测第二同步信号。
在一些实施例中,所述第一定时参考可为预先配置在UE等设备中的,也可以是从网络侧设备接收的,例如,网络侧的基站会广播所述第一定时参考,所述第一定时参考可为预先设置在时域上的特定用于发送第一同步信号的时间,例如,基站发送第一参考信号的时间图样,如此,可以根据该时间图样确定出所述第一定时参考。所述时间图样可包括:时间周期或预设的周期或非周期的定时信息。基站可以在其所覆盖形成的小区内广播或组播所述第一定时参考。例如,UE进入到一个小区内之后,可以从系统消息中获得所述第一定时参考,或者,从中继用户设备中继的消息中获得所述第一定时参考。
在本实施例中,所述第一定时参考,提供了发送所述第一同步信号和检测所述第一发现信号的参考时间段,所述第一同步信号的发送时间段和所述第一发现信号的检测时间段可以是一一配对的,例如,根据时间图样,在第n个第一同步信号的发送时间段发送所述第一同步信号,则可以在第n个所述第一发现信号的检测时间段检测所述第一发现信号。如此,第一同步信号和第一发现信号对应的发送时间段和检测时间段配对设置,方便了 UE的同步信号的发送及发现信号的检测,具有实现简便的特点。发送时间段和检测时间段可为任意一个时长,例如,1秒或2秒或5ms等,一个或多个传输符号等。
在另一些实施例中,所述第一定时参考中设定了所述第一同步信号的发送时间段,同时定义了在确定所述第一发现信号的偏移量及预设检测时长;例如,在发送所述第一同步信号之后在时域上向后偏移一个所述偏移量即为所述第一发现信号的检测的起始时间,并在实际检测时长达到所述预设检测时长之后停止所述第一发现信号的检测。若检测到所述第一发现信号可认为成功实现了D2D发现。通过第一发现信号中的同步信息实现D2D通信同步。
在一些实施例中,所述第一定时参考可为时域上一些离散的时间点或时间段。
当然以上仅是第一定时参考的用于第一同步信号及第一发现信号传输的一些举例,具体实现有多种,不局限于上述任意一种。
通过上述步骤,所述第一发现信号可为其他D2D设备基于当前设备发送的第一同步信号发送的,例如,设备A为了发现其他设备发送了所述第一同步信号,设备B检测到了所述第一同步信号就会发送所述第一发现信号,且在该第一发现信号中携带有同步信息。该同步信息可包括:同步指令,该同步指令可用于指示第一时间窗进行第二同步信号的发送和/或检测。此时,第一时间窗可为预先设置在或存储在UE中的。所述同步信息还可以直接携带有第一时间窗的参数,例如,时间窗的时长、起止时间、偏移量等信息。由于可以在检测到第一发现信号后,在与该第一发现信号携带的同步信息对应的第一时间窗内检测第二同步信号,即由于只在第一时间窗内检测第二同步信号,进而可以减少设备的功耗,因此,可以解决相关技术中远端设备持续检测同步信号导致远端设备功耗较大的问题,达到减少 设备功耗的效果。
一方面,在本发明实施例中不用随时检测同步信号,在第一定时参考发送了第一同步信号之后利用第一发现信号的检测,确定了检测同步信号的第一时间窗,从而仅是在第一时间窗内检测第二同步信号,从而减少了检测同步信号的时长,从而减少了检测同步信号的功耗;另一方面,检测第一发现信号是基于第一定时参考进行的,也非是随时进行的,从而发现信号自身的检测时长也缩短了,从而发现信号的检测功耗也降低了;再一方面,发现信号和同步信号的检测不再是毫无关联的独立且并行的进行的,相对于相关技术中一直持续的既检测发现信号又检测同步信号,UE在检测到携带有同步信息的第一发现信号之后仅在第一时间窗内检测第二同步信号,大大降低了盲目检测所产生的不必要的功耗,一方面通过发现信号的检测实现了D2D发现,另一方面通过限定时间窗内的同步信号的检测,实现D2D设备之间的通信同步,更为重要的是大大降低了不必要的检测,减少了功耗,延长了移动设备的待机时长。
需要说明的是,上述所述第一同步信号包括以下至少之一:第一边链路同步信号(SLSS),第一物理边链路广播信道(PSBCH);所述第二同步信号包括以下至少之一:第二(SLSS),第二(PSBCH)。
需要说明的是,上述同步信息可以包括:第一定时参考与第二定时参考的偏移值,或者所述同步信息包括所述第一定时参考与第二定时参考的偏移值和第一时间窗的参数;其中,第二定时参考为第二设备发送第二同步信号的定时参考。
需要说明的是,在上述同步信息包括第一定时参考与第二定时参考的偏移值的情况下,上述第一时间窗的参数也可以不携带在同步信息中,而是通过预定义的方式或者根据配置信令或其他方法获取第一时间窗的参数。
在本发明的一个实施例中,在所述同步信息包括第一定时参考与第二定时参考的偏移值的情况下,上述步骤S506可以表现为:基于所述第一定时参考根据所述同步信息与第一时间窗的参数,确定所述第一时间窗;在确定的所述第一时间窗内检测所述第二同步信号;
在所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数的情况下,上述步骤S506可以表现为:基于所述第一定时参考根据所述同步信息确定所述第一时间窗;在确定的所述第一时间窗内检测所述第二同步信号。
需要说明的是,上述偏移值可以确定第一时间窗的位置,上述第一时间窗的参数可以是上述时间窗的大小(窗长),但并不限于此。此处的窗长为时间窗在时域的长度,即时长。
在本发明的一个实施例中,在上述步骤S504之前,上述方法还可以包括:基于第一定时参考发送第二发现信号,其中,第二发现信号携带有以下至少之一信息:第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,所述第二设备发送第一发现信号的时延信息,所述第二设备发送第一发现信号的时间窗信息,所述第二设备发送第一发现信号的资源位置信息。
在本发明的一个实施例中,上述步骤S504可以表现为以下至少之一:在所述第二发现信号携带所述第二设备发送第一发现信号的时延信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的时延信息对应的时延内检测所述第一发现信号;在所述第二发现信号携带所述第二设备发送第一发现信号的时间窗信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的时间窗信息对应的时间窗内检测所述第一发现信号;在所述第二发现信号携带所述第二设备发送第一发现信号的资源位置信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的所述 资源位置信息对应的资源位置上检测所述第一发现信号。
需要说明的是,上述第一设备可以是图4所示的远端用户设备,上述第二设备可以是图4所示的中继用户设备,但并不限于此。
可选地,上述步骤的执行主体可以为终端,比如上述图3所述的终端,上述图4所示的远端用户设备等,但不限于此。
需要说明的是,上述方法可以应用于增强D2D中第二设备在第一设备所在基站的覆盖范围外的场景下,但并不限于此。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明实施例还提供了一种运行于上述图4所示的网络架构中的信号发送方法,图6是根据本发明实施例提供的信号发送方法的流程示意图,如图6所示,该方法可应用于第二设备中,包括:
步骤S602,检测第一同步信号;基于第一定时参考发送第一发现信号,其中,第一定时参考为检测到第一同步信号获得的定时参考;第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;
步骤S604,基于第二定时参考发送第二同步信号。
通过上述步骤,由于可以通过第一发现信号将第一设备用于确定检测第二同步信号的时间窗的同步信息发送给第一设备,进而使得第一设备可 以在确定的时间窗内检测第二同步信号,进而可以减少第一设备的功耗,因此,可以解决相关技术中远端设备持续检测同步信号导致远端设备功耗较大的问题,达到减少第一设备功耗的效果。
需要说明的是,上述第一同步信号可以包括以下至少之一:第一边链路同步信号(SLSS),第一物理边链路广播信道(PSBCH);第二同步信号包括以下至少之一:第二(SLSS),第二(PSBCH)。
需要说明的是,上述同步信息可以包括第一定时参考与第二定时参考的偏移值,或者所述同步信息包括:所述第一定时参考与第二定时参考的偏移值和第一时间窗的参数。
在本发明的一个实施例中,在上述步骤S602之后,上述方法还可以包括:基于第一定时参考接收第二发现信号,其中,第二发现信号携带有以下至少之一信息:所述第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,所述第二设备发送第一发现信号的时延信息,所述第二设备发送第一发现信号的时间窗信息,所述第二设备发送第一发现信号的资源位置信息。
在本发明的一个实施例中,在第二发现信号携带第一设备的识别信息的情况下,在接收第二发现信号之后,上述方法还可以包括:根据识别信息确定第一设备为有发现中继用户设备需求的远端用户设备。
需要说明的是,在第二发现信号携带时延信息、时间窗信息和资源信息三个信息中的至少之一信息的情况下,在接收第二发现信号之后,上述方法还可以包括以下至少之一:根据时延信息确定发送第一发现信号的时延,在确定的时延内发送第一发现信号;根据时间窗信息确定发送第一发现信号的时间窗,在确定的发送第一发现信号的时间窗内发送第一发现信号;根据资源信息确定发送第一发现信号的资源,在确定的资源上发送第一发现信号。
需要说明的是,上述第一设备可以是远端用户设备,上述第二设备可以是中继用户设备,但并不限于此。
需要说明的是,上述步骤的执行主体可以是中继用户设备,但并不限于此。
需要说明的是,上述方法可以应用于增强D2D中第一设备在第二设备所在基站的覆盖范围外的场景下,但并不限于此。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信号检测装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的信号检测装置的结构框图,该装置位于第一设备中,如图7所示,该装置包括:
第一发送模块72,配置为基于第一定时参考发送第一同步信号;
第一检测模块74,配置为基于第一定时参考检测第一发现信号;其中,第一发现信号中携带同步信息;
第二检测模块76,配置为在检测到第一发现信号后,在与同步信息对 应的第一时间窗内检测第二同步信号。
通过上述装置,由于可以在检测到第一发现信号后,在与该第一发现信号携带的同步信息对应的第一时间窗内检测第二同步信号,即由于只在第一时间窗内检测第二同步信号,进而可以减少设备的功耗,因此,可以解决相关技术中远端设备持续检测同步信号导致远端设备功耗较大的问题,达到减少设备功耗的效果。
需要说明的是,上述所述第一同步信号包括以下至少之一:第一边链路同步信号,第一物理边链路广播信道;所述第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
需要说明的是,上述同步信息可以包括:第一定时参考与第二定时参考的偏移值,或者所述同步信息包括所述第一定时参考与第二定时参考的偏移值和第一时间窗的参数;其中,第二定时参考为第二设备发送第二同步信号的定时参考,上述第二检测模块76还可以包括:确定单元,配置为在所述同步信息包括第一定时参考与第二定时参考的偏移值的情况下,基于所述第一定时参考根据所述同步信息与第一时间窗的参数确定所述第一时间窗;或者在所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数的情况下,基于所述第一定时参考根据所述同步信息确定所述第一时间窗;检测单元,与确定单元连接,配置为在确定的第一时间窗内检测第二同步信号。
需要说明的是,上述偏移值可以确定第一时间窗的位置,上述第一时间窗的参数可以是上述时间窗的大小(窗长),但并不限于此。此处的偏移值可为时间轴上相对于某一个时间参考点的偏移量,该时间参考点可为:当前时间、接收参考信号的时间点或发送参考信号的发送时间点;当然此处仅为时间参考点的举例,具体实现时不局限于上述任意一种。例如,在一些实施例中,所述时间参考点可为预先设置的时间点。
在本发明的一个实施例中,上述装置还可以包括:第二发送模块,与上述第一检测模块74连接,用于基于第一定时参考发送第二发现信号,其中,第二发现信号携带有以下至少之一信息:第一设备的识别信息,配置为指示所述第一设备有发现中继用户设备需求的信息,所述第二设备发送第一发现信号的时延信息,所述第二设备发送第一发现信号的时间窗信息,所述第二设备发送第一发现信号的资源位置信息。
需要说明的是,上述第一设备可以是图4所示的远端用户设备,上述第二设备可以是图4所示的中继用户设备,但并不限于此。
可选地,上装置可以位于第一设备中,比如上述图3所述的终端,上述图4所示的远端用户设备等,但不限于此。
在本发明实施例中,还提供了一种远端用户设备,包括:处理器,其中,处理器用于运行程序,其中,程序运行时执行上述实施例的方法。
在一些实施例中,所述远端用户设备还可包括:存储器,该存储器与所述处理器连接,例如,通过集成电路总线等连接,该存储器配置为存储有信息,例如,存储有可供所述处理器运行对了所述程序。
在还有一些实施例中,所述远端用户设备还可包括:收发器;所述收发器可包括:能够收发无线信号的天线等,该收发器与所述处理器连接,可以在处理器的控制下,实现无线信号的收发。
所述处理器可为:中央处理器、微处理器、数字信号处理器、可编程阵列、专用集成电路等各种具有信息处理功能的电子器件或电子电路。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
在本实施例中还提供了一种信号发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语 “模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本发明实施例的信号发送装置的结构框图,如图8所示,该装置包括:
检测模块82,配置为检测第一同步信号;
第一发送模块84,与上述检测模块82连接,配置为基于第一定时参考发送第一发现信号,其中,第一定时参考为检测到第一同步信号获得的定时参考;第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;
第二发送模块86,与上述第一发送模块84连接,配置为基于第二定时参考发送第二同步信号。
通过上述装置,由于可以通过第一发现信号将第一设备用于确定检测第二同步信号的时间窗的同步信息发送给第一设备,进而使得第一设备可以在确定的时间窗内检测第二同步信号,进而可以减少第一设备的功耗,因此,可以解决相关技术中远端设备持续检测同步信号导致远端设备功耗较大的问题,达到减少第一设备功耗的效果。
需要说明的是,上述第一同步信号可以包括以下至少之一:第一边链路同步信号SLSS,第一物理边链路广播信道PSBCH;第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
需要说明的是,上述同步信息可以包括第一定时参考与第二定时参考的偏移值,或者所述同步信息包括:所述第一定时参考与第二定时参考的偏移值和时间窗的参数。
需要说明的是,上述偏移值可以确定第一时间窗的位置,上述时间窗的参数可以是上述时间窗的大小(窗长),但并不限于此。
在本发明的一个实施例中,上述装置还可以包括:接收模块,与上述检测模块82连接,用于基于第一定时参考接收第二发现信号,其中,第二发现信号携带有以下至少之一信息:所述第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,所述第二设备发送第一发现信号的时延信息,所述第二设备发送第一发现信号的时间窗信息,所述第二设备发送第一发现信号的资源位置信息。
在本发明的一个实施例中,在第二发现信号携带第一设备的识别信息的情况下,所述装置还包括:确定模块,与上述接收模块连接,配置为根据识别信息确定第一设备为有发现中继用户设备需求的远端用户设备。
需要说明的是,在第二发现信号携带时延信息、时间窗信息和资源信息三个信息中的至少之一信息的情况下,上述第一发送模块84还配置为以下至少之一:根据时延信息确定发送第一发现信号的时延,在确定的时延内发送第一发现信号;根据时间窗信息确定发送第一发现信号的时间窗,在确定的发送第一发现信号的时间窗内发送第一发现信号;根据资源信息确定发送第一发现信号的资源,在确定的资源上发送第一发现信号。
需要说明的是,上述装置可以位于中继用户设备中,但并不限于此。
本发明实施例还提供了一种中继用户设备,包括:处理器,其中,处理器用于运行程序,其中,程序运行时执行上述实施例的方法。
在一些实施例中,所述中继用户设备还可包括:存储器,该存储器与所述处理器连接,例如,通过集成电路总线等连接,该存储器配置为存储有信息,例如,存储有可供所述处理器运行对了所述程序。
在还有一些实施例中,所述中继用户设备还可包括:收发器;所述收发器可包括:能够收发无线信号的天线等,该收发器与所述处理器连接,可以在处理器的控制下,实现无线信号的收发。
所述处理器可为:中央处理器、微处理器、数字信号处理器、可编程 阵列、专用集成电路等各种具有信息处理功能的电子器件或电子电路。
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。该存储介质可选为非瞬间存储介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
为了更好的理解本发明实施例,以下结合优选的实施例对本发明做进一步解释。
本发明实施例适用于D2D通信中Remote UE(简称W-UE)同步到Relay UE(简称R-UE)。如图4所示。
本发明实施例基于的场景如图4所示,需要说明的是,本发明实施例并不假设Relay UE(简称R-UE)毫无条件地一直发送SLSS/PSBCH,而是认为R-UE发送SLSS/PSBCH的条件是基站指示发送(或停止发送)或者满足发送RSRP门限(RSRP小于门限)。因此W-UE同步到R-UE主要分两种情况:
一种情况是邻近的R-UE发送SLSS/PSBCH,W-UE能检测到,并同步到R-UE,并基于对应SLSS的定时进行发现和通信;这种情况按现有技术就可以完成同步。
本发明实施例包括以下几个方案:
方案1:另一种情况是邻近有R-UE,但R-UE不主动发送SLSS/PSBCH, W-UE不能直接检测到R-UE的SLSS/PSBCH,这里发送SLSS/PSBCH表示发送SLSS或发送SLSS和PSBCH。W-UE有发现或通信需求,主动发送SLSS/PSBCH,并基于发送SLSS/PSBCH的定时接收R-UE的发现信号(附近有R-UE并且检测到了W-UE的同步信号之后发送了发现信号,否则W-UE也接收不到所述发现信号)。R-UE检测到W-UE发送的SLSS/PSBCH之后,基于W-UE的同步信号的定时(timing 2)发送发现信号,并携带了R-UE的同步信息,比如R-UE的SLSS定时(timing 1)与W-UE的SLSS定时(timing 2)的偏移值,并基于R-UE自己的发送定时(timing 1)发送SLSS/PSBCH。W-UE基于timing 2接收R-UE发送的发现信号,并根据所携带的同步信息可以很快检测R-UE的SLSS/PSBCH,比如根据定时偏移所对应时延,在一个很小的时间窗内就可以检测到R-UE的SLSS/PSBCH,实现同步到R-UE,避免了长时间地持续搜索SLSS/PSBCH。
R-UE发送发现信号可以限定在预定义的时间窗之内(可考虑重复发送),基于W-UE发送的SLSS/PSBCH的定时发送,频域资源为预定义带宽,比如中间6个物理资源快(Physical Resource Block,PRB),或根据W-UE发送的PSBCH中指示的带宽以发送同步信号的6个PRB为中心确定发送发现信号的频域资源范围。W-UE在预定义的时间窗之内不能接收到发现信号则认为附近没有R-UE存在,结束本次同步试探。W-UE可以周期性地或由事件触发发送SLSS/PSBCH来发起同步试探,如果W-UE同步到了R-UE,则停止发送SLSS/PSBCH。图9是根据本发明实施例提供的方案1的流程示意图。
方案2:图10是根据本发明实施例提供的方案2的流程示意图,如图10所示,W-UE发送SLSS/PSBCH的同时,还发送发现信号(Discovery),用于指示有同步R-UE的需求,以及R-UE发送发现信号响应的时间窗信息和/或资源位置信息。R-UE检测到W-UE发送的SLSS/PSBCH后,基于该 同步定时接收W-UE发送的发现信号,确定对应W-UE有发现R-UE的需求,然后发送发现信号(基于Timing 2)作为回应(Response),携带同步信息,比如W-UE与R-UE之间的定时偏移和/或W-UE检索R-UE同步信号的时间窗大小。并基于R-UE自己的发送定时(Timing 1)发送SLSS/PSBCH。W-UE根据接收到R-UE发送的发现信号响应,根据所指示的同步信息,检测R-UE的SLSS/PSBCH。
以上是从整体上对几种并行的流程进行描述,下面更进一步地,可以分别从W-UE和R-UE的角度来描述方案流程:
1.基于W-UE的方案描述:
(1)W-UE发送SLSS/PSBCH,发送或不发送发现信号;
(2)W-UE接收R-UE的发现信号,是基于W-UE自己发送SLSS/PSBCH的定时来接收(此时R-UE发送发现信号也是基于W-UE的SLSS的定时参考发送)。R-UE以W-UE的发送定时为参考,在固定时延的时间窗内,或者根据S-UE发送的发现信号所指示的信息,确定R-UE自己发送发现信号的时延、时间窗或无线资源,并在确定的时延内、时间窗内或无线资源上发送发现信号,W-UE通过接收发现信号,获得搜索R-UE的同步信号的时间窗信息,避免大范围检测接收,有利于节省功耗。
(3)R-UE发送的发现信号携带R-UE的同步信息,包括R-UE与W-UE的定时偏移信息。比如W-UE发送SLSS/PSBCH的定时参考为timing2,R-UE的定时参考为timing1(timing1可能与蜂窝DL定时对齐),R-UE发送的发现信号携带偏移(offset)值和W值,offset值为timing1相对timing2的延时,W的值为反应时间窗大小的值,W也可以为预定义值,或通过预配置或配置确定,可以用于确定前述的时间窗,例如,所述第一时间窗。W-UE根据offset值,基于timing2延时offset确定时间参考t,并在[t-W,t+W]或[t,t+W]或[t-W,t]的时间窗内搜索SLSS/PSBCH。
即基于W-UE的流程包括:步骤1:发送SLSS/PSBCH;(发送或不发送发现信号);步骤2:在预定义时延内或发现信号指示的时延内接收发现信号,获得R-UE的同步信号指示信息;步骤3:根据同步信号指示信息在确定的时间窗内检测R-UE的SLSS/PSBCH。
2.基于R-UE的方案描述:
(1)当检测到SLSS/PSBCH时(或接收到W-UE发送的发现信号),在预定义时延内或发现信号指示的时延或时间窗内或无线资源上发送发现信号,发现信号携带同步信号指示信息;
(2)发送SLSS/PSBCH。
图11是根据本发明实施例一提供的方法的流程示意图,如图11所示,Remote UE向Relay UE同步的过程如下:
第一步:Remote UE发送SLSS/PSBCH(SLSS/PSBCH 1),其中SLSS/PSBCH表示只包括SLSS或包括SLSS和PSBCH;Remote UE发送SLSS/PSBCH 1基于的定时参考(定时参考2)为内部定时参考或外部定时参考。其中,内部定时参考为Remote UE根据设备自身的晶振类元器件产生的时钟确定的定时参考,外部定时参考为Remote UE根据检测到的SLSS/PSBCH获得的定时参考,并且Remote UE能够识别该定时参考不是来自Relay UE的定时参考,或基于该定时参考Remote UE不能接收到来自Relay UE的发现信号。
第二步:Remote UE发送发现信号(发现信号1);Remote UE基于第一步中所述的发送SLSS/PSBCH 1的定时参考(定时参考2)发送发现信号1,该发现信号携带该Remote UE的识别信息,或者发现Relay UE的需求信息。还可以包括指示Relay UE发送发现信号(发现信号2)的时延信息,或时间窗信息,或无线资源信息。本步骤不是必须步骤。
第三步:Remote UE基于定时参考2检测发现信号(发现信号2);其 中要检测的发现信号2是Relay UE基于定时参考2发送的,并且携带有协助Remote UE同步到Relay UE的信息,比如Relay UE发送信号和/或数据的定时参考(定时参考1)与定时参考2的偏移值Q和/或时间窗(也可称为搜索窗)参数w1。Relay UE发送发现信号2的条件是检测到发现信号1或检测到SLSS/PSBCH 1。
第四步:Remote UE在特定的时间窗(或搜索窗)内检测SLSS和/或PSBCH(SLSS/PSBCH 2);所述特定的搜索窗根据从发现信号2中获得的所述协助Remote UE同步到Relay UE的信息确定。比如,Remote UE基于自己的同步资源以偏移值Q为时延确定参考点m,结合w1构造出时间窗[m-w1,m+w1]或[m,m+i*w1]或[m-i*w1,m],其中i为正整数,w1通过Relay UE发送的发现信号指示,也可以根据预定义或预配置或配置确定。并在该时间窗内检测SLSS/PSBCH(SLSS/PSBCH 2)。图12是根据本发明实施例提供的确定时间窗(或搜索窗)的一个示例的示意图,如图12所示。
本实施例中,发送SLSS/PSBCH的资源为周期分布,Remote UE发送SLSS/PSBCH 1为周期发送或事件触发发送,事件触发条件包括但不限于Remote UE有数据发送或有与Relay UE建链需求,但没有同步到Relay UE。当Remote UE同步到Relay UE之后,就停止发送SLSS/PSBCH 1和发现信号1,基于Relay UE的定时参考发送信号/数据。
图13是根据本发明实施例提供的方法的流程示意图,如图13所示,Remote UE向Relay UE同步的过程如下:
第一步:Remote UE发送SLSS/PSBCH(SLSS/PSBCH 3),其中SLSS/PSBCH表示只包括SLSS或包括SLSS和PSBCH;Remote UE发送SLSS/PSBCH 3基于的定时参考(定时参考2)为内部定时参考或外部定时参考。其中,内部定时参考为Remote UE根据设备自身的晶振类元器件产 生的时钟确定的定时参考,外部定时参考为Remote UE根据检测到的SLSS/PSBCH获得的定时参考,并且Remote UE能够识别该定时参考不是来自Relay UE的定时参考,或基于该定时参考Remote UE不能接收到来自Relay UE的发现信号。
第二步:Remote UE基于定时参考2检测发现信号(发现信号3);其中要检测的发现信号3是由Relay UE基于定时参考2发送的,并且携带有协助Remote UE同步到Relay UE的信息,比如Relay UE发送信号和/或数据的定时参考(定时参考1)与定时参考2的偏移值Q和/或时间窗(或搜索窗)参数w1。另外,参数w1也可以通过预定义或预配置或配置确定。Relay UE发送发现信号3的条件是检测到SLSS/PSBCH 3。
第三步:Remote UE在特定的时间窗(或搜索窗)内检测SLSS/PSBCH(SLSS/PSBCH 4);所述特定的搜索窗根据从发现信号3中获得的所述协助Remote UE同步到Relay UE的信息确定。比如,Remote UE基于自己的同步资源以偏移值Q为时延确定参考点m,结合w1构造出时间窗[m-w1,m+w1]或[m,m+i*w1]或[m-i*w1,m],其中i为正整数,w1可以通过Relay UE发送的发现信号指示,也可以根据预定义或预配置或配置确定。并在该时间窗内检测SLSS/PSBCH(SLSS/PSBCH 4)。上述特定的时间窗(或搜索窗)的确定可以参考图12。
本实施例中,发送SLSS/PSBCH的资源为周期分布,Remote UE发送SLSS/PSBCH 3为周期发送或事件触发发送,事件触发条件包括但不限于Remote UE有数据发送或有与Relay UE建链需求,但没有同步到Relay UE。当Remote UE同步到Relay UE之后,就停止发送SLSS/PSBCH 3,基于Relay UE的定时参考发送信号/数据。
如果Relay UE检测到SLSS/PSBCH(SLSS/PSBCH 5),其中SLSS/PSBCH表示只包括SLSS或包括SLSS和PSBCH,并且所述 SLSS/PSBCH 5的定时参考(定时参考2)与Relay UE发送信号和/或数据的定时参考(定时参考1)不同,或者Relay UE能够识别所述SLSS/PSBCH5为Remote UE发送,则Relay UE基于定时参考2发送发现信号(发现信号4)。
或者,如果Relay UE接收到发现信号(发现信号5),并且所述发现信号的定时参考(定时参考2)与Relay UE发送信号和/或数据的定时参考(定时参考1)不同,或根据发现信号5携带的识别信息确定所述发现信号5为Remote UE发送的,则Relay UE基于定时参考2发送发现信号(发现信号4)。
Relay UE发送发现信号4是在确定时延内或时间窗内,所述确定时延或时间窗为预定义,或者根据配置或预配置确定,或者根据发现信号5的指示信息确定。
如果Relay UE发送所述发现信号4与其它的基于定时参考1发送的信号和/或数据存在冲突,则放弃发送所述发现信号4。所述发现信号4中携带协助Remote UE同步到Relay UE的信息,比如Relay UE发送信号和/或数据的定时参考(定时参考1)与定时参考2的偏移值Q和/或搜索窗参数w1。
Relay UE基于所述定时参考1发送SLSS/PSBCH 6。
如果Relay UE检测到SLSS/PSBCH(SLSS/PSBCH 7),其中SLSS/PSBCH表示只包括SLSS或包括SLSS和PSBCH,并且所述SLSS/PSBCH 7的定时参考(定时参考2)与Relay UE发送信号和/或数据的定时参考(定时参考1)不同,或者Relay UE能够识别所述SLSS/PSBCH7为Remote UE发送,则Relay UE基于定时参考1发送SLSS/PSBCH(SLSS/PSBCH 8)。
或者,如果Relay UE接收到发现信号(发现信号6),并且所述发现信 号的定时参考(定时参考2)与Relay UE发送信号和/或数据的定时参考(定时参考1)不同,或根据发现信号6携带的识别信息确定所述发现信号6为Remote UE发送的,则Relay UE基于定时参考1发送SLSS/PSBCH(SLSS/PSBCH 8)。
Remote UE发送SLSS/PSBCH,或者还发送发现信号;发现信号用于指示有同步R-UE的需求,以及R-UE发送发现信号响应的时间窗信息和/或资源位置信息。
Remote UE在预定义或配置或预配置或指示的时间窗内接收发现信号,根据发现信号指示内容,在确定的时间窗内检测Relay UE发送的SLSS/PSBCH;
Relay UE检测到Remote UE发送的SLSS/PSBCH,或接收到Remote UE的发现信号,根据预定义或配置或预配置,在确定时间窗内发送发现信号响应,携带SLSS/PSBCH的指示信息。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例公开的技术方案中,远端用户设备会基于第一定时参考发送第一同步信号,然后基于第一定时参考检测第一发现信号,在第一发现信号中携带有同步信息,基于该同步信息在第一时间窗内检测第二同步信号,如此,可以仅在第一时间窗内检测第二同步信号,而非随时或者D2D发现的启动开始就检测第二同步信号,从而缩短了第二同步信号的检测时间,从而减少了第二同步信号的检测功耗,故具有积极的工业效果。且本发明实施例提供的方法具有实现简便的特点,可在工业上广泛推广。

Claims (24)

  1. 一种信号检测方法,应用于第一设备,其中,包括:
    基于第一定时参考发送第一同步信号;
    基于所述第一定时参考检测第一发现信号;其中,所述第一发现信号中携带同步信息;
    在检测到所述第一发现信号后,在与所述同步信息对应的第一时间窗内检测第二同步信号。
  2. 根据权利要求1所述的方法,其中,所述第一同步信号包括以下至少之一:第一边链路同步信号SLSS,第一物理边链路广播信道PSBCH;所述第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
  3. 根据权利要求1所述的方法,其中,
    所述同步信息包括:所述第一定时参考与第二定时参考的偏移值,
    或者
    所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数;其中,所述第二定时参考为第二设备发送所述第二同步信号的定时参考。
  4. 根据权利要求3所述的方法,其中,在所述同步信息包括第一定时参考与第二定时参考的偏移值的情况下,在与所述同步信息对应的第一时间窗内检测第二同步信号包括:基于所述第一定时参考根据所述同步信息与第一时间窗的参数,确定所述第一时间窗;在确定的所述第一时间窗内检测所述第二同步信号;
    在所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数的情况下,在与所述同步信息对应的第一时间窗内检测第二同步信号包括:基于所述第一定时参考根据所述同步信息确定所述 第一时间窗;在确定的所述第一时间窗内检测所述第二同步信号。
  5. 根据权利要求1所述的方法,其中,在基于所述第一定时参考检测第一发现信号之前,所述方法还包括:
    基于所述第一定时参考发送第二发现信号,其中,所述第二发现信号携带有以下至少之一信息:第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,第二设备发送第一发现信号的时延信息,第二设备发送第一发现信号的时间窗信息,第二设备发送第一发现信号的资源位置信息。
  6. 根据权利要求5所述的方法,其中,基于所述第一定时参考检测第一发现信号包括以下至少之一:
    在所述第二发现信号携带所述第二设备发送第一发现信号的时延信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的时延信息对应的时延内检测所述第一发现信号;
    在所述第二发现信号携带所述第二设备发送第一发现信号的时间窗信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的时间窗信息对应的时间窗内检测所述第一发现信号;
    在所述第二发现信号携带所述第二设备发送第一发现信号的资源位置信息的情况下,基于所述第一定时参考在与所述第二发现信号携带的所述资源位置信息对应的资源位置上检测所述第一发现信号。
  7. 一种信号发送方法,应用于第二设备,包括:
    检测第一同步信号;
    基于第一定时参考发送第一发现信号,其中,所述第一定时参考为检测到所述第一同步信号获得的定时参考;所述第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;
    基于第二定时参考发送所述第二同步信号。
  8. 根据权利要求7所述的方法,其中,所述第一同步信号包括以下至少之一:第一边链路同步信号SLSS,第一物理边链路广播信道PSBCH;所述第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
  9. 根据权利要求7所述的方法,其中,所述同步信息包括所述第一定时参考与第二定时参考的偏移值,或者所述同步信息包括:所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数。
  10. 根据权利要求7所述的方法,其中,在检测所述第一同步信号之后,所述方法还包括:
    基于所述第一定时参考接收第二发现信号,其中,所述第二发现信号携带有以下至少之一信息:所述第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,第二设备发送第一发现信号的时延信息,第二设备发送第一发现信号的时间窗信息,第二设备发送第一发现信号的资源位置信息。
  11. 根据权利要求10所述的方法,其中,在所述第二发现信号携带所述第一设备的识别信息的情况下,在接收所述第二发现信号之后,所述方法还包括:
    根据所述识别信息确定所述第一设备为有发现中继用户设备需求的远端用户设备。
  12. 根据权利要求10所述的方法,其中,在所述第二发现信号携带所述时延信息、所述时间窗信息和所述资源信息三个信息中的至少之一信息的情况下,在接收所述第二发现信号之后,所述方法还包括以下至少之一:
    根据所述时延信息确定发送所述第一发现信号的时延,在确定的所述时延内发送所述第一发现信号;
    根据所述时间窗信息确定发送所述第一发现信号的时间窗,在确定的所述发送所述第一发现信号的时间窗内发送所述第一发现信号;
    根据所述资源信息确定发送所述第一发现信号的资源,在确定的所述资源上发送所述第一发现信号。
  13. 一种信号检测装置,位于第一设备中,其中,包括:
    第一发送模块,配置为基于第一定时参考发送第一同步信号;
    第一检测模块,配置为基于所述第一定时参考检测第一发现信号;其中,所述第一发现信号中携带同步信息;
    第二检测模块,配置为在检测到所述第一发现信号后,在与所述同步信息对应的第一时间窗内检测第二同步信号。
  14. 根据权利要求13所述的装置,其中,所述第一同步信号包括以下至少之一:第一边链路同步信号SLSS,第一物理边链路广播信道PSBCH;所述第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
  15. 根据权利要求13所述的装置,其中,所述同步信息包括:所述第一定时参考与第二定时参考的偏移值,
    或者
    所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数;其中,所述第二定时参考为第二设备发送所述第二同步信号的定时参考,所述第二检测模块还包括:
    确定单元,配置为在所述同步信息包括第一定时参考与第二定时参考的偏移值的情况下,基于所述第一定时参考根据所述同步信息与第一时间窗的参数确定所述第一时间窗;或者在所述同步信息包括所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数的情况下,基于所述第一定时参考根据所述同步信息确定所述第一时间窗;
    检测单元,配置为在确定的所述第一时间窗内检测所述第二同步信号。
  16. 根据权利要求13所述的装置,其中,所述装置还包括:
    第二发送模块,配置为基于所述第一定时参考发送第二发现信号,其中,所述第二发现信号携带有以下至少之一信息:第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,第二设备发送第一发现信号的时延信息,第二设备发送第一发现信号的时间窗信息,第二设备发送第一发现信号的资源位置信息。
  17. 一种信号发送装置,其中,包括:
    检测模块,配置为检测第一同步信号;
    第一发送模块,配置为基于第一定时参考发送第一发现信号,其中,所述第一定时参考为检测到所述第一同步信号获得的定时参考;所述第一发现信号中携带同步信息,其中,所述同步信息用于第一设备确定检测第二同步信号的第一时间窗;
    第二发送模块,配置为基于第二定时参考发送第二同步信号。
  18. 根据权利要求17所述的装置,其中,所述第一同步信号包括以下至少之一:第一边链路同步信号SLSS,第一物理边链路广播信道PSBCH;所述第二同步信号包括以下至少之一:第二SLSS,第二PSBCH。
  19. 根据权利要求18所述的装置,其中,所述同步信息包括:所述第一定时参考与第二定时参考的偏移值,或者所述同步信息包括:所述第一定时参考与第二定时参考的偏移值和所述第一时间窗的参数。
  20. 根据权利要求17所述的装置,其中,所述装置还包括:
    接收模块,配置为基于所述第一定时参考接收第二发现信号,其中,所述第二发现信号携带有以下至少之一信息:所述第一设备的识别信息,用于指示所述第一设备有发现中继用户设备需求的信息,第二设备发送第一发现信号的时延信息,第二设备发送第一发现信号的时间窗信息,第二设备发送第一发现信号的资源位置信息。
  21. 一种远端用户设备,其中,包括:处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至6中任一项所述的方法。
  22. 一种中继用户设备,其中,包括:处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求7至12中任一项所述的方法。
  23. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至6或7至12中任一项所述的方法。
  24. 一种处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至6或7至12中任一项所述的方法。
PCT/CN2018/088277 2017-08-11 2018-05-24 信号检测、发送方法及装置、远端用户设备及存储介质 WO2019029227A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/638,183 US11290971B2 (en) 2017-08-11 2018-05-24 Signal detection method and apparatus, signal sending method and apparatus, remote user device, and storage medium
EP18844580.3A EP3668201B1 (en) 2017-08-11 2018-05-24 Signal detection method and apparatus, signal sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710686097.XA CN109392078B (zh) 2017-08-11 2017-08-11 信号检测、发送方法及装置、远端用户设备
CN201710686097.X 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029227A1 true WO2019029227A1 (zh) 2019-02-14

Family

ID=65270879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088277 WO2019029227A1 (zh) 2017-08-11 2018-05-24 信号检测、发送方法及装置、远端用户设备及存储介质

Country Status (4)

Country Link
US (1) US11290971B2 (zh)
EP (1) EP3668201B1 (zh)
CN (1) CN109392078B (zh)
WO (1) WO2019029227A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788567A (zh) * 2019-11-05 2021-05-11 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696545A (zh) * 2021-07-22 2023-02-03 华为技术有限公司 时钟同步方法及通信装置
CN117135560A (zh) * 2022-05-19 2023-11-28 上海朗帛通信技术有限公司 用于定位的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992348A (zh) * 2015-01-29 2016-10-05 普天信息技术有限公司 基于d2d通信的资源分配方法、用户设备
WO2017057321A1 (ja) * 2015-10-02 2017-04-06 株式会社Nttドコモ ユーザ装置及び同期方法
CN106575993A (zh) * 2014-08-06 2017-04-19 夏普株式会社 用于设备到设备通信的同步信号
CN106686714A (zh) * 2015-11-05 2017-05-17 电信科学技术研究院 时钟同步方法、同步信息传输方法及装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024092A1 (en) * 2009-08-25 2011-03-03 Nokia Corporation Methods and apparatus for synchronization of data frames
CN103686985B (zh) * 2012-09-25 2019-03-12 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及装置
US20140094212A1 (en) * 2012-09-28 2014-04-03 Electronics And Telecommunications Research Institute Method of device to device discovery and apparatus thereof
WO2014113072A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Centralized partitioning of user devices in a heterogeneous wireless network
KR101833187B1 (ko) * 2013-02-22 2018-02-27 인텔 아이피 코포레이션 액세스 네트워크 선택 및 트래픽 라우팅을 위한 시스템 및 방법
US9326122B2 (en) * 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9120379B2 (en) * 2013-09-25 2015-09-01 Denso International America, Inc. Adaptive instrument display using eye tracking
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
CN104812058A (zh) * 2014-01-24 2015-07-29 北京三星通信技术研究有限公司 一种d2d终端之间实现同步的方法和d2d终端设备
US9876666B2 (en) * 2014-01-24 2018-01-23 Lg Electronics Inc. Method and apparatus for acquiring synchronization by device-to-device terminal in wireless communication system
US9609503B2 (en) * 2014-01-28 2017-03-28 Samsung Electronics Co., Ltd Method and device for detecting and generating synchronization signal for device-to-device wireless communication
CN110769496B (zh) * 2014-03-19 2022-07-08 交互数字专利控股公司 Wtru及由wtru执行的方法
JP6272993B2 (ja) * 2014-05-09 2018-01-31 株式会社Nttドコモ ユーザ装置及び信号受信方法
WO2016010390A1 (ko) * 2014-07-18 2016-01-21 삼성전자 주식회사 무선 통신 시스템에서 단말 간 통신을 위한 동기화 방법 및 장치
CN104125620A (zh) * 2014-07-31 2014-10-29 宇龙计算机通信科技(深圳)有限公司 基于终端直连通信的中继选择的路由方法和路由方法
US9414338B2 (en) * 2014-08-07 2016-08-09 Alcatel Lucent Notification of relay capabilities for UE-to-network relay functions
US10581569B2 (en) * 2014-08-22 2020-03-03 Qualcomm Incorporated Techniques for transmitting and receiving synchronization signals over an unlicensed radio frequency spectrum band
EP3840257B1 (en) * 2014-09-24 2023-03-22 LG Electronics, Inc. Method for transmitting d2d signal and terminal therefor
CN107079276B (zh) * 2014-10-21 2021-06-22 Lg电子株式会社 在无线通信系统中发送/接收d2d信号的方法及其设备
CN106211027B (zh) * 2014-12-25 2021-06-18 北京三星通信技术研究有限公司 一种实现d2d终端时频同步的方法和设备
EP3229390B1 (en) * 2014-12-31 2020-09-09 Huawei Technologies Co., Ltd. Device, system, and method for signal transmission and detection
CN107736061A (zh) * 2015-01-16 2018-02-23 夏普株式会社 为侧链路通信选择同步信号源的方法及装置
KR102314442B1 (ko) 2015-02-06 2021-10-19 삼성전자주식회사 D2d 네트워크에서 ue 디스커버리 방법 및 시스템
US10412612B2 (en) * 2015-05-08 2019-09-10 Lg Electronics Inc. Method for terminal executing V2X communication to determine transmission power in wireless communication system and terminal utilizing the method
US9867027B2 (en) * 2015-05-08 2018-01-09 Acer Incorporated Apparatuses and methods for proximity-based service (prose) user equipment (UE)-to network relay
WO2016182410A1 (ko) * 2015-05-14 2016-11-17 엘지전자 (주) 무선 통신 시스템에서 d2d 신호 송수신 방법 및 이를 위한 장치
WO2016185967A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及び無線端末
US10382989B2 (en) * 2015-06-01 2019-08-13 Lg Electronics Inc. D2D operation method performed by UE in wireless communication system and UE using same method
US10863492B2 (en) * 2015-07-16 2020-12-08 Qualcomm Incorporated Low latency device-to-device communication
US10136372B2 (en) * 2015-09-22 2018-11-20 Lg Electronics Inc. Relay UE selecting method performed by UE in wireless communication system and UE using the same
US10652846B2 (en) * 2015-09-24 2020-05-12 Intel Corporation Systems, methods and devices for cellular synchronization references
KR102430874B1 (ko) * 2015-11-25 2022-08-09 삼성전자주식회사 위치를 측정하기 위한 장치 및 방법
CN107027166B (zh) * 2016-02-01 2019-08-23 电信科学技术研究院 一种节点的同步信息的发送方法、装置及节点
US11064451B2 (en) * 2016-02-05 2021-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Selection of time reference type for device-to-device radio communication
KR102063084B1 (ko) * 2016-09-27 2020-01-07 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 동기 신호 송수신 방법 및 장치
US10728937B2 (en) * 2017-01-09 2020-07-28 Apple Inc. Synchronization and master information block for off grid radio service
WO2018202798A1 (en) * 2017-05-04 2018-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UE GROUPS, UE GROUP MANAGER UEs AND UE GROUP MEMBER UEs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575993A (zh) * 2014-08-06 2017-04-19 夏普株式会社 用于设备到设备通信的同步信号
CN105992348A (zh) * 2015-01-29 2016-10-05 普天信息技术有限公司 基于d2d通信的资源分配方法、用户设备
WO2017057321A1 (ja) * 2015-10-02 2017-04-06 株式会社Nttドコモ ユーザ装置及び同期方法
CN106686714A (zh) * 2015-11-05 2017-05-17 电信科学技术研究院 时钟同步方法、同步信息传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3668201A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788567A (zh) * 2019-11-05 2021-05-11 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN112788567B (zh) * 2019-11-05 2022-06-21 上海朗帛通信技术有限公司 用于无线通信的通信节点中的方法和装置

Also Published As

Publication number Publication date
EP3668201A1 (en) 2020-06-17
US11290971B2 (en) 2022-03-29
EP3668201B1 (en) 2023-06-28
US20200367184A1 (en) 2020-11-19
CN109392078B (zh) 2021-11-02
EP3668201A4 (en) 2021-05-26
CN109392078A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
EP3190838B1 (en) Systems and methods for synchronization within a neighbor aware network
US9648485B2 (en) Discovery of a neighbor awareness network (NAN) using a wake up message
JP6374023B2 (ja) Gps拡張近隣認識ネットワーク(nan)クラスタ発見のための方法および装置
US9800389B2 (en) Systems and methods for discovering and synchronizing within a neighbor aware network
US9144047B2 (en) Methods, wireless communication stations, and system for time synchronization and discovery
JP2018520572A (ja) 低エネルギーワイヤレスネットワークアプリケーション
KR20170105489A (ko) 고밀도 무선 네트워크들 내의 무선 디바이스들을 위한 절전 채널 액세스
JP6195981B2 (ja) 無線装置を同期するための方法および装置
US10015646B2 (en) Group owner selection within a peer-to-peer network
CN110249705A (zh) 以减小的信令开销接入无线通信网络
WO2015169208A1 (zh) 一种同步处理方法及用户设备
US11218961B2 (en) Power saving for wireless device
JP6513222B2 (ja) デバイスツーデバイス(d2d)同期信号を送信するための方法及び装置
EP2975889A1 (en) D2d discovery sequence detecting method and d2d data receiving method and device
WO2019029227A1 (zh) 信号检测、发送方法及装置、远端用户设备及存储介质
WO2017189111A1 (en) Near field communication (nfc) to bluetooth handover
CN112544107A (zh) 无sib1的nr小区的cgi报告过程
CN108616969B (zh) 数据发送方法、数据接收方法及设备
WO2015078348A1 (zh) 一种簇头确定方法及用户设备
US11109216B2 (en) Operation optimization for trigger-based instant communication
WO2018059011A1 (zh) 一种同步源调整的方法及用户设备、计算机存储介质
EP4319369A1 (en) Sidelink communication method, device, and storage medium
CN110972104B (zh) V2x通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844580

Country of ref document: EP

Effective date: 20200311