WO2019007105A1 - 风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组 - Google Patents

风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组 Download PDF

Info

Publication number
WO2019007105A1
WO2019007105A1 PCT/CN2018/079792 CN2018079792W WO2019007105A1 WO 2019007105 A1 WO2019007105 A1 WO 2019007105A1 CN 2018079792 W CN2018079792 W CN 2018079792W WO 2019007105 A1 WO2019007105 A1 WO 2019007105A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive mechanism
pitch
wind turbine
linear telescopic
angle
Prior art date
Application number
PCT/CN2018/079792
Other languages
English (en)
French (fr)
Inventor
古雅琦
朱兵
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US16/090,442 priority Critical patent/US20190145377A1/en
Priority to AU2018247310A priority patent/AU2018247310B2/en
Priority to ES18780013T priority patent/ES2820579T3/es
Priority to EP18780013.1A priority patent/EP3453873B1/en
Publication of WO2019007105A1 publication Critical patent/WO2019007105A1/zh
Priority to US17/376,418 priority patent/US11359602B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/604Control system actuates through hydraulic actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power generation equipment, and in particular to a wind turbine blade pitching device, a pitching method, a pitch control device and a wind power generator set.
  • the wind turbine pitch system is used to adjust the blade pitch angle, so that the wind turbine can be in the best working condition, and it is also an important part of the safety system on the wind turbine. It can ensure that the wind turbine can start and stop normally and special. Emergency shutdown of the situation. About 70% of the working time of the wind turbine is at a small angle pitch, which requires high precision of the pitch system, and the execution stroke of the pitch mechanism is short; about 30% of the working time of the wind turbine is at a large pitch angle, and the pitch system needs to respond quickly.
  • the pitching mechanism performs a long stroke.
  • the existing gear-driven pitch system is a set of pitch actuators, wherein the pitch motor drives the pitch reducer, the pitch reducer drives the pitch output gear to rotate, and the pitch output gear drives the pitch bearing to rotate, pitching
  • the bearing drives the blade to pitch.
  • the pitch drive wheel ie, the pitch output gear
  • the pitch bearing is an internal tooth
  • the blade is fixed by a bolt and a pitch bearing.
  • the pitch output gear and the pitch bearing may be worn at a small angle pitch, resulting in the interdental wear of the pitch bearings, gear fatigue failure, and gear generation. Broken and damaged. Damage to the gear of the pitch bearing will result in pitch abnormalities and the need to replace the new pitch bearing, which will increase the maintenance cost of the wind turbine.
  • the present application provides a wind turbine blade pitching device, a pitching method, a pitch control device and a wind power generator set, which solves the problem that the existing wind power generator adopts a gear driving system to cause serious wear of the transmission teeth when pitching at a small angle. problem.
  • an embodiment of the present application provides a wind turbine blade pitching device for controlling a pitch angle of a blade mounted on a hub, the blade is mounted on the hub through a pitch bearing, and the wind turbine blade is changed.
  • the paddle device includes:
  • a disc drive structure fixedly mounted to the blade and perpendicular to the axis of the pitch bearing, and a track disposed around the axis of the pitch bearing on the disc drive structure;
  • first linear telescopic drive mechanism having one end hinged to the hub and the other end coupled to the rail by a first clamping member clampable on the rail, the first linear telescopic drive mechanism being hingedly coupled to the first clamping member;
  • the second linear telescopic drive mechanism has one end hinged to the hub and the other end connected to the track by a second clamping member that can be clamped on the track, and the second linear telescopic drive mechanism is hingedly coupled to the second clamping member.
  • the embodiment of the present application further provides a method for controlling a wind turbine generator blade pitch device, including:
  • the preset threshold is greater than 0 degrees.
  • the embodiment of the present application further provides a wind turbine blade pitch control device for the wind turbine blade pitch device, comprising:
  • a determining unit configured to determine a size of the angle and the preset threshold
  • the second control signal is sent, and the second control signal is used to control the first linear telescopic drive mechanism to drive the disc drive structure to make the blade reach the target pitch angle;
  • the preset threshold is greater than 0 degrees.
  • the embodiment of the present application further provides a wind power generator set, including the above wind turbine blade pitch device and wind turbine blade pitch control device.
  • the present application provides a wind turbine blade pitching device, a pitching method, a pitch control device and a wind power generator, which replaces the existing integral gear-driven pitch system, and realizes the segmental pitching of the wind power generator.
  • FIG. 1 is a schematic structural view of a wind turbine generator blade pitching device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a wind turbine blade pitch control device of a wind turbine blade pitch device according to an embodiment of the present application.
  • a first linear telescopic drive mechanism 400, a first linear telescopic drive mechanism; 401, a first telescopic component; 402, a first drive mechanism; 405, a first clamping member;
  • 500 a second linear telescopic drive mechanism; 501, a second telescopic member; 502, a second drive mechanism; 505, a second clamping member.
  • Wind turbine blade pitching devices include:
  • the disc drive structure 300 is fixedly mounted to the blade and perpendicular to the axis of the pitch bearing 200, and the disc drive structure 300 is provided with a track 310 disposed around the axis of the pitch bearing 200;
  • the first linear telescopic drive mechanism 400 has one end hinged to the hub 100 and the other end connected to the rail 310 by a first clamping member 405 that can be clamped on the rail 310.
  • the first linear telescopic drive mechanism 400 and the first clamping member 405 is connected by means of articulation;
  • the second linear telescopic drive mechanism 500 has one end hinged to the hub 100 and the other end connected to the rail 310 by a second clamping member 505 that can be clamped on the rail 310.
  • the second linear telescopic drive mechanism 500 and the second clamping member The 505 is connected by articulation.
  • the first linear telescopic drive mechanism 400 can be accurately driven by using a high-precision driving device, and the second linear telescopic drive mechanism 500 can be driven by a large thrust and large stroke driving device. Travel drive.
  • the two telescopic drive mechanisms instead of the existing integral gear-driven pitch system, when the blade is required to perform small-angle pitch control, only the first linear telescopic drive mechanism 400 can be realized;
  • the large-angle pitch control is performed, it is first driven by the second linear telescopic drive mechanism 500, and is controlled by the first linear telescopic drive mechanism 400 when the pitch angle is to be reached, thereby achieving precise control of the blade pitch angle.
  • two retractable driving mechanisms are used for segmented driving, which overcomes the driving gear and the pitch bearing in the pitching (especially the small angle pitching) process.
  • the friction loss between the tooth surfaces prolongs the service life of the pitch bearing and reduces the maintenance cost, thereby improving the pitch performance of the wind turbine and the power generation quality of the wind turbine.
  • the first linear telescopic drive mechanism 400 drives the disk drive structure 300
  • the first clamping member 405 clamps the track 310
  • the second clamping member 505 is disengaged.
  • the track 310 when the second linear telescopic drive mechanism 500 drives the disk drive structure 300, the first clamping member 405 disengages the track 310, and the second clamping member 405 grips the track 310.
  • the disc drive structure 300 is fixedly mounted on the outer or inner ring of the pitch bearing 200 that is fixedly coupled to the vanes. For example, when the outer ring of the pitch bearing 200 is fixedly coupled to the blade, the disk drive structure 300 is fixedly mounted on the outer ring of the pitch bearing 200; or, when the inner ring of the pitch bearing 200 is fixedly coupled to the blade, the disk is The drive structure 300 is fixedly mounted to the inner ring of the pitch bearing 200.
  • the track 310 is a single track, in which case the track 310 can be circular, elliptical or curved (i.e. having a portion of a circle), and the center of the above circular, elliptical or curved shape is preferably the axis of the pitch bearing.
  • the track 310 is a double track, in which case the track 310 may be circular, elliptical or curved (ie having a part of a circle), and the center of the above circular, elliptical or curved is preferably a pitch bearing Axis.
  • the first linear telescopic drive mechanism 400 is coupled to one of the dual rails
  • the second linear telescoping drive mechanism 500 is coupled to the other of the dual rails.
  • the first linear telescopic drive mechanism 400 includes a first telescopic component 401 and a first driving mechanism 402, and the first driving mechanism 402 drives the first telescopic component 401 to perform a telescopic movement.
  • the first driving mechanism 402 is hinged with the hub 100, and the first telescopic member 401 is hinged with the first clamping member 405.
  • the first drive mechanism 402 is a linear motor or a hydraulic cylinder, and the first telescopic member 401 is a telescopic rod; the linear telescopic drive can be realized by driving the telescopic rod by a linear motor or a hydraulic cylinder.
  • the first driving mechanism 402 can also be a forward-reverse motor. Accordingly, the first telescopic member 401 is a screw rod, and the screw rod drives the sleeve on the screw rod under the driving of the forward-reverse motor.
  • the second linear telescopic drive mechanism 500 includes a second telescopic component 501 and a second driving mechanism 502, and the second driving mechanism 502 drives the second telescopic component 501 to perform a telescopic movement.
  • the second driving mechanism 502 is hinged with the hub 100, and the second telescopic member 501 is hinged with the second clamping member 505.
  • the second drive mechanism 502 is a linear motor or a hydraulic cylinder, and the second telescopic member 501 is a telescopic rod; the linear telescopic drive can be realized by driving the telescopic rod by a linear motor or a hydraulic cylinder.
  • the second driving mechanism 502 can also be a forward and reverse motor.
  • the second telescopic member 501 is a screw rod, and the screw rod drives the sleeve on the screw rod under the driving of the forward and reverse motor.
  • the positive and negative motor features high precision of execution and control, and is suitable for small thrust applications. It is suitable for pitch fine adjustment of wind speed near rated conditions.
  • the combination of the positive and negative motor and the lead screw can increase the thrust and stroke of the pitch drive mechanism, and is suitable for high wind speed or normal start and stop conditions.
  • the pitch drive mechanism is subdivided, and the combination of positive and negative motors, positive and negative motors and screw rods is rationally applied to reduce the cost of the pitch system, improve the accuracy and reliability of the pitch system, and improve Fan power generation quality.
  • the first linear telescopic drive mechanism 400 and the second linear telescopic drive mechanism 500 may adopt the same structural design, or may adopt different structural designs, that is, one adopts a large thrust large stroke design, and the second adopts a high design. Precision small stroke design to meet different precision and stroke control requirements.
  • a plurality of drive mechanisms may be used in parallel to drive the first telescopic member 401 as the first drive mechanism 402 to provide greater thrust, or to employ multiple drive mechanisms.
  • a telescopic member is driven respectively, the fixed position of each driving mechanism is equal to the position of the center of the blade, and the angle between each telescopic member and the rail 310 is also equal to ensure that the plurality of driving mechanisms can simultaneously drive the plurality of telescopic members.
  • the embodiment of the present application further provides a method for controlling a wind turbine generator blade pitch device, including:
  • the size of the angle A and the preset threshold B are determined. Generally, the angle A may be greater than the preset threshold B or less than the preset threshold B, for two cases:
  • the first control signal is sent, and the first control signal is used to control the second linear telescopic drive mechanism 500 to drive the disc drive structure to bring the blade close to the target pitch angle;
  • a second control signal is sent for controlling the first linear telescopic drive mechanism 400 to drive the disc drive structure to bring the blades to the target pitch angle.
  • the positions of the first linear telescopic drive mechanism 400 and the second linear telescopic drive mechanism 500 in FIG. 1 are merely illustrative examples, and it should be understood that the positions of the first linear telescopic drive mechanism 400 and the second linear telescopic drive mechanism 500 are not limited. As shown in FIG. 1, those skilled in the art can adjust themselves according to design requirements during the implementation process.
  • the blade when the angle A is greater than the preset threshold B, the blade needs to be driven by the second linear telescopic drive mechanism 500 to approach the target pitch angle; when the angle A is equal to (or less than) the preset threshold B At this time, it is necessary to control the second linear telescopic drive mechanism 500 to stop while starting the first linear telescopic drive mechanism 400 to continue driving the blades to reach the target pitch angle.
  • the angle A ranges from 0 to 90 degrees; the preset threshold B is 0.1-5 degrees.
  • the preset threshold B can be adjusted according to the design and usage requirements.
  • the preset threshold B can be generally set to 2 degrees or 3 degrees.
  • the first reset signal is sent, the first reset signal is used to: the first clamping member 405 clamps the track 310, the second clamping member 505 disengages the track 310, and The two linear telescopic drive mechanism 500 is reset to the initial position;
  • the second reset signal is sent, the second reset signal is used to: the first clamping member 405 is disengaged from the track 310, the second clamping member 505 is clamped to the track 310, and the first The linear telescoping drive mechanism 400 is reset to the initial position.
  • the control of the two clamping members can avoid the self-locking phenomenon generated by the two telescopic drive mechanisms during the driving process; when the telescopic drive mechanism is activated, the other telescopic drive mechanism is automatically reset, which can facilitate the next pitch drive. control.
  • the initial positions of the second linear telescopic drive mechanism 500 and the first linear telescopic drive mechanism 400 are not perpendicular to the track, which can avoid the direction in which the drive cannot be controlled when the linear telescopic drive mechanism is driven, thereby avoiding the on the disc drive structure 300.
  • Track 310 causes damage.
  • a stop signal is sent, the stop signal is used to simultaneously control the stop of the two linear telescopic drive mechanisms, and the two clamping members are controlled to clamp the track, thereby simultaneously changing by two linear telescopic drive mechanisms.
  • the paddle angle is locked to make the pitch angle of the blade more stable and less susceptible to wind.
  • the embodiment of the present application further provides a blade pitch control device, including:
  • a determining unit configured to determine a size of the angle A and the preset threshold B
  • a signal sending unit configured to: when the angle A is greater than the preset threshold B, send a first control signal, where the first control signal is used to control the second linear telescopic drive mechanism 500 to drive the disk drive structure 300 to bring the blade close to the target paddle Distance angle
  • the second control signal is sent, and the second control signal is used to control the first linear telescopic drive mechanism 400 to drive the disc drive structure 300 to make the blade reach the target pitch angle;
  • the angle A ranges from 0 to 90 degrees; the preset threshold B is 0.1-5 degrees.
  • the preset threshold B can be adjusted according to the design and usage requirements.
  • the preset threshold B can be generally set to 2 degrees or 3 degrees.
  • the signal sending unit is further configured to:
  • the first reset signal is sent, and the first reset signal is used to control the second linear telescopic drive mechanism 500 to be reset to the initial position;
  • a second reset signal is sent, and the second reset signal is used to control the first linear telescopic drive mechanism 400 to be reset to the initial position.
  • the initial positions of the second linear telescopic drive mechanism 500 and the first linear telescopic drive mechanism 400 are not perpendicular to the track 310.
  • the signal sending unit is further configured to send a stop signal when the blade rotates to the target pitch angle, and the stop signal is used to simultaneously control the stopping of the two linear telescopic drive mechanisms, and control the two clamping members to clamp the track.
  • the blade pitch control device is embedded on the main controller and/or the pitch controller.
  • the two pitching members are alternately clamped by the blade pitch control device, thereby avoiding the phenomenon that the two clamping members are simultaneously clamped to lock the blade.
  • the blade pitch control device in this embodiment may be an electronic control device, for example, the clamping action of each clamping member is realized by a small motor drive, and the blade pitch control device controls the action of the small motor to ensure the pitch process. Smooth.
  • the blade pitch control device in FIG. 2 is merely an illustrative example, and it should be understood that the blade pitch control device in this embodiment may also employ a mechanical transmission device, particularly in a manner that can be linked with two linear telescopic drive mechanisms.
  • the first clamping member 405 can be coupled with the first linear telescopic drive mechanism 400.
  • the first clamping member 405 is automatically controlled to clamp the track 310 when the first linear expansion and contraction is performed.
  • the driving mechanism 400 is stopped, the first clamping member 405 is automatically controlled to open the clamping action, and the second clamping member 505 can be performed with reference to the design of the first clamping member 405, and details are not described herein again.
  • the embodiment of the present application further provides a wind power generator set comprising the wind turbine blade pitch device and the wind turbine blade pitch control device provided by the above embodiments.
  • the wind power generator provided by the embodiment of the present application replaces the existing integral gear-driven pitch system to realize the segmental pitch of the wind power generator, thereby overcoming the drive gear during the pitch (especially the small angle pitch) process.
  • the friction loss between the tooth surface of the pitch bearing extends the service life of the pitch bearing and reduces the maintenance cost, thereby improving the pitch performance of the wind turbine and the power generation quality of the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组叶片变桨装置,包括:盘式驱动结构(300),其与变桨轴承(200)的轴线垂直,在盘式驱动结构上设有环绕变桨轴承的轴线布置的轨道(310);第一线性伸缩驱动机构(400),通过可夹持在轨道上的第一夹持部件(405)与轨道连接,第一线性伸缩驱动机构与第一夹持部件通过铰接的方式连接;第二线性伸缩驱动机构(500),通过可夹持在轨道上的第二夹持部件(505)与轨道连接,第二线性伸缩驱动机构与第二夹持部件通过铰接的方式连接。该风力发电机组叶片变桨装置替代现有的整体式齿轮驱动的变桨系统,实现了风力发电机组的分段变桨,从而克服了变桨过程中驱动齿轮与变桨轴承的齿面之间的摩擦损耗,延长了变桨轴承的使用寿命。还披露了一种变桨方法、变桨控制装置及风力发电机组。

Description

风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组 技术领域
本申请涉及风力发电设备领域,具体地说是一种风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组。
背景技术
风力发电机组变桨系统用于调节叶片桨距角,使得风力发电机组能处于最佳的工作状态,同时也是风力发电机组上安全系统的重要组成部分,能够保证风力发电机组能够正常启停机和特殊情况的紧急停机。风力发电机组约70%的工作时间处于小角度变桨,需要变桨系统精度高,变桨机构执行行程短;风力发电机组约30%的工作时间处于大变桨角度,需要变桨系统响应快,变桨机构执行行程长。
现有齿轮驱动的变桨系统为一套变桨执行机构,其中,变桨电机驱动变桨减速机,变桨减速机带动变桨输出齿轮转动,变桨输出齿轮驱动变桨轴承转动,变桨轴承带动叶片变桨。变桨驱动轮(即,变桨输出齿轮)为外齿,变桨轴承为内齿,叶片通过螺栓与变桨轴承固定。在采用齿轮驱动变桨轴承的情况下,在小角度变桨时可能会磨损变桨输出齿轮与变桨轴承的某个齿,导致变桨轴承内齿过渡磨损,发生齿轮疲劳失效,直至发生齿轮折断损坏。变桨轴承的齿轮损坏将导致变桨异常,需要更换新的变桨轴承,这将增加风力发电机组的维护成本。
发明内容
本申请提供了一种风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组,解决了现有风力发电机组采用齿轮驱动系统在小角度变桨时导致传动齿磨损严重的问题。
第一方面,本申请实施例提供了一种风力发电机组叶片变桨装置,用 于控制转动安装在轮毂上的叶片的桨距角,叶片通过变桨轴承安装在轮毂上,风力发电机组叶片变桨装置包括:
盘式驱动结构,固定安装于叶片,并与变桨轴承的轴线垂直,在盘式驱动结构上设有环绕变桨轴承的轴线布置的轨道;
第一线性伸缩驱动机构,一端铰接在轮毂上,另一端通过可夹持在轨道上的第一夹持部件与轨道连接,第一线性伸缩驱动机构与第一夹持部件通过铰接的方式连接;
第二线性伸缩驱动机构,一端铰接在轮毂上,另一端通过可夹持在轨道上的第二夹持部件与轨道连接,第二线性伸缩驱动机构与第二夹持部件通过铰接的方式连接。
第二方面,本申请实施例还提供了一种上述风力发电机组叶片变桨装置的控制方法,包括:
获得目标桨距角与当前桨距角的夹角;
判断夹角与预设阈值的大小;
当夹角大于预设阈值时,发送第一控制信号,该第一控制信号用于控制第二线性伸缩驱动机构驱动盘式驱动结构以使叶片接近目标桨距角;
当夹角小于等于预设阈值时,发送第二控制信号,该第二控制信号用于控制第一线性伸缩驱动机构驱动盘式驱动结构以使叶片达到目标桨距角;
其中,预设阈值大于0度。
第三方面,本申请实施例还提供了一种上述风力发电机组叶片变桨装置的风力发电机组叶片变桨控制装置,包括:
获得单元,用于获得目标桨距角与当前桨距角的夹角;
判断单元,用于判断夹角与预设阈值的大小;
信号发送单元,用于
当夹角大于预设阈值时,发送第一控制信号,该第一控制信号用于控制第二线性伸缩驱动机构驱动盘式驱动结构,以使叶片接近目标桨距角;
当夹角小于等于预设阈值时,发送第二控制信号,第二控制信号 用于控制第一线性伸缩驱动机构驱动盘式驱动结构,以使叶片达到目标桨距角;
其中,预设阈值大于0度。
第四方面,本申请实施例还提供了一种风力发电机组,包括以上的风力发电机组叶片变桨装置和风力发电机组叶片变桨控制装置。
本申请提供了一种风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组,替代现有整体式齿轮驱动的变桨系统,实现了风力发电机组的分段变桨,从而克服了变桨(特别是小角度变桨)过程中驱动齿轮与变桨轴承的齿面之间的摩擦损耗,延长了变桨轴承的使用寿命,降低了维保成本,从而提高了风力发电机组的变桨性能以及风力发电机组的发电质量。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的风力发电机组叶片变桨装置的结构示意图。
图2是本申请实施例提供的风力发电机组叶片变桨装置的的风力发电机组叶片变桨控制装置的结构示意图。
图中:
100、轮毂;
200、变桨轴承;
300、盘式驱动结构;310、轨道;
400、第一线性伸缩驱动机构;401、第一伸缩部件;402、第一驱动机构;405、第一夹持部件;
500、第二线性伸缩驱动机构;501、第二伸缩部件;502、第二驱动机构;505、第二夹持部件。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
如图1所示,本申请实施例提供了一种风力发电机组叶片变桨装置,用于控制转动安装在轮毂100上的叶片的桨距角,叶片通过变桨轴承200安装在轮毂100上,风力发电机组叶片变桨装置包括:
盘式驱动结构300,固定安装于叶片,并与变桨轴承200的轴线垂直,在盘式驱动结构300上设有环绕变桨轴承200的轴线布置的轨道310;
第一线性伸缩驱动机构400,一端铰接在轮毂100上,另一端通过可夹持在轨道310上的第一夹持部件405与轨道310连接,第一线性伸缩驱动机构400与第一夹持部件405通过铰接的方式连接;
第二线性伸缩驱动机构500,一端铰接在轮毂100上,另一端通过可夹持在轨道310上的第二夹持部件505与轨道310连接,第二线性伸缩驱 动机构500与第二夹持部件505通过铰接的方式连接。
在本实施例提供的风力发电机组叶片变桨装置中,第一线性伸缩驱动机构400可以采用高精度驱动装置实现精准驱动,第二线性伸缩驱动机构500可以采用大推力大行程的驱动装置进行大行程驱动。通过两个伸缩驱动机构配合,替代现有整体式齿轮驱动的变桨系统,可以在需要对叶片进行小角度变桨控制时,仅通过第一线性伸缩驱动机构400即可实现;在需要对叶片进行大角度变桨控制时,先通过第二线性伸缩驱动机构500驱动,并在将要达到变桨角度时再通过第一线性伸缩驱动机构400来控制,实现对叶片变桨角度的精确控制。
在本实施例提供的风力发电机组叶片变桨装置中,采用两个可伸缩的驱动机构进行分段式驱动,克服了变桨(特别是小角度变桨)过程中驱动齿轮与变桨轴承的齿面之间的摩擦损耗,延长了变桨轴承的使用寿命,降低了维保成本,从而提高了风力发电机组的变桨性能以及风力发电机组的发电质量。
在本实施例提供的风力发电机组叶片变桨装置中,当第一线性伸缩驱动机构400驱动盘式驱动结构300时,第一夹持部件405夹持轨道310,第二夹持部件505脱开轨道310;当第二线性伸缩驱动机构500驱动盘式驱动结构300时,第一夹持部件405脱开轨道310,第二夹持部件405夹持轨道310。
盘式驱动结构300固定安装在变桨轴承200中与叶片固定连接的外圈或者内圈上。例如,当变桨轴承200的外圈与叶片固定连接时,盘式驱动结构300固定安装在变桨轴承200的外圈;或者,当变桨轴承200的内圈与叶片固定连接时,盘式驱动结构300固定安装在变桨轴承200的内圈。
轨道310为单轨,此时轨道310可以是圆形、椭圆形或者弧形(即具有圆形的一部分),以上的圆形、椭圆形或弧形的中心优选为变桨轴承的轴线。
可选地,轨道310为双轨,此时轨道310可以是圆形、椭圆形或者弧形(即具有圆形的一部分),以上的圆形、椭圆形或弧形的中心优选为变桨轴承的轴线。此时,第一线性伸缩驱动机构400与双轨中的一个连接, 第二线性伸缩驱动机构500与双轨中的另一个连接。
在本实施例提供的风力发电机组叶片变桨装置中,第一线性伸缩驱动机构400包括第一伸缩部件401和第一驱动机构402,第一驱动机构402驱动第一伸缩部件401做伸缩运动,其中,第一驱动机构402与轮毂100铰接,第一伸缩部件401与第一夹持部件405铰接。
第一驱动机构402为直线电机或液压缸,第一伸缩部件401为伸缩杆;通过直线电机或液压缸驱动伸缩杆,可以实现线性伸缩驱动。
第一驱动机构402也可以是正反转电机,相应地,第一伸缩部件401为丝杆,丝杆在正反转电机的驱动下,实现对丝杆上的套筒的线性驱动。
在本实施例提供的风力发电机组叶片变桨装置中,第二线性伸缩驱动机构500包括第二伸缩部件501和第二驱动机构502,第二驱动机构502驱动第二伸缩部件501做伸缩运动,其中,第二驱动机构502与轮毂100铰接,第二伸缩部件501与第二夹持部件505铰接。
第二驱动机构502为直线电机或液压缸,第二伸缩部件501为伸缩杆;通过直线电机或液压缸驱动伸缩杆,可以实现线性伸缩驱动。
第二驱动机构502也可以是正反转电机,相应地,第二伸缩部件501为丝杆,丝杆在正反转电机的驱动下,实现对丝杆上的套筒的线性驱动。正反转电机特点是执行精度和控制精度高,且适合于小推力的应用,适用于风速处于额定工况附近的变桨微调。正反转电机和丝杆杠的组合能够增大变桨驱动机构的推力和行程,适用于高风速或是正常启停机的工况。通过细分变桨工况,将变桨驱动机构细分,合理应用正反转电机、正反转电机和丝杆的组合特点,降低变桨系统成本、提高变桨系统精度和可靠性,提高风机发电质量。
可选地,第一线性伸缩驱动机构400与第二线性伸缩驱动机构500可以是采用相同的结构设计,也可以采用不同的结构设计,即其中一个采用大推力大行程设计,第二个采用高精度小行程的设计,以满足对不同的精度和行程的控制要求。当需要获得大推力时,例如第一线性伸缩驱动机构400,可以采用多个驱动机构并联之后作为第一驱动机构402驱动第一伸缩部件401,以提供更大的推力,或者采用多个驱动机构分别驱动一个伸 缩部件,每个驱动机构的固定位置距离叶片中心的位置相等,每个伸缩部件与轨道310之间的夹角也相等,以保证多个驱动机构可以同步驱动多个伸缩部件。
本申请实施例还提供了一种风力发电机组叶片变桨装置的控制方法,包括:
获得目标桨距角与当前桨距角的夹角A;
判断夹角A与预设阈值B的大小,一般地夹角A可能大于预设阈值B,也可能小于预设阈值B,针对两种情况:
当夹角A大于预设阈值B时,发送第一控制信号,第一控制信号用于控制第二线性伸缩驱动机构500驱动盘式驱动结构以使叶片接近目标桨距角;
当夹角A小于等于预设阈值B时,发送第二控制信号,第二控制信号用于控制第一线性伸缩驱动机构400驱动盘式驱动结构以使叶片达到目标桨距角。
图1中第一线性伸缩驱动机构400和第二线性伸缩驱动机构500的位置仅是示意性的举例,应当理解:第一线性伸缩驱动机构400和第二线性伸缩驱动机构500的位置并不限于图1所示,本领域技术人员在实施的过程中可以根据设计需要而自行调整。
根据上述控制方法可知,当夹角A大于预设阈值B时,需要先通过第二线性伸缩驱动机构500驱动叶片,以接近目标桨距角;当夹角A等于(或小于)预设阈值B时,需要控制第二线性伸缩驱动机构500停止,同时启动第一线性伸缩驱动机构400继续驱动叶片达到目标桨距角。
夹角A的取值范围为0-90度;预设阈值B为0.1-5度,预设阈值B可以根据设计和使用需要而进行调整,例如一般可以将预设阈值B设为2度或者3度。
当夹角A小于等于预设阈值B时,发送第一复位信号,第一复位信号用于使得:第一夹持部件405夹持轨道310,第二夹持部件505脱开轨道310,并且第二线性伸缩驱动机构500复位至初始位置;
当夹角A大于预设阈值B时,发送第二复位信号,第二复位信号用于 使得:第一夹持部件405脱开轨道310,第二夹持部件505夹持轨道310,并且第一线性伸缩驱动机构400复位至初始位置。
对两个夹持部件的控制,可以避免两个伸缩驱动机构在驱动的过程中产生的自锁现象;在启动一个伸缩驱动机构时另一个伸缩驱动机构自动复位,可以便于下一次变桨驱动的控制。
第二线性伸缩驱动机构500和第一线性伸缩驱动机构400的初始位置均不与轨道垂直,这可以避免在线性伸缩驱动机构驱动时不能控制驱动的方向,从而避免对盘式驱动结构300上的轨道310带来破坏。
当叶片转动至目标桨距角时,发送停止信号,停止信号用于同时控制两个线性伸缩驱动机构停止,并控制两个夹持部件夹持轨道,从而同时通过两个线性伸缩驱动机构对变桨角度进行锁定,使叶片的变桨角度更稳定,不易受到风力影响。
本申请实施例还提供了一种叶片变桨控制装置,包括:
获得单元,用于获得目标桨距角与当前桨距角的夹角A;
判断单元,用于判断夹角A与预设阈值B的大小;
信号发送单元,用于当夹角A大于预设阈值B时,发送第一控制信号,第一控制信号用于控制第二线性伸缩驱动机构500驱动盘式驱动结构300,以使叶片接近目标桨距角;
当夹角A小于等于预设阈值B时,发送第二控制信号,第二控制信号用于控制第一线性伸缩驱动机构400驱动盘式驱动结构300,以使叶片达到目标桨距角;
夹角A的取值范围为0-90度;预设阈值B为0.1-5度,预设阈值B可以根据设计和使用需要而进行调整,例如一般可以将预设阈值B设为2度或者3度。
可选地,信号发送单元还用于:
当夹角A小于等于预设阈值B时,发送第一复位信号,第一复位信号用于控制第二线性伸缩驱动机构500复位至初始位置;
当夹角A大于预设阈值B时,发送第二复位信号,第二复位信号用于控制第一线性伸缩驱动机构400复位至初始位置。
可选地,第二线性伸缩驱动机构500和第一线性伸缩驱动机构400的初始位置均不与轨道310垂直。
可选地,信号发送单元还用于当叶片转动至目标桨距角时,发送停止信号,停止信号用于同时控制两个线性伸缩驱动机构停止,并控制两个夹持部件夹持轨道。
可选地,叶片变桨控制装置嵌设于主控制器和/或变桨控制器上。
在对叶片进行变桨控制时,通过叶片变桨控制装置控制两个夹持部件交替夹持,避免了两个夹持部件同时夹持使叶片锁死的现象。
本实施例中的叶片变桨控制装置可以是电控设备,例如每个夹持部件的夹持动作由小电机驱动实现,并且由叶片变桨控制装置控制小电机的动作,以确保变桨过程的顺利。
图2中的叶片变桨控制装置仅是示意性的举例,应当理解:本实施例中的叶片变桨控制装置也可以采用机械传动设备,特别是可以通过与两个线性伸缩驱动机构联动的方式实现,例如:第一夹持部件405可以与第一线性伸缩驱动机构400联动,当第一线性伸缩驱动机构400启动时,自动控制第一夹持部件405夹持轨道310,当第一线性伸缩驱动机构400停止时,自动控制第一夹持部件405打开夹持动作,第二夹持部件505可以参考第一夹持部件405的设计而进行,在此不再赘述。
本申请实施例还提供了一种风力发电机组,包括以上实施例提供的风力发电机组叶片变桨装置和风力发电机组叶片变桨控制装置。
本申请实施例提供的风力发电机组,替代现有整体式齿轮驱动的变桨系统,实现了风力发电机组的分段变桨,从而克服了变桨(特别是小角度变桨)过程中驱动齿轮与变桨轴承的齿面之间的摩擦损耗,延长了变桨轴承的使用寿命,降低了维保成本,从而提高风力发电机组的变桨性能,以及风力发电机组的发电质量。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并 不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (20)

  1. 一种风力发电机组叶片变桨装置,用于控制转动安装在轮毂(100)上的叶片的桨距角,所述叶片通过变桨轴承(200)安装在所述轮毂(100)上,其特征在于,所述风力发电机组叶片变桨装置包括:
    盘式驱动结构(300),固定安装于所述叶片,并与所述变桨轴承(200)的轴线垂直,在所述盘式驱动结构(300)上设有环绕所述变桨轴承(200)的轴线布置的轨道(310);
    第一线性伸缩驱动机构(400),一端铰接在所述轮毂(100)上,另一端通过可夹持在所述轨道(310)上的第一夹持部件(405)与所述轨道(310)连接,所述第一线性伸缩驱动机构(400)与所述第一夹持部件(405)通过铰接的方式连接;
    第二线性伸缩驱动机构(500),一端铰接在所述轮毂(100)上,另一端通过可夹持在所述轨道(310)上的第二夹持部件(505)与所述轨道(310)连接,所述第二线性伸缩驱动机构(500)与所述第二夹持部件(505)通过铰接的方式连接。
  2. 如权利要求1所述的风力发电机组叶片变桨装置,其特征在于,
    当所述第一线性伸缩驱动机构(400)驱动所述盘式驱动结构(300)时,所述第一夹持部件(405)夹持所述轨道(310),所述第二夹持部件(505)脱开所述轨道(310);以及
    当所述第二线性伸缩驱动机构(500)驱动所述盘式驱动结构(300)时,所述第一夹持部件(405)脱开所述轨道(310),所述第二夹持部件(505)夹持所述轨道(310)。
  3. 如权利要求1或2所述的风力发电机组叶片变桨装置,其特征在于,
    所述盘式驱动结构(300)固定安装在所述变桨轴承(200)中与叶片固定连接的内圈或外圈上。
  4. 如权利要求3所述的风力发电机组叶片变桨装置,其特征在于,
    所述变桨轴承(200)的外圈与所述叶片固定连接,或者所述变桨轴 承(200)的内圈与所述叶片固定连接。
  5. 如权利要求1或2所述的风力发电机组叶片变桨装置,其特征在于,
    所述轨道(310)为单轨,或者所述轨道(310)为双轨,其中所述第一线性伸缩驱动机构(400)与双轨中的一个连接,所述第二线性伸缩驱动机构(500)与双轨中的另一个连接。
  6. 如权利要求1或2所述的风力发电机组叶片变桨装置,其特征在于,
    所述第一线性伸缩驱动机构(400)包括第一伸缩部件(401)和第一驱动机构(402),所述第一驱动机构(402)驱动所述第一伸缩部件(401)做伸缩运动,其中,所述第一驱动机构(402)与所述轮毂(100)铰接,所述第一伸缩部件(401)与所述第一夹持部件(405)铰接。
  7. 如权利要求6所述的风力发电机组叶片变桨装置,其特征在于,
    所述第一驱动机构(402)为电机或液压缸。
  8. 如权利要求1或2所述的风力发电机组叶片变桨装置,其特征在于,
    所述第二线性伸缩驱动机构(500)包括第二伸缩部件(501)和第二驱动机构(502),所述第二驱动机构(502)驱动所述第二伸缩部件(501)做伸缩运动,其中,所述第二驱动机构(502)与所述轮毂(100)铰接,所述第二伸缩部件(501)与所述第二夹持部件(505)铰接。
  9. 如权利要求8所述的风力发电机组叶片变桨装置,其特征在于,
    所述第二驱动机构(502)为电机或液压缸。
  10. 一种如权利要求1-9之一所述风力发电机组叶片变桨装置的控制方法,其特征在于,包括:
    获得目标桨距角与当前桨距角的夹角;
    判断所述夹角与预设阈值的大小;
    当所述夹角大于所述预设阈值时,发送第一控制信号,所述第一控制 信号用于控制所述第二线性伸缩驱动机构(500)驱动所述盘式驱动结构(300)以使叶片接近所述目标桨距角;
    当所述夹角小于等于所述预设阈值时,发送第二控制信号,所述第二控制信号用于控制所述第一线性伸缩驱动机构(400)驱动所述盘式驱动结构(300)以使叶片达到所述目标桨距角;
    其中,所述预设阈值大于0度。
  11. 如权利要求10所述的控制方法,其特征在于,
    当所述夹角小于等于所述预设阈值时,发送第一复位信号,所述第一复位信号用于控制所述第二线性伸缩驱动机构(500)复位至初始位置;
    当所述夹角大于所述预设阈值时,发送第二复位信号,所述第二复位信号用于控制所述第一线性伸缩驱动机构(400)复位至初始位置。
  12. 如权利要求11所述的控制方法,其特征在于,
    所述第二线性伸缩驱动机构(500)和所述第一线性伸缩驱动机构(400)的初始位置均不与所述轨道(310)垂直。
  13. 如权利要求10所述的控制方法,其特征在于,
    当叶片转动至目标桨距角时,发送停止信号,所述停止信号用于同时控制两个线性伸缩驱动机构停止,并控制两个夹持部件夹持轨道。
  14. 如权利要求10所述的控制方法,其特征在于,
    所述预设阈值为0.1-5度。
  15. 一种如权利要求1-9之一所述风力发电机组叶片变桨装置的风力发电机组叶片变桨控制装置,其特征在于,包括:
    获得单元,用于获得目标桨距角与当前桨距角的夹角;
    判断单元,用于判断所述夹角与预设阈值的大小;
    信号发送单元,用于
    当所述夹角大于所述预设阈值时,发送第一控制信号,所述第一控制信号用于控制所述第二线性伸缩驱动机构(500)驱动所述盘式驱动结构(300),以使叶片接近所述目标桨距角;
    当所述夹角小于等于所述预设阈值时,发送第二控制信号,所述第二控制信号用于控制所述第一线性伸缩驱动机构(400)驱动所述盘 式驱动结构(300),以使叶片达到所述目标桨距角;
    其中,所述预设阈值大于0度。
  16. 如权利要求15所述的叶片变桨控制装置,其特征在于,
    所述信号发送单元还用于:
    当所述夹角小于等于所述预设阈值时,发送第一复位信号,所述第一复位信号用于控制所述第二线性伸缩驱动机构(500)复位至初始位置;
    当所述夹角大于所述预设阈值时,发送第二复位信号,所述第二复位信号用于控制所述第一线性伸缩驱动机构(400)复位至初始位置。
  17. 如权利要求16所述的叶片变桨控制装置,其特征在于,
    所述第二线性伸缩驱动机构(500)和所述第一线性伸缩驱动机构(400)的初始位置均不与所述轨道(310)垂直。
  18. 如权利要求15所述的叶片变桨控制装置,其特征在于,
    所述信号发送单元还用于当叶片转动至目标桨距角时,发送停止信号,所述停止信号用于同时控制两个线性伸缩驱动机构停止,并控制两个夹持部件夹持轨道。
  19. 如权利要求15-18之一所述的叶片变桨控制装置,其特征在于,
    所述叶片变桨控制装置嵌设于主控制器和/或变桨控制器上。
  20. 一种风力发电机组,其特征在于,包括权利要求1-9之一所述的风力发电机组叶片变桨装置和权利要求15-19之一所述的风力发电机组叶片变桨控制装置。
PCT/CN2018/079792 2017-07-06 2018-03-21 风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组 WO2019007105A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/090,442 US20190145377A1 (en) 2017-07-06 2018-03-21 Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine
AU2018247310A AU2018247310B2 (en) 2017-07-06 2018-03-21 Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine
ES18780013T ES2820579T3 (es) 2017-07-06 2018-03-21 Dispositivo de variación de paso de pala de turbina eólica, procedimiento de variación de paso, dispositivo de control de variación de paso y turbina eólica
EP18780013.1A EP3453873B1 (en) 2017-07-06 2018-03-21 Wind turbine blade pitch variation device, pitch variation method, pitch variation control device, and wind turbine
US17/376,418 US11359602B2 (en) 2017-07-06 2021-07-15 Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710546447.2 2017-07-06
CN201710546447.2A CN109209763B (zh) 2017-07-06 2017-07-06 风力发电机组叶片变桨装置、变桨方法及风力发电机组

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/090,442 A-371-Of-International US20190145377A1 (en) 2017-07-06 2018-03-21 Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine
US17/376,418 Continuation-In-Part US11359602B2 (en) 2017-07-06 2021-07-15 Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine

Publications (1)

Publication Number Publication Date
WO2019007105A1 true WO2019007105A1 (zh) 2019-01-10

Family

ID=64950490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079792 WO2019007105A1 (zh) 2017-07-06 2018-03-21 风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组

Country Status (6)

Country Link
US (1) US20190145377A1 (zh)
EP (1) EP3453873B1 (zh)
CN (1) CN109209763B (zh)
AU (1) AU2018247310B2 (zh)
ES (1) ES2820579T3 (zh)
WO (1) WO2019007105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006067A1 (en) 2018-06-26 2020-01-02 The Broad Institute, Inc. Crispr double nickase based amplification compositions, systems, and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852762B (zh) * 2019-04-30 2022-07-08 北京金风科创风电设备有限公司 基于串级结构的风力发电机组控制系统及其控制方法
CN111255631A (zh) * 2020-02-15 2020-06-09 吴志华 一种风力发电机变桨装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201953567U (zh) * 2011-03-29 2011-08-31 三一电气有限责任公司 一种风力发电机组及其变桨机构
CN102734067A (zh) * 2012-07-06 2012-10-17 沈阳华创风能有限公司 风力推力变桨机构
CN103867388A (zh) * 2014-04-04 2014-06-18 成都瑞迪机械实业有限公司 电动直驱式风电变桨驱动系统
KR20140003908U (ko) * 2012-12-17 2014-06-25 대우조선해양 주식회사 풍력 발전기의 피치 시스템
CN206054179U (zh) * 2016-08-31 2017-03-29 三一重型能源装备有限公司 变桨机构及风电机组
CN206290368U (zh) * 2016-12-20 2017-06-30 北京金风科创风电设备有限公司 风力发电机及其液压变桨系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302212A1 (en) * 2008-06-10 2011-03-30 Mitsubishi Heavy Industries, Ltd. Blade pitch angle control device and wind turbine generator
US9121385B2 (en) * 2010-11-26 2015-09-01 Vestas Wind Systems A/S Wind turbine and a method for pitching a blade of a wind turbine
DK177578B1 (en) * 2011-09-02 2013-10-28 Envision Energy Denmark Aps Pitch lock system
US20130193686A1 (en) * 2012-01-27 2013-08-01 General Electric Company System and methods for determining pitch angles for a wind turbine during peak shaving
KR101508649B1 (ko) * 2013-09-23 2015-04-08 삼원테크 주식회사 풍력발전기용 블레이드 피치 조절장치 및 이를 포함하는 풍력발전기
KR101548690B1 (ko) * 2014-04-14 2015-09-02 주식회사서영테크 원심력에 의해 이동되는 이동부를 포함하는 풍력발전기의 블레이드 경사각 조절장치
CN203847326U (zh) * 2014-05-13 2014-09-24 成都瑞迪机械实业有限公司 电动直驱式风电变桨装置
DE202015001902U1 (de) * 2015-03-11 2016-06-14 Liebherr-Components Biberach Gmbh Verstelleinheit zur Pitchverstellung eines Rotorblatts und Windkraftanlage mit einer solchen Verstelleinheit
EP3104000A1 (en) * 2015-06-12 2016-12-14 ALSTOM Renewable Technologies Runner for a tidal power plant and tidal power plant comprising such a runner
CN105351145A (zh) * 2015-12-03 2016-02-24 天津挚迈绿能科技有限公司 一种大型风力发电机组非独立液压变桨执行机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201953567U (zh) * 2011-03-29 2011-08-31 三一电气有限责任公司 一种风力发电机组及其变桨机构
CN102734067A (zh) * 2012-07-06 2012-10-17 沈阳华创风能有限公司 风力推力变桨机构
KR20140003908U (ko) * 2012-12-17 2014-06-25 대우조선해양 주식회사 풍력 발전기의 피치 시스템
CN103867388A (zh) * 2014-04-04 2014-06-18 成都瑞迪机械实业有限公司 电动直驱式风电变桨驱动系统
CN206054179U (zh) * 2016-08-31 2017-03-29 三一重型能源装备有限公司 变桨机构及风电机组
CN206290368U (zh) * 2016-12-20 2017-06-30 北京金风科创风电设备有限公司 风力发电机及其液压变桨系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006067A1 (en) 2018-06-26 2020-01-02 The Broad Institute, Inc. Crispr double nickase based amplification compositions, systems, and methods

Also Published As

Publication number Publication date
EP3453873B1 (en) 2020-08-12
US20190145377A1 (en) 2019-05-16
CN109209763A (zh) 2019-01-15
AU2018247310A1 (en) 2019-01-24
CN109209763B (zh) 2019-11-29
AU2018247310B2 (en) 2019-04-04
EP3453873A4 (en) 2019-06-12
ES2820579T3 (es) 2021-04-21
EP3453873A1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2019007105A1 (zh) 风力发电机组叶片变桨装置、变桨方法、变桨控制装置及风力发电机组
TWI356128B (zh)
CN205524941U (zh) 磁悬浮变距螺旋桨及飞行器
KR20140082856A (ko) 로터 블레이드 조정 장치, 풍력 에너지 변환 장치, 및 로터 블레이드 조정 방법
CN1035547A (zh) 风力涡轮桨距控制毂
TWI547641B (zh) 風力發電機葉片仰角自動調整之離心調速機構
CN110067703B (zh) 蜗杆式同步变桨风电机组及控制方法
WO2019000728A1 (zh) 风力发电机组变桨装置及风力发电机组
CN207583555U (zh) 风力发电机组的叶片变桨装置以及风力发电机组
JP5992056B2 (ja) 風力発電プラントのローターブレードを固定するための組立体
US11359602B2 (en) Pitch varying device, pitch varying method and pitch varying control device for wind turbine blade and wind turbine
CN209925150U (zh) 蜗杆式同步变桨风电机组
WO2020211667A1 (zh) 一种风力发电机双轴变桨全叶尖叶轮
JPH05149237A (ja) 風車のピツチ可変装置
RU111893U1 (ru) Ветроэнергетическая установка
CN221257007U (zh) 一种海上风机液压变桨装置
CN207229610U (zh) 一种旋转式动力系统用旋转连接装置
CN216842758U (zh) 一种风力发电主轴与增速箱联结用锁紧盘
JPS6354144B2 (zh)
KR20150051374A (ko) 풍력발전기의 피치 제어장치
KR20130061808A (ko) 풍력발전기의 블레이드 피치구동기구
CN221525023U (zh) 风电变桨控制柜柜体结构
CN206860363U (zh) 风力发电机组变桨装置及风力发电机组
CN106050686B (zh) 应用于可变桨叶片泵机械式转角调节指示机构
CN113153640A (zh) 伞式拉力环形固定力架构风叶轮反推力磁悬浮风力发电机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018780013

Country of ref document: EP

Effective date: 20181012

ENP Entry into the national phase

Ref document number: 2018247310

Country of ref document: AU

Date of ref document: 20180321

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018780013

Country of ref document: EP

Effective date: 20181012

NENP Non-entry into the national phase

Ref country code: DE