WO2019019338A1 - 一种移动电源 - Google Patents

一种移动电源 Download PDF

Info

Publication number
WO2019019338A1
WO2019019338A1 PCT/CN2017/103219 CN2017103219W WO2019019338A1 WO 2019019338 A1 WO2019019338 A1 WO 2019019338A1 CN 2017103219 W CN2017103219 W CN 2017103219W WO 2019019338 A1 WO2019019338 A1 WO 2019019338A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
output
voltage converter
output interface
Prior art date
Application number
PCT/CN2017/103219
Other languages
English (en)
French (fr)
Inventor
韩正渭
Original Assignee
西安中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中兴新软件有限责任公司 filed Critical 西安中兴新软件有限责任公司
Publication of WO2019019338A1 publication Critical patent/WO2019019338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to, but is not limited to, the field of charge and discharge technology, and more particularly to a mobile power source.
  • the mobile power product can first boost the battery voltage to a 5V standard USB (Universal Serial Bus) interface VBUS voltage (as shown in Figure 1), and then step down inside the mobile phone.
  • the phone battery can only be charged after switching to near battery voltage. This way, after 2 conversions, the charging efficiency is very low.
  • the above energy loss causes the following drawbacks to the mobile power source.
  • the large-capacity mobile power supply can provide users with sufficient charging capacity, the bulk and weight are not conducive to portability; while the thin and portable mobile power source has a weak charging capability.
  • the voltage conversion circuit also releases heat, causing temperature rise, affecting user experience and battery safety.
  • This article provides a mobile power source that can improve mobile power efficiency.
  • An embodiment of the present disclosure provides a mobile power supply, including: a first battery, a second battery, a voltage output interface, and a step-down DC voltage converter, wherein the first battery is connected in series with the second battery, a voltage of a battery is output to the step-down DC voltage converter, outputted to the power output interface via the step-down DC voltage converter, and a voltage of the second battery is output to the power output interface, The voltage output of the first battery is superimposed.
  • the first battery is a lithium battery
  • the second battery is lithium
  • a converted voltage output of the step-down DC voltage converter is determined according to a change in a voltage output of the second battery such that voltage outputs of the first battery and the second battery are The power output interface is superimposed to be a preset voltage.
  • the mobile power source further includes: a comparator and a feedback circuit
  • the feedback circuit includes a reference voltage source, a first voltage dividing resistor R1, and a second voltage dividing resistor R2, the first The voltage dividing resistor R1 and the second voltage dividing resistor R2 are connected in series and connected to the two ends of the power output interface, and the voltages of the reference voltage source and the second voltage dividing resistor are respectively connected to the two comparison value inputs of the comparator, a comparison output of the comparator is coupled to a control terminal of the buck DC voltage converter, the buck DC voltage converter controls a conversion voltage output according to an enable signal of the comparator, such that the first battery and the The voltage output of the second battery is a preset voltage after the power output interface is superimposed.
  • the mobile power source further includes: a first battery input interface, a boost DC voltage converter, a first charging circuit, and a second charging circuit, an input voltage of the first battery input interface
  • the boosted DC voltage converter and the first charging circuit are connected to the first battery, and the second charging circuit is connected to the second battery.
  • the mobile power source further includes: a switch switching circuit:
  • the connection state of the first battery and the second battery is converted by the switch switching circuit, so that the voltage of the second battery is output to the step-down DC a voltage converter is outputted to the power output interface via the step-down DC voltage converter, and the voltage of the first battery is output to the power output interface, or
  • the voltage of the first battery is output to the step-down DC voltage converter, outputted to the power output interface via the step-down DC voltage converter, and the voltage of the second battery is output to the power output interface .
  • the switch switching circuit includes four linked single-pole double-throw switches, and when four of the single-pole double-throw switches are connected to the first contact, the voltage of the first battery is output to The step-down DC voltage converter is outputted to the power output interface via the step-down DC voltage converter, and the voltage of the second battery is output to the power output interface, when the four single pole double throws
  • the switch is connected to the second contact, the voltage of the second battery is output to the step-down DC voltage converter, and is output to the power output interface through the step-down DC voltage converter, the first battery The voltage is output to the power output interface.
  • the mobile power source further includes: a subtractor and a flip-flop, the two inputs of the subtractor being respectively connected to the first battery and the second battery, the subtraction The output end of the device outputs a voltage difference between the first battery and the second battery.
  • the trigger sends a trigger signal to the switch switching circuit to trigger four The single pole double throw switch switches the connected contacts.
  • the mobile power source further includes: a second battery input interface, a charging circuit, and an input voltage of the second battery input interface is connected to the switch switching circuit through the charging circuit.
  • the mobile power source is composed of a 2-level power supply in series.
  • the output voltage of the primary power source is directly output without voltage conversion, and the output voltage of the first-level power supply is after the step-down, The output voltage of the primary power supply is superimposed on the output. It has high conversion efficiency that is difficult to achieve with traditional products, less energy loss, lower heat generation than traditional products, and reduced energy loss, which can improve the defects of mobile power supply to a certain extent. It can reduce the size and weight of the large-capacity mobile power supply, and can appropriately increase the charging capacity of the small-capacity mobile power supply, and has a large market value.
  • FIG. 1 is a schematic structural view of an exemplary mobile power discharge circuit
  • FIG. 2 is a schematic structural diagram of a mobile power discharge circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a mobile power discharge circuit according to another example of an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a mobile power discharge circuit according to still another example of an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a mobile power charging circuit according to still another example of an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a switch switching circuit according to still another example of an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a mobile power discharge circuit according to still another example of the embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a mobile power charging circuit according to still another example of the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a mobile power source, which may include: a first battery, a second battery, a voltage output interface, and a step-down DC voltage converter (step-down DC-DC), the first battery In series with the second battery, the voltage of the first battery is output to the step-down DC voltage converter, and is output to the power output interface via the step-down DC voltage converter, the second battery A voltage is output to the power output interface and superimposed with a voltage output of the first battery.
  • step-down DC-DC step-down DC voltage converter
  • the first battery and the second battery capacity of the embodiments of the present disclosure may be the same or different. Since the output of the second battery is directly output without DC voltage conversion, there is no voltage conversion link, and the discharge efficiency is close to 100%, so the discharge efficiency of the entire mobile power source can be greatly improved.
  • the mobile power source may further include: a switch switching circuit, wherein the first battery and the second battery are connected in series, and the connection state of the first battery and the second battery is converted through the switch switching circuit,
  • the voltage of the first battery is output to the step-down DC voltage converter, outputted to the power output interface via the step-down DC voltage converter, and the voltage of the second battery is output to the power output interface .
  • the switch switching circuit can control the connection state of the first battery and the second battery to be controlled, keep one of the power supplies directly output without voltage conversion, and the other is output after being stepped down.
  • the first battery may be a lithium battery
  • the second battery may be a lithium battery
  • the converted voltage output of the step-down DC voltage converter may be determined according to a change in a voltage output of the second battery such that voltage outputs of the first battery and the second battery are at the power source
  • the output interface is superimposed to a preset voltage.
  • the mobile power source may further include: a comparator and a feedback circuit, the feedback circuit includes a reference voltage source, a first voltage dividing resistor R1 and a second voltage dividing resistor R2, the first voltage dividing resistor R1 and the first The two voltage dividing resistors R2 are connected in series and connected to the two ends of the power output interface, and the voltages of the reference voltage source and the second voltage dividing resistor are respectively connected to the two comparison value input ends of the comparator, and the comparison output of the comparator Connected to a control terminal of the step-down DC voltage converter, the buck DC voltage converter controls a switching voltage output according to an enable signal of the comparator such that voltage outputs of the first battery and the second battery are The power output interface is superimposed to be a preset voltage.
  • the feedback circuit includes a reference voltage source, a first voltage dividing resistor R1 and a second voltage dividing resistor R2, the first voltage dividing resistor R1 and the first The two voltage dividing resistors R2 are connected in series and
  • the embodiment of the present disclosure may adjust the output voltage of the step-down DC voltage converter by feedback control, so that the voltage of the voltage output of the first battery and the second battery superimposed on the power output interface is a desired rating. Voltage.
  • the mobile power source may further include: a first battery input interface, a boost DC voltage converter (boost DC-DC), a first charging circuit and a second charging circuit, wherein an input voltage of the first battery input interface passes
  • boost DC voltage converter and the first charging circuit are connected to the first battery and connected to the second battery through the second charging circuit.
  • the first charging circuit can charge the series circuit through the first charging circuit, that is, the first battery and the second battery can be charged at the same time, and the second charging circuit can charge the second battery through the second charging circuit.
  • the switch switching circuit may include four interlocking single-pole double-throw switches. When four of the single-pole double-throw switches are connected to the first contact, the voltage of the first battery is output to the step-down DC voltage converter. After being outputted to the power output interface via the step-down DC voltage converter, the voltage of the second battery is output to the power output interface, when the four single-pole double-throw switches are connected to the second contact The voltage of the second battery is output to the step-down DC voltage converter, and is output to the power output interface via the step-down DC voltage converter, and the voltage of the first battery is output to the power output. interface.
  • the switch switching circuit may include four linked single-pole double-throw switches, and the position of the single-pole double-throw switch may include two states according to the position;
  • the mobile power source may further include: a subtractor and two triggers, wherein two input ends of the subtractor are respectively connected to the first battery and the second battery, and an output end of the subtractor outputs a first battery a voltage difference from the second battery, when the voltage difference is greater than or equal to a preset threshold, the trigger sends a trigger signal to the switch switching circuit, triggering the touch of the four single-pole double-throw switch switching connections point.
  • a subtractor and two triggers wherein two input ends of the subtractor are respectively connected to the first battery and the second battery, and an output end of the subtractor outputs a first battery a voltage difference from the second battery, when the voltage difference is greater than or equal to a preset threshold, the trigger sends a trigger signal to the switch switching circuit, triggering the touch of the four single-pole double-throw switch switching connections point.
  • the mobile power source may further include: a second battery input interface, a charging circuit, and an input voltage of the second battery input interface is connected to the switch switching circuit through the charging circuit.
  • This example uses a battery of different capacities to form a series system, as shown in Figure 2.
  • the second battery with a larger capacity can be output without step-down DC-DC conversion; and the first battery with smaller capacity can output an adjustable voltage of about 0.8-1.6V after step-down DC-DC conversion.
  • the output voltage is superimposed on the output voltage of the first battery and output to the interface.
  • the output voltage of the step-down DC-DC may vary with the output voltage of the large-capacity second battery, ensuring that the voltage of the first battery after the output voltage of the step-down DC-DC is superimposed with the output voltage of the second battery is stable. 5V.
  • the currents based on the series circuit are equal. Since the small-capacity first battery is stepped down by the step-down DC-DC, the current corresponding to the amplified current is reduced, and the discharge current on the first battery itself is higher than that of the large-capacity second battery. The discharge current is small, so that the discharge progress of the two batteries can be adapted without providing an additional circuit.
  • the discharge progress of the two batteries can be kept synchronized, that is, the large-capacity second battery and the small-capacity first battery are simultaneously discharged.
  • the choice of battery capacity can be determined based on the circuit parameters and the parameters of the battery. The calculation can refer to the following examples.
  • This example uses batteries of the same capacity in series. Since one output battery is converted by a step-down DC-DC, the output current is small. In order to balance the difference in discharge rate between the two batteries, the switching circuit can be increased, as shown in FIG.
  • the switch switching circuit can select the output voltage of one battery not directly through the step-down DC-DC, and directly output to the power output interface, and the output voltage of the other battery is superimposed on the voltage of the previous battery after being stepped down by DC-DC. Above, the output voltage of the step-down DC-DC can be adjusted to ensure that the superimposed voltage is a stable 5V.
  • the switch switching circuit can exchange the working state of the two batteries according to the difference of the remaining capacity of the battery, so that the battery with more remaining power outputs a larger current, and the discharge progress of the two batteries can be synchronized.
  • charging synchronization can be achieved using equalized charging as is known in the art due to the same battery capacity.
  • This example uses batteries of different capacities in series, as shown in Figure 4, in order to ensure that the output voltage on the power output interface is stable 5.0V, the output voltage of the step-down DC-DC in Figure 4 can be required to follow the voltage of the second battery. Change and change.
  • the output voltage of the step-down DC-DC can be gradually increased from 0.6V to 1.6V to ensure that the superposed voltage is a stable 5V.
  • the discharge current of the first battery can be loaded onto the load after being stepped down by the step-down DC-DC, and the discharge current of the first battery can be much smaller than the output current of the step-down DC-DC.
  • the battery capacity of the first battery is relatively small, since the discharge current during discharge is also relatively small, the discharge progress of the two batteries can be adapted.
  • a comparator Also included in FIG. 4 is a comparator, a reference voltage source Vref, and a first voltage dividing resistor R1 and a second voltage dividing resistor R2.
  • the reference voltage source Vref and the first voltage dividing resistor R1 and the second voltage dividing resistor R2 may constitute a feedback circuit, and sample the output voltage of the mobile power source, and feed back to the step-down DC-DC to adjust the output voltage to ensure that the output voltage of the mobile power source remains stable. .
  • the second battery can select 5000mAh, the average discharge voltage of the battery can be 3.8V, and the step-down DC-DC conversion efficiency can be estimated by 90%, then the capacity calculation of the first battery can be As follows:
  • the overall discharge efficiency of the mobile power supply is calculated as follows:
  • the discharge capacity of the mobile power supply using this example is greatly improved, and the mobile power supply itself is heated, which is reduced several times.
  • Figure 5 is a charging circuit for such a solution that may include two charging circuits.
  • the first charging circuit (charger1), after boosting the input 5V power supply, charging the two batteries connected in series through the positive and negative poles of the two batteries by the first charging circuit, and simultaneously outputting the current output by the first charging circuit Give the first battery and the second battery.
  • the second charging circuit uses a 5V power supply for input, using the second charging in Figure 5.
  • the electrical circuit outputs to the middle and negative poles of the two batteries, charging only the second battery.
  • Synchronous charging of the two batteries can be achieved by appropriately setting the ratio of the two loop charging currents.
  • the current ratio of the two loops can be set to 1755: (5000-1755).
  • the current of the first charging circuit is 175.5 mA
  • the current of the second charging circuit is set to 324.5 mA.
  • the charging current of the first battery is 175.5 mA
  • This example uses batteries of the same capacity in series. Since the discharge rates of the two batteries in this example are inconsistent, in order to allow the two batteries to be equalized discharge, a set of switch switching circuits can be set to switch the connection relationship between the two batteries. As shown in Figure 6.
  • FIG. 6 is a schematic circuit diagram of a switch switching circuit, which includes four linked single-pole double-throw switches, which can include two states according to the position of the switch:
  • the anode of the first battery is connected to the positive pole of the battery pack (PACK+);
  • the cathode of the second battery is connected to the negative pole of the battery pack (PACK-);
  • a cathode of the first battery and a cathode of the second battery are connected to a middle pole (PACKM) of the battery pack;
  • the positive pole of the second battery is connected to the positive pole of the battery pack (PACK+);
  • the negative pole of the first battery is connected to the negative pole of the battery pack (PACK-);
  • a cathode of the second battery and a cathode of the first battery are connected to a middle pole (PACKM) of the battery pack;
  • the discharge states of the first battery and the second battery may be as follows:
  • the first battery is subjected to a step-down DC-DC step-down discharge, and the discharge rate is slow;
  • the second battery is directly discharged, and the discharge rate is fast;
  • the second battery is subjected to a step-down DC-DC step-down discharge, and the discharge rate is slow;
  • the first battery is directly discharged, and the discharge rate is fast.
  • a suitable preset voltage threshold can be selected.
  • the switch is controlled to allow the battery with a higher voltage to be quickly discharged, so that the voltage is relatively high.
  • the low battery is slowly discharged. In this way, simultaneous discharge of the two batteries can be achieved.
  • the selection of the preset threshold may satisfy the following two principles: first, the preset threshold is as small as possible to ensure that the discharge progress of the two batteries is synchronized as much as possible; secondly, during the switching process, the internal resistance of the battery cannot be used. The resulting voltage drop causes the switching to occur. For example, if a battery has a voltage drop of 0.05V due to internal resistance during discharge, a preset threshold of 0.06V can be taken, and both of the above conditions can be satisfied at the same time.
  • the discharge circuit is shown in Figure 7, and its working principle can be the same as the first example above, which can improve the discharge efficiency.
  • the two batteries constituting the series battery pack have the same capacity, so the 9V power input can be directly used, and a charging circuit (CHARGER) supporting the two-cell lithium battery in series, such as a general charging integrated circuit (Integrated Circuit, referred to as IC) can be, as shown in Figure 8.
  • a charging circuit CHARGER
  • IC general charging integrated circuit
  • this example has an additional advantage: since the battery can be balanced by switching the network during the discharging process, the charging equalization circuit of the ordinary series lithium battery can be omitted.
  • the mobile power source is composed of a 2-level power supply in series.
  • the output voltage of the primary power source is directly output without voltage conversion, and the output voltage of the first-level power supply is after the step-down, The output voltage of the primary power supply is superimposed on the output. It has high conversion efficiency that is difficult to achieve with traditional products, less energy loss, and far lower heat than traditional products, reducing energy loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种移动电源包括:第一电池、第二电池、电压输出接口和降压直流电压转换器,所述第一电池与所述第二电池串联,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,与所述第一电池的电压输出叠加。

Description

一种移动电源 技术领域
本公开涉及但不限于充放电技术领域,尤其是一种移动电源。
背景技术
随着移动数字通信和智能手机行业的快速发展,手机的电池越来越不够用,为了解决手机的轻薄和电池容量之间的矛盾,市场上出现了大量的便携式移动电源(俗名充电宝),它内置锂电池和充放电电路,可随时随地在手机电量不足时给手机充电。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
移动电源产品在给手机充电时,可以先将电池电压升压转换到5V的标准USB(Universal Serial Bus,通用串行总线)接口VBUS电压(如图1所示),随后在手机内部又降压转换到接近电池电压后,才能给手机电池充电。这样经过了2次转换过程,充电效率很低。以10000mAh的移动电源为例,如果升压和降压转换的效率都是90%,则充入手机电池的电量仅为10000*90%*90%=8100mAh,远低于移动电源的标称容量。
上述的能量损失对移动电源来说会造成如下缺陷。第一,大容量的移动电源虽然能给用户提供足够的充电能力,但体积和重量较大不利于便携;而轻薄便携的移动电源,充电能力又很薄弱。
除此之外,电压转换电路还会释放热量,造成温度上升,影响用户体验和电池安全性。
本文提供一种移动电源,能够提高移动电源效率。
本公开实施例提供一种移动电源,包括:第一电池、第二电池、电压输出接口和降压直流电压转换器,所述第一电池与所述第二电池串联,所述第 一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,与所述第一电池的电压输出叠加。
在一种示例性实施方式中,所述第一电池为锂电池,所述第二电池为锂
电池。
在一种示例性实施方式中,所述降压直流电压转换器的转换电压输出根据所述第二电池的电压输出的变化确定,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后为预设电压。
在一种示例性实施方式中,所述的移动电源还包括:比较器和反馈电路,所述反馈电路包括参考电压源、第一分压电阻R1和第二分压电阻R2,所述第一分压电阻R1和所述第二分压电阻R2串联后接在电源输出接口的两端,参考电压源和第二分压电阻的电压分别连接至所述比较器的两个比较值输入端,所述比较器的比较输出端连接至所述降压直流电压转换器的控制端,所述降压直流电压转换器根据比较器的使能信号控制转换电压输出,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后为预设电压。
在一种示例性实施方式中,所述的移动电源还包括:第一电池输入接口、升压直流电压转换器、第一充电电路和第二充电电路,所述第一电池输入接口的输入电压通过所述升压直流电压转换器和第一充电电路连接至第一电池,通过第二充电电路连接至第二电池。
在一种示例性实施方式中,所述的移动电源还包括:开关切换电路:
所述第一电池与所述第二电池串联后,经过所述开关切换电路,转换所述第一电池和第二电池的连接状态,使得所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口,或者,
所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口。
在一种示例性实施方式中,所述开关切换电路包括4个联动的单刀双掷开关,当4个所述单刀双掷开关连接在第一触点时,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,当4个所述单刀双掷开关连接在第二触点时,所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口。
在一种示例性实施方式中,所述的移动电源还包括:减法器和触发器,所述减法器的两个输入端分别与所述第一电池和所述第二电池相连,所述减法器的输出端输出第一电池与第二电池的电压差值,当所述电压差值大于或者等于预设阈值时,所述触发器发出触发信号至所述开关切换电路,触发4个所述单刀双掷开关切换连接的触点。
在一种示例性实施方式中,所述的移动电源还包括:第二电池输入接口、充电电路,所述第二电池输入接口的输入电压通过所述充电电路连接至所述开关切换电路。
本公开实施例具有如下有益效果:
本公开实施例中,移动电源由2级电源串联组成,在放电过程中,其中一级电源的输出电压,不经过电压转换直接输出,另外一级电源的输出电压,经过降压后,与前一级电源的输出电压叠加输出。具有传统产品难以达到的高转换效率,能量损失少,发热远低于传统产品,减少能量损失,在一定程度上能改善移动电源的缺陷。可以缩小大容量移动电源的体积和重量,又能适度提高小容量移动电源的充电能力,有较大的市场价值。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为示例性的移动电源放电电路的结构示意图;
图2为本公开实施例的移动电源放电电路的结构示意图;
图3为本公开实施例另一实例的移动电源放电电路的结构示意图;
图4为本公开实施例又一实例的移动电源放电电路的结构示意图;
图5为本公开实施例又一实例的移动电源充电电路的结构示意图;
图6为本公开实施例再一实例的开关切换电路的结构示意图;
图7为本公开实施例再一实例的移动电源放电电路的结构示意图;
图8为本公开实施例再一实例的移动电源充电电路的结构示意图。
本公开的较佳实施方式
下面结合附图对本公开的实施方式进行描述。
如图2所示,本公开实施例提供一种移动电源,可以包括:第一电池、第二电池、电压输出接口和降压直流电压转换器(降压DC-DC),所述第一电池与所述第二电池串联,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,与所述第一电池的电压输出叠加。
本公开实施例的第一电池和第二电池容量可以相同或者不同。由于第二电池的输出未经直流电压转换而直接输出,没有电压转换环节,其放电效率接近100%,故而整个移动电源的放电效率能得到较大提升。
所述的移动电源还可以包括:开关切换电路,所述第一电池与所述第二电池串联后,经过所述开关切换电路,转换所述第一电池和第二电池的连接状态,
使得所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口,或者,
所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口。
开关切换电路可以受控对所述第一电池和第二电池的连接状态进行转换,保持其中一个电源不经过电压转换直接输出,另一个经过降压后输出。
其中,所述第一电池可以为锂电池,所述第二电池可以为锂电池。
所述降压直流电压转换器的转换电压输出可以根据所述第二电池的电压输出的变化确定,使得所述第一电池和所述第二电池的电压输出在所述电源 输出接口叠加后为预设电压。
所述的移动电源还可以包括:比较器和反馈电路,所述反馈电路包括参考电压源、第一分压电阻R1和第二分压电阻R2,所述第一分压电阻R1和所述第二分压电阻R2串联后接在电源输出接口的两端,参考电压源和第二分压电阻的电压分别连接至所述比较器的两个比较值输入端,所述比较器的比较输出端连接至所述降压直流电压转换器的控制端,所述降压直流电压转换器根据比较器的使能信号控制转换电压输出,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后为预设电压。
本公开实施例可以通过反馈控制,调整降压直流电压转换器的输出电压,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后的电压为所需的额定电压。
所述的移动电源还可以包括:第一电池输入接口、升压直流电压转换器(升压DC-DC)、第一充电电路和第二充电电路,所述第一电池输入接口的输入电压通过所述升压直流电压转换器和第一充电电路连接至第一电池,通过第二充电电路连接至第二电池。
第一充电回路,可以通过第一充电电路对串联的电路进行充电,即可以同时给第一电池和第二电池充电,第二充电回路可以通过第二充电电路对第二电池进行充电。
所述开关切换电路可以包括4个联动的单刀双掷开关,当4个所述单刀双掷开关连接在第一触点时,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,当4个所述单刀双掷开关连接在第二触点时,所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口。
本公开实施例中,开关切换电路可以包括4个联动的单刀双掷开关,根据所述单刀双掷开关的位置可以包括两个状态;
状态1:当四个开关都连接到上侧触点时,第一电池经过降压直流电压转换器放电,第二电池直接放电;
状态2:当四个开关都连接到下侧触点时,第二电池经过降压直流电压转换器放电,第一电池直接放电。
所述的移动电源还可以包括:减法器和触发器,所述减法器的两个输入端分别与所述第一电池和所述第二电池相连,所述减法器的输出端输出第一电池与第二电池的电压差值,当所述电压差值大于或者等于预设阈值时,所述触发器发出触发信号至所述开关切换电路,触发4个所述单刀双掷开关切换连接的触点。
所述的移动电源还可以包括:第二电池输入接口、充电电路,所述第二电池输入接口的输入电压通过所述充电电路连接至所述开关切换电路。
一实例
本实例使用不同容量的电池组成串联系统,如图2所示。容量较大的第二电池,其输出可以不做降压DC-DC转换;而容量较小的第一电池则可以通过降压DC-DC转换后输出一个0.8-1.6V左右的可调电压,将输出电压叠加在第一电池的输出电压之上输出给接口。上述降压DC-DC的输出电压可以随着大容量的第二电池的输出电压而变化,确保第一电池经过降压DC-DC的输出电压与第二电池的输出电压叠加后的电压为稳定的5V。
基于串联电路的电流相等,由于小容量的第一电池经降压DC-DC降压后,相当于放大的电流降低了电压,在第一电池自身上的放电电流就比大容量第二电池的放电电流小,这样可以不设置额外的电路,就能让两个电池的放电进度适配。
在本实例中,为了较大限度地利用电池容量,可以保持两个电池的放电进度同步,即使得大容量的第二电池和小容量的第一电池同时完成放电。电池容量的选择,可以根据电路参数和电池的参数进行计算确定,该计算可以参考后面的实例。
因为本实例中两个电池容量不同,在充电时,可以给大容量的第二电池增加额外的充电电流,以维持两个电池的充电进度同步。
另一实例
本实例使用相同容量的电池串联。因通过降压DC-DC转换的一路电池,其输出电流较小,为了平衡两个电池的放电速率差异,可以增加开关切换电路,如图3。开关切换电路可以选择一个电池的输出电压不通过降压DC-DC,直接输出到电源输出接口上,而另一个电池的输出电压,则经过DC-DC降压后,叠加在前一电池的电压之上,降压DC-DC的输出电压可以可调,以确保叠加后的电压为稳定的5V。在放电过程中,开关切换电路可以根据电池剩余容量的差异,交换两个电池的工作状态,让剩余电量较多的电池输出较大的电流,就可以维持两个电池的放电进度同步。
本实例中,因电池容量相同,使用本领域已知的均衡充电即可实现充电同步。
又一实例
本实例使用不同容量的电池串联,如图4所示,为保证电源输出接口上输出电压为稳定的5.0V,可以要求图4中降压DC-DC的输出电压能够随着第二电池电压的变化而变化。当第二电池电压随着放电从4.4V逐渐降低到3.4V时,降压DC-DC的输出电压可以逐渐由0.6V提高到1.6V,以确保叠加后的电压为稳定的5V。
从以上的描述也可以看出,第一电池的放电电流,可以经过降压DC-DC降压后,才加载到负载上,第一电池的放电电流可以远小于降压DC-DC的输出电流。虽然第一电池的电池容量比较小,但由于在放电过程中的放电电流也比较小,因此两个电池的放电进度可以适配。
图4中还包括有比较器、参考电压源Vref和第一分压电阻R1、第二分压电阻R2。参考电压源Vref和第一分压电阻R1、第二分压电阻R2可以组成反馈电路,采样移动电源的输出电压,反馈给降压DC-DC调节输出电压,以确保移动电源的输出电压保持稳定。
在本实例中,第二电池可以选择5000mAh,电池的平均放电电压可以为3.8V,降压DC-DC转换效率可以按照90%估算,则第一电池的容量计算可 以如下:
降压DC-DC的平均输出电压:
5V-3.8V=1.2V
降压DC-DC的输出能量:
1.2V*5000mAh=6Wh
降压DC-DC的输入能量:
6Wh/90%=6.67Wh
第一电池容量:
6.67Wh/3.8V=1755mAh
移动电源的总体放电效率计算如下:
移动电源输出能量:
5V*5000mAh=25Wh
第一电池和第二电池输出能量:
3.8V*(5000mAh+1755mAh)=25.7Wh
移动电源的放电效率:
25Wh/25.7Wh=97.3%
对比市场上的高质量移动电源(90%左右的转换效率),使用本实例的移动电源的放电能力得到较大提升,而移动电源自身发热,更是减少了好几倍。
对于本实例,由于电池组内的第一电池和第二电池容量不同,充电不能使用本领域已知的电路。图5是针对此种方案的一种充电电路,可以包含有两个充电回路。
第一充电回路(charger1),将输入的5V电源升压后,用第一充电电路通过两个电池的正极和负极,对串联的两个电池充电,所述第一充电电路输出的电流同时充给第一电池和第二电池。
第二充电回路(charger2),使用5V电源做输入,使用图5中的第二充 电电路输出到两个电池的中间极和负极,只对第二电池充电。
合适地设置两个回路充电电流大小比例,就可以实现两个电池的同步充电。在本实例中,可以设置两个回路的电流比例为1755:(5000-1755)。例如,第一充电回路的电流为175.5mA,则第二充电回路的电流被设置为324.5mA。这样第一电池的充电电流为175.5mA,第二电池上的充电电流为175.5+324.5=500mA,对两个电池来说都相当于0.1c充电,充电进度相同,可以被同时充满。
再一实例
本实例使用同样容量的电池串联。由于本实例的两个电池放电速率不一致,为了让两个电池能够均衡放电,可以设置一组开关切换电路,对两个电池的连接关系进行切换。如图6所示。
图6是开关切换电路的电路原理示意图,其中包含有4个联动的单刀双掷开关,根据开关的位置可以包括2个状态:
状态1:当四个开关都连接到上侧触点时
第一电池的正极连接到电池组的正极(PACK+);
第二电池的负极连接到电池组的负极(PACK-);
第一电池的负极和第二电池的正极连接到电池组的中间极(PACKM);
状态2:当四个开关都连接到下侧触点时
第二电池的正极连接到电池组的正极(PACK+);
第一电池的负极连接到电池组的负极(PACK-);
第二电池的负极和第一电池的正极连接到电池组的中间极(PACKM);
在电池组两种不同的切换状态下,第一电池和第二电池的放电状态可以如下:
状态1:
第一电池经过降压DC-DC降压放电,放电速率慢;
第二电池直接放电,放电速率快;
状态2:
第二电池经过降压DC-DC降压放电,放电速率慢;
第一电池直接放电,放电速率快。
为了确保两个电池放电进度相同,可以选择一个合适的预设电压阈值,当两个电池的电压差值超过该预设阈值后,控制切换开关,让电压较高的电池快速放电,让电压较低的电池慢速放电。这样,就可以实现两个电池的同步放电。
上述预设阈值的选择可以满足以下两条原则:第一,预设阈值尽可能得小,以尽可能地保证两个电池放电进度同步;第二,在开关切换过程中,不能因为电池内阻引起的压降导致切换发生。例如,如果一个电池因放电过程中内阻引起的压降为0.05V,可以取预设阈值为0.06V,就可以同时满足以上两个条件。
放电电路如图7所示,其工作原理跟前面第一个实例可以是一样的,可以提高放电效率。
在本实例中,组成串联电池组的两个电池容量相同,所以可以直接采用9V电源输入,使用支持2节锂电池串联使用的充电回路(CHARGER),例如普通充电集成电路(Integrated Circuit,简称为IC)即可,如图8所示。
此外,本实例还有一个额外的优点是:由于电池在放电过程中能够通过切换网络实现均衡,可以省掉普通串联锂电池的充电均衡电路。
本领域的普通技术人员可以理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求范围当中。
工业实用性
本公开实施例中,移动电源由2级电源串联组成,在放电过程中,其中一级电源的输出电压,不经过电压转换直接输出,另外一级电源的输出电压,经过降压后,与前一级电源的输出电压叠加输出。具有传统产品难以达到的高转换效率,能量损失少,发热远低于传统产品,减少能量损失。

Claims (9)

  1. 一种移动电源,包括:第一电池、第二电池、电压输出接口和降压直流电压转换器,所述第一电池与所述第二电池串联,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,与所述第一电池的电压输出叠加。
  2. 如权利要求1所述的移动电源,其中,所述第一电池为锂电池,所述第二电池为锂电池。
  3. 如权利要求1所述的移动电源,所述降压直流电压转换器的转换电压输出根据所述第二电池的电压输出的变化确定,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后为预设电压。
  4. 如权利要求3所述的移动电源,还包括:比较器和反馈电路,所述反馈电路包括参考电压源、第一分压电阻R1和第二分压电阻R2,所述第一分压电阻R1和所述第二分压电阻R2串联后接在电源输出接口的两端,参考电压源和第二分压电阻的电压分别连接至所述比较器的两个比较值输入端,所述比较器的比较输出端连接至所述降压直流电压转换器的控制端,所述降压直流电压转换器根据比较器的使能信号控制转换电压输出,使得所述第一电池和所述第二电池的电压输出在所述电源输出接口叠加后为预设电压。
  5. 如权利要求1所述的移动电源,还包括:第一电池输入接口、升压直流电压转换器、第一充电电路和第二充电电路,所述第一电池输入接口的输入电压通过所述升压直流电压转换器和第一充电电路连接至第一电池,通过第二充电电路连接至第二电池。
  6. 如权利要求1所述的移动电源,还包括:开关切换电路:
    所述第一电池与所述第二电池串联后,经过所述开关切换电路,转换所述第一电池和第二电池的连接状态,使得所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口,或者,
    所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直 流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口。
  7. 如权利要求6所述的移动电源,其中,
    所述开关切换电路包括4个联动的单刀双掷开关,当4个所述单刀双掷开关连接在第一触点时,所述第一电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第二电池的电压输出至所述电源输出接口,当4个所述单刀双掷开关连接在第二触点时,所述第二电池的电压输出至所述降压直流电压转换器,经过所述降压直流电压转换器后输出至所述电源输出接口,所述第一电池的电压输出至所述电源输出接口。
  8. 如权利要求7所述的移动电源,还包括:减法器和触发器,所述减法器的两个输入端分别与所述第一电池和所述第二电池相连,所述减法器的输出端输出第一电池与第二电池的电压差值,当所述电压差值大于或者等于预设阈值时,所述触发器发出触发信号至所述开关切换电路,触发4个所述单刀双掷开关切换连接的触点。
  9. 如权利要求7所述的移动电源,还包括:第二电池输入接口、充电电路,所述第二电池输入接口的输入电压通过所述充电电路连接至所述开关切换电路。
PCT/CN2017/103219 2017-07-28 2017-09-25 一种移动电源 WO2019019338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710633385.9 2017-07-28
CN201710633385.9A CN109309397B (zh) 2017-07-28 2017-07-28 一种移动电源

Publications (1)

Publication Number Publication Date
WO2019019338A1 true WO2019019338A1 (zh) 2019-01-31

Family

ID=65039241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103219 WO2019019338A1 (zh) 2017-07-28 2017-09-25 一种移动电源

Country Status (2)

Country Link
CN (1) CN109309397B (zh)
WO (1) WO2019019338A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027890B2 (en) 2020-04-02 2024-07-02 Qualcomm Incorporated Modulating supply voltage generated by voltage regulator for transmission of data and power
CN111864843A (zh) * 2020-07-27 2020-10-30 Oppo广东移动通信有限公司 双电池充电装置和移动终端
CN113162153A (zh) * 2021-03-26 2021-07-23 上海闻泰信息技术有限公司 电池组件、电池组件的控制方法和终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904302A (zh) * 2012-09-28 2013-01-30 上海理工大学 高效率的太阳能充电装置及其充电方法
CN103051050A (zh) * 2012-12-29 2013-04-17 深圳市中兴昆腾有限公司 电源控制电路及矿用气体检测装置
JP2013110899A (ja) * 2011-11-23 2013-06-06 Bbj Hitech Kk 補助電源の付いた電動モータ制御機構
CN106471705A (zh) * 2014-07-07 2017-03-01 Fdk株式会社 不间断电源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940536B1 (ja) * 1998-02-09 1999-08-25 富士電機株式会社 無停電電源装置
TW472426B (en) * 1998-10-06 2002-01-11 Hitachi Ltd Battery apparatus and control system therefor
CN2588644Y (zh) * 2002-11-28 2003-11-26 袁正彪 直流电供电装置
TWI332742B (en) * 2006-04-21 2010-11-01 Delta Electronics Inc Uninterruptible power supply capable of providing sinusoidal-wave ouput ac voltage and method thereof
CN101325271B (zh) * 2008-07-30 2010-08-11 赵建和 一种串联电池组均衡管理装置
TW201406001A (zh) * 2012-07-27 2014-02-01 Min-Yi Li 鋰電池並聯充電串聯放電之方法及其裝置
CN103647316B (zh) * 2013-12-03 2016-01-06 深圳市雅格朗电子有限公司 一种串联锂电池组电源均衡管理系统
CN205960687U (zh) * 2016-07-07 2017-02-15 新际电子元件(杭州)有限公司 一种快速充电的移动电源
CN106253399B (zh) * 2016-08-24 2019-01-01 天津市天楚科技有限公司 一种移动电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110899A (ja) * 2011-11-23 2013-06-06 Bbj Hitech Kk 補助電源の付いた電動モータ制御機構
CN102904302A (zh) * 2012-09-28 2013-01-30 上海理工大学 高效率的太阳能充电装置及其充电方法
CN103051050A (zh) * 2012-12-29 2013-04-17 深圳市中兴昆腾有限公司 电源控制电路及矿用气体检测装置
CN106471705A (zh) * 2014-07-07 2017-03-01 Fdk株式会社 不间断电源装置

Also Published As

Publication number Publication date
CN109309397B (zh) 2024-05-14
CN109309397A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2015117515A1 (zh) 一种充放电电路及相应的移动终端
TWI587603B (zh) 具有降壓-升壓操作之電池充電器及用於為一電池充電之方法
CN104600813B (zh) 自适应输入电流限制的充电器及其控制方法
US20170288417A1 (en) Fast Charging Apparatus and Method
CN106487055B (zh) 电源管理电路、智能终端及充电方法
WO2012009935A1 (zh) 充电电路管理装置及无线终端
WO2019019338A1 (zh) 一种移动电源
CN106972566B (zh) 电池充电装置及电池充电方法
CN104410114B (zh) 一种移动电源
JP2015202024A (ja) モバイルバッテリー
WO2020191541A1 (zh) 供电装置、方法及电子设备
WO2017128619A1 (zh) 一种支持多电池快速充电的设备、装置及方法
JP3224344U (ja) インテリジェント型の交流/直流最大出力でバッテリを充電管理する充電装置
WO2012129974A1 (zh) 可充电电池的一种快速充电方法
CN102222942A (zh) 电子设备的供电电路及充电方法
WO2023147751A1 (zh) 调节电路、装置、与方法、电子设备及可读存储介质
CN109256825A (zh) 充电方法及电子装置
CN113036880A (zh) 充电装置、电子设备及充电方法
CN102437621A (zh) 便携式大容量多用能量包
CN108879860A (zh) 一种交流充电桩充电控制方法
RU98071U1 (ru) Система автоматического контроля и заряда аккумуляторных батарей
CN100477444C (zh) 充电装置
CN214479704U (zh) 供电装置和电子设备
CN112382809B (zh) 一种锂电池的智能辅热方法、设备及存储介质
CN108183611A (zh) 一种双向开关电路的控制装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918754

Country of ref document: EP

Kind code of ref document: A1