WO2019004457A1 - Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package - Google Patents

Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package Download PDF

Info

Publication number
WO2019004457A1
WO2019004457A1 PCT/JP2018/024934 JP2018024934W WO2019004457A1 WO 2019004457 A1 WO2019004457 A1 WO 2019004457A1 JP 2018024934 W JP2018024934 W JP 2018024934W WO 2019004457 A1 WO2019004457 A1 WO 2019004457A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
sealing
mass
type epoxy
Prior art date
Application number
PCT/JP2018/024934
Other languages
French (fr)
Japanese (ja)
Inventor
友貴 平井
井上 英俊
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019527079A priority Critical patent/JP7231833B2/en
Priority to CN201880037837.XA priority patent/CN110709443A/en
Priority to KR1020197038727A priority patent/KR20200023312A/en
Publication of WO2019004457A1 publication Critical patent/WO2019004457A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/308Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a resin composition for sealing, a semiconductor package, and a method of manufacturing the semiconductor package.
  • Patent Document 1 describes a liquid sealing material which achieves good injection performance and suppression of fillet cracks after sealing by blending a specific amount of aminophenol epoxy resin with bisphenol type epoxy resin.
  • the sealing area tends to increase as the size of the semiconductor package increases. Along with this, there is an increasing possibility that an increase in stress generated between the sealing portion and the substrate inside the package may affect the reliability of the package. For this reason, it is considered that the design of the sealing material from the viewpoint of suppressing the stress generated inside the package will be more important in the future.
  • Means for solving the above problems include the following embodiments.
  • the sealing resin composition as described in ⁇ 1> or ⁇ 2> whose ratio which occupies for the said epoxy resin whole of the ⁇ 3> above-mentioned bisphenol-type epoxy resin is 20 mass% or more and less than 90 mass%.
  • ⁇ 4> The sealing resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the epoxy resin further comprises a glycidyl amine type epoxy resin.
  • ⁇ 7> A support, a semiconductor element disposed on the support, and the sealing resin composition according to any one of ⁇ 1> to ⁇ 6>, which seals the semiconductor element And a cured product.
  • the resin composition for sealing which is excellent in injectability and excellent in the inhibitory effect of the stress which arises in a package inside, the semiconductor package obtained using this, and its manufacturing method are provided.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the sealing resin composition of the present embodiment contains an epoxy resin, a curing agent, and a filler, and the epoxy resin is a bisphenol type epoxy resin, 1,6-bis (glycidyloxy) naphthalene (the following formula ( The ratio of the specific naphthalene type epoxy resin to the whole epoxy resin is 10% by mass to 30% by mass including the epoxy resin represented by 1); hereinafter, also referred to as a specific naphthalene type epoxy resin).
  • the resin composition is excellent in injectability, has a low coefficient of thermal expansion in a cured state, and has a low modulus of elasticity.
  • the coefficient of thermal expansion in the cured state of the sealing resin composition is low, it is considered that the difference in coefficient of thermal expansion between the cured product and the support becomes small, and the effect of reducing the generated stress can be obtained. .
  • the elastic modulus in a cured state of the sealing resin composition is low, it is considered that the effect of relieving the generated stress can be obtained.
  • the coefficient of thermal expansion and the modulus of elasticity after curing are reduced while the viscosity increase before curing is suppressed, as compared with the methods such as increasing the amount of filler and adding a plasticizer. It is considered that good injection and stress reduction or alleviating effects can be simultaneously achieved.
  • the coefficient of thermal expansion can be obtained by including a specific naphthalene type epoxy resin as an epoxy resin. It is presumed that the elastic modulus is kept low by reducing the amount of the specific naphthalene type epoxy resin and suppressing the amount of the specific naphthalene type epoxy resin to a certain rate or less and using the bisphenol type epoxy resin in combination.
  • the sealing resin composition is preferably in a liquid state at the time of use. More specifically, the viscosity at 25 ° C. (viscosity at 10 revolutions / minute) is preferably 25 Pa ⁇ s or less. Moreover, it is preferable that the viscosity in 110 degreeC is 0.12 Pa.s or less.
  • the viscosity of the sealing resin composition is a value measured by the method described in the examples described later.
  • Epoxy resin The specific naphthalene type epoxy resin is an epoxy resin which is liquid at normal temperature (25 ° C.), and is also available as a commercial product. Examples of commercially available products include "Epiclon HP-4032D", trade name of DIC Corporation.
  • the proportion of the specific naphthalene type epoxy resin in the entire epoxy resin is 10% by mass or more, and preferably 15% by mass or more. From the viewpoint of maintaining good injectability, the ratio of the specific naphthalene type epoxy resin to the entire epoxy resin is 30% by mass or less, and preferably 25% by mass or less.
  • the type of bisphenol epoxy resin is not particularly limited, and examples thereof include bisphenol A epoxy resin, bisphenol F epoxy resin, and bisphenol AD epoxy resin.
  • the bisphenol type epoxy resin contained in the resin composition for sealing may be one kind alone or two or more kinds. From the viewpoint of using the sealing resin composition in liquid form, it is preferable that the bisphenol type epoxy resin is liquid at normal temperature (25 ° C.). From the viewpoint of viscosity reduction, the bisphenol epoxy resin is preferably a bisphenol F epoxy resin.
  • the proportion of the bisphenol type epoxy resin in the entire epoxy resin is not particularly limited, and can be selected according to the desired properties of the encapsulating resin composition. For example, it can be selected from the range of 20% by mass to less than 90% by mass, and may be selected from the range of 30% by mass to 80% by mass.
  • the sealing resin composition may contain an epoxy resin other than the specific naphthalene type epoxy resin and the bisphenol type epoxy resin.
  • the types of epoxy resins other than the specific naphthalene type epoxy resin and the bisphenol type epoxy resin are not particularly limited, and can be selected according to the desired characteristics and the like of the sealing resin composition.
  • the resin composition for sealing contains a bisphenol-type epoxy resin and an epoxy resin other than that as an epoxy resin other than a specific naphthalene-type epoxy resin
  • the mass ratio of the bisphenol-type epoxy resin to the other epoxy resin bisphenol-type epoxy resin
  • the other epoxy resins are not particularly limited. For example, it can be selected from the range of 1/5 to 5/1.
  • the resin composition for sealing contains a bisphenol type epoxy resin and an epoxy resin other than epoxy resin as an epoxy resin other than the specific naphthalene type epoxy resin
  • normal temperature 25
  • an epoxy resin which is liquid at ° C. and more preferable to contain a glycidyl amine type epoxy resin.
  • the molecular weight of the glycidyl amine epoxy resin is preferably 300 or less.
  • the glycidyl amine type epoxy resin may be bifunctional or trifunctional or more. From the viewpoint of improving the heat resistance after curing, a glycidyl amine type epoxy resin having three or more functions (having three or more epoxy groups in one molecule) is preferable. Examples of glycidyl amine type epoxy resins having two or more functional groups include N, N-diglycidyl aniline, N, N-diglycidyl-o-toluidine and the like. Examples of trifunctional or higher glycidyl amine type epoxy resins include triglycidyl-p-aminophenol and 4,4'-methylenebis [N, N-bis (oxiranylmethyl) aniline]. Among these, triglycidyl-p-aminophenol is preferable from the viewpoint of normal temperature (25 ° C.) viscosity.
  • the sealing resin composition contains a glycidyl amine type epoxy resin as an epoxy resin
  • the ratio is not particularly limited.
  • the proportion of the total epoxy resin is preferably 10% by mass to 60% by mass.
  • the type of curing agent is not particularly limited, and can be selected according to the desired properties of the sealing resin composition.
  • amine curing agents, phenol curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents and the like can be mentioned.
  • the curing agent may be used alone or in combination of two or more.
  • the curing agent is preferably an amine curing agent from the viewpoint of using the sealing resin composition in a liquid state.
  • aliphatic amine compounds such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane, 4,4'-diamino Aromatic amine compounds such as diphenylmethane and 2-methylaniline; imidazole compounds such as imidazole, 2-methylimidazole, 2-ethylimidazole and 2-isopropylimidazole; and imidazoline compounds such as imidazoline, 2-methylimidazoline and 2-ethylimidazoline Can be mentioned.
  • Equivalent ratio of epoxy resin to curing agent that is, the ratio of the number of functional groups (active hydrogen in the case of amine curing agent) to the number of functional groups in epoxy resin (the number of functional groups in curing agent / functionality in epoxy resin)
  • the radix is not particularly limited. It is preferable to set in the range of 0.5 to 2.0, and more preferable to be set in the range of 0.6 to 1.3, from the viewpoint of reducing the amount of each unreacted component. It is more preferable to set in the range of 0.8 to 1.2 from the viewpoint of moldability and reflow resistance.
  • filler is not particularly limited. Specifically, silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc And inorganic materials such as clay and mica.
  • a filler having a flame retardant effect may be used. Examples of the filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
  • silica is preferable from the viewpoint of reducing the thermal expansion coefficient
  • alumina is preferable from the viewpoint of improving the thermal conductivity.
  • the fillers may be used alone or in combination of two or more.
  • the content of the filler contained in the sealing resin composition is not particularly limited. From the viewpoint of achieving both good flowability and curing containing a filler, the content of the filler is preferably 30% by mass to 90% by mass of the entire resin composition for sealing, and 50% by mass or more More preferably, it is 75% by mass.
  • the volume average particle diameter is preferably 0.2 ⁇ m to 20 ⁇ m, and more preferably 0.5 ⁇ m to 15 ⁇ m.
  • the volume average particle diameter is 0.2 ⁇ m or more, the increase in the viscosity of the sealing resin composition tends to be further suppressed.
  • the volume average particle size is 20 ⁇ m or less, the filling property in the narrow gap tends to be further improved.
  • the volume average particle size of the filler should be measured as the particle size (D50) at which the volume accumulation from the small diameter side becomes 50% in the volume-based particle size distribution obtained by the laser scattering diffraction particle size distribution measuring apparatus. it can.
  • the sealing resin composition may contain, in addition to the components described above, various additives such as a curing accelerator, a stress relaxation agent, a coupling agent, a mold release agent, and a colorant.
  • various additives such as a curing accelerator, a stress relaxation agent, a coupling agent, a mold release agent, and a colorant.
  • the sealing resin composition may contain various additives well known in the art, as needed, in addition to the additives exemplified below.
  • the sealing resin composition may contain a curing accelerator.
  • the type of the curing accelerator is not particularly limited, and can be selected according to the types of the epoxy resin and the curing agent, the desired characteristics of the sealing resin composition, and the like.
  • the amount is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent) And 1 part by mass to 15 parts by mass.
  • the sealing resin composition may contain a stress relaxation agent.
  • the stress relaxation agent include particles of thermoplastic elastomer, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber, urethane rubber, silicone rubber and the like.
  • the stress relaxation agents may be used alone or in combination of two or more.
  • the sealing resin composition contains a stress relaxation agent
  • the amount thereof is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent). And 1 part by mass to 15 parts by mass.
  • the sealing resin composition may contain a coupling agent.
  • the coupling agent include epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, silane compounds such as vinylsilane, titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, and the like. Among them, silane compounds are preferable from the viewpoint of fluidity.
  • the coupling agents may be used alone or in combination of two or more.
  • the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the filler. More preferably, it is 2.5 parts by mass.
  • the sealing resin composition may contain a colorant.
  • the colorant include carbon black, organic dyes, organic pigments, titanium oxide, red lead, and bengara.
  • the colorants may be used alone or in combination of two or more.
  • the amount is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent), The amount is more preferably 0.1 parts by mass to 5 parts by mass.
  • the sealing resin composition can be used in various mounting techniques.
  • it can be suitably used as an underfill material used for flip chip mounting technology.
  • it can be used suitably for the application which fills up the crevice between the semiconductor device joined by bump etc., and a support body.
  • the type of semiconductor device and support is not particularly limited, and can be selected from those commonly used in the field of semiconductor packages.
  • the method for filling the gap between the semiconductor element and the support using the sealing resin composition is not particularly limited. For example, it can carry out by a well-known method using a dispenser etc.
  • the semiconductor package of the present embodiment has a support, a semiconductor element disposed on the support, and a cured product of the above-described sealing resin composition sealing the semiconductor element.
  • the types of the semiconductor element and the support are not particularly limited, and can be selected from those generally used in the field of the semiconductor package.
  • the semiconductor package has a low coefficient of thermal expansion of the cured product of the sealing resin composition and a low modulus of elasticity. For this reason, when stress arises between the hardened
  • the method for manufacturing a semiconductor package according to the present embodiment includes the steps of: filling a space between a support and a semiconductor element disposed on the support with the sealing resin composition described above; and the sealing resin Curing the composition.
  • the types of the semiconductor element and the support are not particularly limited, and can be selected from those generally used in the field of semiconductor packages.
  • the method for filling the gap between the semiconductor element and the support using the sealing resin composition and the method for curing the sealing resin composition after filling are not particularly limited, and can be performed by a known method. .
  • Epoxy resin 1 Liquid bisphenol F type epoxy resin, trade name "YDF-8170C", Nippon Steel Sumikin Chemical Co., Ltd. Epoxy resin 2. Triglycidyl-p-aminophenol, trade name "jER 630", Mitsubishi Chemical Corporation epoxy resin 3 ... 1,6-Bis (glycidyloxy) naphthalene, trade name "Epiclon HP-4032D", DIC Corporation
  • Hardener 1 2-Methylaniline, trade name “jER Cure W”, Mitsubishi Chemical Co., Ltd.
  • Hardener 2 ... 4,4'-diaminodiphenylmethane, trade name "Kayahard AA”, Nippon Kayaku Co., Ltd.
  • the viscosity (Pa ⁇ s) at 25 ° C. of the resin composition for sealing is an E-type viscometer (VISCONIC EHD type (trade name) manufactured by Tokyo Keiki Co., Ltd.) (cone angle 3 °, rotation number: 10 revolutions / minute) ) was used. The results are shown in Table 1.
  • the viscosity (Pa ⁇ s) at 110 ° C. of the resin composition for sealing was measured using AR 2000 (TA Instruments) under the conditions of 40 mm parallel plate, shear rate 32.5 (1 / s). The results are shown in Table 1.
  • the cured resin composition for sealing was cut into a size of 8 mm in diameter and 20 mm in length using a thermomechanical analyzer (TMA 2940, TA Instruments Co., Ltd.) and compressed from 0 ° C. to 300 ° C. 5 The temperature rise was measured at ° C./min, and the slope of the tangent at 10 ° C. to 30 ° C. was taken as the thermal expansion coefficient (ppm / ° C.). The results are shown in Table 1.
  • the embodiment contains a bisphenol-type epoxy resin as an epoxy resin and a specific naphthalene-type epoxy resin, and the proportion of the specific naphthalene-type epoxy resin in the entire epoxy resin is 10 mass% to 30 mass%.
  • the resin composition for sealing of the example was excellent in the injectability, and both of the thermal expansion coefficient and the elastic modulus were lower than the resin composition for sealing of the comparative example not satisfying the conditions. From this, it was suggested that even if stress is generated between the cured product of the sealing resin composition and the support, the effect of reducing or alleviating the stress is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

This resin composition for sealing comprises an epoxy resin, a curing agent, and a filler, wherein the epoxy resin includes a bisphenol type epoxy resin, and a 1,6-bis (glycidyloxy) naphthalene, and the proportion of the 1,6-bis (glycidyloxy) naphthalene occupied in the whole epoxy resin is 10-30 mass%.

Description

封止用樹脂組成物、半導体パッケージ及び半導体パッケージの製造方法Sealing resin composition, semiconductor package, and method of manufacturing semiconductor package
 本発明は、封止用樹脂組成物、半導体パッケージ及び半導体パッケージの製造方法に関する。 The present invention relates to a resin composition for sealing, a semiconductor package, and a method of manufacturing the semiconductor package.
 従来、フリップチップ型の半導体実装技術に使用される液状封止材(アンダーフィル材)の主な性能改善の方向性は、半導体パッケージの信頼性を高いレベルで維持しつつ配線パターンのファインピッチ化への対応(注入性の向上)等の諸要求をいかに満足するかというものであった。例えば、特許文献1にはビスフェノール型エポキシ樹脂にアミノフェノールエポキシ樹脂を特定量配合することで良好な注入性と封止後のフィレットクラックの抑制を達成した液状封止材が記載されている。 Conventionally, the directionality of the main performance improvement of the liquid sealing material (underfill material) used for flip chip type semiconductor mounting technology is to make the wiring pattern finer while maintaining high reliability of the semiconductor package. The question was how to satisfy various requirements such as the response to (improvement of the injectability). For example, Patent Document 1 describes a liquid sealing material which achieves good injection performance and suppression of fillet cracks after sealing by blending a specific amount of aminophenol epoxy resin with bisphenol type epoxy resin.
国際公開第2016/093148号International Publication No. 2016/093148
 近年、半導体パッケージの大型化が進むにつれて封止面積も増大する傾向にある。それに伴い、パッケージ内部で封止部と基板との間に生じる応力の増大がパッケージの信頼性に影響を及ぼす可能性が高まっている。このため、パッケージ内部に生じる応力を抑制するという観点からの封止材の設計が今後重要性を増すと考えられる。 In recent years, the sealing area tends to increase as the size of the semiconductor package increases. Along with this, there is an increasing possibility that an increase in stress generated between the sealing portion and the substrate inside the package may affect the reliability of the package. For this reason, it is considered that the design of the sealing material from the viewpoint of suppressing the stress generated inside the package will be more important in the future.
 本発明は上記事情に鑑み、注入性に優れ、かつパッケージ内部に生じる応力の抑制効果に優れる封止用樹脂組成物、並びにこれを用いて得られる半導体パッケージ及びその製造方法を提供することを課題とする。 In view of the above-described circumstances, it is an object of the present invention to provide a sealing resin composition which is excellent in injectability and excellent in the effect of suppressing stress generated inside the package, and a semiconductor package obtained using this and a manufacturing method thereof. I assume.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>エポキシ樹脂と、硬化剤と、充填材とを含み、前記エポキシ樹脂がビスフェノール型エポキシ樹脂と、1,6-ビス(グリシジルオキシ)ナフタレンとを含み、前記1,6-ビス(グリシジルオキシ)ナフタレンの前記エポキシ樹脂全体に占める割合が10質量%~30質量%である、封止用樹脂組成物。
Means for solving the above problems include the following embodiments.
A <1> epoxy resin, a curing agent, and a filler, and the said epoxy resin contains a bisphenol type epoxy resin and 1, 6-bis (glycidyloxy) naphthalene, The said 1, 6- bis (glycidyloxy) The sealing resin composition, wherein the proportion of naphthalene in the entire epoxy resin is 10% by mass to 30% by mass.
<2>前記ビスフェノール型エポキシ樹脂がビスフェノールF型エポキシ樹脂を含む、<1>に記載の封止用樹脂組成物。 The sealing resin composition as described in <1> in which the <2> above-mentioned bisphenol-type epoxy resin contains a bisphenol F-type epoxy resin.
<3>前記ビスフェノール型エポキシ樹脂の前記エポキシ樹脂全体に占める割合が20質量%以上90質量%未満である、<1>又は<2>に記載の封止用樹脂組成物。 The sealing resin composition as described in <1> or <2> whose ratio which occupies for the said epoxy resin whole of the <3> above-mentioned bisphenol-type epoxy resin is 20 mass% or more and less than 90 mass%.
<4>前記エポキシ樹脂がグリシジルアミン型エポキシ樹脂をさらに含む、<1>~<3>のいずれか1項に記載の封止用樹脂組成物。 <4> The sealing resin composition according to any one of <1> to <3>, wherein the epoxy resin further comprises a glycidyl amine type epoxy resin.
<5>前記グリシジルアミン型エポキシ樹脂が3官能以上のグリシジルアミン型エポキシ樹脂を含む、<4>に記載の封止用樹脂組成物。 The sealing resin composition as described in <4> in which the <5> glycidyl amine type epoxy resin contains the trifunctional or more than trifunctional glycidyl amine type epoxy resin.
<6>前記グリシジルアミン型エポキシ樹脂の前記エポキシ樹脂全体に占める割合が10質量%~60質量%である、<4>又は<5>のいずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of <4> or <5>, wherein a proportion of the glycidyl amine type epoxy resin in the entire epoxy resin is 10% by mass to 60% by mass.
<7>支持体と、前記支持体上に配置された半導体素子と、前記半導体素子を封止している<1>~<6>のいずれか1項に記載の封止用樹脂組成物の硬化物と、を有する半導体パッケージ。 <7> A support, a semiconductor element disposed on the support, and the sealing resin composition according to any one of <1> to <6>, which seals the semiconductor element And a cured product.
<8>支持体と、前記支持体上に配置された半導体素子との間の空隙を<1>~<6>のいずれか1項に記載の封止用樹脂組成物で充填する工程と、前記封止用樹脂組成物を硬化する工程と、を有する半導体パッケージの製造方法。 Filling the air gap between the <8> support and the semiconductor element disposed on the support with the sealing resin composition according to any one of <1> to <6>; Curing the sealing resin composition.
 本発明によれば、注入性に優れ、かつパッケージ内部に生じる応力の抑制効果に優れる封止用樹脂組成物、並びにこれを用いて得られる半導体パッケージ及びその製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition for sealing which is excellent in injectability and excellent in the inhibitory effect of the stress which arises in a package inside, the semiconductor package obtained using this, and its manufacturing method are provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
<封止用樹脂組成物>
 本実施形態の封止用樹脂組成物は、エポキシ樹脂と、硬化剤と、充填材とを含み、前記エポキシ樹脂がビスフェノール型エポキシ樹脂と、1,6-ビス(グリシジルオキシ)ナフタレン(下記式(1)で表されるエポキシ樹脂;以下、特定ナフタレン型エポキシ樹脂ともいう)とを含み、特定ナフタレン型エポキシ樹脂のエポキシ樹脂全体に占める割合が10質量%~30質量%である。
<Resin composition for sealing>
The sealing resin composition of the present embodiment contains an epoxy resin, a curing agent, and a filler, and the epoxy resin is a bisphenol type epoxy resin, 1,6-bis (glycidyloxy) naphthalene (the following formula ( The ratio of the specific naphthalene type epoxy resin to the whole epoxy resin is 10% by mass to 30% by mass including the epoxy resin represented by 1); hereinafter, also referred to as a specific naphthalene type epoxy resin).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明者らの検討の結果、エポキシ樹脂としてビスフェノール型エポキシ樹脂と特定ナフタレン型エポキシ樹脂を含み、特定ナフタレン型エポキシ樹脂のエポキシ樹脂全体に占める割合が10質量%~30質量%である封止用樹脂組成物は、注入性に優れるとともに硬化した状態での熱膨張率が低く、かつ弾性率が低いことが分かった。 As a result of studies by the present inventors, for sealing, containing a bisphenol epoxy resin and a specific naphthalene epoxy resin as an epoxy resin, and the ratio of the specific naphthalene epoxy resin to the entire epoxy resin is 10% by mass to 30% by mass It was found that the resin composition is excellent in injectability, has a low coefficient of thermal expansion in a cured state, and has a low modulus of elasticity.
 封止用樹脂組成物の硬化した状態での熱膨張率が低いと、硬化物と支持体との間の熱膨張率の差が小さくなって発生する応力を低減する効果が得られると考えられる。また、封止用樹脂組成物の硬化した状態での弾性率が低いと、発生した応力を緩和する効果が得られると考えられる。 If the coefficient of thermal expansion in the cured state of the sealing resin composition is low, it is considered that the difference in coefficient of thermal expansion between the cured product and the support becomes small, and the effect of reducing the generated stress can be obtained. . In addition, when the elastic modulus in a cured state of the sealing resin composition is low, it is considered that the effect of relieving the generated stress can be obtained.
 さらに本実施形態の封止用樹脂組成物では、充填材の増量、可とう剤の添加などの手法に比べて硬化前の粘度上昇を抑えつつ硬化後の熱膨張率と弾性率を低くすることができるため、良好な注入性と応力の低減又は緩和効果が両立できると考えられる。 Furthermore, in the sealing resin composition of the present embodiment, the coefficient of thermal expansion and the modulus of elasticity after curing are reduced while the viscosity increase before curing is suppressed, as compared with the methods such as increasing the amount of filler and adding a plasticizer. It is considered that good injection and stress reduction or alleviating effects can be simultaneously achieved.
 上記構成を有する封止用樹脂組成物が、硬化した状態での熱膨張率が低く、かつ弾性率が低い理由は明らかではないが、エポキシ樹脂として特定ナフタレン型エポキシ樹脂を含むことで熱膨張率が低減し、さらに特定ナフタレン型エポキシ樹脂の量を一定の割合以下に抑えてビスフェノール型エポキシ樹脂を併用することで、弾性率が低く維持されているためと推測される。 Although the reason why the sealing resin composition having the above configuration has a low coefficient of thermal expansion and a low coefficient of elasticity in a cured state is not clear, the coefficient of thermal expansion can be obtained by including a specific naphthalene type epoxy resin as an epoxy resin. It is presumed that the elastic modulus is kept low by reducing the amount of the specific naphthalene type epoxy resin and suppressing the amount of the specific naphthalene type epoxy resin to a certain rate or less and using the bisphenol type epoxy resin in combination.
 封止用樹脂組成物は、使用の際に液状であることが好ましい。より具体的には、25℃における粘度(10回転/分での粘度)が25Pa・s以下であることが好ましい。また、110℃における粘度が0.12Pa・s以下であることが好ましい。封止用樹脂組成物の粘度は、後述する実施例に記載した方法で測定される値である。 The sealing resin composition is preferably in a liquid state at the time of use. More specifically, the viscosity at 25 ° C. (viscosity at 10 revolutions / minute) is preferably 25 Pa · s or less. Moreover, it is preferable that the viscosity in 110 degreeC is 0.12 Pa.s or less. The viscosity of the sealing resin composition is a value measured by the method described in the examples described later.
[エポキシ樹脂]
 特定ナフタレン型エポキシ樹脂は、常温(25℃)で液状のエポキシ樹脂であり、市販品としても入手可能である。市販品としては、例えば、DIC株式会社の商品名「エピクロン HP-4032D」が挙げられる。
[Epoxy resin]
The specific naphthalene type epoxy resin is an epoxy resin which is liquid at normal temperature (25 ° C.), and is also available as a commercial product. Examples of commercially available products include "Epiclon HP-4032D", trade name of DIC Corporation.
 熱膨張率低減の観点からは、特定ナフタレン型エポキシ樹脂のエポキシ樹脂全体に占める割合は10質量%以上であり、15質量%以上であることが好ましい。注入性を良好に維持する観点からは、特定ナフタレン型エポキシ樹脂のエポキシ樹脂全体に占める割合は30質量%以下であり、25質量%以下であることが好ましい。 From the viewpoint of reducing the thermal expansion coefficient, the proportion of the specific naphthalene type epoxy resin in the entire epoxy resin is 10% by mass or more, and preferably 15% by mass or more. From the viewpoint of maintaining good injectability, the ratio of the specific naphthalene type epoxy resin to the entire epoxy resin is 30% by mass or less, and preferably 25% by mass or less.
 ビスフェノール型エポキシ樹脂の種類は特に制限されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等が挙げられる。封止用樹脂組成物に含まれるビスフェノール型エポキシ樹脂は、1種のみでも2種以上であってもよい。封止用樹脂組成物を液状で使用する観点からは、ビスフェノール型エポキシ樹脂は常温(25℃)で液状のものであることが好ましい。粘度低減の観点からは、ビスフェノール型エポキシ樹脂はビスフェノールF型エポキシ樹脂であることが好ましい。 The type of bisphenol epoxy resin is not particularly limited, and examples thereof include bisphenol A epoxy resin, bisphenol F epoxy resin, and bisphenol AD epoxy resin. The bisphenol type epoxy resin contained in the resin composition for sealing may be one kind alone or two or more kinds. From the viewpoint of using the sealing resin composition in liquid form, it is preferable that the bisphenol type epoxy resin is liquid at normal temperature (25 ° C.). From the viewpoint of viscosity reduction, the bisphenol epoxy resin is preferably a bisphenol F epoxy resin.
 ビスフェノール型エポキシ樹脂のエポキシ樹脂全体に占める割合は特に制限されず、封止用樹脂組成物の所望の特性に応じて選択できる。例えば、20質量%以上90質量%未満の範囲から選択でき、30質量%~80質量%の範囲から選択してもよい。 The proportion of the bisphenol type epoxy resin in the entire epoxy resin is not particularly limited, and can be selected according to the desired properties of the encapsulating resin composition. For example, it can be selected from the range of 20% by mass to less than 90% by mass, and may be selected from the range of 30% by mass to 80% by mass.
 封止用樹脂組成物は、特定ナフタレン型エポキシ樹脂及びビスフェノール型エポキシ樹脂以外のエポキシ樹脂を含んでもよい。
 特定ナフタレン型エポキシ樹脂及びビスフェノール型エポキシ樹脂以外のエポキシ樹脂の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
The sealing resin composition may contain an epoxy resin other than the specific naphthalene type epoxy resin and the bisphenol type epoxy resin.
The types of epoxy resins other than the specific naphthalene type epoxy resin and the bisphenol type epoxy resin are not particularly limited, and can be selected according to the desired characteristics and the like of the sealing resin composition. Specifically, at least one phenolic compound selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine and catechol and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene; Novolak-type epoxy resin (phenol novolac-type epoxy resin, ortho cresol novolac-type epoxy resin) obtained by epoxidizing a novolac resin obtained by condensation or co-condensation with an aliphatic aldehyde compound such as acetaldehyde or propionaldehyde under acidic catalyst Etc.); Triphenylmethane-type phenol tree obtained by condensation or co-condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acid catalyst Triphenylmethane type epoxy resin which is obtained by epoxidizing fat; copolymer type epoxy which is obtained by epoxidizing a novolac resin obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acid catalyst Resin; biphenyl type epoxy resin which is diglycidyl ether of alkyl substituted or unsubstituted biphenol; stilbene type epoxy resin which is diglycidyl ether of stilbene type phenol compound; sulfur atom containing epoxy resin which is diglycidyl ether such as bisphenol S; Epoxy resin which is a glycidyl ether of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; Glycidyl ether of polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid Glycidyl ester type epoxy resin which is tel; glycidyl amine type epoxy resin in which active hydrogen bonded to nitrogen atom such as aniline, diaminodiphenylmethane, isocyanuric acid is substituted by glycidyl group; co-condensed resin of dicyclopentadiene and phenol compound Dicyclopentadiene type epoxy resin which is obtained by epoxidizing a vinyl, vinylcyclohexene diepoxide which is obtained by epoxidizing an olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- Alicyclic epoxy resins such as (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; paraxy, which is a glycidyl ether of paraxylylene modified phenolic resin Ren-modified epoxy resin; metaxylylene-modified epoxy resin which is a glycidyl ether of metaxylylene-modified phenolic resin; terpene-modified epoxy resin which is a glycidyl ether of terpene-modified phenolic resin; dicyclopentadiene-modified epoxy resin which is a glycidyl ether of dicyclopentadiene-modified phenolic resin Cyclopentadiene-modified epoxy resin which is a glycidyl ether of cyclopentadiene-modified phenolic resin; polycyclic aromatic ring-modified epoxy resin which is a glycidyl ether of polycyclic aromatic ring-modified phenolic resin; naphthalene type epoxy which is a glycidyl ether of naphthalene ring-containing phenolic resin Resin; halogenated phenol novolac epoxy resin; hydroquinone epoxy resin; trimethylolpropane epoxy resin A linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid; an aralkyl type epoxy resin obtained by epoxidizing an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin; It can be mentioned. These epoxy resins may be used alone or in combination of two or more.
 封止用樹脂組成物が、特定ナフタレン型エポキシ樹脂以外のエポキシ樹脂としてビスフェノール型エポキシ樹脂とそれ以外のエポキシ樹脂を含む場合、ビスフェノール型エポキシ樹脂とそれ以外のエポキシ樹脂の質量比(ビスフェノール型エポキシ樹脂/それ以外のエポキシ樹脂)は特に制限されない。例えば、1/5~5/1の範囲から選択できる。 When the resin composition for sealing contains a bisphenol-type epoxy resin and an epoxy resin other than that as an epoxy resin other than a specific naphthalene-type epoxy resin, the mass ratio of the bisphenol-type epoxy resin to the other epoxy resin (bisphenol-type epoxy resin The other epoxy resins are not particularly limited. For example, it can be selected from the range of 1/5 to 5/1.
 封止用樹脂組成物が、特定ナフタレン型エポキシ樹脂以外のエポキシ樹脂としてビスフェノール型エポキシ樹脂とそれ以外のエポキシ樹脂を含む場合、封止用樹脂組成物を液状で使用する観点からは、常温(25℃)で液状のエポキシ樹脂を含むことが好ましく、グリシジルアミン型エポキシ樹脂を含むことがより好ましい。封止用樹脂組成物の粘度低減の観点からは、グリシジルアミン型エポキシ樹脂の分子量は300以下であることが好ましい。 When the resin composition for sealing contains a bisphenol type epoxy resin and an epoxy resin other than epoxy resin as an epoxy resin other than the specific naphthalene type epoxy resin, from the viewpoint of using the resin composition for sealing in a liquid state, normal temperature (25 It is preferable to contain an epoxy resin which is liquid at ° C., and more preferable to contain a glycidyl amine type epoxy resin. From the viewpoint of reducing the viscosity of the sealing resin composition, the molecular weight of the glycidyl amine epoxy resin is preferably 300 or less.
 グリシジルアミン型エポキシ樹脂は、2官能であっても3官能以上であってもよい。硬化後の耐熱性向上の観点からは3官能以上(1分子中にエポキシ基を3つ以上有する)のグリシジルアミン型エポキシ樹脂が好ましい。2官能以上のグリシジルアミン型エポキシ樹脂としては、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン等が挙げられる。3官能以上のグリシジルアミン型エポキシ樹脂としては、トリグリシジル-p-アミノフェノール、4,4’-メチレンビス[N,N-ビス(オキシラニルメチル)アニリン]等が挙げられる。これらの中でも、常温(25℃)粘度の観点からはトリグリシジル-p-アミノフェノールが好ましい。 The glycidyl amine type epoxy resin may be bifunctional or trifunctional or more. From the viewpoint of improving the heat resistance after curing, a glycidyl amine type epoxy resin having three or more functions (having three or more epoxy groups in one molecule) is preferable. Examples of glycidyl amine type epoxy resins having two or more functional groups include N, N-diglycidyl aniline, N, N-diglycidyl-o-toluidine and the like. Examples of trifunctional or higher glycidyl amine type epoxy resins include triglycidyl-p-aminophenol and 4,4'-methylenebis [N, N-bis (oxiranylmethyl) aniline]. Among these, triglycidyl-p-aminophenol is preferable from the viewpoint of normal temperature (25 ° C.) viscosity.
 封止用樹脂組成物がエポキシ樹脂としてグリシジルアミン型エポキシ樹脂を含む場合、その割合は特に制限されない。例えば、エポキシ樹脂全体に占める割合が10質量%~60質量%であることが好ましい。 When the sealing resin composition contains a glycidyl amine type epoxy resin as an epoxy resin, the ratio is not particularly limited. For example, the proportion of the total epoxy resin is preferably 10% by mass to 60% by mass.
[硬化剤]
 硬化剤の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。例えば、アミン硬化剤、フェノール硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
[Hardener]
The type of curing agent is not particularly limited, and can be selected according to the desired properties of the sealing resin composition. For example, amine curing agents, phenol curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents and the like can be mentioned. The curing agent may be used alone or in combination of two or more.
 封止用樹脂組成物を液状で使用する観点からは、硬化剤は、アミン硬化剤であることが好ましい。アミン硬化剤としては、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4’-ジアミノ-ジシクロヘキシルメタン等の脂肪族アミン化合物、4,4’-ジアミノジフェニルメタン、2-メチルアニリン等の芳香族アミン化合物、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール等のイミダゾール化合物、イミダゾリン、2-メチルイミダゾリン、2-エチルイミダゾリン等のイミダゾリン化合物などが挙げられる。 The curing agent is preferably an amine curing agent from the viewpoint of using the sealing resin composition in a liquid state. As an amine curing agent, aliphatic amine compounds such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane, 4,4'-diamino Aromatic amine compounds such as diphenylmethane and 2-methylaniline; imidazole compounds such as imidazole, 2-methylimidazole, 2-ethylimidazole and 2-isopropylimidazole; and imidazoline compounds such as imidazoline, 2-methylimidazoline and 2-ethylimidazoline Can be mentioned.
 エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基(アミン硬化剤の場合は活性水素)数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 Equivalent ratio of epoxy resin to curing agent, that is, the ratio of the number of functional groups (active hydrogen in the case of amine curing agent) to the number of functional groups in epoxy resin (the number of functional groups in curing agent / functionality in epoxy resin) The radix is not particularly limited. It is preferable to set in the range of 0.5 to 2.0, and more preferable to be set in the range of 0.6 to 1.3, from the viewpoint of reducing the amount of each unreacted component. It is more preferable to set in the range of 0.8 to 1.2 from the viewpoint of moldability and reflow resistance.
[充填材]
 充填材の種類は、特に制限されない。具体的には、シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する充填材を用いてもよい。難燃効果を有する充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
[Filling material]
The type of filler is not particularly limited. Specifically, silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc And inorganic materials such as clay and mica. A filler having a flame retardant effect may be used. Examples of the filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
 上記充填材の中でも、熱膨張率低減の観点からはシリカが好ましく、熱伝導性向上の観点からはアルミナが好ましい。充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。 Among the above-mentioned fillers, silica is preferable from the viewpoint of reducing the thermal expansion coefficient, and alumina is preferable from the viewpoint of improving the thermal conductivity. The fillers may be used alone or in combination of two or more.
 封止用樹脂組成物に含まれる充填材の含有率は、特に制限されない。良好な流動性と充填材を含有する硬化を両立する観点からは、充填材の含有率は、封止用樹脂組成物全体の30質量%~90質量%であることが好ましく、50質量%~75質量%であることがより好ましい。 The content of the filler contained in the sealing resin composition is not particularly limited. From the viewpoint of achieving both good flowability and curing containing a filler, the content of the filler is preferably 30% by mass to 90% by mass of the entire resin composition for sealing, and 50% by mass or more More preferably, it is 75% by mass.
 充填材が粒子状である場合、その平均粒子径は、特に制限されない。例えば、体積平均粒子径が0.2μm~20μmであることが好ましく、0.5μm~15μmであることがより好ましい。体積平均粒子径が0.2μm以上であると、封止用樹脂組成物の粘度の上昇がより抑制される傾向がある。体積平均粒子径が20μm以下であると、狭い隙間への充填性がより向上する傾向にある。充填材の体積平均粒子径は、レーザー散乱回折法粒度分布測定装置により得られる体積基準の粒度分布において小径側からの体積の累積が50%となるときの粒子径(D50)として測定することができる。 When the filler is particulate, its average particle size is not particularly limited. For example, the volume average particle diameter is preferably 0.2 μm to 20 μm, and more preferably 0.5 μm to 15 μm. When the volume average particle diameter is 0.2 μm or more, the increase in the viscosity of the sealing resin composition tends to be further suppressed. When the volume average particle size is 20 μm or less, the filling property in the narrow gap tends to be further improved. The volume average particle size of the filler should be measured as the particle size (D50) at which the volume accumulation from the small diameter side becomes 50% in the volume-based particle size distribution obtained by the laser scattering diffraction particle size distribution measuring apparatus. it can.
[各種添加剤]
 封止用樹脂組成物は、上述の成分に加えて、硬化促進剤、応力緩和剤、カップリング剤、離型剤、着色剤等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
[Various additives]
The sealing resin composition may contain, in addition to the components described above, various additives such as a curing accelerator, a stress relaxation agent, a coupling agent, a mold release agent, and a colorant. The sealing resin composition may contain various additives well known in the art, as needed, in addition to the additives exemplified below.
(硬化促進剤)
 封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂及び硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
(Hardening accelerator)
The sealing resin composition may contain a curing accelerator. The type of the curing accelerator is not particularly limited, and can be selected according to the types of the epoxy resin and the curing agent, the desired characteristics of the sealing resin composition, and the like.
 封止用樹脂組成物が硬化促進剤を含む場合、その量は硬化性樹脂成分(エポキシ樹脂と硬化剤の合計)100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。 When the sealing resin composition contains a curing accelerator, the amount is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent) And 1 part by mass to 15 parts by mass.
(応力緩和剤)
 封止用樹脂組成物は、応力緩和剤を含んでもよい。応力緩和剤としては、熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンゴム等の粒子などが挙げられる。応力緩和材剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The sealing resin composition may contain a stress relaxation agent. Examples of the stress relaxation agent include particles of thermoplastic elastomer, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber, urethane rubber, silicone rubber and the like. The stress relaxation agents may be used alone or in combination of two or more.
 封止用樹脂組成物が応力緩和剤を含む場合、その量は硬化性樹脂成分(エポキシ樹脂と硬化剤の合計)100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。 When the sealing resin composition contains a stress relaxation agent, the amount thereof is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent). And 1 part by mass to 15 parts by mass.
(カップリング剤)
 封止用樹脂組成物は、カップリング剤を含んでもよい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン化合物、チタン化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム化合物などが挙げられる。中でも流動性の観点からは、シラン化合物が好ましい。カップリング剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Coupling agent)
The sealing resin composition may contain a coupling agent. Examples of the coupling agent include epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, silane compounds such as vinylsilane, titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, and the like. Among them, silane compounds are preferable from the viewpoint of fluidity. The coupling agents may be used alone or in combination of two or more.
 封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。 When the sealing resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the filler. More preferably, it is 2.5 parts by mass.
(着色剤)
 封止用樹脂組成物は、着色剤を含んでもよい。着色剤としては、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等が挙げられる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The sealing resin composition may contain a colorant. Examples of the colorant include carbon black, organic dyes, organic pigments, titanium oxide, red lead, and bengara. The colorants may be used alone or in combination of two or more.
 封止用樹脂組成物が着色剤を含む場合、その量は硬化性樹脂成分(エポキシ樹脂と硬化剤の合計)100質量部に対して0.01質量部~10質量部であることが好ましく、0.1質量部~5質量部であることがより好ましい。 When the sealing resin composition contains a colorant, the amount is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of the curable resin component (total of epoxy resin and curing agent), The amount is more preferably 0.1 parts by mass to 5 parts by mass.
(封止用樹脂組成物の用途)
 封止用樹脂組成物は、種々の実装技術に用いることができる。特に、フリップチップ型実装技術に用いるアンダーフィル材として好適に用いることができる。例えば、バンプ等で接合された半導体素子と支持体の間の隙間を充填する用途に好適に用いることができる。
(Use of sealing resin composition)
The sealing resin composition can be used in various mounting techniques. In particular, it can be suitably used as an underfill material used for flip chip mounting technology. For example, it can be used suitably for the application which fills up the crevice between the semiconductor device joined by bump etc., and a support body.
 半導体素子と支持体の種類は特に制限されず、半導体パッケージの分野で一般的に使用されるものから選択できる。封止用樹脂組成物を用いて半導体素子と支持体の間の隙間を充填する方法は、特に制限されない。例えば、ディスペンサー等を用いて公知の方法により行うことができる。 The type of semiconductor device and support is not particularly limited, and can be selected from those commonly used in the field of semiconductor packages. The method for filling the gap between the semiconductor element and the support using the sealing resin composition is not particularly limited. For example, it can carry out by a well-known method using a dispenser etc.
<半導体パッケージ>
 本実施形態の半導体パッケージは、支持体と、前記支持体上に配置された半導体素子と、前記半導体素子を封止している上述した封止用樹脂組成物の硬化物と、を有する。
<Semiconductor package>
The semiconductor package of the present embodiment has a support, a semiconductor element disposed on the support, and a cured product of the above-described sealing resin composition sealing the semiconductor element.
 上記半導体パッケージにおいて、半導体素子と支持体の種類は特に制限されず、半導体パッケージの分野で一般的に使用されるものから選択できる。上記半導体パッケージは、封止用樹脂組成物の硬化物の熱膨張率が低く、かつ弾性率が低い。このため、封止用樹脂組成物の硬化物と支持体の間に応力が生じた場合、これを抑制する効果に優れている。 In the semiconductor package, the types of the semiconductor element and the support are not particularly limited, and can be selected from those generally used in the field of the semiconductor package. The semiconductor package has a low coefficient of thermal expansion of the cured product of the sealing resin composition and a low modulus of elasticity. For this reason, when stress arises between the hardened | cured material of the resin composition for sealing, and a support body, it is excellent in the effect which suppresses this.
<半導体パッケージの製造方法>
 本実施形態の半導体パッケージの製造方法は、支持体と、前記支持体上に配置された半導体素子との間の空隙を上述した封止用樹脂組成物で充填する工程と、前記封止用樹脂組成物を硬化する工程と、を有する。
<Method of Manufacturing Semiconductor Package>
The method for manufacturing a semiconductor package according to the present embodiment includes the steps of: filling a space between a support and a semiconductor element disposed on the support with the sealing resin composition described above; and the sealing resin Curing the composition.
 上記方法において、半導体素子と支持体の種類は特に制限されず、半導体パッケージの分野で一般的に使用されるものから選択できる。封止用樹脂組成物を用いて半導体素子と支持体の間の隙間を充填する方法、及び充填後に封止用樹脂組成物を硬化する方法は特に制限されず、公知の手法で行うことができる。 In the above method, the types of the semiconductor element and the support are not particularly limited, and can be selected from those generally used in the field of semiconductor packages. The method for filling the gap between the semiconductor element and the support using the sealing resin composition and the method for curing the sealing resin composition after filling are not particularly limited, and can be performed by a known method. .
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Hereinafter, although the said embodiment is concretely described with an Example, the scope of the said embodiment is not limited to these Examples.
(封止用樹脂組成物の調製)
 表1に示す成分を表1に示す量にて混合し、封止用樹脂組成物を調製した。各成分の詳細は下記のとおりである。表1中の「eq」は硬化剤の当量基準の割合(硬化剤1と硬化剤2の合計は1である)を示す。充填材の「質量%」は封止用樹脂組成物全体に対する割合を示す。
(Preparation of resin composition for sealing)
The components shown in Table 1 were mixed in the amounts shown in Table 1 to prepare a sealing resin composition. The details of each component are as follows. "Eq" in Table 1 shows the ratio on an equivalent basis of the curing agent (the total of curing agent 1 and curing agent 2 is 1). "Mass%" of a filler shows the ratio with respect to the whole resin composition for sealing.
 エポキシ樹脂1…液状ビスフェノールF型エポキシ樹脂、商品名「YDF-8170C」、新日鉄住金化学株式会社
 エポキシ樹脂2…トリグリシジル-p-アミノフェノール、商品名「jER 630」、三菱ケミカル株式会社
 エポキシ樹脂3…1,6-ビス(グリシジルオキシ)ナフタレン、商品名「エピクロン HP-4032D」、DIC株式会社
Epoxy resin 1. Liquid bisphenol F type epoxy resin, trade name "YDF-8170C", Nippon Steel Sumikin Chemical Co., Ltd. Epoxy resin 2. Triglycidyl-p-aminophenol, trade name "jER 630", Mitsubishi Chemical Corporation epoxy resin 3 ... 1,6-Bis (glycidyloxy) naphthalene, trade name "Epiclon HP-4032D", DIC Corporation
 硬化剤1…2-メチルアニリン、商品名「jERキュアW」、三菱ケミカル株式会社
 硬化剤2…4,4’-ジアミノジフェニルメタン、商品名「カヤハードAA」、日本化薬株式会社
Hardener 1 ... 2-Methylaniline, trade name "jER Cure W", Mitsubishi Chemical Co., Ltd. Hardener 2 ... 4,4'-diaminodiphenylmethane, trade name "Kayahard AA", Nippon Kayaku Co., Ltd.
 充填材…高純度合成球状シリカ、商品名「SE2200-SEJ」、平均粒径:0.5μm、株式会社アドマテックス
 カップリング剤…3-グリシドキシプロピルトリメトキシシラン、商品名「KBM-403」、信越化学工業株式会社
Filler ... High purity synthetic spherical silica, trade name "SE2200-SEJ", average particle diameter: 0.5 μm, Admatex Co., Ltd. Coupling agent ... 3-glycidoxypropyltrimethoxysilane, trade name "KBM-403" , Shin-Etsu Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
(流動特性の評価)
 封止用樹脂組成物の25℃における粘度(Pa・s)は、E型粘度計(東京計器株式会社製、VISCONIC EHD型(商品名))(コーン角度3°、回転数:10回転/分)を用いて測定した。結果を表1に示す。
封止用樹脂組成物の110℃における粘度(Pa・s)は、AR2000(TAインスツルメント社)を用い、40mmパラレルプレート、せん断速度32.5(1/s)の条件で測定した。結果を表1に示す。
(Evaluation of flow characteristics)
The viscosity (Pa · s) at 25 ° C. of the resin composition for sealing is an E-type viscometer (VISCONIC EHD type (trade name) manufactured by Tokyo Keiki Co., Ltd.) (cone angle 3 °, rotation number: 10 revolutions / minute) ) Was used. The results are shown in Table 1.
The viscosity (Pa · s) at 110 ° C. of the resin composition for sealing was measured using AR 2000 (TA Instruments) under the conditions of 40 mm parallel plate, shear rate 32.5 (1 / s). The results are shown in Table 1.
(注入性の評価)
 ガラス基板上に、25μmの間隙を設けて、半導体素子の代わりにガラス板(20mm×20mm)を固定した試験片を作製した。次に、この試験片を110℃に設定したホットプレート上に置き、ガラス板の一端側に封止用樹脂組成物を塗布し、間隙が封止用樹脂組成物で満たされるまでの時間(秒/sec)を測定した。結果を表1に示す。
(Evaluation of injectability)
A 25 μm gap was provided on a glass substrate to prepare a test piece in which a glass plate (20 mm × 20 mm) was fixed instead of the semiconductor element. Next, this test piece is placed on a hot plate set at 110 ° C., and the resin composition for sealing is applied to one end side of the glass plate, and the time until the gap is filled with the resin composition for sealing (seconds / Sec) was measured. The results are shown in Table 1.
(硬化物特性の評価)
 封止用樹脂組成物を硬化して得られた硬化物の熱膨張率(ppm/℃)、弾性率(GPa)、ガラス転移温度(℃)をそれぞれ下記の方法で測定した。結果を表1に示す。
(Evaluation of cured product characteristics)
The thermal expansion coefficient (ppm / ° C.), elastic modulus (GPa), and glass transition temperature (° C.) of a cured product obtained by curing the sealing resin composition were measured by the following methods. The results are shown in Table 1.
(熱膨張率の測定方法)
 熱機械分析装置(TMA2940、TAインスツルメント社)を用いて、硬化させた封止用樹脂組成物を、直径8mm、長さ20mmのサイズに切り出し、圧縮法にて0℃から300℃まで5℃/minで昇温測定し、10℃~30℃における接線の傾きを熱膨張率(ppm/℃)とした。結果を表1に示す。
(Measurement method of thermal expansion coefficient)
The cured resin composition for sealing was cut into a size of 8 mm in diameter and 20 mm in length using a thermomechanical analyzer (TMA 2940, TA Instruments Co., Ltd.) and compressed from 0 ° C. to 300 ° C. 5 The temperature rise was measured at ° C./min, and the slope of the tangent at 10 ° C. to 30 ° C. was taken as the thermal expansion coefficient (ppm / ° C.). The results are shown in Table 1.
(弾性率の測定方法)
 粘弾性測定装置(RSA III、TAインスツルメント社)を用いて、硬化させた封止用樹脂組成物を50mm×10mm×3mmのサイズに切り出し、スパン間距離40mm、周波数1Hzの条件下、3点曲げ法にて20℃から300℃まで5℃/minで昇温し、25℃における貯蔵弾性率(GPa)の値を測定した。結果を表1に示す。
(Measurement method of elastic modulus)
Using a visco-elasticity measuring device (RSA III, TA Instruments), the cured resin composition for sealing is cut into a size of 50 mm × 10 mm × 3 mm, and the conditions of span distance 40 mm and frequency 1 Hz 3 The temperature was raised at 5 ° C./min from 20 ° C. to 300 ° C. by a point bending method, and the value of the storage elastic modulus (GPa) at 25 ° C. was measured. The results are shown in Table 1.
(ガラス転移温度の測定方法)
 上記熱膨張率と同じ装置、条件で測定を行い、50℃と150℃における接線の交点に対応する温度をガラス転移温度(℃)とした。結果を表1に示す。
(Method of measuring glass transition temperature)
The measurement was performed under the same apparatus and conditions as the above thermal expansion coefficient, and the temperature corresponding to the intersection of tangents at 50 ° C. and 150 ° C. was defined as the glass transition temperature (° C.). The results are shown in Table 1.
 表1に示したように、エポキシ樹脂としてビスフェノール型エポキシ樹脂と、特定ナフタレン型エポキシ樹脂とを含み、かつ特定ナフタレン型エポキシ樹脂のエポキシ樹脂全体に占める割合が10質量%~30質量%である実施例の封止用樹脂組成物は、この条件を満たさない比較例の封止用樹脂組成物に比べ、注入性に優れ、かつ熱膨張率と弾性率がともに低かった。このことから、封止用樹脂組成物の硬化物と支持体との間に応力が生じても、これを低減又は緩和する効果に優れていることが示唆された。 As shown in Table 1, the embodiment contains a bisphenol-type epoxy resin as an epoxy resin and a specific naphthalene-type epoxy resin, and the proportion of the specific naphthalene-type epoxy resin in the entire epoxy resin is 10 mass% to 30 mass%. The resin composition for sealing of the example was excellent in the injectability, and both of the thermal expansion coefficient and the elastic modulus were lower than the resin composition for sealing of the comparative example not satisfying the conditions. From this, it was suggested that even if stress is generated between the cured product of the sealing resin composition and the support, the effect of reducing or alleviating the stress is excellent.
 日本国特許出願第2017-127581号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2017-127581 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (8)

  1.  エポキシ樹脂と、硬化剤と、充填材とを含み、前記エポキシ樹脂がビスフェノール型エポキシ樹脂と、1,6-ビス(グリシジルオキシ)ナフタレンとを含み、前記1,6-ビス(グリシジルオキシ)ナフタレンの前記エポキシ樹脂全体に占める割合が10質量%~30質量%である、封止用樹脂組成物。 An epoxy resin, a curing agent, and a filler, wherein the epoxy resin comprises a bisphenol epoxy resin and 1,6-bis (glycidyloxy) naphthalene, and the 1,6-bis (glycidyloxy) naphthalene The sealing resin composition, wherein the proportion of the entire epoxy resin is 10% by mass to 30% by mass.
  2.  前記ビスフェノール型エポキシ樹脂がビスフェノールF型エポキシ樹脂を含む、請求項1に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1, wherein the bisphenol epoxy resin comprises a bisphenol F epoxy resin.
  3.  前記ビスフェノール型エポキシ樹脂の前記エポキシ樹脂全体に占める割合が20質量%以上90質量%未満である、請求項1又は請求項2に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1 or 2, wherein a proportion of the bisphenol type epoxy resin in the entire epoxy resin is 20% by mass or more and less than 90% by mass.
  4.  前記エポキシ樹脂がグリシジルアミン型エポキシ樹脂をさらに含む、請求項1~請求項3のいずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 1 to 3, wherein the epoxy resin further comprises a glycidyl amine type epoxy resin.
  5.  前記グリシジルアミン型エポキシ樹脂が3官能以上のグリシジルアミン型エポキシ樹脂を含む、請求項4に記載の封止用樹脂組成物。 The sealing resin composition according to claim 4, wherein the glycidyl amine epoxy resin contains a trifunctional or higher functional glycidyl amine epoxy resin.
  6.  前記グリシジルアミン型エポキシ樹脂の前記エポキシ樹脂全体に占める割合が10質量%~60質量%である、請求項4又は請求項5のいずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 4 and 5, wherein a proportion of the glycidyl amine type epoxy resin in the entire epoxy resin is 10% by mass to 60% by mass.
  7.  支持体と、前記支持体上に配置されている半導体素子と、前記半導体素子を封止している請求項1~請求項6のいずれか1項に記載の封止用樹脂組成物の硬化物と、を有する半導体パッケージ。 A cured product of the sealing resin composition according to any one of claims 1 to 6, which encapsulates a support, a semiconductor element disposed on the support, and the semiconductor element. And a semiconductor package.
  8.  支持体と、前記支持体上に配置されている半導体素子との間の空隙を請求項1~請求項6のいずれか1項に記載の封止用樹脂組成物で充填する工程と、前記封止用樹脂組成物を硬化する工程と、を有する半導体パッケージの製造方法。 A process of filling the space between the support and the semiconductor element disposed on the support with the sealing resin composition according to any one of claims 1 to 6, the sealing And curing the resin composition for stopping.
PCT/JP2018/024934 2017-06-29 2018-06-29 Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package WO2019004457A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019527079A JP7231833B2 (en) 2017-06-29 2018-06-29 Sealing resin composition, semiconductor package, and method for manufacturing semiconductor package
CN201880037837.XA CN110709443A (en) 2017-06-29 2018-06-29 Resin composition for sealing, semiconductor package, and method for producing semiconductor package
KR1020197038727A KR20200023312A (en) 2017-06-29 2018-06-29 Manufacturing method of sealing resin composition, semiconductor package, and semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127851 2017-06-29
JP2017-127851 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004457A1 true WO2019004457A1 (en) 2019-01-03

Family

ID=64741610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024934 WO2019004457A1 (en) 2017-06-29 2018-06-29 Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package

Country Status (5)

Country Link
JP (1) JP7231833B2 (en)
KR (1) KR20200023312A (en)
CN (1) CN110709443A (en)
TW (2) TWI787295B (en)
WO (1) WO2019004457A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736550A (en) * 2022-09-15 2024-03-22 华为技术有限公司 Resin composition, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240809A (en) * 1995-03-02 1996-09-17 Sumitomo Bakelite Co Ltd Sealing material composition for liquid crystal display element and liquid crystal display element using the same
JPH1129624A (en) * 1997-07-09 1999-02-02 Toshiba Corp Semiconductor sealing liquid epoxy resin composition
WO2011039879A1 (en) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
JP2011225773A (en) * 2010-04-22 2011-11-10 Sekisui Chem Co Ltd Photocurable resin composition, sealing agent for organic el element, and organic el element
JP2013082782A (en) * 2011-10-06 2013-05-09 Hitachi Chemical Co Ltd Selection method and production method of liquid epoxy resin composition, and electronic part device and production method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194053A (en) 2000-12-22 2002-07-10 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor by screen printing
JP2006299247A (en) 2005-03-25 2006-11-02 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP5210011B2 (en) * 2008-03-18 2013-06-12 積水化学工業株式会社 Adhesive for electronic parts
JP2011057617A (en) 2009-09-10 2011-03-24 Nissan Chem Ind Ltd Dicarboxylic acid compound and thermosetting resin composition containing the same
JP2013028659A (en) 2011-07-26 2013-02-07 Hitachi Chemical Co Ltd Epoxy resin liquid sealing material for underfill and electric component apparatus using the same
JP2013163747A (en) 2012-02-10 2013-08-22 Sumitomo Bakelite Co Ltd Liquid resin composition for sealing semiconductor, and semiconductor device
JP6969729B2 (en) 2014-12-12 2021-11-24 ナミックス株式会社 A method for producing a liquid epoxy resin composition, a semiconductor encapsulant, a semiconductor device, and a liquid epoxy resin composition.
KR102477938B1 (en) * 2015-08-03 2022-12-14 쇼와덴코머티리얼즈가부시끼가이샤 Epoxy resin composition, film type epoxy resin composition and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240809A (en) * 1995-03-02 1996-09-17 Sumitomo Bakelite Co Ltd Sealing material composition for liquid crystal display element and liquid crystal display element using the same
JPH1129624A (en) * 1997-07-09 1999-02-02 Toshiba Corp Semiconductor sealing liquid epoxy resin composition
WO2011039879A1 (en) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
JP2011225773A (en) * 2010-04-22 2011-11-10 Sekisui Chem Co Ltd Photocurable resin composition, sealing agent for organic el element, and organic el element
JP2013082782A (en) * 2011-10-06 2013-05-09 Hitachi Chemical Co Ltd Selection method and production method of liquid epoxy resin composition, and electronic part device and production method thereof

Also Published As

Publication number Publication date
TWI839971B (en) 2024-04-21
KR20200023312A (en) 2020-03-04
CN110709443A (en) 2020-01-17
TW201905025A (en) 2019-02-01
TW202313756A (en) 2023-04-01
JP7231833B2 (en) 2023-03-02
TWI787295B (en) 2022-12-21
JPWO2019004457A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP5574237B2 (en) Epoxy resin composition for sealing electronic parts
KR102628332B1 (en) Curable resin composition, electronic component device, and method of manufacturing electronic component device
WO2018181600A1 (en) Epoxy resin composition for sealing, and electronic component device
JP2018172545A (en) Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2007092002A (en) Epoxy resin composition, hollow package for semiconductor device and semiconductor part device by using the same
JP7231833B2 (en) Sealing resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2019077762A (en) Epoxy resin composition for sealing and electronic part device
JPWO2011114935A1 (en) Epoxy resin composition and cured product
JP2019083225A (en) Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device
JP2022103215A (en) Underfill material, semiconductor package, and method for manufacturing semiconductor package
JPWO2019004458A1 (en) Sealing resin composition, relocated wafer, semiconductor package, and method for manufacturing semiconductor package
JP2021119239A (en) Underfill material, semiconductor package and method for producing semiconductor package
WO2020241594A1 (en) Encapsulating resin composition and electronic component device
JP2019077771A (en) Underfill material, semiconductor package and method for manufacturing semiconductor package
JP2017028050A (en) Underfill material and electronic component device using the same
JP2020193293A (en) Sealing resin composition, cured product, and electronic component device
JPWO2018181603A1 (en) Liquid epoxy resin composition, semiconductor device, and method of manufacturing semiconductor device
JP2019065224A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device
KR20190092589A (en) Resin Compositions and Electronic Component Devices
JP2001316566A (en) One pack epoxy resin composition and epoxy resin composition for semiconductor sealing use using the same
JP6519600B2 (en) Epoxy resin molding material for sealing and electronic component device
WO2019142646A1 (en) Curable resin composition, semiconductor device, and method for producing semiconductor device
JP2019065225A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device
JP2019065226A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527079

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038727

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824447

Country of ref document: EP

Kind code of ref document: A1