WO2019008793A1 - Particle beam irradiation apparatus - Google Patents

Particle beam irradiation apparatus Download PDF

Info

Publication number
WO2019008793A1
WO2019008793A1 PCT/JP2017/043812 JP2017043812W WO2019008793A1 WO 2019008793 A1 WO2019008793 A1 WO 2019008793A1 JP 2017043812 W JP2017043812 W JP 2017043812W WO 2019008793 A1 WO2019008793 A1 WO 2019008793A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
particle beam
image acquisition
particle
rotation
Prior art date
Application number
PCT/JP2017/043812
Other languages
French (fr)
Japanese (ja)
Inventor
原田 久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2019008793A1 publication Critical patent/WO2019008793A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention is directed to particle beam therapy for treating cancer and the like by irradiating particle beams, by moving a plurality of devices targeting an irradiation area to be irradiated with particle beams to an angle required for each operation, for imaging and irradiation.
  • the present invention relates to a particle beam irradiation apparatus that switches the function of
  • JP-A-11-146874 (paragraphs 0017 to 0028, FIGS. 1 to 5) JP, 2002-306617, A (paragraphs 0013 to 0017, FIG. 1, FIG. 2) JP 2008-522677 A (paragraphs 0024 to 0026, FIGS. 2 to 4b) JP, 2011-505191, A (paragraphs 0054-0058, FIG. 12) JP, 2015-500719, A (paragraph 0043-0051, FIG. 2)
  • the number of support structures supporting the respective devices increases to complicate the device arrangement around the irradiation area, it becomes difficult to avoid collision between the devices, or it becomes difficult to secure the safety of patients and technicians. And had many challenges. Further, for example, there is also a problem that an imaging device and an irradiation device interfere with each other to make desired imaging and accurate irradiation difficult.
  • a particle beam diagnostic device for diagnosing particle beams and a medical image acquisition device for acquiring a medical image may be concentrated in a narrow space around the irradiation position. desirable.
  • these equipments use equipment used for positioning of the affected area, and computed tomography (CT) techniques that rotate around the patient for imaging during the patient setup stage before irradiation.
  • CT computed tomography
  • an apparatus for example, a cone beam CT apparatus.
  • imaging is performed while rotating an imaging device around a patient, so it was difficult to secure a space around the patient so that the apparatus would not interfere.
  • the present invention has been made to solve the above problems, and enables various imaging and particle beam diagnostic equipment arrangements without moving the patient from the irradiation position, and the efficiency without impairing the imaging accuracy.
  • An object of the present invention is to provide a particle beam irradiation apparatus that enables well accurate irradiation.
  • the particle beam irradiation apparatus is provided independently of the irradiation port for irradiating the particle beam accelerated by the accelerator toward the patient and the irradiation port, and passes the particle beam irradiated from the irradiation port.
  • a control unit is provided, which controls the emission of the particle beam from the irradiation port and controls the operation of the rotary drive unit.
  • efficient and accurate irradiation can be realized without impairing the imaging and irradiation accuracy, by providing the rotating stand provided with the support device independently from the irradiation port for irradiating the particle beam to the affected part of the patient. can do.
  • FIG. 1 It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 1 of this invention is seen from a rotating shaft direction. It is the cross-sectional schematic diagram which cut
  • FIG. 1 shows the particle beam irradiation apparatus 800 in the rotational axis direction of the rotating gantry.
  • FIG. 2 is a schematic cross-sectional view of the particle beam irradiation apparatus 800 taken along a plane including the rotation axis and the vertical line of the rotating gantry, and
  • FIG. 3 is a particle beam therapy apparatus 900 including the particle beam irradiation apparatus 800.
  • FIG. 4 is a block diagram showing the configuration of a control unit that controls the single operation of the particle beam irradiation apparatus 800 and the cooperative operation with the particle beam therapy apparatus 900.
  • the present invention is most characterized in the configuration of a particle beam irradiation apparatus 800 for easily switching between irradiation devices and imaging modalities, and efficiently and accurately achieving irradiation without impairing the imaging and irradiation accuracy.
  • the configuration of the particle beam therapy system 900 for irradiating the particle beam to the irradiation target will be described.
  • the particle beam treatment apparatus 900 provided with the particle beam irradiation apparatus 800 according to the first embodiment of the present invention is, as shown in FIG. 3, an accelerator 500 which is a synchrotron as a source (particle source) of particle beams.
  • An irradiation unit 200 which shapes and irradiates the particle beam supplied from 500 according to an affected area (irradiation target), connects an accelerator 500 and one or more irradiation units 200 (including a portion not shown) And a transport system 400 for transporting the particle beam emitted from the accelerator 500 to the selected irradiation unit 200.
  • the accelerator 500 may be an accelerator of a system other than a synchrotron such as a cyclotron or a synchrocyclotron, but, for example, in the case of a synchrotron as described above, a vacuum duct serving as an orbital path for circulating charged particles, An incidence device for injecting charged particles supplied from an accelerator into a vacuum duct, a deflection electromagnet for deflecting a charged particle trajectory so that the charged particles orbit along the orbit in the vacuum duct, on the orbit A focusing electromagnet for focusing the charged particles so as not to diverge, a high frequency accelerating cavity for accelerating by applying a high frequency voltage synchronized to the circulating charged particles, a charged particle accelerated in the circulating orbit as a particle beam having a predetermined energy Extraction device for taking out out of orbit and emitting to particle beam transport part, particle beam is emitted from the emission device And a sextupole electromagnet for exciting the resonance in circulation orbit in order to. Then, the charged particles in the orbit are accelerated
  • the transport system 400 is referred to as a HEBT (High Energy Beam Transport) system, and includes a vacuum duct 410 serving as a particle beam transport path, a switching electromagnet 420 for switching the particle beam trajectory, and the particle beam at a predetermined angle. And a deflection electromagnet for deflecting the light.
  • HEBT High Energy Beam Transport
  • description is abbreviate
  • the irradiation unit 200 is installed in each irradiation chamber 300 for performing particle beam therapy on the patient K, and shapes the particle beam supplied from the transport system 400 into an irradiation field according to the size and depth of the irradiation target To the
  • the particle beam supplied to the irradiation unit 200 is a so-called pencil-like thin beam. Therefore, the irradiation unit 200 includes an irradiation field forming member (not shown) for controlling the shape of the particle beam irradiation field in the lateral direction (that is, the plane perpendicular to the beam traveling direction) and the depth direction (i.e., the beam). An irradiation field forming member for controlling the traveling direction). Further, the irradiation room 300 is provided with a treatment table 320 and the like for positioning and fixing the patient K being irradiated with reference to the irradiation area.
  • a ridge filter also referred to as a ripple filter
  • Range shifters etc. can be considered.
  • a scanning electromagnet (not shown) that deflects the particle beam in a direction perpendicular to the beam traveling direction can be considered.
  • detectors (a beam position monitor, a dose monitor, etc.) for measuring the beam position and beam fluence of the deflected particle beam are provided.
  • a control unit for example, control units 610, 620, 630,..., 6 **
  • a cooperation control unit for example, , And the control unit 600
  • the irradiation unit 200 has a function to form an irradiation field suitable for irradiating a particle beam to a patient, and the treatment planning apparatus 700 irradiates a desired dose distribution. It has a function of determining the parameters of each device of the accelerator 500 to appropriate values. Then, when confirming the treatment plan or changing the treatment plan according to the situation, an imaging device for specifying the position, fluctuation, etc. of the patient's tumor, and a device for measuring the irradiation beam during treatment It will be necessary.
  • a portion of the irradiation unit 200 that emits the particle beam is referred to as an irradiation port (for example, an irradiation port 220 r, an irradiation port 220 A, and the like described later).
  • the rotation angle of the rotating gantry is not approximately 360 degrees, but approximately 220 degrees Limited examples are also known.
  • the embodiment of the present invention can be implemented regardless of the type of gantry or the number of treatment rooms.
  • An example in which an accelerator is combined with a rotating gantry to reduce the size of the rotating gantry irradiation chamber in a single-chamber type particle beam therapy system is shown in FIG.
  • the accelerator is fixed and does not rotate with the rotating gantry.
  • FIG. 6 shows an example where the accelerator rotates with the gantry. Further, FIG.
  • Patent Document 4 discloses a method of rotating an accelerator around a patient.
  • a deflection electromagnet 430 and a quadrupole electromagnet 440 are provided in the beam transport part between the accelerator and the irradiation point to bend the trajectory of the particle beam or to converge the beam.
  • the beam emitted from the accelerator is directly sent to the irradiation system.
  • the beam spreads when passing through the range adjusting device in the irradiation device 210 or the nozzle tip device 220r, and the spot size irradiated to the affected area tends to be large.
  • rotation apparatus 100 is provided in irradiation chamber 300.
  • the particle beam irradiation apparatus 800 includes a rotary device 100 including a rotary gantry 110 and a rotary drive unit 121 that rotationally drives the rotary gantry 110, a rotary gantry 350 having the same center of rotation as the rotary device 100, a rotary drive unit 121 and a rotary gantry 350.
  • a rotary drive unit 121 that controls the operation of the drive unit (not shown), a treatment table 320 on which the patient is placed, and an irradiation unit 200 that irradiates the patient with particle beams.
  • the particle beam irradiation apparatus 800 is provided with a rotating apparatus 100 that is rotationally driven so as to share the rotation axis Xr with the rotating gantry 350.
  • the treatment table 320 is not fixed to the rotation device 100, and is installed to rotate around the patient K placed thereon, like the rotation gantry 350.
  • the details will be described below.
  • the rotating gantry 350 originally requires a large-scale rotation of a duct portion, a deflection electromagnet, and the like, only a ring-shaped portion (referred to as a ring portion) is shown in the figure for the sake of simplicity.
  • a point Ic (corresponding to the isocenter) in the irradiation area is set on the rotation axis Xr of the rotation gantry 350, and the irradiation port 220r installed in the ring part of the rotation gantry 350 in the irradiation unit 200 has an emission direction. Is directed to a point Ic in the irradiation area, and is rotationally driven about the point Ic in the irradiation area.
  • the portion on which the patient K is placed floats from the floor 310 It is stretched to a position beyond the irradiation range in the state.
  • irradiation angle rotation plane a plane perpendicular to rotation axis Xr
  • the rotating device 100 includes a rotating gantry 110 that rotates around the same rotation axis Xr as the rotating gantry 350, and a plurality of devices such as an imaging device or a radiation detector disposed along the circumferential direction of the rotating gantry 110. ing.
  • the drive range of the rotating stand can bring all the devices arranged along the circumferential direction to the use position. That is, if the drive range is from 0 degrees to 360 degrees, all use angles can be covered, but if the drive range is from 0 degrees to 540 degrees, that is, 1.5 laps, up to the next use angle in all states
  • the movement angle of can be 180 degrees or less, and device setting can be performed in a shorter time.
  • the rotation base 110 is provided with a rotation drive unit 121 for adjusting the rotation angle of the rotation base 110 to a desired angle, and a wheel 122 w that rolls on the rail 122 r fixed to the floor surface 310. And a linear drive unit 122 which drives in a direction.
  • the translation platform 110 is moved to a predetermined position and positioned by translating the rotation platform 110 along the rotation axis Xr in a plane parallel to the floor surface 310 of the irradiation chamber 300 by the straight drive unit 122.
  • the imaging device and the irradiation device do not interfere with each other by operating in cooperation with the irradiation unit 200 (in particular, the position of the irradiation port 220r) in a state where each of the devices is arranged in the irradiation angle rotation plane And accurate irradiation can be done.
  • the rotation device 100 has a rotation / operation structure different from that of the rotation gantry 350, and the setting angle can also be set separately from the rotation gantry.
  • a radiation detector is a detector that detects primary radiation that is a particle beam used for treatment, or secondary radiation (X-rays, gamma rays, charged particles, etc.) generated by the reaction of primary radiation with atoms or nuclei. It refers to a detector to detect.
  • a plurality of devices including radiation detectors were installed on the particle beam passage devices installed on the passage where the particle beam passes at the time of treatment irradiation and its extension, and at other places along the circumferential direction. It can be roughly classified into two of particle beam passage outside equipment.
  • particle beam passage part (duct part) 130 which becomes a passage route when particle beam emitted from irradiation port 220r goes to the affected part including point Ic in the irradiation area is irradiation port at the time of irradiation Aligned to the same angle as 220r.
  • the rotating device is rotated 180 degrees from the position shown in FIG. 1 and disposed immediately downstream of the irradiation port 220r.
  • the downstream particle beam detection unit 141 that detects the particle beam transmitted through the affected area is disposed diagonally of the irradiation unit 200 with the point Ic in the irradiation area.
  • the beam stopper 111 which stops particle beam is arrange
  • the irradiation boat 220 r is at the 12 o'clock position in FIG. 1, actual irradiation is performed from various angles. Also in this case, the above-described operation is the same, and the particle beam passage (duct) and the downstream particle beam detector are set with respect to the angle of the irradiation port 220r.
  • an X-ray generator such as an X-ray tube, a flat panel detector (FPD) or an image intensifier tube as an image acquisition device used for positioning a patient or an affected part called digital radiography Combinations of x-ray imaging devices are conceivable.
  • the X-ray generators 152 s and 153 s are disposed as X-ray generators, and the FPDs 152 m and 153 m are disposed opposite to each other with the point Ic in the irradiation area facing the X-ray tubes 152 s and 153 s. Then, X-ray image acquisition devices 152 and 153 are configured.
  • a PET (Positron Emission Tomography) detector a PET (Positron Emission Tomography) detector, a SPECT (Single Photon Emission Computed Tomography) detector, or a scintillation detector for detecting gamma rays called prompt gamma rays may be considered.
  • two PET detectors 151a and 151b are opposed to each other across a point Ic in the irradiation area. An example is shown in FIG.
  • the rotating device 100 is provided with protective covers on the inside and the outside of the circumferential portion.
  • the protective cover is also used to protect the device mounted on the rotating device, to protect the patient when the rotating device is rotated, and to prevent collision with devices other than the rotating device.
  • the inner protective cover since X-ray imaging is performed through this cover, it is made sufficiently thin using a material with a low atomic number such as polyimide.
  • the particle beam passage portion (duct portion) 130 omits the protective cover for the portion where particle beam scattering is concerned.
  • the inner and outer covers of the rotating portion be circular in order to avoid interference during rotation, it is not circular but is polygonal such as octagonal or hexagonal or partially straight It is also good.
  • the configuration of the particle beam diagnostic apparatus 142 of the on-particle beam passage devices will be described in more detail.
  • a detector provided as the particle beam diagnostic apparatus 142 is a multilayer Faraday cup, a radiation film loaded in a radiation film holder, a fluorescent screen beam monitor and a video camera, or a two-dimensional semiconductor detector called a 2D array or the like. It is an apparatus.
  • a multilayer Faraday cup is a device in which a normal Faraday cup is multilayered in the depth direction, and the range (energy) of a particle beam can be confirmed in real time by reading out these layers independently.
  • the radiation film holder may be loaded with a radiation film and irradiated with a pencil beam in a test pattern such as a grid or may be irradiated to form a two-dimensional uniform distribution.
  • the beam size and shape of the pencil beam can also be confirmed in detail. Although analysis of the film takes time, it may be performed as needed.
  • the position, size, shape, uniformity of dose distribution, etc. of the pencil beam can be easily confirmed in a shorter time by using a fluorescent screen beam monitor and a video camera. Even if it is impossible to carry out verification of absolute accuracy using these verification methods, it is sufficiently worthwhile to check only the reproducibility.
  • the above specific confirmation items may be determined according to the concept of each treatment facility. Items to be confirmed may be determined appropriately so that the irradiation accuracy can be secured, for example, for each patient, every irradiation session, every day, every week, or the like.
  • the particle beam passage portion (duct portion) 130 and the particle beam diagnostic device 142 used in the quality assurance check are arranged along the circumferential direction of the rotating device 100. Lined up. Therefore, it is possible to switch between treatment and quality assurance confirmation only by setting the rotation angle to a desired value, so troublesome installation work is unnecessary, daily work is facilitated, and confirmation is made without lowering work efficiency.
  • the frequency can also be increased.
  • the particle beam diagnostic apparatus 142 is disposed on the opposite side of the irradiation nozzle (irradiation unit 200), and the rotating apparatus 100 is rotated 180 degrees to use the particle beam diagnostic apparatus 142 as the particle beam incident direction. Is assumed to be close to the irradiation nozzle. However, for example, when the medical image acquisition apparatus 151 is not provided, the particle beam diagnostic apparatus can be disposed in the space there, and if it does not rotate by 180 degrees, it may be shortened by only rotating by 90 degrees. You can switch between quality assurance confirmation and treatment irradiation on time. However, if the arrangement shown in FIG. 1 is to be used for the transmission type irradiation described later, the beam stopper 111 is opened to allow the particle beam diagnostic apparatus 142 to generate a point Ic in the irradiation area. It can be used even downstream.
  • downstream particle beam detection unit 141 which is a device on the particle beam passage, will be described.
  • treatment planning is usually made so that the depth of the Bragg peak is near the affected area as described above.
  • transmission irradiation which is another use of particle beam irradiation described below, the energy of the particle beam emitted from the irradiation unit 200 is set high, and irradiation is performed so that the particle beam passes through the patient K's body.
  • the radiation as the downstream particle beam detection unit 141 in the direction opposite to the irradiation nozzle (irradiation unit 200) across the point Ic in the irradiation region that is, the downstream side of the point Ic in the irradiation region as viewed from the particle beam
  • a detector is placed to measure particle beams penetrating through the body by transmission radiation.
  • various radiation detectors can be considered as an apparatus used for the downstream particle beam detection unit 141, specifically, positions of particle beams such as a multi-wire chamber, a multi-strip chamber, a semiconductor position detector, an FPD, and a radiation film There are conceivable known devices which can be detected.
  • the transmission irradiation confirmation of the irradiation site as described below, acquisition of a particle beam radiography image, acquisition of a particle beam tomographic image, and the like can be considered.
  • Permeable irradiation can be performed as preparatory irradiation immediately before therapeutic irradiation, or can be performed with temporary interruption of therapeutic irradiation.
  • the downstream particle beam detection unit 141 by performing preparation irradiation using the downstream particle beam detection unit 141, normally, it can be confirmed while irradiating whether the particle beam performed in advance is in contact with an appropriate location.
  • the location information two-dimensional coordinates in the lateral direction of the particle beam
  • the position information of particle beam irradiation obtained by the downstream particle beam detection unit 141 Check to make sure that it falls within the preset tolerance range.
  • the values projected to the downstream particle beam detection unit 141 in consideration of the divergence of the scanned beam Use If the difference between the projected coordinates and the measured coordinates is out of the range of the allowable accuracy, the irradiation of the particle beam is immediately interrupted as an irradiation position abnormality, and the particle beam therapy system 900 is suspended.
  • the center position of the particle beam is suitable as the position information, the beam size of the particle beam (second moment of beam profile) may be confirmed as additional information.
  • the particle beam emitted from the irradiation unit 200 has a sufficiently high energy and can be transmitted through the patient's body.
  • the intensity (beam current) of the particle beam emitted from the irradiation unit 200 is controlled so that the dose used is sufficiently smaller than the treatment dose, and is included in the treatment dose in the treatment plan. Keep it.
  • downstream particle beam detection unit 141 is an imaging device such as an FPD or a radiation film
  • particle beam radiography can be acquired by measuring the transmitted particle beam. By comparing this image with the reference image, it is possible to directly confirm that the positional deviation is within the allowable range in the treatment irradiation. This confirmation is done just prior to therapeutic irradiation.
  • X-ray image acquisition devices 152 and 153 which are devices outside the particle beam passage will be described.
  • particle beam therapy it is necessary to accurately position the affected area before irradiating the affected area with a treatment line.
  • X-ray images are acquired from two directions using an X-ray tube and FPD, etc., and alignment and confirmation of the affected area are performed.
  • the rotation device 100 a positioning image can be acquired in a short time by rotating the device to a desired angle.
  • the target area is moved by respiration and blood flow, so in order to perform accurate irradiation, it is desirable to perform irradiation while confirming the movement of the affected area with X-rays. If the displacement due to the movement exceeds the desired range, the control unit of the X-ray image acquisition apparatus determines it, and the irradiation is immediately interrupted via the control unit of the irradiation unit 200, and the displacement is within the desired range. Resume when it comes to The particle beam for treatment and the X-ray for imaging may be irradiated simultaneously or alternately. When alternately irradiating, it is necessary to switch between X-ray imaging and particle beam irradiation at high speed within one second.
  • the X-ray image acquisition device since the X-ray image acquisition device is installed around the irradiation point in advance, it becomes easy to perform X-ray imaging while irradiating the particle beam. Since the X-ray image acquisition apparatus can be placed near the patient, a wide imaging field can be taken without being disturbed by other devices. In order to confirm the movement, not only the affected area but also the surrounding area, such as the movement of the diaphragm deviated from the irradiation target, may be used, and the wide X-ray imaging range enables such peripheral information to be utilized. The irradiation accuracy can be secured for more parts.
  • the setting angle of the X-ray image acquisition apparatus is often acquired at an angle on the positive side with respect to the irradiation chamber, regardless of the angle of the irradiation port 220r.
  • positioning may be performed from the irradiation angle, which is also referred to as “beams eye view”, but in the present invention, it is possible to easily cope with such other imaging conditions simply by bringing the rotation device to a desired angle. can do.
  • CBCT cone beam tomographic
  • the prior art discloses an example in which a mechanism that rotates independently of the rotating gantry is provided.
  • the irradiation nozzle and the rotation mechanism interfere with each other, it is difficult to obtain a CBCT image when the patient is at the treatment position (that is, when the reference point of the affected area is positioned within the irradiation area).
  • Patent Document 3 since the X-ray generation apparatus and the X-ray imaging apparatus are protruded, it is difficult to increase the rotational speed in consideration of safety against the collision with the patient and peripheral devices.
  • the patient can be positioned without moving from the treatment position, and an image can be acquired in a short time, thereby shortening the working time and preventing displacement of the patient's posture due to movement after positioning. Both advantages of accuracy are obtained.
  • the rotating apparatus 100 since the X-ray tubes 152s, 153s and the FPDs 152m, 153m can be installed in the covered case, the rotational speed can be increased. it can. This enables high-speed imaging of the part moving by breathing. Furthermore, the combination of the X-ray generator and the X-ray imaging apparatus (X-ray tube 152s and FPD 152m, or X-ray tube 153s and FPD 153m) which are devices outside the particle beam passage, and the particle beam passage portion (duct portion) 130 rotate They are aligned along the circumferential direction of the device 100.
  • the rotation drive unit 121 is rotated by at least 180 degrees + ⁇ degrees.
  • corresponds to an angle range which can be imaged at one time by the X-ray tube 153s and the FPD 153m.
  • the rotational angular range may be 90 ° C. + ⁇ degrees or more if imaging data acquired from these two pairs is used comprehensively.
  • 4D-CBCT four-dimensional cone beam CT
  • the PET apparatus PET detectors 151a and 151b
  • PET detectors 151a and 151b a method of viewing at a place other than the point Ic in the irradiation area (that is, in a state where the treatment table is slightly away from the treatment position)
  • measurement can be performed in the state of irradiation without moving the patient.
  • not only positioning of the patient is required only once, but also positioning accuracy at the time of treatment can be confirmed, and as described above, there is an advantage that confirmation can be performed even during preparatory irradiation and treatment irradiation.
  • the irradiation unit 200 can perform preparation irradiation with characteristics of preparation irradiation performed in a short time as compared with treatment irradiation, or preparation irradiation performed by reducing the irradiation beam current, or both, and may be performed just before the start of treatment irradiation. It is possible to make a preparation irradiation.
  • preparatory irradiation refers to irradiation using a part of the dose specified in the treatment plan.
  • the irradiation is temporarily stopped, the information from the equipment mounted on the rotating device 100 is collected and processed by the irradiation control unit, displayed to the operator, and whether to continue the irradiation based on the information It may be possible for the operator to make a decision.
  • the dose used for confirmation can be suppressed by using preparatory irradiation.
  • a control system for controlling the operation of the rotation device 100 and the cooperative operation with the particle beam therapy device 900 is configured by a plurality of controllers. For example, it is desirable from the viewpoint of operability that the display of the rotation angle, the display of the operation, the display of the mounted detector, and the operation can be performed on the control screen installed in the irradiation chamber 300 including the rotating device 100.
  • the control screen of the rotating device 100 and the control function have the same display and operation on the control terminal installed outside the irradiation chamber 300. It is desirable to be possible.
  • the rotation device 100 (rotation drive unit 121) includes a rotation angle detector (not shown), and confirms that the rotation angle of the rotation device 100 matches the angle of the irradiation port 220r required for the treatment at that time. It is conceivable that this confirmation is performed by either the control computer (control unit 610) of the rotating device 100 or the control computer (control units 600 and 620) of the irradiation unit 200.
  • control computer reads the rotation angle from the rotation angle detector attached to the rotating device 100, and is matched with the desired rotation angle transmitted from the irradiation unit 200. Only when the "rotation angle OK" enable signal is turned ON. It is conceivable to use this enable signal for the "irradiable" interlock of the irradiation unit 200. In addition, it is desirable to double confirmation means from the safety of treatment.
  • the rotation angle detector a rotary encoder attached to the rotation drive unit 121 of the rotation device 100 can be considered. An indicator for displaying the rotation angle, the state of the rotation device 100, and the state of the mounted device may be attached near the rotation device 100, or the rotation angle may be displayed on the operation screen of the irradiation unit 200.
  • the irradiation unit 200 in particular, the irradiation port 220r or the accelerator 500, it is ensured that the respective coordinate systems match within sufficient accuracy.
  • the radiation detector the particle beam diagnostic device 142 or the nozzle tip device 210) of the rotation device 100.
  • This beam position detector is a device that can detect the beam position in a plane perpendicular to the beam axis, and uses a known fluorescent plate and a CCD camera, multi-wire chamber, multi-strip chamber, multi-electrode semiconductor detection Bowl etc. can be considered.
  • the particle beam is irradiated with the rotation angle of the rotation device 100 at a desired position, and it is confirmed that the particle beam in the beam position detector comes to a desired position with a desired accuracy.
  • the trajectory of the particle beam can be corrected by one or more sets of horizontal and vertical steering electromagnets (not shown) installed in the upstream device (for example, the transport system 400) or the scanning electromagnet described above.
  • the upstream device for example, the transport system 400
  • the scanning electromagnet described above.
  • beam trajectory correction can be performed in real time by providing a feedback circuit that enables dynamic excitation and change of the steering electromagnet or the above-mentioned scanning electromagnet, and can calculate the beam position detection and correction amount at high speed. Is also possible. Also, as a safety consideration, when the beam trajectory correction amount exceeds a certain value, it is conceivable that the rotation angle of the rotating device 100 is incorrect or there is an abnormality in the upstream device, so interlocking is performed. You should do it.
  • the apparatus outside the particle beam passage (medical image acquisition device 151, X-ray image acquisition device 152, 153), the nozzle tip device 210 (irradiation field forming member, beam position monitor) which is the device above the particle beam passage. , A dose monitor), a particle beam diagnostic apparatus 142, a downstream particle beam detection unit 141, and a beam stopper 111, which are provided to support irradiation of particle beams, and are referred to as a support device.
  • each supporting device on the circumference in FIG. 1 is determined in consideration of the interference of the imaging range, the interference of the device and the wiring, etc. The same function can be obtained except for the arrangement example described here.
  • the FPD 153 m is located closer to the particle beam passage portion 130 than the X-ray tube 153 s in FIG. 1, this arrangement may be reversed.
  • the X-ray image acquisition devices 152 and 153 are illustrated in a positional relationship of approximately 45 degrees with the particle beam passage portion 130 interposed therebetween, the same function can be obtained by arranging them at angles other than this.
  • the irradiation port 220 r for irradiating the particle beam accelerated by the accelerator toward the patient K and the irradiation port 220 r are provided independently.
  • a control unit 610 is provided to control the emission of particle beam from the port 220 r and to control the operation of the rotational drive unit 121.
  • the equipment whose usable position is determined in the irradiation direction of the particle beam for example, the downstream particle beam detection unit 141, the medical image acquisition device 151 Since the position in the circumferential direction is fixed on the basis of the position, the device can be used simply by adjusting the position of the particle beam passage (duct) 130 according to the irradiation direction of the particle beam. It can be switched.
  • the inspection apparatus includes an apparatus (for example, the X-ray image acquisition devices 152 and 153) that operates while rotating around the rotation center (rotation axis Xr), imaging and treatment are performed without extra work. Can be performed continuously.
  • an apparatus for example, the X-ray image acquisition devices 152 and 153 that operates while rotating around the rotation center (rotation axis Xr)
  • imaging and treatment are performed without extra work. Can be performed continuously.
  • the rotating frame 110 is provided so as to be movable in translation along the rotation axis Xr, the rotating frame is driven to a predetermined position and positioned, and each of the plurality of devices is disposed within the irradiation angle rotation plane
  • the irradiation unit 200 in particular, the position of the irradiation port 220r
  • imaging and accurate irradiation can be performed without interference between the imaging device and the irradiation device.
  • FIG. 7 is a view for explaining the particle beam irradiation apparatus 800 according to the second embodiment, and is a schematic view when a rotating device in which a rotating gantry and a rotating shaft are aligned is viewed from the rotating shaft direction. Note that the configuration used in the first embodiment is used for the configuration relating to the particle beam therapy apparatus 900 and the control, and the description of the same parts is omitted.
  • the rotating device 100 rotatably supports the nozzle tip device 210 in the rotating frame 110.
  • the nozzle tip device 210 is basically the irradiation field forming member described in the irradiation unit 200 of the first embodiment.
  • the irradiation field forming member refers to a range shifter, (or offset range shifter), ridge filter, (or ripple filter), compensation filter (also called bolus) holder, patient collimator, multileaf collimator, and the like.
  • the range shifter is a device for controlling the range of particle beam
  • the ridge filter is a device for intentionally broadening the Bragg peak
  • the compensation filter is a filter manufactured according to the shape of the rear end side of the target (tumor). It forms the radiation field in the depth direction.
  • the patient collimator is a collimator manufactured to the shape of the particle beam in the lateral direction (direction perpendicular to the beam irradiation direction) with respect to the target.
  • a multileaf collimator is a computer-controllable movable collimator. The use of these radiation field forming members is determined by the medical staff depending on the case, and is not necessarily used.
  • a beam position monitor and a dose monitor may be provided. These are all known in particle beam therapy, and in scanning radiation etc., the tip of an irradiation nozzle (irradiation port) is a valid device as an installation place.
  • a beam position monitor a multi-wire chamber, a multi-strip chamber, etc., and as a dose monitor, an ion chamber, a secondary electron emission monitor, etc. can be used, both of which are known techniques in conventional particle beam therapy. It is desirable to arrange the nozzle tip device 210 as downstream as possible in order to suppress beam size expansion due to scattering.
  • one rotational structure of an apparatus to be disposed near the point Ic in the irradiation area by installing a part of the apparatus of the irradiation unit, which is usually installed at the tip of the irradiation unit 200, on the rotating device 100 side. It is possible to concentrate on objects and secure a rotational space within a constant radius from the point Ic in the irradiation area. That is, interference between the image acquisition device and the irradiation unit when acquiring a tomographic image such as CBCT can be avoided by suppressing the unevenness of the irradiation unit tip on the irradiation port side. At the same time, the device at the tip of the nozzle can be installed as close as possible to the patient, and the beam diameter can be suppressed from expanding.
  • a vacuum duct for passing the particle beam is also provided in the irradiation unit 200.
  • the vacuum duct and the vacuum duct 410 of the transport system 400 from the accelerator 500 be integrated via a shutoff valve, and the vacuum window at the beam outlet be installed as downstream as possible.
  • the beam diameter of the particle beam is expanded by the scattering generated at the vacuum window, so that the beam diameter at a point in the irradiation area can be kept smaller when the vacuum window is as downstream as possible.
  • a vacuum window at the beam outlet may be provided immediately upstream of the rotating device 100.
  • the beam position monitor is normally provided with two units, primary and secondary, to obtain redundancy, and one of the two units is installed as the nozzle tip device of the rotating device, and the other is Installed on the upstream irradiation unit 200 side and comparing the measurement values of the two beam position monitors, it is confirmed that the rotation angle at which the rotating device is set is a desired value, and the safety of the irradiation device It can be enhanced.
  • the cover of the rotating portion be substantially circular in consideration of interference during rotation, since it is desirable that the irradiation nozzle tip device 210 be as close as possible to the irradiation area, as shown in FIG. A protrusion may be provided on the nozzle cover to make it close, or only this portion may be straight.
  • the rotating device 100 includes the irradiation field forming member that forms the irradiation field of the particle beam in the particle beam passage portion (duct portion) 130.
  • the irradiation field forming member that forms the irradiation field of the particle beam in the particle beam passage portion (duct portion) 130.
  • the radiation detector (beam position monitor, dose monitor) is installed in the particle beam passage (duct) of the rotating frame 110, the measurement of the radiation detector installed on the upstream irradiation unit side By comparing with the value, it is possible to confirm that the rotation angle set by the rotation device is a desired value and to enhance the safety of the irradiation device.
  • FIG. 9 is a view for explaining the particle beam irradiation apparatus 800 according to the third embodiment, and is a schematic view when a rotation device in which a rotation gantry and a rotation axis are aligned are viewed from the rotation axis direction. Also in the third embodiment, the configuration used in the first embodiment is used for the configuration relating to the particle beam therapy apparatus 900 and the control, and the description of the same parts is omitted.
  • the rotating device 100 is provided with either the range telescope or the split calorimeter as the downstream particle beam detection unit 141. .
  • particle beam CT particle beam tomographic images
  • a range telescope is a measurement device for measuring the remaining range of transmitted particle beams, and the remaining range is the remaining range of particle beams that have lost some of their kinetic energy in the body. It is.
  • the beam position detector measures the passing position of the particle beam
  • the multilayer detector measures the remaining range of the particle beam. At this time, a method of individually measuring one particle of the particle beam and a method of measuring as a pencil beam in which the particle beam is finely narrowed can be considered.
  • the remaining energy of the particle beam may be measured using a split energy meter (split calorimeter).
  • a radiation detector such as CsI, BaF, LaBr 3 or the like, which has a sufficient thickness to absorb all the remaining energy, is used. These detectors may be finely divided and arranged in the lateral direction of the particle beam, and the particle beam may be used to guide light generated in the detector by an optical fiber to a photomultiplier or the like.
  • the residual energy is directly measured, and if it is measured as a pencil beam finely narrowed particle beam, particles counted by the upstream dose monitor etc.
  • the prompt gamma ray detector is mounted on the rotation apparatus 100 as the medical image acquisition apparatus 151.
  • a detector there are known methods such as a slit gamma camera and a Compton camera.
  • the slitted gamma camera the position and direction of the detected gamma ray are limited by providing a slit in front of the divided gamma ray detector.
  • the Compton camera can identify the gamma ray generation position by measuring the scatterers that scatter gamma rays and the scattered photons.
  • preparatory irradiation can be performed in prompt gamma ray detection as in the case of PET detection.
  • the prompt gamma ray detector or the like can be visualized and displayed on the screen, the information obtained by these devices may not necessarily represent the range of the particle beam directly. That is, the generation probability of prompt gamma rays depends on the energy of the particle beam and the material of the target. In order to take account of this dependency, it is desirable to compare the calculation and the measurement in the analysis result calculated in advance by a known calculation code capable of particle beam transport simulation. However, it is not necessary to compare the reproducibility with the previous irradiation result using only the measurement result.
  • FIG. 10 is a view for explaining the particle beam irradiation apparatus 800 according to the fourth embodiment, and is a schematic view when the rotation apparatus is viewed from the rotation axis direction.
  • the diagram used in the first embodiment is used for the basic configuration and the configuration relating to control of the particle beam therapy system 900, and the description of the same parts is omitted. Further, since the devices in the rotating device are the same as those described in the first to third embodiments, the description will be omitted.
  • the particle beam is directed from the 12 o'clock direction and the 3 o'clock direction toward the point Ic in the irradiation area.
  • the center (reference axis) serving as the reference of the change of the angle corresponds to the rotation axis Xr of the rotating gantry described above, and the rotation device 100 in the fourth embodiment also causes the reference axis to coincide with the rotation axis.
  • angle of the irradiation port is not limited to horizontal and vertical but may be another angle as long as it is in the same plane as the rotation surface of the rotating gantry 110, such as 45 degrees diagonally or 45 degrees horizontally and 45 degrees vertically .
  • the irradiation chamber 300 receives an irradiation port (for example, 220A) for irradiating particle beams from an angle fixed to the point Ic in the irradiation area.
  • an irradiation port for example, 220A
  • the rotation center (rotation axis Xr) of the rotating gantry 110 is perpendicular to the line connecting the point Ic in the irradiation area and the fixed irradiation port, the irradiation direction of the particle beam is Imaging and treatment of a patient's condition centering on a point in the irradiation area can be performed without interruption in a plane including the inside of the irradiation area.
  • the irradiation chamber 300 is provided with a plurality of the above-described fixed irradiation ports so as to irradiate particle beams from different angles in the plane set with respect to the point Ic in the irradiation area, the imaging accuracy And accurate illumination can be realized efficiently.
  • Embodiment 5 an example of non-coplanar irradiation using a rotating gantry will be described based on FIGS. 11 and 12.
  • Coplanar irradiation is irradiation performed with the patient's body axis, that is, the long axis of the treatment table substantially parallel to the rotation axis of the gantry, and the particle beam is irradiated in a plane substantially perpendicular to the body axis. In the plane, it says to irradiate from a desired angle in 360 degrees.
  • non-coplanar irradiation irradiation is performed from a direction other than a plane substantially perpendicular to the body axis.
  • FIG. 11 is a view showing the state of the treatment table and the rotating device at the time of coplanar irradiation
  • FIG. 12 is an example of the state of the treatment table and the rotating device at the time of non-coplanar irradiation.
  • the rotational axes of the rotating gantry and the rotating device are kept parallel.
  • the treatment table is in a state of being rotated by an angle ⁇ around the illustrated z-axis. If the angle ⁇ becomes too large, the inner diameter 102 of the treatment table or patient interferes with the inner diameter 102 of the rotation device, but a smaller range of the rotation angle of the treatment table can cope with non-coplanar irradiation.
  • Embodiments 1 to 5 of the present invention although the case where the shape of the rotating portion of the rotating device is a ring shape, that is, the case of an approximately O shape, has been described, Similar functions can be realized.
  • the rotation can be selected either clockwise or counterclockwise, the drive range for setting to a desired angle, that is, the setting time can be shortened.
  • the degree of freedom in selecting the rotation area is increased. It is also advantageous in terms of mechanical balance and strength.
  • the workability of the medical staff may be improved when setting the treatment table and the patient at the irradiation position.
  • FIG. 13 shows an example of a C-shaped rotating device.
  • the device is not arranged over 360 degrees in the circumferential direction of the rotating device, but a part where the device is not arranged is provided in a part of the circumferential direction.
  • the devices described in the first to fifth embodiments are miniaturized or some of the devices are reduced.
  • the X-ray imaging apparatus 153 is not provided in two pairs, but only on one side, and the medical image acquisition apparatus 151 is also provided on only one side.
  • the workability can be improved by setting the notch 101 to a desired angle as necessary.

Abstract

This particle beam irradiation apparatus comprises: an irradiation port 220r for emitting particle beams accelerated by an accelerator at a patient K; a rotary frame 110 provided independent of the irradiation port 220r and whereon are circumferentially disposed a particle beam path (duct part) 130 for allowing the particle beams emitted from the irradiation port 220r to pass therethrough and support devices for supporting irradiation with the particle beams (a medical image acquisition device 151, X-ray image acquisition devices 152, 153, a nozzle tip device 210, a particle beam diagnosis device 142, a downstream particle beam detection unit 141, and a beam stopper 111); a rotational drive unit 121 for driving the rotation of the rotary frame 110; and a control unit 610 for controlling the emission of particle beams from the irradiation port 220r and controlling the operation of the rotational drive unit 121.

Description

粒子線照射装置Particle beam irradiation system
 本発明は粒子線を照射して癌等を治療する粒子線治療において、粒子線を照射する照射領域を対象とする複数の機器を、それぞれの動作に必要な角度に移動させて、撮像と照射の機能を切り替える粒子線照射装置に関する。 The present invention is directed to particle beam therapy for treating cancer and the like by irradiating particle beams, by moving a plurality of devices targeting an irradiation area to be irradiated with particle beams to an angle required for each operation, for imaging and irradiation. The present invention relates to a particle beam irradiation apparatus that switches the function of
 粒子線治療では、照射機器の他に多様な撮像モダリティを切り替えて使用するが、照射領域に対して、それぞれを使用する際に当該機器の位置や角度を適切に設定する必要がある。そこで、撮像機器を照射領域周りに回転できる様々な構成が検討されている(例えば、特許文献1~5参照)。 In particle beam therapy, various imaging modalities other than the irradiation device are switched and used, but it is necessary to appropriately set the position and angle of the device when using each of the irradiation areas. Therefore, various configurations in which the imaging device can be rotated around the irradiation area have been studied (see, for example, Patent Documents 1 to 5).
特開平11-146874号公報(段落0017~0028、図1~図5)JP-A-11-146874 (paragraphs 0017 to 0028, FIGS. 1 to 5) 特開2002-306617号公報(段落0013~0017、図1、図2)JP, 2002-306617, A (paragraphs 0013 to 0017, FIG. 1, FIG. 2) 特表2008-522677号公報(段落0024~0026、図2~図4b)JP 2008-522677 A (paragraphs 0024 to 0026, FIGS. 2 to 4b) 特開2011-505191号公報(段落0054~0058、図12)JP, 2011-505191, A (paragraphs 0054-0058, FIG. 12) 特開2015-500719号公報(段落0043~0051、図2)JP, 2015-500719, A (paragraph 0043-0051, FIG. 2)
 しかしながら、上述した構成では、例えば、それぞれの機器を支える支持構造が増えて照射領域周りの機器配置が煩雑になる、機器間の衝突回避が難しくなる、あるいは患者、技師の安全性担保が難しくなる、といった多くの課題を抱えていた。また、例えば、撮像機器と照射機器が干渉しあい、所望の撮像や正確な照射が困難になるという課題もあった。 However, in the configuration described above, for example, the number of support structures supporting the respective devices increases to complicate the device arrangement around the irradiation area, it becomes difficult to avoid collision between the devices, or it becomes difficult to secure the safety of patients and technicians. And had many challenges. Further, for example, there is also a problem that an imaging device and an irradiation device interfere with each other to make desired imaging and accurate irradiation difficult.
 また、照射位置周辺には照射に使用する照射機器、粒子線を診断する粒子線診断機器、医療画像を取得するための医療画像取得機器など多くの装置を狭いスペースに集中させて設置することが望ましい。これらの機器は照射中に使用するもの以外にも、照射前の患者セットアップの段階において、患部の位置決めに使う機器や、患者の周りを回転して撮像するコンピューター断層撮影(CT)の手法を用いる機器(例としてコーンビームCT装置)などもある。特にCT装置の場合は撮像機器を患者の周りを回転させながら撮像するため、患者の周りで装置が干渉しないような空間を確保することが厳しかった。 In addition, many devices such as an irradiation device used for irradiation, a particle beam diagnostic device for diagnosing particle beams, and a medical image acquisition device for acquiring a medical image may be concentrated in a narrow space around the irradiation position. desirable. In addition to those used during irradiation, these equipments use equipment used for positioning of the affected area, and computed tomography (CT) techniques that rotate around the patient for imaging during the patient setup stage before irradiation. There is also an apparatus (for example, a cone beam CT apparatus). In the case of a CT apparatus, in particular, imaging is performed while rotating an imaging device around a patient, so it was difficult to secure a space around the patient so that the apparatus would not interfere.
 さらに、このように多様な機器を照射位置の周辺に使い勝手よく配置し、用途に応じて他の機器と干渉せずに撮像位置にもっていくことは困難であった。このため、患者を載せた治療台を照射位置とは別の位置まで移動させ撮像する方法が取られることもあるが、治療台を動かすことによる患部の位置決め精度の劣化や、移動に時間を要するため作業フローの非効率性が低下するという課題があった。 Furthermore, it has been difficult to arrange various devices in this way around the irradiation position in a convenient manner and to bring them to the imaging position without interfering with other devices depending on the application. For this reason, a method of imaging by moving the treatment table on which the patient is placed to a position different from the irradiation position may be taken, but the movement of the treatment table causes deterioration of the positioning accuracy of the affected area, and movement takes time. As a result, there is a problem that the inefficiency of the work flow decreases.
 本発明は、上記のような課題を解決するためになされたもので、患者を照射位置から動かすことなく、多様な撮像、粒子線診断機器の配置を可能とし、撮像精度を損なうことなく、効率よく正確な照射を可能にする粒子線照射装置を提供することを目的とする。 The present invention has been made to solve the above problems, and enables various imaging and particle beam diagnostic equipment arrangements without moving the patient from the irradiation position, and the efficiency without impairing the imaging accuracy. An object of the present invention is to provide a particle beam irradiation apparatus that enables well accurate irradiation.
 本発明にかかる粒子線照射装置は、加速器により加速された粒子線を患者に向けて照射する照射ポートと、前記照射ポートとは独立して設けられ、前記照射ポートから照射された粒子線を通過させる通路部と前記粒子線の照射をサポートするサポート機器が、周方向に配設された回転架台と、前記回転架台の回転軸を回転中心として前記回転架台を回転駆動させる回転駆動部と、前記照射ポートからの粒子線の出射を制御するとともに、前記回転駆動部の動作を制御する制御部とを備えたことを特徴とする。 The particle beam irradiation apparatus according to the present invention is provided independently of the irradiation port for irradiating the particle beam accelerated by the accelerator toward the patient and the irradiation port, and passes the particle beam irradiated from the irradiation port. A support for supporting the irradiation of the particle beam, and a rotating mount arranged in a circumferential direction; a rotation driving part configured to rotate the rotary mount with the rotation axis of the rotary mount as a rotation center; A control unit is provided, which controls the emission of the particle beam from the irradiation port and controls the operation of the rotary drive unit.
 本発明によれば、粒子線を患者の患部に照射する照射ポートと独立してサポート機器が設けられた回転架台を備えることで、撮像・照射精度を損なうことなく、効率よく正確な照射を実現することができる。 According to the present invention, efficient and accurate irradiation can be realized without impairing the imaging and irradiation accuracy, by providing the rotating stand provided with the support device independently from the irradiation port for irradiating the particle beam to the affected part of the patient. can do.
本発明の実施の形態1に関する粒子線照射装置を回転軸方向から見たときの模式図である。It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 1 of this invention is seen from a rotating shaft direction. 本発明の実施の形態1に関する粒子線照射装置を回転軸と鉛直線を含む面で切断した断面模式図である。It is the cross-sectional schematic diagram which cut | disconnected the particle beam irradiation apparatus regarding Embodiment 1 of this invention by the surface containing a rotating shaft and a perpendicular line. 本発明の実施の形態1に関する粒子線照射装置を設けた粒子線治療装置の全体構成を示す図である。It is a figure which shows the whole structure of the particle beam treatment apparatus which provided the particle beam irradiation apparatus regarding Embodiment 1 of this invention. 本発明の実施の形態1に関する粒子線照射装置の動作を制御する制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part which controls operation | movement of the particle beam irradiation apparatus regarding Embodiment 1 of this invention. 本発明の実施の形態1に関する粒子線照射装置に用いる加速器と回転ガントリの組合せの例を示す模式図である。It is a schematic diagram which shows the example of the combination of the accelerator used for the particle beam irradiation apparatus regarding Embodiment 1 of this invention, and a rotating gantry. 本発明の実施の形態1に関する粒子線照射装置に用いる加速器と回転ガントリの組合せの例を示す模式図である。It is a schematic diagram which shows the example of the combination of the accelerator used for the particle beam irradiation apparatus regarding Embodiment 1 of this invention, and a rotating gantry. 本発明の実施の形態2に関する粒子線照射装置を回転軸方向から見たときの模式図である。It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 2 of this invention is seen from the rotation axis direction. 本発明の実施の形態2に関する粒子線照射装置を回転軸方向から見たときの模式図である。It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 2 of this invention is seen from the rotation axis direction. 本発明の実施の形態3に関する粒子線照射装置を回転軸方向から見たときの模式図である。It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 3 of this invention is seen from a rotating shaft direction. 本発明の実施の形態4に関する粒子線照射装置を回転軸方向から見たときの模式図である。It is a schematic diagram when the particle beam irradiation apparatus regarding Embodiment 4 of this invention is seen from a rotating shaft direction. 本発明の実施の形態5に関する粒子線照射装置を用いたコプラナー照射を説明するための模式図である。It is a schematic diagram for demonstrating coplanar irradiation using the particle beam irradiation apparatus regarding Embodiment 5 of this invention. 本発明の実施の形態5に関する粒子線照射装置を用いたノンコプラナー照射を説明するための模式図である。It is a schematic diagram for demonstrating non-coplanar irradiation using the particle beam irradiation apparatus regarding Embodiment 5 of this invention. 本発明の実施の形態5に関する粒子線照射装置で用いる回転装置の例を示す模式図である。It is a schematic diagram which shows the example of the rotation apparatus used with the particle beam irradiation apparatus regarding Embodiment 5 of this invention.
 実施の形態1.
 以下、本発明の実施の形態1にかかる粒子線照射装置、およびそれを設けた粒子線治療装置の構成について説明する。図1~図4は、本発明の実施の形態1にかかる粒子線照射装置800および粒子線治療装置900について説明するためのもので、図1は粒子線照射装置800を回転ガントリの回転軸方向から見たときの模式図、図2は粒子線照射装置800を回転ガントリの回転軸と鉛直線を含む面で切断した断面模式図、図3は粒子線照射装置800を含む粒子線治療装置900の全体構成を示す図、図4は粒子線照射装置800の単独動作及び粒子線治療装置900との連携動作を制御する制御部の構成を示すブロック図である。
Embodiment 1
Hereinafter, the configuration of the particle beam irradiation apparatus according to the first embodiment of the present invention and the particle beam therapy apparatus provided with the same will be described. 1 to 4 are for explaining the particle beam irradiation apparatus 800 and the particle beam therapy apparatus 900 according to the first embodiment of the present invention, and FIG. 1 shows the particle beam irradiation apparatus 800 in the rotational axis direction of the rotating gantry. FIG. 2 is a schematic cross-sectional view of the particle beam irradiation apparatus 800 taken along a plane including the rotation axis and the vertical line of the rotating gantry, and FIG. 3 is a particle beam therapy apparatus 900 including the particle beam irradiation apparatus 800. FIG. 4 is a block diagram showing the configuration of a control unit that controls the single operation of the particle beam irradiation apparatus 800 and the cooperative operation with the particle beam therapy apparatus 900.
 本発明は、容易に照射機器や撮像モダリティを切り替え、撮像・照射精度を損なうことなく、効率よく正確な照射を実現するための粒子線照射装置800の構成に最大の特徴がある。しかし、その説明の前に、照射対象に対して粒子線の照射を行うための粒子線治療装置900の構成について説明する。 The present invention is most characterized in the configuration of a particle beam irradiation apparatus 800 for easily switching between irradiation devices and imaging modalities, and efficiently and accurately achieving irradiation without impairing the imaging and irradiation accuracy. However, before the description, the configuration of the particle beam therapy system 900 for irradiating the particle beam to the irradiation target will be described.
 本発明の実施の形態1かかる粒子線照射装置800を設けた粒子線治療装置900は、図3に示すように、粒子線の供給源(線源)として、シンクロトロンである加速器500と、加速器500から供給された粒子線を、患部(照射対象)に応じて成形して照射する照射部200と、加速器500と(図示しない分も含めた)一つあるいは複数の照射部200とを結び、加速器500から出射された粒子線を選択された照射部200に輸送する輸送系400とを備えている。 The particle beam treatment apparatus 900 provided with the particle beam irradiation apparatus 800 according to the first embodiment of the present invention is, as shown in FIG. 3, an accelerator 500 which is a synchrotron as a source (particle source) of particle beams. An irradiation unit 200 which shapes and irradiates the particle beam supplied from 500 according to an affected area (irradiation target), connects an accelerator 500 and one or more irradiation units 200 (including a portion not shown) And a transport system 400 for transporting the particle beam emitted from the accelerator 500 to the selected irradiation unit 200.
 加速器500は、サイクロトロンあるいはシンクロサイクロトロンなどシンクロトロン以外の方式の加速器であってもよいが、例えば、上述したようにシンクロトロンである場合、荷電粒子を周回させるための軌道経路となる真空ダクト、前段加速器から供給された荷電粒子を真空ダクトに入射するための入射装置、荷電粒子が真空ダクト内の周回軌道に沿って周回するよう、荷電粒子の軌道を偏向させるための偏向電磁石、周回軌道上の荷電粒子を発散しないように収束させる収束用電磁石、周回する荷電粒子に同期した高周波電圧を与えて加速する高周波加速空洞、周回軌道内で加速させた荷電粒子を、所定エネルギーを有する粒子線として周回軌道外に取り出し、粒子線輸送部に出射するための出射装置、出射装置から粒子線を出射させるために周回軌道内で共鳴を励起する六極電磁石を備えている。そして、周回軌道内の荷電粒子は、高周波数の電界で加速され、磁石で曲げられながら、光速の約60~80%まで加速され、輸送系400へ出射される。 The accelerator 500 may be an accelerator of a system other than a synchrotron such as a cyclotron or a synchrocyclotron, but, for example, in the case of a synchrotron as described above, a vacuum duct serving as an orbital path for circulating charged particles, An incidence device for injecting charged particles supplied from an accelerator into a vacuum duct, a deflection electromagnet for deflecting a charged particle trajectory so that the charged particles orbit along the orbit in the vacuum duct, on the orbit A focusing electromagnet for focusing the charged particles so as not to diverge, a high frequency accelerating cavity for accelerating by applying a high frequency voltage synchronized to the circulating charged particles, a charged particle accelerated in the circulating orbit as a particle beam having a predetermined energy Extraction device for taking out out of orbit and emitting to particle beam transport part, particle beam is emitted from the emission device And a sextupole electromagnet for exciting the resonance in circulation orbit in order to. Then, the charged particles in the orbit are accelerated by the high frequency electric field, are accelerated by about 60 to 80% of the speed of light while being bent by the magnet, and are emitted to the transport system 400.
 輸送系400は、HEBT(高エネルギービーム輸送:High Energy Beam Transport)系と称され、粒子線の輸送経路となる真空ダクト410と、粒子線の軌道を切り替える切替電磁石420と、粒子線を所定角度に偏向する偏向電磁石とを備えている。なお、図では、輸送系400のうち、回転装置100が設けられた照射室300に設置された照射部200と、加速器500とを接続する経路以外の部分については記載を省略している。 The transport system 400 is referred to as a HEBT (High Energy Beam Transport) system, and includes a vacuum duct 410 serving as a particle beam transport path, a switching electromagnet 420 for switching the particle beam trajectory, and the particle beam at a predetermined angle. And a deflection electromagnet for deflecting the light. In addition, in the figure, description is abbreviate | omitted about parts other than the path | route which connects the irradiation part 200 installed in the irradiation chamber 300 in which the rotation apparatus 100 was provided among the transport systems 400, and the accelerator 500.
 照射部200は、患者Kに粒子線治療を行うための照射室300ごとに設置され、輸送系400から供給された粒子線を照射対象の大きさや深さに応じた照射野に成形して患部へ照射するものである。しかし、照射部200に供給される粒子線は、いわゆるペンシル状の細いビームである。そこで、照射部200は、粒子線の照射野のうち、横方向(即ち、ビーム進行方向に垂直な面)の形状を制御するための図示しない照射野形成部材と、深さ方向(即ち、ビーム進行方向)を制御する照射野形成部材と、を備えている。また、照射室300には、照射領域を基準として、照射中の患者Kを位置決め固定するための治療台320等が設けられている。 The irradiation unit 200 is installed in each irradiation chamber 300 for performing particle beam therapy on the patient K, and shapes the particle beam supplied from the transport system 400 into an irradiation field according to the size and depth of the irradiation target To the However, the particle beam supplied to the irradiation unit 200 is a so-called pencil-like thin beam. Therefore, the irradiation unit 200 includes an irradiation field forming member (not shown) for controlling the shape of the particle beam irradiation field in the lateral direction (that is, the plane perpendicular to the beam traveling direction) and the depth direction (i.e., the beam). An irradiation field forming member for controlling the traveling direction). Further, the irradiation room 300 is provided with a treatment table 320 and the like for positioning and fixing the patient K being irradiated with reference to the irradiation area.
 深さ方向の照射野形成部材としては、図示しないが、例えば、ブラッグピークの幅を拡大させるためのリッジフィルタ(ridge filter(リップルフィルタとも呼ぶ))や、粒子線のエネルギー(飛程)を変えるためのレンジシフタ等が考えられる。横方向の照射野形成部材としては、例えばビーム進行方向に垂直な方向に粒子線を偏向させる図示しない走査電磁石等が考えられる。また、偏向された粒子線のビーム位置やビームフルエンスを計測するための検出器(ビーム位置モニタ、線量モニタ等)が設けられている。 As the irradiation field forming member in the depth direction, although not shown, for example, a ridge filter (also referred to as a ripple filter) for expanding the width of the Bragg peak or energy (range) of particle beam is changed. Range shifters etc. can be considered. As the irradiation field forming member in the lateral direction, for example, a scanning electromagnet (not shown) that deflects the particle beam in a direction perpendicular to the beam traveling direction can be considered. In addition, detectors (a beam position monitor, a dose monitor, etc.) for measuring the beam position and beam fluence of the deflected particle beam are provided.
 このような粒子線治療装置900を用いて、治療を行う際には、各部を連携して制御する必要がある。そのため、粒子線治療装置900では、機器ごとの制御を行う制御部(例えば、制御部610,620、630、・・・、6**)と、機器を連携して制御する連携制御部(例えば、制御部600)などを階層化して制御系統が構成されることになる。 When performing treatment using such a particle beam treatment apparatus 900, it is necessary to control each part in cooperation. Therefore, in the particle beam therapy apparatus 900, a control unit (for example, control units 610, 620, 630,..., 6 **) that performs control for each device and a cooperation control unit (for example, , And the control unit 600) etc. are hierarchized to constitute a control system.
 照射部200は、上述したように粒子線を患者に照射する際に適切な照射野を形成するための機能を有し、治療計画装置700は所望する線量分布を照射するために照射部200や加速器500の各機器のパラメータを適切な値に決める機能を有する。そして、治療計画を確認する際、あるいは状況に応じて治療計画を変更する際には、患者の腫瘍の位置や変動等を特定するための撮像機器や治療中の照射ビームの測定を行う機器が必要となる。なお、照射部200のうち、粒子線を出射する部分を照射ポート(例えば、後述する照射ポート220r、照射ポート220A等)と称する。 As described above, the irradiation unit 200 has a function to form an irradiation field suitable for irradiating a particle beam to a patient, and the treatment planning apparatus 700 irradiates a desired dose distribution. It has a function of determining the parameters of each device of the accelerator 500 to appropriate values. Then, when confirming the treatment plan or changing the treatment plan according to the situation, an imaging device for specifying the position, fluctuation, etc. of the patient's tumor, and a device for measuring the irradiation beam during treatment It will be necessary. A portion of the irradiation unit 200 that emits the particle beam is referred to as an irradiation port (for example, an irradiation port 220 r, an irradiation port 220 A, and the like described later).
 上記では照射室を複数具備した粒子線治療装置について述べたが、最近ではガントリ照射室が1室のみの粒子線治療装置や、回転ガントリの回転角度が概略360度ではなく、概略220度などに限定した例も知られている。本発明の実施の形態では、これらガントリの方式や治療室の数によらず実施することができる。回転ガントリ照射室が1室タイプの粒子線治療装置において装置を小型化するために加速器が回転ガントリと組み合わされた例を図5に示す。この例では加速器は固定であって、回転ガントリと共に回転しない。図6は加速器がガントリと共に回転する例である。さらに、特許文献4の図15では、加速器を患者の周りを回転させる方式が開示されている。図5および図6では加速器と照射点の間のビーム輸送部分に偏向電磁石430や四極電磁石440を設けて、粒子線の軌道を曲げたり、ビームを収束させたりする。一方で特許文献4では、加速器から出射されたビームが直接照射系に送付される。特許文献4の例では、照射装置210やノズル先端機器220rにおいて飛程調整装置を通過する際にビームが広がって、患部に照射するスポットサイズが大きくなる傾向がある。また、回転ガントリの方式としてもいくつかの方式があり、これまでは照射できる角度範囲が概略360度のものが一般的であったが、最近では、照射できる方向を概略220度などに限定した例も知られている。特許文献4の図12、あるいは特許文献5の図2に示されたものがその例である。以下で述べる本発明の実施の形態では、これらガントリの方式や治療室の数や、ビーム光学系の具体的な設計によらず実施することができる。 Although the particle beam treatment apparatus having a plurality of irradiation chambers has been described above, recently, the particle beam treatment apparatus having only one gantry irradiation chamber, the rotation angle of the rotating gantry is not approximately 360 degrees, but approximately 220 degrees Limited examples are also known. The embodiment of the present invention can be implemented regardless of the type of gantry or the number of treatment rooms. An example in which an accelerator is combined with a rotating gantry to reduce the size of the rotating gantry irradiation chamber in a single-chamber type particle beam therapy system is shown in FIG. In this example, the accelerator is fixed and does not rotate with the rotating gantry. FIG. 6 shows an example where the accelerator rotates with the gantry. Further, FIG. 15 of Patent Document 4 discloses a method of rotating an accelerator around a patient. In FIG. 5 and FIG. 6, a deflection electromagnet 430 and a quadrupole electromagnet 440 are provided in the beam transport part between the accelerator and the irradiation point to bend the trajectory of the particle beam or to converge the beam. On the other hand, in Patent Document 4, the beam emitted from the accelerator is directly sent to the irradiation system. In the example of Patent Document 4, the beam spreads when passing through the range adjusting device in the irradiation device 210 or the nozzle tip device 220r, and the spot size irradiated to the affected area tends to be large. In addition, there are also several methods as a rotating gantry method, and in the past it was common that the angle range that can be irradiated was approximately 360 degrees, but recently the direction that can be irradiated was limited to approximately 220 degrees etc. Examples are also known. The example shown in FIG. 12 of Patent Document 4 or FIG. 2 of Patent Document 5 is an example. The embodiment of the present invention described below can be implemented regardless of the type of gantry, the number of treatment rooms, and the specific design of the beam optical system.
 本発明の実施の形態1にかかる粒子線照射装置800では、照射室300において、回転装置100が備えられている。粒子線照射装置800は、回転架台110と回転架台110を回転駆動させる回転駆動部121とからなる回転装置100、回転装置100と回転中心が同一の回転ガントリ350、回転駆動部121と回転ガントリ350の駆動部(図示せず)の動作を制御する回転駆動部121、患者を載せる治療台320、患者に粒子線を照射する照射部200から構成される。 In particle beam irradiation apparatus 800 according to the first embodiment of the present invention, rotation apparatus 100 is provided in irradiation chamber 300. The particle beam irradiation apparatus 800 includes a rotary device 100 including a rotary gantry 110 and a rotary drive unit 121 that rotationally drives the rotary gantry 110, a rotary gantry 350 having the same center of rotation as the rotary device 100, a rotary drive unit 121 and a rotary gantry 350. A rotary drive unit 121 that controls the operation of the drive unit (not shown), a treatment table 320 on which the patient is placed, and an irradiation unit 200 that irradiates the patient with particle beams.
 図1および図2に示すように、粒子線照射装置800は、回転ガントリ350と回転軸Xrを共有するように、回転駆動する回転装置100を設置している。また、回転装置100には、治療台320は固定されておらず、回転ガントリ350と同様に、載置された患者Kの周りを回転するように設置される。以下、詳細に説明する。なお、本来回転ガントリ350は、ダクト部分や偏向電磁石等も回転する大掛かりなものであるが、説明を簡略化するため、図では、リング状の部分(リング部と称する)のみ示している。 As shown in FIGS. 1 and 2, the particle beam irradiation apparatus 800 is provided with a rotating apparatus 100 that is rotationally driven so as to share the rotation axis Xr with the rotating gantry 350. Further, the treatment table 320 is not fixed to the rotation device 100, and is installed to rotate around the patient K placed thereon, like the rotation gantry 350. The details will be described below. Although the rotating gantry 350 originally requires a large-scale rotation of a duct portion, a deflection electromagnet, and the like, only a ring-shaped portion (referred to as a ring portion) is shown in the figure for the sake of simplicity.
 回転ガントリ350の回転軸Xrには、照射領域内の点Ic(アイソセンタに対応)が設定されており、照射部200のうち、回転ガントリ350のリング部に設置された照射ポート220rは、出射方向を照射領域内の点Icに向けた状態で、照射領域内の点Icを中心に回転駆動される。一方、照射領域内の点Icを含む照射範囲から回転軸Xrに沿って離れた位置で床面310に固定された治療台320は、患者Kを載置する部分が、床面310から浮いた状態で照射範囲を超える位置まで延伸している。これにより、治療台320上に載置された患者Kの患部に対して、照射領域内の点Icを含む回転軸Xrに垂直な面(照射角回転面と称する)内において、所望の角度から照射領域に向けて粒子線を照射することが可能になる。 A point Ic (corresponding to the isocenter) in the irradiation area is set on the rotation axis Xr of the rotation gantry 350, and the irradiation port 220r installed in the ring part of the rotation gantry 350 in the irradiation unit 200 has an emission direction. Is directed to a point Ic in the irradiation area, and is rotationally driven about the point Ic in the irradiation area. On the other hand, in the treatment table 320 fixed to the floor 310 at a position away from the irradiation area including the point Ic in the irradiation area along the rotation axis Xr, the portion on which the patient K is placed floats from the floor 310 It is stretched to a position beyond the irradiation range in the state. Thus, with respect to the affected area of patient K placed on treatment table 320, in a plane perpendicular to rotation axis Xr (referred to as irradiation angle rotation plane) including point Ic in the irradiation area, from a desired angle It becomes possible to irradiate the particle beam toward the irradiation area.
 そして、回転装置100は、回転ガントリ350と同じ回転軸Xrを中心に回転する回転架台110と、回転架台110の周方向に沿って配置された撮像装置あるいは放射線検出器等の複数の機器を備えている。このとき回転架台の駆動範囲は周方向に沿って配置されたすべての機器を使用位置に持っていくことができる。すなわち駆動範囲が0度から360度まであれば、全ての使用角度がカバーできるが、駆動範囲が0度から540度、すなわち1.5周分であれば、すべての状態において次の使用角度までの移動角度を180度以下にすることができ、より短時間で機器設定が行える。回転架台110には、回転架台110の回転角度を所望の角度に調整するための回転駆動部121と、床面310に固定されたレール122r上を転がる車輪122wによって、回転架台110を回転軸Xr方向に駆動する直進駆動部122とを有している。直進駆動部122により、回転架台110を照射室300の床面310に平行な面内で、回転軸Xrに沿って並進移動することによって、回転架台110を所定位置に駆動して位置決めし、複数の機器のそれぞれが、照射角回転面内に配置された状態で、照射部200(とくに、照射ポート220rの位置)と連携して動作させることで、撮像機器と照射機器が干渉せず、撮像や正確な照射ができる。このように回転装置100は回転ガントリ350とは別の回転・動作構造を有しており、設定角度も回転ガントリとは別に設定できる。 The rotating device 100 includes a rotating gantry 110 that rotates around the same rotation axis Xr as the rotating gantry 350, and a plurality of devices such as an imaging device or a radiation detector disposed along the circumferential direction of the rotating gantry 110. ing. At this time, the drive range of the rotating stand can bring all the devices arranged along the circumferential direction to the use position. That is, if the drive range is from 0 degrees to 360 degrees, all use angles can be covered, but if the drive range is from 0 degrees to 540 degrees, that is, 1.5 laps, up to the next use angle in all states The movement angle of can be 180 degrees or less, and device setting can be performed in a shorter time. The rotation base 110 is provided with a rotation drive unit 121 for adjusting the rotation angle of the rotation base 110 to a desired angle, and a wheel 122 w that rolls on the rail 122 r fixed to the floor surface 310. And a linear drive unit 122 which drives in a direction. The translation platform 110 is moved to a predetermined position and positioned by translating the rotation platform 110 along the rotation axis Xr in a plane parallel to the floor surface 310 of the irradiation chamber 300 by the straight drive unit 122. The imaging device and the irradiation device do not interfere with each other by operating in cooperation with the irradiation unit 200 (in particular, the position of the irradiation port 220r) in a state where each of the devices is arranged in the irradiation angle rotation plane And accurate irradiation can be done. As described above, the rotation device 100 has a rotation / operation structure different from that of the rotation gantry 350, and the setting angle can also be set separately from the rotation gantry.
 なお、放射線検出器とは、治療に用いる粒子線である一次放射線を検出する検出器、もしくは一次放射線が原子や原子核と反応して発生する二次放射線(X線、ガンマ線、荷電粒子など)を検出する検出器のことを指す。また、放射線検出器を含めた複数の機器は、治療照射時に粒子線が通過する通路およびその延長線上に設置される粒子線通路上機器と、周方向に沿ってそれ以外の場所に設置された粒子線通路外機器の2つに大きく分類できる。 A radiation detector is a detector that detects primary radiation that is a particle beam used for treatment, or secondary radiation (X-rays, gamma rays, charged particles, etc.) generated by the reaction of primary radiation with atoms or nuclei. It refers to a detector to detect. In addition, a plurality of devices including radiation detectors were installed on the particle beam passage devices installed on the passage where the particle beam passes at the time of treatment irradiation and its extension, and at other places along the circumferential direction. It can be roughly classified into two of particle beam passage outside equipment.
 粒子線通路上機器としては、照射ポート220rから出射された粒子線が照射領域内の点Icを含む患部に向かう際の通過経路となる粒子線通路部(ダクト部)130は、照射時には照射ポート220rと同じ角度になるように位置合わせされる。照射ポート220rから照射された粒子線の状態を検出する粒子線診断装置142を使用する時には回転装置を図1に示す位置より180度回転させ照射ポート220rの直下流に配置される。一方、患部を透過した粒子線を検出する下流粒子線検出部141は、照射領域内の点Icを挟んで照射部200の対角に配置される。なお、粒子線を止めるビームストッパ111は、粒子線診断装置142を使用する際に、その下流にある装置(あるいは患者の場合もある)を粒子線から遮蔽できるように配置されている。また、図1では照射ボート220rは12時の位置にあるが、実際の照射はさまざまな角度から行われる。この場合でも前述の動作は同じであり、粒子線通路部(ダクト部)や下流粒子線検出部は照射ポート220rの角度に対して設定される。 As particle beam passage upper equipment, particle beam passage part (duct part) 130 which becomes a passage route when particle beam emitted from irradiation port 220r goes to the affected part including point Ic in the irradiation area is irradiation port at the time of irradiation Aligned to the same angle as 220r. When using the particle beam diagnostic apparatus 142 for detecting the state of the particle beam irradiated from the irradiation port 220r, the rotating device is rotated 180 degrees from the position shown in FIG. 1 and disposed immediately downstream of the irradiation port 220r. On the other hand, the downstream particle beam detection unit 141 that detects the particle beam transmitted through the affected area is disposed diagonally of the irradiation unit 200 with the point Ic in the irradiation area. In addition, the beam stopper 111 which stops particle beam is arrange | positioned so that the apparatus (or patient's case) downstream may be shielded from particle beam, when using the particle beam diagnostic apparatus 142. FIG. Also, although the irradiation boat 220 r is at the 12 o'clock position in FIG. 1, actual irradiation is performed from various angles. Also in this case, the above-described operation is the same, and the particle beam passage (duct) and the downstream particle beam detector are set with respect to the angle of the irradiation port 220r.
 粒子線通路外機器としては、デジタルラジオグラフィと呼ばれる患者・患部の位置決めに使う画像取得装置として、X線管などのX線発生装置と、フラットパネルディテクタ(FPD)もしくはイメージインテンシファイア管などのX線撮像装置の組合せが考えられる。図では、X線発生装置としてX線管152s、153sを、X線撮像装置として、X線管152s、153sのそれぞれに対して照射領域内の点Icを挟んでFPD152m、153mを対向して配置してX線画像取得装置152、153を構成している。また、医療画像取得装置としては、PET(Positron Emission Tomography)検出器やSPECT(Single Photon Emission Computed Tomography)検出器、あるいは即発ガンマ線と呼ばれるガンマ線を検出するためのシンチレーション検出器などが考えられる。図では、ポジトロンから発生される2個の光子を同時検出するために照射領域内の点Icを挟んで2台のPET検出器151a、151b(まとめて、医療画像取得装置151と称する)を対向して配置した例を示している。 As an apparatus outside the particle beam passage, an X-ray generator such as an X-ray tube, a flat panel detector (FPD) or an image intensifier tube as an image acquisition device used for positioning a patient or an affected part called digital radiography Combinations of x-ray imaging devices are conceivable. In the figure, the X-ray generators 152 s and 153 s are disposed as X-ray generators, and the FPDs 152 m and 153 m are disposed opposite to each other with the point Ic in the irradiation area facing the X-ray tubes 152 s and 153 s. Then, X-ray image acquisition devices 152 and 153 are configured. Further, as a medical image acquisition apparatus, a PET (Positron Emission Tomography) detector, a SPECT (Single Photon Emission Computed Tomography) detector, or a scintillation detector for detecting gamma rays called prompt gamma rays may be considered. In the figure, in order to simultaneously detect two photons generated from the positron, two PET detectors 151a and 151b (collectively referred to as medical image acquisition devices 151) are opposed to each other across a point Ic in the irradiation area. An example is shown in FIG.
 患者および患部の位置決めには通常2方向からのデジタルラジオグラフィ映像を使用するので、X線管とFPDは2対図示してあるが、これを1対のみとし、回転装置100を回転することによって2方向からの画像を取得してもよい。図示していないが、回転装置100は円周部分の内側と外側に保護カバーを付けてある。保護カバーは回転装置に搭載した機器を保護するためと、回転装置を回転させた場合に患者を保護するためや、回転装置以外の機器との衝突防止のためでもある。内側の保護カバーについては、このカバーを通してX線撮像を行うので、ポリイミドなどの原子番号が低い材質を用いて十分に薄くする。粒子線通路部(ダクト部)130は粒子線の散乱が気になる場合はそこの部分については保護カバーを省略する。また、回転部の内側および外側のカバーは回転時の干渉を避けるために円形であることが望ましいが、円形でなくとも八角形や六角形などの多角形であったり一部が直線であってもよい。 Since digital radiography images from two directions are usually used for positioning the patient and the affected area, the X-ray tube and FPD are shown as two pairs, but this is only one pair, and by rotating the rotation device 100 Images from two directions may be acquired. Although not shown, the rotating device 100 is provided with protective covers on the inside and the outside of the circumferential portion. The protective cover is also used to protect the device mounted on the rotating device, to protect the patient when the rotating device is rotated, and to prevent collision with devices other than the rotating device. As for the inner protective cover, since X-ray imaging is performed through this cover, it is made sufficiently thin using a material with a low atomic number such as polyimide. The particle beam passage portion (duct portion) 130 omits the protective cover for the portion where particle beam scattering is concerned. In addition, although it is desirable that the inner and outer covers of the rotating portion be circular in order to avoid interference during rotation, it is not circular but is polygonal such as octagonal or hexagonal or partially straight It is also good.
 前記粒子線通路上機器のうち、粒子線診断装置142の構成についてより詳細に説明する。粒子線治療では治療の品質保証の一環として、粒子線の特性をあらかじめ確認しておく必要がある。例えば照射に使用するビームの飛程(エネルギー)やビームサイズ、照射位置が所望のものとずれていないかを確認する。粒子線診断装置142として具備する検出器の一例は、多層ファラデイカップ、放射線フィルムホールダに装填された放射線フィルム、蛍光板ビームモニタとビデオカメラ、又は2D-Arrayと呼ばれる2次元半導体検出器など既知の装置である。 The configuration of the particle beam diagnostic apparatus 142 of the on-particle beam passage devices will be described in more detail. In particle beam therapy, it is necessary to confirm the characteristics of particle beam in advance as part of quality assurance of treatment. For example, it is confirmed whether the range (energy) of the beam used for irradiation, the beam size, and the irradiation position are not deviated from the desired one. One example of a detector provided as the particle beam diagnostic apparatus 142 is a multilayer Faraday cup, a radiation film loaded in a radiation film holder, a fluorescent screen beam monitor and a video camera, or a two-dimensional semiconductor detector called a 2D array or the like. It is an apparatus.
 多層ファラデイカップは通常のファラデイカップが深さ方向に多層化されており、これらの層を独立に読み出すことによってリアルタイムで粒子線の飛程(エネルギー)を確認できる装置である。放射線フィルムホールダには放射線フィルムを装填し、ペンシルビームを格子状などのテストパターン状に照射するか、2次元一様分布を作るように照射することなどが考えられる。またペンシルビームのビームサイズや形状も詳細に確認することができる。フィルムの解析には時間がかかるが、必要に応じて実施すればよい。 A multilayer Faraday cup is a device in which a normal Faraday cup is multilayered in the depth direction, and the range (energy) of a particle beam can be confirmed in real time by reading out these layers independently. The radiation film holder may be loaded with a radiation film and irradiated with a pencil beam in a test pattern such as a grid or may be irradiated to form a two-dimensional uniform distribution. The beam size and shape of the pencil beam can also be confirmed in detail. Although analysis of the film takes time, it may be performed as needed.
 蛍光板ビームモニタとビデオカメラを使えばフィルム同様にペンシルビームの位置、サイズ、形状、線量分布の一様性などをより短時間で容易に確認することができる。これらの検証方法を用いて仮に絶対精度の検証まで実施できない場合でも、再現性の確認だけでも十分な価値がある。以上の具体的な確認項目については各治療施設の考え方によって決めればよい。確認する項目は例えば患者毎に、あるいは照射セッション毎、日々、週ごとになどによって照射精度が担保できるように適宜決めればよい。 Similar to the film, the position, size, shape, uniformity of dose distribution, etc. of the pencil beam can be easily confirmed in a shorter time by using a fluorescent screen beam monitor and a video camera. Even if it is impossible to carry out verification of absolute accuracy using these verification methods, it is sufficiently worthwhile to check only the reproducibility. The above specific confirmation items may be determined according to the concept of each treatment facility. Items to be confirmed may be determined appropriately so that the irradiation accuracy can be secured, for example, for each patient, every irradiation session, every day, every week, or the like.
 従来では、こうした品質保証確認のために専用の検出器を照射室300に運び、照射領域内の点Icに設置して測定していた。このため、品質保証確認の作業頻度は治療施設にも依るが、例えば、日々の作業として、こうした設置作業を毎朝実施する必要があった。しかしながら、本実施の形態1にかかる粒子線照射装置800では、粒子線通路部(ダクト部)130と、品質保証確認で使用する粒子線診断装置142とが、回転装置100の周方向に沿って並んでいる。そのため、回転角度を所望の値に設定するだけで、治療と品質保証確認の切り替えを行うことができるので、めんどうな設置作業が不要で、日々の作業を容易にし、作業効率を下げることなく確認頻度も上げることができる。 In the past, a dedicated detector was carried to the irradiation chamber 300 for such quality assurance confirmation, and was installed at a point Ic in the irradiation area for measurement. For this reason, although the work frequency of quality assurance confirmation depends on the treatment facility, for example, it was necessary to carry out such installation work every morning as daily work. However, in the particle beam irradiation apparatus 800 according to the first embodiment, the particle beam passage portion (duct portion) 130 and the particle beam diagnostic device 142 used in the quality assurance check are arranged along the circumferential direction of the rotating device 100. Lined up. Therefore, it is possible to switch between treatment and quality assurance confirmation only by setting the rotation angle to a desired value, so troublesome installation work is unnecessary, daily work is facilitated, and confirmation is made without lowering work efficiency. The frequency can also be increased.
 なお、図1において、粒子線診断装置142は照射ノズル(照射部200)の反対側に配置されており、回転装置100を180度回転させて、粒子線の入射方向としては粒子線診断装置142を照射ノズルに近づけることを想定している。しかし、例えば、医療画像取得装置151を具備しない場合は、そこの空間に粒子線診断装置を配置することも可能で、そうすれば180度回転するのではなく、90度回転するだけで、短時間に品質保証確認と治療照射を切り替えることができる。しかし、図1に示すような配置であれば、後述する透過型の照射を実施する場合には、ビームストッパ111を開状態にしておくことにより、粒子線診断装置142が照射領域内の点Icより下流側にあっても使用できる。 In FIG. 1, the particle beam diagnostic apparatus 142 is disposed on the opposite side of the irradiation nozzle (irradiation unit 200), and the rotating apparatus 100 is rotated 180 degrees to use the particle beam diagnostic apparatus 142 as the particle beam incident direction. Is assumed to be close to the irradiation nozzle. However, for example, when the medical image acquisition apparatus 151 is not provided, the particle beam diagnostic apparatus can be disposed in the space there, and if it does not rotate by 180 degrees, it may be shortened by only rotating by 90 degrees. You can switch between quality assurance confirmation and treatment irradiation on time. However, if the arrangement shown in FIG. 1 is to be used for the transmission type irradiation described later, the beam stopper 111 is opened to allow the particle beam diagnostic apparatus 142 to generate a point Ic in the irradiation area. It can be used even downstream.
 次に、粒子線通路上機器である下流粒子線検出部141について説明する。粒子線治療では通常、前述したようにブラッグピークの深さが患部付近にくるように治療計画を立てる。しかし、以下に説明する粒子線照射の別の利用法である透過照射では、照射部200から出射される粒子線のエネルギーを高く設定し、粒子線が患者Kの体を透過するように照射を行う。このとき、照射領域内の点Icを挟んで照射ノズル(照射部200)とは反対方向(すなわち、粒子線から見て照射領域内の点Icの下流側)に下流粒子線検出部141として放射線検出器を配置し、透過照射によって体内を貫通してくる粒子線を測定する。 Next, the downstream particle beam detection unit 141, which is a device on the particle beam passage, will be described. In particle beam therapy, treatment planning is usually made so that the depth of the Bragg peak is near the affected area as described above. However, in transmission irradiation, which is another use of particle beam irradiation described below, the energy of the particle beam emitted from the irradiation unit 200 is set high, and irradiation is performed so that the particle beam passes through the patient K's body. Do. At this time, the radiation as the downstream particle beam detection unit 141 in the direction opposite to the irradiation nozzle (irradiation unit 200) across the point Ic in the irradiation region (that is, the downstream side of the point Ic in the irradiation region as viewed from the particle beam) A detector is placed to measure particle beams penetrating through the body by transmission radiation.
 下流粒子線検出部141に使う装置としては、さまざまな放射線検出器が考えられるが、具体的にはマルチワイヤチェンバ、マルチストリップチェンバ、半導体位置検出器、FPD、放射線フィルムなどの粒子線の位置を検出することのできる既知の装置が考えられる。透過照射の目的としては以下に述べるような照射箇所の確認、粒子線ラジオグラフィ画像の取得、粒子線断層画像の取得などが考えられる。 Although various radiation detectors can be considered as an apparatus used for the downstream particle beam detection unit 141, specifically, positions of particle beams such as a multi-wire chamber, a multi-strip chamber, a semiconductor position detector, an FPD, and a radiation film There are conceivable known devices which can be detected. As the purpose of the transmission irradiation, confirmation of the irradiation site as described below, acquisition of a particle beam radiography image, acquisition of a particle beam tomographic image, and the like can be considered.
 透過照射は、治療照射の直前に準備照射として行うか、治療照射を一時中断して行うことができる。 Permeable irradiation can be performed as preparatory irradiation immediately before therapeutic irradiation, or can be performed with temporary interruption of therapeutic irradiation.
 また、下流粒子線検出部141を使って準備照射を行うことで、通常は、事前に行う粒子線が適切な箇所に当たっているか否かの確認を、照射しながら行うことができる。例えば、照射制御部(後述する制御部600)において、治療計画により指示された場所(粒子線の横方向の2次元座標)と下流粒子線検出部141で得られた粒子線照射の位置情報を照合し、あらかじめ設定された許容精度の範囲内にあることを確認する。このとき、下流粒子線検出部141で測定される座標は治療計画で策定された照射座標の延長線上にあるため、走査されたビームの発散を考慮して下流粒子線検出部141まで投影した値を用いる。投影座標と測定座標の差異が許容精度の範囲外の場合は、照射位置異常として粒子線の照射を直ちに中断し、粒子線治療装置900を一時停止状態にする。位置情報としては粒子線の中心位置が適切であるが、追加の情報として粒子線のビームサイズ(ビームプロファイルの2次モーメント)を確認してもよい。このとき、照射部200から出射される粒子線はエネルギーが十分高く、患者の体を透過できるものとする。またこのとき使用する線量は治療線量に比べて十分小さくなるように照射部200から出射される粒子線の強度(ビーム電流)を制御し、治療計画にて治療線量の一部に含めて計画をしておく。 In addition, by performing preparation irradiation using the downstream particle beam detection unit 141, normally, it can be confirmed while irradiating whether the particle beam performed in advance is in contact with an appropriate location. For example, in the irradiation control unit (control unit 600 described later), the location information (two-dimensional coordinates in the lateral direction of the particle beam) instructed by the treatment plan and the position information of particle beam irradiation obtained by the downstream particle beam detection unit 141 Check to make sure that it falls within the preset tolerance range. At this time, since the coordinates measured by the downstream particle beam detection unit 141 are on the extension of the irradiation coordinates formulated in the treatment plan, the values projected to the downstream particle beam detection unit 141 in consideration of the divergence of the scanned beam Use If the difference between the projected coordinates and the measured coordinates is out of the range of the allowable accuracy, the irradiation of the particle beam is immediately interrupted as an irradiation position abnormality, and the particle beam therapy system 900 is suspended. Although the center position of the particle beam is suitable as the position information, the beam size of the particle beam (second moment of beam profile) may be confirmed as additional information. At this time, the particle beam emitted from the irradiation unit 200 has a sufficiently high energy and can be transmitted through the patient's body. At this time, the intensity (beam current) of the particle beam emitted from the irradiation unit 200 is controlled so that the dose used is sufficiently smaller than the treatment dose, and is included in the treatment dose in the treatment plan. Keep it.
 また、下流粒子線検出部141をFPD、放射線フィルムなどの撮像装置として、透過する粒子線を測定すると、粒子線ラジオグラフィを取得することができる。この画像を基準画像と比べることで治療照射において位置ずれが許容範囲内にあることを直接的に確認することができる。この確認は、治療照射の直前に行う。 In addition, when the downstream particle beam detection unit 141 is an imaging device such as an FPD or a radiation film, particle beam radiography can be acquired by measuring the transmitted particle beam. By comparing this image with the reference image, it is possible to directly confirm that the positional deviation is within the allowable range in the treatment irradiation. This confirmation is done just prior to therapeutic irradiation.
 つぎに、粒子線通路外機器について説明する。
 まずは粒子線通路外機器であるX線画像取得装置152、153を使った患者位置決めについて説明する。粒子線治療では治療線を患部に照射する前に患部を正確に位置決めする必要がある。X線管とFPDなどを用いてX線画像を2方向から取得し、患部の位置合わせと確認を行う。回転装置100では装置を所望の角度に回転することで位置決め画像を短い時間内に取得することができる。
Next, the apparatus outside the particle beam passage will be described.
First, patient positioning using the X-ray image acquisition devices 152 and 153 which are devices outside the particle beam passage will be described. In particle beam therapy, it is necessary to accurately position the affected area before irradiating the affected area with a treatment line. X-ray images are acquired from two directions using an X-ray tube and FPD, etc., and alignment and confirmation of the affected area are performed. In the rotation device 100, a positioning image can be acquired in a short time by rotating the device to a desired angle.
 従来方式として、FPDをノズルに搭載する装置があるが、FPDを格納状態から診断状態まで駆動するために時間を要するという欠点があった。また大型のFPDを搭載することは他の機器との干渉を考えると困難であり、そのため搭載できるFPDの寸法が制限される。さらにX線管やFPDの位置が遠くなり、画像コントラストが低下したり、X線の散乱による画質劣化などの点で不利であった。さらに遠くからの撮像においては、X線管を大容量のものにする必要があり装置が大型になったり、X線管の熱負荷を冷却する装置も大掛かりになるという欠点があった。 As a conventional method, there is a device for mounting the FPD on the nozzle, but there is a drawback that it takes time to drive the FPD from the storage state to the diagnosis state. Also, mounting a large FPD is difficult in view of interference with other devices, which limits the dimensions of the FPD that can be mounted. Furthermore, the position of the X-ray tube and the FPD is far away, which is disadvantageous in that the image contrast is lowered and the image quality is deteriorated due to the scattering of X-rays. In the case of imaging from a further distance, it is necessary to increase the capacity of the X-ray tube, resulting in an increase in the size of the apparatus and an increase in the apparatus for cooling the thermal load of the X-ray tube.
 さらに治療部位によっては呼吸や血流によって標的領域が動くため、正確な照射を行うには患部の動きをX線で確認しながら照射することが望ましい。動きによるずれが所望の範囲を超えた場合はX線画像取得装置の制御部にてそれを判断し、照射部200の制御部を経由して照射を速やかに中断し、ずれが所望の範囲内になった時点で再開する。治療のための粒子線と撮像のためのX線は同時に照射する場合と、交互に照射する場合がある。交互に照射する場合は1秒以内に高速にX線撮像と粒子線照射を切り替える必要がある。本発明によれば、あらかじめX線画像取得装置が照射点の周りに設置されているため、粒子線を照射中にX線撮影を行うことが容易となる。X線画像取得装置を患者の近くに設置することが可能なため、他の機器に邪魔されることなく広い撮像視野が取ることができる。動きの確認には、患部のみならず周辺領域、例えば照射対象からはずれた横隔膜の動きなども利用する場合があり、X線撮像範囲が広く取れることはそのような周辺情報も活用可能とするため、より多くの部位に対して照射精度を確保することができる。 Furthermore, depending on the treatment site, the target area is moved by respiration and blood flow, so in order to perform accurate irradiation, it is desirable to perform irradiation while confirming the movement of the affected area with X-rays. If the displacement due to the movement exceeds the desired range, the control unit of the X-ray image acquisition apparatus determines it, and the irradiation is immediately interrupted via the control unit of the irradiation unit 200, and the displacement is within the desired range. Resume when it comes to The particle beam for treatment and the X-ray for imaging may be irradiated simultaneously or alternately. When alternately irradiating, it is necessary to switch between X-ray imaging and particle beam irradiation at high speed within one second. According to the present invention, since the X-ray image acquisition device is installed around the irradiation point in advance, it becomes easy to perform X-ray imaging while irradiating the particle beam. Since the X-ray image acquisition apparatus can be placed near the patient, a wide imaging field can be taken without being disturbed by other devices. In order to confirm the movement, not only the affected area but also the surrounding area, such as the movement of the diaphragm deviated from the irradiation target, may be used, and the wide X-ray imaging range enables such peripheral information to be utilized. The irradiation accuracy can be secured for more parts.
 なお、位置決めの際にX線画像取得装置の設定角度は照射ポート220rの角度によらず、照射室に対して正側の角度で取得されることが多い。しかし、照射角度から位置確認する場合もあり、これをビームズ・アイ・ビューと呼ぶが、本発明では回転装置を所望の角度にもっていくだけで、そのような別の撮像条件にも容易に対応することができる。 In positioning, the setting angle of the X-ray image acquisition apparatus is often acquired at an angle on the positive side with respect to the irradiation chamber, regardless of the angle of the irradiation port 220r. However, positioning may be performed from the irradiation angle, which is also referred to as “beams eye view”, but in the present invention, it is possible to easily cope with such other imaging conditions simply by bringing the rotation device to a desired angle. can do.
 つぎにX線画像取得装置を使ってコーンビーム断層(CBCT)画像を取得することについて説明する。回転駆動部121を駆動させ、X線発生装置とX線撮像装置の組合せ(X線管152sとFPD152m、あるいはX線管153sとFPD153m)を、回転させながらいろいろな角度で画像を取得することで、CBCT画像を取得することができる。これらは既知の技術であるが、従来技術ではFPDのようなX線撮像装置が回転ガントリに取り付けてあるため、回転速度の上限は1rpm程度に制限されていた。CBCT画像を取得するためには回転駆動部121を少なくとも180度+α度回転させる。ここでαはX線管153sとFPD153mによって一度に撮像できる角度範囲に相当する。 Next, acquisition of a cone beam tomographic (CBCT) image using an X-ray image acquisition apparatus will be described. By driving the rotation drive unit 121 and acquiring images at various angles while rotating the combination of the X-ray generator and the X-ray imaging apparatus (X-ray tube 152s and FPD 152m, or X-ray tube 153s and FPD 153m) , CBCT images can be acquired. These are known techniques, but since the X-ray imaging apparatus such as FPD is attached to the rotating gantry in the prior art, the upper limit of the rotational speed is limited to about 1 rpm. In order to acquire a CBCT image, the rotation drive unit 121 is rotated by at least 180 degrees + α degrees. Here, α corresponds to an angle range which can be imaged at one time by the X-ray tube 153s and the FPD 153m.
 なお、例えば、従来技術には、回転ガントリとは独立に回転する機構を設けた例が開示されている。しかし、照射ノズルと回転機構が干渉するため、患者が治療位置にいる状態において(すなわち患部の基準点が照射領域内に位置決めされた状態において)CBCT画像を取得することが困難であった。また、特許文献3では、X線発生装置とX線撮像装置が突出しているため、患者や周辺機器との衝突防止、安全性の配慮から回転速度を上げることが困難だった。 For example, the prior art discloses an example in which a mechanism that rotates independently of the rotating gantry is provided. However, since the irradiation nozzle and the rotation mechanism interfere with each other, it is difficult to obtain a CBCT image when the patient is at the treatment position (that is, when the reference point of the affected area is positioned within the irradiation area). Further, in Patent Document 3, since the X-ray generation apparatus and the X-ray imaging apparatus are protruded, it is difficult to increase the rotational speed in consideration of safety against the collision with the patient and peripheral devices.
 このように本発明を用いることで患者を治療位置から移動せずに位置決めでき、かつ短時間で画像が取得できるため、作業時間の短縮、および位置決め後の移動による患者体位のずれを防止するという精度面の利点の両方が得られる。 As described above, by using the present invention, the patient can be positioned without moving from the treatment position, and an image can be acquired in a short time, thereby shortening the working time and preventing displacement of the patient's posture due to movement after positioning. Both advantages of accuracy are obtained.
 これに対し、本発明の実施の形態1に関する回転装置100においては、X線管152s、153sとFPD152m、153mをカバーされた筐体の中に設置することができるため、回転速度を上げることができる。これによって呼吸で動く部位の高速撮影が可能となる。さらに、粒子線通路外機器であるX線発生装置とX線撮像装置の組合せ(X線管152sとFPD152m、あるいはX線管153sとFPD153m)と、粒子線通路部(ダクト部)130が、回転装置100の周方向に沿って並んでいる。そのため、回転角度を調整するだけで、治療とCT画像の取得の切り替えを行うことができるので、患者Kが治療位置にいる状態でCBCT画像を取得することも可能である。このため稀に、照射中に患者Kが咳をした場合や動いた場合でも、照射を一時中断し、治療台320を照射位置から移動させることなく、CBCT画像を取得したのち照射を再開することができる。CBCT画像を取得するためには回転駆動部121を少なくとも180度+α度回転させる。ここでαはX線管153sとFPD153mによって一度に撮像できる角度範囲に相当する。図1においては2対のX線撮像装置を具備しており、これら2対から取得した撮像データを総合的に用いれば、回転する角度範囲は90℃+α度以上でもよい。また、呼吸等によって動く患部については、その動きを考慮することによって4D-CBCT(四次元コーンビームCT)を取得することもできる。 On the other hand, in the rotating apparatus 100 according to the first embodiment of the present invention, since the X-ray tubes 152s, 153s and the FPDs 152m, 153m can be installed in the covered case, the rotational speed can be increased. it can. This enables high-speed imaging of the part moving by breathing. Furthermore, the combination of the X-ray generator and the X-ray imaging apparatus (X-ray tube 152s and FPD 152m, or X-ray tube 153s and FPD 153m) which are devices outside the particle beam passage, and the particle beam passage portion (duct portion) 130 rotate They are aligned along the circumferential direction of the device 100. Therefore, it is possible to switch between the treatment and the CT image acquisition only by adjusting the rotation angle, so that it is also possible to acquire the CBCT image while the patient K is at the treatment position. For this reason, in rare cases, even if the patient K coughs or moves during irradiation, the irradiation is temporarily suspended, and the CBCT image is acquired and restarted without moving the treatment table 320 from the irradiation position. Can. In order to acquire a CBCT image, the rotation drive unit 121 is rotated by at least 180 degrees + α degrees. Here, α corresponds to an angle range which can be imaged at one time by the X-ray tube 153s and the FPD 153m. In FIG. 1, two pairs of X-ray imaging apparatuses are provided, and the rotational angular range may be 90 ° C. + α degrees or more if imaging data acquired from these two pairs is used comprehensively. In addition, with regard to an affected area that is moved by breathing or the like, 4D-CBCT (four-dimensional cone beam CT) can also be acquired by considering the movement.
 PET装置(PET検出器151a、151b)については、前述のCBCTのように、照射領域内の点Ic以外の場所(すなわち、治療台が治療位置から少し離れた場所にある状態)で見る方法もあるが、その場合、治療照射時とPET測定時と患者位置決めを2回実施する必要がある。本回転装置を用いれば患者を動かすことなく照射の状態において測定することができる。これにより、患者の位置決めが1回で済むだけでなく、治療時の位置決め精度を含めて確認することができ、また前述したように準備照射や治療照射の途中でも確認できる利点がある。さらに、スキャニング照射においては個別のペンシルビームを照射して線量分布を作るため、標的のもっとも深い表面であるディスタル層に属するスポットのみを選択して、計画された線量の一部をその場所に投与することで、計画で想定した飛程が得られているかを確認することが可能となる。このような撮像に使うポジトロン放出現象は半減期が長いため(分オーダー)、シンクロトロンのようにビーム供給が間欠的に行われるタイプの加速器では、ビーム供給の合間の時間(秒オーダー)に確認撮影を実施しても測定する信号の減衰は問題とならない。 As for the PET apparatus ( PET detectors 151a and 151b), as in the case of the above-described CBCT, a method of viewing at a place other than the point Ic in the irradiation area (that is, in a state where the treatment table is slightly away from the treatment position) However, in that case, it is necessary to perform patient positioning and twice during treatment irradiation and PET measurement. With the present rotation device, measurement can be performed in the state of irradiation without moving the patient. As a result, not only positioning of the patient is required only once, but also positioning accuracy at the time of treatment can be confirmed, and as described above, there is an advantage that confirmation can be performed even during preparatory irradiation and treatment irradiation. Furthermore, in scanning radiation, only a spot belonging to the distal layer of the target, which is the deepest surface of the target, is selected and a portion of the planned dose is administered to that place, in order to irradiate individual pencil beams to create a dose distribution. By doing this, it is possible to confirm whether the range assumed in the plan has been obtained. Since the positron emission phenomenon used for such imaging has a long half life (minute order), it is confirmed in the time between beam supply (second order) in accelerators of the type where beam supply is performed intermittently like synchrotron Attenuation of the signal to be measured does not matter even if imaging is performed.
 照射部200は治療照射に比べて短時間で行う準備照射、もしくは照射ビーム電流を絞って行う準備照射、もしくはその両方の特性を備えた準備照射が可能であり、治療照射の開始直前に短時間に準備照射することが可能である。ここで準備照射とは治療計画で指定された線量の一部を使って照射することを指す。そのため、準備照射後にいったん照射を停止し、回転装置100に搭載の機器からの情報を照射制御部にて収集・処理し、オペレータに表示し、その情報を基に照射を続行するか否かをオペレータが判断できるようにするとよい。このように、準備照射を用いることにより、確認に用いる線量を抑えることができる。 The irradiation unit 200 can perform preparation irradiation with characteristics of preparation irradiation performed in a short time as compared with treatment irradiation, or preparation irradiation performed by reducing the irradiation beam current, or both, and may be performed just before the start of treatment irradiation. It is possible to make a preparation irradiation. Here, preparatory irradiation refers to irradiation using a part of the dose specified in the treatment plan. Therefore, after the preparation irradiation, the irradiation is temporarily stopped, the information from the equipment mounted on the rotating device 100 is collected and processed by the irradiation control unit, displayed to the operator, and whether to continue the irradiation based on the information It may be possible for the operator to make a decision. Thus, the dose used for confirmation can be suppressed by using preparatory irradiation.
 なお、飛程を確認するためには、上述したPET以外に、後に実施の形態3で説明する即発ガンマ線の検出がある。PET装置、あるいは即発ガンマ線検出器等によって得られる情報は、視覚化して画面表示することができるが、これらの装置で得られる情報は粒子線の飛程や線量分布を直接的に表すものとは限らない。すなわち、PET核種や即発ガンマ線の生成確率は、粒子線のエネルギーと標的を構成する物質の原子番号に依存するからである。この依存性を考慮するため、粒子線輸送シミュレーションが可能な既知の計算コードであらかじめ計算した解析結果において分布をあらかじめ計算しておき、計算と測定を比較することが望ましい。但し、測定結果を使って前回の照射結果に対して再現性を比較するだけであればその必要性はない。 In addition to the above-described PET, detection of prompt gamma rays, which will be described in the third embodiment, is available to confirm the range. Information obtained by a PET device or a prompt gamma ray detector can be visualized and displayed on a screen, but the information obtained by these devices can not directly represent the range or dose distribution of particle beam. Not exclusively. That is, the generation probability of the PET nuclide and prompt gamma ray depends on the energy of the particle beam and the atomic number of the substance constituting the target. In order to take account of this dependency, it is desirable to calculate the distribution in advance in an analysis result calculated in advance using a known calculation code capable of particle beam transport simulation, and compare the calculation with the measurement. However, it is not necessary to compare the reproducibility with the previous irradiation result using the measurement result.
 つぎに、上述した粒子線通路外機器および粒子線通路上機器を回転可能に支持する回転装置100および粒子線治療装置900との連携制御について説明する。
 回転装置100の動作および粒子線治療装置900との連携動作を制御するための制御系統は、図4に示すように、複数の制御器によって構成している。例えば、回転装置100を具備する照射室300に設置された制御画面において、回転角度の表示、操作や搭載された検出器の表示、操作が可能であることが操作性の観点から望ましい。照射部200の運転中には、オペレータは照射室300から退避しているため、回転装置100の制御画面と制御機能は照射室300の外に設置された制御端末にて同等の表示、操作が可能であることが望ましい。
Next, cooperation control with the rotating apparatus 100 and the particle beam therapy apparatus 900 that rotatably support the apparatus outside the particle beam passage and the device above the particle beam passage will be described.
As shown in FIG. 4, a control system for controlling the operation of the rotation device 100 and the cooperative operation with the particle beam therapy device 900 is configured by a plurality of controllers. For example, it is desirable from the viewpoint of operability that the display of the rotation angle, the display of the operation, the display of the mounted detector, and the operation can be performed on the control screen installed in the irradiation chamber 300 including the rotating device 100. Since the operator is retracted from the irradiation chamber 300 while the irradiation unit 200 is in operation, the control screen of the rotating device 100 and the control function have the same display and operation on the control terminal installed outside the irradiation chamber 300. It is desirable to be possible.
 回転装置100(回転駆動部121)は、図示しない回転角度検出器を具備し、自身の回転角度が、そのときの治療で要求された照射ポート220rの角度と整合していることを確認する。この確認は、回転装置100の制御計算機(制御部610)、あるいは照射部200の制御計算機(制御部600、620)のいずれかで行うことが考えられる。 The rotation device 100 (rotation drive unit 121) includes a rotation angle detector (not shown), and confirms that the rotation angle of the rotation device 100 matches the angle of the irradiation port 220r required for the treatment at that time. It is conceivable that this confirmation is performed by either the control computer (control unit 610) of the rotating device 100 or the control computer (control units 600 and 620) of the irradiation unit 200.
 例えば、制御計算機(制御部610)は、回転装置100に取り付けられた回転角度検出器から回転角度を読み取って、照射部200から伝送された所望の回転角度と比較して、整合が取れている場合にのみ「回転角度OK」のイネーブル信号をONにする。このイネーブル信号を照射部200の「照射可」のインターロックに用いることが考えられる。また、治療の安全性から確認手段は二重化することが望ましい。回転角度検出器の一例としては、回転装置100の回転駆動部121に取り付けたロータリーエンコーダが考えられる。回転角度や回転装置100の状態、搭載機器の状態を表示する表示器を回転装置100の近傍に取り付けるか、照射部200の操作画面に回転角度を表示すると使いやすくなる。 For example, the control computer (control unit 610) reads the rotation angle from the rotation angle detector attached to the rotating device 100, and is matched with the desired rotation angle transmitted from the irradiation unit 200. Only when the "rotation angle OK" enable signal is turned ON. It is conceivable to use this enable signal for the "irradiable" interlock of the irradiation unit 200. In addition, it is desirable to double confirmation means from the safety of treatment. As an example of the rotation angle detector, a rotary encoder attached to the rotation drive unit 121 of the rotation device 100 can be considered. An indicator for displaying the rotation angle, the state of the rotation device 100, and the state of the mounted device may be attached near the rotation device 100, or the rotation angle may be displayed on the operation screen of the irradiation unit 200.
 回転装置100と照射部200(とくに照射ポート220r)、あるいは加速器500の間には、それぞれの系で機械的な誤差を有するため、各座標系が十分精度内で一致していることを担保する必要がある。そこで、回転装置100の放射線検出器(粒子線診断装置142もしくはノズル先端機器210)として、少なくとも1台のビーム位置検出器を搭載することが望ましい。このビーム位置検出器は、ビーム軸に対して垂直な面におけるビーム位置を検出可能な装置で、既知の蛍光板とCCDカメラ使った方式や、マルチワイヤチェンバ、マルチストリップチェンバ、多電極型の半導体検出器などが考えられる。 Since there is a mechanical error in each system between the rotating device 100 and the irradiation unit 200 (in particular, the irradiation port 220r) or the accelerator 500, it is ensured that the respective coordinate systems match within sufficient accuracy. There is a need. Therefore, it is desirable to mount at least one beam position detector as the radiation detector (the particle beam diagnostic device 142 or the nozzle tip device 210) of the rotation device 100. This beam position detector is a device that can detect the beam position in a plane perpendicular to the beam axis, and uses a known fluorescent plate and a CCD camera, multi-wire chamber, multi-strip chamber, multi-electrode semiconductor detection Bowl etc. can be considered.
 回転装置100の回転角度が所望の位置にある状態で粒子線を照射し、ビーム位置検出器における粒子線が所望の精度で所望の位置に来ていることを確認する。誤差分については、上流の装置(たとえば輸送系400)に設置された水平と垂直の1セット以上の図示しないステアリング電磁石、もしくは前述の走査電磁石にて粒子線の軌道を補正することができる。ビーム位置検出器におけるビーム位置と補正に必要な電磁石の励磁量には概ね線形の関係にあり、既知の計算手法やシミュレーションでも算出することができるし、あらかじめ測定しておくことによって関係式を求めることも可能である。 The particle beam is irradiated with the rotation angle of the rotation device 100 at a desired position, and it is confirmed that the particle beam in the beam position detector comes to a desired position with a desired accuracy. Regarding the error, the trajectory of the particle beam can be corrected by one or more sets of horizontal and vertical steering electromagnets (not shown) installed in the upstream device (for example, the transport system 400) or the scanning electromagnet described above. There is a substantially linear relationship between the beam position in the beam position detector and the amount of excitation of the electromagnet required for correction, and it can be calculated by known calculation methods and simulations, and the relational expression is determined by measuring in advance. It is also possible.
 更にステアリング電磁石、もしくは前述の走査電磁石を動的に励磁変更可能なものとし、ビーム位置の検出と補正量を高速に計算できるようなフィードバック回路を設けることで、ビーム軌道補正をリアルタイムで実施することも可能である。また、安全上の配慮として、ビーム軌道補正量がある値を超えた場合には、回転装置100の回転角度が間違っているか、上流の装置に異常があることが考えられるため、インターロックをかけるようにするとよい。 Furthermore, beam trajectory correction can be performed in real time by providing a feedback circuit that enables dynamic excitation and change of the steering electromagnet or the above-mentioned scanning electromagnet, and can calculate the beam position detection and correction amount at high speed. Is also possible. Also, as a safety consideration, when the beam trajectory correction amount exceeds a certain value, it is conceivable that the rotation angle of the rotating device 100 is incorrect or there is an abnormality in the upstream device, so interlocking is performed. You should do it.
 なお、上記に示すような、粒子線通路外機器(医療画像取得装置151、X線画像取得装置152、153)、粒子線通路上機器であるノズル先端機器210(照射野形成部材、ビーム位置モニタ、線量モニタ)、粒子線診断装置142、下流粒子線検出部141、ビームストッパ111は、粒子線の照射をサポートするために備えられるものであり、サポート機器と称する。 As described above, the apparatus outside the particle beam passage (medical image acquisition device 151, X-ray image acquisition device 152, 153), the nozzle tip device 210 (irradiation field forming member, beam position monitor) which is the device above the particle beam passage. , A dose monitor), a particle beam diagnostic apparatus 142, a downstream particle beam detection unit 141, and a beam stopper 111, which are provided to support irradiation of particle beams, and are referred to as a support device.
 なお、図1における各サポート機器の円周上の配置は、撮像範囲の干渉や、機器と配線の干渉などを考慮して決めることであり、ここに記載した配置例以外でも同様の機能が得られる。例えば、図1においてFPD153mがX線管153sより粒子線通路部130に近い位置にあるが、この配置は逆であってもよい。また、X線画像取得装置152、153は粒子線通路部130を挟んで概ね45度の位置関係で図示してあるが、これ以外の角度に配置しても同様の機能が得られる。 The arrangement of each supporting device on the circumference in FIG. 1 is determined in consideration of the interference of the imaging range, the interference of the device and the wiring, etc. The same function can be obtained except for the arrangement example described here. Be For example, although the FPD 153 m is located closer to the particle beam passage portion 130 than the X-ray tube 153 s in FIG. 1, this arrangement may be reversed. Further, although the X-ray image acquisition devices 152 and 153 are illustrated in a positional relationship of approximately 45 degrees with the particle beam passage portion 130 interposed therebetween, the same function can be obtained by arranging them at angles other than this.
 以上のように、本実施の形態1にかかる粒子線照射装置800によれば、加速器により加速された粒子線を患者Kに向けて照射する照射ポート220rと、照射ポート220rとは独立して設けられ、照射ポート220rから照射された粒子線を通過させる粒子線通路部(ダクト部)130と前記粒子線の照射をサポートするサポート機器(医療画像取得装置151、X線画像取得装置152、153、ノズル先端機器210、粒子線診断装置142、下流粒子線検出部141、ビームストッパ111)が、周方向に配設された回転架台110と、回転架台110を回転駆動させる回転駆動部121と、照射ポート220rからの粒子線の出射を制御するとともに、回転駆動部121の動作を制御する制御部610とを備えるようにしたので、回転角度や回転速度を調整するだけで、患者を動かすことなく、各機器を使用可能な状態に切り替えて撮像することができる。そのため、撮像精度を損なうことなく、効率よく正確な照射を実現することができる。 As described above, according to the particle beam irradiation apparatus 800 according to the first embodiment, the irradiation port 220 r for irradiating the particle beam accelerated by the accelerator toward the patient K and the irradiation port 220 r are provided independently. Particle beam passage portion (duct portion) 130 for passing the particle beam irradiated from the irradiation port 220r, and support devices (medical image acquisition device 151, X-ray image acquisition devices 152, 153, A rotating gantry 110 in which the nozzle tip device 210, the particle beam diagnostic apparatus 142, the downstream particle beam detecting unit 141, and the beam stopper 111) are disposed in the circumferential direction, a rotation driving unit 121 that rotationally drives the rotating gantry 110, and irradiation A control unit 610 is provided to control the emission of particle beam from the port 220 r and to control the operation of the rotational drive unit 121. , Only by adjusting the rotational angle and rotational speed, without moving the patient, it can be captured by switching the usable state of each device. Therefore, accurate irradiation can be efficiently realized without losing the imaging accuracy.
 また、検査機器のうち、粒子線の照射方向に対して使用可能な位置が決まる機器(例えば、下流粒子線検出部141、医療画像取得装置151)は、粒子線通路部(ダクト部)130の位置を基準にして、周方向における位置が固定されているので、粒子線の照射方向に応じて粒子線通路部(ダクト部)130の位置を調整するだけで、その機器を使用可能な状態に切り替えることができる。 Further, among the inspection equipment, the equipment whose usable position is determined in the irradiation direction of the particle beam (for example, the downstream particle beam detection unit 141, the medical image acquisition device 151) Since the position in the circumferential direction is fixed on the basis of the position, the device can be used simply by adjusting the position of the particle beam passage (duct) 130 according to the irradiation direction of the particle beam. It can be switched.
 また、検査機器には、回転中心(回転軸Xr)まわりに回転しながら動作する機器(例えば、X線画像取得装置152、153)が含まれるので、余分な作業を介することなく、撮像と治療を連続して実行できる。 In addition, since the inspection apparatus includes an apparatus (for example, the X-ray image acquisition devices 152 and 153) that operates while rotating around the rotation center (rotation axis Xr), imaging and treatment are performed without extra work. Can be performed continuously.
 さらに、回転架台110は、回転軸Xrに沿って並進移動可能に設けられるようにしたので、回転架台を所定位置に駆動して位置決めし、複数の機器のそれぞれが、照射角回転面内に配置された状態で、照射部200(とくに、照射ポート220rの位置)と連携して動作させることで、撮像機器と照射機器が干渉せず、撮像や正確な照射ができる。 Furthermore, since the rotating frame 110 is provided so as to be movable in translation along the rotation axis Xr, the rotating frame is driven to a predetermined position and positioned, and each of the plurality of devices is disposed within the irradiation angle rotation plane By operating in cooperation with the irradiation unit 200 (in particular, the position of the irradiation port 220r) in the state as described above, imaging and accurate irradiation can be performed without interference between the imaging device and the irradiation device.
 実施の形態2.
 上記実施の形態1における粒子線照射装置800においては、回転装置に粒子線の照射領域内への通過経路としてダクトを配置した例について記載したが、本実施の形態2では、回転装置に照射野を形成するノズル先端機器をダクト内に配置した場合、つまり照射装置ノズル220の一部を搭載する例を示す。図7は本実施の形態2にかかる粒子線照射装置800について説明するためのもので、回転ガントリと回転軸を合わせて設置した回転装置を回転軸方向から見たときの模式図である。なお、粒子線治療装置900および制御に関する構成については、実施の形態1で用いた図を援用し、同様部分の説明は省略する。
Second Embodiment
In the particle beam irradiation apparatus 800 according to the first embodiment described above, an example is described in which a duct is disposed in the rotation device as a passage path to the irradiation region of the particle beam. An example is shown in which the nozzle tip device forming the is disposed in the duct, that is, a part of the irradiation device nozzle 220 is mounted. FIG. 7 is a view for explaining the particle beam irradiation apparatus 800 according to the second embodiment, and is a schematic view when a rotating device in which a rotating gantry and a rotating shaft are aligned is viewed from the rotating shaft direction. Note that the configuration used in the first embodiment is used for the configuration relating to the particle beam therapy apparatus 900 and the control, and the description of the same parts is omitted.
 本実施の形態2にかかる粒子線照射装置800では、図7に示すように、回転装置100は、回転架台110内にノズル先端機器210を回転可能に支持している。ノズル先端機器210は、基本的には、実施の形態1の照射部200で説明した照射野形成部材である。具体的に示すと、照射野形成部材は、レンジシフタ、(もしくはオフセットレンジシフタ)、リッジフィルタ、(もしくはリップルフィルタ)、補償フィルタ(ボーラスとも呼ぶ)ホールダ、患者コリメータ、多葉コリメータなどを指す。レンジシフタは、粒子線の飛程を制御するための装置、リッジフィルタはブラッグピークを意図的に広げるための装置、補償フィルタは標的(腫瘍)の後端側の形状に合わせて製作されるフィルタであり、深さ方向の照射野を形成するものである。患者コリメータは標的に対して粒子線の横方向(ビーム照射方向に対して垂直な方向)の形状に合わせて製作されるコリメータである。多葉コリメータは計算機制御可能な可動コリメータである。なお、これら照射野形成部材の使用は症例に応じて医療スタッフが決めるものであり、必ず使用されるものではない。 In the particle beam irradiation apparatus 800 according to the second embodiment, as shown in FIG. 7, the rotating device 100 rotatably supports the nozzle tip device 210 in the rotating frame 110. The nozzle tip device 210 is basically the irradiation field forming member described in the irradiation unit 200 of the first embodiment. Specifically, the irradiation field forming member refers to a range shifter, (or offset range shifter), ridge filter, (or ripple filter), compensation filter (also called bolus) holder, patient collimator, multileaf collimator, and the like. The range shifter is a device for controlling the range of particle beam, the ridge filter is a device for intentionally broadening the Bragg peak, and the compensation filter is a filter manufactured according to the shape of the rear end side of the target (tumor). It forms the radiation field in the depth direction. The patient collimator is a collimator manufactured to the shape of the particle beam in the lateral direction (direction perpendicular to the beam irradiation direction) with respect to the target. A multileaf collimator is a computer-controllable movable collimator. The use of these radiation field forming members is determined by the medical staff depending on the case, and is not necessarily used.
 また、ノズル先端機器210として、ビーム位置モニタ、線量モニタを備えてもよい。これらは、いずれも粒子線治療において既知のもので、スキャニング照射などでは、設置場所として照射ノズル(照射ポート)先端部が妥当な装置である。ビーム位置モニタとしては、マルチワイヤチェンバやマルチストリップチェンバなど、線量モニタとしてはイオンチェンバや二次電子放出型モニタなどが使用でき、いずれも従来の粒子線治療において既知の技術である。ノズル先端機器210は、散乱によるビームサイズ拡大を抑制するため、ななるべく下流に配置することが望ましい。 Further, as the nozzle tip device 210, a beam position monitor and a dose monitor may be provided. These are all known in particle beam therapy, and in scanning radiation etc., the tip of an irradiation nozzle (irradiation port) is a valid device as an installation place. As a beam position monitor, a multi-wire chamber, a multi-strip chamber, etc., and as a dose monitor, an ion chamber, a secondary electron emission monitor, etc. can be used, both of which are known techniques in conventional particle beam therapy. It is desirable to arrange the nozzle tip device 210 as downstream as possible in order to suppress beam size expansion due to scattering.
 このように、通常は照射部200の先端部に設置する照射部の機器の一部を回転装置100側に設置することによって、照射領域内の点Ic近くに配置すべき機器を一つの回転構造物に集約し、照射領域内の点Icから一定半径内での回転空間を確保することができる。すなわち、照射ポート側の照射部先端のでっぱりを抑制することによって、CBCTなどの断層画像を取得するときの画像取得装置と照射部の干渉を回避することができる。同時に、ノズル先端部の装置をなるべく患者に近づけて設置することが可能になり、ビーム径が広がることを抑制できる。 As described above, one rotational structure of an apparatus to be disposed near the point Ic in the irradiation area by installing a part of the apparatus of the irradiation unit, which is usually installed at the tip of the irradiation unit 200, on the rotating device 100 side. It is possible to concentrate on objects and secure a rotational space within a constant radius from the point Ic in the irradiation area. That is, interference between the image acquisition device and the irradiation unit when acquiring a tomographic image such as CBCT can be avoided by suppressing the unevenness of the irradiation unit tip on the irradiation port side. At the same time, the device at the tip of the nozzle can be installed as close as possible to the patient, and the beam diameter can be suppressed from expanding.
 なお、スキャニング照射ポートの場合は、照射部200の中も粒子線を通すための真空ダクトが設置されている。このため、この真空ダクトと加速器500からの輸送系400の真空ダクト410は、遮断バルブを介して一体になっており、ビーム出口の真空窓 はなるべく下流に設置することがビームの散乱設計上望ましい。真空窓で発生する散乱によって粒子線のビーム径が広がるため、真空窓がなるべく下流のほうが照射領域内の点におけるビーム径を小さく保てるからである。このため、回転装置100の直上流にビーム出口の真空窓を設置するとよい。 In the case of the scanning irradiation port, a vacuum duct for passing the particle beam is also provided in the irradiation unit 200. For this reason, it is desirable that the vacuum duct and the vacuum duct 410 of the transport system 400 from the accelerator 500 be integrated via a shutoff valve, and the vacuum window at the beam outlet be installed as downstream as possible. . This is because the beam diameter of the particle beam is expanded by the scattering generated at the vacuum window, so that the beam diameter at a point in the irradiation area can be kept smaller when the vacuum window is as downstream as possible. For this reason, a vacuum window at the beam outlet may be provided immediately upstream of the rotating device 100.
 ビーム位置モニタについては安全のために主・副の2台を設けて冗長性を得ることが通常であり、その2台のうち1台を回転装置のノズル先端機器として設置し、もう1台は上流の照射部200側に設置し、2台のビーム位置モニタの計測値を比較することによって、回転装置が設定された回転角度が所望の値であることを確認し、照射装置の安全性を高めることができる。 For safety, the beam position monitor is normally provided with two units, primary and secondary, to obtain redundancy, and one of the two units is installed as the nozzle tip device of the rotating device, and the other is Installed on the upstream irradiation unit 200 side and comparing the measurement values of the two beam position monitors, it is confirmed that the rotation angle at which the rotating device is set is a desired value, and the safety of the irradiation device It can be enhanced.
 また、回転部のカバーは回転時の干渉を考慮すると概ね円形であることが望ましいが、照射ノズル先端機器210は照射領域にできるだけ近づけることが望ましいため、図8に示すように、この部分だけを近づけるためにノズルカバーに出っ張りを設けるか、この部分のみ直線にしてもよい。 In addition, although it is desirable that the cover of the rotating portion be substantially circular in consideration of interference during rotation, since it is desirable that the irradiation nozzle tip device 210 be as close as possible to the irradiation area, as shown in FIG. A protrusion may be provided on the nozzle cover to make it close, or only this portion may be straight.
 以上のように、本実施の形態2にかかる粒子線照射装置800によれば、回転装置100は、粒子線通路部(ダクト部)130に、粒子線の照射野を形成する照射野形成部材が設けられているので、すなわち、照射部先端のでっぱりを抑制することによって、CBCTなどの断層画像を取得するときの画像取得装置と照射部の干渉を回避することができるだけでなく、真空窓がなるべく下流のほうに設置でき、照射領域内の点におけるビーム径を小さく保つことができる。 As described above, according to the particle beam irradiation apparatus 800 according to the second embodiment, the rotating device 100 includes the irradiation field forming member that forms the irradiation field of the particle beam in the particle beam passage portion (duct portion) 130. As it is provided, in other words, by suppressing the unevenness of the tip of the irradiation unit, it is possible not only to avoid interference between the image acquisition device and the irradiation unit when acquiring a tomographic image such as CBCT etc. It can be installed downstream and keep the beam diameter small at points in the irradiation area.
 また、放射線検出器(ビーム位置モニタ、線量モニタ)は、回転架台110の粒子線通路部(ダクト部)130に設置されるようにしたので、上流の照射部側に設置した放射線検出器の計測値と比較することによって、回転装置が設定された回転角度が所望の値であることを確認し、照射装置の安全性を高めることができる。 In addition, since the radiation detector (beam position monitor, dose monitor) is installed in the particle beam passage (duct) of the rotating frame 110, the measurement of the radiation detector installed on the upstream irradiation unit side By comparing with the value, it is possible to confirm that the rotation angle set by the rotation device is a desired value and to enhance the safety of the irradiation device.
 実施の形態3.
 本実施の形態3では、上述した実施の形態1あるいは2における下流粒子線検出部あるいは医療画像取得装置に用いる機器を別のものに変更したものである。図9は本実施の形態3にかかる粒子線照射装置800について説明するためのもので、回転ガントリと回転軸を合わせて設置した回転装置を回転軸方向から見たときの模式図である。なお、本実施の形態3においても、粒子線治療装置900および制御に関する構成については、実施の形態1で用いた図を援用し、同様部分の説明は省略する。
Third Embodiment
In the third embodiment, the apparatus used for the downstream particle beam detection unit or the medical image acquisition apparatus in the first or second embodiment described above is changed to another apparatus. FIG. 9 is a view for explaining the particle beam irradiation apparatus 800 according to the third embodiment, and is a schematic view when a rotation device in which a rotation gantry and a rotation axis are aligned are viewed from the rotation axis direction. Also in the third embodiment, the configuration used in the first embodiment is used for the configuration relating to the particle beam therapy apparatus 900 and the control, and the description of the same parts is omitted.
 本実施の形態3にかかる粒子線照射装置800では、図9に示すように、回転装置100は、下流粒子線検出部141として、飛程望遠鏡もしくは分割型カロリメータのいずれかを搭載したものである。これにより、粒子線断層画像(粒子線CT)が取得可能になる。粒子線CTの取得方法は既知のものがあり、その例について述べる。なお、粒子線CTを取得するにあたって照射部200から出射される粒子線はエネルギーが十分高く、患者の体を透過できるものとする。 In the particle beam irradiation apparatus 800 according to the third embodiment, as shown in FIG. 9, the rotating device 100 is provided with either the range telescope or the split calorimeter as the downstream particle beam detection unit 141. . This makes it possible to acquire particle beam tomographic images (particle beam CT). There are known methods for acquiring particle beam CT, and an example will be described. Note that the particle beam emitted from the irradiation unit 200 at the time of acquiring the particle beam CT has a sufficiently high energy and can be transmitted through the patient's body.
 飛程望遠鏡とは、透過した粒子線が有する残飛程を計測するための測定装置で、残飛程とは、体内で運動エネルギーの一部を失った粒子線が保有する残りの飛程のことである。例えば、ビーム位置検出器で粒子線の通過する位置を計測し、多層検出器で粒子線の残飛程を計測する。このとき粒子線の一つの粒子を個別に測定する方法と粒子線を細く絞ったペンシルビームとして測定する方法が考えられる。 A range telescope is a measurement device for measuring the remaining range of transmitted particle beams, and the remaining range is the remaining range of particle beams that have lost some of their kinetic energy in the body. It is. For example, the beam position detector measures the passing position of the particle beam, and the multilayer detector measures the remaining range of the particle beam. At this time, a method of individually measuring one particle of the particle beam and a method of measuring as a pencil beam in which the particle beam is finely narrowed can be considered.
 別の方式として、分割型エネルギー測定器(分割型カロリメータ)を用いて粒子線の残エネルギーを測定すればよい。分割型エネルギー測定器としてはCsIやBaF、LaBrなどの放射線検出器であって、残エネルギーを全て吸収できる十分な厚みを有するものを使う。これらの検出器を粒子線の横方向に細かく分割して配置し、粒子線によって検出器内で発生する光を光ファイバで光電倍増管などに導き計測すればよい。このとき粒子線の一つの粒子を個別に測定する方法であれば、残留エネルギーは直接的に計測され、粒子線を細く絞ったペンシルビームとして測定する場合は、上流の線量モニタ等でカウントした粒子数で除すればよい。粒子線CT画像を取得しなくとも、透過照射における残飛程や残エネルギーをあらかじめ選択された1点、もしくは複数点に対して一つの回転ガントリ角度において測定し、治療計画にて得られる情報と照合する確認方法も考えられる。 As another method, the remaining energy of the particle beam may be measured using a split energy meter (split calorimeter). As a split type energy measuring device, a radiation detector such as CsI, BaF, LaBr 3 or the like, which has a sufficient thickness to absorb all the remaining energy, is used. These detectors may be finely divided and arranged in the lateral direction of the particle beam, and the particle beam may be used to guide light generated in the detector by an optical fiber to a photomultiplier or the like. At this time, if it is a method of individually measuring one particle of particle beam, the residual energy is directly measured, and if it is measured as a pencil beam finely narrowed particle beam, particles counted by the upstream dose monitor etc. It should be divided by a number. Even if particle beam CT images are not acquired, the remaining range and energy in transmission irradiation are measured at one rotating gantry angle with respect to one or more points selected in advance, and the information obtained in the treatment plan and A verification method to collate can also be considered.
 また、本実施の形態3にかかる粒子線照射装置800では、回転装置100に医療画像取得装置151として、即発ガンマ線検出器を搭載した。検出器としてはスリット付きガンマカメラ、コンプトンカメラなどの既知の方法がある。スリット付きガンマカメラでは、分割されたガンマ線検出器の前にスリットを設けることで検出されたガンマ線の位置と方向を限定する方式である。コンプトンカメラではガンマ線を散乱する散乱体と散乱した光子を計測することでガンマ線の発生位置を特定することができる。 In the particle beam irradiation apparatus 800 according to the third embodiment, the prompt gamma ray detector is mounted on the rotation apparatus 100 as the medical image acquisition apparatus 151. As a detector, there are known methods such as a slit gamma camera and a Compton camera. In the slitted gamma camera, the position and direction of the detected gamma ray are limited by providing a slit in front of the divided gamma ray detector. The Compton camera can identify the gamma ray generation position by measuring the scatterers that scatter gamma rays and the scattered photons.
 また、実施の形態1で説明したように、即発ガンマ線検出においてもPET検出の場合と同様に準備照射をすることができる。さらに、即発ガンマ線検出器等によって得られる情報は、視覚化して画面表示することができるが、これらの装置で得られる情報は粒子線の飛程を直接的に表すものとは限らない。すなわち、即発ガンマ線の生成確率は、粒子線のエネルギーと標的の材質に依存するからである。この依存性を考慮するため、粒子線輸送シミュレーションが可能な既知の計算コードであらかじめ計算した解析結果において計算と測定を比較することが望ましい。但し、測定結果のみを使って前回の照射結果に対して再現性を比較するだけであればその必要性はない。 In addition, as described in the first embodiment, preparatory irradiation can be performed in prompt gamma ray detection as in the case of PET detection. Furthermore, although information obtained by the prompt gamma ray detector or the like can be visualized and displayed on the screen, the information obtained by these devices may not necessarily represent the range of the particle beam directly. That is, the generation probability of prompt gamma rays depends on the energy of the particle beam and the material of the target. In order to take account of this dependency, it is desirable to compare the calculation and the measurement in the analysis result calculated in advance by a known calculation code capable of particle beam transport simulation. However, it is not necessary to compare the reproducibility with the previous irradiation result using only the measurement result.
 実施の形態4.
 上記実施の形態1~3における粒子線照射装置800では、回転ガントリを有し、照射部が回転する照射室に、回転装置を設置した場合について説明した。本実施の形態4にかかる粒子線照射装置800では、照射部が固定された照射ポートになっている照射室に、回転装置を設置したものである。図10は本実施の形態4にかかる粒子線照射装置800について説明するためのもので、回転装置を回転軸方向から見たときの模式図である。なお、本実施の形態4においても、粒子線治療装置900の基本構成および制御に関する構成については、実施の形態1で用いた図を援用し、同様部分の説明は省略する。また、回転装置内の機器については、上述した実施の形態1~3で説明したのと同様であるので、説明は省略する。
Fourth Embodiment
In the particle beam irradiation apparatus 800 according to the first to third embodiments, the case where the rotation apparatus is installed in the irradiation chamber having the rotating gantry and in which the irradiation unit rotates is described. In the particle beam irradiation apparatus 800 according to the fourth embodiment, a rotation device is installed in an irradiation chamber which is an irradiation port to which an irradiation unit is fixed. FIG. 10 is a view for explaining the particle beam irradiation apparatus 800 according to the fourth embodiment, and is a schematic view when the rotation apparatus is viewed from the rotation axis direction. Also in the fourth embodiment, the diagram used in the first embodiment is used for the basic configuration and the configuration relating to control of the particle beam therapy system 900, and the description of the same parts is omitted. Further, since the devices in the rotating device are the same as those described in the first to third embodiments, the description will be omitted.
 本実施の形態4にかかる粒子線照射装置800が設置される照射室300では、図10に示すように、それぞれ12時の方向と3時の方向から照射領域内の点Icに向けて粒子線を照射する2つの固定された照射ポート220A、220Bが設けられている。そして、粒子線を照射するポートを切り替えることで、異なる方向(角度)からの照射(多門照射)が可能となる。その角度の変更の基準となる中心(基準軸)は、上述した回転ガントリの回転軸Xrに相当し、本実施の形態4における回転装置100も基準軸と回転軸を一致させている。 In the irradiation chamber 300 in which the particle beam irradiation apparatus 800 according to the fourth embodiment is installed, as shown in FIG. 10, the particle beam is directed from the 12 o'clock direction and the 3 o'clock direction toward the point Ic in the irradiation area. There are two fixed irradiation ports 220A, 220B for irradiating the light. Then, by switching the port for irradiating the particle beam, it is possible to perform irradiation (multi-field irradiation) from different directions (angles). The center (reference axis) serving as the reference of the change of the angle corresponds to the rotation axis Xr of the rotating gantry described above, and the rotation device 100 in the fourth embodiment also causes the reference axis to coincide with the rotation axis.
 そのため、本実施の形態4にかかる粒子線照射装置800においても、上記各実施の形態1~3と同様に、撮像精度を損なうことなく、効率よく正確な照射を実現することができる。なお、本実施の形態4では、複数の照射ポート220A、220Bによって異なる角度から照射できる例を示したが、これに限ることはない。例えば、固定された照射ポートが1つしかない照射室に上述した回転装置100を設置した場合でも、撮像精度を損なうことなく、効率よく正確な照射を実現することができる。また照射ポートの角度は水平、垂直に限らず斜め45度、あるいは水平と斜め45度、垂直と斜め45度など回転架台110の回転面と同一平面内であれば他の角度であってもよい。 Therefore, also in the particle beam irradiation apparatus 800 according to the fourth embodiment, as in the first to third embodiments, efficient and accurate irradiation can be realized without losing the imaging accuracy. In the fourth embodiment, an example in which irradiation can be performed from different angles by the plurality of irradiation ports 220A and 220B has been described, but the present invention is not limited thereto. For example, even when the above-described rotating device 100 is installed in an irradiation chamber having only one fixed irradiation port, accurate irradiation can be efficiently realized without losing the imaging accuracy. In addition, the angle of the irradiation port is not limited to horizontal and vertical but may be another angle as long as it is in the same plane as the rotation surface of the rotating gantry 110, such as 45 degrees diagonally or 45 degrees horizontally and 45 degrees vertically .
 また、本実施の形態4にかかる粒子線照射装置800によれば、照射室300には、照射領域内の点Icに対して固定された角度から粒子線を照射する照射ポート(例えば、220A)が設けられ、回転架台110の回転中心(回転軸Xr)が、照射領域内の点Icと固定された照射ポートを結ぶ線に対して垂直であるように構成すれば、粒子線の照射方向と照射領域内を含む面内で照射領域内の点を中心とする患者の状態の撮像と治療とを間断なく実行することができる。 Further, according to the particle beam irradiation apparatus 800 according to the fourth embodiment, the irradiation chamber 300 receives an irradiation port (for example, 220A) for irradiating particle beams from an angle fixed to the point Ic in the irradiation area. If the rotation center (rotation axis Xr) of the rotating gantry 110 is perpendicular to the line connecting the point Ic in the irradiation area and the fixed irradiation port, the irradiation direction of the particle beam is Imaging and treatment of a patient's condition centering on a point in the irradiation area can be performed without interruption in a plane including the inside of the irradiation area.
 とくに、照射室300には、照射領域内の点Icに対して設定された面内の異なる角度から粒子線を照射するよう、上述した固定された照射ポートが複数設けられているので、撮像精度を損なうことなく、効率よく正確な照射を実現することができる。 In particular, since the irradiation chamber 300 is provided with a plurality of the above-described fixed irradiation ports so as to irradiate particle beams from different angles in the plane set with respect to the point Ic in the irradiation area, the imaging accuracy And accurate illumination can be realized efficiently.
 実施の形態5.
 次に、図11および図12に基づいて回転ガントリを用いたノンコプラナー照射の例について説明する。コプラナー照射とは、患者の体軸、すなわち治療台の長軸がガントリの回転軸に概略平行な状態で行う照射のことで、粒子線は体軸に概略垂直な面内にて照射され、その面内では360度の中の所望の角度から照射することを言う。これに対しノンコプラナー照射では、体軸に概略垂直な面以外の方向から照射を行う。このとき、治療台の長軸は回転ガントリの回転軸とは平行でない状態となる。図11はコプラナー照射のときの治療台と回転装置の状態を示す図であり、図12はノンコプラナー照射のときの治療台と回転装置の状態の一例である。いずれの場合も、回転ガントリと回転装置の回転軸は平行を保っている。図12では治療台は図示したz軸を中心に角度αほど回転した状態である。角度αが大きくなりすぎると治療台もしくは患者と回転装置の内径102が干渉するが、それより小さい治療台の回転角度の範囲であればノンコプラナー照射に対応することができる。
Embodiment 5
Next, an example of non-coplanar irradiation using a rotating gantry will be described based on FIGS. 11 and 12. Coplanar irradiation is irradiation performed with the patient's body axis, that is, the long axis of the treatment table substantially parallel to the rotation axis of the gantry, and the particle beam is irradiated in a plane substantially perpendicular to the body axis. In the plane, it says to irradiate from a desired angle in 360 degrees. On the other hand, in non-coplanar irradiation, irradiation is performed from a direction other than a plane substantially perpendicular to the body axis. At this time, the long axis of the treatment table is not parallel to the rotation axis of the rotating gantry. FIG. 11 is a view showing the state of the treatment table and the rotating device at the time of coplanar irradiation, and FIG. 12 is an example of the state of the treatment table and the rotating device at the time of non-coplanar irradiation. In either case, the rotational axes of the rotating gantry and the rotating device are kept parallel. In FIG. 12, the treatment table is in a state of being rotated by an angle α around the illustrated z-axis. If the angle α becomes too large, the inner diameter 102 of the treatment table or patient interferes with the inner diameter 102 of the rotation device, but a smaller range of the rotation angle of the treatment table can cope with non-coplanar irradiation.
 実施の形態6.
 本発明の実施の形態1から5においては、回転装置の回転部の形状がリング形状である場合、すなわち概略O型形状の場合について説明してきたが、回転装置は概略C型形状であっても同様の機能を実現することできる。O型形状であれば、回転が時計周り、あるいは半時計周りのいずれも選択することができるため、所望の角度に設定するための駆動範囲、すなわち設定時間を短縮することができる。さらに、CBCTなどトモグラフィ画像の取得する際には回転領域の選択の自由度が増すので実装しやすい。また、機械的なバランスや強度の点で有利である。しかし一方で、C型形状であれば、治療台と患者を照射位置にセッティングする際に医療スタッフの作業性が改善される場合がある。また、ガントリの方式として、照射できる角度範囲が概略360度のタイプや、照射できる方向が概略220度などに限定されたタイプが知られているが、そのような装置においては必ずしもO型である必要はなく、C型形状において実施した場合でもこれまで述べてきた機能を実現することができる。図13に、C型形状の回転装置の一例を示す。
Sixth Embodiment
In Embodiments 1 to 5 of the present invention, although the case where the shape of the rotating portion of the rotating device is a ring shape, that is, the case of an approximately O shape, has been described, Similar functions can be realized. In the case of the O-shape, since the rotation can be selected either clockwise or counterclockwise, the drive range for setting to a desired angle, that is, the setting time can be shortened. Furthermore, when acquiring a tomographic image such as CBCT, it is easy to implement since the degree of freedom in selecting the rotation area is increased. It is also advantageous in terms of mechanical balance and strength. However, with the C-shaped configuration, the workability of the medical staff may be improved when setting the treatment table and the patient at the irradiation position. In addition, as a gantry method, there is known a type in which the range of angles that can be irradiated is approximately 360 degrees, and a type in which the direction in which it can be irradiated is approximately 220 degrees, etc. It is not necessary, and even when implemented in a C-shape, the functions described so far can be realized. FIG. 13 shows an example of a C-shaped rotating device.
 C型形状の回転装置の場合、回転装置の周方向360度にわたって機器を配置するのではなく、周方向の一部に機器を配置しない部分を設ける。このためには実施の形態1から5まで説明してきた機器を小型化するか、あるいは一部の機器を削減する。例えば、図13に示した回転装置では、X線撮像装置153をそれぞれ2対で具備するのではなく、片側だけにし、医療画像取得装置151も片側だけに具備することによって回転装置をC型形状にすることができる。治療台を移動する際や患者をセットアップする際には必要に応じて切り欠き部101を所望の角度に設定することで作業性を向上することができる。 In the case of the C-shaped rotating device, the device is not arranged over 360 degrees in the circumferential direction of the rotating device, but a part where the device is not arranged is provided in a part of the circumferential direction. For this purpose, the devices described in the first to fifth embodiments are miniaturized or some of the devices are reduced. For example, in the rotation apparatus shown in FIG. 13, the X-ray imaging apparatus 153 is not provided in two pairs, but only on one side, and the medical image acquisition apparatus 151 is also provided on only one side. Can be When moving the treatment table or setting up the patient, the workability can be improved by setting the notch 101 to a desired angle as necessary.
 なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, within the scope of the invention, the respective embodiments can be freely combined, or the respective embodiments can be appropriately modified or omitted.
100:回転装置、110:回転架台、111:ビームストッパ、121:回転駆動部、122:直進駆動部、130:粒子線通路部(ダクト部)、141:下流粒子線検出部(放射線検出器)、142:粒子線診断装置(放射線検出器)、151:医療画像取得装置、152,153:X線画像取得装置、200:照射部、210:ノズル先端機器、220r、220A、220B:照射ポート、300:照射室、320:治療台、350:回転ガントリ、400:輸送系、500:加速器、800:粒子線照射装置、Ic:照射領域内の点、K:患者、Xr:回転軸(回転中心) 100: rotation device, 110: rotation frame, 111: beam stopper, 121: rotation drive unit, 122: straight movement drive unit, 130: particle beam passage unit (duct unit), 141: downstream particle beam detection unit (radiation detector) , 142: particle beam diagnostic apparatus (radiation detector), 151: medical image acquisition apparatus, 152, 153: X-ray image acquisition apparatus, 200: irradiation unit, 210: nozzle tip device, 220r, 220A, 220B: irradiation port, 300: irradiation room, 320: treatment table, 350: rotating gantry, 400: transport system, 500: accelerator, 800: particle beam irradiation apparatus, Ic: point in irradiation area, K: patient, Xr: rotation axis (rotation center (rotation center )

Claims (10)

  1.  加速器により加速された粒子線を患者に向けて照射する照射ポートと、
     前記照射ポートとは独立して設けられ、前記照射ポートから照射された粒子線を通過させる通路部と前記粒子線の照射をサポートするサポート機器が、周方向に配設された回転架台と、
     前記回転架台の回転軸を回転中心として前記回転架台を回転駆動させる回転駆動部と、
     前記照射ポートからの粒子線の出射を制御するとともに、前記回転駆動部の動作を制御する制御部と
     を備えたことを特徴とする粒子線照射装置。
    An irradiation port for irradiating the particle beam accelerated by the accelerator toward the patient;
    A rotating gantry provided in a circumferential direction and provided independently of the irradiation port, and a passage unit for passing the particle beam irradiated from the irradiation port, and a support device for supporting the irradiation of the particle beam;
    A rotational drive unit configured to rotationally drive the rotary base around a rotation axis of the rotary base as a rotation center;
    And a control unit configured to control the emission of particle beams from the irradiation port and to control the operation of the rotational drive unit.
  2.  前記照射ポートは、前記回転架台の回転軸と同一の回転軸を回転中心とする回転ガントリに設けられ、前記制御部は、前記回転ガントリの回転動作を制御することを特徴とする請求項1に記載の粒子線照射装置。 The irradiation port is provided on a rotating gantry whose rotation center is the same rotation axis as the rotation axis of the rotating gantry, and the control unit controls the rotation operation of the rotating gantry. Particle beam irradiation apparatus as described.
  3.  前記サポート機器は、医療画像取得装置、X線画像取得装置、照射野形成部材、ビーム位置モニタ、線量モニタ、粒子線診断装置、下流粒子線検出部、ビームストッパのいずれかを含むことを特徴とする請求項1または請求項2に記載の粒子線照射装置。 The support device includes any one of a medical image acquisition device, an X-ray image acquisition device, an irradiation field forming member, a beam position monitor, a dose monitor, a particle beam diagnostic device, a downstream particle beam detection unit, and a beam stopper. The particle beam irradiation apparatus according to claim 1 or 2.
  4.  前記通路部に、前記照射野形成部材が設けられていることを特徴とする請求項3に記載の粒子線照射装置。 The particle beam irradiation apparatus according to claim 3, wherein the irradiation field forming member is provided in the passage portion.
  5.  前記照射野形成部材として、レンジシフタ、リップルフィルタ、補償フィルタ、患者コリメータ、多葉コリメータのいずれかであることを特徴とする請求項4に記載の粒子線照射装置。 The particle beam irradiation apparatus according to claim 4, wherein the irradiation field forming member is any one of a range shifter, a ripple filter, a compensation filter, a patient collimator, and a multileaf collimator.
  6.  前記サポート機器は、前記X線画像取得装置を含み、前記X線画像取得装置は、X線管とFPDからなることを特徴とする請求項3から請求項5のいずれか1項に記載の粒子線照射装置。 The particle according to any one of claims 3 to 5, wherein the support device includes the X-ray image acquisition device, and the X-ray image acquisition device includes an X-ray tube and an FPD. Radiation device.
  7.  前記サポート機器は、前記医療画像取得装置を含み、前記医療画像取得装置は、PET検出器、SPECT検出器、即発ガンマ線検出器のいずれかであることを特徴とする請求項3から請求項6のいずれか1項に記載の粒子線照射装置。 The said support apparatus contains the said medical image acquisition apparatus, The said medical image acquisition apparatus is any one of a PET detector, a SPECT detector, and a prompt gamma detector. The particle beam irradiation device according to any one of the items.
  8.  前記サポート機器は、前記X線画像取得装置および前記医療画像取得装置を含み、前記X線画像取得装置および前記医療画像取得装置は、前記患者に前記粒子線を照射中であっても照射と同時にもしくは交互に前記患者を撮像し、前記撮像した画像に基づき前記患者の動きに合わせて前記粒子線を入切することを特徴とする請求項3から請求項7のいずれか1項に記載の粒子線照射装置。 The support device includes the X-ray image acquisition device and the medical image acquisition device, and the X-ray image acquisition device and the medical image acquisition device simultaneously with the irradiation even during irradiation of the particle beam to the patient. The particle according to any one of claims 3 to 7, wherein the patient is imaged alternately or alternately, and the particle beam is turned on / off according to the movement of the patient based on the imaged image. Radiation device.
  9.  前記回転架台は、治療室の床に平行な面内で並進移動可能であることを特徴とする請求項1から請求項8のいずれか1項に記載の粒子線照射装置。 The particle beam irradiation apparatus according to any one of claims 1 to 8, wherein the rotating frame is movable in translation in a plane parallel to a floor of a treatment room.
  10.  前記サポート機器には、前記回転中心の周りを回転しながら動作する機器が含まれることを特徴とする請求項1から請求項9のいずれか1項に記載の粒子線照射装置。 The particle beam irradiation apparatus according to any one of claims 1 to 9, wherein the support device includes a device that operates while rotating around the rotation center.
PCT/JP2017/043812 2017-07-03 2017-12-06 Particle beam irradiation apparatus WO2019008793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017130120 2017-07-03
JP2017-130120 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019008793A1 true WO2019008793A1 (en) 2019-01-10

Family

ID=64949904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043812 WO2019008793A1 (en) 2017-07-03 2017-12-06 Particle beam irradiation apparatus

Country Status (1)

Country Link
WO (1) WO2019008793A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613606A (en) * 2019-01-25 2019-04-12 上海理工大学 A kind of detection method of X-ray of intended particle motion profile
WO2020241311A1 (en) * 2019-05-28 2020-12-03 株式会社日立製作所 Particle radiotherapy system and operation screen update method of particle radiotherapy system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045291A (en) * 2010-08-30 2012-03-08 Toshiba Corp Radiotherapy equipment, control method, and control program
US20140066755A1 (en) * 2012-08-29 2014-03-06 ProNova Solutions, LLC Simultaneous Imaging and Particle Therapy Treatment system and Method
US20140288348A1 (en) * 2013-03-25 2014-09-25 Siemens Aktiengesellschaft Radiotherapy treatment device comprising image acquisition device and irradiation device, and radiotherapy method
JP2016120282A (en) * 2014-12-19 2016-07-07 イオンビーム アプリケーションズ, エス.エー. Method and imaging system for determining reference radiograph for use in radiation therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045291A (en) * 2010-08-30 2012-03-08 Toshiba Corp Radiotherapy equipment, control method, and control program
US20140066755A1 (en) * 2012-08-29 2014-03-06 ProNova Solutions, LLC Simultaneous Imaging and Particle Therapy Treatment system and Method
US20140288348A1 (en) * 2013-03-25 2014-09-25 Siemens Aktiengesellschaft Radiotherapy treatment device comprising image acquisition device and irradiation device, and radiotherapy method
JP2016120282A (en) * 2014-12-19 2016-07-07 イオンビーム アプリケーションズ, エス.エー. Method and imaging system for determining reference radiograph for use in radiation therapy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613606A (en) * 2019-01-25 2019-04-12 上海理工大学 A kind of detection method of X-ray of intended particle motion profile
WO2020241311A1 (en) * 2019-05-28 2020-12-03 株式会社日立製作所 Particle radiotherapy system and operation screen update method of particle radiotherapy system
JP2020192085A (en) * 2019-05-28 2020-12-03 株式会社日立製作所 Particle beam therapy system and operation screen update method of particle beam therapy system
JP7146695B2 (en) 2019-05-28 2022-10-04 株式会社日立製作所 Particle beam therapy system and method for updating the operation screen of the particle beam therapy system

Similar Documents

Publication Publication Date Title
EP3541281B1 (en) System for emission-guided high-energy photon delivery
US20210369217A1 (en) Imaging Systems and Methods for Image-Guided Radiosurgery
JP6844942B2 (en) Particle beam therapy system and management system for particle beam therapy
US7473913B2 (en) Gantry system for a particle therapy facility
JP4130680B2 (en) Treatment apparatus and bed positioning apparatus using ion beam
US9555266B2 (en) Device for remotely cross-firing particle beams
US9044604B2 (en) Radiotherapy system
JP6523076B2 (en) Particle therapy system
US10688318B2 (en) Radiographic imaging apparatus and particle beam therapy system
JP5951385B2 (en) CT image creation device for charged particle beam therapy
AU2017203109B2 (en) Cancer treatment room fiducial marker apparatus and method of use thereof
EP3678736A1 (en) Self-shielded, integrated-control radiosurgery system
WO2019008793A1 (en) Particle beam irradiation apparatus
WO2019155849A1 (en) Particle radiation therapy apparatus
JP5829162B2 (en) X-ray equipment
JP2012183283A (en) Rotating action verification system, rotating action verification method, program, and recording medium
JP2007267971A (en) Radiation irradiation apparatus
JP5680510B2 (en) Charged particle beam irradiation equipment
US20180104513A1 (en) Method and apparatus for an ion beam accelerator and beam delivery system integrated on a rotating gantry
JP2020138099A (en) Particle beam treatment system and management system for particle beam treatment
JP2019166098A (en) Radiation treatment device, bed positioning device and bed positioning method
JP2013013613A (en) Charged particle beam irradiation device
JP2021027849A (en) Patient mounting table for neutron capture therapy, patient posture confirmation system, and patient posture confirmation method
CN115518306A (en) Positively charged particle cancer therapy beam status determination system and methods of use thereof
KR20160059532A (en) Disk type Magnetic Resonance Imaging Guided Radiotherpy System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP