WO2019026733A1 - Tire testing method, tire testing device, and dispersion device - Google Patents

Tire testing method, tire testing device, and dispersion device Download PDF

Info

Publication number
WO2019026733A1
WO2019026733A1 PCT/JP2018/027944 JP2018027944W WO2019026733A1 WO 2019026733 A1 WO2019026733 A1 WO 2019026733A1 JP 2018027944 W JP2018027944 W JP 2018027944W WO 2019026733 A1 WO2019026733 A1 WO 2019026733A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
test
unit
road surface
simulated road
Prior art date
Application number
PCT/JP2018/027944
Other languages
French (fr)
Japanese (ja)
Inventor
繁 松本
博至 宮下
一宏 村内
Original Assignee
国際計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際計測器株式会社 filed Critical 国際計測器株式会社
Priority to CN201880050620.2A priority Critical patent/CN110998274A/en
Priority to KR1020247002586A priority patent/KR20240015163A/en
Priority to KR1020207002933A priority patent/KR102629925B1/en
Priority to JP2019534438A priority patent/JP7154614B2/en
Publication of WO2019026733A1 publication Critical patent/WO2019026733A1/en
Priority to JP2022154434A priority patent/JP7444486B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a tire testing method, a tire testing device and a spraying device.
  • a test tire is mounted on a real vehicle, traveled on a real road surface under predetermined conditions, and an actual running test to check the wear of the tire generated at this time.
  • On the bench test which makes a tire wear by rotating a rotating drum and a tire in a state where a tire is in contact with an outer peripheral surface (simulated road surface) of a rotating drum as described in JP-A-57-91440 (simulation test) ).
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to prevent rubber debris generated by a tire abrasion test from adhering to a tire testing device or a test tire, thereby preventing a failure of the tire testing device. I assume.
  • a tire test method comprising a powder spraying step of spraying a powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on at least one outer peripheral surface of the test tire.
  • the powder spraying step transports the powder at a constant rate
  • the dispersing step of dispersing the transported powder in the gas and the spraying step of spraying the gas in which the powder is dispersed onto the outer peripheral surface , May be included.
  • the gas in which the powder is dispersed may be sprayed from the front in the traveling direction toward the ground contact portion between the simulated road surface and the test tire.
  • the powder may be transported at a constant rate by rotating the screw as the transport means at a predetermined speed in the transport step.
  • the dispersing step includes a compressed gas supply step of supplying compressed gas to the ejector, a step of suctioning powder by negative pressure generated by the ejector, and ejection of the powder dispersed in the gas from the ejector
  • the ejection step may be included.
  • the dispersing step may include a guiding step of guiding the gas ejected from the ejector to a position where the gas is sprayed, and the powder may be more uniformly dispersed in the gas in the guiding step.
  • the spraying step may spray the gas in which the powder is dispersed from the wrapper.
  • the powder may contain talc.
  • a transport unit for quantitatively transporting a target to be sprayed, and a target to be sprayed that has been transported by the transport unit is sucked to eject a gas in which the target is dispersed.
  • the transport unit may be configured to include a screw, a cylindrical case that houses the screw, and a drive unit that rotates the screw at a predetermined number of rotations.
  • the screw may be a substantially cylindrical member having a spiral groove formed on the outer peripheral surface.
  • the hopper is provided with the object to be sprayed stored, the inlet of the case opens upward at one axial end side of the case, and the outlet of the hopper formed at the bottom of the hopper is connected to the inlet It is good also as composition.
  • the spreader includes a stirring element for stirring the object to be spread in the hopper, the hopper has a cylindrical inner peripheral surface, and the sliding element rotates while contacting the inner peripheral surface of the hopper. It is good also as composition which has a mover.
  • the stirring bar is disposed concentrically with the inner circumferential surface of the hopper, and the rod rotates about the axis of the inner circumferential surface, and the branch portion extending from the side surface of the rod toward the inner circumferential surface of the hopper And a slider holding portion for holding the slider, which is attached to the branch portion.
  • a plurality of sliders may be provided, and the plurality of sliders may be arranged at different positions in the axial direction of the hopper.
  • two adjacent sliders in the axial direction of the hopper may be arranged at different positions in the direction of rotation.
  • the first pipe line for guiding the sprayed object transported by the transport unit to the ejector is provided, the outlet of the case opens downward at the other axial end of the case of the transport unit, and the outlet of the case
  • An inlet of a straight pipe extending downward may be connected to the connector, and the outlet of the straight pipe and the inlet of the first pipe may be arranged to face up and down via a gap.
  • a rotating drum provided with a simulated road surface on an outer peripheral surface, a tire holding portion rotatably holding a test tire in contact with the simulated road surface, and a rotating drum And a driving unit for rotating the tire holding unit, and the above-described spraying device for spraying a powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on the outer peripheral surface of at least one of the rotating drum and the test tire
  • a tire testing device is provided.
  • a rotating drum provided with a simulated road surface on the outer periphery, a tire holding portion rotatably holding the test tire in a state of being in contact with the simulated road surface, and a test tire.
  • a torque generation unit that generates a torque to be applied
  • a rotary drive unit including a motor that is a motor that rotationally drives a rotary drum, the torque generation unit being coaxially mounted on the case and the case rotatably supported
  • a tire testing apparatus comprising: a servomotor which is an electric motor, wherein a rotational drive unit rotationally drives a case of a torque generation unit.
  • the simulated road surface may be formed by a plurality of simulated road surface units that can be attached to and removed from the outer periphery of the rotating drum.
  • the simulated road surface unit may be configured to include a frame that can be attached and detached to the outer periphery of the rotating drum, and a simulated road surface that can be attached to and detached from the surface of the frame.
  • the simulated road surface may be formed of a material including an aggregate and a bonding material for bonding the aggregate.
  • the aggregate includes a ceramic piece
  • the binder may be configured to include a curable resin.
  • the simulated road surface may be formed of the same material (or a different material) as the road surface of the actual road.
  • the simulated road surface may have a plurality of traveling lanes aligned in the axial direction of the rotating drum.
  • a plurality of traveling lanes may be formed of the same material (or different materials).
  • the tire holding unit may be configured to include a traveling lane switching mechanism capable of switching the traveling lane in which the rotary drum travels by moving the rotary drum in the axial direction.
  • a relay unit relaying transmission of power from the rotation drive unit to the torque generation unit, first connection means connecting the rotation drive unit and the relay unit, the relay unit, and the torque generation unit
  • the second connection means includes a winding transmission mechanism, and the winding transmission mechanism includes a passive pulley coaxially attached to the case of the torque generation unit. It is also good.
  • the rotary drive unit includes a power coupling unit, the power coupling unit is connected to the input shaft to which the motor is connected, the first connection means is connected to one end, and the other end is the shaft of the rotating drum. And the output shaft to which it connected.
  • the relay unit includes a first gear to which the first connection means is connected, and a second gear that meshes with the first gear and to which the second connection means is connected; And one of the first gear and the second gear is movable in the direction of the distance to the other so that the distance between the rotational axes of the first gear and the second gear can be changed. And one of the first connection means and the second connection means connected to one of the gears has a universal joint at both ends, and includes a drive shaft configured to have a variable length. It is also good.
  • the torque generation unit includes a first shaft connected to the shaft of the servomotor, and the case has a tubular shape having an opening at one end through which the first shaft passes.
  • the servomotor and the one end side portion of the first shaft may be accommodated in the case, and the other end side portion of the first shaft may be exposed to the outside of the case from the opening.
  • the above tire testing apparatus includes a spindle unit in which the tire holding unit rotatably holds the test tire, and an alignment mechanism capable of adjusting the alignment of the test tire with respect to the simulated road surface by changing the position or orientation of the spindle unit.
  • the spindle unit may be configured to include a wheel unit on which the tire is mounted, and a spindle rotatably supported at one end with the wheel unit coaxially attached.
  • the above-mentioned tire testing apparatus may be configured to include third connection means for connecting the first shaft of the torque generating unit and the spindle, and the third connection means may include a constant velocity joint.
  • the tire holding portion rotates the spindle case around an axis perpendicular to the contact surface on which the test tire contacts the simulated road surface and passing through the center of the wheel portion.
  • a camber angle adjustment mechanism capable of adjusting the camber angle of the test tire by rotating the spindle case around an axis perpendicular to the spindle through the contact surface.
  • a tire load adjusting mechanism capable of adjusting the vertical load of the test tire by moving the spindle case in a direction perpendicular to the ground contact surface.
  • the above tire testing device may be configured to be provided with the above-described spraying device for spraying powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on the outer periphery of at least one of the rotating drum and the test tire.
  • FIG. 5 is a block diagram showing a schematic configuration of a control system 1 a of the tire testing device 1.
  • the direction from left to right in FIG. 1 is the X-axis direction
  • the direction from bottom to top is the Y-axis direction
  • the X axis direction and the Y axis direction are horizontal directions orthogonal to each other, and the Z axis direction is a vertical direction.
  • the tire testing apparatus 1 rotates the rotating drum 22 and the test tire T for a predetermined time (for example, 24 hours) in a state where the test tire T is in contact with the simulated road surface 23b provided on the outer periphery of the rotating drum 22. It is a device capable of performing a tire bench test that causes T to wear under conditions close to the actual running test.
  • the tire test device 1 of the present embodiment realizes high energy utilization efficiency by adopting an electric motor and a power circulation system in a drive system.
  • a torque generating device described later it is possible to independently perform rotation control and torque control by providing motors dedicated to the two functions of rotational drive and torque application.
  • the tire testing apparatus 1 includes a tire holding unit 10 for holding a test tire T, a road surface unit 20 having a simulated road surface 23b on which the test tire T is in contact, a rotational drive unit 30 for rotationally driving a power circulation circuit, and a test tire T. And a relay unit 40 for relaying power transmission from the rotation drive unit 30 to the torque generation unit 50.
  • the tire testing apparatus 1 further includes a first connection means (drive shaft 62) for connecting the rotation drive unit 30 and the relay unit 40, and a second connection means (V belt for connecting the relay unit 40 and the torque generation unit 50). 66), and third connection means (constant velocity joint 64) for connecting the torque generation unit 50 and the tire holding unit 10 (spindle 152).
  • a road surface portion 20, a rotational drive portion 30, a relay portion 40, a torque generation portion 50, and a spindle portion 15 described later of the tire holding portion 10 are annularly connected via a test tire T to form a power circulation circuit. .
  • the rotary drum 22 is disposed with the rotation axis facing in the Y-axis direction, but, for example, the X-axis direction, the Z-axis direction, or their intermediate directions (for example, 45).
  • the rotational axis of the rotary drum 22 may be oriented in a direction forming an angle of °). In that case, the orientation and arrangement of the other components of the tire testing device 1 are also changed according to the orientation of the rotary drum 22.
  • control system 1 a of the tire testing device 1 performs various operations based on signals from the central control unit 70 that controls the operation of the entire testing device and various sensors provided in the tire testing device 1. And an interface unit 90 for performing input / output with the outside.
  • the road surface portion 20 includes a rotating drum 22, a simulated road surface portion 23 provided on an outer peripheral portion of the rotating drum 22, and a bearing portion 24 rotatably supporting a shaft 22 a of the rotating drum 22. Is equipped.
  • the bearing portion 24 includes a rotary encoder 241 (FIG. 5) that detects the number of rotations of the rotary drum 22.
  • the simulated road surface unit 23 of the present embodiment is formed by a plurality of simulated road surface units 231 (FIG. 6, FIG. 7) arranged in the circumferential direction on the outer periphery of the rotating drum 22 without gaps.
  • FIG. 6 is a perspective view of the simulated road surface unit 231 attached to the outer periphery of the rotary drum 22.
  • FIG. 7 is a cross-sectional view of the simulated road surface unit 231 cut along the cut plane AA 'shown in FIG.
  • the simulated road surface unit 231 includes the frame 231a, the simulated road surface body 231b (231b1 and 231b2) fitted in the recess 231ad formed on the surface of the frame 231a, and the frame 231a, and holds the frame 231a.
  • a pair of left and right pressing plates 231c fixed to the The pressing plate 231c is fixed to the frame 231a by a plurality of countersunk screws 231d.
  • through holes 231 ah through which bolts for fixing the simulated road surface unit 231 to the rotating drum 22 are formed at both ends in the width direction (lateral direction in FIG. 7) of the frame 231 a.
  • the simulated road surface 23 b is formed by the surfaces of a plurality of simulated road surface bodies 231 b arranged in the circumferential direction.
  • the simulated road surface body 231b of the present embodiment is composed of two circumferentially extending portions (a first portion 231b1 in the left half and a second portion 231b2 in the right half in FIG. 7) formed of different materials.
  • the first portion 231 b 1 forms a first travel lane 23 b 1 described later, and the second portion 231 b 2 forms a second travel lane 23 b 2.
  • the whole of the simulated road surface body 231b may be uniformly formed of a single material.
  • the simulated road surface body 231b of the present embodiment is formed in a cylindrical surface having a smooth surface, for example, the thickness of the simulated road surface body 231b is periodic in the circumferential direction (or both directions in the circumferential direction and the width direction).
  • the surface may be provided with irregularities in the circumferential direction (or both in the circumferential direction and in the width direction) by changing it in a random or random manner.
  • the simulated road surface body 231b formed in advance is attached to the frame 231a by the pressing plate 231c, through holes for passing bolts for fixing to the frame 231a are provided in the simulated road surface body 231b
  • the simulated road surface body 231b may be directly attached to the frame 231a with a bolt.
  • the simulated road surface body 231b may be fixed on the surface of the simulated road surface unit 231 by filling the recessed portion 231ad with a material having plasticity, such as concrete or a curable resin, and curing the material.
  • the simulated road surface body 231b is made of, for example, an aggregate obtained by pulverizing a ceramic excellent in wear resistance such as silicon carbide or alumina (further, if necessary, polishing), a curable resin such as urethane resin or epoxy resin. It is a member obtained by molding and curing one to which a binder (binder) is added.
  • the simulated road surface 23 b is divided into two traveling lanes (first traveling lane 23 b 1 and second traveling lane 23 b 2) in the axial direction (width direction) of the rotary drum 22.
  • two traveling lanes are formed on the simulated road surface 23b, but a single or three or more traveling lanes may be formed.
  • the two travel lanes 23b1 and 23b2 of the simulated road surface 23b are formed by changing the particle size and amount of the aggregate to be used.
  • the first traveling lane 23b1 on the right side facing the traveling direction is a simulated road surface simulating a smooth road surface such as an asphalt paved road surface
  • the second traveling lane 23b2 on the left is a simulated road surface simulating a rough road surface such as cobblestone is there.
  • the rotary drive unit 30 includes a motor 32 and a power coupling unit 34 that couples the power output from the motor 32 to a power circulation circuit.
  • the motor 32 is driven and controlled by an inverter circuit 32a (FIG. 5).
  • the shaft 32 b of the motor 32 is coupled to the input shaft 34 a of the power coupling 34.
  • One end 34 b 1 of the output shaft 34 b of the power coupling portion 34 is coupled to the shaft 22 a of the rotary drum 22, and the other end 34 b 2 of the output shaft 34 b is coupled to one end of the drive shaft 62.
  • the output shaft 34 b of the power coupling portion 34 constitutes a part of a power circulation circuit, and the output shaft of the motor 32 is coupled to the power circulation circuit via the power coupling portion 34. That is, the power circulation circuit is rotationally driven by the motor 32, and the number of rotations of the power circulation circuit is controlled.
  • the relay portion 40 includes a gear box 42, a drive pulley 44, a bearing portion 45 rotatably supporting an axis of the drive pulley 44, and a tension pulley for applying a predetermined tension to a V-belt 66 wound around the drive pulley 44. 46 and a bearing portion 47 rotatably supporting the shaft of the tension pulley 46.
  • the gear box 42 includes a first gear 42a coupled to the other end of the drive shaft 62, and a second gear 42b meshing with the first gear 42a.
  • the second gear 42 b is coupled to the shaft of the drive pulley 44.
  • the gear box 42 converts the rotation input from the drive shaft 62 into rotation in a constant speed reverse direction to drive It transmits to the pulley 44.
  • the first gear 42a and the second gear 42b can be replaced with ones having different numbers of teeth (diameters).
  • the rotational speed may be increased or decreased by the gear box 42 by giving a difference to the number of teeth of the first gear 42a and the second gear 42b.
  • the distance between the rotation axes of the first gear 42a and the second gear 42b can be changed. Specifically, the position of the rotation shaft of the second gear 42b is fixed, and the position of the rotation shaft of the first gear 42a moves laterally (in the direction of the distance from the second gear 42b; that is, in the X axis direction). It is possible.
  • the position of the rotation shaft of the first gear 42a is moved laterally to adjust the meshing with the second gear 42b.
  • the rotary drive unit 30 (specifically, the other end 34b2 of the output shaft 34b of the power coupling unit 34) and the first gear 42a are connected by a drive shaft 62 having universal joints 621 at both ends and a variable length. ing. Therefore, even if the first gear 42a moves sideways, distortion does not occur in the drive shaft 62 and the first gear 42a, and smooth rotation of the power circulation circuit is maintained.
  • FIG. 8 is a longitudinal sectional view of the torque generating unit 50 (torque generating device).
  • the torque generation unit 50 includes an outer cylinder 51 (case), a servomotor 52 provided in the outer cylinder 51, a reduction gear 53 and a shaft 54, and three bearing units 55, 55 for rotatably supporting the outer cylinder 51. 56, a slip ring 57 (slip ring 57a, brush 57b), a bearing 58 rotatably supporting the slip ring 57a, and a driven pulley 59.
  • the servomotor 52 an AC servomotor of an ultra-low-inertia / high-power type, whose rated moment is 7 kW to 37 kW and whose inertia moment of the rotating part is 0.01 kg ⁇ m 2 or less, is used. As shown in FIG. 5, the servomotor 52 is connected to the central control unit 70 via a servo amplifier 52a.
  • the outer cylinder 51 has a cylindrical motor housing portion 512 and a reduction gear holder 513 having a large diameter, and substantially cylindrical shaft portions 514 and 516 having a small diameter.
  • the shaft portion 514 is coaxially coupled to one end (right end in FIG. 8) of the motor housing portion 512 (that is, the rotation axes coincide with each other).
  • a shaft 516 is coaxially coupled to the other end (left end in FIG. 8) of the motor housing 512 via the reduction gear holder 513.
  • the shaft portion 514 is rotatably supported by the bearing portion 56, and the shaft portion 516 is rotatably supported by the pair of bearing portions 55.
  • a driven pulley 59 coupled to the shaft 516 is disposed between the pair of bearings 55.
  • the outer cylinder 51 is rotationally driven by a V-belt 66 (FIG. 1) wound around the drive pulley 44 of the relay unit 40 via the driven pulley 59.
  • Bearings 517 are provided at both ends of the inner periphery of the shaft portion 516.
  • the shaft 54 is inserted into the hollow portion of the shaft portion 516 and rotatably supported by the shaft portion 516 via a pair of bearings 517.
  • the shaft 54 penetrates the shaft portion 516, and one end thereof protrudes into the reduction gear holding portion 513, and the other end protrudes to the outside of the outer cylinder 51.
  • a servomotor 52 is housed in the hollow portion of the motor housing portion 512.
  • the axis 521 of the servomotor 52 is arranged coaxially with the motor housing 512, and the motor case is fixed to the motor housing 512 by a plurality of rods 523.
  • the flange 522 of the servomotor 52 is connected to the gear case 53 a of the reduction gear 53 via the connecting cylinder 524.
  • the gear case 53 a of the reduction gear 53 is fixed to the inner flange 513 a of the reduction gear holder 513.
  • the shaft 521 of the servomotor 52 is connected to the input shaft 531 of the reduction gear 53. Further, a shaft 54 is connected to the output shaft 532 of the reduction gear 53. The torque output from the servomotor 52 is amplified by the reduction gear 53 and transmitted to the shaft 54. The rotation of the shaft 54 is obtained by adding the rotation driven by the servomotor 52 to the rotation of the outer cylinder 51 driven by the motor 32 of the rotary drive unit 30.
  • a slip ring 57 a is connected to the shaft portion 514 of the outer cylinder 51.
  • the brush 57 b in contact with the slip ring 57 a is supported by the fixed frame 58 a of the bearing 58.
  • the cable 525 of the servomotor 52 is passed through the hollow portion of the shaft portion 514 and connected to the slip ring 57a.
  • the brush 57b is connected to the servo amplifier 52a (FIG. 5). That is, the servomotor 52 and the servo amplifier 52a are connected via the slip ring portion 57.
  • FIG. 9 is a rear view (partial cross-sectional view) of the tire holding portion 10.
  • the tire holding unit 10 is a mechanical unit that grounds the test tire T in a predetermined alignment with the simulated road surface 23b and rotatably holds the test tire T while applying a predetermined load.
  • the tire holding unit 10 includes four base plates 101, 102, 103, and 104 stacked vertically, and a spindle unit 15 that rotatably holds the test tire T.
  • the tire holding unit 10 further includes a traverse mechanism 11, a camber angle adjustment mechanism 12, a tire load adjustment mechanism 13, and a slip angle adjustment mechanism 14 as an alignment mechanism of the test tire T.
  • the alignment mechanism is a mechanism capable of adjusting the alignment of the test tire T with respect to the simulated road surface 23b by changing the position or the orientation of the spindle portion 15.
  • the traverse mechanism 11 moves the base plate 102 in the Y-axis direction with respect to the base plate 101, thereby moving the position of the test tire T in the axial direction, and causing the test tire T to contact the ground surface 23b.
  • the driving lanes 23b1 and 23b2 are switched.
  • the traverse mechanism 11 includes a plurality of linear guides 111 for guiding the base plate 102 in the axial direction (Y-axis direction) of the rotary drum 22 with respect to the base plate 101, a servomotor 112 for driving the baseplate 102, and rotational movement of the servomotor 112. And a ball screw 113 (feed screw mechanism) for converting it into a linear motion in the Y-axis direction.
  • the ball screw 113 includes a screw shaft 113a and a nut 113b.
  • Each linear guide 111 is provided with a rail 111a and one or more carriages 111b capable of traveling on the rail 111a via rolling elements (not shown).
  • the rail 111 a of the linear guide 111 is attached to the upper surface of the base plate 101, and the carriage 111 b is attached to the lower surface of the base plate 102. That is, the base plate 101 and the base plate 102 are slidably coupled in the Y-axis direction via the plurality of linear guides 111.
  • a servomotor 112 whose axis is oriented in the Y-axis direction is attached to the base plate 101.
  • the shaft of the servomotor 112 is coupled to the screw shaft 113 a of the ball screw 113, and the nut 113 b is attached to the lower surface of the base plate 102.
  • the base plate 102 moves in the Y-axis direction with respect to the base plate 101.
  • the traveling lanes 23b1 and 23b2 of the simulated road surface 23b on which the test tire T is in contact are switched.
  • the servomotor 112 is connected to the central control unit 70 via a servo amplifier 112a.
  • the switching operation of the traveling lane by the servomotor 112 is controlled by the central control unit 70.
  • FIG. 9 is a rear view showing the upper portion of the tire holding portion 10.
  • the camber angle adjustment mechanism 12 is a mechanism that adjusts the camber angle of the test tire T by pivoting the base plate 103 around the Z axis with respect to the base plate 102.
  • the camber angle adjustment mechanism 12 includes a shaft 121 extending vertically, a bearing 122 rotatably supporting the shaft 121, a curved guide 123 guiding the pivot of the base plate 103 around the shaft 121, and a shaft in the Y-axis direction.
  • a servomotor 124 mounted on the base plate 102 and a ball screw 125 (feed screw mechanism) for converting the rotational motion of the servomotor 124 into linear motion in the Y-axis direction are provided.
  • the shaft 121 is attached to the base plate 103, and the bearing 122 is attached to the base plate 102.
  • the bearing 122 is provided with a rotary encoder 122a (camber angle detection means) shown in FIG. 5 that detects the angular position (that is, the camber angle) of the shaft 121.
  • the shaft 121 is disposed immediately below the contact surface where the test tire T contacts the rotating drum 22.
  • the center line (rotational axis) of the shaft 121 is a straight line passing through the contact surface perpendicular to the spindle 152.
  • the curved guide 123 includes an arc-shaped rail 123a concentric with the shaft 121, and a carriage 123b capable of traveling on the rail 123a via rolling elements (not shown).
  • the rail 123 a is attached to the upper surface of the base plate 102, and the carriage 123 b is attached to the lower surface of the base plate 103.
  • the screw shaft 125a of the ball screw 125 is coupled to the shaft of the servomotor 124, and the nut 125b is attached to the base plate 103 via a hinge 126 which is pivotable about a vertical axis.
  • the servomotor 124 is connected to the central control unit 70 via a servo amplifier 124a.
  • the adjustment operation of the camber angle by the servomotor 124 is controlled by the central control unit 70.
  • the tire load adjusting mechanism 13 adjusts the vertical load (contact pressure) applied to the test tire T by moving the test tire T in the radial direction by moving the base plate 104 in the X-axis direction with respect to the base plate 103. It is a mechanism.
  • the tire load adjusting mechanism 13 includes a plurality of linear guides 131 for guiding the base plate 104 in the radial direction (X-axis direction) of the rotary drum 22 with respect to the base plate 103, a servo motor 132 for driving the base plate 104, and a servo motor 132.
  • a ball screw 133 feed screw mechanism is provided to convert rotational movement into linear movement in the X-axis direction.
  • the linear guide 131 includes a rail 131a extending in the X-axis direction, and a carriage 131b capable of traveling on the rail via the rolling elements.
  • the rail 131 a of the linear guide 131 is attached to the upper surface of the base plate 103, and the carriage 131 b is attached to the lower surface of the base plate 104.
  • a servomotor 132 whose axis is oriented in the X-axis direction is attached to the base plate 103.
  • the shaft of the servomotor 132 is coupled to the screw shaft 133 a of the ball screw 133, and the nut 133 b is attached to the base plate 104.
  • the base plate 104 is moved in the X-axis direction with respect to the base plate 103 together with the nut 133b.
  • the inter-axial distance between the rotary drum 22 and the test tire T changes, and the load of the test tire T changes.
  • the servomotor 132 is connected to the central control unit 70 via a servo amplifier 132a.
  • the load adjustment operation of the test tire T by the servomotor 132 is controlled by the central control unit 70.
  • the slip angle adjusting mechanism 14 rotates the spindle unit 15 about the X axis with respect to the base plate 104, thereby tilting the rotation axis of the test tire T about the X axis with respect to the rotation axis of the rotating drum 22. This is a mechanism for adjusting the slip angle of T.
  • the slip angle adjustment mechanism 14 has an axis 141 whose one end is fixed to the spindle case 154 (bearing part) of the spindle part 15 and extends in the Y axis direction, and the axis 141 about the X axis (that is, about an axis perpendicular to the ground surface). ), A servomotor 143, and a ball screw 144 (feed screw mechanism).
  • the bearing portion 142 includes a rotary encoder 142a (FIG. 5) that detects the angular position of the shaft 141 (ie, the slip angle of the test tire T).
  • the center line (rotational axis) of the shaft 141 passes through the approximate center of the wheel portion 156 and is disposed perpendicular to the rotational axis of the wheel portion 156.
  • the servomotor 143 is attached to the base plate 104 via a hinge 143b pivotable about the Y-axis, with the axis directed substantially in the Z-axis direction.
  • the shaft of the servomotor 143 is coupled to the screw shaft 144 a of the ball screw 144.
  • the nut 144b of the ball screw 144 is attached to one end of the spindle case 154 in the X-axis direction (a position away from the center of the axis 141 in the X-axis direction) via the hinge 146 pivotable around the Y axis. It is done.
  • the spindle case 154 rotates with the shaft 141 by driving the servomotor 143 and moving the nut 144 b of the ball screw 144 up and down. Thereby, the slip angle of the test tire T held by the spindle portion 15 changes.
  • the servomotor 143 is connected to the central control unit 70 via a servo amplifier 143a.
  • the adjustment operation of the slip angle by the servomotor 143 is controlled by the central control unit 70.
  • the spindle portion 15 includes a spindle 152, a spindle case 154 (bearing portion) rotatably supporting the spindle 152, and a wheel portion 156 coaxially attached to one end of the spindle 152.
  • the test tire T is attached to the wheel portion 156.
  • the spindle 152 has a torque sensor 152a for detecting a torque applied to the test tire T, three component forces applied to the test tire T (that is, a force in the X axis direction (Radial Force; load), a force in the Y axis direction [Lateral Force; A three-component force sensor 152b (FIG.
  • the spindle case 154 also includes a rotary encoder 154 b (FIG. 5) that detects the number of revolutions of the spindle (i.e., the test tire T). Since piezoelectric elements are used for both the torque sensor 152a and the three component force sensor 152b, the spindle 152 and the spindle case 154 have high rigidity, which enables high-accuracy measurement.
  • the wheel unit 156 includes an air pressure sensor 156 a (FIG. 5) that detects the air pressure of the test tire T.
  • the tire holding unit 10 is provided with a tire temperature control system 18 (only a fan duct 182a is shown in FIG. 2) for adjusting the temperature of the test tire T by applying cold air or warm air to the test tire T.
  • the temperature of the test tire T (particularly, the temperature of the tread surface) at the time of the test (during running) influences the test result (the amount of wear). Therefore, it is desirable to keep the temperature of the tread surface of the test tire T within a certain temperature range (for example, 35 ⁇ 5 ° C.) during the test.
  • the temperature of test tire T influences a measurement result.
  • the temperature of the test tire T is adjusted to the set temperature during the test and the measurement of the amount of wear.
  • the tire temperature control system 18 (FIG. 5) includes a control unit 181, a spot air conditioner 182 and a temperature sensor 183.
  • the temperature sensor 183 is a non-contact temperature sensor (a radiation thermometer) that measures the temperature of the tread surface of the test tire T, and is disposed to face the tread surface.
  • the control unit 181 controls the operation of the spot air conditioner 182 based on the measurement result of the temperature sensor 183 so that the deviation from the set temperature is eliminated, and cool air or warm air is applied to the tread surface of the test tire T or the like. Or blow at room temperature.
  • the set temperature of the test tire T can be set to different values at the time of test (during running) and at the time of wear amount measurement.
  • the tire temperature control system 18 may be further provided with a temperature sensor for measuring the room temperature to control the operation of the spot air conditioner 182 based on the room temperature and the temperature of the test tire T.
  • the tire temperature control system 18 is configured to control the temperature of the test tire T by blowing warm air or cold air onto the test tire T using the spot air conditioner 182,
  • the tire temperature control system is not limited to this configuration.
  • a cover temperature-controlled room
  • the temperature of the test tire T may be adjusted by adjusting the temperature in the cover.
  • the set temperature at the time of the test may be set in accordance with the climate of the area where the tire is used. Also, tire wear is accelerated by the increase in temperature. Therefore, by using the tire temperature control system 18, the acceleration deterioration test can be performed by adjusting the temperature of the test tire T at the time of the test higher than the temperature of the tire at the time of normal traveling.
  • the tire holding unit 10 is provided with a two-dimensional laser displacement sensor 17 (hereinafter, abbreviated as "displacement sensor 17") used to measure the wear amount of the tread of the test tire T.
  • the displacement sensor 17 uses a laser beam (laser light sheet) spread in a band shape by a cylindrical lens to form a two-dimensional profile of the tread surface of the test tire T (cross-sectional shape cut along a plane including the tire rotation axis) Measure without contact.
  • the displacement sensor 17 is connected to the measuring unit 80 and functions as a wear measuring unit together with the measuring unit 80.
  • the measurement unit 80 controls the operation of the displacement sensor 17 and calculates the wear amount of the test tire T based on the two-dimensional profile acquired by the displacement sensor 17.
  • the two-dimensional profile measurement by the wear measurement unit is performed before and after the tire test (additionally in the middle of the test) with the test tire T stationary.
  • the amount of wear of the test tire T produced by the test is calculated based on the two-dimensional profile measured before and after (and during) the test. As described above, since the measured value of the amount of wear of the tire is affected by the temperature of the tire, when the measurement is performed after the test is completed (or stopped), natural radiation or forced cooling by the tire temperature control system 18 It is desirable to test after the entire tire reaches a predetermined reference temperature.
  • FIG. 10 is a schematic view of a two-dimensional profile of a tread surface of a test tire T acquired by two-dimensional profile measurement using the wear measurement unit.
  • the horizontal axis (Y) indicates the position in the width direction of the test tire T
  • the vertical axis (H) indicates the position in the height direction of the groove of the test tire T (radial direction of the test tire T).
  • the test tire T has four grooves G1, G2, G3 and G4 extending in the circumferential direction.
  • near regions L1 and R1, L2 and L2, L3 and R3, and L4 and R4 are respectively set in predetermined ranges on both sides in the width direction (Y-axis direction) of the grooves G1 to G4.
  • the n-th groove is indicated by the symbol Gn
  • the region near the groove Gn is indicated by the symbols Ln and Rn.
  • a region near the negative horizontal axis direction (left side in FIG. 10) of the groove Gn is referred to as a near region Ln
  • a region near the positive horizontal axis direction (right side in FIG. 10) of the groove Gn is referred to as a near region Rn.
  • the near region Ln (Rn) is set, for example, as a region from the left end (right end) of the groove Gn to a half distance of the width of the groove Gn.
  • the depth Dn of the groove Gn is calculated, for example, as the difference between the average value of the heights H in the near regions Ln and Rn and the average value of the height H in the grooves Gn. Further, the wear amount Wn of each groove Gn before and after the test is calculated as the difference between the depth Dn of the groove Gn before and after the test. Further, the average wear amount W of the test tire T is calculated as an average value of the wear amounts W1 to W4.
  • the minimum groove depth Dn min may be calculated.
  • the minimum groove depth Dn min of the groove Gn is, for example, the average value of the minimum value of the height H in the vicinity region Ln and the minimum value of the height H in the vicinity region Rn, and the maximum value of the height H in the groove Gn. Calculated as the difference of In this case, the wear amount Wn and the average wear amount W may be calculated using the minimum groove depth Dn min instead of the groove depth Dn.
  • the method of calculating the wear amount Wn and the average wear amount W is not limited to those exemplified above, and may be calculated by other methods.
  • the depth Dn of the groove Gn and the minimum groove depth Dn min are calculated using the heights H of both the near regions Ln and Rn, but either of the near regions Ln and Rn
  • the depth Dn of the groove Gn or the like may be calculated using the height H on one side (for example, the one closer to the center in the width direction of the test tire T).
  • an approximate curve for example, a quadratic curve
  • the average wear amount W may be calculated as the difference between
  • the wear measurement unit 17 measures the wear amount W L per unit travel distance (for example, 1 km) and the wear amount W per unit travel time (for example, 1 hour) along with the wear amount Wn and average wear amount W of each groove Gn. Calculate and display T.
  • the tire holding unit 10 is provided with a lubricant spreading device 16 (powder spraying device) for spraying a lubricant (object to be sprayed) on the tread surface of the test tire T and the simulated road surface 23b of the rotating drum 22.
  • the lubricant spraying device 16 sprays a mixture of lubricants dispersed in air from the front in the traveling direction (upward in FIG. 1) of the contact portion of the test tire T and the simulated road surface 23b.
  • a noncombustible powder such as talc (hydrous magnesium silicate) is used. This prevents dust explosion, eliminates the need for safety measures against dust explosion such as explosion-proof equipment, and enables significant reduction of initial cost and running cost.
  • FIG. 11 is a view showing a schematic configuration of the lubricant scattering device 16.
  • the lubricant scattering device 16 comprises a hopper 161 (storage unit) in which lubricant is stored, a stirring bar 162 for stirring the inside of the hopper 161, a drive unit 163 for rotationally driving the stirring bar 162, and the lubricant in a quantitative manner.
  • the fixed quantity conveying part 164 which conveys, the ejector 166 which sucks the lubricating material and mixes it with air and ejects it, the pipe line 165 which guides the lubricating material from the quantitative conveying part 164 to the ejector 166, and the lubricating material from the ejector 166 to the spraying position
  • a conduit 167 for conducting the dispersed air, and a trumpet lug 168 attached to the end of the conduit 167 are provided.
  • Stirring bar 162 includes a rod 162a extending vertically, three pairs of branch portions 162b extending perpendicularly in the radial direction from the side surface of rod 162a toward the inner peripheral surface of hopper 161, and the tip of each pair of branch portions 162b.
  • the three shoe holding portions 162c (slider holding portions) attached thereto and the three shoes 162d (sliders) held by the shoe attachment portions 162c are provided.
  • the rod 162 a is disposed concentrically with the cylindrical inner peripheral surface of the hopper 161, and one end thereof is connected to the drive unit 163.
  • Each shoe 162 d is disposed such that the tip thereof contacts the inner peripheral surface of the hopper 161, and pivots along the inner peripheral surface of the hopper 161 while scraping off the lubricant adhering to the inner peripheral surface of the hopper 161.
  • a brush formed of, for example, a conductive (or antistatic) resin is used as the shoe 162 d.
  • the lubricant in the hopper 161 is constantly stirred by the stirring bar 162. As a result, fluctuations in the amount of lubricant supply and interruptions in supply due to aggregation and clogging of the lubricant in the hopper 161 are prevented.
  • the lubricant adheres to the inner peripheral surface of the hopper 161 and tends to be a starting point of aggregation, clogging of the lubricant can be effectively prevented by rubbing the inner peripheral surface of the hopper 161 with the tip of the shoe 162d. Stable supply is possible.
  • a member other than the brush for example, a sponge or a sheet having rubber elasticity
  • the elasticity of the shoes 162 d causes the shoes 162 d to be pressed against the inner peripheral surface of the hopper 161 with an appropriate force, and the lubricant fixed to the inner peripheral surface of the hopper 161 is scraped off.
  • the shoe attachment portion 162c or the branch portion 162b may have elasticity.
  • the elastic force of the plate spring can press the shoe 162 d against the inner circumferential surface of the hopper 161.
  • the resin or rubber shoe 162d it is possible to prevent the damage and abrasion of the inner peripheral surface of the hopper 161 due to the sliding of the shoe 162d.
  • the shoe 162d formed of a conductive material for example, a synthetic resin into which carbon black is kneaded
  • a conductive material for example, a synthetic resin into which carbon black is kneaded
  • the drive unit 163 includes a motor 163m, a driver 163md (FIG. 5) that supplies a drive current to the motor 163m, and a reduction gear 163g that reduces the number of rotations of the output of the motor 163m.
  • the axes of the hopper 161 and the stirrer 162 are vertically oriented in the present embodiment, but may be oriented vertically (that is, the axes may be inclined relative to the vertical).
  • the quantitative conveyance unit 164 includes a cylindrical case 164a having a cylindrical hollow portion, a substantially cylindrical screw 164b concentrically accommodated in the hollow portion of the case 164a, and a driving unit 164c for rotationally driving the screw 164b. ing.
  • the drive unit 164c is provided with a servomotor 164cm and a servo amplifier 164cma for supplying a drive current to the servomotor 164cm.
  • the servomotor 164 cm another type of motor capable of controlling the rotational speed may be used.
  • the screw 164b has a substantially cylindrical main body portion 164b1 in which a spiral groove is formed on the outer periphery, and a shaft portion 164b2 axially extending from both axial ends of the main body portion 164b1 and thinner than the main body portion 164b1.
  • bearing holes 164a1 rotatably fitted with the shaft portion 164b2 are formed at both axial ends of the case 164a.
  • the shaft of the drive unit 164c is connected to one of the shaft portions 164b2.
  • Openings are provided at both axial ends of the case 164a.
  • An inlet 164a2, which is one opening, is formed on the upper surface at one end of the case 164a.
  • an outlet 164a3, which is the other opening, is formed on the lower surface at the other end side of the case 164a.
  • the outlet of the hopper 161 is connected to the inlet 164a2, and a straight pipe 164d extending vertically is connected to the outlet 164a3.
  • One spiral groove is formed on the outer periphery of the screw 164b.
  • the spiral groove is formed in a semicircular cross section.
  • the pitch of the spiral grooves is constant, but may be an unequal pitch.
  • a plurality of spiral grooves may be formed in the screw 164b.
  • the outer diameter of the main body portion 164b1 of the screw 164b is slightly smaller than the inner diameter of the hollow portion of the case 164a.
  • the lubricant moves in the hollow portion of the case 164a from the inlet 164a2 toward the outlet 164a3 and is discharged from the straight pipe 164d. Since the amount of lubricant conveyed per rotation of the screw 164b is constant, it is possible to continuously feed the lubricant at a constant speed by rotating the screw 164b at a constant velocity. In addition, it is possible to adjust the supply speed of the lubricant by changing the number of rotations of the screw 164b.
  • the ejector 166 operates with the compressed air supplied from the pipe 166a as a drive source, and ejects the compressed air from the built-in nozzle toward the discharge side at a high speed, so that the suction port connected with the pipe line 165 is negative.
  • the pressure is used to suck the lubricant from the suction port, and the air in which the lubricant is dispersed is ejected from the discharge port to which the conduit 167 is connected.
  • the inlet of the pipe line 165 is vertically opposed to the outlet of the straight pipe 164 d of the quantitative conveyance unit 164 via the gap G.
  • the negative pressure generated by the ejector 166 causes air to flow into the conduit 165 from the gap G.
  • the lubricant dropped from the outlet of the straight pipe 164 d is introduced into the pipe line 165 by the air flowing in from the gap G.
  • the tip end of the pipe line 167 (trumpet glove 168) is disposed directly above the contact portion between the test tire T and the simulated road surface 23b.
  • the air containing the lubricant ejected from the ejector 166 passes through the pipe line 167 and is jetted from the trumpet 160 toward the grounding portion.
  • the test tire T and the rotary drum 22 are rotationally driven in the direction in which the ground contact portion moves downward. That is, the lubricant is injected from the front in the traveling direction toward the ground contact portion.
  • the rubber waste generated by the abrasion of the test tire T is the test tire T or the tire Adherence to the test apparatus 1 is prevented, and a decrease in test accuracy and failure of the tire test apparatus 1 due to the adhesion of rubber chips are prevented.
  • the motor 163 m of the drive unit 163 of the lubricant scattering device 16 and the servomotor 164 cm of the fixed amount conveyance unit 164 are connected to the central control unit 70.
  • the operation of the lubricant spreader 16 is controlled by the central control 70.
  • the interface unit 90 of the control system 1a is, for example, a user interface for performing input / output with a user, a network interface for connecting with various networks such as a LAN (Local Area Network), It includes one or more of various communication interfaces such as Universal Serial Bus (USB) and General Purpose Interface Bus (GPIB) for connecting to an external device.
  • the user interface includes, for example, various operation switches, displays, various display devices such as LCD (liquid crystal display), various pointing devices such as mouse and touch pad, touch screen, video camera, video camera, printer, scanner, buzzer, speaker , One or more of various input / output devices such as a microphone, a memory card reader / writer, etc.
  • the displacement sensor 17, the rotary encoders 122a, 142a, 154b and 241, the torque sensor 152a, the three component force sensor 152b, the air pressure sensor 156a and the temperature sensor 183 are connected to the measurement unit 80.
  • the measuring unit 80 calculates the torque applied to the test tire T, the radial force, the traction force and the lateral force, the number of rotations of the test tire T, the camber angle, and the like based on the signals of the respective sensors.
  • the slip angle, the temperature and air pressure of the tread surface, the rotation speed of the rotary drum 22 and the road surface speed (the peripheral speed of the rotary drum 22) are measured, and these measured values are transmitted to the central control unit 70.
  • the road surface speed is calculated from the measurement value of the rotation speed of the rotary drum 22 by the rotary encoder 241.
  • the central control unit 70 displays the measurement value acquired from the measurement unit 80 on the display device according to the setting, and stores the measurement value in the non-volatile memory 71 together with the measurement time.
  • Servomotors 52, 112, 124, 132, 143 and 164 cm are connected to the central control unit 70 via servo amplifiers 52a, 112a, 124a, 132a, 143a and 164 cma, respectively. Further, motors 32 and 163 m are connected to the central control unit 70 via an inverter circuit 32 a and a driver 163 md, respectively. Further, a spot air conditioner 182 and a temperature sensor 183 are connected to the central control unit 70 via the control unit 181 of the tire temperature adjustment system 18.
  • an actual running test for checking in advance the wearing condition when the vehicle is mounted on an actual vehicle and travels with respect to a tire of a design serving as a reference (hereinafter referred to as "reference tire”).
  • the test conditions are adjusted so that the same wear condition as the actual running test is reproduced in the bench test by the tire testing apparatus 1, and the tires of various designs are adjusted according to the adjusted test conditions (referred to as “adjusted test conditions").
  • Tests are conducted.
  • the reference tire is selected from tires relatively similar in design to the tire to be tested. For example, reference tires are set for each of a passenger car tire and a bus / truck tire.
  • the motor since the motor is used without using the hydraulic device, the amount of electricity used can be significantly reduced compared to the conventional test apparatus.
  • the tire test apparatus 1 can be operated stably even when the power supply is limited due to a large scale disaster or the like.
  • the torque generating unit 50 (torque generating device) is an AC of ultra-low-inertia, high-power type with an inertia moment of the rotating unit of 0.01 kg ⁇ m 2 or less and a rated output of 22 kW (7 kW to 37 kW).
  • the use of a servomotor makes it possible to generate rapid torque fluctuations, and makes it possible to accurately reproduce complex waveform torque changes.
  • torque is first applied to the power circulation circuit, and rotational drive is started in the state where torque is applied, so torque can not be changed during the test. , could only apply a constant torque.
  • a torque generator equipped with an AC servomotor of an ultra-low inertia and high output type is incorporated in a power circulation circuit, so that it is complicated at high speed (high frequency) while traveling at high speed. It is possible to give various torque fluctuations to the specimen, and it is possible to accurately simulate tests under severe and complex conditions such as rapid acceleration and deceleration during high-speed travel, and ABS brake tests.
  • each motor can be divided into low speed / high torque driving and high speed / low torque driving, so the capacity of the servomotor 52 of the torque generating unit 50 is sufficient at 22 kW. Since the capacity of the motor 32 of the rotary drive unit 30 is also sufficient at 37 kW, a total capacity of 60 kW is sufficient at all, and it is possible to reduce the required electricity consumption to about 1/10.
  • the amount of electricity used is reduced to about 1/13 in the test equipment that is suitable for the test of truck and bus tires.
  • power is used to control the temperature of hydraulic fluid even when it is not in operation, but since the electric motor consumes little power during rest, the substantial amount of electricity used is 1 / It can be reduced to about fifteen.
  • the durability of the simulated road surface 23b is improved by forming the simulated road surface 23b using a novel composite material, and the running cost can be reduced.
  • the simulated road surface 23b of this embodiment it is possible to conduct tests accurately simulating various road surfaces by changing the aggregate and the binder.
  • 12 and 13 are a plan view and a front view of a tire testing apparatus 1000 according to a second embodiment of the present invention, respectively.
  • a part of tire testing apparatus 1000 is shown with the cross section for the facilities of description.
  • the same or corresponding reference numerals are given to constituent elements common to or corresponding to those in the first embodiment, and redundant description will be omitted.
  • the tire testing apparatus 1000 of the present embodiment is configured to be able to test a passenger car tire and a bus / truck tire with a single testing apparatus.
  • the tire testing apparatus 1000 has two power circulation circuits (power circulation circuit A, power circulation circuit B) sharing a part of the relay unit 1040 (gear box 1042, shaft 1049) and the road surface unit 1020 (rotary drum 1022). It is comprised so that the test of two test tires T1 and T2 can be done simultaneously.
  • the rotary drive unit 1030 is installed on the frame 1020 F of the road surface unit 1020, and the power of the motor 1032 is coupled to the shaft of the motor 1032. It is configured to be transmitted to each of the power circulation circuits A and B via a driven pulley 1025 and a rotating drum 1022 coupled to 1022a.
  • Two sets of drive pulleys 1044A and 1044B and driven pulleys 1048A and 1048B are provided in the relay portions 1040A and 1040B, respectively.
  • One set is for a reduction gear ratio for testing of passenger car tires, and the other is for a reduction gear ratio for testing of bus and truck tires.
  • the V-belts 1066A and 1066B are wound around a pulley pair for a passenger car tire at the time of testing a passenger car tire, and wound around a pulley pair for a bus, a truck and a tire at the time of testing a bus truck tire. Only by changing the V-belts 1066A and 1066B, it is possible to change to a reduction gear ratio suitable for various tires.
  • the relay unit 1040 includes one first gear 1042 a and two second gears 1042 b.
  • a through hole is provided at the center of the first gear 1042a and the second gear 1042b.
  • shafts 1041A and 1041B, to which driven pulleys 1048A and 1048B are respectively attached at one end, are non-contactingly passed.
  • the other ends of the shafts 1041A and 1041B are connected to the shafts 1051A and 1051B of the torque generation units 1050A and 1050B.
  • Each second gear 1042 b is coupled to the outer cylinder 1051 of the torque generation units 1050 A and 1050 B.
  • the position of the rotation shaft of the first gear 42a of the relay unit 40 is configured to be movable laterally, but the position of the rotation shaft of the second gear 42b may be configured to be movable laterally.
  • the second gear 42b and the drive pulley 44 are connected by, for example, a drive shaft 62 provided with a universal joint so that the movement of the second gear 42b is allowed.
  • a V-belt is used for the second connecting means, but a flat belt, a toothed belt or another belt may be used as the second connecting means. Also, chains, wires or other winding medial nodes may be used as the second connection means.
  • the relay unit 40 and the torque generation unit 50 are connected by one V-belt, but may be connected by a plurality of second connection units connected in parallel or in series. Moreover, when connecting a plurality of second connection means in series, different types of second connection means may be used in combination.

Abstract

The purpose of the present invention is to prevent a tire testing device from malfunctioning by preventing rubber waste produced by tire testing from adhering to the tire testing device and a test tire. One embodiment of this invention is a tire testing method including: a contact step for causing a test tire to come into contact with a simulated road surface provided on the outer circumference of a rotating drum, a rotation step for rotating the rotating drum and the test tire that has been brought into contact with the simulated road surface, and a powder dispersion step for dispersing a powder for reducing the adhesiveness of rubber waste produced through abrasion of the test tire on the outer circumferential surface of the rotating drum and/or test tire.

Description

タイヤ試験方法、タイヤ試験装置及び散布装置Tire testing method, tire testing device and scattering device
 本発明は、タイヤ試験方法、タイヤ試験装置及び散布装置に関する。 The present invention relates to a tire testing method, a tire testing device and a spraying device.
 タイヤの摩耗性を評価するタイヤ摩耗試験には、実車に試験タイヤを装着し、所定の条件で実路面上を走行して、このときに生じるタイヤの摩耗を調べる実走試験の他に、特開昭57-91440号公報に記載されているような、回転ドラムの外周面(模擬路面)にタイヤを接地させた状態で回転ドラムとタイヤを回転させてタイヤを摩耗させる台上試験(模擬試験)がある。 In the tire wear test for evaluating the wear of tires, a test tire is mounted on a real vehicle, traveled on a real road surface under predetermined conditions, and an actual running test to check the wear of the tire generated at this time. On the bench test which makes a tire wear by rotating a rotating drum and a tire in a state where a tire is in contact with an outer peripheral surface (simulated road surface) of a rotating drum as described in JP-A-57-91440 (simulation test) ).
 このような模擬試験を行うタイヤ試験装置では、タイヤの摩耗により発生するゴム屑がタイヤ試験装置の各部に付着して、タイヤ試験装置の故障の原因となり得る。 In a tire testing apparatus that performs such a simulation test, rubber waste generated by tire wear may adhere to each part of the tire testing apparatus, which may cause a failure of the tire testing apparatus.
 本発明は上記の事情に鑑みてなされたものであり、タイヤ摩耗試験により発生するゴム屑がタイヤ試験装置や試験タイヤに付着するのを防ぎ、これによりタイヤ試験装置の故障を防止することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to prevent rubber debris generated by a tire abrasion test from adhering to a tire testing device or a test tire, thereby preventing a failure of the tire testing device. I assume.
 本発明の一実施形態によれば、回転ドラムの外周に設けられた模擬路面に試験タイヤを接地させる接地ステップと、回転ドラム及び模擬路面に接地した試験タイヤを回転させる回転ステップと、回転ドラム及び試験タイヤの少なくとも一方の外周面に、試験タイヤの摩耗によって生じるゴム屑を付着し難くする粉末を散布する粉末散布ステップと、を含む、タイヤ試験方法が提供される。 According to an embodiment of the present invention, there is provided a grounding step of grounding a test tire on a simulated road surface provided on an outer periphery of a rotating drum, a rotating step of rotating a rotating drum and a test tire grounded on the simulated road surface, a rotating drum and There is provided a tire test method, comprising a powder spraying step of spraying a powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on at least one outer peripheral surface of the test tire.
 上記のタイヤ試験方法において、粉末散布ステップが、粉末を一定のレートで搬送する搬送ステップと、搬送された粉末を気体に分散させる分散ステップと、粉末が分散した気体を外周面に吹き付ける吹付ステップと、を含む構成としてもよい。 In the above tire testing method, the powder spraying step transports the powder at a constant rate, the dispersing step of dispersing the transported powder in the gas, and the spraying step of spraying the gas in which the powder is dispersed onto the outer peripheral surface , May be included.
 上記のタイヤ試験方法において、吹付ステップにおいて、粉末が分散した気体を、模擬路面と試験タイヤとの接地部に向けて、走行方向前方から吹き付ける構成としてもよい。 In the tire testing method described above, in the spraying step, the gas in which the powder is dispersed may be sprayed from the front in the traveling direction toward the ground contact portion between the simulated road surface and the test tire.
 上記のタイヤ試験方法において、搬送ステップにおいて、搬送手段であるスクリューを所定の速度で回転させることにより、粉末を一定のレートで搬送する構成としてもよい。 In the above tire testing method, the powder may be transported at a constant rate by rotating the screw as the transport means at a predetermined speed in the transport step.
 上記のタイヤ試験方法において、分散ステップが、エジェクターに圧縮された気体を供給する圧縮気体供給ステップと、エジェクターが発生する負圧により粉末を吸引するステップと、気体に分散した粉末をエジェクターから噴出させる噴出ステップと、を含む構成としてもよい。 In the above tire testing method, the dispersing step includes a compressed gas supply step of supplying compressed gas to the ejector, a step of suctioning powder by negative pressure generated by the ejector, and ejection of the powder dispersed in the gas from the ejector The ejection step may be included.
 上記のタイヤ試験方法において、分散ステップが、エジェクターから噴出した気体を吹き付ける位置まで管路により導く誘導ステップと、を含み、誘導ステップにおいて、粉末がより均一に気体に分散される構成としてもよい。 In the above tire testing method, the dispersing step may include a guiding step of guiding the gas ejected from the ejector to a position where the gas is sprayed, and the powder may be more uniformly dispersed in the gas in the guiding step.
 上記のタイヤ試験方法において、吹付ステップが、粉末が分散した気体をラッパぐちから吹き付ける構成としてもよい。 In the above tire testing method, the spraying step may spray the gas in which the powder is dispersed from the wrapper.
 上記のタイヤ試験方法において、粉末がタルクを含む構成としてもよい。 In the above-mentioned tire test method, the powder may contain talc.
 また、本発明の別の一実施形態によれば、被散布体を定量的に搬送する搬送部と、搬送部によって搬送された被散布体を吸引して、被散布体が分散した気体を噴出させるエジェクターと、を備えた、散布装置が提供される。 Further, according to another embodiment of the present invention, a transport unit for quantitatively transporting a target to be sprayed, and a target to be sprayed that has been transported by the transport unit is sucked to eject a gas in which the target is dispersed. There is provided a spraying apparatus comprising:
 この構成によれば、被散布体を定量的に(例えば、単位時間当たり一定の量を連続的に)散布可能な散布装置が提供される。 According to this configuration, it is possible to provide a spraying device capable of spraying the spray target quantitatively (for example, continuously with a constant amount per unit time).
 上記の散布装置において、搬送部が、スクリューと、スクリューを収容する筒状のケースと、スクリューを所定の回転数で回転させる駆動部と、を備えた構成としてもよい。 In the above-described spray apparatus, the transport unit may be configured to include a screw, a cylindrical case that houses the screw, and a drive unit that rotates the screw at a predetermined number of rotations.
 上記の散布装置において、スクリューが、外周面に螺旋状の溝が形成された略円柱状部材である構成としてもよい。 In the above-described spray device, the screw may be a substantially cylindrical member having a spiral groove formed on the outer peripheral surface.
 上記の散布装置において、被散布体が貯蔵されるホッパーを備え、ケースの軸方向一端側においてケースの入口が上向きに開口し、入口にホッパーの底部に形成されたホッパーの排出口が接続された構成としてもよい。 In the above-described spraying apparatus, the hopper is provided with the object to be sprayed stored, the inlet of the case opens upward at one axial end side of the case, and the outlet of the hopper formed at the bottom of the hopper is connected to the inlet It is good also as composition.
 上記の散布装置において、ホッパー内の被散布体を撹拌する撹拌子を備え、ホッパーが、円柱面状の内周面を有し、撹拌子が、ホッパーの内周面と接触しながら旋回する摺動子を有する構成としてもよい。 In the above-described spray apparatus, the spreader includes a stirring element for stirring the object to be spread in the hopper, the hopper has a cylindrical inner peripheral surface, and the sliding element rotates while contacting the inner peripheral surface of the hopper. It is good also as composition which has a mover.
 上記の散布装置において、撹拌子が、ホッパーの内周面と同心に配置され、内周面の軸を中心に回転するロッドと、ロッドの側面からホッパーの内周面に向かって延びる枝部と、枝部に取り付けられた、摺動子を保持する摺動子保持部と、を備えた構成としてもよい。 In the above-described spraying device, the stirring bar is disposed concentrically with the inner circumferential surface of the hopper, and the rod rotates about the axis of the inner circumferential surface, and the branch portion extending from the side surface of the rod toward the inner circumferential surface of the hopper And a slider holding portion for holding the slider, which is attached to the branch portion.
 上記の散布装置において、複数の摺動子を備え、複数の摺動子が、ホッパーの軸方向において異なる位置に配置された構成としてもよい。 In the above-described spray apparatus, a plurality of sliders may be provided, and the plurality of sliders may be arranged at different positions in the axial direction of the hopper.
 上記の散布装置において、ホッパーの軸方向において隣接する2つの摺動子が、旋回の方向において、異なる位置に配置された構成としてもよい。 In the above-described spray device, two adjacent sliders in the axial direction of the hopper may be arranged at different positions in the direction of rotation.
 上記の散布装置において、搬送部により搬送された被散布体をエジェクターに導く第1の管路を備え、搬送部のケースの軸方向他端側においてケースの出口が下向きに開口し、ケースの出口には、下方に延びる直管の入口が接続され、直管の出口と第1の管路の入口とが、隙間を介して、上下に対向して配置された構成としてもよい。 In the above-described spraying apparatus, the first pipe line for guiding the sprayed object transported by the transport unit to the ejector is provided, the outlet of the case opens downward at the other axial end of the case of the transport unit, and the outlet of the case An inlet of a straight pipe extending downward may be connected to the connector, and the outlet of the straight pipe and the inlet of the first pipe may be arranged to face up and down via a gap.
 また、本発明の更に別の一実施形態によれば、外周面に模擬路面が設けられた回転ドラムと、試験タイヤを模擬路面に接地した状態で回転可能に保持するタイヤ保持部と、回転ドラム及びタイヤ保持部を回転させる駆動部と、回転ドラム及び試験タイヤの少なくとも一方の外周面に、試験タイヤの摩耗によって生じるゴム屑を付着し難くする粉末を散布する上記の散布装置と、を備えた、タイヤ試験装置が提供される。 Further, according to still another embodiment of the present invention, there is provided a rotating drum provided with a simulated road surface on an outer peripheral surface, a tire holding portion rotatably holding a test tire in contact with the simulated road surface, and a rotating drum And a driving unit for rotating the tire holding unit, and the above-described spraying device for spraying a powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on the outer peripheral surface of at least one of the rotating drum and the test tire A tire testing device is provided.
 また、本発明の更に別の一実施形態によれば、外周に模擬路面が設けられた回転ドラムと、試験タイヤを模擬路面に接地した状態で回転可能に保持するタイヤ保持部と、試験タイヤに与えるトルクを発生するトルク発生部と、回転ドラムを回転駆動する電動機であるモーターを備えた回転駆動部と、を備え、トルク発生部が、回転可能に支持されたケースと、ケースに同軸に取り付けられた電動機であるサーボモーターと、を備え、回転駆動部がトルク発生部のケースを回転駆動する、タイヤ試験装置が提供される。 Further, according to still another embodiment of the present invention, there are provided a rotating drum provided with a simulated road surface on the outer periphery, a tire holding portion rotatably holding the test tire in a state of being in contact with the simulated road surface, and a test tire. A torque generation unit that generates a torque to be applied, and a rotary drive unit including a motor that is a motor that rotationally drives a rotary drum, the torque generation unit being coaxially mounted on the case and the case rotatably supported There is provided a tire testing apparatus, comprising: a servomotor which is an electric motor, wherein a rotational drive unit rotationally drives a case of a torque generation unit.
 この構成によれば、油圧システムを使用しないため、作動油による環境汚染を防止することができ、従来の油圧を使用した装置と比べてエネルギー消費量を低減することが可能になる。また、トルク発生部(トルク発生装置)を導入することにより、回転駆動とトルク発生という2つの役割を2つのモーターに分担させることが可能になるため、低容量で小型のモーターを使用することが可能になり、更なる省エネと省スペース化が可能になる。 According to this configuration, since the hydraulic system is not used, environmental pollution due to the hydraulic oil can be prevented, and energy consumption can be reduced as compared with a conventional apparatus using hydraulic pressure. Also, by introducing a torque generation unit (torque generation device), it becomes possible to share the two roles of rotational drive and torque generation with two motors, so it is possible to use a low-capacity, small-sized motor. It becomes possible, and energy saving and space saving become possible.
 上記のタイヤ試験装置において、模擬路面が、回転ドラムの外周に着脱可能な複数の模擬路面ユニットにより形成された構成としてもよい。 In the above-described tire testing device, the simulated road surface may be formed by a plurality of simulated road surface units that can be attached to and removed from the outer periphery of the rotating drum.
 この構成によれば、模擬路面ユニットをプレハブで製造することが可能になり、生産効率の向上が可能になる。 According to this configuration, it is possible to prefabricate the simulated road surface unit and to improve the production efficiency.
 上記のタイヤ試験装置において、模擬路面ユニットが、回転ドラムの外周に着脱可能なフレームと、フレームの表面に着脱可能な模擬路面体と、を備えた構成としてもよい。 In the above tire testing device, the simulated road surface unit may be configured to include a frame that can be attached and detached to the outer periphery of the rotating drum, and a simulated road surface that can be attached to and detached from the surface of the frame.
 この構成によれば、消耗品である模擬路面体の交換が容易になる。また、低コストで模擬路面体のバリエーションを増やすことが可能になる。 According to this configuration, replacement of the simulated road surface body, which is a consumable item, becomes easy. In addition, it is possible to increase the variation of the simulated road surface body at low cost.
 上記のタイヤ試験装置において、模擬路面が、骨材と、骨材を結合する結合材と、を含む材料から形成された構成としてもよい。 In the above-mentioned tire testing device, the simulated road surface may be formed of a material including an aggregate and a bonding material for bonding the aggregate.
 上記のタイヤ試験装置において、骨材がセラミックス片を含み、
 結合材が硬化性樹脂を含む構成としてもよい。
In the above tire testing device, the aggregate includes a ceramic piece,
The binder may be configured to include a curable resin.
 上記のタイヤ試験装置において、模擬路面が、実際の道路の路面と同じ材料(又は異なる材料)により形成された構成としてもよい。 In the above tire testing device, the simulated road surface may be formed of the same material (or a different material) as the road surface of the actual road.
 上記のタイヤ試験装置において、模擬路面が、回転ドラムの軸方向に並ぶ複数の走行レーンを有する構成としてもよい。 In the above tire testing device, the simulated road surface may have a plurality of traveling lanes aligned in the axial direction of the rotating drum.
 上記のタイヤ試験装置において、複数の走行レーンが、同じ材料(又は異なる材料)により形成された構成としてもよい。 In the above-described tire testing device, a plurality of traveling lanes may be formed of the same material (or different materials).
 上記のタイヤ試験装置において、タイヤ保持部が、回転ドラムを軸方向に移動することにより回転ドラムが走行する走行レーンを切り替え可能な走行レーン切替機構を備えた構成としてもよい。 In the tire testing device described above, the tire holding unit may be configured to include a traveling lane switching mechanism capable of switching the traveling lane in which the rotary drum travels by moving the rotary drum in the axial direction.
 上記のタイヤ試験装置において、回転駆動部からトルク発生部への動力の伝達を中継する中継部と、回転駆動部と中継部とを連結する第1の連結手段と、中継部とトルク発生部とを連結する第2の連結手段と、を備え、第2の連結手段が巻掛け伝動機構を含み、巻掛け伝動機構が、トルク発生部のケースに同軸に取り付けられた受動プーリーを備えた構成としてもよい。 In the above-described tire testing apparatus, a relay unit relaying transmission of power from the rotation drive unit to the torque generation unit, first connection means connecting the rotation drive unit and the relay unit, the relay unit, and the torque generation unit The second connection means includes a winding transmission mechanism, and the winding transmission mechanism includes a passive pulley coaxially attached to the case of the torque generation unit. It is also good.
 上記のタイヤ試験装置において、回転駆動部が、動力結合部を備え、動力結合部が、モーターが接続された入力軸と、一端に第1の連結手段が接続され、他端に回転ドラムの軸が接続された出力軸と、を備えた構成としてもよい。 In the above tire testing apparatus, the rotary drive unit includes a power coupling unit, the power coupling unit is connected to the input shaft to which the motor is connected, the first connection means is connected to one end, and the other end is the shaft of the rotating drum. And the output shaft to which it connected.
 上記のタイヤ試験装置において、中継部が、第1の連結手段が接続された第1のギヤと、第1のギヤと噛み合い、かつ、第2の連結手段が接続された第2のギヤと、を備え、第1のギヤと第2のギヤの回転軸間の距離を変更できるように、第1のギヤ及び第2のギヤのいずれか一方のギヤが他方との距離方向に移動可能に構成され、第1の連結手段及び第2の連結手段のうち、一方のギヤと接続された方が、両端部にユニバーサルジョイントを備え、かつ、長さが可変に構成されたドライブシャフトを含む構成としてもよい。 In the above tire testing device, the relay unit includes a first gear to which the first connection means is connected, and a second gear that meshes with the first gear and to which the second connection means is connected; And one of the first gear and the second gear is movable in the direction of the distance to the other so that the distance between the rotational axes of the first gear and the second gear can be changed. And one of the first connection means and the second connection means connected to one of the gears has a universal joint at both ends, and includes a drive shaft configured to have a variable length. It is also good.
 上記のタイヤ試験装置において、トルク発生部が、サーボモーターの軸に連結された第1の軸を備え、ケースが、一端部に第1の軸を通す開口部が形成された筒状であり、サーボモーター及び第1の軸の一端側の部分がケース内に収容され、第1の軸の他端側の部分が開口部からケースの外部に露出した構成としてもよい。 In the above-described tire testing device, the torque generation unit includes a first shaft connected to the shaft of the servomotor, and the case has a tubular shape having an opening at one end through which the first shaft passes. The servomotor and the one end side portion of the first shaft may be accommodated in the case, and the other end side portion of the first shaft may be exposed to the outside of the case from the opening.
 上記のタイヤ試験装置において、タイヤ保持部が試験タイヤを回転可能に保持するスピンドル部と、スピンドル部の位置又は向きを変更して模擬路面に対する試験タイヤのアライメントを調整可能なアライメント機構と、を備え、スピンドル部が、タイヤが装着されるホイール部と、一端にホイール部が同軸に取り付けられ、回転可能に支持されたスピンドルと、を備えた構成としてもよい。 The above tire testing apparatus includes a spindle unit in which the tire holding unit rotatably holds the test tire, and an alignment mechanism capable of adjusting the alignment of the test tire with respect to the simulated road surface by changing the position or orientation of the spindle unit. The spindle unit may be configured to include a wheel unit on which the tire is mounted, and a spindle rotatably supported at one end with the wheel unit coaxially attached.
 上記のタイヤ試験装置において、トルク発生部の第1の軸とスピンドルとを連結する第3の連結手段を備え、第3の連結手段が、等速ジョイントを含む構成としてもよい。 The above-mentioned tire testing apparatus may be configured to include third connection means for connecting the first shaft of the torque generating unit and the spindle, and the third connection means may include a constant velocity joint.
 上記のタイヤ試験装置において、タイヤ保持部が、スピンドルを回転可能に支持するスピンドルケースと、試験タイヤが模擬路面に接地する接地面と垂直かつホイール部の中心を通る軸の周りにスピンドルケースを回転させることによって試験タイヤのスリップ角を調整可能なスリップ角調整機構と、接地面を通りスピンドルと垂直な軸の周りにスピンドルケースを回転させることによって試験タイヤのキャンバ角を調整可能なキャンバ角調整機構と、スピンドルケースを接地面と垂直な方向に移動することによって試験タイヤの垂直荷重を調整可能なタイヤ荷重調整機構と、を備えた構成としてもよい。 In the above tire testing apparatus, the tire holding portion rotates the spindle case around an axis perpendicular to the contact surface on which the test tire contacts the simulated road surface and passing through the center of the wheel portion. And a camber angle adjustment mechanism capable of adjusting the camber angle of the test tire by rotating the spindle case around an axis perpendicular to the spindle through the contact surface. And a tire load adjusting mechanism capable of adjusting the vertical load of the test tire by moving the spindle case in a direction perpendicular to the ground contact surface.
 上記のタイヤ試験装置において、回転ドラム及び試験タイヤの少なくとも一方の外周に、試験タイヤの摩耗により生じるゴム屑を付着し難くする粉末を散布する上記の散布装置を備えた構成としてもよい。 The above tire testing device may be configured to be provided with the above-described spraying device for spraying powder that makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on the outer periphery of at least one of the rotating drum and the test tire.
 本発明の一実施形態によれば、タイヤ試験により発生するゴム屑がタイヤ試験装置や試験タイヤに付着するのを防ぎ、これによりタイヤ試験装置の故障を防止することが可能になる。 According to one embodiment of the present invention, it is possible to prevent rubber chips generated by a tire test from adhering to a tire testing device or a test tire, thereby preventing a failure of the tire testing device.
本発明の実施形態に係るタイヤ試験装置の平面図である。It is a top view of a tire testing device concerning an embodiment of the present invention. 本発明の実施形態に係るタイヤ試験装置の正面図である。It is a front view of a tire testing device concerning an embodiment of the present invention. 本発明の実施形態に係るタイヤ試験装置の右側面図である。It is a right side view of a tire testing device concerning an embodiment of the present invention. 本発明の実施形態に係るタイヤ試験装置の左側面図である。It is a left side view of a tire testing device concerning an embodiment of the present invention. 制御システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a control system. 模擬路面ユニットの外観図である。It is an external view of a simulation road surface unit. 模擬路面ユニットの横断面図である。It is a cross-sectional view of a simulated road surface unit. トルク発生部の縦断面図である。It is a longitudinal cross-sectional view of a torque generation part. キャンバ調節機構の側面図である。It is a side view of a camber adjustment mechanism. タイヤのトレッドの2次元プロファイルの模式図である。It is a schematic diagram of the two-dimensional profile of the tread of a tire. 滑材散布装置の概略構成を示す図である。It is a figure which shows schematic structure of a lubricant spreading apparatus. 本発明の第2実施形態に係るタイヤ試験装置の平面図である。It is a top view of the tire testing device concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るタイヤ試験装置の正面図である。It is a front view of the tire testing device concerning a 2nd embodiment of the present invention.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の説明において、同一の又は対応する構成要素には、同一の又は対応する符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding constituent elements will be denoted by the same or corresponding reference numerals, and overlapping descriptions will be omitted.
 図1~4は、順に、本発明の一実施形態に係るタイヤ試験装置1の平面図、正面図、右側面図及び左側面図である。なお、説明の便宜のため、図2~4において、タイヤ試験装置1の一部の図示が省略されている。また、図5は、タイヤ試験装置1の制御システム1aの概略構成を示すブロック図である。 1 to 4 are, in order, a plan view, a front view, a right side view and a left side view of a tire testing device 1 according to an embodiment of the present invention. Note that, for convenience of description, in FIGS. 2 to 4, illustration of a part of the tire testing device 1 is omitted. FIG. 5 is a block diagram showing a schematic configuration of a control system 1 a of the tire testing device 1.
 以下の説明において、図1中に座標で示すように、図1における左から右へ向かう方向をX軸方向、下から上へ向かう方向をY軸方向、紙面に垂直に裏か表に向かう方向をZ軸方向と定義する。X軸方向及びY軸方向は互いに直交する水平方向であり、Z軸方向は鉛直方向である。 In the following description, as shown by the coordinates in FIG. 1, the direction from left to right in FIG. 1 is the X-axis direction, the direction from bottom to top is the Y-axis direction, and Is defined as the Z-axis direction. The X axis direction and the Y axis direction are horizontal directions orthogonal to each other, and the Z axis direction is a vertical direction.
 タイヤ試験装置1は、回転ドラム22の外周に設けられた模擬路面23bに試験タイヤTを接地させた状態で回転ドラム22と試験タイヤTを所定時間(例えば24時間)回転させることで、試験タイヤTを実走試験に近い条件で摩耗させるタイヤの台上試験を行うことが可能な装置である。本実施形態のタイヤ試験装置1は、駆動系に電動機及び動力循環方式を採用することにより、高いエネルギー利用効率を実現している。また、後述するトルク発生装置を採用することにより、回転駆動とトルク付与という2つの機能にそれぞれ専用のモーターを設けて、回転制御とトルク制御を独立に行うことが可能になっている。これにより、自由度が高く高精度のトルク制御が可能になると共に、電動機の低容量化が可能になり、試験装置の小型化及び消費電力の低減が可能になっている。また、トルク発生装置に、加速性能に優れた超低慣性サーボモーターを使用することにより、急発進・急制動時の高い周波数成分を有するトルク変動を正確に再現することが可能になっている。 The tire testing apparatus 1 rotates the rotating drum 22 and the test tire T for a predetermined time (for example, 24 hours) in a state where the test tire T is in contact with the simulated road surface 23b provided on the outer periphery of the rotating drum 22. It is a device capable of performing a tire bench test that causes T to wear under conditions close to the actual running test. The tire test device 1 of the present embodiment realizes high energy utilization efficiency by adopting an electric motor and a power circulation system in a drive system. In addition, by adopting a torque generating device described later, it is possible to independently perform rotation control and torque control by providing motors dedicated to the two functions of rotational drive and torque application. As a result, it is possible to control torque with a high degree of freedom and high accuracy, and to reduce the capacity of the motor, thereby making it possible to miniaturize the test apparatus and reduce the power consumption. In addition, by using an ultra-low inertia servomotor excellent in acceleration performance for the torque generation device, it is possible to accurately reproduce torque fluctuation having a high frequency component at the time of sudden start and sudden braking.
 タイヤ試験装置1は、試験タイヤTを保持するタイヤ保持部10と、試験タイヤTが接地する模擬路面23bを有する路面部20と、動力循環回路を回転駆動する回転駆動部30と、試験タイヤTに与える制動力及び駆動力を発生するトルク発生部50と、回転駆動部30からトルク発生部50への動力伝達を中継する中継部40を備えている。また、タイヤ試験装置1は、回転駆動部30と中継部40とを連結する第1連結手段(ドライブシャフト62)と、中継部40とトルク発生部50とを連結する第2連結手段(Vベルト66)と、トルク発生部50とタイヤ保持部10(スピンドル152)とを連結する第3連結手段(等速ジョイント64)を備えている。路面部20、回転駆動部30、中継部40、トルク発生部50及びタイヤ保持部10の後述するスピンドル部15は、試験タイヤTを介して環状に連結して、動力循環回路を形成している。 The tire testing apparatus 1 includes a tire holding unit 10 for holding a test tire T, a road surface unit 20 having a simulated road surface 23b on which the test tire T is in contact, a rotational drive unit 30 for rotationally driving a power circulation circuit, and a test tire T. And a relay unit 40 for relaying power transmission from the rotation drive unit 30 to the torque generation unit 50. The tire testing apparatus 1 further includes a first connection means (drive shaft 62) for connecting the rotation drive unit 30 and the relay unit 40, and a second connection means (V belt for connecting the relay unit 40 and the torque generation unit 50). 66), and third connection means (constant velocity joint 64) for connecting the torque generation unit 50 and the tire holding unit 10 (spindle 152). A road surface portion 20, a rotational drive portion 30, a relay portion 40, a torque generation portion 50, and a spindle portion 15 described later of the tire holding portion 10 are annularly connected via a test tire T to form a power circulation circuit. .
 なお、本実施形態では、回転ドラム22がY軸方向に回転軸を向けて配置されているが、例えばX軸方向、Z軸方向又はこれらの中間方向(例えばX軸及びZ軸のそれぞれと45°の角度を成す方向)に回転ドラム22の回転軸を向けて配置してもよい。その場合、タイヤ試験装置1のその他の各部の向きや配置も回転ドラム22の向きに応じて変更される。 In the present embodiment, the rotary drum 22 is disposed with the rotation axis facing in the Y-axis direction, but, for example, the X-axis direction, the Z-axis direction, or their intermediate directions (for example, 45 The rotational axis of the rotary drum 22 may be oriented in a direction forming an angle of °). In that case, the orientation and arrangement of the other components of the tire testing device 1 are also changed according to the orientation of the rotary drum 22.
 また、図5に示すように、タイヤ試験装置1の制御システム1aは、試験装置全体の動作を統制する中央制御部70と、タイヤ試験装置1に設けられた各種センサからの信号に基づいて各種の計測を行う計測部80と、外部との入出力を行うインターフェース部90を備えている。 Further, as shown in FIG. 5, the control system 1 a of the tire testing device 1 performs various operations based on signals from the central control unit 70 that controls the operation of the entire testing device and various sensors provided in the tire testing device 1. And an interface unit 90 for performing input / output with the outside.
 図1-4に示すように、路面部20は、回転ドラム22と、回転ドラム22の外周部に設けられた模擬路面部23と、回転ドラム22の軸22aを回転可能に支持する軸受部24を備えている。軸受部24は、回転ドラム22の回転数を検出するロータリーエンコーダー241(図5)を備えている。本実施形態の模擬路面部23は、回転ドラム22の外周に周方向に隙間なく並べられた複数枚の模擬路面ユニット231(図6、図7)により形成されている。 As shown in FIG. 1-4, the road surface portion 20 includes a rotating drum 22, a simulated road surface portion 23 provided on an outer peripheral portion of the rotating drum 22, and a bearing portion 24 rotatably supporting a shaft 22 a of the rotating drum 22. Is equipped. The bearing portion 24 includes a rotary encoder 241 (FIG. 5) that detects the number of rotations of the rotary drum 22. The simulated road surface unit 23 of the present embodiment is formed by a plurality of simulated road surface units 231 (FIG. 6, FIG. 7) arranged in the circumferential direction on the outer periphery of the rotating drum 22 without gaps.
 図6は、回転ドラム22の外周に取り付けられる模擬路面ユニット231の斜視図である。また、図7は、図6に示す切断面A-A´で模擬路面ユニット231を切断した横断面図である。模擬路面ユニット231は、フレーム231aと、フレーム231aの表面に形成された凹部231adに嵌め込まれた模擬路面体231b(231b1、231b2)と、フレーム231aとの間で模擬路面体231bを挟み込んでフレーム231aに固定する左右一対の押さえ板231cを備える。押さえ板231cは、複数の皿ねじ231dによりフレーム231aに固定されている。また、フレーム231aの幅方向(図7における横方向)両端部には、模擬路面ユニット231を回転ドラム22に固定するためのボルトを通す貫通孔231ahが形成されている。 FIG. 6 is a perspective view of the simulated road surface unit 231 attached to the outer periphery of the rotary drum 22. As shown in FIG. 7 is a cross-sectional view of the simulated road surface unit 231 cut along the cut plane AA 'shown in FIG. The simulated road surface unit 231 includes the frame 231a, the simulated road surface body 231b (231b1 and 231b2) fitted in the recess 231ad formed on the surface of the frame 231a, and the frame 231a, and holds the frame 231a. And a pair of left and right pressing plates 231c fixed to the The pressing plate 231c is fixed to the frame 231a by a plurality of countersunk screws 231d. Further, through holes 231 ah through which bolts for fixing the simulated road surface unit 231 to the rotating drum 22 are formed at both ends in the width direction (lateral direction in FIG. 7) of the frame 231 a.
 模擬路面23bは、周方向に並べられた複数の模擬路面体231bの表面によって形成される。本実施形態の模擬路面体231bは、互いに異なる材料によって形成された周方向に延びる2つの部分(図7における左半分の第1部分231b1と右半分の第2部分231b2)から構成されている。第1部分231b1は後述する第1走行レーン23b1を形成し、第2部分231b2は第2走行レーン23b2を形成する。 The simulated road surface 23 b is formed by the surfaces of a plurality of simulated road surface bodies 231 b arranged in the circumferential direction. The simulated road surface body 231b of the present embodiment is composed of two circumferentially extending portions (a first portion 231b1 in the left half and a second portion 231b2 in the right half in FIG. 7) formed of different materials. The first portion 231 b 1 forms a first travel lane 23 b 1 described later, and the second portion 231 b 2 forms a second travel lane 23 b 2.
 なお、模擬路面体231bの全体を単一の材料により均一に形成してもよい。また、本実施形態の模擬路面体231bは、表面が滑らかな円柱面状に形成されているが、例えば模擬路面体231bの厚さを周方向(又は、周方向及び幅方向の両方向)において周期的に又はランダムに変化させて、表面に周方向(又は、周方向及び幅方向の両方向)の凹凸を設けても良い。 Note that the whole of the simulated road surface body 231b may be uniformly formed of a single material. In addition, although the simulated road surface body 231b of the present embodiment is formed in a cylindrical surface having a smooth surface, for example, the thickness of the simulated road surface body 231b is periodic in the circumferential direction (or both directions in the circumferential direction and the width direction). The surface may be provided with irregularities in the circumferential direction (or both in the circumferential direction and in the width direction) by changing it in a random or random manner.
 また、本実施形態では、予め形成された模擬路面体231bが押さえ板231cによってフレーム231aに取り付けられているが、模擬路面体231bにフレーム231aに固定するためのボルトを通す貫通穴を設けて、模擬路面体231bを直接ボルトでフレーム231aに取り付けてもよい。また、例えばコンクリートや硬化性樹脂等の可塑性を有する材料を凹部231adに充填して硬化させることにより模擬路面ユニット231の表面に模擬路面体231bを定着させてもよい。 Further, in this embodiment, although the simulated road surface body 231b formed in advance is attached to the frame 231a by the pressing plate 231c, through holes for passing bolts for fixing to the frame 231a are provided in the simulated road surface body 231b, The simulated road surface body 231b may be directly attached to the frame 231a with a bolt. For example, the simulated road surface body 231b may be fixed on the surface of the simulated road surface unit 231 by filling the recessed portion 231ad with a material having plasticity, such as concrete or a curable resin, and curing the material.
 模擬路面体231bは、例えば炭化ケイ素やアルミナ等の耐摩耗性に優れたセラミックスを粉砕した(更に、必要に応じて研磨した)骨材に、例えばウレタン樹脂やエポキシ樹脂等の硬化性の樹脂を含む結合剤(バインダー)を添加したものを成形・硬化させた部材である。 The simulated road surface body 231b is made of, for example, an aggregate obtained by pulverizing a ceramic excellent in wear resistance such as silicon carbide or alumina (further, if necessary, polishing), a curable resin such as urethane resin or epoxy resin. It is a member obtained by molding and curing one to which a binder (binder) is added.
 本実施形態においては、模擬路面23bは、回転ドラム22の軸方向(幅方向)に2つの走行レーン(第1走行レーン23b1、第2走行レーン23b2)に区画されて形成されている。なお、本実施形態では、模擬路面23bに2つの走行レーンが形成されているが、単一又は3つ以上の走行レーンが形成されていてもよい。模擬路面23bの2つの走行レーン23b1、23b2は、使用する骨材の粒径や量を変えて形成されている。走行方向を向いて右側の第1走行レーン23b1は、アスファルト舗装路面等の滑らかな路面を模擬した模擬路面であり、左側の第2走行レーン23b2は、石畳等の粗い路面を模擬した模擬路面である。試験タイヤTを接地させる模擬路面23bの走行レーン23b1、23b2を切り替えることにより、路面条件を変更することができるようになっている。走行レーンの切り替えは、後述するタイヤ保持部10のトラバース機構11(走行レーン切替機構)により行われる。 In the present embodiment, the simulated road surface 23 b is divided into two traveling lanes (first traveling lane 23 b 1 and second traveling lane 23 b 2) in the axial direction (width direction) of the rotary drum 22. In the present embodiment, two traveling lanes are formed on the simulated road surface 23b, but a single or three or more traveling lanes may be formed. The two travel lanes 23b1 and 23b2 of the simulated road surface 23b are formed by changing the particle size and amount of the aggregate to be used. The first traveling lane 23b1 on the right side facing the traveling direction is a simulated road surface simulating a smooth road surface such as an asphalt paved road surface, and the second traveling lane 23b2 on the left is a simulated road surface simulating a rough road surface such as cobblestone is there. By switching the travel lanes 23b1 and 23b2 of the simulated road surface 23b on which the test tire T is to be in contact with the ground, the road surface conditions can be changed. Switching of the traveling lane is performed by a traverse mechanism 11 (a traveling lane switching mechanism) of a tire holding unit 10 described later.
 回転駆動部30は、モーター32と、モーター32から出力される動力を動力循環回路に結合させる動力結合部34を備えている。モーター32はインバーター回路32a(図5)によって駆動制御される。モーター32のシャフト32bは、動力結合部34の入力軸34aと結合している。動力結合部34の出力軸34bの一端34b1は、回転ドラム22の軸22aと結合し、出力軸34bの他端34b2は、ドライブシャフト62の一端と結合している。動力結合部34の出力軸34bは動力循環回路の一部を構成しており、動力結合部34を介して、モーター32の出力軸が動力循環回路と結合している。すなわち、モーター32によって、動力循環回路が回転駆動され、動力循環回路の回転数が制御されるようになっている。 The rotary drive unit 30 includes a motor 32 and a power coupling unit 34 that couples the power output from the motor 32 to a power circulation circuit. The motor 32 is driven and controlled by an inverter circuit 32a (FIG. 5). The shaft 32 b of the motor 32 is coupled to the input shaft 34 a of the power coupling 34. One end 34 b 1 of the output shaft 34 b of the power coupling portion 34 is coupled to the shaft 22 a of the rotary drum 22, and the other end 34 b 2 of the output shaft 34 b is coupled to one end of the drive shaft 62. The output shaft 34 b of the power coupling portion 34 constitutes a part of a power circulation circuit, and the output shaft of the motor 32 is coupled to the power circulation circuit via the power coupling portion 34. That is, the power circulation circuit is rotationally driven by the motor 32, and the number of rotations of the power circulation circuit is controlled.
 中継部40は、ギヤボックス42と、駆動プーリー44と、駆動プーリー44の軸を回転可能に支持する軸受部45と、駆動プーリー44に巻掛けられたVベルト66に所定の張力を与えるテンションプーリー46と、テンションプーリー46の軸を回転可能に支持する軸受部47を備えている。 The relay portion 40 includes a gear box 42, a drive pulley 44, a bearing portion 45 rotatably supporting an axis of the drive pulley 44, and a tension pulley for applying a predetermined tension to a V-belt 66 wound around the drive pulley 44. 46 and a bearing portion 47 rotatably supporting the shaft of the tension pulley 46.
 ギヤボックス42は、ドライブシャフト62の他端と結合した第1ギヤ42aと、第1ギヤ42aと噛み合う第2ギヤ42bを備えている。第2ギヤ42bは駆動プーリー44の軸と結合している。本実施形態では、第1ギヤ42aと第2ギヤ42bの歯数が同数であるため、ギヤボックス42は、ドライブシャフト62から入力された回転を、等速逆向きの回転に変換して、駆動プーリー44に伝達する。 The gear box 42 includes a first gear 42a coupled to the other end of the drive shaft 62, and a second gear 42b meshing with the first gear 42a. The second gear 42 b is coupled to the shaft of the drive pulley 44. In the present embodiment, since the number of teeth of the first gear 42a and the second gear 42b is the same, the gear box 42 converts the rotation input from the drive shaft 62 into rotation in a constant speed reverse direction to drive It transmits to the pulley 44.
 第1ギヤ42a及び第2ギヤ42bは、歯数(直径)の異なるものに交換可能になっている。例えば、第1ギヤ42aと第2ギヤ42bの歯数に差を与えて、ギヤボックス42により回転速度が増減するようにしてもよい。第1ギヤ42a及び第2ギヤ42bの歯数を変更可能にするために、第1ギヤ42aと第2ギヤ42bの回転軸間の距離が変更可能になっている。具体的には、第2ギヤ42bの回転軸の位置が固定されており、第1ギヤ42aの回転軸の位置が横(第2ギヤ42bとの距離方向。すなわち、X軸方向。)に移動可能になっている。各ギヤの歯数を変更する場合には、第1ギヤ42aの回転軸の位置を横に移動して第2ギヤ42bとの噛み合いが調整される。両端部にそれぞれユニバーサルジョイント621を備え、長さが可変なドライブシャフト62によって回転駆動部30(具体的には、動力結合部34の出力軸34bの他端34b2)と第1ギヤ42aが連結されている。そのため、第1ギヤ42aが横に移動しても、ドライブシャフト62や第1ギヤ42aに歪みが生じず、動力循環回路のスムーズな回転が維持されるようになっている。 The first gear 42a and the second gear 42b can be replaced with ones having different numbers of teeth (diameters). For example, the rotational speed may be increased or decreased by the gear box 42 by giving a difference to the number of teeth of the first gear 42a and the second gear 42b. In order to make it possible to change the number of teeth of the first gear 42a and the second gear 42b, the distance between the rotation axes of the first gear 42a and the second gear 42b can be changed. Specifically, the position of the rotation shaft of the second gear 42b is fixed, and the position of the rotation shaft of the first gear 42a moves laterally (in the direction of the distance from the second gear 42b; that is, in the X axis direction). It is possible. When changing the number of teeth of each gear, the position of the rotation shaft of the first gear 42a is moved laterally to adjust the meshing with the second gear 42b. The rotary drive unit 30 (specifically, the other end 34b2 of the output shaft 34b of the power coupling unit 34) and the first gear 42a are connected by a drive shaft 62 having universal joints 621 at both ends and a variable length. ing. Therefore, even if the first gear 42a moves sideways, distortion does not occur in the drive shaft 62 and the first gear 42a, and smooth rotation of the power circulation circuit is maintained.
 図8は、トルク発生部50(トルク発生装置)の縦断面図である。トルク発生部50は、外筒51(ケース)と、外筒51内に備え付けられたサーボモーター52、減速機53及び軸54と、外筒51を回転可能に支持する3つの軸受部55、55、56と、スリップリング部57(スリップリング57a、ブラシ57b)と、スリップリング57aを回転可能に支持する軸受部58と、従動プーリー59を備えている。 FIG. 8 is a longitudinal sectional view of the torque generating unit 50 (torque generating device). The torque generation unit 50 includes an outer cylinder 51 (case), a servomotor 52 provided in the outer cylinder 51, a reduction gear 53 and a shaft 54, and three bearing units 55, 55 for rotatably supporting the outer cylinder 51. 56, a slip ring 57 (slip ring 57a, brush 57b), a bearing 58 rotatably supporting the slip ring 57a, and a driven pulley 59.
 本実施形態においては、サーボモーター52は、回転部の慣性モーメントが0.01kg・m以下、定格出力が7kW乃至37kWの超低慣性高出力型のACサーボモーターが使用される。図5に示すように、サーボモーター52は、サーボアンプ52aを介して中央制御部70に接続されている。 In the present embodiment, as the servomotor 52, an AC servomotor of an ultra-low-inertia / high-power type, whose rated moment is 7 kW to 37 kW and whose inertia moment of the rotating part is 0.01 kg · m 2 or less, is used. As shown in FIG. 5, the servomotor 52 is connected to the central control unit 70 via a servo amplifier 52a.
 外筒51は、直径が大きな円筒状のモーター収容部512及び減速機保持部513と、直径が小さな略円筒状の軸部514及び516を有している。モーター収容部512の一端(図8における右端)には、軸部514が同軸に(すなわち回転軸が一致するように)結合している。また、モーター収容部512の他端(図8における左端)には、減速機保持部513を介して、軸部516が同軸に結合している。軸部514は軸受部56により回転可能に支持され、軸部516は一対の軸受部55により回転可能に支持されている。 The outer cylinder 51 has a cylindrical motor housing portion 512 and a reduction gear holder 513 having a large diameter, and substantially cylindrical shaft portions 514 and 516 having a small diameter. The shaft portion 514 is coaxially coupled to one end (right end in FIG. 8) of the motor housing portion 512 (that is, the rotation axes coincide with each other). In addition, a shaft 516 is coaxially coupled to the other end (left end in FIG. 8) of the motor housing 512 via the reduction gear holder 513. The shaft portion 514 is rotatably supported by the bearing portion 56, and the shaft portion 516 is rotatably supported by the pair of bearing portions 55.
 一対の軸受部55の間には、軸部516と結合した従動プーリー59が配置されている。外筒51は、従動プーリー59を介して、中継部40の駆動プーリー44との間に巻掛けられたVベルト66(図1)によって回転駆動される。 A driven pulley 59 coupled to the shaft 516 is disposed between the pair of bearings 55. The outer cylinder 51 is rotationally driven by a V-belt 66 (FIG. 1) wound around the drive pulley 44 of the relay unit 40 via the driven pulley 59.
 軸部516の内周の両端部には、軸受517が設けられている。軸54は、軸部516の中空部に挿入され、一対の軸受517を介して軸部516によって回転可能に支持されている。軸54は、軸部516を貫通していて、その一端は減速機保持部513内に突出し、他端は外筒51の外部に突出している。 Bearings 517 are provided at both ends of the inner periphery of the shaft portion 516. The shaft 54 is inserted into the hollow portion of the shaft portion 516 and rotatably supported by the shaft portion 516 via a pair of bearings 517. The shaft 54 penetrates the shaft portion 516, and one end thereof protrudes into the reduction gear holding portion 513, and the other end protrudes to the outside of the outer cylinder 51.
 モーター収容部512の中空部にはサーボモーター52が収容されている。サーボモーター52は、その軸521がモーター収容部512と同軸に配置され、モーターケースが複数のロッド523によりモーター収容部512に固定されている。また、サーボモーター52のフランジ522は、連結筒524を介して、減速機53のギヤケース53aと結合している。また、減速機53のギヤケース53aは、減速機保持部513の内フランジ513aに固定されている。 A servomotor 52 is housed in the hollow portion of the motor housing portion 512. The axis 521 of the servomotor 52 is arranged coaxially with the motor housing 512, and the motor case is fixed to the motor housing 512 by a plurality of rods 523. Further, the flange 522 of the servomotor 52 is connected to the gear case 53 a of the reduction gear 53 via the connecting cylinder 524. The gear case 53 a of the reduction gear 53 is fixed to the inner flange 513 a of the reduction gear holder 513.
 サーボモーター52の軸521は、減速機53の入力軸531と接続されている。また、減速機53の出力軸532には軸54が接続されている。サーボモーター52から出力されるトルクは、減速機53によって増幅されて、軸54に伝達される。軸54の回転は、回転駆動部30のモーター32によって駆動される外筒51の回転に、サーボモーター52によって駆動される回転が足し合されたものとなる。 The shaft 521 of the servomotor 52 is connected to the input shaft 531 of the reduction gear 53. Further, a shaft 54 is connected to the output shaft 532 of the reduction gear 53. The torque output from the servomotor 52 is amplified by the reduction gear 53 and transmitted to the shaft 54. The rotation of the shaft 54 is obtained by adding the rotation driven by the servomotor 52 to the rotation of the outer cylinder 51 driven by the motor 32 of the rotary drive unit 30.
 外筒51の軸部514には、スリップリング57aが接続されている。また、スリップリング57aと接触するブラシ57bは、軸受部58の固定フレーム58aに支持されている。サーボモーター52のケーブル525は、軸部514の中空部に通され、スリップリング57aに接続されている。また、ブラシ57bはサーボアンプ52a(図5)に接続されている。すなわち、サーボモーター52とサーボアンプ52aとは、スリップリング部57を介して接続されている。 A slip ring 57 a is connected to the shaft portion 514 of the outer cylinder 51. The brush 57 b in contact with the slip ring 57 a is supported by the fixed frame 58 a of the bearing 58. The cable 525 of the servomotor 52 is passed through the hollow portion of the shaft portion 514 and connected to the slip ring 57a. The brush 57b is connected to the servo amplifier 52a (FIG. 5). That is, the servomotor 52 and the servo amplifier 52a are connected via the slip ring portion 57.
  次に、図1-3及び図9を参照しながら、タイヤ保持部10の構成を説明する。図9は、タイヤ保持部10の背面図(部分断面図)である。タイヤ保持部10は、試験タイヤTを、模擬路面23bに対して所定のアライメントで接地させ、所定の荷重を与えながら、回転可能に保持する機構部である。タイヤ保持部10は、上下に積層された4つのベースプレート101、102、103、104と、試験タイヤTを回転可能に保持するスピンドル部15を備えている。また、タイヤ保持部10は、試験タイヤTのアライメント機構として、トラバース機構11、キャンバ角調整機構12、タイヤ荷重調整機構13及びスリップ角調整機構14を備えている。アライメント機構は、スピンドル部15の位置又は向きを変更することにより、模擬路面23bに対する試験タイヤTにアライメントを調整可能な機構である。 Next, the configuration of the tire holding portion 10 will be described with reference to FIGS. 1-3 and 9. FIG. 9 is a rear view (partial cross-sectional view) of the tire holding portion 10. The tire holding unit 10 is a mechanical unit that grounds the test tire T in a predetermined alignment with the simulated road surface 23b and rotatably holds the test tire T while applying a predetermined load. The tire holding unit 10 includes four base plates 101, 102, 103, and 104 stacked vertically, and a spindle unit 15 that rotatably holds the test tire T. The tire holding unit 10 further includes a traverse mechanism 11, a camber angle adjustment mechanism 12, a tire load adjustment mechanism 13, and a slip angle adjustment mechanism 14 as an alignment mechanism of the test tire T. The alignment mechanism is a mechanism capable of adjusting the alignment of the test tire T with respect to the simulated road surface 23b by changing the position or the orientation of the spindle portion 15.
 トラバース機構11(走行レーン切替機構)は、ベースプレート101に対してベースプレート102をY軸方向に移動させることにより、試験タイヤTの位置を軸方向に移動させて、試験タイヤTを接地させる模擬路面23bの走行レーン23b1、23b2を切り替える機構である。トラバース機構11は、ベースプレート101に対してベースプレート102を回転ドラム22の軸方向(Y軸方向)に案内する複数のリニアガイド111と、ベースプレート102を駆動するサーボモーター112と、サーボモーター112の回転運動をY軸方向の直線運動に変換するボールねじ113(送りねじ機構)を備えている。なお、ボールねじ113は、ねじ軸113aとナット113bを備えている。 The traverse mechanism 11 (travel lane switching mechanism) moves the base plate 102 in the Y-axis direction with respect to the base plate 101, thereby moving the position of the test tire T in the axial direction, and causing the test tire T to contact the ground surface 23b. The driving lanes 23b1 and 23b2 are switched. The traverse mechanism 11 includes a plurality of linear guides 111 for guiding the base plate 102 in the axial direction (Y-axis direction) of the rotary drum 22 with respect to the base plate 101, a servomotor 112 for driving the baseplate 102, and rotational movement of the servomotor 112. And a ball screw 113 (feed screw mechanism) for converting it into a linear motion in the Y-axis direction. The ball screw 113 includes a screw shaft 113a and a nut 113b.
 また、各リニアガイド111は、レール111aと、図示されていない転動体を介してレール111a上を走行可能な一つ以上のキャリッジ111bを備えている。リニアガイド111のレール111aはベースプレート101の上面に取り付けられていて、キャリッジ111bはベースプレート102の下面に取り付けられている。すなわち、ベースプレート101とベースプレート102とは、複数のリニアガイド111を介して、Y軸方向にスライド可能に連結されている。 Each linear guide 111 is provided with a rail 111a and one or more carriages 111b capable of traveling on the rail 111a via rolling elements (not shown). The rail 111 a of the linear guide 111 is attached to the upper surface of the base plate 101, and the carriage 111 b is attached to the lower surface of the base plate 102. That is, the base plate 101 and the base plate 102 are slidably coupled in the Y-axis direction via the plurality of linear guides 111.
 また、ベースプレート101には、Y軸方向に軸を向けたサーボモーター112が取り付けられている。サーボモーター112の軸はボールねじ113のねじ軸113aと結合し、ナット113bはベースプレート102の下面に取り付けられている。サーボモーター112を駆動することにより、ベースプレート102がベースプレート101に対してY軸方向に移動する。これにより、回転ドラム22に対する試験タイヤTの位置がY軸方向に移動し、試験タイヤTが接地する模擬路面23bの走行レーン23b1、23b2が切り換えられる。 Further, a servomotor 112 whose axis is oriented in the Y-axis direction is attached to the base plate 101. The shaft of the servomotor 112 is coupled to the screw shaft 113 a of the ball screw 113, and the nut 113 b is attached to the lower surface of the base plate 102. By driving the servomotor 112, the base plate 102 moves in the Y-axis direction with respect to the base plate 101. As a result, the position of the test tire T with respect to the rotating drum 22 moves in the Y-axis direction, and the traveling lanes 23b1 and 23b2 of the simulated road surface 23b on which the test tire T is in contact are switched.
 図5に示すように、サーボモーター112は、サーボアンプ112aを介して中央制御部70に接続されている。サーボモーター112による走行レーンの切り替え動作は、中央制御部70によって制御される。 As shown in FIG. 5, the servomotor 112 is connected to the central control unit 70 via a servo amplifier 112a. The switching operation of the traveling lane by the servomotor 112 is controlled by the central control unit 70.
 図9は、タイヤ保持部10の上部を示す背面図である。キャンバ角調整機構12は、ベースプレート102に対してベースプレート103をZ軸周りに旋回させることにより、試験タイヤTのキャンバ角を調整する機構である。キャンバ角調整機構12は、鉛直に延びる軸121と、軸121を回転可能に支持する軸受122と、軸121を中心とするベースプレート103の旋回を案内する曲線ガイド123と、Y軸方向に軸を向けてベースプレート102に取り付けられたサーボモーター124と、サーボモーター124の回転運動をY軸方向の直線運動に変換するボールねじ125(送りねじ機構)を備えている。 FIG. 9 is a rear view showing the upper portion of the tire holding portion 10. The camber angle adjustment mechanism 12 is a mechanism that adjusts the camber angle of the test tire T by pivoting the base plate 103 around the Z axis with respect to the base plate 102. The camber angle adjustment mechanism 12 includes a shaft 121 extending vertically, a bearing 122 rotatably supporting the shaft 121, a curved guide 123 guiding the pivot of the base plate 103 around the shaft 121, and a shaft in the Y-axis direction. A servomotor 124 mounted on the base plate 102 and a ball screw 125 (feed screw mechanism) for converting the rotational motion of the servomotor 124 into linear motion in the Y-axis direction are provided.
 軸121はベースプレート103に取り付けられ、軸受122はベースプレート102に取り付けられている。軸受122には、軸121の角度位置(すなわち、キャンバ角)を検出する、図5に示すロータリーエンコーダー122a(キャンバ角検出手段)が設けられている。また、軸121は、回転ドラム22に試験タイヤTが接地する接地面の直下に配置されている。具体的には、軸121の中心線(回転軸)は、スピンドル152と垂直な接地面を通る直線となっている。曲線ガイド123は、軸121と同心の円弧状に延びるレール123aと、図示されていない転動体を介してレール123a上を走行可能なキャリッジ123bを備えている。レール123aはベースプレート102の上面に取り付けられ、キャリッジ123bはベースプレート103の下面に取り付けられている。また、ボールねじ125のねじ軸125aはサーボモーター124の軸と結合し、ナット125bは鉛直軸周りに揺動可能なヒンジ126を介してベースプレート103に取り付けられている。サーボモーター124を駆動することにより、ベースプレート103が軸121を中心に旋回して、試験タイヤTのキャンバ角が変化する。 The shaft 121 is attached to the base plate 103, and the bearing 122 is attached to the base plate 102. The bearing 122 is provided with a rotary encoder 122a (camber angle detection means) shown in FIG. 5 that detects the angular position (that is, the camber angle) of the shaft 121. Further, the shaft 121 is disposed immediately below the contact surface where the test tire T contacts the rotating drum 22. Specifically, the center line (rotational axis) of the shaft 121 is a straight line passing through the contact surface perpendicular to the spindle 152. The curved guide 123 includes an arc-shaped rail 123a concentric with the shaft 121, and a carriage 123b capable of traveling on the rail 123a via rolling elements (not shown). The rail 123 a is attached to the upper surface of the base plate 102, and the carriage 123 b is attached to the lower surface of the base plate 103. The screw shaft 125a of the ball screw 125 is coupled to the shaft of the servomotor 124, and the nut 125b is attached to the base plate 103 via a hinge 126 which is pivotable about a vertical axis. By driving the servomotor 124, the base plate 103 pivots about the axis 121, and the camber angle of the test tire T changes.
 図5に示すように、サーボモーター124は、サーボアンプ124aを介して中央制御部70に接続されている。サーボモーター124によるキャンバ角の調整動作は、中央制御部70によって制御される。 As shown in FIG. 5, the servomotor 124 is connected to the central control unit 70 via a servo amplifier 124a. The adjustment operation of the camber angle by the servomotor 124 is controlled by the central control unit 70.
 タイヤ荷重調整機構13は、ベースプレート103に対してベースプレート104をX軸方向に移動させることにより、試験タイヤTを径方向に移動させて、試験タイヤTに加えられる垂直荷重(接地圧)を調整する機構である。タイヤ荷重調整機構13は、ベースプレート103に対してベースプレート104を回転ドラム22の径方向(X軸方向)に案内する複数のリニアガイド131と、ベースプレート104を駆動するサーボモーター132と、サーボモーター132の回転運動をX軸方向の直線運動に変換するボールねじ133(送りねじ機構)を備えている。 The tire load adjusting mechanism 13 adjusts the vertical load (contact pressure) applied to the test tire T by moving the test tire T in the radial direction by moving the base plate 104 in the X-axis direction with respect to the base plate 103. It is a mechanism. The tire load adjusting mechanism 13 includes a plurality of linear guides 131 for guiding the base plate 104 in the radial direction (X-axis direction) of the rotary drum 22 with respect to the base plate 103, a servo motor 132 for driving the base plate 104, and a servo motor 132. A ball screw 133 (feed screw mechanism) is provided to convert rotational movement into linear movement in the X-axis direction.
 リニアガイド131は、X軸方向に延びるレール131aと、転動体を介してレール上を走行可能なキャリッジ131bを備えている。リニアガイド131のレール131aはベースプレート103の上面に取り付けられ、キャリッジ131bはベースプレート104の下面に取り付けられている。 The linear guide 131 includes a rail 131a extending in the X-axis direction, and a carriage 131b capable of traveling on the rail via the rolling elements. The rail 131 a of the linear guide 131 is attached to the upper surface of the base plate 103, and the carriage 131 b is attached to the lower surface of the base plate 104.
 また、ベースプレート103には、X軸方向に軸を向けたサーボモーター132が取り付けられている。サーボモーター132の軸はボールねじ133のねじ軸133aと結合し、ナット133bはベースプレート104に取り付けられている。サーボモーター132を駆動することにより、ナット133bと共に、ベースプレート104がベースプレート103に対してX軸方向に移動する。これにより、回転ドラム22と試験タイヤTの軸間距離が変化し、試験タイヤTの荷重が変化する。 Further, a servomotor 132 whose axis is oriented in the X-axis direction is attached to the base plate 103. The shaft of the servomotor 132 is coupled to the screw shaft 133 a of the ball screw 133, and the nut 133 b is attached to the base plate 104. By driving the servomotor 132, the base plate 104 is moved in the X-axis direction with respect to the base plate 103 together with the nut 133b. As a result, the inter-axial distance between the rotary drum 22 and the test tire T changes, and the load of the test tire T changes.
 図5に示すように、サーボモーター132は、サーボアンプ132aを介して中央制御部70に接続されている。サーボモーター132による試験タイヤTの荷重調整動作は、中央制御部70によって制御される。 As shown in FIG. 5, the servomotor 132 is connected to the central control unit 70 via a servo amplifier 132a. The load adjustment operation of the test tire T by the servomotor 132 is controlled by the central control unit 70.
 スリップ角調整機構14は、ベースプレート104に対してスピンドル部15をX軸周りに回転させることにより、回転ドラム22の回転軸に対して試験タイヤTの回転軸をX軸周りに傾けて、試験タイヤTのスリップ角を調整する機構である。 The slip angle adjusting mechanism 14 rotates the spindle unit 15 about the X axis with respect to the base plate 104, thereby tilting the rotation axis of the test tire T about the X axis with respect to the rotation axis of the rotating drum 22. This is a mechanism for adjusting the slip angle of T.
 スリップ角調整機構14は、スピンドル部15のスピンドルケース154(軸受部)に一端が固定されてY軸方向に延びる軸141と、軸141をX軸周り(すなわち、接地面に垂直な軸の周り)に回転可能に支持する軸受部142と、サーボモーター143と、ボールねじ144(送りねじ機構)を備えている。軸受部142は、軸141の角度位置(すなわち、試験タイヤTのスリップ角)を検出するロータリーエンコーダー142a(図5)を備えている。軸141の中心線(回転軸)は、ホイール部156の略中心を通り、ホイール部156の回転軸と垂直に配置されている。サーボモーター143は、軸を略Z軸方向に向けて、Y軸周りに揺動可能なヒンジ143bを介してベースプレート104に取り付けられている。サーボモーター143の軸はボールねじ144のねじ軸144aと結合している。また、ボールねじ144のナット144bは、Y軸周りに揺動可能なヒンジ146を介して、スピンドルケース154のX軸方向における一端部(軸141の中心からX軸方向に離れた箇所)に取り付けられている。 The slip angle adjustment mechanism 14 has an axis 141 whose one end is fixed to the spindle case 154 (bearing part) of the spindle part 15 and extends in the Y axis direction, and the axis 141 about the X axis (that is, about an axis perpendicular to the ground surface). ), A servomotor 143, and a ball screw 144 (feed screw mechanism). The bearing portion 142 includes a rotary encoder 142a (FIG. 5) that detects the angular position of the shaft 141 (ie, the slip angle of the test tire T). The center line (rotational axis) of the shaft 141 passes through the approximate center of the wheel portion 156 and is disposed perpendicular to the rotational axis of the wheel portion 156. The servomotor 143 is attached to the base plate 104 via a hinge 143b pivotable about the Y-axis, with the axis directed substantially in the Z-axis direction. The shaft of the servomotor 143 is coupled to the screw shaft 144 a of the ball screw 144. Further, the nut 144b of the ball screw 144 is attached to one end of the spindle case 154 in the X-axis direction (a position away from the center of the axis 141 in the X-axis direction) via the hinge 146 pivotable around the Y axis. It is done.
 サーボモーター143を駆動して、ボールねじ144のナット144bを上下に移動させることで、スピンドルケース154が軸141と共に回転する。これにより、スピンドル部15に保持された試験タイヤTのスリップ角が変化する。 The spindle case 154 rotates with the shaft 141 by driving the servomotor 143 and moving the nut 144 b of the ball screw 144 up and down. Thereby, the slip angle of the test tire T held by the spindle portion 15 changes.
 図5に示すように、サーボモーター143は、サーボアンプ143aを介して中央制御部70に接続されている。サーボモーター143によるスリップ角の調整動作は、中央制御部70によって制御される。 As shown in FIG. 5, the servomotor 143 is connected to the central control unit 70 via a servo amplifier 143a. The adjustment operation of the slip angle by the servomotor 143 is controlled by the central control unit 70.
 スピンドル部15は、スピンドル152と、スピンドル152を回転可能に支持するスピンドルケース154(軸受部)と、スピンドル152の一端に同軸に取り付けられたホイール部156を備えている。試験タイヤTはホイール部156に装着される。スピンドル152は、試験タイヤTに加わるトルクを検出するトルクセンサ152aと、試験タイヤTに加わる3分力(すなわち、X軸方向の力[Radial Force;荷重]、Y軸方向の力[Lateral Force;横力]及びZ軸方向の力[Tractive Force;接線力])を検出する3分力センサ152b(図5)を備えている。また、スピンドルケース154は、スピンドル(すなわち、試験タイヤT)の回転数を検出するロータリーエンコーダー154b(図5)を備えている。トルクセンサ152a及び3分力センサ152bには、いずれも圧電素子が使用されているため、スピンドル152及びスピンドルケース154は高い剛性を有し、これにより高精度の測定が可能になっている。また、ホイール部156は、試験タイヤTの空気圧を検出する空気圧センサ156a(図5)を備えている。 The spindle portion 15 includes a spindle 152, a spindle case 154 (bearing portion) rotatably supporting the spindle 152, and a wheel portion 156 coaxially attached to one end of the spindle 152. The test tire T is attached to the wheel portion 156. The spindle 152 has a torque sensor 152a for detecting a torque applied to the test tire T, three component forces applied to the test tire T (that is, a force in the X axis direction (Radial Force; load), a force in the Y axis direction [Lateral Force; A three-component force sensor 152b (FIG. 5) is provided to detect the lateral force] and the force in the Z-axis direction (Tractive Force; tangential force). The spindle case 154 also includes a rotary encoder 154 b (FIG. 5) that detects the number of revolutions of the spindle (i.e., the test tire T). Since piezoelectric elements are used for both the torque sensor 152a and the three component force sensor 152b, the spindle 152 and the spindle case 154 have high rigidity, which enables high-accuracy measurement. In addition, the wheel unit 156 includes an air pressure sensor 156 a (FIG. 5) that detects the air pressure of the test tire T.
 タイヤ保持部10は、試験タイヤTに冷風又は温風を当てて試験タイヤTの温度を調節するタイヤ温度調節システム18(図2に送風ダクト182aのみを示す。)を備えている。試験時(走行時)の試験タイヤTの温度(特に、トレッド面の温度)は、試験結果(摩耗量)に影響を及ぼす。そのため、試験中に試験タイヤTのトレッド面の温度を一定の温度範囲内(例えば35±5℃)に保つことが望ましい。また、後述する試験タイヤTの摩耗量の測定においても、試験タイヤTの温度が測定結果に影響する。摩耗量を正確に測定するためには、測定時に試験タイヤTの温度を所定の基準温度(例えば25℃)に調節する必要がある。そのため、タイヤ温度調節システム18を使用して、試験時及び摩耗量の測定時に、試験タイヤTの温度が設定された温度に調節される。 The tire holding unit 10 is provided with a tire temperature control system 18 (only a fan duct 182a is shown in FIG. 2) for adjusting the temperature of the test tire T by applying cold air or warm air to the test tire T. The temperature of the test tire T (particularly, the temperature of the tread surface) at the time of the test (during running) influences the test result (the amount of wear). Therefore, it is desirable to keep the temperature of the tread surface of the test tire T within a certain temperature range (for example, 35 ± 5 ° C.) during the test. Moreover, also in measurement of the abrasion loss of test tire T mentioned later, the temperature of test tire T influences a measurement result. In order to measure the amount of wear accurately, it is necessary to adjust the temperature of the test tire T to a predetermined reference temperature (for example, 25 ° C.) at the time of measurement. Therefore, using the tire temperature adjustment system 18, the temperature of the test tire T is adjusted to the set temperature during the test and the measurement of the amount of wear.
 タイヤ温度調節システム18(図5)は、制御部181、スポット空調装置182及び温度センサ183を備えている。温度センサ183は、試験タイヤTのトレッド面の温度を測定する非接触温度センサ(放射温度計)であり、トレッド面に対向して配置される。制御部181は、温度センサ183の測定結果に基づいて、設定温度からの偏差が解消されるように、スポット空調装置182の動作を制御して、試験タイヤTのトレッド面等に冷風、温風又は室温の風を吹き付ける。試験タイヤTの設定温度は、試験時(走行時)と摩耗量測定時とで異なる値を設定することが可能になっている。また、試験タイヤTの種類に応じて異なる設定温度を設定可能になっている。また、タイヤ温度調節システム18に室温測定用の温度センサを更に設けて、室温及び試験タイヤTの温度に基づいて、スポット空調装置182の動作を制御する構成としてもよい。 The tire temperature control system 18 (FIG. 5) includes a control unit 181, a spot air conditioner 182 and a temperature sensor 183. The temperature sensor 183 is a non-contact temperature sensor (a radiation thermometer) that measures the temperature of the tread surface of the test tire T, and is disposed to face the tread surface. The control unit 181 controls the operation of the spot air conditioner 182 based on the measurement result of the temperature sensor 183 so that the deviation from the set temperature is eliminated, and cool air or warm air is applied to the tread surface of the test tire T or the like. Or blow at room temperature. The set temperature of the test tire T can be set to different values at the time of test (during running) and at the time of wear amount measurement. In addition, different set temperatures can be set according to the type of test tire T. Further, the tire temperature control system 18 may be further provided with a temperature sensor for measuring the room temperature to control the operation of the spot air conditioner 182 based on the room temperature and the temperature of the test tire T.
 なお、本実施形態のタイヤ温度調節システム18は、スポット空調装置182を使用して、試験タイヤTに温風や冷風を吹き付けることにより試験タイヤTの温度を調節するように構成されているが、タイヤ温度調節システムはこの構成に限定されない。例えば、試験タイヤTの全体を囲うカバー(恒温室)を設けて、カバー内の気温の調節により試験タイヤTの温度を調節するようにしてもよい。 The tire temperature control system 18 according to the present embodiment is configured to control the temperature of the test tire T by blowing warm air or cold air onto the test tire T using the spot air conditioner 182, The tire temperature control system is not limited to this configuration. For example, a cover (temperature-controlled room) that encloses the entire test tire T may be provided, and the temperature of the test tire T may be adjusted by adjusting the temperature in the cover.
 また、試験時の設定温度は、タイヤが使用される地域の気候に合わせて設定してもよい。また、タイヤの摩耗は温度の上昇によって促進される。そのため、タイヤ温度調節システム18を使用して、試験時の試験タイヤTの温度を通常の走行時のタイヤの温度よりも高く調節することにより、加速劣化試験を行うこともできる。 Further, the set temperature at the time of the test may be set in accordance with the climate of the area where the tire is used. Also, tire wear is accelerated by the increase in temperature. Therefore, by using the tire temperature control system 18, the acceleration deterioration test can be performed by adjusting the temperature of the test tire T at the time of the test higher than the temperature of the tire at the time of normal traveling.
 また、タイヤ保持部10は、試験タイヤTのトレッドの摩耗量を測定するために使用される2次元レーザー変位センサ17(以下、「変位センサ17」と略記する。)を備えている。変位センサ17は、シリンドリカルレンズによって帯状に広げられたレーザー光束(レーザーライトシート)を用いて、試験タイヤTのトレッド面の2次元プロファイル(タイヤの回転軸を含む平面で切断された断面形状)を非接触で測定する。 Further, the tire holding unit 10 is provided with a two-dimensional laser displacement sensor 17 (hereinafter, abbreviated as "displacement sensor 17") used to measure the wear amount of the tread of the test tire T. The displacement sensor 17 uses a laser beam (laser light sheet) spread in a band shape by a cylindrical lens to form a two-dimensional profile of the tread surface of the test tire T (cross-sectional shape cut along a plane including the tire rotation axis) Measure without contact.
 図5に示すように、変位センサ17は、計測部80に接続されていて、計測部80と共に摩耗測定部として機能する。計測部80は、変位センサ17の動作を制御すると共に、変位センサ17が取得した2次元プロファイルに基づいて試験タイヤTの摩耗量を計算する。 As shown in FIG. 5, the displacement sensor 17 is connected to the measuring unit 80 and functions as a wear measuring unit together with the measuring unit 80. The measurement unit 80 controls the operation of the displacement sensor 17 and calculates the wear amount of the test tire T based on the two-dimensional profile acquired by the displacement sensor 17.
 摩耗測定部による2次元プロファイル測定は、試験タイヤTを静止させた状態で、タイヤ試験の前後で(付加的に試験の中途で)行われる。試験前後(及び中途)に測定された2次元プロファイルに基づいて、試験によって生じた試験タイヤTの摩耗量が計算される。なお、上述のように、タイヤの摩耗量の測定値はタイヤの温度の影響を受けるため、試験終了(又は停止)後に測定を行う場合は、自然放熱又はタイヤ温度調節システム18による強制冷却により、タイヤ全体が所定の基準温度に到達してから試験を行うことが望ましい。 The two-dimensional profile measurement by the wear measurement unit is performed before and after the tire test (additionally in the middle of the test) with the test tire T stationary. The amount of wear of the test tire T produced by the test is calculated based on the two-dimensional profile measured before and after (and during) the test. As described above, since the measured value of the amount of wear of the tire is affected by the temperature of the tire, when the measurement is performed after the test is completed (or stopped), natural radiation or forced cooling by the tire temperature control system 18 It is desirable to test after the entire tire reaches a predetermined reference temperature.
 図10は、摩耗測定部を用いた2次元プロファイル測定によって取得された試験タイヤTのトレッド面の2次元プロファイルの模式図である。図10において、横軸(Y)が試験タイヤTの幅方向の位置を示し、縦軸(H)が試験タイヤTの溝の高さ方向(試験タイヤTの径方向)の位置を示す。試験タイヤTには、周方向に延びる4本の溝G1、G2、G3及びG4が形成されている。2次元プロファイルの画像解析により、2次元プロファイルにおけるU字状に凹んだ部分が、各溝G1~G4に対応付けられる。 FIG. 10 is a schematic view of a two-dimensional profile of a tread surface of a test tire T acquired by two-dimensional profile measurement using the wear measurement unit. In FIG. 10, the horizontal axis (Y) indicates the position in the width direction of the test tire T, and the vertical axis (H) indicates the position in the height direction of the groove of the test tire T (radial direction of the test tire T). The test tire T has four grooves G1, G2, G3 and G4 extending in the circumferential direction. By the image analysis of the two-dimensional profile, U-shaped recessed portions in the two-dimensional profile are associated with the respective grooves G1 to G4.
 また、各溝G1~G4の幅方向(Y軸方向)両側の所定範囲に、近傍領域L1とR1、L2とR2、L3とR3及びL4とR4がそれぞれ設定される。以下、第n番目の溝を符号Gnにより示し、溝Gnの近傍領域を符号Ln、Rnにより示す。また、溝Gnの横軸負方向側(図10における左側)の近傍領域を近傍領域Lnとし、溝Gnの横軸正方向側(図10における右側)の近傍領域を近傍領域Rnとする。近傍領域Ln(Rn)は、例えば、溝Gnの左端(右端)から溝Gnの幅の半分の距離までの領域として設定される。 Further, near regions L1 and R1, L2 and L2, L3 and R3, and L4 and R4 are respectively set in predetermined ranges on both sides in the width direction (Y-axis direction) of the grooves G1 to G4. Hereinafter, the n-th groove is indicated by the symbol Gn, and the region near the groove Gn is indicated by the symbols Ln and Rn. A region near the negative horizontal axis direction (left side in FIG. 10) of the groove Gn is referred to as a near region Ln, and a region near the positive horizontal axis direction (right side in FIG. 10) of the groove Gn is referred to as a near region Rn. The near region Ln (Rn) is set, for example, as a region from the left end (right end) of the groove Gn to a half distance of the width of the groove Gn.
 溝Gnの深さDnが、例えば、近傍領域Ln及びRnにおける高さHの平均値と溝Gnにおける高さHの平均値との差分として計算される。また、試験前後の各溝Gnの摩耗量Wnが、試験前後での溝Gnの深さDnの差分として計算される。また、試験タイヤTの平均摩耗量Wが、摩耗量W1~4の平均値として計算される。 The depth Dn of the groove Gn is calculated, for example, as the difference between the average value of the heights H in the near regions Ln and Rn and the average value of the height H in the grooves Gn. Further, the wear amount Wn of each groove Gn before and after the test is calculated as the difference between the depth Dn of the groove Gn before and after the test. Further, the average wear amount W of the test tire T is calculated as an average value of the wear amounts W1 to W4.
 また、上記の溝の深さDnに加えて(又は、溝の深さDnに替えて)、最小溝深さDnminを計算してもよい。溝Gnの最小溝深さDnminは、例えば、近傍領域Lnにおける高さHの最小値と近傍領域Rnにおける高さHの最小値との平均値と、溝Gnにおける高さHの最大値との差分として計算される。この場合、溝の深さDnの代わりに最小溝深さDnminを用いて、摩耗量Wnや平均摩耗量Wを計算してもよい。 Also, in addition to the groove depth Dn described above (or in place of the groove depth Dn), the minimum groove depth Dn min may be calculated. The minimum groove depth Dn min of the groove Gn is, for example, the average value of the minimum value of the height H in the vicinity region Ln and the minimum value of the height H in the vicinity region Rn, and the maximum value of the height H in the groove Gn. Calculated as the difference of In this case, the wear amount Wn and the average wear amount W may be calculated using the minimum groove depth Dn min instead of the groove depth Dn.
 摩耗量Wnや平均摩耗量Wの計算方法は、上記に例示したものに限らず、他の方法により計算してもよい。例えば、上記の例では、近傍領域Ln及びRnの両方の高さHを使用して溝Gnの深さDnや最小溝深さDnminを計算しているが、近傍領域Ln及びRnのいずれか一方(例えば、試験タイヤTの幅方向中央に近い方)の高さHを使用して溝Gnの深さDn等を計算してもよい。また、最小二乗法等により、溝G1~G4の部分と溝G1~G4以外の部分について、それぞれ2次元プロファイルの近似曲線(例えば2次曲線)を求め、試験前後での両近似曲線の平均距離の差分として平均摩耗量Wを計算してもよい。 The method of calculating the wear amount Wn and the average wear amount W is not limited to those exemplified above, and may be calculated by other methods. For example, in the above example, the depth Dn of the groove Gn and the minimum groove depth Dn min are calculated using the heights H of both the near regions Ln and Rn, but either of the near regions Ln and Rn The depth Dn of the groove Gn or the like may be calculated using the height H on one side (for example, the one closer to the center in the width direction of the test tire T). In addition, an approximate curve (for example, a quadratic curve) of a two-dimensional profile is obtained for each of the grooves G1 to G4 and the portions other than the grooves G1 to G4 by the least square method or the like, and the average distance between both the approximated curves before and after the test The average wear amount W may be calculated as the difference between
 また、摩耗測定部17は、各溝Gnの摩耗量Wnや平均摩耗量Wと共に、単位走行距離(例えば1km)当たりの摩耗量Wや、単位走行時間(例えば1時間)当たりの摩耗量Wを計算して表示する。 In addition, the wear measurement unit 17 measures the wear amount W L per unit travel distance (for example, 1 km) and the wear amount W per unit travel time (for example, 1 hour) along with the wear amount Wn and average wear amount W of each groove Gn. Calculate and display T.
 タイヤ保持部10は、試験タイヤTのトレッド面及び回転ドラム22の模擬路面23bに滑材(被散布体)を散布する滑材散布装置16(粉末散布装置)を備えている。滑材散布装置16は、空気に滑材を分散させた混合物を試験タイヤTと模擬路面23bとの接地部の走行方向前方(図1における上方)から散布する。これにより、試験タイヤTの摩耗により発生するゴム粉末がタイヤ試験装置1の各部に付着することによって生じる動作不良や故障が防止される。また、滑材の散布により、試験タイヤTや模擬路面23b等へのゴム粉末の付着が試験結果に充てる影響が軽減され、試験精度が向上する。 The tire holding unit 10 is provided with a lubricant spreading device 16 (powder spraying device) for spraying a lubricant (object to be sprayed) on the tread surface of the test tire T and the simulated road surface 23b of the rotating drum 22. The lubricant spraying device 16 sprays a mixture of lubricants dispersed in air from the front in the traveling direction (upward in FIG. 1) of the contact portion of the test tire T and the simulated road surface 23b. As a result, malfunction and failure caused by adhesion of rubber powder generated by abrasion of the test tire T to each part of the tire test apparatus 1 are prevented. Moreover, the influence of the adhesion of the rubber powder on the test tire T, the simulated road surface 23b and the like to the test results is reduced by the spreading of the lubricant, and the test accuracy is improved.
 滑材には、例えばタルク(含水珪酸マグネシウム)等の不可燃性の粉末が使用される。これにより、粉塵爆発が防止され、防爆設備等の粉塵爆発に対する安全対策が不要になり、イニシャルコスト及びランニングコストの大幅な削減が可能になる。 For the lubricant, for example, a noncombustible powder such as talc (hydrous magnesium silicate) is used. This prevents dust explosion, eliminates the need for safety measures against dust explosion such as explosion-proof equipment, and enables significant reduction of initial cost and running cost.
 図11は、滑材散布装置16の概略構成を示した図である。滑材散布装置16は、滑材が貯留されるホッパー161(貯蔵部)と、ホッパー161内を撹拌する撹拌子162と、撹拌子162を回転駆動する駆動部163と、滑材を定量的に搬送する定量搬送部164と、滑材を吸引して空気と混ぜて噴出させるエジェクター166と、定量搬送部164からエジェクター166まで滑材を導く管路165と、エジェクター166から散布位置まで滑材が分散した空気を導く管路167と、管路167の先端に取り付けられたラッパぐち168を備えている。 FIG. 11 is a view showing a schematic configuration of the lubricant scattering device 16. The lubricant scattering device 16 comprises a hopper 161 (storage unit) in which lubricant is stored, a stirring bar 162 for stirring the inside of the hopper 161, a drive unit 163 for rotationally driving the stirring bar 162, and the lubricant in a quantitative manner. The fixed quantity conveying part 164 which conveys, the ejector 166 which sucks the lubricating material and mixes it with air and ejects it, the pipe line 165 which guides the lubricating material from the quantitative conveying part 164 to the ejector 166, and the lubricating material from the ejector 166 to the spraying position A conduit 167 for conducting the dispersed air, and a trumpet lug 168 attached to the end of the conduit 167 are provided.
 撹拌子162は、上下に延びるロッド162aと、ロッド162aの側面からホッパー161の内周面に向かって径方向に垂直に延びる3対の枝部162bと、枝部162bの各対の先端部にそれぞれ取り付けられた3つのシュー保持部162c(摺動子保持部)と、シュー取付部162cに保持された3つのシュー162d(摺動子)を備えている。ロッド162aは、ホッパー161の円柱面状の内周面と同心に配置され、その一端が駆動部163に接続されている。各シュー162dは、先端がホッパー161の内周面に接触するように配置され、ホッパー161の内周面に付着した滑材を削ぎ落しながら、ホッパー161の内周面に沿って旋回する。本実施形態では、シュー162dとして、例えば導電性(又は帯電防止性)を有する樹脂から形成されたブラシが使用される。タイヤ試験装置1の運転中は、常に撹拌子162によってホッパー161内の滑材が撹拌される。これにより、ホッパー161内で滑材が凝集して詰まることによる滑材の供給量の変動や供給の中断が防止される。滑材はホッパー161の内周面に付着して凝集の起点となり易いため、シュー162dの先端でホッパー161の内周面を擦ることにより、滑材の詰まりが効果的に防止され、滑材の安定した供給が可能になる。 Stirring bar 162 includes a rod 162a extending vertically, three pairs of branch portions 162b extending perpendicularly in the radial direction from the side surface of rod 162a toward the inner peripheral surface of hopper 161, and the tip of each pair of branch portions 162b. The three shoe holding portions 162c (slider holding portions) attached thereto and the three shoes 162d (sliders) held by the shoe attachment portions 162c are provided. The rod 162 a is disposed concentrically with the cylindrical inner peripheral surface of the hopper 161, and one end thereof is connected to the drive unit 163. Each shoe 162 d is disposed such that the tip thereof contacts the inner peripheral surface of the hopper 161, and pivots along the inner peripheral surface of the hopper 161 while scraping off the lubricant adhering to the inner peripheral surface of the hopper 161. In the present embodiment, a brush formed of, for example, a conductive (or antistatic) resin is used as the shoe 162 d. During operation of the tire testing device 1, the lubricant in the hopper 161 is constantly stirred by the stirring bar 162. As a result, fluctuations in the amount of lubricant supply and interruptions in supply due to aggregation and clogging of the lubricant in the hopper 161 are prevented. Since the lubricant adheres to the inner peripheral surface of the hopper 161 and tends to be a starting point of aggregation, clogging of the lubricant can be effectively prevented by rubbing the inner peripheral surface of the hopper 161 with the tip of the shoe 162d. Stable supply is possible.
 なお、本実施形態ではシュー162dとしてブラシが使用されるが、ブラシ以外の部材(例えばゴム弾性を有するスポンジやシート等)をシュー162dとして使用してもよい。シュー162dの弾性により、シュー162dがホッパー161の内周面に適度な力で押し当てられ、ホッパー161の内周面に固着した滑材が擦り落とされる。また、シュー162dに適度な弾性が無い場合は、シュー取付部162cや枝部162bに弾性を持たせても良い。例えば、枝部162bに板ばねを使用することにより、板ばねの弾性力でシュー162dをホッパー161の内周面に押し当てることができる。また、樹脂又はゴム製のシュー162dを使用することにより、シュー162dの滑動によるホッパー161の内周面の傷や摩耗が防止される。 Although a brush is used as the shoe 162d in the present embodiment, a member other than the brush (for example, a sponge or a sheet having rubber elasticity) may be used as the shoe 162d. The elasticity of the shoes 162 d causes the shoes 162 d to be pressed against the inner peripheral surface of the hopper 161 with an appropriate force, and the lubricant fixed to the inner peripheral surface of the hopper 161 is scraped off. When the shoe 162d does not have appropriate elasticity, the shoe attachment portion 162c or the branch portion 162b may have elasticity. For example, by using a plate spring for the branch portion 162 b, the elastic force of the plate spring can press the shoe 162 d against the inner circumferential surface of the hopper 161. Further, by using the resin or rubber shoe 162d, it is possible to prevent the damage and abrasion of the inner peripheral surface of the hopper 161 due to the sliding of the shoe 162d.
 また、導電性を有する材料(例えばカーボンブラックが練り込まれた合成樹脂)から形成されたシュー162dを使用することにより、静電気によるシュー162dの表面へ滑材の集積が防止される。 Also, by using the shoe 162d formed of a conductive material (for example, a synthetic resin into which carbon black is kneaded), accumulation of lubricant on the surface of the shoe 162d due to static electricity is prevented.
 駆動部163は、モーター163mと、モーター163mに駆動電流を供給するドライバ163md(図5)と、モーター163mの出力の回転数を減速する減速機163gを備えている。 The drive unit 163 includes a motor 163m, a driver 163md (FIG. 5) that supplies a drive current to the motor 163m, and a reduction gear 163g that reduces the number of rotations of the output of the motor 163m.
 ホッパー161及び撹拌子162の軸は、本実施形態では鉛直を向いているが、上下方向を向いていればよい(すなわち、軸が鉛直に対して傾いていてもよい)。 The axes of the hopper 161 and the stirrer 162 are vertically oriented in the present embodiment, but may be oriented vertically (that is, the axes may be inclined relative to the vertical).
 定量搬送部164は、円柱状の中空部を有する筒状のケース164aと、ケース164aの中空部に同心に収容された略円柱状のスクリュー164bと、スクリュー164bを回転駆動する駆動部164cを備えている。駆動部164cはサーボモーター164cmと、サーボモーター164cmに駆動電流を供給するサーボアンプ164cma備えている。サーボモーター164cmに替えて、回転数の制御が可能な他の種類のモーターを使用してもよい。 The quantitative conveyance unit 164 includes a cylindrical case 164a having a cylindrical hollow portion, a substantially cylindrical screw 164b concentrically accommodated in the hollow portion of the case 164a, and a driving unit 164c for rotationally driving the screw 164b. ing. The drive unit 164c is provided with a servomotor 164cm and a servo amplifier 164cma for supplying a drive current to the servomotor 164cm. Instead of the servomotor 164 cm, another type of motor capable of controlling the rotational speed may be used.
 スクリュー164bは、外周に螺旋溝が形成された略円柱状の本体部164b1と、本体部164b1の軸方向両端から軸方向に延びた、本体部164b1よりも細い軸部164b2を有する。また、ケース164aの軸方向両端部には、軸部164b2と回転可能に嵌合する軸受孔164a1がそれぞれ形成されている。軸部164b2の一方には、駆動部164cの軸が接続されている。 The screw 164b has a substantially cylindrical main body portion 164b1 in which a spiral groove is formed on the outer periphery, and a shaft portion 164b2 axially extending from both axial ends of the main body portion 164b1 and thinner than the main body portion 164b1. In addition, bearing holes 164a1 rotatably fitted with the shaft portion 164b2 are formed at both axial ends of the case 164a. The shaft of the drive unit 164c is connected to one of the shaft portions 164b2.
 ケース164aの軸方向両端部には開口部が設けられている。一方の開口部である入口164a2は、ケース164aの一端側において上面に形成されている。また、他方の開口部である出口164a3は、ケース164aの他端側において下面に形成されている。入口164a2にはホッパー161の排出口が接続され、出口164a3には鉛直に延びる直管164dが接続されている。 Openings are provided at both axial ends of the case 164a. An inlet 164a2, which is one opening, is formed on the upper surface at one end of the case 164a. Further, an outlet 164a3, which is the other opening, is formed on the lower surface at the other end side of the case 164a. The outlet of the hopper 161 is connected to the inlet 164a2, and a straight pipe 164d extending vertically is connected to the outlet 164a3.
 スクリュー164bの外周には、1本の螺旋溝が形成されている。螺旋溝は、横断面が半円状に形成されている。なお、本実施形態では螺旋溝のピッチは一定であるが、不等ピッチにしてもよい。また、スクリュー164bに複数の螺旋溝(多重螺旋構造)を形成しても良い。スクリュー164bの本体部164b1の外径は、ケース164aの中空部の内径よりもわずかに小さい。なお、スクリュー164bの外周面とケースの内周面との隙間が狭いと隙間に滑材が詰まって摩擦抵抗が増大し、逆に隙間が広いと搬送効率が低下する。 One spiral groove is formed on the outer periphery of the screw 164b. The spiral groove is formed in a semicircular cross section. In the present embodiment, the pitch of the spiral grooves is constant, but may be an unequal pitch. Further, a plurality of spiral grooves (multi-helix structure) may be formed in the screw 164b. The outer diameter of the main body portion 164b1 of the screw 164b is slightly smaller than the inner diameter of the hollow portion of the case 164a. When the gap between the outer peripheral surface of the screw 164b and the inner peripheral surface of the case is narrow, the lubricant is clogged in the gap to increase the frictional resistance, and conversely, when the gap is wide, the transport efficiency is reduced.
 スクリュー164bの回転により、滑材はケース164aの中空部内を入口164a2から出口164a3に向かって移動し、直管164dから排出される。スクリュー164bの1回転当たりに搬送される滑材の量は一定であるから、スクリュー164bを等速で回転させることにより、一定の速度で滑材を連続的に供給することが可能になる。また、スクリュー164bの回転数を変えることにより、滑材の供給速度を調整することが可能である。 By the rotation of the screw 164b, the lubricant moves in the hollow portion of the case 164a from the inlet 164a2 toward the outlet 164a3 and is discharged from the straight pipe 164d. Since the amount of lubricant conveyed per rotation of the screw 164b is constant, it is possible to continuously feed the lubricant at a constant speed by rotating the screw 164b at a constant velocity. In addition, it is possible to adjust the supply speed of the lubricant by changing the number of rotations of the screw 164b.
 エジェクター166は、配管166aから供給される圧縮空気を駆動源として作動し、内蔵されたノズルから吐出側に向けて圧縮空気を高速で噴射させることで、管路165が接続された吸引ポートを負圧にして滑材を吸引ポートから吸引すると共に、管路167が接続された吐出ポートから滑材が分散した空気を噴出させる。 The ejector 166 operates with the compressed air supplied from the pipe 166a as a drive source, and ejects the compressed air from the built-in nozzle toward the discharge side at a high speed, so that the suction port connected with the pipe line 165 is negative. The pressure is used to suck the lubricant from the suction port, and the air in which the lubricant is dispersed is ejected from the discharge port to which the conduit 167 is connected.
 管路165の入口は、定量搬送部164の直管164dの出口と、隙間Gを介して、上下に対向して配置される。エジェクター166が発生する負圧により、隙間Gから管路165に空気が流入する。直管164dの出口から投下される滑材は、隙間Gから流入する空気により管路165に導入される。 The inlet of the pipe line 165 is vertically opposed to the outlet of the straight pipe 164 d of the quantitative conveyance unit 164 via the gap G. The negative pressure generated by the ejector 166 causes air to flow into the conduit 165 from the gap G. The lubricant dropped from the outlet of the straight pipe 164 d is introduced into the pipe line 165 by the air flowing in from the gap G.
 また、管路167の先端(ラッパぐち168)は、試験タイヤTと模擬路面23bとの接地部の真上に配置されている。エジェクター166から噴出した滑材を含む空気は、管路167を通り、ラッパぐち168から接地部に向けて噴射される。また、図11に示すように、試験タイヤTと回転ドラム22は、接地部が下方に移動する向きに回転駆動される。すなわち、滑材は、走行方向の前方から接地部に向けて噴射される。 Further, the tip end of the pipe line 167 (trumpet glove 168) is disposed directly above the contact portion between the test tire T and the simulated road surface 23b. The air containing the lubricant ejected from the ejector 166 passes through the pipe line 167 and is jetted from the trumpet 160 toward the grounding portion. Further, as shown in FIG. 11, the test tire T and the rotary drum 22 are rotationally driven in the direction in which the ground contact portion moves downward. That is, the lubricant is injected from the front in the traveling direction toward the ground contact portion.
 以上に説明した滑材散布装置16を使用して試験タイヤTと模擬路面23bとの接地部の前方に滑材を散布することにより、試験タイヤTの摩耗によって生じるゴム屑が試験タイヤTやタイヤ試験装置1に付着するのが防止され、ゴム屑の付着に起因する試験精度の低下やタイヤ試験装置1の故障が防止される。 By spraying a lubricant on the front of the contact portion between the test tire T and the simulated road surface 23b using the lubricant scattering device 16 described above, the rubber waste generated by the abrasion of the test tire T is the test tire T or the tire Adherence to the test apparatus 1 is prevented, and a decrease in test accuracy and failure of the tire test apparatus 1 due to the adhesion of rubber chips are prevented.
 図5に示すように、滑材散布装置16の駆動部163のモーター163m及び定量搬送部164のサーボモーター164cmは、中央制御部70に接続されている。滑材散布装置16の動作は、中央制御部70によって制御される。 As shown in FIG. 5, the motor 163 m of the drive unit 163 of the lubricant scattering device 16 and the servomotor 164 cm of the fixed amount conveyance unit 164 are connected to the central control unit 70. The operation of the lubricant spreader 16 is controlled by the central control 70.
 図5に示すように、制御システム1aのインターフェース部90は、例えば、ユーザとの間で入出力を行うためのユーザーインターフェース、LAN(Local Area Network)等の各種ネットワークと接続するためのネットワークインターフェース、外部機器と接続するためのUSB(Universal Serial Bus)やGPIB(General Purpose Interface Bus)等の各種通信インターフェースの一つ以上を備えている。また、ユーザーインターフェースは、例えば、各種操作スイッチ、表示器、LCD(liquid crystal display)等の各種ディスプレイ装置、マウスやタッチパッド等の各種ポインティングデバイス、タッチスクリーン、ビデオカメラ、プリンタ、スキャナ、ブザー、スピーカ、マイクロフォン、メモリーカードリーダライタ等の各種入出力装置の一つ以上を含む。 As shown in FIG. 5, the interface unit 90 of the control system 1a is, for example, a user interface for performing input / output with a user, a network interface for connecting with various networks such as a LAN (Local Area Network), It includes one or more of various communication interfaces such as Universal Serial Bus (USB) and General Purpose Interface Bus (GPIB) for connecting to an external device. In addition, the user interface includes, for example, various operation switches, displays, various display devices such as LCD (liquid crystal display), various pointing devices such as mouse and touch pad, touch screen, video camera, video camera, printer, scanner, buzzer, speaker , One or more of various input / output devices such as a microphone, a memory card reader / writer, etc.
 計測部80には、変位センサ17、ロータリーエンコーダー122a、142a、154b及び241、トルクセンサ152a、3分力センサ152b、空気圧センサ156a並びに温度センサ183が接続されている。計測部80は、各センサの信号に基づいて、試験タイヤTに加わるトルク、加重(Radial Force)、接線力(Tractive Force)及び横力(Lateral Force)、試験タイヤTの回転数、キャンバ角、スリップ角、トレッド面の温度及び空気圧並びに回転ドラム22の回転数及び路面速度(回転ドラム22の周速)を測定し、これらの測定値を中央制御部70に送信する。なお、路面速度は、ロータリーエンコーダー241による回転ドラム22の回転数の測定値から計算される。 The displacement sensor 17, the rotary encoders 122a, 142a, 154b and 241, the torque sensor 152a, the three component force sensor 152b, the air pressure sensor 156a and the temperature sensor 183 are connected to the measurement unit 80. The measuring unit 80 calculates the torque applied to the test tire T, the radial force, the traction force and the lateral force, the number of rotations of the test tire T, the camber angle, and the like based on the signals of the respective sensors. The slip angle, the temperature and air pressure of the tread surface, the rotation speed of the rotary drum 22 and the road surface speed (the peripheral speed of the rotary drum 22) are measured, and these measured values are transmitted to the central control unit 70. The road surface speed is calculated from the measurement value of the rotation speed of the rotary drum 22 by the rotary encoder 241.
 中央制御部70は、設定に応じて、計測部80から取得した測定値をディスプレイ装置に表示すると共に、測定時刻と共に不揮発性メモリ71に記憶させる。 The central control unit 70 displays the measurement value acquired from the measurement unit 80 on the display device according to the setting, and stores the measurement value in the non-volatile memory 71 together with the measurement time.
 中央制御部70には、サーボアンプ52a、112a、124a、132a、143a及び164cmaをそれぞれ介して、サーボモーター52、112、124、132、143及び164cmが接続されている。また、中央制御部70には、インバーター回路32a及びドライバ163mdをそれぞれ介して、モーター32及び163mが接続されている。更に、中央制御部70には、タイヤ温度調節システム18の制御部181を介して、スポット空調装置182及び温度センサ183が接続されている。 Servomotors 52, 112, 124, 132, 143 and 164 cm are connected to the central control unit 70 via servo amplifiers 52a, 112a, 124a, 132a, 143a and 164 cma, respectively. Further, motors 32 and 163 m are connected to the central control unit 70 via an inverter circuit 32 a and a driver 163 md, respectively. Further, a spot air conditioner 182 and a temperature sensor 183 are connected to the central control unit 70 via the control unit 181 of the tire temperature adjustment system 18.
 本実施形態のタイヤ試験装置1を使用した試験では、予め基準となる設計のタイヤ(以下「基準タイヤ」という。)について、実際の車両に装着して走行したときの摩耗状態を調べる実走試験を行い、タイヤ試験装置1による台上試験でも実走試験と同じ摩耗状態が再現されるように試験条件を調整し、調整後の試験条件(「調整試験条件」という。)により各種設計のタイヤについて試験が行われる。なお、基準タイヤは、試験対象となるタイヤと比較的に設計の近いタイヤから選択される。例えば、乗用車用タイヤとバス・トラック用タイヤについて、それぞれ基準タイヤが設定される。 In a test using the tire testing apparatus 1 of the present embodiment, an actual running test for checking in advance the wearing condition when the vehicle is mounted on an actual vehicle and travels with respect to a tire of a design serving as a reference (hereinafter referred to as "reference tire"). The test conditions are adjusted so that the same wear condition as the actual running test is reproduced in the bench test by the tire testing apparatus 1, and the tires of various designs are adjusted according to the adjusted test conditions (referred to as "adjusted test conditions"). Tests are conducted. The reference tire is selected from tires relatively similar in design to the tire to be tested. For example, reference tires are set for each of a passenger car tire and a bus / truck tire.
 以上に説明した本発明の実施形態によれば、油圧装置を使用せずに、電動機が使用されているため、従来の試験装置よりも電気使用量を大幅に削減することができる。 According to the embodiment of the present invention described above, since the motor is used without using the hydraulic device, the amount of electricity used can be significantly reduced compared to the conventional test apparatus.
 また、消費電力が少ないため、大規模災害等により電力供給が制限された場合でも、タイヤ試験装置1を安定的に運用することができる。 In addition, since the power consumption is small, the tire test apparatus 1 can be operated stably even when the power supply is limited due to a large scale disaster or the like.
 また、油圧装置を使用しないため、作動油による環境汚染の問題が生じることもない。 Also, since no hydraulic system is used, the problem of environmental pollution due to hydraulic fluid does not occur.
 また、ゴム製のタイヤは作動油に接触すると品質が劣化するため、作動油で汚染された試験環境では正確な試験を行うことが難しい。本実施形態のタイヤ試験装置1を使用すれば、試験タイヤTが作動油で汚染されることがないため、より正確な試験を行うことができる。 In addition, rubber tires deteriorate in quality when they come in contact with hydraulic fluid, so it is difficult to perform accurate tests in a test environment contaminated with hydraulic fluid. If the tire testing device 1 of the present embodiment is used, the test tire T is not contaminated with the hydraulic oil, so that more accurate testing can be performed.
 また、本実施形態では、トルク発生部50(トルク発生装置)に、回転部の慣性モーメントが0.01kg・m以下、定格出力が22kW(7kW乃至37kW)の超低慣性高出力型のACサーボモーターを使用することにより、急激なトルク変動の発生が可能になり、複雑な波形のトルク変化を正確に再現可能になっている。 In the present embodiment, the torque generating unit 50 (torque generating device) is an AC of ultra-low-inertia, high-power type with an inertia moment of the rotating unit of 0.01 kg · m 2 or less and a rated output of 22 kW (7 kW to 37 kW). The use of a servomotor makes it possible to generate rapid torque fluctuations, and makes it possible to accurately reproduce complex waveform torque changes.
 また、従来の動力循環システムでは、先にトルクを動力循環回路に加え、トルクが掛かった状態で回転駆動が開始されるように構成されているため、試験中にトルクを変化させることができず、一定のトルクを加えることしかできなかった。本実施形態のタイヤ試験装置1では、超低慣性高出力型のACサーボモーターを搭載したトルク発生装置を動力循環回路に組み入れる構成を採用することにより、高速走行中に高速(高い周波数)で複雑なトルク変動を供試体に与えることが可能になり、高速走行中の急加速や急減速、ABSブレーキ試験等の過酷で複雑な条件の試験を正確に模擬することが可能になっている。 Also, in the conventional power circulation system, torque is first applied to the power circulation circuit, and rotational drive is started in the state where torque is applied, so torque can not be changed during the test. , Could only apply a constant torque. In the tire testing apparatus 1 of the present embodiment, a torque generator equipped with an AC servomotor of an ultra-low inertia and high output type is incorporated in a power circulation circuit, so that it is complicated at high speed (high frequency) while traveling at high speed. It is possible to give various torque fluctuations to the specimen, and it is possible to accurately simulate tests under severe and complex conditions such as rapid acceleration and deceleration during high-speed travel, and ABS brake tests.
 また、従来の単一の駆動用モーターを使用する構成では、駆動用モーターに高速・大トルクの回転駆動が要求されるため、乗用車用タイヤの試験でも600kW以上の大容量のモーターが必要となる。しかし、本実施形態のトルク発生装置を採用することにより、各モーターの役割が低速・大トルク駆動と高速・低トルク駆動に分けられるため、トルク発生部50のサーボモーター52の容量は22kWで足り、回転駆動部30のモーター32の容量も37kWで足りるため、合計しても60kWの容量で足りることになり、必要な電気使用量を約1/10に削減することが可能になっている。なお、トラック・バス用タイヤの試験に適合する試験装置では、電気使用量は約1/13にまで削減される。また、油圧モーターを使用する場合、非稼働時にも作動油の温度管理に電力が使用されるが、電気モーターは休転中には殆ど電力を消費しないため、実質的な電気使用量は1/15程度まで削減され得る。 In addition, in the configuration using a single drive motor in the related art, since the drive motor is required to be driven to rotate at high speed and large torque, a test of a passenger car tire requires a large capacity motor of 600 kW or more. . However, by adopting the torque generating device of this embodiment, the role of each motor can be divided into low speed / high torque driving and high speed / low torque driving, so the capacity of the servomotor 52 of the torque generating unit 50 is sufficient at 22 kW. Since the capacity of the motor 32 of the rotary drive unit 30 is also sufficient at 37 kW, a total capacity of 60 kW is sufficient at all, and it is possible to reduce the required electricity consumption to about 1/10. In addition, the amount of electricity used is reduced to about 1/13 in the test equipment that is suitable for the test of truck and bus tires. In addition, when using a hydraulic motor, power is used to control the temperature of hydraulic fluid even when it is not in operation, but since the electric motor consumes little power during rest, the substantial amount of electricity used is 1 / It can be reduced to about fifteen.
 また、低容量のモーターを使用することにより、製造コストの低減が可能になり、また、装置の小型化も可能になる。 In addition, the use of a low-capacity motor makes it possible to reduce the manufacturing cost and also allows the device to be miniaturized.
 また、本実施形態のタイヤ試験装置1では、新規な複合材料を使用して模擬路面23bを形成することにより、模擬路面23bの耐久性が向上し、ランニングコストの削減が可能になっている。また、本実施形態の模擬路面23bを使用すれば、骨材やバインダーの変更によって、様々な路面を正確に模擬した試験が可能になる。 Further, in the tire testing device 1 of the present embodiment, the durability of the simulated road surface 23b is improved by forming the simulated road surface 23b using a novel composite material, and the running cost can be reduced. In addition, if the simulated road surface 23b of this embodiment is used, it is possible to conduct tests accurately simulating various road surfaces by changing the aggregate and the binder.
(第2実施形態)
 次に、本発明の第2実施形態について説明する。図12及び図13は、それぞれ本発明の第2実施形態に係るタイヤ試験装置1000の平面図及び正面図である。なお、説明の便宜のため、各図において、タイヤ試験装置1000の一部が断面で示されている。また、第1実施形態と共通又は対応する構成要素については、同一の又は対応する符号を付して、重複する説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. 12 and 13 are a plan view and a front view of a tire testing apparatus 1000 according to a second embodiment of the present invention, respectively. In addition, in each figure, a part of tire testing apparatus 1000 is shown with the cross section for the facilities of description. In addition, the same or corresponding reference numerals are given to constituent elements common to or corresponding to those in the first embodiment, and redundant description will be omitted.
 本実施形態のタイヤ試験装置1000は、乗用車用タイヤとバス・トラック用タイヤの試験を1台の試験装置で行うことができるように構成されている。 The tire testing apparatus 1000 of the present embodiment is configured to be able to test a passenger car tire and a bus / truck tire with a single testing apparatus.
 タイヤ試験装置1000は、中継部1040の一部(ギヤボックス1042、軸1049)と路面部1020(回転ドラム1022)を共有する2系統の動力循環回路(動力循環回路A、動力循環回路B)を備え、2つの試験タイヤT1、T2の試験を同時に行うことができるように構成されている。 The tire testing apparatus 1000 has two power circulation circuits (power circulation circuit A, power circulation circuit B) sharing a part of the relay unit 1040 (gear box 1042, shaft 1049) and the road surface unit 1020 (rotary drum 1022). It is comprised so that the test of two test tires T1 and T2 can be done simultaneously.
 また、本実施形態では、回転駆動部1030が路面部1020のフレーム1020Fの上に設置され、モーター1032の動力が、モーター1032の軸に結合した駆動プーリー1034、Vベルト1068及び回転ドラム1022の軸1022aに結合した従動プーリー1025及び回転ドラム1022を介して、各動力循環回路A、Bに伝達されるように構成されている。 Further, in the present embodiment, the rotary drive unit 1030 is installed on the frame 1020 F of the road surface unit 1020, and the power of the motor 1032 is coupled to the shaft of the motor 1032. It is configured to be transmitted to each of the power circulation circuits A and B via a driven pulley 1025 and a rotating drum 1022 coupled to 1022a.
 中継部1040A、1040Bには、駆動プーリー1044A、1044B及び従動プーリー1048A、1048Bが、それぞれ2組設けられている。一組は乗用車用タイヤの試験に減速比が適合したものであり、もう一組はバス・トラック用タイヤの試験に減速比が適合したものである。Vベルト1066A、1066Bは、乗用車タイヤの試験時には乗用車タイヤ用のプーリー対に巻掛けられ、バス・トラック・タイヤの試験時にはバス・トラック・タイヤ用のプーリー対に巻掛けられる。Vベルト1066A、1066Bを掛け替えるだけで、各種のタイヤに適した減速比に変更することができるようになっている。 Two sets of drive pulleys 1044A and 1044B and driven pulleys 1048A and 1048B are provided in the relay portions 1040A and 1040B, respectively. One set is for a reduction gear ratio for testing of passenger car tires, and the other is for a reduction gear ratio for testing of bus and truck tires. The V- belts 1066A and 1066B are wound around a pulley pair for a passenger car tire at the time of testing a passenger car tire, and wound around a pulley pair for a bus, a truck and a tire at the time of testing a bus truck tire. Only by changing the V- belts 1066A and 1066B, it is possible to change to a reduction gear ratio suitable for various tires.
 中継部1040は、1つの第1ギヤ1042aと2つの第2ギヤ1042bを備えている。第1ギヤ1042a及び第2ギヤ1042bの中心には、それぞれ貫通孔が設けられている。この貫通孔には、それぞれ従動プーリー1048A、1048Bが一端に取り付けられた軸1041A、1041Bが非接触に通されている。軸1041A、1041Bの他端は、トルク発生部1050A、1050Bの軸1051A、1051Bに接続されている。また、各第2ギヤ1042bは、トルク発生部1050A、1050Bの外筒1051と結合している。 The relay unit 1040 includes one first gear 1042 a and two second gears 1042 b. A through hole is provided at the center of the first gear 1042a and the second gear 1042b. Through the through holes, shafts 1041A and 1041B, to which driven pulleys 1048A and 1048B are respectively attached at one end, are non-contactingly passed. The other ends of the shafts 1041A and 1041B are connected to the shafts 1051A and 1051B of the torque generation units 1050A and 1050B. Each second gear 1042 b is coupled to the outer cylinder 1051 of the torque generation units 1050 A and 1050 B.
 以上が本発明の一実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、様々な変形が可能である。例えば本明細書中に例示的に明示された実施形態等の構成及び/又は本明細書中の記載から当業者に自明な実施形態等の構成を適宜組み合わせた構成も本願の実施形態に含まれる。 The above is the description of one embodiment of the present invention. Embodiments of the present invention are not limited to those described above, and various modifications are possible. For example, a configuration such as an embodiment explicitly illustrated in the present specification and / or a configuration obtained by appropriately combining a configuration such as an embodiment obvious to a person skilled in the art from the description in the present specification is included in the embodiments of the present application. .
 上記の実施形態では、中継部40の第1ギヤ42aの回転軸の位置が横に移動可能に構成されているが、第2ギヤ42bの回転軸の位置を横に移動可能に構成してもよい。この場合、第2ギヤ42bと駆動プーリー44とは、第2ギヤ42bの移動が許容されるように、例えばユニバーサルジョイントを備えたドライブシャフト62等によって連結される。 In the above embodiment, the position of the rotation shaft of the first gear 42a of the relay unit 40 is configured to be movable laterally, but the position of the rotation shaft of the second gear 42b may be configured to be movable laterally. Good. In this case, the second gear 42b and the drive pulley 44 are connected by, for example, a drive shaft 62 provided with a universal joint so that the movement of the second gear 42b is allowed.
 上記の実施形態では、第2連結手段にVベルトが使用されているが、第2連結手段として、平ベルト、歯付きベルト、その他のベルトを使用してもよい。また、第2連結手段として、チェーン、ワイヤ、その他の巻掛け媒介節を使用してもよい。また、上記の第1実施形態では、中継部40とトルク発生部50が一つのVベルトによって連結されているが、並列又は直列に接続した複数の第2連結手段によって連結する構成としてもよい。また、複数の第2連結手段を直列に接続する場合、異なる種類の第2連結手段を組み合わせて使用してもよい。 In the above embodiment, a V-belt is used for the second connecting means, but a flat belt, a toothed belt or another belt may be used as the second connecting means. Also, chains, wires or other winding medial nodes may be used as the second connection means. In the first embodiment, the relay unit 40 and the torque generation unit 50 are connected by one V-belt, but may be connected by a plurality of second connection units connected in parallel or in series. Moreover, when connecting a plurality of second connection means in series, different types of second connection means may be used in combination.

Claims (36)

  1.  回転ドラムの外周に設けられた模擬路面に試験タイヤを接地させる接地ステップと、
     前記回転ドラム及び前記模擬路面に接地した前記試験タイヤを回転させる回転ステップと、
     前記回転ドラム及び前記試験タイヤの少なくとも一方の外周面に、前記試験タイヤの摩耗によって生じるゴム屑を付着し難くする粉末を散布する粉末散布ステップと、
    を含む、
    タイヤ試験方法。
    Contacting the test tire with a simulated road surface provided on the outer periphery of the rotating drum;
    A rotating step of rotating the rotating drum and the test tire grounded on the simulated road surface;
    A powder spraying step of spraying a powder which makes it difficult to adhere the rubber waste generated by the abrasion of the test tire on the outer peripheral surface of at least one of the rotating drum and the test tire;
    including,
    Tire test method.
  2.  前記粉末散布ステップが、
      前記粉末を一定の速度で搬送する搬送ステップと、
      搬送された前記粉末を気体に分散させる分散ステップと、
      前記粉末が分散した前記気体を前記外周面に吹き付ける吹付ステップと、
    を含む、
    請求項1に記載のタイヤ試験方法。
    The powder spraying step is
    Transporting the powder at a constant speed;
    Dispersing the dispersed powder in a gas;
    A spraying step of spraying the gas in which the powder is dispersed onto the outer peripheral surface;
    including,
    A tire test method according to claim 1.
  3.  前記吹付ステップにおいて、
      前記粉末が分散した気体を、前記模擬路面と前記試験タイヤとの接地部に向けて、走行方向前方から吹き付ける、
    請求項2に記載のタイヤ試験方法。
    In the spraying step,
    The gas in which the powder is dispersed is sprayed from the front in the running direction toward the contact portion between the simulated road surface and the test tire.
    A tire test method according to claim 2.
  4.  前記搬送ステップにおいて、
      搬送手段であるスクリューを所定の速度で回転させることにより、前記粉末を一定のレートで搬送する、
    請求項2又は請求項3に記載のタイヤ試験方法。
    In the transfer step,
    The powder is conveyed at a constant rate by rotating a screw, which is a conveying means, at a predetermined speed.
    A tire test method according to claim 2 or claim 3.
  5.  前記分散ステップが、
      エジェクターに圧縮された気体を供給する圧縮気体供給ステップと、
      前記エジェクターが発生する負圧により前記粉末を吸引するステップと、
      前記気体に分散した前記粉末を前記エジェクターから噴出させる噴出ステップと、
    を含む、
    請求項2から請求項4のいずれか一項に記載のタイヤ試験方法。
    The distribution step is
    A compressed gas supply step of supplying compressed gas to an ejector;
    Suctioning the powder by negative pressure generated by the ejector;
    An ejection step of ejecting the powder dispersed in the gas from the ejector;
    including,
    The tire test method according to any one of claims 2 to 4.
  6.  前記分散ステップが、
      前記エジェクターから噴出した前記気体を吹き付ける位置まで管路により導く誘導ステップと、を含み、
     該誘導ステップにおいて、前記粉末がより均一に前記気体に分散される、
    請求項5に記載のタイヤ試験方法。
    The distribution step is
    And b. Guiding the gas ejected from the ejector to a position where the gas is sprayed.
    In the induction step, the powder is more uniformly dispersed in the gas,
    A tire test method according to claim 5.
  7.  前記吹付ステップが、
      前記粉末が分散した気体をラッパぐちから吹き付ける、
    請求項2から請求項6のいずれか一項に記載のタイヤ試験方法。
    The spraying step is
    Spraying the gas in which the powder is dispersed from a wrapper,
    The tire test method according to any one of claims 2 to 6.
  8.  前記粉末がタルクを含む、
    請求項1から請求項7のいずれか一項に記載のタイヤ試験方法。
    The powder comprises talc,
    The tire test method according to any one of claims 1 to 7.
  9.  被散布体を定量的に搬送する搬送部と、
     前記搬送部によって搬送された前記被散布体を吸引して、該被散布体が分散した気体を噴出させるエジェクターと、
    を備えた、散布装置。
    A transport unit that transports the object to be sprayed quantitatively;
    An ejector which sucks in the to-be-dispersed body conveyed by the conveyance unit and ejects the gas dispersed by the to-be-dispersed body;
    Equipped with a spraying device.
  10.  前記搬送部が、
      スクリューと、
      前記スクリューを収容する筒状のケースと、
      前記スクリューを所定の回転数で回転させる駆動部と、を備えた、
    請求項9に記載の散布装置。
    The transport unit
    With the screw,
    A cylindrical case for accommodating the screw;
    And a drive unit configured to rotate the screw at a predetermined rotation speed.
    10. Sprayer according to claim 9.
  11.  前記スクリューが、外周面に螺旋状の溝が形成された略円柱状部材である、
    請求項10に記載の散布装置。
    The screw is a substantially cylindrical member having a spiral groove formed on an outer peripheral surface thereof.
    A spraying device according to claim 10.
  12.  被散布体が貯蔵されるホッパーを備え、
     前記ケースの軸方向一端側において該ケースの入口が上向きに開口し、
     前記入口に前記ホッパーの底部に形成された該ホッパーの排出口が接続された、
    請求項10又は請求項11に記載の散布装置。
    Equipped with a hopper in which the objects to be sprayed are stored;
    The inlet of the case opens upward at one axial end of the case,
    The outlet of the hopper formed at the bottom of the hopper is connected to the inlet,
    A spraying device according to claim 10 or 11.
  13.  前記ホッパー内の被散布体を撹拌する撹拌子を備え、
     前記ホッパーが、円柱面状の内周面を有し、
     前記撹拌子が、前記ホッパーの内周面と接触しながら旋回する摺動子を有する、
    請求項12に記載の散布装置。
    And a stirrer for stirring the object in the hopper.
    The hopper has a cylindrical inner circumferential surface;
    The stirrer has a slider that turns while in contact with the inner circumferential surface of the hopper.
    A spraying device according to claim 12.
  14.  前記撹拌子が、
      前記ホッパーの内周面と同心に配置され、該内周面の軸を中心に回転するロッドと、
      前記ロッドの側面から前記ホッパーの内周面に向かって延びる枝部と、
      前記枝部に取り付けられた、前記摺動子を保持する摺動子保持部と、を備えた、
    請求項13に記載の散布装置。
    The stirrer is
    A rod disposed concentric with the inner circumferential surface of the hopper and rotating about an axis of the inner circumferential surface;
    A branch extending from the side surface of the rod toward the inner circumferential surface of the hopper;
    A slider holding unit for holding the slider, which is attached to the branch portion;
    The spraying device according to claim 13.
  15.  複数の前記摺動子を備え、
     前記複数の摺動子が、前記ホッパーの軸方向において異なる位置に配置された、
    請求項13又は請求項14に記載の散布装置。
    Comprising a plurality of said sliders,
    The plurality of sliders are arranged at different positions in the axial direction of the hopper,
    The spraying apparatus of Claim 13 or Claim 14.
  16.  前記ホッパーの軸方向において隣接する2つの前記摺動子が、前記旋回の方向において、異なる位置に配置された、
    請求項15に記載の散布装置。
    The two adjacent sliders in the axial direction of the hopper are disposed at different positions in the direction of the pivot,
    A spray device according to claim 15.
  17.  前記搬送部により搬送された前記被散布体を前記エジェクターに導く第1の管路を備え、
     前記搬送部のケースの軸方向他端側において該ケースの出口が下向きに開口し、
     前記ケースの出口には、下方に延びる直管の入口が接続され、
     前記直管の出口と前記第1の管路の入口とが、隙間を介して、上下に対向して配置された、
    請求項12から請求項16のいずれか一項に記載の散布装置。
    A first pipe line for guiding the sprayed object transported by the transport unit to the ejector;
    At the other axial end of the case of the transport section, the outlet of the case opens downward,
    An outlet of a straight pipe extending downward is connected to the outlet of the case,
    The outlet of the straight pipe and the inlet of the first pipe are disposed facing each other in the vertical direction via a gap.
    17. Sprayer according to any of the claims 12-16.
  18.  外周に模擬路面が設けられた回転ドラムと、
     試験タイヤを前記模擬路面に接地した状態で回転可能に保持するタイヤ保持部と、
     前記回転ドラム及び前記タイヤ保持部を回転させる駆動部と、
     前記回転ドラム及び前記試験タイヤの少なくとも一方の外周面に、前記試験タイヤの摩耗により生じるゴム屑を付着し難くする粉末を散布する、請求項9から請求項17のいずれか一項に散布装置と、
    を備えた、
    タイヤ試験装置。
    A rotating drum provided with a simulated road surface on the outer periphery,
    A tire holding portion which rotatably holds a test tire while being in contact with the simulated road surface;
    A driving unit that rotates the rotating drum and the tire holding unit;
    The scattering device according to any one of claims 9 to 17, wherein a powder that makes it difficult to adhere the rubber chips generated by the abrasion of the test tire is scattered on the outer peripheral surface of at least one of the rotating drum and the test tire. ,
    Equipped with
    Tire testing equipment.
  19.  外周に模擬路面が設けられた回転ドラムと、
     試験タイヤを前記模擬路面に接地した状態で回転可能に保持するタイヤ保持部と、
     前記試験タイヤに与えるトルクを発生するトルク発生部と、
     前記回転ドラムを回転駆動する電動機であるモーターを備えた回転駆動部と、
    を備え、
     前記トルク発生部が、
      回転可能に支持されたケースと、
      前記ケースに同軸に取り付けられた電動機であるサーボモーターと、を備え、
     回転駆動部が前記トルク発生部のケースを回転駆動する、
    タイヤ試験装置。
    A rotating drum provided with a simulated road surface on the outer periphery,
    A tire holding portion which rotatably holds a test tire while being in contact with the simulated road surface;
    A torque generation unit that generates a torque to be applied to the test tire;
    A rotary drive unit comprising a motor which is a motor for driving to rotate the rotary drum;
    Equipped with
    The torque generating unit
    A rotatably supported case,
    And a servomotor which is a motor coaxially attached to the case.
    A rotational drive unit rotationally drives the case of the torque generation unit;
    Tire testing equipment.
  20.  前記模擬路面が、前記回転ドラムの外周に着脱可能な複数の模擬路面ユニットにより形成された、
    請求項19に記載のタイヤ試験装置。
    The simulated road surface is formed by a plurality of simulated road surface units that are removable from the outer periphery of the rotating drum.
    The tire testing device according to claim 19.
  21.  前記模擬路面ユニットが、
      前記回転ドラムの外周に着脱可能なフレームと、
      前記フレームの表面に着脱可能な模擬路面体と、を備えた、
    請求項20に記載のタイヤ試験装置。
    The simulated road unit is
    A frame detachably attachable to an outer periphery of the rotating drum;
    And a mock road body detachable from the surface of the frame;
    A tire testing device according to claim 20.
  22.  前記模擬路面が、骨材と、前記骨材を結合する結合材と、を含む材料から形成された、
    請求19から請求項21のいずれか一項に記載のタイヤ試験装置。
    The simulated road surface is formed of a material including an aggregate and a bonding material for bonding the aggregate.
    The tire testing device according to any one of claims 19 to 21.
  23.  前記骨材がセラミックス片を含み、
     前記結合材が硬化性樹脂を含む、
    請求項22に記載のタイヤ試験装置。
    The aggregate comprises ceramic pieces,
    The binder comprises a curable resin,
    A tire testing device according to claim 22.
  24.  前記模擬路面が、実際の道路の路面と同じ材料により形成された、
    請求項19から請求項23のいずれか一項に記載のタイヤ試験装置。
    The simulated road surface is formed of the same material as the actual road surface,
    The tire testing device according to any one of claims 19 to 23.
  25.  前記模擬路面が、実際の道路の路面とは異なる材料により形成された、
    請求項19から請求項23のいずれか一項に記載のタイヤ試験装置。
    The simulated road surface is formed of a material different from that of the actual road surface,
    The tire testing device according to any one of claims 19 to 23.
  26.  前記模擬路面が、前記回転ドラムの軸方向に並ぶ複数の走行レーンを有する、
    請求項19から請求項25のいずれか一項に記載のタイヤ試験装置。
    The simulated road surface has a plurality of traveling lanes aligned in the axial direction of the rotating drum,
    The tire testing device according to any one of claims 19 to 25.
  27.  前記複数の走行レーンが、異なる材料により形成された、
    請求項26に記載のタイヤ試験装置。
    The plurality of travel lanes are formed of different materials,
    The tire testing device according to claim 26.
  28.  前記タイヤ保持部が、
      前記回転ドラムを軸方向に移動することにより前記回転ドラムが走行する前記走行レーンを切り替え可能な走行レーン切替機構を備えた、
    請求項26又は請求項27に記載のタイヤ試験装置。
    The tire holding portion is
    The vehicle has a traveling lane switching mechanism capable of switching the traveling lane on which the rotary drum travels by moving the rotary drum in the axial direction.
    The tire testing device according to claim 26 or 27.
  29.  前記回転駆動部から前記トルク発生部への動力の伝達を中継する中継部と、
     前記回転駆動部と前記中継部とを連結する第1の連結手段と、
     前記中継部と前記トルク発生部とを連結する第2の連結手段と、
    を備え、
     前記第2の連結手段が巻掛け伝動機構を含み、
     前記巻掛け伝動機構が、前記トルク発生部のケースに同軸に取り付けられた受動プーリーを備えた、
    請求項19から請求項28のいずれか一項に記載のタイヤ試験装置。
    A relay unit relaying transmission of power from the rotary drive unit to the torque generation unit;
    First connection means for connecting the rotary drive unit and the relay unit;
    Second connection means for connecting the relay unit and the torque generation unit;
    Equipped with
    The second connection means includes a winding transmission mechanism;
    The winding transmission mechanism includes a passive pulley coaxially mounted on a case of the torque generating unit;
    A tire test apparatus according to any one of claims 19 to 28.
  30.  前記回転駆動部が、動力結合部を備え、
     前記動力結合部が、
      前記モーターが接続された入力軸と、
      一端に前記第1の連結手段が接続され、他端に前記回転ドラムの軸が接続された出力軸と、を備えた、
    請求項29に記載のタイヤ試験装置。
    The rotary drive comprises a power coupling;
    The power coupling portion is
    An input shaft to which the motor is connected;
    An output shaft to which the first connection means is connected at one end and the shaft of the rotating drum is connected to the other end,
    30. The tire testing device of claim 29.
  31.  前記中継部が、
      前記第1の連結手段が接続された第1のギヤと、
      前記第1のギヤと噛み合い、かつ、前記第2の連結手段が接続された第2のギヤと、を備え、
     前記第1のギヤと前記第2のギヤの回転軸間の距離を変更できるように、前記第1のギヤ及び前記第2のギヤのいずれか一方のギヤが他方との距離方向に移動可能に構成され、
     前記第1の連結手段及び前記第2の連結手段のうち、前記一方のギヤと接続された方が、両端部にユニバーサルジョイントを備え、かつ、長さが可変に構成されたドライブシャフトを含む、
    請求項29又は請求項30に記載のタイヤ試験装置。
    The relay unit is
    A first gear to which the first connection means is connected;
    And a second gear meshed with the first gear and connected to the second connecting means.
    One of the first gear and the second gear is movable in the direction of the distance from the other so that the distance between the first gear and the rotation axis of the second gear can be changed. Configured and
    Of the first connection means and the second connection means, one of the first connection means and the second connection means connected to the one gear includes a drive shaft having universal joints at both ends and having a variable length.
    A tire test apparatus according to claim 29 or claim 30.
  32.  前記トルク発生部が、前記サーボモーターの軸に連結された第1の軸を備え、
     前記ケースが、一端部に前記第1の軸を通す開口部が形成された筒状であり、
     前記サーボモーター及び前記第1の軸の一端側の部分が前記ケース内に収容され、
     前記第1の軸の他端側の部分が前記開口部から前記ケースの外部に露出した、
    請求項19から請求項31のいずれか一項に記載のタイヤ試験装置。
    The torque generating unit comprises a first shaft connected to a shaft of the servomotor;
    The case has a tubular shape having an opening at one end portion through which the first shaft passes.
    The servomotor and a portion on one end side of the first shaft are housed in the case,
    The other end of the first shaft is exposed to the outside of the case from the opening.
    A tire testing device according to any one of claims 19 to 31.
  33.  前記タイヤ保持部が
      前記試験タイヤを回転可能に保持するスピンドル部と、
      前記スピンドル部の位置又は向きを変更して前記模擬路面に対する前記試験タイヤのアライメントを調整可能なアライメント機構と、
    を備え、
     前記スピンドル部が、
      前記タイヤが装着されるホイール部と、
      一端に前記ホイール部が同軸に取り付けられ、回転可能に支持されたスピンドルと、を備えた、
    請求項19から請求項32のいずれか一項に記載のタイヤ試験装置。
    A spindle unit for rotatably holding the test tire by the tire holding unit;
    An alignment mechanism capable of adjusting the alignment of the test tire with respect to the simulated road surface by changing the position or orientation of the spindle portion;
    Equipped with
    The spindle unit is
    A wheel unit on which the tire is mounted;
    Said wheel portion is coaxially mounted at one end and has a rotatably supported spindle;
    The tire testing device according to any one of claims 19 to 32.
  34.  前記トルク発生部の前記第1の軸と前記スピンドルとを連結する第3の連結手段を備え、
     前記第3の連結手段が、等速ジョイントを含む、
    請求項32を引用する請求項33に記載のタイヤ試験装置。
    And third connecting means for connecting the first shaft of the torque generating unit and the spindle;
    The third connection means comprises a constant velocity joint
    34. A tire testing apparatus according to claim 33, which refers to claim 32.
  35.  前記タイヤ保持部が
      前記スピンドルを回転可能に支持するスピンドルケースと、
      前記試験タイヤが前記模擬路面に接地する接地面と垂直かつ前記ホイール部の中心を通る軸の周りに前記スピンドルケースを回転させることによって前記試験タイヤのスリップ角を調整可能なスリップ角調整機構と、
      前記接地面を通り前記スピンドルと垂直な軸の周りに前記スピンドルケースを回転させることによって前記試験タイヤのキャンバ角を調整可能なキャンバ角調整機構と、
      前記スピンドルケースを前記接地面と垂直な方向に移動することによって前記試験タイヤの垂直荷重を調整可能なタイヤ荷重調整機構と、
    を備えた、
    請求項33又は請求項34に記載のタイヤ試験装置。
    A spindle case rotatably supporting the spindle by the tire holding unit;
    A slip angle adjusting mechanism capable of adjusting the slip angle of the test tire by rotating the spindle case around an axis passing through the center of the wheel portion and perpendicular to the contact surface where the test tire contacts the simulated road surface;
    A camber angle adjusting mechanism capable of adjusting a camber angle of the test tire by rotating the spindle case around an axis perpendicular to the spindle through the contact surface;
    A tire load adjusting mechanism capable of adjusting a vertical load of the test tire by moving the spindle case in a direction perpendicular to the contact surface;
    Equipped with
    The tire testing device according to claim 33 or 34.
  36.  前記回転ドラム及び前記試験タイヤの少なくとも一方の外周に、前記試験タイヤの摩耗により生じるゴム屑を付着し難くする粉末を散布する、請求項9から請求項17のいずれか一項に記載の散布装置を備えた、
    請求項19から請求項35のいずれか一項に記載のタイヤ試験装置。
    The scattering device according to any one of claims 9 to 17, wherein a powder that makes it difficult to adhere the rubber chips generated by the abrasion of the test tire is scattered on the outer periphery of at least one of the rotating drum and the test tire. Equipped with
    The tire testing device according to any one of claims 19 to 35.
PCT/JP2018/027944 2017-08-03 2018-07-25 Tire testing method, tire testing device, and dispersion device WO2019026733A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880050620.2A CN110998274A (en) 2017-08-03 2018-07-25 Tire testing method, tire testing apparatus, and distribution apparatus
KR1020247002586A KR20240015163A (en) 2017-08-03 2018-07-25 Dispersion device and tire testing device
KR1020207002933A KR102629925B1 (en) 2017-08-03 2018-07-25 Spreading equipment and tire testing equipment
JP2019534438A JP7154614B2 (en) 2017-08-03 2018-07-25 Spreader and tire tester
JP2022154434A JP7444486B2 (en) 2017-08-03 2022-09-28 tire testing equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017151165 2017-08-03
JP2017-151165 2017-08-03
JP2017-226344 2017-11-24
JP2017226344 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019026733A1 true WO2019026733A1 (en) 2019-02-07

Family

ID=65233650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027944 WO2019026733A1 (en) 2017-08-03 2018-07-25 Tire testing method, tire testing device, and dispersion device

Country Status (5)

Country Link
JP (2) JP7154614B2 (en)
KR (2) KR20240015163A (en)
CN (1) CN110998274A (en)
TW (2) TW202346822A (en)
WO (1) WO2019026733A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672430A (en) * 2019-10-25 2020-01-10 郑州航空工业管理学院 Multifunctional low-dimensional photoelectric material detection table
CN114088565A (en) * 2021-10-28 2022-02-25 盐城工学院 Engineering solid tyre wear resistance test rack
CN114136825A (en) * 2022-01-29 2022-03-04 廊坊易砚领创科技有限公司 Automobile tire abrasion resistance testing device
CN114594045A (en) * 2022-03-10 2022-06-07 重庆交通大学 Continuous detector for road surface friction performance
WO2023058777A1 (en) 2021-10-08 2023-04-13 国際計測器株式会社 Tire testing method, tire testing system, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234751A (en) * 2020-10-09 2021-01-15 燕山大学 High-speed reciprocating linear motion experiment machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523100U (en) * 1991-09-10 1993-03-26 株式会社テイアンドテイ Tire testing machine
JPH06129954A (en) * 1992-10-20 1994-05-13 Bridgestone Corp Drum testing device
JPH09183516A (en) * 1995-12-29 1997-07-15 Kurosaki Refract Co Ltd Screw-conveying machine and its control method
JPH10123022A (en) * 1996-10-23 1998-05-15 Bridgestone Corp Method and apparatus for testing characteristics of tread rubber
JP2000211747A (en) * 1999-01-22 2000-08-02 Kooken Engineering:Kk Constant quantity feeding device of powder and grain
JP2002181609A (en) * 2000-12-19 2002-06-26 Nippon Applied Technology Inc Fixed volume supply method of fine powder and fixed volume supply device of fine powder
JP2007176701A (en) * 2005-11-30 2007-07-12 Sinto Brator Co Ltd Powder and grain fixed volume supply device and powder and grain fixed volume supply method
JP2007298442A (en) * 2006-05-01 2007-11-15 Bridgestone Corp Tire testing device and testing road surface
WO2014058051A1 (en) * 2012-10-12 2014-04-17 国際計測器株式会社 Two-output-shaft motor, motor unit, power simulator, torsion testing device, rotational torsion testing device, tire testing device, linear actuator and vibration device
JP2015175715A (en) * 2014-03-14 2015-10-05 住友ゴム工業株式会社 Test device of tire characteristic
JP2016527516A (en) * 2013-08-01 2016-09-08 エムティーエス システムズ コーポレイション Tire testing equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791440A (en) * 1980-11-28 1982-06-07 Kobe Steel Ltd Tire tester
US4349323A (en) * 1981-01-30 1982-09-14 Ray-O-Vac Corporation Apparatus for continuously feeding powders
JPH0840566A (en) * 1991-09-27 1996-02-13 Photonics:Kk Rotary knife multistage optimum rotation control method in vertical precision-weighing feeder
JP2603098Y2 (en) * 1992-07-29 2000-02-14 神鋼電機株式会社 Metal hopper
JPH0625236U (en) * 1992-08-25 1994-04-05 大同特殊鋼株式会社 Powder feeder
JPH07300185A (en) * 1994-04-30 1995-11-14 Taiyo Yuden Co Ltd Case for chiplike parts in bulk
JP2001242056A (en) * 2000-02-28 2001-09-07 Bridgestone Corp Apparatus and method for abrasion test
AU2003256799A1 (en) * 2002-07-25 2004-02-16 University Of Florida Flexible screw feeder/mixer for precision dosing and feeding of particulate systems
JP2005132427A (en) * 2003-10-30 2005-05-26 Sekisui Chem Co Ltd Raw powder metering tank
TWI417235B (en) * 2010-10-28 2013-12-01 Atomic Energy Council An apparatus and method for feeding with continuousness and quantity
JP5846837B2 (en) * 2011-10-12 2016-01-20 株式会社松井製作所 Powder material collection device
CN103203331B (en) * 2013-04-03 2015-01-14 南京信息职业技术学院 Silent dust recovery device for sand and dust test chamber
CN106904446A (en) * 2017-04-28 2017-06-30 中国航天空气动力技术研究院 A kind of powder feeder

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523100U (en) * 1991-09-10 1993-03-26 株式会社テイアンドテイ Tire testing machine
JPH06129954A (en) * 1992-10-20 1994-05-13 Bridgestone Corp Drum testing device
JPH09183516A (en) * 1995-12-29 1997-07-15 Kurosaki Refract Co Ltd Screw-conveying machine and its control method
JPH10123022A (en) * 1996-10-23 1998-05-15 Bridgestone Corp Method and apparatus for testing characteristics of tread rubber
JP2000211747A (en) * 1999-01-22 2000-08-02 Kooken Engineering:Kk Constant quantity feeding device of powder and grain
JP2002181609A (en) * 2000-12-19 2002-06-26 Nippon Applied Technology Inc Fixed volume supply method of fine powder and fixed volume supply device of fine powder
JP2007176701A (en) * 2005-11-30 2007-07-12 Sinto Brator Co Ltd Powder and grain fixed volume supply device and powder and grain fixed volume supply method
JP2007298442A (en) * 2006-05-01 2007-11-15 Bridgestone Corp Tire testing device and testing road surface
WO2014058051A1 (en) * 2012-10-12 2014-04-17 国際計測器株式会社 Two-output-shaft motor, motor unit, power simulator, torsion testing device, rotational torsion testing device, tire testing device, linear actuator and vibration device
JP2016527516A (en) * 2013-08-01 2016-09-08 エムティーエス システムズ コーポレイション Tire testing equipment
JP2015175715A (en) * 2014-03-14 2015-10-05 住友ゴム工業株式会社 Test device of tire characteristic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672430A (en) * 2019-10-25 2020-01-10 郑州航空工业管理学院 Multifunctional low-dimensional photoelectric material detection table
CN110672430B (en) * 2019-10-25 2022-02-01 郑州航空工业管理学院 Multifunctional low-dimensional photoelectric material detection table
WO2023058777A1 (en) 2021-10-08 2023-04-13 国際計測器株式会社 Tire testing method, tire testing system, and program
CN114088565A (en) * 2021-10-28 2022-02-25 盐城工学院 Engineering solid tyre wear resistance test rack
CN114088565B (en) * 2021-10-28 2023-12-05 盐城工学院 Engineering solid tyre wear resistance test bench
CN114136825A (en) * 2022-01-29 2022-03-04 廊坊易砚领创科技有限公司 Automobile tire abrasion resistance testing device
CN114136825B (en) * 2022-01-29 2022-05-24 廊坊易砚领创科技有限公司 Automobile tire abrasion resistance testing device
CN114594045A (en) * 2022-03-10 2022-06-07 重庆交通大学 Continuous detector for road surface friction performance

Also Published As

Publication number Publication date
KR20200037229A (en) 2020-04-08
KR102629925B1 (en) 2024-01-30
JP2022173412A (en) 2022-11-18
TW202346822A (en) 2023-12-01
JP7154614B2 (en) 2022-10-18
CN110998274A (en) 2020-04-10
KR20240015163A (en) 2024-02-02
TW201910737A (en) 2019-03-16
JP7444486B2 (en) 2024-03-06
TWI803500B (en) 2023-06-01
JPWO2019026733A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019026733A1 (en) Tire testing method, tire testing device, and dispersion device
CN102954920B (en) For the method assessing tire face wearability
CN2935109Y (en) Full-automatic truck tyre static and dynamic balance/beating testing machine
US20210025784A1 (en) Tire testing device
CN104180767A (en) steel-rail wear measurement device based on machine vision and grinding strategy method thereof
CN104568476B (en) A kind of suspension type tire mechanical property testing device
CN102620689A (en) Steel rail corrugation laser measuring device
US6050876A (en) Automated abrader
US3543576A (en) Tire testing apparatus and method
CN108646114A (en) A kind of rail vehicle pantagraph current collector abrasion test system
JP2024050916A (en) Tire Testing Equipment
CN212871102U (en) Equipment for rapidly measuring size of miniature cube
JP3997647B2 (en) Abrasion test equipment
CN108871813A (en) A kind of high emulation tyre performance test experience platform
US7717003B2 (en) Measuring device for detecting the state of wear of the bore walls of two interpenetrating housing bores
KR20220082920A (en) tire testing device
WO2022071395A1 (en) Tire testing apparatus
JP4172526B2 (en) Abrasion test equipment
CN207280892U (en) A kind of rail milling-mill experimental rig
CN202171533U (en) Arc-shaped guide rail cornering cambering high speed tyre testing machine
CN112254961B (en) High low temperature testing arrangement of transmission efficiency
JP2007279062A (en) Abrasion test device
CN206002653U (en) The flying probe tester of belt drives
CN209877880U (en) Coordinate detecting instrument
Phillips A laboratory pneumatic tyre testing rig

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841078

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019534438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841078

Country of ref document: EP

Kind code of ref document: A1