WO2019003265A1 - フッ素樹脂成形体 - Google Patents

フッ素樹脂成形体 Download PDF

Info

Publication number
WO2019003265A1
WO2019003265A1 PCT/JP2017/023368 JP2017023368W WO2019003265A1 WO 2019003265 A1 WO2019003265 A1 WO 2019003265A1 JP 2017023368 W JP2017023368 W JP 2017023368W WO 2019003265 A1 WO2019003265 A1 WO 2019003265A1
Authority
WO
WIPO (PCT)
Prior art keywords
pfa
molded article
pave
vinyl ether
perfluoro
Prior art date
Application number
PCT/JP2017/023368
Other languages
English (en)
French (fr)
Inventor
仁美 西村
卓浩 西村
榜佳 林
Original Assignee
三井・デュポンフロロケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井・デュポンフロロケミカル株式会社 filed Critical 三井・デュポンフロロケミカル株式会社
Priority to CN201780094294.0A priority Critical patent/CN111032746A/zh
Priority to KR1020227010789A priority patent/KR102499065B1/ko
Priority to EP17915868.8A priority patent/EP3647344A4/en
Priority to PCT/JP2017/023368 priority patent/WO2019003265A1/ja
Priority to KR1020207001959A priority patent/KR20200023400A/ko
Priority to US16/626,718 priority patent/US11865758B2/en
Publication of WO2019003265A1 publication Critical patent/WO2019003265A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0088Blends of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity

Definitions

  • the present invention is tetrafluoroethylene / which can be manufactured with high productivity and high flex life value (flex resistance), low heating weight reduction value, and low zero shear viscosity while maintaining excellent mechanical properties such as tensile strength.
  • the present invention relates to providing a perfluoro (alkyl vinyl ether) copolymer molded body and a method for producing the same.
  • Fluororesins are used in a wide range of applications because of their excellent chemical, electrical, mechanical and surface properties.
  • a copolymer (PFA) of tetrafluoroethylene (TFE) and perfluoro (alkyl vinyl ether) (PAVE) shows the above-mentioned properties of the fluorine resin, as well as heat resistance, chemical resistance, purity ( It is chemically inert and does not contain additives), is excellent in stress crack resistance, and has melt flowability so that it can also be heat-melt-formed (see Patent Documents 1 to 3). .
  • Patent Document 4 describes that the FL value can be increased by increasing the melt viscosity or increasing the comonomer content for the MIT flex life of PFA, but when the melt viscosity is increased, the above description is given. As a result, the linear velocity at the time of molding is reduced to lower the productivity.
  • the melting point decreases as the comonomer content increases, and the mechanical properties such as tensile strength tend to decrease, so the comonomer content can not be easily increased.
  • the present inventors arrived at the present invention as a result of earnestly research aimed at the development of a PFA molded body capable of solving the problems of the prior art.
  • the present invention is capable of producing high flex life (flex resistance), low heating weight reduction, and capable of producing with good productivity while maintaining excellent mechanical properties such as tensile strength. It is an object of the present invention to provide low tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer moldings, as well as a process for their preparation.
  • a flex life value is a physical-property value important to the use which receives repeated bending stress, and also serves as a standard of stress crack resistance.
  • a molded article comprising a copolymer (PFA) of tetrafluoroethylene (TFE) and perfluoro (alkyl vinyl ether) (PAVE), wherein the content of PAVE is 1 to 10 mol%.
  • PFA characterized in that the flex life value is 2,000,000 times or more, the zero shear viscosity is 10,000 to 20,000 Pa ⁇ s, and the heating weight loss is 0.05% by weight or less
  • a molded body is provided.
  • the PFA molded article having a melt flow rate (MFR) of 1 to 100 g / 10 min measured at a measurement temperature of 372 ⁇ 0.1 ° C. in accordance with ASTM D1238 of the PFA is a preferred embodiment of the present invention It is.
  • the PFA molded article in which the PAVE is perfluoro (ethyl vinyl ether) or perfluoro (propyl vinyl ether) is a preferred embodiment of the present invention.
  • the PFA molded article which is a molded article selected from a tube, a bottle, a fitting, a valve, a rod-like molded article, and a sheet-like molded article, is a preferred embodiment of the present invention.
  • the above-mentioned PFA molded product used for a member used in a manufacturing process of a semiconductor or liquid crystal or a chemical plant is a preferred embodiment of the present invention.
  • the PFA molded article according to the present invention is a member selected from a tube (tube), a container (bottle), a fitting (fitting for piping), a valve, a transfer member (wafer carrier), a pump and a filter housing. This is a preferred embodiment.
  • the present invention also relates to a copolymer (PFA) of tetrafluoroethylene (TFE) and perfluoro (alkyl vinyl ether) (PAVE), which has a content of PAVE of 1 to 10% by mole, in accordance with ASTM D1238.
  • a PFA molded article having a flex life value of 2,000,000 times or more, a zero shear viscosity of 10,000 to 20,000 Pa ⁇ s, and a heating weight loss of 0.05% by weight or less Be done.
  • the method for producing the PFA molded product, wherein the molding is extrusion molding is a preferred embodiment of the present invention.
  • the present invention provides a PFA molded article having excellent mechanical properties and a low content of decomposition products, which can be manufactured with high productivity.
  • the present invention provides PFA molded articles having high flex life values with respect to mechanical properties, low heating weight reduction values in relation to the amount of degradation products, low zero shear viscosity and capable of being manufactured with good productivity. Be done.
  • a PFA molded article having a feature that blisters are less likely to occur in a molded article due to a low hydrochloric acid permeation coefficient, and also has a characteristic that surface smoothness is maintained for a long time.
  • the present invention is a molded article comprising a copolymer (PFA) of tetrafluoroethylene (TFE) and perfluoro (alkyl vinyl ether) (PAVE) and having a content of PAVE of 1 to 10 mol% And a PFA molded article having a flex life value of 2,000,000 times or more, a zero shear viscosity of 10,000 to 20,000 Pa ⁇ s, and a heating weight loss of 0.05% by weight or less.
  • PFA copolymer
  • TFE tetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • PFA is a copolymer having melt formability obtained by copolymerization of tetrafluoroethylene (TFE) as a main component and perfluoro (alkyl vinyl ether) (PAVE) as a comonomer.
  • TFE tetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • Perfluoro (alkyl vinyl ether) (PAVE) used as a comonomer can be shown as a following Formula (1) or (2).
  • X represents H or F
  • n is an integer of 0 to 4
  • m is an integer of 0 to 7.
  • PFA can be obtained by solution polymerization, emulsion polymerization or suspension polymerization.
  • the obtained aqueous dispersion can be used by adjusting the solid content, the emulsion stabilizer adjustment, etc., if necessary.
  • the resulting aqueous dispersion can also be used to recover PFA solids from the aqueous polymerization medium using known conventional techniques (e.g., U.S. Patent No. 5,266,639).
  • U.S. Patent No. 5,266,639 For example, after adding an electrolytic substance to an aqueous dispersion and aggregating colloidal fine particles of a fluorocarbon resin under mechanical stirring, separate from the aqueous medium, and if necessary, washing with water and drying to obtain a solid of PFA.
  • the solid of PFA is preferably formed into pellets and used.
  • PFA that has been prefluorinated in order to reduce contaminants (impurities) derived from fluorocarbon resin.
  • a method of fluorinating PFA conventionally known methods can be adopted.
  • the fluorination method described in Japanese Patent Publication No. 4-83, Japanese Patent Publication No. 7-30134, and Japanese Unexamined Patent Publication No. 4-20507 can be mentioned.
  • the PFA used in the present invention is 1 to 10 mol%, preferably 1 to 8 mol%, more preferably 2 to 8 mol%, more preferably 2.5 to 1 of the perfluoro (alkyl vinyl ether) (PAVE) among the above-mentioned PFA. It is a copolymer of TFE and PAVE containing ⁇ 6 mol%.
  • PFA used in the present invention is TFE and PAVE having 4 or less carbon atoms, that is, perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), It is preferably a copolymer with perfluoro (butyl vinyl ether) (PBVE), more preferably perfluoro (ethyl vinyl ether) (PEVE) or perfluoro (propyl vinyl ether) (PPVE).
  • PBVE butyl vinyl ether
  • PVE perfluoro (ethyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • the PFA may further comprise additional comonomers copolymerizable with TFE.
  • the additional comonomer content is preferably smaller than the above-mentioned PAVE content.
  • the additional comonomers copolymerizable with TFE include fluorine-containing comonomers such as perfluoroalkene having 3 to 6 carbon atoms, PAVE having 1 to 5 carbon atoms, and chlorotrifluoroethylene.
  • the PFA may contain PFA and / or PTFE, which differ in the type or content of PAVE.
  • PTFE include homopolymers of tetrafluoroethylene, or modified PTFE containing 1% by weight or less of a trace amount of comonomer such as hexafluoropropylene, perfluoro (alkyl vinyl ether), fluoroalkylethylene, chlorotrifluoroethylene and the like.
  • the melt flow rate (MFR) of PFA used in the present invention is 1 to 100 g / 10 min, preferably 1 to 100 g / 10 min, measured at a measurement temperature of 372 ⁇ 0.1 ° C. according to ASTM D1238. It is desirable that it is 50 g / 10 min, more preferably 1 to 20 g / 10 min.
  • the PFA molded product of the present invention can be obtained by melt molding, and examples of the melt molding method include injection molding method, extrusion molding method, hollow molding method, transfer molding method and the like, but it is not limited thereto There are no known molding methods.
  • molding can be carried out at a relatively low temperature, problems caused by PFA thermal decomposition like conventional molding conditions are unlikely to occur. Molding of the PFA of the present invention is carried out at a temperature of 310 ° C. to 370 ° C., preferably 320 ° C. to 360 ° C. As a result, it is possible to obtain the PFA molded article of the present invention having a low heating weight loss.
  • the molding temperature of the present invention refers to the resin temperature.
  • the molded body molded under the conditions of 310 ° C. to 370 ° C. using the PFA that can be molded at a relatively low temperature as described above according to the present invention has a heating weight loss of 0.05% by weight or less measured by the method described later .
  • the low heating weight loss means that the amount of PFA thermally decomposed during molding is small, and as a result, the amount of residual decomposition products remaining in the molded body is small. Therefore, in the PFA molded product of the present invention, the contamination of the apparatus using it and the like results in little.
  • the PFA molded article of the present invention has a flex life value (FL value) of 2,000,000 or more, preferably 3,000,000 or more, as measured by the measurement method described later.
  • FL value flex life value
  • a molded product exhibiting such a high FL value means high resistance to flexing, which indicates that it is suitable for applications subjected to repeated bending stress.
  • the PFA molded article of the present invention has a zero shear viscosity of 10,000 to 20,000 Pa ⁇ s measured by the measurement method described later.
  • the fact that the zero shear viscosity is in this range means that the extrusion linear velocity can be increased at the time of production of the molded product, and it means that the molded product can be produced with high productivity.
  • the PFA molded article of the present invention is a PFA molded article having the above-mentioned excellent bending resistance and containing a small amount of decomposition product, which can be manufactured with high productivity. It is.
  • a molded article having a hollow portion can be mentioned.
  • the molded body having a hollow portion is a shape having a hollow portion in the molded body, and as a specific example, a tube-shaped molded body or a molded body having a desired hollow portion, for example, a semiconductor or the like Piping for transfer of various chemical solutions (supply) used in the liquid crystal manufacturing process, fittings for piping, fittings, storage containers, pumps, filter housings, and the like can be mentioned.
  • the molded product having such a hollow portion can be suitably used for various acid or alkali chemical solution supply devices used in the manufacturing process of semiconductors and liquid crystals, various chemical reaction devices, semiconductor manufacturing devices and the like.
  • the PFA molded article of the present invention which is obtained by melt extrusion, has a tube surface excellent in smoothness in addition to the above-mentioned properties.
  • the tube having a high smoothness on the inner surface of the tube it is difficult for dirt to adhere to the surface of the tube and for easy cleaning of the deposit.
  • the tube obtained by extrusion molding has a property that the drug solution passing through the tube is difficult to permeate through the tube.
  • the chemical liquid permeability can be measured by a hydrochloric acid permeation test described later.
  • the tubes of the present invention have excellent resistance to hydrochloric acid permeation.
  • the PFA molded article of the present invention which is obtained by melt-extrusion, is a tube which is further resistant to blistering and which can be used for a long time.
  • a blister is a blister-like structure produced on the outer surface of a tube.
  • PFA tubes are used in very harsh chemical, thermal, physical and complex environments, such as semiconductor and liquid crystal manufacturing processes or chemical plants. Therefore, it is presumed that blisters are generated by physical destruction due to chemical attack, rapid fluctuations in temperature and pressure, permeation and permeation of chemical solution and gas, or their interaction. The occurrence of blisters may cause appearance abnormalities and a decrease in mechanical strength on the outer surface of the tube, which may make long-term use difficult.
  • the PFA molded article of the present invention which is obtained by melt extrusion molding, is a tube having a low chemical solution permeability, which is less likely to cause blisters, and which can be used for a long time .
  • the present invention it is possible to obtain a PFA molded article which is formed from a specific PFA having high moldability, maintains flexibility and has a low weight loss.
  • the extrusion speed (linear speed) at the time of melt molding can be improved to increase the production efficiency.
  • the measuring method and the raw material of the physical property used by this invention are as follows.
  • A. Measurement of physical properties (1) Melting temperature (° C) The melting point of PFA used Perkin Elmer diamond DSC. 10 mg of a sample is weighed and placed in a dedicated aluminum pan, crimped by a dedicated crimper, and then housed in a DSC body to start heating. The temperature was raised from 200 ° C. to 380 ° C. at 10 ° C./min, and from the melting curve obtained at this time, the melting peak temperature was determined as the melting point (° C.).
  • Weight loss due to heating (% by weight) (total weight ⁇ weight after heating) / (total weight ⁇ aluminum weight) ⁇ 100
  • a PTFE seal was wound around the connecting portion to seal it. After standing for 2 weeks in a heated oven at 70 ° C., the amount of chloride ion is measured for ultrapure water by Dionex ion chromatography IC 20 / LC 25 to obtain chloride per unit area. It converted into the amount of ion permeation.
  • Blister generation test 35 mass% of hydrochloric acid is enclosed in the hollow part of a molded article having a hollow part, the molded article containing the hydrochloric acid is immersed in pure water in a container, and the container is immersed in an oven at 70 ° C. Put. After holding for 2 weeks in this state, the molded product was taken out, hydrochloric acid was extracted, and the hollow part of the molded product was washed five times with pure water, and then air-dried at room temperature for 12 hours to obtain a molded product for blister measurement.
  • sealing plug in addition to using a sealing plug as a sealing method, it is also possible to carry out heat fusion processing of the end of a forming object, and to seal it.
  • sealing stoppers may be used as well as tubes, and sealing may be performed using a lid attached to the molded objects. It is possible.
  • a commercially available sealing plug can be used as well as the tube.
  • FIG. 2 is a schematic view showing an example of transfer image formation in the case where the formed body is tubular.
  • the tube 10 cut into a width of 20 mm with a load of 1 kg by the weight 12 the length of the copy paper 9 on the carbon transfer paper 8 placed on the PFA plate 14 with the transfer surface up is long
  • the transferred image is obtained by rotating to 40 mm.
  • a guide portion 11 as shown in FIG. 2 may be provided to enable stable transfer.
  • the blister occurrence degree was determined as the blister occurrence degree according to the following criteria based on the measurement of the number of generated blisters. ⁇ : Less than 5 blister occurrences ⁇ : 5 or more blister occurrences
  • PFA Tetrafluoroethylene / perfluoroethyl vinyl ether copolymer [perfluoroethyl vinyl ether content 4.7 mol%, melting point 263 ° C., unstable terminal group (-CH 2 OH terminal group, -CONH 2 terminal group, -COF terminal group] ) Is less than 6 per 10 6 carbons]
  • PFA Tetrafluoroethylene / perfluoropropyl vinyl ether copolymer, [perfluoropropyl vinyl ether content 1.8 mol%, melting point 303 ° C., unstable terminal group (-CH 2 OH terminal group, -CONH 2 terminal group, -COF terminal, Group is less than 6 per 10 6 carbons].
  • Example 3 With respect to the tubes obtained in Examples 1 to 3 and Comparative Example 3, the blister generation test and the measurement of the number of blisters were performed to obtain a transfer image, the number of blisters was measured, and the blister generation degree was determined. The results are shown in Table 4. Transfer images of Example 3 and Comparative Example 3 are shown in FIGS. 3 and 4.
  • a PFA molded product which can be manufactured with high flex life value, low heating weight reduction, and high productivity while maintaining excellent mechanical properties such as tensile strength.
  • the PFA molded article of the present invention is characterized by having a low hydrochloric acid permeability coefficient, so that it is difficult for blisters to occur in the molded article, and is also a PFA molded article having the property of maintaining long surface smoothness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%である共重合体(PFA)からなり、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ熱重量減が0.05重量%以下であることを特徴とするPFA成形体及びその製造方法に関する。このPFA成形体は、優れた引張強度等の機械的物性を維持しながら、高いフレックスライフ値、低い加熱重量減値を有すると共に、ゼロシェア粘度が低く、成形体を生産性良く製造することができる。

Description

フッ素樹脂成形体
 本発明は、優れた引張強度等の機械的物性は維持しながら、高いフレックスライフ値(耐屈曲性)、低い加熱重量減値、及びゼロシェア粘度が低く、生産性よく製造可能なテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体成形体を提供すること、並びにその製造方法に関する。
 フッ素樹脂は優れた化学特性、電気特性、機械特性および表面特性を有するので幅広い用途に用いられている。フッ素樹脂のなかでもテトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)は、フッ素樹脂の前記特性を示すと共に、耐熱性、耐薬品性、純粋性(化学的に不活性で添加剤を含まないこと)、耐ストレスクラック性に優れており、溶融流動性を有しているため熱溶融成形できるという特性も兼ね備えている(特許文献1~3参照)。そのため、半導体や液晶の製造、または化学プラント等において使用される各種薬液移送用の配管、配管用の継ぎ手、貯蔵容器、ポンプやフィルターハウジング、チューブ、フィッティングのための成形材料として利用されている。特に薬液移送(供給)配管においてはPFA製配管が多く使用されている。
 樹脂製品製造においては常に存在する課題ではあるが、製造コストを下げるという要請があるので、成形時生産性を上げるため、例えば押出成形において、成形温度を上げチューブを押し出す際の線速を上げるという試みをした場合、熱による樹脂の分解が増大して分解物に起因すると思われる汚染が増大するという問題が生じる。そのため、そのような物質の低減が求められている。特に半導体用途など高純度が求められる用途において好適ではないという事情があった。
 また、押出成形時の成形速度(線速)を上げるために、樹脂の溶融粘度を下げる手段として、樹脂の分子量を下げるという方法があることが知られている。しかしながら、PFAの分子量を下げると、線速を上げることができたとしても、成形体の機械的特性、例えばフレックスライフ(MITフレックスライフと呼ばれることもある。以下FLと略すこともある。)に代表される耐繰り返し屈曲性が低下するという問題が生じることがわかった。特に、チューブ用途として使用するにはフレックスライフの低下は重大でその使用が困難となる場合があるという問題がある。
 因みに、特許文献4には、PFAのMITフレックスライフについて、溶融粘度を上げるか、コモノマー含量を上げることによりFL値を上げることができる旨の記載があるが、溶融粘度を上げたときは前記したように成形時の線速が低下して生産性が低下する。しかしながら、PFAのコモノマー含量については、コモノマー含量を上げるに従って融点が低下し、引張強度のような機械的特性が低下する傾向にあるので、安易にコモノマー含量を上げることはできない。
 本発明者らは、前記従来技術の問題点を解決できるPFA成形体の開発を目指して鋭意研究した結果本発明に到達したものである。
日本国特開2007-131671号公報 日本国特開2003-327770号公報 日本国特開2002-167488号公報 米国特許第3,635,926号公報
 本発明は、優れた引張強度等の機械的物性は維持しながら、高いフレックスライフ値(耐屈曲性)、低い加熱重量減、及び生産性良く製造することを可能とすることに関して、ゼロシェア粘度が低いテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体成形体を提供すること、並びにその製造方法を提供するものである。
 なお、フレックスライフ値とは、繰り返し曲げ応力を受ける用途に重要な物性値であり、耐ストレスクラック性の目安ともなるものである。
 本発明により、テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%である共重合体からなる成形体であり、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ加熱重量減が0.05重量%以下であることを特徴とするPFA成形体が提供される。
 前記PFAのASTM D1238に準拠して、荷重5kg、測定温度372±0.1℃で測定したメルトフローレート(MFR)が、1~100g/10分である前記PFA成形体は本発明の好ましい態様である。
 前記PAVEが、パーフルオロ(エチルビニルエーテル)またはパーフルオロ(プロピルビニルエーテル)である前記PFA成形体は本発明の好ましい態様である。
 前記成形体が、チューブ、ボトル、フィッティング、バルブ、棒状成形体、シート状成形体から選ばれた成形体である前記PFA成形体は本発明の好ましい態様である。
 半導体もしくは液晶の製造工程または化学プラントで使用される部材に用いられる前記PFA成形体は本発明の好ましい態様である。
 前記部材が、チューブ(管)、容器(ボトル)、フィッティング(配管用継ぎ手)、バルブ、搬送用部材(ウエハキャリア)、ポンプおよびフィルターハウジングから選択される部材である前記PFA成形体は本発明の好ましい態様である。
 本発明はまた、テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%あり、ASTM D1238に準拠して、荷重5kg、測定温度372±0.1℃で測定したメルトフローレート(MFR)が、1~100g/10分である共重合体を、320~360℃の条件で成形することを特徴とする、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ加熱重量減が0.05重量%以下であるPFA成形体の製造方法が提供される。
 前記成形が、押出成形である前記PFA成形体の製造方法は本発明の好ましい態様である。
 本発明により、優れた機械的特性と、分解物の含有量が少ないPFA成形体であって、生産性良く製造することを可能とするPFA成形体が提供される。
 本発明により、機械的特性に関して高いフレックスライフ値を有し、分解物量に関連して低い加熱重量減値を有し、ゼロシェア粘度が低く、生産性良く製造することが可能なPFA成形体が提供される。
 本発明により、塩酸透過係数が低いので、成形体にブリスターが発生し難いという特徴を有しており、表面平滑性が長く維持されるという特性も有するPFA成形体が提供される。
塩酸透過度を測定する装置を示す概略図である。 成形体がチューブ状の場合の転写像作成例を示す概略図である。 本願実施例3の転写像である。 本願比較例3の転写像である。
 本発明は、テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%ある共重合体からなる成形体であり、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ加熱重量減が0.05重量%以下であるPFA成形体を提供する。
 PFAは、主成分であるテトラフルオロエチレン(TFE)と、コモノマーとしてパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合により得られる溶融成形性を有する共重合体である。
 コモノマーとして用いられるパーフルオロ(アルキルビニルエーテル)(PAVE)は、下式(1)又は(2)として示すことができる。
Figure JPOXMLDOC01-appb-C000001
(式中、XはHまたはFを表し、nは0~4の整数であり、mは0~7の整数である。)
Figure JPOXMLDOC01-appb-C000002
(式中、qは0~3の整数である。)
 PFAは、溶液重合、乳化重合、或いは懸濁重合により得ることができる。例えば、日本国特許第3980649号に記載される重合方法(水性分散重合=乳化重合)にて得ることができる。重合が完了したのち、得られた水性分散体を、必要に応じて固形分含有量、乳化安定剤調整等の調整をして使用することができる。
 また、得られた水性分散液を公知の伝統的技術(例えば、米国特許第5,266,639号)を用いて、水性重合媒体からPFAの固体を回収することができる。例えば、水性分散体に電解性物質を加え、機械的撹拌下にフッ素樹脂のコロイド状微粒子を凝集させた後、水性媒体と分離し、必要に応じ水洗し乾燥させることによりPFAの固体を得ることができる。PFAの固体を成形してペレット状にして用いるのがよい。
 半導体用途においては、フッ素樹脂に由来する汚染物質(不純物)を削減するため、予めフッ素化処理されたPFAを用いることが好ましい。PFAをフッ素化する方法としては、従来公知の方法を採用することができる。例えば、日本国特公平4-83号公報、日本国特公平7-30134号公報、日本国特開平4-20507号公報に記載されたフッ素化法を挙げることができる。
 本発明に用いられるPFAは、前記したPFAの内、パーフルオロ(アルキルビニルエーテル)(PAVE)を1~10mol%、好ましくは1~8mol%、より好ましくは2~8mol%、さらに好ましくは2.5~6mol%含有するTFEとPAVEとの共重合体である。
 また、本発明に用いられるPFAは、TFEと炭素数4以下のPAVE、即ちパーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)(PBVE)との共重合体であることが好ましく、より好ましくはパーフルオロ(エチルビニルエーテル)(PEVE)またはパーフルオロ(プロピルビニルエーテル)(PPVE)である。PAVEの炭素数が5を超える場合にはポリマー中に取り込まれ難くなり重合上の困難が増すため好ましくない。
 PFAは、TFEと共重合可能な追加のコモノマーを更に含んでいても良い。このとき、追加のコモノマー含有量は上記のPAVE含有量より少ないことが好ましい。TFEと共重合可能な追加のコモノマーの例としては、炭素数3~6のパーフルオロアルケン、炭素数1~5のPAVE、クロロトリフルオロエチレンなどのフッ素含有コモノマーが挙げられる。
 PFAは、PAVEの種類或いは含有量が異なるPFA及び/またはPTFEを含んでいても良い。PTFEとしては、テトラフルオロエチレンのホモポリマー、又は1重量%以下の微量のコモノマー、例えばヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)、フルオロアルキルエチレン、クロロトリフルオロエチレン等を含有する変性PTFEが挙げられる。
 本発明に用いられるPFAのメルトフローレート(MFR)としては、ASTM D1238に準拠して、荷重5kg、測定温度372±0.1℃で測定したMFRが1~100g/10分、好ましくは1~50g/10分、より好ましくは1~20g/10分であることが望ましい。
 本発明のPFA成形体は溶融成形により得ることが出来、溶融成形方法としては例えば、射出成形法、押出成形法、中空成形法、トランスファー成形法などが挙げられるが、これに限定されるものではなく従来公知の成形方法を挙げることができる。
 従来PFAの成形は、線速を上げ生産性を上げるため、PFAの融点以上の380℃かそれ以上の温度で行われていた(特許文献1参照)が、このような高温ではPFAの分解が生じ成形機の腐蝕の原因となる。そして、成形体に分解生成物が残留するために、PFAを用いた装置等に汚染が発生するという不具合を発生させることがあった。
 本発明では、比較的低温で成形できるので、従来の成形条件のようなPFAの熱分解による不具合は生じ難いのである。
 本発明のPFAの成形は、310℃~370℃、好ましくは320~360℃の温度で実施される。その結果、本発明のPFA成形体の加熱重量減が低いものを得ることができる。本発明の成形温度は、樹脂温度を指す。
 本発明の前記のごとき比較的低い温度で成形できるPFAを用い、310℃~370℃の条件で成形した成形体は、後述する方法で測定した加熱重量減は、0.05重量%以下である。加熱重量減が低いということは、成形中にPFAが熱分解した量が少なく、その結果成形体に残留する分解物の残留する量が少ないことを意味している。そのため、本発明のPFA成形体ではそれを使用する装置等の汚染が少ない結果となる。
 本発明のPFA成形体は、後述する測定方法で測定したフレックスライフ値(FL値)は、2,000,000回以上、好ましくは3,000,000回以上のものである。FL値がこのように高い値を示す成形体では、耐屈曲性が高いことを意味し、繰り返し曲げ応力を受ける用途に適していることを示している。
 本発明のPFA成形体は、後述する測定方法で測定したゼロシェア粘度が10,000~20,000Pa・sである。
 ゼロシェア粘度がこの範囲にあるということは、成形体製造時に押出線速を高くできることを意味しており、成形体を生産性良く製造することができることを意味する。
 本発明のPFA成形体は、前記のような優れた耐屈曲性を有しており、分解物の含有量が少ないPFA成形体であって、生産性良く製造することを可能とするPFA成形体である。
 本発明のPFA成形体の好ましい例として中空部を有する成形体を挙げることができる。
 中空部を有する成形体とは、成形体中に中空部を有する形状のものであって、具体的な例としては、チューブ状成形体や、所望の中空部を有する成形体、たとえば、半導体や液晶の製造工程において使用される各種薬液移送(供給)用の配管、配管用の継ぎ手(フィッティング)、貯蔵容器、ポンプやフィルターハウジングなどを挙げることができる。このような中空部を有する成形体は、半導体や液晶の製造工程において使用される各種酸系またはアルカリ系の薬液供給装置や、各種の化学反応装置、半導体製造装置などに好適に使用できる。
 本発明のPFA成形体であって、溶融押出成形して得られたチューブは、前記特性に加えてさらにチューブ表面の平滑性に優れている。チューブ内面の平滑性が高いチューブでは、その表面に汚れが付着し難く、かつ付着物を洗浄し易いという特性を有している。
 本発明のPFA成形体であって、押出成形して得られたチューブは、チューブを通過する薬液がチューブを透過し難い性質を有している。薬液透過性は後述する塩酸透過試験にて測定することができる。本発明のチューブは優れた耐塩酸透過を有するものである。
 本発明のPFA成形体であって、溶融押出成形して得られたチューブは、さらにブリスターが生じ難いものであって、長時間の使用が可能なチューブである。
 ブリスターとは、チューブの外表面に生じるフクレ状の構造である。PFAチューブは、半導体や液晶の製造工程、または化学プラント等、非常に厳しい化学的、熱的、物理的およびそれらの複合的環境の中で使用される。そのため、ブリスターは、ケミカルアタック、温度や圧力の急激な変動、薬液およびガスの浸透・透過あるいはそれらの相互作用によって、物理的な破壊を受けて生じるものと推定される。ブリスターが発生すると、チューブの外表面に外観異常及び機械強度の低下が生じるので、長期使用が困難になるおそれがある。
 また、本発明のPFA成形体であって、溶融押出成形して得られたチューブは、薬液透過性が低く、ブリスターが発生し難いチューブであって、長期間の使用を可能とするものである。
 本発明によって、成形性の高い特定のPFAから成形された、耐屈曲性を維持し且つ加熱重量減が低いPFA成形体が得られる。また、溶融成形時の押出速度(線速)を向上させ生産効率を上げることができる。
 以下、実施例または比較例を挙げて、本発明を更に詳しく説明するが、本発明はこれらの例に限定されるものではない。
 本発明で用いた物性の測定方法および原材料は下記のとおりである。
A.物性の測定
(1)融解温度(℃)
 PFAの融点は、パーキンエルマー社製ダイヤモンドDSCを使用した。試料10mgを秤量して専用のアルミパンに入れ、専用のクリンパーによってクリンプした後DSC本体に収納し昇温を開始する。200℃から380℃まで10℃/分で昇温し、この時得られる融解曲線から融解ピーク温度を融点(℃)として求めた。
(2)フレックスライフ値
 フレックスライフの測定:JIS P 8115に準じて行った。(株)安田精機製作所製の5連式MIT耐屈折試験機(形式307)を用いて、厚さ0.2mmのフィルムを試験片とし、それが切断されるまでの屈曲回数を求めた。
 試験片の作製:測定対象フッ素樹脂成形体を粉砕し、得られた粉砕物を350℃の温度で溶融させて、圧縮成形にてフィルム成形し、厚さ0.2mmのフィルムを作製し所定の形状(15mm幅)にて試験片とした。
(3)加熱重量減測定
 オーブンにて380℃で1時間加熱したアルミカップ(アズワン株式会社製)を3つ用意し、電子天秤にて小数第五位まで重量を測定する。この重量をアルミ重量とする。
 測定対象フッ素樹脂成形体を約3mm角に切り出し、アルミカップ3つにそれぞれ約10gずつ入れ電子天秤にて小数第五位までの重量を測定する。この重量を合計重量とする。
 3mm角に切り出したフッ素樹脂成形体を入れたアルミカップを金属トレイに入れ、オーブンにて360℃で1時間焼成する。焼成後オーブンから取り出し90分間自然冷却させ、電子天秤にて小数第五位までの重量を記録する。この重量を加熱後重量とする。加熱後重量は、加熱後フッ素樹脂の重量とアルミ重量の合計となる。
 加熱重量減(重量%)は次の式で算出した。
 加熱重量減(重量%)=(合計重量-加熱後重量)/(合計重量-アルミ重量)×100
(4)ゼロシェア粘度
 キャピラリーフローテスター(キャピログラフ1D型、東洋精機製)を用い、340℃に昇温したシリンダー内(シリンダー径9.55mm)にフッ素樹脂成形体を約3mm角に切り出したものを30g入れ、5分間保持して樹脂を完全に溶融させた。底部のオリフィス(φ2mm×20mmL)から0.76, 1.140, 1.520, 2.280, 3.040, 4.560, 7.600, 11.40, 22.80, 30.40, 45.60, 76.00, 114.0, 152.0, 228.0, 304.0, 456.0, 760.0の各せん断速度(sec-1)にて溶融樹脂を押出し、その時のせん断粘度(Pa・s)を測定した。
 得られたせん断速度とせん断粘度のデータをTA Orchestrator Version7.2.0.4(TA Instruments製)に入力し、Carreau Modelを用いてカーブフィッティングを実施した。
 ゼロシェア粘度は以下の式を用いたカーブフィッティングより算出される。
  式 y=C1(1+(C2x)C3(C4-1)/C3
 C1=ゼロシェア粘度
 x=せん断速度(sec-1
 y=せん断粘度(Pa・s)
(5)表面粗さ測定
 得られた無延伸チューブより約5mm角の試料を切り取り、チューブ内面側の表面粗さ(Ra)を走査型レーザー顕微鏡(レーザーテック株式会社製カラーコンフォーカル顕微鏡OPTELICS C130)により測定した。
(6)塩酸透過試験
 12.7mmφ、厚み1.6mmのチューブを分析に用いた。200mm長に切ったPFAチューブ2の片末端をPFA丸棒4にて溶着封止した。片末端はピラースーパー300封止栓1を取り付けた。図1に示す通りチューブにバイトン(登録商標)/PTFE複合冶具5、ガラス容器3及びバイトン(登録商標)栓6を取り付けた。1より質量濃度35%塩酸をバイトン(登録商標)栓上端まで封入し、封止栓を締めた。また、ガラス容器3内部に80gの超純水を入れ、バイトン(登録商標)栓7を嵌めた。接続部分にPTFEシールを巻きつけて密閉した。70℃に加温したオーブン内に静置し、2週間の加温の後、超純水をダイオネクス製イオンクロマトグラフィーIC20/LC25にて塩化物イオンの量を測定し、単位面積あたりの塩化物イオン透過量に換算した。
(7)ブリスターの測定
 下記のブリスター発生試験により、得られたブリスター測定用成形体についてブリスター発生個数を測定した。
(a)ブリスター発生試験
 中空部を有する成形体の中空部内に35質量%濃度の塩酸を封入し、塩酸の入った成形体を容器中で純水に浸漬し、容器ごと70℃のオーブン内に置く。
 この状態で2週間保持した後、成形体を取出し塩酸を抜き出して、成形体中空内を純水で5回洗浄した後、室温にて12時間風乾を行い、ブリスター測定用成形体を得た。
 なお配管(例えばチューブ)の場合には、封止の方法として封止栓を用いる他に、成形体の末端を加熱融着処理して、封止することも可能である。
 また、貯蔵容器(ボトル)、フィルターハウジング、ポンプ等、密閉して用いられる成形体においては、チューブと同様に封止栓を用いることも、成形体に付属の蓋を用いて封止することも可能である。配管用の継ぎ手(フィッティング)においても、チューブと同様に市販の封止栓を用いることができる。
(b)ブリスター発生個数の測定
1)測定用成形体表面の転写
 PFA板(ショアーD硬度 D51、1.5mm厚)を基板とし、基板上にカーボン転写紙(SOL General Carbon paper #1300 pencil use)をその転写面を上にして置き、その上に白紙のコピー用普通紙(厚さ0.09mm)を置く。
 コピー用紙の上にブリスター測定用成形体を置き、その上から測定用成形体の測定面を荷重1kgで押圧して転写紙に押圧模様を形成させる。得られた縦40mm、横20mmの転写像についてブリスターの個数測定を行う。
 成形体の測定面が平面である場合には、測定面を荷重1kgで押圧すればよく、測定面が曲面を有する場合には荷重1kgで押圧しながら測定面を移動させて測定面全部の転写像を得る。
 図2は、成形体がチューブ状の場合の転写像作成例を示す概略図である。図2では幅20mmに切り出したチューブ10を、錘12の荷重1kgで押圧しながら、PFA板14上に転写面を上にして置かれたカーボン転写紙8上のコピー用紙9の上を、長さ40mmまで回転させて転写像を得る。この場合、図2に示すようなガイド部11を設けて安定した転写ができるようにしてもよい。
2)ブリスターの個数測定
 得られた転写像のうち縦40mm、横20mmの個数測定範囲に存在する斑状模様で長径が0.1mm以上のものの個数を測定する。個数測定は、顕微鏡(オリンパスBX51)を使用して20倍に拡大して行った。
 測定用成形体3個について、得られた転写像のブリスターの個数測定を行い、その平均値をブリスター個数とした。
3)ブリスター発生度判定
 ブリスター発生度を、上記ブリスターの発生個数の測定に基づき、下記基準によってブリスター発生度として判定した。
 ○:ブリスターの発生個数5個未満
 ×:ブリスターの発生個数5個以上
(8)不安定末端基の個数
 日本国特公平4-83号公報に従い、不安定末端基の個数を測定した。
B.原料
(I)PFA(1)
 テトラフルオロエチレン/パーフルオロエチルビニルエーテル共重合体[パーフルオロエチルビニルエーテル含有量4.7モル%、融点263℃、不安定末端基(-CHOH末端基、-CONH末端基、-COF末端基)が炭素数10個あたり6個未満]
(II)PFA(2)
 テトラフルオロエチレン/パーフルオロプロピルビニルエーテル共重合体、[パーフルオロプロピルビニルエーテル含有量1.8モル%、融点303℃、不安定末端基(-CHOH末端基、-CONH末端基、-COF末端基)が炭素数10個あたり6個未満]。
(III)PFA(3)
 テトラフルオロエチレン/パーフルオロプロピルビニルエーテル共重合体、[パーフルオロプロピルビニルエーテル含有量1.4モル%、融点310℃、不安定末端基(-CHOH末端基-CONH末端基、-COF末端基)が炭素数10個あたり6個未満]。
(実施例1~3、比較例1~3)
 PFA(1)~(3)を用い、φ30mmの押出成形機によって、表1に示す成形温度にて、外径12.7±0.12mm、厚さ1.59±0.10mmの無延伸チューブを得た。得られたチューブについて、フレックスライフ値、加熱重量減、ゼロシェア粘度を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000003
 また、実施例3及び比較例2~3で得られたチューブについて、表面粗さを測定し、実施例3及び比較例3で得られたチューブについて、塩酸透過試験を行なった。結果を各々表2及び表3に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 さらに実施例1~3及び比較例3で得られたチューブについて、ブリスター発生試験及びブリスター発生個数の測定を行って、転写像を得て、ブリスターの個数を測定し、ブリスター発生度を判定した。結果を表4に示した。
 実施例3と比較例3の転写像を図3及び図4に示した。
Figure JPOXMLDOC01-appb-T000006
 本発明により、優れた引張強度等の機械的物性は維持しながら、高いフレックスライフ値、低い加熱重量減、及び生産性良く製造することを可能とするPFA成形体が提供される。本発明のPFA成形体は、塩酸透過係数が低いので、成形体にブリスターが発生し難いという特徴を有しており、表面平滑性が長く維持されるという特性も有するPFA成形体である。
1.封止栓
2.PFAチューブ
3.ガラス容器35質量%塩酸
4.PFA丸棒
5.バイトン(登録商標)/PTFE複合冶具
6.バイトン(登録商標)栓
7.バイトン(登録商標)栓
8.カーボン転写紙
9.コピー用紙
10.ブリスター測定用PFAチューブ
11.ガイド部
12.錘
13.PTFE板
14.PFA板

Claims (8)

  1.  テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%である共重合体からなる成形体であり、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ熱重量減が0.05重量%以下であることを特徴とするPFA成形体。
  2.  前記PFAのASTM D1238に準拠して、荷重5kg、測定温度372±0.1℃で測定したメルトフローレート(MFR)が、1~100g/10分である請求項1に記載のPFA成形体。
  3.  前記PAVEが、パーフルオロ(エチルビニルエーテル)またはパーフルオロ(プロピルビニルエーテル)である請求項1または2に記載のPFA成形体。
  4.  前記成形体が、チューブ、ボトル、フィッティング、バルブ、棒状成形体、シート状成形体から選ばれた成形体である請求項1~3のいずれかに記載のPFA成形体。
  5.  半導体もしくは液晶の製造工程または化学プラントで使用される部材に用いられる請求項1~4のいずれかに記載のPFA成形体。
  6.  前記部材が、チューブ、容器、フィッティング、バルブ、搬送用部材、ポンプおよびフィルターハウジングから選択される部材である請求項5に記載の成形体。
  7.  テトラフルオロエチレン(TFE)とパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)で、PAVEの含有量が1~10モル%であり、ASTM D1238に準拠して、荷重5kg、測定温度372±0.1℃で測定したメルトフローレート(MFR)が、1~100g/10分である共重合体を、320~360℃の条件で成形することを特徴とする、フレックスライフ値が2,000,000回以上であり、ゼロシェア粘度が10,000~20,000Pa・sであり、かつ熱重量減が0.05重量%以下であるPFA成形体の製造方法。
  8.  前記成形が押出成形である請求項7に記載のPFA成形体の製造方法。
PCT/JP2017/023368 2017-06-26 2017-06-26 フッ素樹脂成形体 WO2019003265A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780094294.0A CN111032746A (zh) 2017-06-26 2017-06-26 氟树脂成形体
KR1020227010789A KR102499065B1 (ko) 2017-06-26 2017-06-26 불소 수지 성형체
EP17915868.8A EP3647344A4 (en) 2017-06-26 2017-06-26 FLUORINE RESIN MOLDED BODY
PCT/JP2017/023368 WO2019003265A1 (ja) 2017-06-26 2017-06-26 フッ素樹脂成形体
KR1020207001959A KR20200023400A (ko) 2017-06-26 2017-06-26 불소 수지 성형체
US16/626,718 US11865758B2 (en) 2017-06-26 2017-06-26 Fluororesin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023368 WO2019003265A1 (ja) 2017-06-26 2017-06-26 フッ素樹脂成形体

Publications (1)

Publication Number Publication Date
WO2019003265A1 true WO2019003265A1 (ja) 2019-01-03

Family

ID=64741242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023368 WO2019003265A1 (ja) 2017-06-26 2017-06-26 フッ素樹脂成形体

Country Status (5)

Country Link
US (1) US11865758B2 (ja)
EP (1) EP3647344A4 (ja)
KR (2) KR20200023400A (ja)
CN (1) CN111032746A (ja)
WO (1) WO2019003265A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035769A (ja) * 2019-08-26 2021-03-04 ダイキン工業株式会社 射出成形方法
WO2021106638A1 (ja) * 2019-11-28 2021-06-03 ダイキン工業株式会社 射出成形品の製造方法
WO2022071530A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144050B (zh) * 2021-11-23 2024-04-02 中昊晨光化工研究院有限公司 一种pfa树脂端基稳定化处理方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635926A (en) 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
JPH0483A (ja) 1990-04-14 1992-01-06 Matsushita Electric Works Ltd 流路切換装置
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
US5266639A (en) 1992-08-28 1993-11-30 E. I. Du Pont De Nemours And Company Low-melting tetrafluorethylene copolymer and its uses
JPH0730134A (ja) 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd 太陽電池の製造法
JPH07126329A (ja) * 1993-10-29 1995-05-16 Nippon Mektron Ltd テトラフルオロエチレン−パーフルオロビニルエ−テル共重合体
EP0789039A1 (en) * 1995-08-17 1997-08-13 E.I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymer
JP2002167488A (ja) 2000-11-30 2002-06-11 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体改質組成物
JP2003327770A (ja) 2002-05-09 2003-11-19 Du Pont Mitsui Fluorochem Co Ltd 溶融成形用共重合体組成物
JP2004161921A (ja) * 2002-11-14 2004-06-10 Du Pont Mitsui Fluorochem Co Ltd 柔軟性を持つ溶融押出し成形可能な含フッ素樹脂及びそれを用いた物品
JP2006066329A (ja) * 2004-08-30 2006-03-09 Asahi Glass Co Ltd 耐熱電線
JP2007131671A (ja) 2005-11-08 2007-05-31 Du Pont Mitsui Fluorochem Co Ltd 溶融成形用フッ素樹脂組成物
JP2007238960A (ja) * 2001-12-04 2007-09-20 Daikin Ind Ltd 射出成形品
JP3980649B2 (ja) 1996-09-13 2007-09-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー パーフルオロ(エチルビニルエーテル)を含有する非晶質フルオロポリマー
JP2014005337A (ja) * 2012-06-22 2014-01-16 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体
JP2017119750A (ja) * 2015-12-28 2017-07-06 三井・デュポンフロロケミカル株式会社 フッ素樹脂成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599640B2 (ja) * 1999-11-29 2010-12-15 ダイキン工業株式会社 含フッ素共重合体および低薬液透過性含フッ素樹脂組成物
JP2002003514A (ja) * 2000-06-19 2002-01-09 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体の製造方法
JP4956868B2 (ja) * 2000-07-31 2012-06-20 旭硝子株式会社 安定性に優れるテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体の製造方法
US7169868B2 (en) 2001-12-04 2007-01-30 Daikin Industries, Ltd. Molding material for ozone-resistant articles and ozone-resistant injection-molded articles
JP4530972B2 (ja) * 2005-11-08 2010-08-25 三井・デュポンフロロケミカル株式会社 射出成形用テトラフルオロエチレン共重合体組成物
US8378030B2 (en) * 2010-08-06 2013-02-19 E.I. Du Pont De Nemours And Company Flex life of tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer (PFA)
JP6465653B2 (ja) * 2014-12-26 2019-02-06 三井・ケマーズ フロロプロダクツ株式会社 耐ブリスター性に優れたpfa成形体およびpfa成形体のブリスター発生を抑制する方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635926A (en) 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
JPH0483A (ja) 1990-04-14 1992-01-06 Matsushita Electric Works Ltd 流路切換装置
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
US5266639A (en) 1992-08-28 1993-11-30 E. I. Du Pont De Nemours And Company Low-melting tetrafluorethylene copolymer and its uses
JPH0730134A (ja) 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd 太陽電池の製造法
JPH07126329A (ja) * 1993-10-29 1995-05-16 Nippon Mektron Ltd テトラフルオロエチレン−パーフルオロビニルエ−テル共重合体
EP0789039A1 (en) * 1995-08-17 1997-08-13 E.I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymer
JP3980649B2 (ja) 1996-09-13 2007-09-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー パーフルオロ(エチルビニルエーテル)を含有する非晶質フルオロポリマー
JP2002167488A (ja) 2000-11-30 2002-06-11 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体改質組成物
JP2007238960A (ja) * 2001-12-04 2007-09-20 Daikin Ind Ltd 射出成形品
JP2003327770A (ja) 2002-05-09 2003-11-19 Du Pont Mitsui Fluorochem Co Ltd 溶融成形用共重合体組成物
JP2004161921A (ja) * 2002-11-14 2004-06-10 Du Pont Mitsui Fluorochem Co Ltd 柔軟性を持つ溶融押出し成形可能な含フッ素樹脂及びそれを用いた物品
JP2006066329A (ja) * 2004-08-30 2006-03-09 Asahi Glass Co Ltd 耐熱電線
JP2007131671A (ja) 2005-11-08 2007-05-31 Du Pont Mitsui Fluorochem Co Ltd 溶融成形用フッ素樹脂組成物
JP2014005337A (ja) * 2012-06-22 2014-01-16 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体
JP2017119750A (ja) * 2015-12-28 2017-07-06 三井・デュポンフロロケミカル株式会社 フッ素樹脂成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647344A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035769A (ja) * 2019-08-26 2021-03-04 ダイキン工業株式会社 射出成形方法
WO2021106638A1 (ja) * 2019-11-28 2021-06-03 ダイキン工業株式会社 射出成形品の製造方法
JP2021084325A (ja) * 2019-11-28 2021-06-03 ダイキン工業株式会社 射出成形品の製造方法
WO2022071530A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材
JP2022058289A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材

Also Published As

Publication number Publication date
EP3647344A1 (en) 2020-05-06
KR102499065B1 (ko) 2023-02-14
KR20220046003A (ko) 2022-04-13
EP3647344A4 (en) 2021-02-17
KR20200023400A (ko) 2020-03-04
CN111032746A (zh) 2020-04-17
US20200114563A1 (en) 2020-04-16
US11865758B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2019003265A1 (ja) フッ素樹脂成形体
JP5665800B2 (ja) テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体
JP5962873B2 (ja) フッ素樹脂の改質成形品の製造方法
US11623984B2 (en) Melt processible fluororesin composition and injection molded article formed from same
JP4533115B2 (ja) フッ素樹脂成形方法及びフッ素樹脂成形品
JP6465653B2 (ja) 耐ブリスター性に優れたpfa成形体およびpfa成形体のブリスター発生を抑制する方法
JP6715005B2 (ja) フッ素樹脂成形体
JP2020100843A (ja) フッ素樹脂成形体
JP2019006983A (ja) 熱溶融性フッ素樹脂成形品
JP6628526B2 (ja) 耐ブリスター性に優れたフッ素樹脂組成物
JP4882194B2 (ja) 低薬液透過性含フッ素樹脂材料
JP6665236B2 (ja) 耐ブリスター性に優れたpfa成形体およびpfa成形体のブリスター発生を抑制する方法
JP7174306B2 (ja) 射出成形体およびその製造方法
JP7381982B1 (ja) 含フッ素共重合体
JP7189481B2 (ja) 含フッ素共重合体、射出成形体、電線被覆材および電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207001959

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017915868

Country of ref document: EP

Effective date: 20200127

NENP Non-entry into the national phase

Ref country code: JP