WO2019018241A1 - Receptor modulators and methods of use - Google Patents
Receptor modulators and methods of use Download PDFInfo
- Publication number
- WO2019018241A1 WO2019018241A1 PCT/US2018/042162 US2018042162W WO2019018241A1 WO 2019018241 A1 WO2019018241 A1 WO 2019018241A1 US 2018042162 W US2018042162 W US 2018042162W WO 2019018241 A1 WO2019018241 A1 WO 2019018241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- pain
- subject
- hydrogen
- glyr
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 150000001875 compounds Chemical class 0.000 claims abstract description 123
- 208000002193 Pain Diseases 0.000 claims abstract description 66
- 230000036407 pain Effects 0.000 claims abstract description 64
- 108010076533 Glycine Receptors Proteins 0.000 claims abstract description 57
- 102000011714 Glycine Receptors Human genes 0.000 claims abstract description 56
- 230000000694 effects Effects 0.000 claims abstract description 49
- 208000026251 Opioid-Related disease Diseases 0.000 claims abstract description 13
- 239000003814 drug Substances 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 31
- 239000008194 pharmaceutical composition Substances 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 229940124597 therapeutic agent Drugs 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- 230000037396 body weight Effects 0.000 claims description 18
- 238000001727 in vivo Methods 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 10
- 239000000935 antidepressant agent Substances 0.000 claims description 9
- 229940005513 antidepressants Drugs 0.000 claims description 9
- 239000003557 cannabinoid Substances 0.000 claims description 8
- 229930003827 cannabinoid Natural products 0.000 claims description 8
- 125000001072 heteroaryl group Chemical group 0.000 claims description 7
- 239000003589 local anesthetic agent Substances 0.000 claims description 7
- 230000000451 tissue damage Effects 0.000 claims description 7
- 231100000827 tissue damage Toxicity 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 208000004550 Postoperative Pain Diseases 0.000 claims description 6
- 125000005431 alkyl carboxamide group Chemical group 0.000 claims description 6
- 230000001430 anti-depressive effect Effects 0.000 claims description 6
- 229940111134 coxibs Drugs 0.000 claims description 6
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 claims description 6
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims description 6
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 5
- 230000002757 inflammatory effect Effects 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 206010020751 Hypersensitivity Diseases 0.000 claims description 4
- 208000026935 allergic disease Diseases 0.000 claims description 4
- 230000009610 hypersensitivity Effects 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 4
- 230000003387 muscular Effects 0.000 claims description 4
- 230000002981 neuropathic effect Effects 0.000 claims description 4
- 125000004193 piperazinyl group Chemical group 0.000 claims description 4
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 125000003386 piperidinyl group Chemical group 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000001475 halogen functional group Chemical group 0.000 claims 11
- 150000002431 hydrogen Chemical class 0.000 claims 11
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims 11
- 238000011282 treatment Methods 0.000 abstract description 23
- 102000005962 receptors Human genes 0.000 abstract description 19
- 108020003175 receptors Proteins 0.000 abstract description 19
- 230000009467 reduction Effects 0.000 abstract description 5
- 229940125904 compound 1 Drugs 0.000 description 52
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 42
- 239000000203 mixture Substances 0.000 description 39
- 239000003795 chemical substances by application Substances 0.000 description 32
- 241000699670 Mus sp. Species 0.000 description 28
- 235000002639 sodium chloride Nutrition 0.000 description 28
- 239000003981 vehicle Substances 0.000 description 23
- -1 hexane radical Chemical class 0.000 description 21
- 229960005181 morphine Drugs 0.000 description 21
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 20
- 230000000202 analgesic effect Effects 0.000 description 20
- 230000004044 response Effects 0.000 description 19
- 238000009472 formulation Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 201000010099 disease Diseases 0.000 description 14
- 229940079593 drug Drugs 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 229960004242 dronabinol Drugs 0.000 description 12
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 12
- 229940005483 opioid analgesics Drugs 0.000 description 12
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 11
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 11
- 125000005843 halogen group Chemical group 0.000 description 11
- 230000000917 hyperalgesic effect Effects 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- 239000004471 Glycine Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 229940126214 compound 3 Drugs 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 210000000287 oocyte Anatomy 0.000 description 8
- 241000269368 Xenopus laevis Species 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 238000013270 controlled release Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 231100000252 nontoxic Toxicity 0.000 description 7
- 230000003000 nontoxic effect Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 206010065390 Inflammatory pain Diseases 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- AAXZFUQLLRMVOG-UHFFFAOYSA-N 2-methyl-2-(4-methylpent-3-enyl)-7-propylchromen-5-ol Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCC)=CC(O)=C21 AAXZFUQLLRMVOG-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 4
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 210000000929 nociceptor Anatomy 0.000 description 4
- 108091008700 nociceptors Proteins 0.000 description 4
- 238000001543 one-way ANOVA Methods 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000000069 prophylactic effect Effects 0.000 description 4
- 208000011117 substance-related disease Diseases 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108091006146 Channels Proteins 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 208000004454 Hyperalgesia Diseases 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101100068851 Rattus norvegicus Glra1 gene Proteins 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229960001948 caffeine Drugs 0.000 description 3
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229940065144 cannabinoids Drugs 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 206010013663 drug dependence Diseases 0.000 description 3
- 230000007831 electrophysiology Effects 0.000 description 3
- 238000002001 electrophysiology Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 229940014259 gelatin Drugs 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 229960005015 local anesthetics Drugs 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000003040 nociceptive effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000010149 post-hoc-test Methods 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000020341 sensory perception of pain Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- GJJFMKBJSRMPLA-HIFRSBDPSA-N (1R,2S)-2-(aminomethyl)-N,N-diethyl-1-phenyl-1-cyclopropanecarboxamide Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)N(CC)CC)C[C@@H]1CN GJJFMKBJSRMPLA-HIFRSBDPSA-N 0.000 description 2
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 description 2
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- 0 *C(*)(C1(*)*I)c2cccc3c2c1ccc3C(N(*)Cc1cc(C(N(*)*)=O)ccc1)=O Chemical compound *C(*)(C1(*)*I)c2cccc3c2c1ccc3C(N(*)Cc1cc(C(N(*)*)=O)ccc1)=O 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- YJYIDZLGVYOPGU-XNTDXEJSSA-N 2-[(2e)-3,7-dimethylocta-2,6-dienyl]-5-propylbenzene-1,3-diol Chemical compound CCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 YJYIDZLGVYOPGU-XNTDXEJSSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 238000010953 Ames test Methods 0.000 description 2
- 231100000039 Ames test Toxicity 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 238000010152 Bonferroni least significant difference Methods 0.000 description 2
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 2
- 108050007331 Cannabinoid receptor Proteins 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 2
- 206010013754 Drug withdrawal syndrome Diseases 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 2
- 208000035154 Hyperesthesia Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 206010039897 Sedation Diseases 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 description 2
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000036592 analgesia Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003855 balanced salt solution Substances 0.000 description 2
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 2
- 229950011318 cannabidiol Drugs 0.000 description 2
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 229960003920 cocaine Drugs 0.000 description 2
- 229960004126 codeine Drugs 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229960002069 diamorphine Drugs 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 2
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 description 2
- 229960002428 fentanyl Drugs 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 2
- 229960000240 hydrocodone Drugs 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 2
- 229960001410 hydromorphone Drugs 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000000185 intracerebroventricular administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 240000004308 marijuana Species 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N methyl pentane Natural products CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 231100000243 mutagenic effect Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 239000000014 opioid analgesic Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229960002085 oxycodone Drugs 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- 230000037325 pain tolerance Effects 0.000 description 2
- 229960000482 pethidine Drugs 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000036280 sedation Effects 0.000 description 2
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- QMGVPVSNSZLJIA-FVWCLLPLSA-N strychnine Chemical compound O([C@H]1CC(N([C@H]2[C@H]1[C@H]1C3)C=4C5=CC=CC=4)=O)CC=C1CN1[C@@H]3[C@]25CC1 QMGVPVSNSZLJIA-FVWCLLPLSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 2
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 2
- 229960004688 venlafaxine Drugs 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- ZKMNUMMKYBVTFN-HNNXBMFYSA-N (S)-ropivacaine Chemical compound CCCN1CCCC[C@H]1C(=O)NC1=C(C)C=CC=C1C ZKMNUMMKYBVTFN-HNNXBMFYSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- REOZWEGFPHTFEI-JKSUJKDBSA-N Cannabidivarin Chemical compound OC1=CC(CCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-JKSUJKDBSA-N 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- GDLIGKIOYRNHDA-UHFFFAOYSA-N Clomipramine Chemical compound C1CC2=CC=C(Cl)C=C2N(CCCN(C)C)C2=CC=CC=C21 GDLIGKIOYRNHDA-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 101000921339 Dickeya chrysanthemi Cys-loop ligand-gated ion channel Proteins 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229940123685 Monoamine oxidase inhibitor Drugs 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- JUUFBMODXQKSTD-UHFFFAOYSA-N N-[2-amino-6-[(4-fluorophenyl)methylamino]-3-pyridinyl]carbamic acid ethyl ester Chemical compound N1=C(N)C(NC(=O)OCC)=CC=C1NCC1=CC=C(F)C=C1 JUUFBMODXQKSTD-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010052437 Nasal discomfort Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 208000001294 Nociceptive Pain Diseases 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- QMGVPVSNSZLJIA-UHFFFAOYSA-N Nux Vomica Natural products C1C2C3C4N(C=5C6=CC=CC=5)C(=O)CC3OCC=C2CN2C1C46CC2 QMGVPVSNSZLJIA-UHFFFAOYSA-N 0.000 description 1
- KYYIDSXMWOZKMP-UHFFFAOYSA-N O-desmethylvenlafaxine Chemical compound C1CCCCC1(O)C(CN(C)C)C1=CC=C(O)C=C1 KYYIDSXMWOZKMP-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 208000030053 Opioid-Induced Constipation Diseases 0.000 description 1
- 229920005689 PLLA-PGA Polymers 0.000 description 1
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 1
- 208000004983 Phantom Limb Diseases 0.000 description 1
- 206010056238 Phantom pain Diseases 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229940121991 Serotonin and norepinephrine reuptake inhibitor Drugs 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 241001279009 Strychnos toxifera Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 229930186949 TCA Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-ADUHFSDSSA-N [2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-yl] acetate Chemical group CC(=O)OC1=C(C)C(C)=C2OC(CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-ADUHFSDSSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 206010053552 allodynia Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003282 amino acid receptor affecting agent Substances 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 229950002412 anitrazafen Drugs 0.000 description 1
- HDNJXZZJFPCFHG-UHFFFAOYSA-N anitrazafen Chemical compound C1=CC(OC)=CC=C1C1=NN=C(C)N=C1C1=CC=C(OC)C=C1 HDNJXZZJFPCFHG-UHFFFAOYSA-N 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229950008049 apricoxib Drugs 0.000 description 1
- JTMITOKKUMVWRT-UHFFFAOYSA-N apricoxib Chemical compound C1=CC(OCC)=CC=C1C1=CC(C)=CN1C1=CC=C(S(N)(=O)=O)C=C1 JTMITOKKUMVWRT-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229960005274 benzocaine Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- 229960001058 bupropion Drugs 0.000 description 1
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- QXACEHWTBCFNSA-SFQUDFHCSA-N cannabigerol Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-SFQUDFHCSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229950010851 cimicoxib Drugs 0.000 description 1
- KYXDNECMRLFQMZ-UHFFFAOYSA-N cimicoxib Chemical compound C1=C(F)C(OC)=CC=C1C1=C(Cl)N=CN1C1=CC=C(S(N)(=O)=O)C=C1 KYXDNECMRLFQMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- ODQWQRRAPPTVAG-BOPFTXTBSA-N cis-doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)\C2=CC=CC=C21 ODQWQRRAPPTVAG-BOPFTXTBSA-N 0.000 description 1
- 229960001653 citalopram Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960004606 clomipramine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 229960001623 desvenlafaxine Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- INUNXTSAACVKJS-OAQYLSRUSA-N dextromoramide Chemical compound C([C@@H](C)C(C(=O)N1CCCC1)(C=1C=CC=CC=1)C=1C=CC=CC=1)N1CCOCC1 INUNXTSAACVKJS-OAQYLSRUSA-N 0.000 description 1
- 229960003701 dextromoramide Drugs 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- SVDHSZFEQYXRDC-UHFFFAOYSA-N dipipanone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)CC)CC(C)N1CCCCC1 SVDHSZFEQYXRDC-UHFFFAOYSA-N 0.000 description 1
- 229960002500 dipipanone Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960005426 doxepin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960002866 duloxetine Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960004341 escitalopram Drugs 0.000 description 1
- WSEQXVZVJXJVFP-FQEVSTJZSA-N escitalopram Chemical compound C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-FQEVSTJZSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 229960003976 etidocaine Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229960002524 firocoxib Drugs 0.000 description 1
- FULAPETWGIGNMT-UHFFFAOYSA-N firocoxib Chemical compound C=1C=C(S(C)(=O)=O)C=CC=1C=1C(C)(C)OC(=O)C=1OCC1CC1 FULAPETWGIGNMT-UHFFFAOYSA-N 0.000 description 1
- 229950005288 flumizole Drugs 0.000 description 1
- OPYFPDBMMYUPME-UHFFFAOYSA-N flumizole Chemical compound C1=CC(OC)=CC=C1C1=C(C=2C=CC(OC)=CC=2)NC(C(F)(F)F)=N1 OPYFPDBMMYUPME-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 229960003667 flupirtine Drugs 0.000 description 1
- 229960004038 fluvoxamine Drugs 0.000 description 1
- CJOFXWAVKWHTFT-XSFVSMFZSA-N fluvoxamine Chemical compound COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 CJOFXWAVKWHTFT-XSFVSMFZSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000000548 hind-foot Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000009539 inhibitory neurotransmission Effects 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001057 ionotropic effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- QRWOVIRDHQJFDB-UHFFFAOYSA-N isobutyl cyanoacrylate Chemical compound CC(C)COC(=O)C(=C)C#N QRWOVIRDHQJFDB-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- LEBVLXFERQHONN-INIZCTEOSA-N levobupivacaine Chemical compound CCCCN1CCCC[C@H]1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-INIZCTEOSA-N 0.000 description 1
- 229960004288 levobupivacaine Drugs 0.000 description 1
- 229960000685 levomilnacipran Drugs 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229940040511 liver extract Drugs 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- 229950007241 mavacoxib Drugs 0.000 description 1
- TTZNQDOUNXBMJV-UHFFFAOYSA-N mavacoxib Chemical compound C1=CC(S(=O)(=O)N)=CC=C1N1C(C=2C=CC(F)=CC=2)=CC(C(F)(F)F)=N1 TTZNQDOUNXBMJV-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 229960002409 mepivacaine Drugs 0.000 description 1
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960000600 milnacipran Drugs 0.000 description 1
- 229960001785 mirtazapine Drugs 0.000 description 1
- RONZAEMNMFQXRA-UHFFFAOYSA-N mirtazapine Chemical compound C1C2=CC=CN=C2N2CCN(C)CC2C2=CC=CC=C21 RONZAEMNMFQXRA-UHFFFAOYSA-N 0.000 description 1
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 238000011201 multiple comparisons test Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 230000004751 neurological system process Effects 0.000 description 1
- 208000021722 neuropathic pain Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- OIPZNTLJVJGRCI-UHFFFAOYSA-M octadecanoyloxyaluminum;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC(=O)O[Al] OIPZNTLJVJGRCI-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229940124641 pain reliever Drugs 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 1
- 229960005301 pentazocine Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940113116 polyethylene glycol 1000 Drugs 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000012354 positive regulation of binding Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 229960001807 prilocaine Drugs 0.000 description 1
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229960002601 protriptyline Drugs 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003653 radioligand binding assay Methods 0.000 description 1
- 229940075993 receptor modulator Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229960000205 robenacoxib Drugs 0.000 description 1
- ZEXGDYFACFXQPF-UHFFFAOYSA-N robenacoxib Chemical compound OC(=O)CC1=CC(CC)=CC=C1NC1=C(F)C(F)=CC(F)=C1F ZEXGDYFACFXQPF-UHFFFAOYSA-N 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 229960001549 ropivacaine Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 1
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 1
- 229960003946 selegiline Drugs 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000003775 serotonin noradrenalin reuptake inhibitor Substances 0.000 description 1
- 229960002073 sertraline Drugs 0.000 description 1
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- ILJOYZVVZZFIKA-UHFFFAOYSA-M sodium;1,1-dioxo-1,2-benzothiazol-3-olate;hydrate Chemical compound O.[Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 ILJOYZVVZZFIKA-UHFFFAOYSA-M 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005453 strychnine Drugs 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000005400 testing for adjacent nuclei with gyration operator Methods 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000005309 thioalkoxy group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229950001953 tilmacoxib Drugs 0.000 description 1
- MIMJSJSRRDZIPW-UHFFFAOYSA-N tilmacoxib Chemical compound C=1C=C(S(N)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 MIMJSJSRRDZIPW-UHFFFAOYSA-N 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 229960003991 trazodone Drugs 0.000 description 1
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- 229960002431 trimipramine Drugs 0.000 description 1
- ZSCDBOWYZJWBIY-UHFFFAOYSA-N trimipramine Chemical compound C1CC2=CC=CC=C2N(CC(CN(C)C)C)C2=CC=CC=C21 ZSCDBOWYZJWBIY-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229960003740 vilazodone Drugs 0.000 description 1
- UXDQRXUZPXSLJK-UHFFFAOYSA-N vilazodone Chemical compound C1=CC(C#N)=C[C]2C(CCCCN3CCN(CC3)C=3C=C4C=C(OC4=CC=3)C(=O)N)=CN=C21 UXDQRXUZPXSLJK-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229960002263 vortioxetine Drugs 0.000 description 1
- YQNWZWMKLDQSAC-UHFFFAOYSA-N vortioxetine Chemical compound CC1=CC(C)=CC=C1SC1=CC=CC=C1N1CCNCC1 YQNWZWMKLDQSAC-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/452—Piperidinium derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/166—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the carbon of a carboxamide group directly attached to the aromatic ring, e.g. procainamide, procarbazine, metoclopramide, labetalol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
Definitions
- Embodiments of the disclosed compounds may be useful for treatment of pain, for treatment of opioid addiction, and/or for reduction of side effects attributable to opioid use.
- Pain is defined by the International Association for the Study of Pain (IASP) as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage” (IASP, Classification of chronic pain, 2.sup.nd Edition, IASP Press (2002), 210). Physiological and psychological factors affect the perception of pain. Some of the relevant pain subtypes are nociceptive pain,
- inflammatory pain neuropathic pain, idiopathic pain, phantom pain, allodynia, hyperalgesia, and peripheral neuropathy.
- Postsurgical pain (interchangeably termed, post-incisional pain), or pain that occurs after surgery or traumatic injury, is serious and often intractable. Pain is usually localized within the vicinity of the surgical site. Post-surgical pain can have two clinically important aspects, namely resting pain, or pain that occurs when the patient is not moving, and mechanical pain which is exacerbated by movement (coughing/sneezing, getting out of bed, physiotherapy, etc.). Drugs that are used to treat this pain often have a variety of side effects that delay recovery, prolong hospitalization and can have debilitating complications.
- opioid analgesics used to treat various forms of pain
- local anesthetics e.g. non-steroidal anti-inflammatory drugs (NSAID), anti -depressants, and cannabinoids
- Local anesthetics e.g. channel blockers
- opioid analgesics e.g. channel blockers
- opioid analgesics e.g. channel blockers
- NSAIDs non-steroidal anti-inflammatory drugs
- anti-depressants e.g. channel blockers
- cannabinoids e.g. channel blockers
- all the major classes of drugs for the treatment of pain are associated with risks of drug tolerance, dependence, or abuse.
- Analgesic tolerance often leads to hyperalgesia, requiring higher and higher doses of medication.
- prescription drugs for pain, or painkillers kill twice as many people as cocaine and five times as many people as heroin ⁇ Harvard Mental Health Letter, 27:4-5, 2011).
- the analgesic effects of THC are attributed to its potentiation of glycine receptors (Xiong et al. Nat Chem Biol, 2011).
- the representative compound was identified through the structure determination of the THC binding site and computational screening of a library of drug-like molecules at the binding site where THC is known to modulate glycine receptors.
- In vitro electrophysiology measurements of GlyR channel functions confirm intended modulations by the representative compound (Fig. 1, 2).
- In vivo behavior tests in C57BL/6 and CD1 mice validate the analgesic action of the representative compound in response to inflammation (Fig. 4).
- Many of the adverse effects from drugs of abuse are due to their action on targets other than glycine receptors.
- THC produces motor impairment and psychosis through modulation of cannabinoid receptors (Pacher et al., Pharmacol Rev, 2006). Therefore, compounds selectively targeting the glycine receptors are advantageous for human use.
- the receptor modulators are compounds having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof:
- R 1 , R 2 , R 3 , and R 4 independently are hydrogen, halo, or hydroxy
- R 5 is hydrogen, halo, Ci- Cio alkyl, or hydroxy
- R 6 and R 7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci- Cio alkyl carboxamide, or R 6 and R 7 together with the nitrogen to which they are bound form a heterocycloaliphatic or heteroaryl group
- n is 0, 1, 2, or 3.
- Embodiments of the disclosed compounds are useful for modulating activity of a receptor, such as glycine receptor (GlyR), reducing pain in a subject, treating opioid addiction in a subject, and/or reducing side effects attributable to opioid use in a subject.
- a receptor such as glycine receptor (GlyR)
- GlyR glycine receptor
- a method of modulating a GlyR includes contacting the GlyR with an effective amount of a compound as disclosed herein.
- the compound enhances or inhibits activity of the GlyR.
- the GlyR is human alGlyR, a2GlyR, a3GlyR, aipGlyR, a2pGlyR, a3pGlyR, or a combination thereof.
- the GlyR may be contacted in vitro, ex vivo, or in vivo, e.g., by administering the compound or a pharmaceutically acceptable salt thereof to a subject.
- a method for reducing pain in a subject includes administering to the subject an effective amount of a compound as disclosed herein.
- the pain may be inflammatory hypersensitivity, postsurgical pain, pain associated with tissue damage, pain from infection, pain from a neuropathic condition, pain from a skeletal muscular condition, or a combination thereof.
- a method for treating opioid addiction and/or reducing side effects attributable to opioid use in a subject includes administering to the subject an effective amount of a compound as disclosed herein.
- administering the effective amount of the compound to the subject may include administering an amount of a pharmaceutical composition comprising the effective amount of the compound to the subject.
- the effective amount of the compound may be within a range of from 0.001 - 100 mg/kg body weight.
- the compound and a second therapeutic agent may be co-administered to the subject, wherein the second therapeutic agent is an opioid, nonsteroidal anti-inflammatory drug, COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or antiinflammatory steroid.
- Co-administration may be performed simultaneously or sequentially in any order.
- the compound and the second therapeutic agent are simultaneously administered to the subject in a single pharmaceutical composition.
- the compound and the second therapeutic agent are administered in separate pharmaceutical compositions by the same or different routes of administration.
- the second therapeutic agent may be an opioid, and the opioid is administered in an amount that is subclinical by itself.
- FIG. 1 is a graph showing modulation of human a3GlyR expressed in Xenopus laevis oocytes activated by 2% maximal effective concentration of glycine in the presence of a compound as disclosed herein (compound 1).
- FIGS. 2A and 2B are bar graphs showing modulation of human GlyR subtypes expressed in Xenopus laevis oocytes activated by 2% (FIG. 2A) and 20% (FIG. 2B) maximal effective concentration of glycine in the presence of compound 1.
- FIGS. 3A-3H are bar graphs showing the modulation of several disclosed compounds on human glycine receptor subtypes (alGlyR - 1 st and 3 rd bars, and a3GlyR - 2 nd and 4 th bars) expressed in Xenopus laevis oocytes activated by 2% (1 st and 2 nd bars) or 20% (3 rd and 4 th bars) maximal effective concentration of glycine.
- the assessed compounds were compound 1 (3 A), 2 (3B), 3 (3C), 4 (3D), 5 (3E), 6 (3F), 7 (3G), and 8 (3H).
- FIG. 4 is a graph showing an increase in response time (decrease in pain sensation) in C57B1/6J mice to the Hargreaves test under compete Freund's adjuvant (CFA)-induced
- FIG. 5 is a bar graph showing synergistically increased pain tolerance in mice during a two- plate thermal preference test when combining compound 1 with morphine.
- FIG. 6 is a graph showing increased pain tolerance in mice under CFA-induced
- hyperalgesic conditions after administration of compound 1 in combination with morphine after administration of compound 1 in combination with morphine.
- FIGS. 7 A and 7B are graphs showing that repeated doses of compound 1 herein do not generate tolerance in mice under CFA-induced hyperalgesic conditions.
- a repeated dose was administered 1.5 hours (7 A) or 24 hours (7B) after the effects of a first dose wore off.
- FIGS. 8A-8H are bar graphs showing responses of CD1 mice to the Hargreaves test after application of 0.1 mg/kg of several disclosed compounds (black) or vehicle (white) under CFA- induced hyperalgesic conditions.
- the assessed compounds were compound 1 (8A), 2 (8B), 3 (8C), 4 (8D), 5 (8E), 6 (8F), 7 (8G), and 8 (8H).
- FIG. 9 is a bar graph showing duration of analgesic effects provided by compounds 3 and 4.
- FIG. 10 is an in vivo dose response curve for compound 1 (identified as MJPYl in FIG. 10) showing that the EC50 for inflammatory pain is -0.03 mg/kg in CD1 mice.
- FIG. 11 is a bar graph demonstrating that the analgesic action of compound 1 (identified as MJPYl) and compound 3 (identified as MJPY2) was better than morphine under the same dose in the non-invasive thermal preference test in mice.
- FIG. 12 is a bar graph showing that compound 1 potentiates a3GlyR through binding to the THC -binding site near S296 in the transmembrane domain (TMD).
- FIG. 13 is a bar graph demonstrating that the analgesic efficacies of compound 1 (identified as MJPYl) and compound 3 (identified as MJPY2) did not decrease after repeated drug exposure.
- FIG. 14 is a bar graph showing no mutagenic activity from compound 1 in the in vitro Ames toxicity test.
- FIG. 15 is a scatter plot the in vivo immune responses from flow cytometry from mice exposed to compound 1.
- FIG. 16 is a graph showing that compound 1 has no activity on cannabinoid receptors.
- Embodiments of compounds and methods for modulating the activity of receptors are disclosed.
- the disclosed compounds are useful for analgesia, and may be useful for treating opioid addiction and/or reducing side effects attributable to opioid use, e.g., by reducing pain so that opioid dosages may be reduced.
- Embodiments of the disclose compounds represent a novel class of receptor modulators for the treatment of pain and/or opioid addiction.
- the compounds modulate one or more glycine receptors (GlyR).
- GlyR glycine receptors
- Certain embodiments of the disclosed compounds have shown profound analgesic effects in treating inflammatory hypersensitivity with no effect on normal nociception.
- New formulations of this class of modulators with greatly reduced requirement for opioids can be used to eliminate many of the undesirable side effects associated with a high dose of opioids, including drug dependence, tolerance, addiction, sedation, and nausea.
- the disclosed class of compounds is not previously known to contribute to analgesia, either alone or in
- C1-C5 alkyl is specifically intended to individually disclose CI, C2, C3, C4, C5, C1-C5, C1-C4, C1-C3, C1-C2, C2-C5, C2-C4, C2-C3, C3-C5, C3-C4, and C4-C5 alkyl.
- Aliphatic A substantially hydrocarbon-based compound, or a radical thereof (e.g., C 6 Hi3, for a hexane radical), including alkanes, alkenes, alkynes, including cyclic versions thereof, and further including straight- and branched-chain arrangements, and all stereo and position isomers as well.
- an aliphatic group contains from one to twenty-five carbon atoms; for example, from one to fifteen, from one to ten, from one to six, or from one to four carbon atoms.
- an aliphatic group can either be unsubstituted or substituted.
- substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, alkylamino, alkylthio, acyl, aldehyde, amide, amino, aminoalkyl, aryl, arylalkyl, carboxyl, cyano, cycloalkyl, dialkylamino, halo, haloaliphatic, heteroaliphatic, heteroaryl, heterocycloaliphatic, hydroxyl, oxo, sulfonamide, sulfhydryl, thioalkoxy, or other functionality.
- Alkyl A hydrocarbon group having a saturated carbon chain.
- the chain may be cyclic, branched or unbranched.
- alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, sec-butyl, tert- butyl), pentyl, hexyl, heptyl, octyl, nonyl and decyl.
- an alkyl group can either be unsubstituted or substituted.
- Carboxamide A group having a general structure -C(0) R'R", wherein R' and R" independently are hydrogen or alkyl.
- An alkyl carboxamide group has a general structure - RC(0) R'R", wherein R is an alkyl group and R' and R" independently are hydrogen or alkyl.
- Effective amount An amount sufficient to effect a change, such as a change in activity or function of a glycine receptor.
- Excipient A physiologically inert substance that is used as an additive in a pharmaceutical composition. As used herein, an excipient may be incorporated within particles of a pharmaceutical composition.
- excipient can be used, for example, to dilute an active agent and/or to modify properties of a pharmaceutical composition.
- excipients include but are not limited to polyvinylpyrrolidone (PVP), tocopheryl polyethylene glycol 1000 succinate (also known as vitamin E TPGS, or TPGS), dipalmitoyl phosphatidyl choline (DPPC), trehalose, sodium bicarbonate, glycine, sodium citrate, and lactose.
- PVP polyvinylpyrrolidone
- DPPC dipalmitoyl phosphatidyl choline
- trehalose sodium bicarbonate
- glycine sodium citrate
- lactose lactose
- Glycine receptor The receptor for the amino acid neurotransmitter glycine. GlyR is an ionotropic receptor that produces its effects through a chloride current. It is an inhibitory receptor that is found throughout the central nervous system. This receptor has important roles in a variety of physiological processes, such as for mediating inhibitory neurotransmission in the spinal cord and brain stem. GlyR can be activated by glycine, ⁇ -alanine and taurine, and can be selectively blocked by the high-affinity competitive antagonist strychnine. Caffeine is an antagonist of this receptor.
- GlyR glycine receptor
- TMD transmembrane domain
- Exemplary sequences for the GlyR are shown in GE BANK Accession Nos. M_001 146040.1 (NP_001139512.1), and NM 000171.3. ( P_000162.2), all incorporated by reference herein as available on December 9, 2013.
- the TMD of the GlyR al and a3 subunits harbors a novel cannabinoid-binding site that mediates marijuana's analgesic effects but not the psychoactive effects (Nature Chemical Biology, 7:296-303, 2011; Journal of
- the human body has few or no glycine receptors in the peripheral nervous system.
- Halogen includes fluorine, chlorine, bromine, and iodine.
- halo includes fluoro, chloro, bromo, and iodo.
- Heteroaliphatic An aliphatic compound or group having at least one heteroatom, i.e., one or more carbon atoms has been replaced with an atom having at least one lone pair of electrons, typically nitrogen, oxygen, phosphorus, silicon, or sulfur.
- Heteroaliphatic compounds or groups may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and include "heterocycle", “heterocyclyl”, “heterocycloaliphatic", or "heterocyclic” groups.
- Heteroaryl An aromatic compound or group having at least one heteroatom, i.e., one or more carbon atoms in the ring has been replaced with an atom having at least one lone pair of electrons, typically nitrogen, oxygen, phosphorus, silicon, or sulfur.
- Nociception Neural process of encoding and processing a noxious stimulus.
- Nociceptor A receptor at the end of a sensory neuron's axon, which responds to damaging or potentially damaging stimuli.
- Nociceptors include thermal, mechanical, chemical,
- Pain An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (IASP, Classification of chronic pain, second Edition, IASP Press (2002), 210).
- the pain is medicated by nociceptors. Pain includes postsurgical pain, pain associates with tissue damage, pain from inflammation, pain from infection (shingles), pain from neuropathic conditions, and pain from skeletal muscular conditions.
- compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compositions and additional pharmaceutical agents are conventional.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- the pharmaceutically acceptable carrier may be sterile to be suitable for administration to a subject (for example, by parenteral, intramuscular, or subcutaneous injection).
- pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- the pharmaceutically acceptable carrier is a non-naturally occurring or synthetic carrier.
- the carrier also can be formulated in a unit-dosage form that carries a preselected therapeutic dosage of the active agent, for example in a pill, vial, bottle, or syringe.
- compositions A biologically compatible salt of a compound that can be used as a drug, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic salt of a compound that can be used as a drug, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic
- salts of organic or inorganic acids such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like.
- Pharmaceutically acceptable acid addition salts are those salts that retain the biological effectiveness of the free bases while formed by acid partners that are not biologically or otherwise undesirable, e.g., inorganic acids such as
- hydrochloric acid hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, benzene sulfonic acid (besylate), cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, ⁇ -toluenesulfonic acid, salicylic acid and the like.
- organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, benzene sulf
- Pharmaceutically acceptable base addition salts include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like.
- Exemplary salts are the ammonium, potassium, sodium, calcium, and magnesium salts.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2- dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine,
- salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethyl
- methylglucamine methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins, and the like.
- exemplary organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine.
- Stereoisomers Compounds described herein can contain an asymmetric atom (also referred as a chiral center) and some of the compounds can contain two or more asymmetric atoms or centers, which can thus give rise to stereoisomers. Stereoisomers have the same molecular formula and sequence of bonded atoms, but differ only in the three-dimensional orientation of the atoms in space. Stereoisomers that are not mirror images of one another are termed
- enantiomers and those that are non-superimposable mirror images of each other are termed “enantiomers.”
- enantiomers When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible.
- An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-) isomers respectively).
- a chiral compound can exist as either individual enantiomer or as a mixture thereof.
- optical isomers can be obtained in enantiomerically enriched or pure form by standard procedures known to those skilled in the art, which include, for example, chiral separation, diastereomeric salt formation, kinetic resolution, and asymmetric synthesis.
- E/Z isomers are isomers that differ in the stereochemistry of a double bond.
- An E isomer (from Chrysler, the German word for "opposite") has a trans-configuration at the double bond, in which the two groups of highest priority are on opposite sides of the double bond.
- a Z isomer (from Milton, the German word for "together") has a c/s-configuration at the double bond, in which the two groups of highest priority are on the same side of the double bond.
- the compounds of the present teachings encompass all possible regioisomers in pure form and mixtures thereof.
- the preparation of the present compounds can include separating such isomers using standard separation procedures known to those skilled in the art, for example, by using one or more of column chromatography, thin-layer chromatography, simulated moving- bed chromatography, and high-performance liquid chromatography.
- mixtures of regioisomers can be used similarly to the uses of each individual regioisomer of the present teachings as described herein and/or known by a skilled artisan. It is specifically contemplated that the depiction of one regioisomer includes any other regioisomers and any regioisomeric mixtures unless specifically stated otherwise.
- Subclinical/subtherapeutic dose A dose that is too low to produce a therapeutic effect in a subject, e.g., too low to treat the disease for which it is administered and/or too low to have a therapeutic effect.
- a subclinical dose of an opioid is insufficient to fully ameliorate pain in a subject and/or to reduce pain to a tolerable level in the subject.
- Tautomers Constitutional isomers of organic compounds that differ only in the position of the protons and electrons, and are interconvertible by migration of a hydrogen atom. Tautomers ordinarily exist together in equilibrium.
- Therapeutic agent An agent that provides a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
- Therapeutically effective amount An amount sufficient to provide a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
- Therapeutic time window The length of time during which an effective, or therapeutic dose, of a compound remains therapeutically effective in vivo.
- Treating or treatment With respect to disease, either term includes (1) preventing the disease, e.g., causing the clinical symptoms of the disease not to develop in an animal that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, e.g., arresting the development of the disease or its clinical symptoms, or (3) relieving the disease, e.g., causing regression of the disease or its clinical symptoms.
- a receptor modulator is a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof:
- R 1 , R 2 , R 3 , and R 4 independently are hydrogen, halo, or hydroxy
- R 5 is hydrogen, halo, Ci- Cio alkyl, or hydroxy
- R 6 and R 7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci- Cio alkyl carboxamide, or R 6 and R 7 together with the nitrogen to which they are bound form an optionally substituted heterocycloaliphatic or heteroaryl group
- n is 0, 1, 2, or 3.
- the compound has a structure according to formula II or formula
- R x -R 4 may be hydrogen
- R 5 may be hydrogen, halo, C1-C5 alkyl, or hydroxy. In certain embodiments, R 5 is hydrogen. In an independent embodiment, R 5 is C1-C3 alkyl.
- R 6 and R 7 independently may be hydrogen, halo, methyl, ethyl, propyl, isopropyl, hydroxy, or -CH2C(0) H2, or R 6 and R 7 together with the nitrogen to which they are bound may form a substituted or unsubstituted piperidinyl or piperazinyl group.
- R 6 and R 7 are hydrogen.
- R 6 and R 7 are methyl.
- one of R 6 and R 7 is hydrogen, and the other of R 6 and R 7 is C1-C3 alkyl.
- one of R 6 and R 7 is hydrogen, and the other of R 6 and R 7 is -CH2C(0) H2.
- R 6 and R 7 together with the nitrogen to which they are bound form a piperidinyl group.
- R 6 and R 7 together with the nitrogen to which they are bound form a piperazinyl group, such as a substituted piperazinyl group, e.g., a 3-oxopiperazinyl group.
- Embodiments of the disclosed pharmaceutical compositions include a compound according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable additive such as pharmaceutically acceptable carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice.
- Pharmaceutical compositions can also include one or more additional active ingredients such as anti-arrhythmia agents, anti-hypertension agents, antimicrobial agents, anti-inflammatory agents, anesthetics, and the like.
- the pharmaceutically acceptable carriers useful for these formulations are conventional. Remington 's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 19th Edition (1995), for example, describes compositions and formulations suitable for pharmaceutical delivery of the compounds herein disclosed.
- the pharmaceutical compositions may be in a dosage unit form such as an injectable fluid, an oral delivery fluid (e.g., a solution or suspension), a nasal delivery fluid (e.g., for delivery as an aerosol or vapor), a semisolid form (e.g., a topical cream), or a solid form such as powder, pill, tablet, or capsule forms.
- a dosage unit form such as an injectable fluid, an oral delivery fluid (e.g., a solution or suspension), a nasal delivery fluid (e.g., for delivery as an aerosol or vapor), a semisolid form (e.g., a topical cream), or a solid form such as powder, pill, tablet, or capsule forms.
- parenteral formulations usually contain injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- injectable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like
- solid compositions for example, powder, pill, tablet, or capsule forms
- conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate.
- compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- non-toxic auxiliary substances such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- the agents can be any compounds (hereinafter referred to as "the agents") disclosed herein.
- the agents can be administered ex vivo by direct exposure to cells, tissues or organs originating from a subject.
- the agents can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound.
- Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid, and the like.
- isotonizing agents for example, sodium chloride, mannitol, sorbitol
- adsorption inhibitors for example, Tween ® 80 polyethylene sorbitol ester or Miglyol ® 812 triglycerides
- solubility enhancing agents for example, cyclodextrins and derivatives thereof
- stabilizers for example, serum albumin
- reducing agents for example, glutathione
- Adjuvants such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, NJ), Freund's adjuvant, MPLTM (3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, IN) and IL-12 (Genetics Institute, Cambridge, MA), among many other suitable adjuvants well known in the art, can be included in the compositions.
- the tonicity of the formulation as measured with reference to the tonicity of 0.9% (w/v) physiological saline solution taken as unity, is typically adjusted to a value at which no substantial, irreversible tissue damage will be induced at the site of administration.
- the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0, or about 0.8 to about 1.7.
- the agents can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound, and any desired additives.
- the base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of
- polycarboxylic acids or salts thereof carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like, and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid, and nontoxic metal salts thereof.
- carboxylic anhydrides for example, maleic anhydride
- monomers for example, methyl (meth)acrylate, acrylic acid and the like
- hydrophilic vinyl polymers such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like
- natural polymers such as chitosan, collagen, sodium alginate
- a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly(hydroxybutyric acid- glycolic acid) copolymer and mixtures thereof.
- synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles.
- Hydrophilic polymers and other vehicles can be used alone or in combination, and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like.
- the vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders, microspheres and films for direct application to a mucosal surface.
- the agents can be combined with the base or vehicle according to a variety of methods, and release of the agents can be by diffusion, disintegration of the vehicle, or associated formation of water channels.
- the agent is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2- cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43 : 1-5, 1991), and dispersed in a biocompatible dispersing medium, which yields sustained delivery and biological activity over a protracted time.
- compositions of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan
- conventional nontoxic pharmaceutically acceptable vehicles can be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
- compositions for administering the agents can also be formulated as a solution, microemulsion, or other ordered structure suitable for high concentration of active ingredients.
- the vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- polyol for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like
- suitable mixtures thereof for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations, and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols, such as mannitol and sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- the agents can be administered in a time release formulation, for example in a composition which includes a slow release polymer.
- a composition which includes a slow release polymer can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin.
- controlled release binders suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the compound and/or other biologically active agent. Numerous such materials are known in the art.
- Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface, or in the presence of bodily fluids).
- Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations.
- biocompatible compounds are non-toxic and inert to surrounding tissues, and do not trigger significant adverse side effects, such as nasal irritation, immune response, inflammation, or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
- Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity.
- Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid).
- Other useful biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone),
- polyamides such as poly(hydroxyethyl methacrylate), polyamides, poly(amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-a
- microcapsules U.S. Patent Nos. 4,652,441 and 4,917,893
- lactic acid-glycolic acid copolymers useful in making microcapsules and other formulations U.S. Patent Nos. 4,677,191 and 4,728,721
- sustained-release compositions for water-soluble peptides U.S. Patent No. 4,675,189
- compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use.
- Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein.
- methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- the agent can be delivered to a subject in a manner consistent with conventional methodologies associated with management of the disorder for which treatment or prevention is sought.
- a prophylactically or therapeutically effective amount of the agent is
- the administration of the agents can be for either prophylactic or therapeutic purpose.
- the agents are provided in advance of any symptom.
- the prophylactic administration of the agents serves to prevent or ameliorate any subsequent pain or opioid withdrawal symptom.
- the agents are provided at (or shortly after) the onset of an undesirable symptom, e.g., pain or opioid withdrawal symptom.
- the agents can be administered to the subject by the oral route or in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period, or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol).
- the therapeutically effective dosages of the agents can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject.
- Suitable models in this regard include, for example, murine, rat, avian, porcine, feline, non-human primate, and other accepted animal model subjects known in the art.
- effective dosages can be determined using in vitro models. Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the compound (for example, amounts that are effective to elicit a desired immune response or alleviate one or more symptoms of a targeted disease).
- an effective amount or effective dose of the agents may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition, as set forth herein, for either therapeutic or diagnostic purposes.
- the actual dosages of the agents will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the agent for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the agent is outweighed in clinical terms by therapeutically beneficial effects.
- a non-limiting range for a therapeutically effective amount of an agent within the methods and formulations of the disclosure is 0.001 mg/kg body weight to 100 mg/kg body weight, such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.01 mg/kg body weight to 10 mg/kg body weight 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight.
- Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, systemic circulation). Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal or oral delivery versus intravenous or subcutaneous delivery. Dosage can also be adjusted based on the release rate of the administered formulation, for example, of sustained release oral versus injected particulate or transdermal delivery formulations, and so forth.
- Embodiments of the disclosed compounds may be used for reducing pain in a subject, for treating opioid addiction, for reducing side effects attributable to opioid use in a subject, and/or for modulating a receptor, such as a glycine receptor (GlyR).
- GlyR glycine receptor
- Certain embodiments of the disclosed compounds can be co-administered with an opioid to ameliorate pain in a subject with greatly reduced opioid dosage, thereby eliminating undesirable side effects associated with high doses of opioids, including drug dependence, tolerance, addiction, sedation, opioid-induced constipation, and/or nausea.
- Some embodiments of the disclosed compounds modulate specific GlyR subtypes by binding to an interfacial site within the transmembrane domain of the receptor. This same site has previously been shown to be responsible for GlyR modulation by tetrahydrocannabinol (THC), the primary psychoactive and analgesic component of cannabis. THC binding to GlyR at this site is known to produce an analgesic effect in mammals.
- THC tetrahydrocannabinol
- certain embodiments of the disclosed receptor modulators demonstrate analgesic synergy with opioids, greatly reducing the dosage of opioids such as morphine required to achieve the same pharmacological effects.
- Embodiments of a method for modulating a GlyR including contacting the GlyR with an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof. Contacting the GlyR with the effective amount of the compound may enhance or inhibit activity of the GlyR.
- the GlyR is a human GlyR. Human GlyRs include alGlyR, a2pGlyR, a3GlyR, alpGlyR, a2pGlyR, a3pGlyR, and combinations thereof.
- the GlyR is contacted in vitro.
- the compound is administered ex vivo by direct exposure to cells, tissues or organs originating from a subject.
- the GlyR is contacted in vivo.
- the GlyR may be contacted in vivo by administering the effective amount of the compound or pharmaceutically acceptable salt thereof to a subject, such as a human.
- Embodiments of a method for reducing pain in a subject include administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
- the pain may be any type of pain including, but not limited to, inflammatory hypersensitivity, postsurgical pain, pain associated with tissue damage, pain from infection, pain from a neuropathic condition, pain from a skeletal muscular condition, or any combination thereof.
- Embodiments of a method for treating opioid addiction and/or reducing side effects attributable to opioid use in a subject include administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
- administering the effective amount of the compound according to formula I to a subject may comprise administering an amount of a pharmaceutical composition comprising the effective amount of the compound to the subject.
- Administration may be by any suitable route including by intramuscular, subcutaneous, intravenous, intra-arterial, intra-articular, intraperitoneal, intrathecal, intracerebroventricular, parenteral, oral, rectal, intranasal, intrapulmonary, transdermal, or topical routes.
- the effective amount of the compound may be within a range of from
- 0.001 mg/kg body weight to 100 mg/kg body weight such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.01 mg/kg body weight to 10 mg/kg body weight 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight.
- administration of the compound according to formula I may be sufficient to modulate a GlyR, reduce pain, and/or reduce or treat opioid addiction in a subject. In other embodiments, it may be beneficial to administer the compound according to formula I in combination with a second therapeutic agent to the subject.
- the compound may be co-administered with a second therapeutic agent to a subject.
- the second therapeutic agent is an opioid, analgesic, nonsteroidal anti-inflammatory drug (NSAID), COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid, or any combination thereof.
- Opioids include heroin, fentanyl, oxycodone, hydrocodone, hydromorphone, codeine, morphine, meperidine, methadone, and naloxone, among others.
- Analgesics include opioid and non-opioid pain relievers, such as morphine, fentanyl, hydromorphone, oxycodone, codeine, acetaminophen, hydrocodone, buprenorphine, tramadol, venlafaxine, flupirtine, meperidine, pentazocine, dextromoramide, and dipipanone, among others.
- opioid and non-opioid pain relievers such as morphine, fentanyl, hydromorphone, oxycodone, codeine, acetaminophen, hydrocodone, buprenorphine, tramadol, venlafaxine, flupirtine, meperidine, pentazocine, dextromoramide, and dipipanone, among others.
- NSAIDs include aspirin, ibuprofen, ketoprofen, piroxicam, and COX-2 inhibitors, among others.
- COX-2 inhibitors include rofecoxib, celecoxib, tilmacoxib, cimicoxib, mavacoxib, firocoxib, valdecoxib, apricoxib, robenacoxib, flumizole, and anitrazafen, among others.
- Cannabinoids include cannabigerol (CBG), A 9 -tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerivarin (CBGV), tetrahydrocannabivarin, (THCV), cannabidivarin (CBDV), and cannabichromevarin (CBCV), among others.
- Antidepressants include selective serotonin reuptake inhibitors (SSRIs, e.g., citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline), serotonin-norepinephrine reuptake inhibitors (S RIs, e.g., desvenlafaxine, duloxetine, venlafaxine, milnacipran, and levomilnacipran), tricyclic SSRIs, e.g., citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline), serotonin-norepinephrine reuptake inhibitors (S RIs, e.g., desvenlafaxine, duloxetine, venlafaxine, milnacipran, and levomilnacipran), tricyclic
- SSRIs selective serotonin reuptake inhibitors
- TCAs amitriptyline, desipramine, doxepine, imipramine, nortriptyline, amoxapine, clomipramine, maprotiline, trimipramine, and protriptyline
- MAOIs monoamine oxidase inhibitors
- phenelzine selegiline
- tranylcypromine atypical antidepressants
- Local anesthetics include lidocaine, mepivacaine, prilocaine, bupivacaine, etidocaine, ropivacaine, levobupivacaine, cocaine, procaine, tetracaine, chloroprocaine, and benzocaine, among others.
- Anti-inflammatory steroids include betamethasone, prednisone, dexamethasone, cortisone, hydrocortisone, methylprednisolone, and prednisolone, among others.
- Co-administration can be performed simultaneously/con currently or sequentially in any order.
- the compound according to formula I and the second therapeutic agent may be administered to the subject in a single pharmaceutical composition.
- the compound and second therapeutic agent may be administered simultaneously in separate pharmaceutical compositions, e.g., as two oral dosage forms taken together.
- the interval between administration of the compound according to formula I and the second therapeutic agent may range from one second to several days, such as a time interval ranging from one second to several hours, e.g., from one second to 12 hours, from one second to 8 hours, from one second to 6 hours, or from one second to 4 hours.
- the compound according to formula I is administered at any time within a therapeutic time window of the second therapeutic agent. For instance, if the therapeutic time window is 8 hours, the compound according to formula I may be administered within 8 hours of administering a dose of the second therapeutic agent, i.e., within a time interval of from 8 hours prior to administering the second therapeutic agent to 8 hours after administering the second therapeutic agent.
- the compound and the second therapeutic agent may be administered in separate pharmaceutical compositions by the same or different routes of administration.
- a compound according to formula I is co-administered with an opioid to treat opioid addiction and/or reduce side effects attributable to opioid use in a subject.
- administering the compound according to formula I allows a reduction in dosage of the opioid.
- the opioid may be administered to the subject in a subclinical or subtherapeutic amount.
- some embodiments of the disclosed compounds act synergistically with an opioid to further decrease pain in the subject, thereby providing a therapeutic effect that is greater than the benefit that would be expected from either agent alone and even greater than an expected additive benefit of administering both agents to the subject.
- Coadministration of the compound according to formula I and the opioid may include gradually tapering the opioid dosage over a period of time, thereby further ameliorating undesirable opioid side effects and/or gradually weaning a subject off of the opioid.
- FIG. 1 shows the modulation (I/I 0 ) of human a3GlyR expressed in Xenopus laevis oocytes activated by 2% maximal effective concentration of glycine.
- I/I 0 is calculated as the ratio of the current measured in the presence (I) and absence (I 0 ) of compound 1 or THC at the indicated concentrations. Error bars designate the standard error of the mean (n > 4).
- FIGS. 2A and 2B are bar graphs showing the effect of compound 1 on modulation of human glycine receptor subtypes (alGlyR, a3GlyR, aipGlyR, and a3pGlyR) expressed in Xenopus laevis oocytes activated by 2% (FIG. 2A) and 20% (FIG. 2B) maximal effective concentration of glycine.
- I/Io was calculated as the ratio of the current measured in the presence (I) and absence (I 0 ) of 10 ⁇ compound 1. Error bars designate the standard error of the mean (n > 4).
- FIGS. 3A-3H are bar graphs showing the effects of the compounds on modulation of human glycine receptor subtypes (alGlyR - 1 st and 3 rd bars, and a3GlyR - 2 nd and 4 th bars) expressed in Xenopus laevis oocytes activated by 2% (1 st and 2 nd bars) or 20% (3 rd and 4 th bars) maximal effective concentration of glycine.
- the assessed compounds were compounds 1 (3 A), 2 (3B), 3 (3C), 4 (3D), 5 (3E), 6 (3F), 7 (3G), and 8 (3H).
- I/I 0 was calculated as the ratio of the current measured in the presence (I) and absence (I 0 ) of 10 ⁇ of the indicated compound. Stars indicate significant modulation (I/I 0 ⁇ 1) at p ⁇ 0.033 (*), p ⁇ 0.002 (**), or p ⁇ 0.001 (***). Error bars designate the standard error of the mean (n > 4).
- FIG. 6 shows the effects on mice of varying dosages of compound 1 and morphine
- Stars indicate significant increases compared to vehicle after the time point indicated for each compound at p ⁇ 0.033 (*), p ⁇ 0.002 (**), or p ⁇ 0.001 (***) by repeated measures one-way ANOVA and Dunnett's multiple comparisons test. Error bars designate the standard error of the mean (n > 4).
- Compound 3 was demonstrated to provide prolonged analgesic effects, even after 48 hours.
- FIG. 10 shows the in vivo efficacy and potency of compound 1 (identified as MJPY1).
- Percent Maximum Possible Effect (%MPE) was calculated from paw withdrawal latencies. Data from 33 CFA-inflamed and 14 naive mice
- the percent inactivity on the 55°C plate (mean ⁇ SEM) is a measure of heat tolerance. Significance was assessed by one-way ANOVA with LSD post-hoc test.
- FIG. 12 shows the in vitro effects of compound 1 (MJPY1) measured by electrophysiology on Xenopus laevis oocytes.
- MJPY1 potentiates a3GlyR through binding to the THC -binding site near S296 in the transmembrane domain (TMD).
- TMD transmembrane domain
- ELIC-a3GlyR containing the a3GlyR TMD is potentiated by MJPY1.
- the S296A mutation in (x3GlyR abolishes compound 1 (MJPYl)'s potentiation.
- Data were recorded at EC 2 agonist for the indicated channels and are reported as the ratio of currents in the presence (I) and absence (Io) of 10 ⁇ compound 1 (MJPY1). Error bars represent SEM (n > 4 oocytes).
- FIG. 13 shows the negligible tolerance to either compound 1 (MJPY1) or compound 3 (MJPY2).
- CFA inflammation was induced on day 4, and PWL was measured 0.5 hr before and every 10 min after treatment on day 5.
- Data were binned to 30-min blocks (mean ⁇ SEM). There was no measurable tolerance from repeated drug exposure, as shown by repeated measures ANOVA with LSD post- hoc test.
- FIGS. 15A and 15B show flow cytometry evaluation of common inflammatory markers in the liver and spleen of mice in response to compound 1 (MJPY1) treatment.
- mice received either 2 mg/kg of MJPY1 (right) or vehicle (left) -16 hours prior to sacrifice and tissue collection.
- Analysis of regulatory (CD4+) and cytotoxic (CD8+) T cells is shown in FIG. 15 A.
- Analysis of dendritic cells, monocytes, and macrophages via CDl lb+ and CDl lc+ markers is shown in FIG. 15B.
- Significant differences between the treatment and control were observed only for decreased CDl lb+ in the liver of mice treated with MJPY1 (p ⁇ 0.001). Overall, these results suggest a minimal immune response to MJPY1 treatment. Results were analyzed by one-way ANOVA with Bonferroni post- hoc test.
- a subject having pain or in need of prophylaxis for pain is identified and selected.
- the subject may be identified and selected based on a clinical presentation or based on an upcoming treatment expected to produce pain (e.g., surgery).
- the subject is administered a compound according to formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof as disclosed herein at amounts determined by a clinician to be therapeutically effective.
- a second therapeutic agent may be co-administered with the compound.
- the second therapeutic agent may be administered either separately or together in a pharmaceutical composition with the compound.
- the second therapeutic agent may be administered by the same route or a different route. If administered concurrently, the compound and the second therapeutic agent may be combined in a single pharmaceutical composition or may be administered
- the second therapeutic agent may be, for example, an opioid, analgesic, nonsteroidal anti-inflammatory drug (NSAID), COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid, or any combination thereof.
- NSAID nonsteroidal anti-inflammatory drug
- COX-2 inhibitor cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid, or any combination thereof.
- a subject addicted to opioids, suffering side effects attributable to opioid use, or at risk of opioid addiction or opioid-induced side effects is identified and selected.
- the subject may be selected based on a clinical presentation, based on an assessment (e.g., a questionnaire regarding opioid use and/or side effects), or based on a condition or upcoming treatment expected to result in opioid use.
- the subject is administered a compound according to formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof as disclosed herein at amounts determined by a clinician to be therapeutically effective.
- An opioid may be co-administered with the compound.
- the opioid may be administered either separately or together in a pharmaceutical composition with the compound.
- the opioid may be administered by the same route or a different route. If administered concurrently, the compound and the opioid may be combined in a single pharmaceutical composition or may be administered concurrently as two pharmaceutical compositions.
- the opioid may be administered at a subclinical/subtherapeutic dose. In some instances, the opioid dosage may begin at a
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Addiction (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pain & Pain Management (AREA)
- Emergency Medicine (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Compounds and methods for modulating the activity of receptors are disclosed. Some of the compounds modulate the activity of glycine receptors. Certain embodiments of the compounds are useful for treatment of pain, treatment of opioid addiction, and/or reduction of side effects attributable to opioid use.
Description
RECEPTOR MODULATORS AND METHODS OF USE
This application claims the benefit of U.S. Provisional Application No. 62/534, 127, filed July 18, 2017 and U.S. Provisional Application No. 62/598,951, filed December 14, 2017, both of which are incorporated herein by reference.
STATEMENT OF GOVERNMENT SUPPORT
This invention was made with government support under NIH R01GM049202,
R01GM066358, and R01GM056527 awarded by the National Institutes of Health. The government has certain rights in the invention.
FIELD
This disclosure concerns compounds and methods for modulating the activity of receptors. Embodiments of the disclosed compounds may be useful for treatment of pain, for treatment of opioid addiction, and/or for reduction of side effects attributable to opioid use.
BACKGROUND
The treatment of pain conditions is of great importance in medicine. There is currently a worldwide need for additional pain therapy. "Pain" is defined by the International Association for the Study of Pain (IASP) as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage" (IASP, Classification of chronic pain, 2.sup.nd Edition, IASP Press (2002), 210). Physiological and psychological factors affect the perception of pain. Some of the relevant pain subtypes are nociceptive pain,
inflammatory pain, neuropathic pain, idiopathic pain, phantom pain, allodynia, hyperalgesia, and peripheral neuropathy.
Postsurgical pain (interchangeably termed, post-incisional pain), or pain that occurs after surgery or traumatic injury, is serious and often intractable. Pain is usually localized within the vicinity of the surgical site. Post-surgical pain can have two clinically important aspects, namely resting pain, or pain that occurs when the patient is not moving, and mechanical pain which is exacerbated by movement (coughing/sneezing, getting out of bed, physiotherapy, etc.). Drugs that are used to treat this pain often have a variety of side effects that delay recovery, prolong hospitalization and can have debilitating complications.
The major classes of pharmaceutical drugs used to treat various forms of pain are opioid analgesics, local anesthetics, non-steroidal anti-inflammatory drugs (NSAID), anti -depressants, and cannabinoids. Local anesthetics (e.g. channel blockers) are administered non-systemically during surgery while the other four classes of drugs, the opioid analgesics, NSAIDs, anti-depressants, and cannabinoids, are typically administered systemically. However, all the major classes of drugs for the treatment of pain are associated with risks of drug tolerance, dependence, or abuse. Analgesic tolerance often leads to hyperalgesia, requiring higher and higher doses of medication. Based on a 2011 report, prescription drugs for pain, or painkillers, kill twice as many people as cocaine and five times as many people as heroin {Harvard Mental Health Letter, 27:4-5, 2011).
The analgesic effects of THC are attributed to its potentiation of glycine receptors (Xiong et al. Nat Chem Biol, 2011). The representative compound was identified through the structure determination of the THC binding site and computational screening of a library of drug-like molecules at the binding site where THC is known to modulate glycine receptors. In vitro electrophysiology measurements of GlyR channel functions confirm intended modulations by the representative compound (Fig. 1, 2). In vivo behavior tests in C57BL/6 and CD1 mice validate the analgesic action of the representative compound in response to inflammation (Fig. 4). Many of the adverse effects from drugs of abuse are due to their action on targets other than glycine receptors. For example, THC produces motor impairment and psychosis through modulation of cannabinoid receptors (Pacher et al., Pharmacol Rev, 2006). Therefore, compounds selectively targeting the glycine receptors are advantageous for human use.
SUMMARY
Embodiments of receptor modulators and uses thereof are disclosed. The receptor modulators are compounds having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof:
where R1, R2, R3, and R4 independently are hydrogen, halo, or hydroxy; R5 is hydrogen, halo, Ci- Cio alkyl, or hydroxy; R6 and R7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci- Cio alkyl carboxamide, or R6 and R7 together with the nitrogen to which they are bound form a heterocycloaliphatic or heteroaryl group; and n is 0, 1, 2, or 3.
Embodiments of the disclosed compounds are useful for modulating activity of a receptor, such as glycine receptor (GlyR), reducing pain in a subject, treating opioid addiction in a subject, and/or reducing side effects attributable to opioid use in a subject.
A method of modulating a GlyR, such as a human GlyR, includes contacting the GlyR with an effective amount of a compound as disclosed herein. In some embodiments, the compound enhances or inhibits activity of the GlyR. In certain embodiments, the GlyR is human alGlyR, a2GlyR, a3GlyR, aipGlyR, a2pGlyR, a3pGlyR, or a combination thereof. The GlyR may be contacted in vitro, ex vivo, or in vivo, e.g., by administering the compound or a pharmaceutically acceptable salt thereof to a subject.
A method for reducing pain in a subject includes administering to the subject an effective amount of a compound as disclosed herein. The pain may be inflammatory hypersensitivity, postsurgical pain, pain associated with tissue damage, pain from infection, pain from a neuropathic condition, pain from a skeletal muscular condition, or a combination thereof. A method for treating opioid addiction and/or reducing side effects attributable to opioid use in a subject includes administering to the subject an effective amount of a compound as disclosed herein.
In any or all of the above embodiments, administering the effective amount of the compound to the subject may include administering an amount of a pharmaceutical composition comprising the effective amount of the compound to the subject. In any or all of the above embodiments, the effective amount of the compound may be within a range of from 0.001 - 100 mg/kg body weight.
In any or all of the above embodiments, the compound and a second therapeutic agent may be co-administered to the subject, wherein the second therapeutic agent is an opioid, nonsteroidal anti-inflammatory drug, COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or antiinflammatory steroid. Co-administration may be performed simultaneously or sequentially in any order. In one embodiment, the compound and the second therapeutic agent are simultaneously administered to the subject in a single pharmaceutical composition. In an independent
embodiment, the compound and the second therapeutic agent are administered in separate pharmaceutical compositions by the same or different routes of administration. In any or all of the
foregoing embodiments, the second therapeutic agent may be an opioid, and the opioid is administered in an amount that is subclinical by itself.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a graph showing modulation of human a3GlyR expressed in Xenopus laevis oocytes activated by 2% maximal effective concentration of glycine in the presence of a compound as disclosed herein (compound 1).
FIGS. 2A and 2B are bar graphs showing modulation of human GlyR subtypes expressed in Xenopus laevis oocytes activated by 2% (FIG. 2A) and 20% (FIG. 2B) maximal effective concentration of glycine in the presence of compound 1.
FIGS. 3A-3H are bar graphs showing the modulation of several disclosed compounds on human glycine receptor subtypes (alGlyR - 1st and 3rd bars, and a3GlyR - 2nd and 4th bars) expressed in Xenopus laevis oocytes activated by 2% (1st and 2nd bars) or 20% (3rd and 4th bars) maximal effective concentration of glycine. The assessed compounds were compound 1 (3 A), 2 (3B), 3 (3C), 4 (3D), 5 (3E), 6 (3F), 7 (3G), and 8 (3H).
FIG. 4 is a graph showing an increase in response time (decrease in pain sensation) in C57B1/6J mice to the Hargreaves test under compete Freund's adjuvant (CFA)-induced
hyperalgesic conditions after administration of compound 1.
FIG. 5 is a bar graph showing synergistically increased pain tolerance in mice during a two- plate thermal preference test when combining compound 1 with morphine.
FIG. 6 is a graph showing increased pain tolerance in mice under CFA-induced
hyperalgesic conditions after administration of compound 1 in combination with morphine.
FIGS. 7 A and 7B are graphs showing that repeated doses of compound 1 herein do not generate tolerance in mice under CFA-induced hyperalgesic conditions. A repeated dose was administered 1.5 hours (7 A) or 24 hours (7B) after the effects of a first dose wore off.
FIGS. 8A-8H are bar graphs showing responses of CD1 mice to the Hargreaves test after application of 0.1 mg/kg of several disclosed compounds (black) or vehicle (white) under CFA- induced hyperalgesic conditions. The assessed compounds were compound 1 (8A), 2 (8B), 3 (8C), 4 (8D), 5 (8E), 6 (8F), 7 (8G), and 8 (8H).
FIG. 9 is a bar graph showing duration of analgesic effects provided by compounds 3 and 4.
FIG. 10 is an in vivo dose response curve for compound 1 (identified as MJPYl in FIG. 10) showing that the EC50 for inflammatory pain is -0.03 mg/kg in CD1 mice.
FIG. 11 is a bar graph demonstrating that the analgesic action of compound 1 (identified as MJPYl) and compound 3 (identified as MJPY2) was better than morphine under the same dose in the non-invasive thermal preference test in mice.
FIG. 12 is a bar graph showing that compound 1 potentiates a3GlyR through binding to the THC -binding site near S296 in the transmembrane domain (TMD).
FIG. 13 is a bar graph demonstrating that the analgesic efficacies of compound 1 (identified as MJPYl) and compound 3 (identified as MJPY2) did not decrease after repeated drug exposure.
FIG. 14 is a bar graph showing no mutagenic activity from compound 1 in the in vitro Ames toxicity test.
FIG. 15 is a scatter plot the in vivo immune responses from flow cytometry from mice exposed to compound 1.
FIG. 16 is a graph showing that compound 1 has no activity on cannabinoid receptors.
DETAILED DESCRIPTION
Embodiments of compounds and methods for modulating the activity of receptors are disclosed. In some embodiments, the disclosed compounds are useful for analgesia, and may be useful for treating opioid addiction and/or reducing side effects attributable to opioid use, e.g., by reducing pain so that opioid dosages may be reduced.
Embodiments of the disclose compounds represent a novel class of receptor modulators for the treatment of pain and/or opioid addiction. In some embodiments, the compounds modulate one or more glycine receptors (GlyR). Certain embodiments of the disclosed compounds have shown profound analgesic effects in treating inflammatory hypersensitivity with no effect on normal nociception. New formulations of this class of modulators with greatly reduced requirement for opioids can be used to eliminate many of the undesirable side effects associated with a high dose of opioids, including drug dependence, tolerance, addiction, sedation, and nausea. The disclosed class of compounds is not previously known to contribute to analgesia, either alone or in
combination with opioids.
I. Definitions and Abbreviations
The following explanations of terms and abbreviations are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present
disclosure. As used herein, "comprising" means "including" and the singular forms "a" or "an" or "the" include plural references unless the context clearly dictates otherwise. The term "or" refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise.
Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.
Unless otherwise indicated, all numbers expressing quantities of components, temperatures, times, and so forth, as used in the specification or claims are to be understood as being modified by the term "about." As used herein, the term "about" or the symbol "~" refers to a ±10% variation from the nominal value unless otherwise indicated or inferred. Accordingly, unless otherwise implicitly or explicitly indicated, or unless the context is properly understood by a person of ordinary skill in the art to have a more definitive construction, the numerical parameters set forth are approximations that may depend on the desired properties sought and/or limits of detection under standard test conditions/methods as known to those of ordinary skill in the art. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word "about" is recited.
At various places in the present specification, substituents are disclosed in groups or in ranges. It is specifically intended that the description include each and every individual
subcombination of the members of such groups and ranges. For example, the term "C1-C5 alkyl" is specifically intended to individually disclose CI, C2, C3, C4, C5, C1-C5, C1-C4, C1-C3, C1-C2, C2-C5, C2-C4, C2-C3, C3-C5, C3-C4, and C4-C5 alkyl.
Aliphatic: A substantially hydrocarbon-based compound, or a radical thereof (e.g., C6Hi3, for a hexane radical), including alkanes, alkenes, alkynes, including cyclic versions thereof, and further including straight- and branched-chain arrangements, and all stereo and position isomers as well. Unless expressly stated otherwise, an aliphatic group contains from one to twenty-five carbon atoms; for example, from one to fifteen, from one to ten, from one to six, or from one to four carbon atoms. Unless expressly referred to as an "unsubstituted aliphatic," an aliphatic group can either be unsubstituted or substituted. An aliphatic group can be substituted with one or more
substituents (up to two substituents for each methylene carbon in an aliphatic chain, or up to one substituent for each carbon of a -C=C- double bond in an aliphatic chain, or up to one substituent for a carbon of a terminal methine group). Exemplary substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, alkylamino, alkylthio, acyl, aldehyde, amide, amino, aminoalkyl, aryl, arylalkyl, carboxyl, cyano, cycloalkyl, dialkylamino, halo, haloaliphatic, heteroaliphatic, heteroaryl, heterocycloaliphatic, hydroxyl, oxo, sulfonamide, sulfhydryl, thioalkoxy, or other functionality.
Alkyl: A hydrocarbon group having a saturated carbon chain. The chain may be cyclic, branched or unbranched. Examples, without limitation, of alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, sec-butyl, tert- butyl), pentyl, hexyl, heptyl, octyl, nonyl and decyl. Unless expressly referred to as an "unsubstituted alkyl," an alkyl group can either be unsubstituted or substituted.
Carboxamide: A group having a general structure -C(0) R'R", wherein R' and R" independently are hydrogen or alkyl. An alkyl carboxamide group has a general structure - RC(0) R'R", wherein R is an alkyl group and R' and R" independently are hydrogen or alkyl.
Effective amount (or dose): An amount sufficient to effect a change, such as a change in activity or function of a glycine receptor.
Excipient: A physiologically inert substance that is used as an additive in a pharmaceutical composition. As used herein, an excipient may be incorporated within particles of a
pharmaceutical composition, or it may be physically mixed with particles of a pharmaceutical composition. An excipient can be used, for example, to dilute an active agent and/or to modify properties of a pharmaceutical composition. Examples of excipients include but are not limited to polyvinylpyrrolidone (PVP), tocopheryl polyethylene glycol 1000 succinate (also known as vitamin E TPGS, or TPGS), dipalmitoyl phosphatidyl choline (DPPC), trehalose, sodium bicarbonate, glycine, sodium citrate, and lactose.
Glycine receptor (GlyR): The receptor for the amino acid neurotransmitter glycine. GlyR is an ionotropic receptor that produces its effects through a chloride current. It is an inhibitory receptor that is found throughout the central nervous system. This receptor has important roles in a variety of physiological processes, such as for mediating inhibitory neurotransmission in the spinal cord and brain stem. GlyR can be activated by glycine, β-alanine and taurine, and can be selectively blocked by the high-affinity competitive antagonist strychnine. Caffeine is an antagonist of this receptor. The glycine receptor (GlyR) transmembrane domain (TMD) alone, without the extracellular and intracellular domains, spontaneously forms Cl"-conducting channels
(Structure, 21 : 1897-904, 2013). Exemplary sequences for the GlyR are shown in GE BANK Accession Nos. M_001 146040.1 (NP_001139512.1), and NM 000171.3. ( P_000162.2), all incorporated by reference herein as available on December 9, 2013. The TMD of the GlyR al and a3 subunits harbors a novel cannabinoid-binding site that mediates marijuana's analgesic effects but not the psychoactive effects (Nature Chemical Biology, 7:296-303, 2011; Journal of
Experimental Medicine, 209: 1121-34, 2012). The human body has few or no glycine receptors in the peripheral nervous system.
Halogen (halo): The term halogen includes fluorine, chlorine, bromine, and iodine.
Similarly, the term halo includes fluoro, chloro, bromo, and iodo.
Heteroaliphatic: An aliphatic compound or group having at least one heteroatom, i.e., one or more carbon atoms has been replaced with an atom having at least one lone pair of electrons, typically nitrogen, oxygen, phosphorus, silicon, or sulfur. Heteroaliphatic compounds or groups may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and include "heterocycle", "heterocyclyl", "heterocycloaliphatic", or "heterocyclic" groups.
Heteroaryl: An aromatic compound or group having at least one heteroatom, i.e., one or more carbon atoms in the ring has been replaced with an atom having at least one lone pair of electrons, typically nitrogen, oxygen, phosphorus, silicon, or sulfur.
Nociception: Neural process of encoding and processing a noxious stimulus.
Nociceptor: A receptor at the end of a sensory neuron's axon, which responds to damaging or potentially damaging stimuli. Nociceptors include thermal, mechanical, chemical,
sleeping/silent, and polymodal nociceptors.
Pain: An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (IASP, Classification of chronic pain, second Edition, IASP Press (2002), 210). In particular examples of this disclosed methods the pain is medicated by nociceptors. Pain includes postsurgical pain, pain associates with tissue damage, pain from inflammation, pain from infection (shingles), pain from neuropathic conditions, and pain from skeletal muscular conditions.
Pharmaceutically acceptable: A substance that can be taken into a subject without significant adverse toxicological effects on the subject. The term "pharmaceutically acceptable form" means any pharmaceutically acceptable derivative or variation, such as stereoisomers, stereoisomer mixtures, enantiomers, solvates, hydrates, isomorphs, polymorphs, pseudomorphs, neutral forms, salt forms, and prodrug agents.
Pharmaceutically acceptable carrier: The pharmaceutically acceptable carriers (vehicles) useful in this disclosure are conventional. Remington: The Science and Practice of Pharmacy, The University of the Sciences in Philadelphia, Editor, Lippincott, Williams, & Wilkins, Philadelphia, PA, 21st Edition (2005), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compositions and additional pharmaceutical agents. In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. In some examples, the pharmaceutically acceptable carrier may be sterile to be suitable for administration to a subject (for example, by parenteral, intramuscular, or subcutaneous injection). In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate. In some examples, the pharmaceutically acceptable carrier is a non-naturally occurring or synthetic carrier. The carrier also can be formulated in a unit-dosage form that carries a preselected therapeutic dosage of the active agent, for example in a pill, vial, bottle, or syringe.
Pharmaceutically acceptable salt: A biologically compatible salt of a compound that can be used as a drug, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic
functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like. Pharmaceutically acceptable acid addition salts are those salts that retain the biological effectiveness of the free bases while formed by acid partners that are not biologically or otherwise undesirable, e.g., inorganic acids such as
hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, benzene sulfonic acid (besylate), cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, ^-toluenesulfonic acid, salicylic acid and the like. Pharmaceutically acceptable base addition salts include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Exemplary salts are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts
derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2- dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine,
methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins, and the like. Exemplary organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine. (See, for example, S. M. Berge, et al., "Pharmaceutical Salts," J. Pharm. Sci., 1977; 66: 1-19, which is incorporated herein by reference.) Stereoisomers: Compounds described herein can contain an asymmetric atom (also referred as a chiral center) and some of the compounds can contain two or more asymmetric atoms or centers, which can thus give rise to stereoisomers. Stereoisomers have the same molecular formula and sequence of bonded atoms, but differ only in the three-dimensional orientation of the atoms in space. Stereoisomers that are not mirror images of one another are termed
"diastereomers" and those that are non-superimposable mirror images of each other are termed "enantiomers." When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-) isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture." In some embodiments, optical isomers can be obtained in enantiomerically enriched or pure form by standard procedures known to those skilled in the art, which include, for example, chiral separation, diastereomeric salt formation, kinetic resolution, and asymmetric synthesis. E/Z isomers are isomers that differ in the stereochemistry of a double bond. An E isomer (from entgegen, the German word for "opposite") has a trans-configuration at the double bond, in which the two groups of highest priority are on opposite sides of the double bond. A Z isomer (from zusammen, the German word for "together") has a c/s-configuration at the double bond, in which the two groups of highest priority are on the same side of the double bond. It also should be understood that the compounds of the present teachings encompass all possible regioisomers in pure form and mixtures thereof. In some embodiments, the preparation of the present compounds can include separating
such isomers using standard separation procedures known to those skilled in the art, for example, by using one or more of column chromatography, thin-layer chromatography, simulated moving- bed chromatography, and high-performance liquid chromatography. However, mixtures of regioisomers can be used similarly to the uses of each individual regioisomer of the present teachings as described herein and/or known by a skilled artisan. It is specifically contemplated that the depiction of one regioisomer includes any other regioisomers and any regioisomeric mixtures unless specifically stated otherwise.
Subclinical/subtherapeutic dose: A dose that is too low to produce a therapeutic effect in a subject, e.g., too low to treat the disease for which it is administered and/or too low to have a therapeutic effect. For example, a subclinical dose of an opioid is insufficient to fully ameliorate pain in a subject and/or to reduce pain to a tolerable level in the subject.
Tautomers: Constitutional isomers of organic compounds that differ only in the position of the protons and electrons, and are interconvertible by migration of a hydrogen atom. Tautomers ordinarily exist together in equilibrium.
Therapeutic agent: An agent that provides a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
Therapeutically effective amount (or dose): An amount sufficient to provide a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
Therapeutic time window: The length of time during which an effective, or therapeutic dose, of a compound remains therapeutically effective in vivo.
Treating or treatment: With respect to disease, either term includes (1) preventing the disease, e.g., causing the clinical symptoms of the disease not to develop in an animal that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, e.g., arresting the development of the disease or its clinical symptoms, or (3) relieving the disease, e.g., causing regression of the disease or its clinical symptoms.
II. Receptor Modulators
In some embodiments, a receptor modulator is a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof:
where R1, R2, R3, and R4 independently are hydrogen, halo, or hydroxy; R5 is hydrogen, halo, Ci- Cio alkyl, or hydroxy; R6 and R7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci- Cio alkyl carboxamide, or R6 and R7 together with the nitrogen to which they are bound form an optionally substituted heterocycloaliphatic or heteroaryl group; and n is 0, 1, 2, or 3.
In certain embodiments, the compound has a structure according to formula II or formula
III:
In any or all of the above embodiments, Rx-R4 may be hydrogen.
In any or all of the above embodiments, R5 may be hydrogen, halo, C1-C5 alkyl, or hydroxy. In certain embodiments, R5 is hydrogen. In an independent embodiment, R5 is C1-C3 alkyl.
In any or all of the above embodiments, R6 and R7 independently may be hydrogen, halo, methyl, ethyl, propyl, isopropyl, hydroxy, or -CH2C(0) H2, or R6 and R7 together with the nitrogen to which they are bound may form a substituted or unsubstituted piperidinyl or piperazinyl group. In one embodiment, R6 and R7 are hydrogen. In an independent embodiment, R6 and R7 are methyl. In another independent embodiment, one of R6 and R7 is hydrogen, and the other of R6 and R7 is C1-C3 alkyl. In another independent embodiment, one of R6 and R7 is hydrogen, and the other of R6 and R7 is -CH2C(0) H2. In yet another independent embodiment, R6 and R7 together with
the nitrogen to which they are bound form a piperidinyl group. In still another independent embodiment, R6 and R7 together with the nitrogen to which they are bound form a piperazinyl group, such as a substituted piperazinyl group, e.g., a 3-oxopiperazinyl group.
Several representative compounds according to formula I are shown in Table 1.
Table 1. Representative compounds.
III. Pharmaceutical Compositions
Embodiments of the disclosed pharmaceutical compositions include a compound according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable additive such as pharmaceutically acceptable carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice. Pharmaceutical compositions can also include one or more additional active ingredients such as anti-arrhythmia agents, anti-hypertension agents, antimicrobial agents, anti-inflammatory
agents, anesthetics, and the like. The pharmaceutically acceptable carriers useful for these formulations are conventional. Remington 's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 19th Edition (1995), for example, describes compositions and formulations suitable for pharmaceutical delivery of the compounds herein disclosed.
The pharmaceutical compositions may be in a dosage unit form such as an injectable fluid, an oral delivery fluid (e.g., a solution or suspension), a nasal delivery fluid (e.g., for delivery as an aerosol or vapor), a semisolid form (e.g., a topical cream), or a solid form such as powder, pill, tablet, or capsule forms.
In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually contain injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
The compounds (hereinafter referred to as "the agents") disclosed herein can be
administered to subjects by a variety of routes, including by intramuscular, subcutaneous, intravenous, intra-arterial, intra-articular, intraperitoneal, intrathecal, intracerebroventricular, parenteral, oral, rectal, intranasal, intrapulmonary, transdermal, or topical routes. In other alternative embodiments, the agents can be administered ex vivo by direct exposure to cells, tissues or organs originating from a subject.
To formulate the pharmaceutical compositions, the agents can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound. Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid, and the like. In addition, isotonizing agents (for example, sodium chloride, mannitol, sorbitol), adsorption inhibitors (for example, Tween® 80 polyethylene sorbitol ester or Miglyol® 812 triglycerides), solubility enhancing agents (for example, cyclodextrins and derivatives thereof), stabilizers (for example, serum albumin), and reducing agents (for example, glutathione) can be included. Adjuvants, such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, NJ), Freund's adjuvant, MPL™
(3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, IN) and IL-12 (Genetics Institute, Cambridge, MA), among many other suitable adjuvants well known in the art, can be included in the compositions. When the composition is a liquid, the tonicity of the formulation, as measured with reference to the tonicity of 0.9% (w/v) physiological saline solution taken as unity, is typically adjusted to a value at which no substantial, irreversible tissue damage will be induced at the site of administration. Generally, the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0, or about 0.8 to about 1.7.
The agents can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound, and any desired additives. The base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of
polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like, and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid, and nontoxic metal salts thereof. Often, a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly(hydroxybutyric acid- glycolic acid) copolymer and mixtures thereof. Alternatively or additionally, synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles. Hydrophilic polymers and other vehicles can be used alone or in combination, and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like. The vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders, microspheres and films for direct application to a mucosal surface.
The agents can be combined with the base or vehicle according to a variety of methods, and release of the agents can be by diffusion, disintegration of the vehicle, or associated formation of water channels. In some circumstances, the agent is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2- cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43 : 1-5, 1991), and dispersed in a biocompatible dispersing medium, which yields sustained delivery and biological activity over a protracted time.
The compositions of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and
buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan
monolaurate, and triethanolamine oleate. For solid compositions, conventional nontoxic pharmaceutically acceptable vehicles can be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
Pharmaceutical compositions for administering the agents can also be formulated as a solution, microemulsion, or other ordered structure suitable for high concentration of active ingredients. The vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof. Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations, and by the use of surfactants. In many cases, it will be desirable to include isotonic agents, for example, sugars, polyalcohols, such as mannitol and sorbitol, or sodium chloride in the composition. Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
In certain embodiments, the agents can be administered in a time release formulation, for example in a composition which includes a slow release polymer. These compositions can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin. When controlled release formulations are desired, controlled release binders suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the compound and/or other biologically active agent. Numerous such materials are known in the art. Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface, or in the presence of bodily fluids). Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations. Such biocompatible compounds are non-toxic and inert to surrounding tissues, and do not trigger significant adverse side effects, such as nasal
irritation, immune response, inflammation, or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity. Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid). Other useful biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone),
poly(epsilon-caprolactone-CO-lactic acid), poly(epsilon.-caprolactone-CO-glycolic acid), poly(beta-hydroxy butyric acid), poly(alkyl-2-cyanoacrilate), hydrogels, such as poly(hydroxyethyl methacrylate), polyamides, poly(amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-aspartamide), polyacetal polymers, polyorthoesters, polycarbonate, polymaleamides, polysaccharides, and copolymers thereof. Many methods for preparing such formulations are well known to those skilled in the art (see, for example, Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978). Other useful formulations include controlled-release
microcapsules (U.S. Patent Nos. 4,652,441 and 4,917,893), lactic acid-glycolic acid copolymers useful in making microcapsules and other formulations (U.S. Patent Nos. 4,677,191 and 4,728,721) and sustained-release compositions for water-soluble peptides (U.S. Patent No. 4,675,189).
The pharmaceutical compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use. Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein. In the case of sterile powders, methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof. The prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
In accordance with the various treatment methods of the disclosure, the agent can be delivered to a subject in a manner consistent with conventional methodologies associated with
management of the disorder for which treatment or prevention is sought. In accordance with the disclosure herein, a prophylactically or therapeutically effective amount of the agent is
administered to a subject in need of such treatment for a time and under conditions sufficient to prevent, inhibit, and/or ameliorate a selected condition or one or more symptom(s) thereof.
The administration of the agents can be for either prophylactic or therapeutic purpose.
When provided prophylactically, the agents are provided in advance of any symptom. The prophylactic administration of the agents serves to prevent or ameliorate any subsequent pain or opioid withdrawal symptom. When provided therapeutically, the agents are provided at (or shortly after) the onset of an undesirable symptom, e.g., pain or opioid withdrawal symptom.
For prophylactic and therapeutic purposes, the agents can be administered to the subject by the oral route or in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period, or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol). The therapeutically effective dosages of the agents can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject. Suitable models in this regard include, for example, murine, rat, avian, porcine, feline, non-human primate, and other accepted animal model subjects known in the art. Alternatively, effective dosages can be determined using in vitro models. Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the compound (for example, amounts that are effective to elicit a desired immune response or alleviate one or more symptoms of a targeted disease). In alternative embodiments, an effective amount or effective dose of the agents may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition, as set forth herein, for either therapeutic or diagnostic purposes.
The actual dosages of the agents will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the agent for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted
to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the agent is outweighed in clinical terms by therapeutically beneficial effects. A non-limiting range for a therapeutically effective amount of an agent within the methods and formulations of the disclosure is 0.001 mg/kg body weight to 100 mg/kg body weight, such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.01 mg/kg body weight to 10 mg/kg body weight 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight. Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, systemic circulation). Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal or oral delivery versus intravenous or subcutaneous delivery. Dosage can also be adjusted based on the release rate of the administered formulation, for example, of sustained release oral versus injected particulate or transdermal delivery formulations, and so forth.
IV. Methods of Use
Embodiments of the disclosed compounds may be used for reducing pain in a subject, for treating opioid addiction, for reducing side effects attributable to opioid use in a subject, and/or for modulating a receptor, such as a glycine receptor (GlyR). Certain embodiments of the disclosed compounds can be co-administered with an opioid to ameliorate pain in a subject with greatly reduced opioid dosage, thereby eliminating undesirable side effects associated with high doses of opioids, including drug dependence, tolerance, addiction, sedation, opioid-induced constipation, and/or nausea.
Some embodiments of the disclosed compounds modulate specific GlyR subtypes by binding to an interfacial site within the transmembrane domain of the receptor. This same site has previously been shown to be responsible for GlyR modulation by tetrahydrocannabinol (THC), the primary psychoactive and analgesic component of cannabis. THC binding to GlyR at this site is known to produce an analgesic effect in mammals. In addition, certain embodiments of the disclosed receptor modulators demonstrate analgesic synergy with opioids, greatly reducing the dosage of opioids such as morphine required to achieve the same pharmacological effects.
Embodiments of a method for modulating a GlyR including contacting the GlyR with an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof. Contacting the GlyR with the effective amount of the compound may enhance or inhibit activity of the GlyR. In some embodiments, the GlyR is a human GlyR. Human GlyRs include alGlyR, a2pGlyR, a3GlyR, alpGlyR, a2pGlyR, a3pGlyR, and combinations thereof. In one embodiment, the GlyR is contacted in vitro. In another
embodiment, the compound is administered ex vivo by direct exposure to cells, tissues or organs originating from a subject. In an independent embodiment, the GlyR is contacted in vivo. The GlyR may be contacted in vivo by administering the effective amount of the compound or pharmaceutically acceptable salt thereof to a subject, such as a human.
Embodiments of a method for reducing pain in a subject include administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof. The pain may be any type of pain including, but not limited to, inflammatory hypersensitivity, postsurgical pain, pain associated with tissue damage, pain from infection, pain from a neuropathic condition, pain from a skeletal muscular condition, or any combination thereof. Embodiments of a method for treating opioid addiction and/or reducing side effects attributable to opioid use in a subject include administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
In any or all of the above embodiments, administering the effective amount of the compound according to formula I to a subject may comprise administering an amount of a pharmaceutical composition comprising the effective amount of the compound to the subject. Administration may be by any suitable route including by intramuscular, subcutaneous, intravenous, intra-arterial, intra-articular, intraperitoneal, intrathecal, intracerebroventricular, parenteral, oral, rectal, intranasal, intrapulmonary, transdermal, or topical routes. In any or all of the above embodiments, the effective amount of the compound may be within a range of from
0.001 mg/kg body weight to 100 mg/kg body weight, such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.01 mg/kg body weight to 10 mg/kg body weight 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight.
In certain embodiments, administration of the compound according to formula I may be sufficient to modulate a GlyR, reduce pain, and/or reduce or treat opioid addiction in a subject. In other embodiments, it may be beneficial to administer the compound according to formula I in combination with a second therapeutic agent to the subject.
Thus, in any or all of the above embodiments, the compound may be co-administered with a second therapeutic agent to a subject. In some embodiments, the second therapeutic agent is an opioid, analgesic, nonsteroidal anti-inflammatory drug (NSAID), COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid, or any combination thereof. Opioids include heroin, fentanyl, oxycodone, hydrocodone, hydromorphone, codeine, morphine, meperidine, methadone, and naloxone, among others. Analgesics include opioid and non-opioid
pain relievers, such as morphine, fentanyl, hydromorphone, oxycodone, codeine, acetaminophen, hydrocodone, buprenorphine, tramadol, venlafaxine, flupirtine, meperidine, pentazocine, dextromoramide, and dipipanone, among others. NSAIDs include aspirin, ibuprofen, ketoprofen, piroxicam, and COX-2 inhibitors, among others. COX-2 inhibitors include rofecoxib, celecoxib, tilmacoxib, cimicoxib, mavacoxib, firocoxib, valdecoxib, apricoxib, robenacoxib, flumizole, and anitrazafen, among others. Cannabinoids include cannabigerol (CBG), A9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerivarin (CBGV), tetrahydrocannabivarin, (THCV), cannabidivarin (CBDV), and cannabichromevarin (CBCV), among others. Antidepressants include selective serotonin reuptake inhibitors (SSRIs, e.g., citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline), serotonin-norepinephrine reuptake inhibitors (S RIs, e.g., desvenlafaxine, duloxetine, venlafaxine, milnacipran, and levomilnacipran), tricyclic
antidepressants (TCAs, e.g., amitriptyline, desipramine, doxepine, imipramine, nortriptyline, amoxapine, clomipramine, maprotiline, trimipramine, and protriptyline), monoamine oxidase inhibitors (MAOIs, e.g., phenelzine, selegiline, and tranylcypromine), as well as atypical antidepressants (e.g., bupropion, mirtazapine, mefazodone, trazodone, vilazodone, and
vortioxetine). Local anesthetics include lidocaine, mepivacaine, prilocaine, bupivacaine, etidocaine, ropivacaine, levobupivacaine, cocaine, procaine, tetracaine, chloroprocaine, and benzocaine, among others. Anti-inflammatory steroids include betamethasone, prednisone, dexamethasone, cortisone, hydrocortisone, methylprednisolone, and prednisolone, among others.
Co-administration can be performed simultaneously/con currently or sequentially in any order. When administered simultaneously, the compound according to formula I and the second therapeutic agent may be administered to the subject in a single pharmaceutical composition.
Alternatively, the compound and second therapeutic agent may be administered simultaneously in separate pharmaceutical compositions, e.g., as two oral dosage forms taken together.
When administered sequentially, the interval between administration of the compound according to formula I and the second therapeutic agent may range from one second to several days, such as a time interval ranging from one second to several hours, e.g., from one second to 12 hours, from one second to 8 hours, from one second to 6 hours, or from one second to 4 hours. In certain embodiments, the compound according to formula I is administered at any time within a therapeutic time window of the second therapeutic agent. For instance, if the therapeutic time window is 8 hours, the compound according to formula I may be administered within 8 hours of administering a dose of the second therapeutic agent, i.e., within a time interval of from 8 hours prior to administering the second therapeutic agent to 8 hours after administering the second
therapeutic agent. When administering sequentially, the compound and the second therapeutic agent may be administered in separate pharmaceutical compositions by the same or different routes of administration.
In some embodiments, a compound according to formula I is co-administered with an opioid to treat opioid addiction and/or reduce side effects attributable to opioid use in a subject. In certain embodiments, administering the compound according to formula I allows a reduction in dosage of the opioid. Thus, the opioid may be administered to the subject in a subclinical or subtherapeutic amount. Advantageously, some embodiments of the disclosed compounds act synergistically with an opioid to further decrease pain in the subject, thereby providing a therapeutic effect that is greater than the benefit that would be expected from either agent alone and even greater than an expected additive benefit of administering both agents to the subject. Coadministration of the compound according to formula I and the opioid may include gradually tapering the opioid dosage over a period of time, thereby further ameliorating undesirable opioid side effects and/or gradually weaning a subject off of the opioid.
V. Examples
Example 1
In Vitro Modulation of Glycine Receptors
A compound according to formula (II) wherein R^R7 are hydrogen and n = 0 (compound 1) was used as a representative drug.
Compound 1
In vitro functional electrophysiology measurements {Current protocols in neuroscience, 6.12: 1-20, 2001) demonstrated that compound 1 modulated human GlyRs. FIG. 1 shows the modulation (I/I0) of human a3GlyR expressed in Xenopus laevis oocytes activated by 2% maximal
effective concentration of glycine. I/I0 is calculated as the ratio of the current measured in the presence (I) and absence (I0) of compound 1 or THC at the indicated concentrations. Error bars designate the standard error of the mean (n > 4).
FIGS. 2A and 2B are bar graphs showing the effect of compound 1 on modulation of human glycine receptor subtypes (alGlyR, a3GlyR, aipGlyR, and a3pGlyR) expressed in Xenopus laevis oocytes activated by 2% (FIG. 2A) and 20% (FIG. 2B) maximal effective concentration of glycine. I/Io was calculated as the ratio of the current measured in the presence (I) and absence (I0) of 10 μΜ compound 1. Error bars designate the standard error of the mean (n > 4).
The compounds disclosed in Table 1 were assessed for in vitro modulation of human GlyRs. FIGS. 3A-3H are bar graphs showing the effects of the compounds on modulation of human glycine receptor subtypes (alGlyR - 1st and 3rd bars, and a3GlyR - 2nd and 4th bars) expressed in Xenopus laevis oocytes activated by 2% (1st and 2nd bars) or 20% (3rd and 4th bars) maximal effective concentration of glycine. The assessed compounds were compounds 1 (3 A), 2 (3B), 3 (3C), 4 (3D), 5 (3E), 6 (3F), 7 (3G), and 8 (3H). I/I0 was calculated as the ratio of the current measured in the presence (I) and absence (I0) of 10 μΜ of the indicated compound. Stars indicate significant modulation (I/I0≠ 1) at p < 0.033 (*), p < 0.002 (**), or p < 0.001 (***). Error bars designate the standard error of the mean (n > 4).
Example 2
Pain Modulation
In vivo mouse behavior tests validated the analgesic action of the representative compounds in response to inflammation. Responses of C57B1/6J mice to the Hargreaves test (Pain, 32:77-88, 1988) were assessed pre- and post-application of compound 1 alone (white circles, application time = 0 hours). As shown in FIG. 4, compound 1 administered under normal nociceptive conditions had no significant effect on response time for paw withdrawal. However, under maximum CFA- induced hyperalgesic conditions (24 hours post-application of CFA), treatment with compound 1 led to an increase in response time, i.e., a decrease in the sensation of inflammatory pain (black circles, compound 1 application time = 0 hours). Error bars designate the standard error of the mean (n > 4).
In vivo mouse behavior tests revealed synergistic effects of the representative compound in combination with opioids. Different concentration combinations are possible, ranging from subclinical concentrations of opioids (e.g., 0.1-1 mg/kg morphine) with 0.01-1 mg/kg compound 1. Examples of nociceptive response are depicted in FIG. 5.
Responses to the two-plate thermal preference test were assessed under naive conditions and 1 hour after administration of 0.2 mg/kg compound 1, 0.1 mg/kg morphine, or 0.2 mg/kg compound 1 + 0.1 mg/kg morphine. Unrestrained mice were exposed to plates set to normal and hot temperatures (30°C and 55°C, respectively). Temperature preference was measured by percentage time spent on the hot plate (55°C) over the course of 4 minutes, where 50% indicates no preference between the two temperatures. The co-application of low doses of compound 1 and morphine led to a significant increase in time spent on the "uncomfortable" hot plate compared to naive mice, indicating a decreased nociceptive response to thermal pain (p < 0.005). Treatment with either compound 1 or morphine alone showed no significant analgesic response compared to naive mice in normal nociception. Error bars designate the standard error of the mean (n > 5).
FIG. 6 shows the effects on mice of varying dosages of compound 1 and morphine
(application time = 0 hours) under maximum CFA-induced hyperalgesic conditions (24 hours post- application of CFA), demonstrating that larger analgesic effects were observed when combining low doses of compound 1 and morphine compared to either compound alone. Under CFA-induced hyperalgesic conditions, the maximum possible effect, % MPE = (response - baseline)/(cut-off time - baseline), was measured for the application of compound 1 alone (0.05 mg/kg, blue, n=12; 0.01 mg/kg, orange, n=4), morphine alone (0.1 mg/kg, green, n=8), and compound 1 with morphine at three different dosage combinations: 0.05 mg/kg compound 1 with 0.1 mg/kg morphine (light blue, n=6), 0.01 mg/kg compound 1 with 0.1 mg/kg morphine (pink, n=10), and 0.01 mg/kg compound 1 with 0.01 mg/kg morphine (red, n= 4). Larger, synergistic analgesic effects were observed for 0.01 mg/kg compound 1 with 0.01 mg/kg morphine compared to either 0.01-0.05 mg/kg compound 1 or 0.1 mg/kg morphine alone, particularly at times greater than -1.5 hours after administration. Error bars designate the standard error of the mean.
Repeated doses of compound 1 do not generate tolerance as shown in FIGS. 7 A and 7B. 0.05 mg/kg compound 1 was tested for tolerance in CFA-treated mice (red). Under CFA-induced hyperalgesic conditions (24 hours post-application of CFA), 0.05 mg/kg compound 1 was administered to CD1 mice and responses to the Hargreaves test were measured immediately after the initial injection (application time = 0) and again after a repeated dose given 1.5 hours (FIG. 7A) or 24 hours (FIG. 7B) after the effects of the first dose wore off. The black circles represent the responses of naive mice (i.e., no administration of compound 1 or CFA), and the red circles represent the responses of mice receiving compound 1 under CFA-induced hyperalgesic conditions. No tolerance was observed as the time to paw withdrawal did not significantly change between the first and second dosing. Error bars designate the standard error of the mean (n = 4).
Responses of CD1 mice to the Hargreaves test were assessed after application of 0.1 mg/kg of the indicated compounds (black) or vehicle (white) under CFA-induced hyperalgesic conditions as shown in FIGS. 8A-8H. The assessed compounds were compounds 1 (8A), 2 (8B), 3 (8C), 4 (8D), 5 (8E), 6 (8F), 7 (8G), and 8 (8H). Treatment with each representative compound at time = 0 led to an increase in the response time for paw withdrawal, i.e. a decrease in the sensation of inflammatory pain. Stars indicate significant increases compared to vehicle after the time point indicated for each compound at p < 0.033 (*), p < 0.002 (**), or p < 0.001 (***) by repeated measures one-way ANOVA and Dunnett's multiple comparisons test. Error bars designate the standard error of the mean (n > 4).
Compound 3 was demonstrated to provide prolonged analgesic effects, even after 48 hours.
Under CFA-induced hyperalgesic conditions, responses of CD1 mice to the two-plate thermal preference test were assessed under naive conditions (white), 0.1 mg/kg of compound 3 (black), or 0.1 mg/kg compound 4 (grey) 1 and 48 hours after intraperitoneal injection, as shown in FIG. 9. Unrestrained mice were exposed to plates set to normal and hot temperatures (30°C and 55°C, respectively) for 10 minutes. Thermal tolerance was measured by the percentage of inactive time on the hot plate (55°C). Error bars designate the standard error of the mean (n = 4). Application of compound 3 significantly increased the inactive time spent on the hot plate, even 48 hours after injection, indicating a prolonged analgesic effect. Application of compound 4 also showed an increase in the inactive time spent on the hot plate 1 hour after injection, but no effect 48 hours later. Stars indicate significant increases compared to naive at p < 0.05 (*) or p < 0.01 (**) by Least Significant Difference post-hoc test.
FIG. 10 shows the in vivo efficacy and potency of compound 1 (identified as MJPY1). Dose response curves from the Hargreaves test in mice with a CFA-inflamed left hind paw at 1.5 and 2 hr after intraperitoneal injection of compound 1. Percent Maximum Possible Effect (%MPE) was calculated from paw withdrawal latencies. Data from 33 CFA-inflamed and 14 naive mice
(mean±SEM) are fitted to the Hill equation, yielding EC50 -0.030 mg/kg at both time points.
FIG. 11 shows the analgesic effects of 0.1 mg/kg of compound 1 (identified as MJPYlin FIG. 11) and compound 3 (identified as MJPY2 in FIG. 11), and morphine on inflammatory pain in male CD1 mice (n=4/group), measured by the 55°C vs. 30°C thermal preference test 24 hr after intraplantar CFA injection and 1 hr after i.p. drug treatment. The percent inactivity on the 55°C plate (mean±SEM) is a measure of heat tolerance. Significance was assessed by one-way ANOVA with LSD post-hoc test.
FIG. 12 shows the in vitro effects of compound 1 (MJPY1) measured by electrophysiology on Xenopus laevis oocytes. MJPY1 potentiates a3GlyR through binding to the THC -binding site near S296 in the transmembrane domain (TMD). Like a3GlyR, but unlike ELIC, the chimera ELIC-a3GlyR containing the a3GlyR TMD is potentiated by MJPY1. The S296A mutation in (x3GlyR abolishes compound 1 (MJPYl)'s potentiation. Data were recorded at EC2 agonist for the indicated channels and are reported as the ratio of currents in the presence (I) and absence (Io) of 10 μΜ compound 1 (MJPY1). Error bars represent SEM (n > 4 oocytes).
Tolerance to compound 1 (MJPY1) and compound 3 (MJPY2) was measured by repeated dosing in the Hargreaves Test . FIG. 13 shows the negligible tolerance to either compound 1 (MJPY1) or compound 3 (MJPY2). Mice (n = 6/group) received repeated i.p. injections of vehicle or 0.1 mg/kg compound 1 (MJPY1) or compound 3 (MJPY2) once a day for 5 days. CFA inflammation was induced on day 4, and PWL was measured 0.5 hr before and every 10 min after treatment on day 5. Data were binned to 30-min blocks (mean±SEM). There was no measurable tolerance from repeated drug exposure, as shown by repeated measures ANOVA with LSD post- hoc test.
Toxicity was evaluated using in vitro Ames test and in vivo immune responses flow cytometry. Ames tests revealed compound 1 (MJPY1) and its potential metabolites have little mutagenic activity, as shown in FIG. 14. Compound 1 (MJPY1) at each concentration was tested in three 48-well plates using the TA100 strain Salmonella typhimurium and S9 rat liver extract for base-pair substitution mutations. Error bars represent SEM. Significance (p < 0.05) was evaluated compared to the control (0 μΜ) using one-way ANOVA with the Bonferroni post-hoc test. FIGS. 15A and 15B show flow cytometry evaluation of common inflammatory markers in the liver and spleen of mice in response to compound 1 (MJPY1) treatment. Mice received either 2 mg/kg of MJPY1 (right) or vehicle (left) -16 hours prior to sacrifice and tissue collection. Analysis of regulatory (CD4+) and cytotoxic (CD8+) T cells is shown in FIG. 15 A. Analysis of dendritic cells, monocytes, and macrophages via CDl lb+ and CDl lc+ markers is shown in FIG. 15B. Significant differences between the treatment and control were observed only for decreased CDl lb+ in the liver of mice treated with MJPY1 (p < 0.001). Overall, these results suggest a minimal immune response to MJPY1 treatment. Results were analyzed by one-way ANOVA with Bonferroni post- hoc test.
The specificity of compound 1 (MJPY1) to act only on glycine receptors was determined. No cross reactivity with other commonly known receptors was detected (FIG. 16 and Table 2). Specifically, compound 1 (MJPY1) shows no agonist (top) or antagonist (bottom) activity on both
CB1 (left) and CB2 (right) receptors in PRESTO-TANGO functional assays against positive controls (FIG. 16). Activity is reported in relative luminescence units (RLU) as mean and SEM (n = 3). Table 2. Off-target profiling of MJPY1. Radioligand binding assays reported the mean % inhibition by 10 M MJPY1 on the listed targets (n = 4). Inhibition >50% is considered significant. Negative inhibition represents non-specific stimulation of binding. MJPY1 shows no significant cross- reactivity for any tested targets.
Example 3
Pain Reduction
A subject having pain or in need of prophylaxis for pain is identified and selected. The subject may be identified and selected based on a clinical presentation or based on an upcoming treatment expected to produce pain (e.g., surgery). The subject is administered a compound according to formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof as disclosed herein at amounts determined by a clinician to be therapeutically effective.
A second therapeutic agent may be co-administered with the compound. The second therapeutic agent may be administered either separately or together in a pharmaceutical composition with the compound. The second therapeutic agent may be administered by the same route or a different route. If administered concurrently, the compound and the second therapeutic agent may be combined in a single pharmaceutical composition or may be administered
concurrently as two pharmaceutical compositions. The second therapeutic agent may be, for example, an opioid, analgesic, nonsteroidal anti-inflammatory drug (NSAID), COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid, or any combination thereof.
Example 4
Treatment of Opioid Addiction and/or
Reduction of Side Effects Attributable to Opioid Use
A subject addicted to opioids, suffering side effects attributable to opioid use, or at risk of opioid addiction or opioid-induced side effects is identified and selected. The subject may be
selected based on a clinical presentation, based on an assessment (e.g., a questionnaire regarding opioid use and/or side effects), or based on a condition or upcoming treatment expected to result in opioid use. The subject is administered a compound according to formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof as disclosed herein at amounts determined by a clinician to be therapeutically effective.
An opioid may be co-administered with the compound. The opioid may be administered either separately or together in a pharmaceutical composition with the compound. The opioid may be administered by the same route or a different route. If administered concurrently, the compound and the opioid may be combined in a single pharmaceutical composition or may be administered concurrently as two pharmaceutical compositions. The opioid may be administered at a subclinical/subtherapeutic dose. In some instances, the opioid dosage may begin at a
therapeutically effective dose or a given subtherapeutic dose and then gradually decreased over a period of time until the subject is no longer receiving the opioid, thereby weaning the subject off the opioid.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
Claims
1. A method for reducing pain in a subject, comprising:
administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer tautomer, or pharmaceutically acceptable salt thereof:
where R1, R2, R3, and R4 independently are hydrogen, halo, or hydroxy;
R5 is hydrogen, halo, Ci-Cio alkyl, or hydroxy;
R6 and R7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci-Cio alkyl carboxamide, or R6 and R7 together with the nitrogen to which they are bound form a
heterocycloaliphatic or heteroaryl group; and
n is 0, 1, 2, or 3.
2. The method of claim 1, wherein the pain is inflammatory hypersensitivity, postsurgical pain, pain associated with tissue damage, pain from infection, pain from a neuropathic condition, pain from a skeletal muscular condition, or a combination thereof.
3. A method for treating opioid addiction and/or reducing side effects attributable to opioid use in a subject, comprising:
administering to the subject an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof:
where R1, R2, R3, and R4 independently are hydrogen, halo, or hydroxy;
R5 is hydrogen, halo, Ci-Cio alkyl, or hydroxy;
R6 and R7 independently are hydrogen, halo, hydroxy, Ci-Oo alkyl, or Ci-Cio alkyl carboxamide, or R6 and R7 together with the nitrogen to which they are bound form a
heterocycloaliphatic or heteroaryl group; and
n is 0, 1 , 2, or 3.
4. A method for modulating a glycine receptor (GlyR), comprising:
contacting the GlyR with an effective amount of a compound having a structure according to formula I, or a stereoisomer, tautomer or pharmaceutically acceptable salt thereof:
where R1, R2, R3, and R4 independently are hydrogen, halo, or hydroxy;
R5 is hydrogen, halo, Ci-Cio alkyl, or hydroxy;
R6 and R7 independently are hydrogen, halo, hydroxy, Ci-Cio alkyl, or Ci-Cio alkyl carboxamide, or R6 and R7 together with the nitrogen to which they are bound form a
heterocycloaliphatic or heteroaryl group; and
n is 0, 1 , 2, or 3.
5. The method of claim 4, wherein contacting the GlyR with the effective amount of the compound enhances or inhibits activity of the GlyR.
6. The method of claim 4 or claim 5, wherein the GlyR is a human GlyR.
7. The method of claim 6, wherein the GlyR is human alGlyR, a2GlyR, a3GlyR, aipGlyR, a2pGlyR, a3pGlyR, or a combination thereof.
8. The method of any one of claims 4-7, wherein contacting the GlyR is performed in vivo.
9. The method of claim 8, wherein contacting the GlyR comprises administering the effective amount of the compound or pharmaceutically acceptable salt thereof to a subject.
10. The method of any one of claims 1-3 or 9, wherein administering the effective amount of the compound or pharmaceutically acceptable salt thereof comprises administering an amount of a pharmaceutical composition comprising the effective amount of the compound to the subject.
11. The method of any one of claims 1-3, 9, or 10, further comprising co-administering the compound and a second therapeutic agent to the subject, wherein the second therapeutic agent is an opioid, nonsteroidal anti-inflammatory drug, COX-2 inhibitor, cannabinoid, antidepressant, local anesthetic, or anti-inflammatory steroid.
12. The method of claim 11, wherein co-administering comprises administering simultaneously or sequentially in any order.
13. The method of claim 12, wherein the compound and the second therapeutic agent are simultaneously administered to the subject in a single pharmaceutical composition.
14. The method of claim 12 or claim 13, wherein the compound and the second therapeutic agent are administered in separate pharmaceutical compositions by the same or different routes of administration.
15. The method of any one of claims 1 1-13, wherein:
(i) the effective amount of the compound is within a range of from 0.001 -100 mg/kg body weight;
(ii) the second therapeutic agent is an opioid, and the opioid is administered in a subclinical amount; or
(iii) both (i) and (ii).
16. The method of any one of claims 1 -15, wherein the compound has a structure according to formula II or formula III:
17. The method of any one of claims 1 -16, wherein R^-R4 are hydrogen.
18. The method of any one of claims 1 -17, wherein R5 is hydrogen, halo, C1-C5 alkyl, or hydroxy.
19. The method of any one of claims 1 -18, wherein R6 and R7 independently are hydrogen, halo, methyl, ethyl, propyl, isopropyl, hydroxy, or -CH2C(0) H2, or R6 and R7 together with the nitrogen to which they are bound form a substituted or unsubstituted piperidinyl or piperazinyl group.
The method of any one of claims 1-15, wherein the compound is
-35-
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/631,422 US11484532B2 (en) | 2017-07-18 | 2018-07-13 | Glycine receptor modulators and methods of use |
US17/940,803 US12194033B2 (en) | 2017-07-18 | 2022-09-08 | Glycine receptor modulators and methods of use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762534127P | 2017-07-18 | 2017-07-18 | |
US62/534,127 | 2017-07-18 | ||
US201762598951P | 2017-12-14 | 2017-12-14 | |
US62/598,951 | 2017-12-14 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/631,422 A-371-Of-International US11484532B2 (en) | 2017-07-18 | 2018-07-13 | Glycine receptor modulators and methods of use |
US17/940,803 Division US12194033B2 (en) | 2017-07-18 | 2022-09-08 | Glycine receptor modulators and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019018241A1 true WO2019018241A1 (en) | 2019-01-24 |
Family
ID=65015308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/042162 WO2019018241A1 (en) | 2017-07-18 | 2018-07-13 | Receptor modulators and methods of use |
Country Status (2)
Country | Link |
---|---|
US (2) | US11484532B2 (en) |
WO (1) | WO2019018241A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021072213A1 (en) * | 2019-10-11 | 2021-04-15 | The Trustees Of Indiana University | Pregabalin for treatment of opioid use disorder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019018241A1 (en) * | 2017-07-18 | 2019-01-24 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Receptor modulators and methods of use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906655A (en) * | 1989-01-24 | 1990-03-06 | Warner-Lambert Company | Novel 1,2-cyclohexylaminoaryl amides useful as analgesic agents |
WO1994000124A1 (en) * | 1992-06-22 | 1994-01-06 | Eckard Weber | Glycine receptor antagonists and the use thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019018241A1 (en) * | 2017-07-18 | 2019-01-24 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Receptor modulators and methods of use |
-
2018
- 2018-07-13 WO PCT/US2018/042162 patent/WO2019018241A1/en active Application Filing
- 2018-07-13 US US16/631,422 patent/US11484532B2/en active Active
-
2022
- 2022-09-08 US US17/940,803 patent/US12194033B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906655A (en) * | 1989-01-24 | 1990-03-06 | Warner-Lambert Company | Novel 1,2-cyclohexylaminoaryl amides useful as analgesic agents |
WO1994000124A1 (en) * | 1992-06-22 | 1994-01-06 | Eckard Weber | Glycine receptor antagonists and the use thereof |
US5514680A (en) * | 1992-06-22 | 1996-05-07 | The State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | Glycine receptor antagonists and the use thereof |
Non-Patent Citations (4)
Title |
---|
DATABASE CAS 14 March 2010 (2010-03-14), "CA Index name: 5-acenaphthylenecarboxamide, 1,2-dihydro-N-[[4-[(4-methyl-1-piperazinyl) carbonyl]phenyl]methyl", retrieved from STN Database accession no. 1209692-97-6 * |
DATABASE CAS 14 October 2008 (2008-10-14), "CA Index name: 5 -acenaphthy lenecarboxamide, 1,2-dihydro-N-[[4-(1-pyrrolidinylcarbonyl)phenyl]methyl", retrieved from STN Database accession no. 1061455-79-5 * |
DATABASE CAS 7 February 2012 (2012-02-07), "CA Index name: 5-acenaphthylenecarboxamide, N-[[3-(aminocarbonyl)phenyl]methyl]-1,2-dihydro", retrieved from STN Database accession no. 1355735-62-4 * |
HALFPENNY PR ET AL.: "Highly selective. kappa. opioid analgesics. 4. Synthesis of some conformationally restricted naphthalene derivatives with high receptor affinity and selectivity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 34, no. 1, 31 January 1991 (1991-01-31), pages 190 - 194, XP055563279 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021072213A1 (en) * | 2019-10-11 | 2021-04-15 | The Trustees Of Indiana University | Pregabalin for treatment of opioid use disorder |
Also Published As
Publication number | Publication date |
---|---|
US12194033B2 (en) | 2025-01-14 |
US20230097618A1 (en) | 2023-03-30 |
US20200215047A1 (en) | 2020-07-09 |
US11484532B2 (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5592790B2 (en) | Pharmaceutical composition for treating pain associated with chronic pain and neuropathy | |
JP5271918B2 (en) | Novel composition for the treatment of metabolic syndrome | |
US12194033B2 (en) | Glycine receptor modulators and methods of use | |
TWI387452B (en) | Methods for treating sexual dysfunction | |
US20050065176A1 (en) | Combinations | |
JP5049139B2 (en) | Use of oxycodone to treat visceral pain | |
CN101534809A (en) | Use of substituted 2-aminotetralines for the manufacture of a medicament for the prevention, alleviation and/or treatment of various types of pain | |
DK2504311T3 (en) | Arachidonsyreanaloge analgesic, and methods of treatment using thereof | |
US20050227961A1 (en) | Compositions and methods for treatment of neuropathic pain, fibromyalgia and chronic fatigue syndrome | |
JP7627963B2 (en) | Enantiomers of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73) and their use in the treatment of alzheimer's and other disorders modulated by sigma 1 receptors - Patents.com | |
JP2012520883A (en) | Treatment of Alzheimer's disease and osteoporosis and reduction of aging | |
WO2013166037A1 (en) | Non-retinoid antagonists for treatment of eye disorders | |
AU2008233088B2 (en) | Calcimimetic compounds for use in the treatment of bowel disorders | |
JP2005500298A (en) | Combinations of active ingredients to treat addiction substances or addictions to drugs using medicine | |
AU2014393490B2 (en) | (S)-pirlindole or its pharmaceutically acceptable salts for use in medicine | |
KR102266696B1 (en) | Novel treatments for attention and cognitive disorders, and for dementia associated with a neurodegenerative disorder | |
AU2014393489B2 (en) | (R)-pirlindole and its pharmaceutically acceptable salts for use in medicine | |
CA2709103C (en) | Method and composition for treating an alpha adrenoceptor-mediated condition | |
US20080096870A1 (en) | Methods and Materials for Treating Mental Illness | |
JP2020509043A (en) | Treatment of dementia with cannabinoid agonists | |
WO2005016319A2 (en) | Acute pharmacologic augmentation of psychotherapy with enhancers of learning or conditioning | |
JP2019509321A (en) | Combinations for treating pain | |
JP4222614B2 (en) | Neuropathic pain treatment | |
WO2007026928A1 (en) | Therapeutic agent for neuropathic pain | |
IL294033A (en) | Medicinal substance of lamborexant and medical preparation containing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18835916 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18835916 Country of ref document: EP Kind code of ref document: A1 |