WO2019001089A1 - 定管高效光热发电站 - Google Patents
定管高效光热发电站 Download PDFInfo
- Publication number
- WO2019001089A1 WO2019001089A1 PCT/CN2018/082806 CN2018082806W WO2019001089A1 WO 2019001089 A1 WO2019001089 A1 WO 2019001089A1 CN 2018082806 W CN2018082806 W CN 2018082806W WO 2019001089 A1 WO2019001089 A1 WO 2019001089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- pipe
- mirror
- tube
- storage
- Prior art date
Links
- 238000010248 power generation Methods 0.000 claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 238000005338 heat storage Methods 0.000 claims description 69
- 230000007704 transition Effects 0.000 claims description 41
- 238000012546 transfer Methods 0.000 claims description 37
- 230000008859 change Effects 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 31
- 239000012071 phase Substances 0.000 claims description 30
- 230000035939 shock Effects 0.000 claims description 28
- 239000006096 absorbing agent Substances 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000011232 storage material Substances 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000004321 preservation Methods 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 241001325280 Tricardia watsonii Species 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 238000003303 reheating Methods 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000032258 transport Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 238000004146 energy storage Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/061—Parabolic linear or trough concentrators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/30—Thermophotovoltaic systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
- H02S20/32—Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/20—Optical components
- H02S40/22—Light-reflecting or light-concentrating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Definitions
- the invention belongs to the field of renewable energy of solar thermal power generation.
- Equipment that uses solar thermal power generation now has tower, dish, trough and Fresnel.
- the tower has a large area, a lot of wasted solar energy, large heat storage loss and high cost; the dish type has low power generation, and it is not easy to combine multiple high-power generation; trough and Fresnel-like All are single-axis tracking, with large tracking error, much loss of sunlight, and low heat production efficiency.
- the invention is to solve these problems, and to invent a fixed tube with high heat-generating efficiency, no fear of storm disturbance, easy to store heat for a long time, so that power can be generated day and night, multi-machine combination, ultra-large-scale power generation and low cost. High efficiency photothermal power station.
- a fixed-tube high-efficiency photothermal power station including a solar high heat engine group, a heat storage steam generating component, a pipeline valve, a thermal energy conversion and a power generation component and an auxiliary device, the special features of which are:
- the solar high heat engine group is composed of a plurality of solar high heat engines according to a special connection manner
- the solar high heat engine comprises an automatic heel machine component, a concentrating mirror component, a collector component and a frame component, and the concentrating mirror component and the collector component and the frame component are all carried by the automatic Japanese machine;
- the automatic Japanese machine is a two-axis automatic Japanese machine, which is an azimuth height angle automatic Japanese machine.
- the center line of the high angle axis and the center line of the azimuth axis constitute a meeting point or an approximate meeting point;
- the concentrating mirror mounted on the automatic Japanese machine is a concentrating mirror capable of generating a focal line or a focal spot under sunlight
- the condensing mirror is a fixed concentrating mirror or an automatic escaping storm concentrating mirror, and its cross section, that is, vertical
- the section in the direction of the focal line or the focal length is two curves or two fold lines or two meander lines, the meander line is a curved fold line composite line, and the two curves or two fold lines or two meander lines are not Connected or interconnected;
- the longitudinal section of the concentrating mirror that is, the section parallel to the direction of the focal line or the focal length is a straight line;
- the focal line or the focal length divides the concentrating mirror into two branches distributed on both sides thereof
- the two concentrating mirrors are connected to each other or are connected to each other or partially connected.
- a concentrating mirror located on the same side of the focal line or the focal length, whether connected or not, is collectively referred to as a coplanar mirror and a concentrating mirror.
- the installation position on the automatic heliostat must be such that the focal line of the focal line or the focal length is parallel or nearly parallel to the height axis of the automatic heliostat, and the focal point of the focal line or the focal point is Automatic day The intersection of the height angle axis center line and the azimuth axis center line coincides or approximately coincides.
- This coincidence point or approximate coincidence point is called a three-heart collection point, referred to as a three-heart collection point, and the skeleton of the condensing mirror and the automatic follow-up
- the carrier of the Japanese machine is fixedly connected and carried by the automatic Japanese machine;
- the collector component comprises a heat collecting pipe, a transition pipe and a middle pipe, and a pipe joint and a pipe bracket, wherein the heat collecting pipe is composed of a cover pipe and a pipe core, and the cover pipe is a sealing pipe, a cover pipe and a die outer surface
- the heat collecting pipe is composed of a cover pipe and a pipe core
- the cover pipe is a sealing pipe, a cover pipe and a die outer surface
- the exterior has a heat absorption layer
- one port of the die protrudes beyond the cover tube
- two ports extend out of the cover tube; only one port extends out of the cover tube and the other end is closed and the heat collecting tube formed by the tube and the cover tube sealed inside the cover tube is called a single-port heat collecting tube
- the transition tube corresponding to the single-port heat collecting tube is called an inner transition tube, and one port of the inner transition tube is installed in the inner end of the single-port heat collecting tube, that is, in the heat absorption portion, and the other port is extended to the outer end
- the middle connecting pipe is a heat-retaining pipe with two ends open, and the positions of the two ends thereof are respectively disposed at respective three-hearted gathering points of the two adjacent solar heat-heating machines or adjacent to the three-hearted collecting point, and the middle connecting pipe
- Each port is indirectly connected to the corresponding collector die at the three-hearted point of the solar heat engine through the transition tube, or directly connected to the corresponding collector die at the corresponding three-hearted point.
- the pipe joint is flexible or rigid, and the inner transition pipe and the heat collecting die are directly connected to each other without a pipe joint;
- the transition pipe is capable of connecting the heat collecting die and the middle pipe a heat-retaining pipe, or a heat-retaining pipe capable of connecting two heat-collecting pipes of the same solar high-heating machine, the transition pipe and the center line of the heat collecting pipe are parallel or nearly parallel;
- the center line of the tube axis of the heat collecting tube and the center line of the focal line or the focal spot of the condensing mirror are coincident or nearly coincident, and the heat collecting tube is supported by the tube bracket, and the tube bracket is fixed with the carrier of the automatic Japanese machine. connection;
- the collectors of the solar high-heat engines in the solar heat-heating machine group are connected by a flexible pipe joint or a rigid pipe joint according to the above connection manner by using a medium connecting pipe;
- the heat storage steam producing component is referred to as a storage component, or it is a heat storage heat transfer steam generator, referred to as a storage and replacement unit, or a heat transfer and phase change heat storage and steam production total system.
- the system is either a non-heat exchange storage system or a comprehensive storage component; various storage components are placed on the insulation pad of the whole heat preservation cavity, or partially placed in the whole heat preservation cavity. Insulating support pad;
- the whole heat retaining cavity is a heat retaining chamber which is formed by tightly blocking all the ways of transferring heat from various aspects. It is a cavity which is installed under the ground or has Some are installed under the ground or are installed on the ground;
- the middle connecting pipe of the sunlight high-heating machine located at the terminal of the cluster closest to the storage component is a steam generator that directly or after the fixed pile is indirectly connected with the storage component, and the storage component is connected. It is connected to the steam pipe, and the other port of the steam pipe is connected to the superheated steam processing device for heating, and then connected to the power component of the power generation device for converting thermal energy into mechanical energy and electric energy.
- the other end of the solar thermal heat engine group that is, the middle connecting pipe of the solar high heat engine at the beginning of the aircraft group and the return from the storage component
- the pipeline of the heat-conducting medium that is, the loop pipe, is connected or connected to the pump that transports the working medium.
- the storage and replacement unit is disposed on an insulating support pad at the bottom of the whole heat retaining cavity, and the storage and replacement unit is directly heated or intermittently heated, and the direct heat storage and replacement device comprises a heat conducting device.
- the medium and the heat storage tank of the vapor-liquid working medium which is simply referred to as a vapor-liquid working medium
- the heat-conducting medium is either placed in the coil and immersed in the vapor-liquid working medium, or directly surrounds the container containing the vapor-liquid working medium.
- the inlet nozzle and the outlet nozzle of the heat-conducting medium are fixed on the wall of the heat storage box, and the inlet nozzle and the outlet nozzle of the vapor-liquid working medium are fixedly connected, the so-called nozzle is a pipe joint;
- Quality is a working substance capable of undergoing vapor-liquid phase change and capable of performing expansion work;
- the inlet nozzle of the heat-conducting medium is directly or indirectly connected through the connecting pipe and the middle connecting pipe of the sunlight high-heating machine which is the nearest terminal of the heat storage box, and the outlet nozzle of the heat-conducting medium passes through the circuit pipe and the sunlight high-heating machine at the beginning of the machine group
- the intermediate pipe is directly or indirectly connected, the circuit pipe includes a connecting pipe and a valve and a pipe joint, or further includes a pump; the inlet nozzle of the vapor-liquid working medium is directly or indirectly connected to the preheating device through the pipe used , the outlet nozzle and the steam pipe are connected;
- the inter-thermal storage and replacement unit is disposed on an insulating support pad at the bottom of the whole heat-retaining cavity
- the heat-exchange storage and replacement device comprises a heat storage box, a phase change heat storage material, a heat transfer medium coil and a steam generation
- the heat-conducting medium coil is immersed in the phase change heat storage material
- the phase change heat storage material surrounds the steam generator and is heat-transferred thereto
- the nozzles are respectively fixedly connected, and are also connected to the nozzles of the inlet pipe of the phase change heat storage medium and the nozzles of the outlet pipe, and the inlet pipe and the outlet pipe of the heat transfer medium connected to the heat storage tank wall are directly or indirectly Connected to the central connecting pipe of the terminal and the beginning of the solar thermal heat engine group respectively, and the inlet pipe of the steam generator connected to the heat storage tank is directly or indirectly connected with the preheating device, and the outlet
- the general storage system is disposed on the thermal insulation support bottom of the whole heat preservation cavity, or partially disposed on the thermal insulation support bottom of the whole heat preservation cavity, and the general storage system includes a heat conduction medium subsystem and a phase change a heat storage subsystem, a heat exchange device and a steam generator, the heat transfer medium subsystem comprising a heat transfer medium pump, a heat transfer medium tank and a pipeline valve circulation system, the heat medium pump installed in the pipeline valve circulation system, the heat medium circulation tube
- the first part of the road is composed of the heat collecting tubes, the transition tubes and the middle connecting tubes of the sunlight high heat engine group, the second part is composed of the heat conducting medium coils immersed in the phase change heat storage subsystem, and the third part is composed of the heat conducting medium circuit.
- the pipeline valve is configured to connect the heat transfer medium circulation pipeline and the heat conduction medium tank;
- the phase change heat storage subsystem comprises a phase change heat storage tank, a preheater and a heat transfer medium coil immersed in the phase change heat storage box, Or a circulating pump, the preheater and the heat transfer medium coil are connected to the phase change heat storage material in the phase change heat storage tank, and the phase change heat storage material is heat-transferred through the heat exchange device and the steam generator.
- the inlet pipe of the steam generator is directly or indirectly connected to the preheater, and the outer port of the outlet pipe of the steam generator is connected to the superheated steam processing device for heating, and then the heat energy can be converted.
- the steam generator is with or without thermal fins. Finned.
- the non-heat exchange storage system is cyclic or non-circulating, and the circulating non-heat exchange storage system includes a steam storage box, a liquid circuit pipeline valve, a working medium pump, a pipeline and a valve in a solar high heat engine group.
- the non-circulating non-heat exchange storage system has no liquid circuit tube, but only a drain pipe, and the steam storage box is disposed on the heat insulation pad of the whole heat retaining chamber, the steam
- the tank wall of the storage box has an inlet nozzle and an outlet nozzle, and a drain nozzle, and the inlet nozzle is directly connected to the inner port of the inlet pipe or through a high pressure check valve to indirectly
- the inlet port of the inlet pipe is connected, and the inlet port of the inlet pipe is directly or after the fixed pile, and the intermediate pipe of the solar thermal engine of the cluster terminal is indirectly connected through the flexible or rigid pipe joint, and the inlet port of the inlet pipe is connected.
- the steam storage Outlet nozzle One end of the steam pipe is connected, and the other port of the steam pipe is connected through a superheated steam processing device for heating and a power component of a power generation device capable of converting thermal energy into mechanical energy and electric energy, or directly and capable of changing heat energy. Connecting the power components of the power generation equipment for mechanical energy and electrical energy;
- the drain nozzle is connected to the inner end of the drain pipe of the non-circulating heat exchange storage system, and the outer end of the drain pipe protrudes out of the entire heat retaining cavity and the valve is connected; or
- the inner end of the liquid circuit tube of the liquid discharge nozzle and the circulating non-heat exchange storage system is connected, and the outer end of the liquid circuit tube is directly or indirectly connected with the working medium pump, and the working medium pump is used for working
- the integrated storage component is an integrated system composed of two or more of the above-mentioned storage components, or alternately working.
- the full heat retaining cavity is a cavity surrounded by an omnidirectional wall shell in any direction including the upper and lower sides, and all the cavity walls including the heat insulating door or the heat insulating cover are at least
- the three-layer structure the inner layer is a mirror, the middle layer is a skeleton plate or a bone plate, and the outer layer is a heat insulating material, and various pipes for connecting the pipe joint and the pipe corresponding to the contents are installed on the cavity wall thereof.
- the concentrating mirror for automatically avoiding the storm is composed of a double mirror plate unit or a triple mirror unit, and the double mirror unit includes a main mirror shaft, a mirror shaft, a main mirror plate of the condensing mirror, and a mirror attached. a plate, a spring and a stopper, or a shock absorber, the main mirror shaft being coupled to the frame in a direction parallel to the focal line or the focal length, the main mirror plate and the attached mirror plate directly passing through the attached mirror shaft and The spring hinges them to form a mirror plate unit, and the main mirror plate in the mirror plate unit is hinged on the main mirror shaft such that the attached mirror axis and the main mirror axis are parallel, and the main mirror shaft center line is connected to the mirror plate
- the distance between the two sides of the unit is not equal, that is, the mirror plate is configured as an off-axis structure to form a concentrating mirror unit; the outer edge of the attached mirror plate that can only be rotated in a single direction is greater than the center line of the main mirror axi
- the triple mirrored mirror includes a main mirror plate and two attached mirror plates, a main mirror shaft and two attached mirror shafts, and a spring and a stopper.
- the main mirror axis is parallel to the direction of the focal line or the focal length.
- the frame is connected, the main mirror plate is hinged on the main mirror shaft, and the spring and the stopper are used to maintain the correct working state.
- the mirror plate shaft is connected to both sides of the main mirror plate, and the two attached mirror plates are respectively hinged on the main mirror plate.
- the spring and the stopper are used to maintain the correct working state of the attached mirror plate, and the two attached mirror axes and the main mirror axis are parallel or nearly parallel to each other.
- the shock absorber is a pneumatic shock absorber, or a hydraulic shock absorber, or a spring shock absorber, wherein the hydraulic shock absorber is an articulated shaft fixed to a bearing hinge, or the hydraulic shock absorber is solid
- the rotating shaft connected to the hinge member is an articulated shaft
- the pneumatic shock absorber comprises a sliding chamber and a piston connected thereto, the piston is inserted into the sliding chamber, and there is a small hole in the sliding chamber, and the small hole has a flap, a flap and a sliding chamber.
- the link, the piston and the sliding cavity are respectively mounted on the bearing hinge and the hinged member, and the hinge center is the torque center.
- the hydraulic shock absorber with the mandrel fixed to the bearing hinge as the hinge shaft comprises a cavity shell, a baffle, a flap and a flap shell and a mandrel
- the baffle is fixed to the mandrel fixed to the bearing joint
- the cavity shell comprises a part of the baffle and the valve shell, and is connected with the part
- the movable door is movably connected with the support shell and is used as a carrier.
- the space between the shutter and the baffle can be enlarged or reduced, and the shutter bracket and the hinge are fixedly connected, thereby forming a dynamic seal with the mandrel, and filling the working medium between the cavity shell and the mandrel and the valve shell;
- the hydraulic shock absorber with the rotating shaft fixed to the hinge as the hinge shaft comprises a cavity shell, a baffle, a flap and a flap shell and a rotating shaft, the cavity shell and the baffle are fixed to the rotating shaft, and the shutter shell and the bearing hinge carrying the shutter
- the stationary cavity of the above-mentioned part comprising the baffle and the shutter casing becomes a rotating cavity at this time and is fixedly connected with the rotating shaft to form a static seal, and the valve casing still forms a dynamic seal in the cavity shell and the rotating shaft And the working medium is filled between the valve shells.
- Figure 1 is a front view of a solar heat engine
- Figure 2 is a plan view of Figure 1;
- Figure 3 is a front view of the double-lens unit automatically escaping the storm type solar heat engine
- Figure 4 is a plan view of Figure 3;
- Figure 5 is a front view of the triple-mirror unit automatically escaping the storm type solar heat engine
- Figure 6 is a plan view of Figure 5;
- Figure 7 is a front view of the non-circulating non-heat exchange storage system
- Figure 8 is a circulatory system diagram of the first type of direct heat storage and replacement unit
- Figure 9 is a circulatory system diagram of a second type of direct heat storage and replacement unit
- Figure 10 is a front view of a circulating heat exchange-free storage system
- Figure 11 is a front elevational view of the inter-thermal storage unit
- Figure 12 is a cross-sectional view of the pneumatic shock absorber
- Figure 13 (a) is a cross-sectional view of the hydraulic shock absorber
- Figure 13 (b) is a cross-sectional view showing another combination of the hydraulic shock absorbers.
- reference numeral 1 is an automatic azimuth axis of the Japanese machine, which is connected to the base 14, reference numeral 2 is an automatic Japanese machine itself, reference numeral 3 is a branch of the condensing mirror, and reference numeral 4 is Automatic with the Japanese machine height angle axis, reference numeral 5 is the automatic Japanese aircraft carrier, it can carry all the devices that need to track the sun, reference numeral 6 is the tube holder of the collector, reference numeral 7 is the set The transparent cover tube of the heat pipe, reference numeral 8 is a transition tube, one end of which is immersed in the working medium of the heat collecting die 10, and the other end is extended beyond the heat collecting die and the middle connecting pipe 11 is connected; It is a top link between two concentrating mirrors, reference numeral 10 is a heat collecting die, and reference numeral 11 is a middle connecting pipe for connecting the collectors of two adjacent solar high heat machines, both ends of which are The pipe joints are respectively located at or near the three-hearted point of the adjacent sunlight heat engine, and therefore, the pipe joints can
- reference numeral 15 is a collector tube tail portion which is fully sealed and which is placed on the tube holder 6
- reference numeral 16 is a communication tube between the two heat collecting tubes, the remaining reference numerals The meaning is the same as in Figure 1.
- reference numeral 1 is an automatic azimuth axis with the Japanese machine
- reference numeral 2 is an automatic Japanese machine
- reference numeral 3 represents a mirror attached to all the condensers
- reference numeral 4 is an automatic angle with the Japanese machine.
- the shaft reference numeral 5 is a carrier
- reference numeral 6 is a tube holder of the heat collector
- reference numeral 7 is a transparent cover tube of the heat collecting tube
- reference numeral 8 is a transition tube for the heat collecting die and
- the middle connecting pipe is connected
- reference numeral 27 is a stopper for opposing the elastic force to keep the condensing mirror in a correct working state
- reference numeral 9 is a top connecting rod connecting the two condensing mirrors together
- the reference numeral 10 is a heat collecting die
- reference numeral 28 is a main mirror plate of the condensing mirror
- reference numeral 11 is a middle connecting pipe for connecting the collectors of the two adjacent solar high heat machines, and the two ends thereof are respectively
- Reference numeral 30 is a main mirror shaft for concentrating the mirror.
- reference numeral 31 is a mirror attached shaft for attaching the attached mirror represented by the attached mirror 3 to the main mirror plate via the attached mirror shaft, and one end of the torsion spring 18 is pressed. On the main mirror plate, the other end is pressed on the attached mirror plate. Therefore, when the wind is blown from the top to the bottom when the wind is encountered, the wind resists the force of the torsion spring and forces the mirror plate to rotate downward.
- the spring force of the attached spring is slightly weaker than the main spring, when the mirror plate is turned to the downwind direction, since the area of the lower portion of the main mirror plate in the lower portion of the main mirror axis becomes smaller, the area above the main mirror axis is larger, so Affected by wind. Therefore, the main mirror plate will be rotated clockwise until it is close to the downwind direction, so that the wind is minimized to avoid damage to the condenser and the whole machine.
- the main mirror and the attached mirror are restored by the force of the elastic force and the stopper 27. Correct working status. Since the elastic force is very strong, in order to avoid the main mirror and the attached mirror returning to the original position, the shock absorber should be installed on the main mirror shaft and the attached mirror shaft.
- Figure 3 shows that when the storm blows from bottom to top, the attached mirror cannot rotate upwards.
- the main and attached mirrors become a whole, which is a coplanar mirror.
- the area below the main mirror axis is larger than the main mirror axis. The area, so the storm will cause the co-mirror to rotate in a clockwise direction until it is subjected to a lower wind.
- the spring and the limiter reset the coplanar mirror.
- Reference numeral 13 in Fig. 3 is a U-shaped bracket of the automatic Japanese machine, which is fixed to the height angle shaft 4 for fixing to the carrier, and reference numeral 19 is a frame fixed to the frame, attached Reference numeral 12 is a frame, and reference numeral 14 is a base.
- FIG. 4 is a plan view of Figure 3.
- reference numeral 15 is a tail portion of the heat collecting tube fixed to the pipe holder 6
- reference numeral 23 is a connecting pipe and a pipe joint connecting the two inner transition pipes
- reference numeral 27 is a stopper.
- Reference numeral 12 is a frame
- reference numeral 24 is an upper end surface of the condensing mirror
- reference numeral 25 is a flexible pipe joint between the heat collecting die 10 and the intermediate pipe 11
- reference numeral 26 is a main mirror plate 28. And the seam with its attached mirror.
- reference numeral 20 is a frame of a condensing mirror
- reference numeral 9 is a top link
- reference numeral 10 is a heat collecting die
- reference numeral 18 is a torsion spring with a mirror attached thereto
- reference numeral 21 is a mirror plate attached thereto. It is hinged to the frame 22 of the main mirror plate 28 via the attached mirror shaft 31, which can only be rotated upward, the attached mirror shaft 31 is fixed to the main mirror frame, the reference numeral 11 is the middle connecting pipe, and the reference numeral 29 is the main spring.
- Reference numeral 30 is a main mirror shaft
- reference numeral 27 is a stopper
- reference numeral 17 is a lower mirror shaft
- reference numeral 13 is a U-shaped bracket which is fixed to the height angle shaft and the carrier.
- Reference numeral 17' is a lower attached mirror spring
- reference numeral 33 is a mirror frame fixed to the frame
- reference numeral 12 is a frame, and the rotation directions of the upper attached mirror and the lower attached mirror are the same. No matter where the storm blows, there is always a mirror rotation that causes an eccentric moment to achieve the purpose of sheltering the wind.
- Figure 6 is a plan view of Figure 5, in Figure 6, reference numeral 15 is the collector of the heat pipe, which is fixed to the pipe bracket 6, reference numeral 34 is the pipe of the middle pipe and the two transition pipes 35 Between the flexible pipe joints, 36 is the connection between the two heat collecting dies of the same solar heat engine, reference numeral 37 is a three-way pipe joint, which connects the middle pipe port and the two heat collecting dies simultaneously The connection or the two transition pipes are connected at the same time. The connection mode makes the port of the middle pipe closer to the three-hearted point, and the reference numeral 38 is a mirror plate joint.
- Figure 7 is a front view of a non-circulating non-heat exchange storage system.
- Reference numeral 2 in the figure is an automatic Japanese machine
- reference numeral 13 is a U-shaped support plate fixed to the carrier
- reference numeral 5 is a carrier
- reference numeral 16 is a die of a single-port heat collection tube.
- reference numeral 8 is a transition pipe extending from the port in the single-port heat collecting die
- reference numeral 11 is a middle pipe
- reference numeral 39 is a sectional face of the coplanar concentrating mirror plate
- reference numeral 9 is a top Connecting rod
- reference numeral 40 is a middle connecting pipe and a flexible pipe joint thereof for connecting the intermediate pipe to the fixed pillar 41
- reference numeral 42 is an inlet pipe, one end thereof and a middle pipe The pipe joint is connected, and the other end is connected to the storage box 43 via a high pressure check valve (not shown), and the reference numeral 44 is between the hair storage box 43 and the mirror 45 of the full heat retaining chamber.
- reference numeral 56 is the skeleton plate of the whole heat retaining cavity
- reference numeral 46 is the drain pipe of the hair storage box. Since high pressure steam inevitably condenses a part of the liquid under certain conditions, it needs to be periodically discharged.
- Reference numeral 47 is a steam pipe having one end connected to the hair storage tank and the other end being connected directly or indirectly through a valve to a power unit of a power generating apparatus capable of converting thermal energy into mechanical energy and electric energy.
- Reference numeral 45 is a mirror for reflecting infrared rays radiated from the storage box
- reference numeral 48 is a heat insulating layer
- reference numeral 49 is soil or sand
- Reference numeral 41 is a pile
- reference numeral 50 is another co-planar mirror symmetrical with the coplanar mirror 39
- reference numeral 4 is an automatic heliostat height angle axis
- reference numeral 1 is an automatic heliostat azimuth angle.
- FIG. 8 is a circulatory system diagram of a first type of direct thermal storage and replacement unit.
- the sunlight high-heating machine group heats the heat-conducting medium, for example, heat-conducting oil, flows into the heat storage tank 51 of the storage and exchange unit, performs heat exchange, and heats the steam generator 52 to generate high-temperature and high-pressure steam, which is ejected from the steam pipe 47.
- the meanings of the components indicated by reference numeral 1 to reference numeral 9 are the same as those of FIG.
- Reference numeral 54 is an oil inlet pipe of a heat transfer medium oil
- reference numeral 47 is a steam pipe of the steam generator 52
- reference numeral 53 is a valve
- reference numeral 55 is a valve of the oil inlet pipe
- reference numeral 56 is a full square
- the skeleton plate of the heat retaining cavity which is the carrier of the heat insulating layer 48 and the mirror 45, is a strong pressure-sealable plate layer
- reference numeral 57 is a heat insulating pad for the whole heat retaining cavity
- the reference numeral 58 is a heat transfer medium loaded into the heat storage and storage unit 51, such as heat transfer oil
- reference numeral 59 is a liquid inlet pipe of the steam generator in the storage and replacement unit, and its outer end is connected to the preheater.
- Reference numeral 52 is a steam generator in which a vapor-liquid mixture heated by a heat transfer medium
- reference numeral 53 is a valve
- reference numeral 41 is a pile
- reference numeral 50 is a symmetrical name with the coplanar mirror 39.
- reference numeral 60 is a heat transfer medium such as a heat transfer oil returning pipe
- reference numeral 4 is an automatic heliostat height angle axis
- reference numeral 1 is an automatic heliostat azimuth axis
- the mark 61 is the sunlight heat engine at the beginning of the fleet
- the reference numeral 13 is a U-shaped support plate
- the reference numeral 5 is a carrier
- the drawing 62 is referred, for example, thermal oil heat transfer medium feed pump
- reference numeral 63 is a whole side heat retention chamber and exhaust valves.
- Figure 9 is a circulatory system diagram of the second type of direct heat storage and replacement unit, which differs from Fig. 8 in the shape and configuration of the full heat retaining cavity, and the components indicated by reference numerals in Fig. 9 The name and function are the same as those in Fig. 8.
- the whole heat retaining cavity in Fig. 9 is circular and is vacuum or close to vacuum between the wall of the whole heat retaining cavity and the storage and replacement device installed therein. As indicated by reference numeral 64, it is used to eliminate convective heat transfer of air.
- the skeleton plate and the mirror and the heat insulating material in the wall of the fully sealed heat-retaining cavity are composed of upper and lower halves or two parts of the pipe closed at both ends, and the tubular frame plate is generally a high-pressure resistant steel plate. .
- Figure 10 is a diagram of a cyclic heat exchange-free storage system.
- reference numeral 13 is a U-shaped support plate
- reference numeral 5 is a carrier
- reference numeral 62 is a working medium transfer pump
- reference numeral 66 is a dual-port heat collecting tube, which has a heat collecting die The two ends protrude from the ends of the cover tube and are respectively connected to the outer port of the outer transition tube. The other end of the outer transition tube, that is, the outer transition tube 8 and the middle connecting tube 11 in the figure are connected, and the outer transition tube 8 is wrapped.
- reference numeral 39 is a cut surface of the coplanar concentrating mirror plate
- reference numeral 9 is a top link
- reference numeral 40 is a middle connecting pipe and a flexible pipe joint thereof for the middle connecting pipe
- reference numeral 42 is an inlet pipe, the upper end of which is connected to the pipe joint of the intermediate pipe on the pile, and the lower end thereof is connected to the steam storage box 43 via the high pressure check valve 67.
- the reference numeral 47 is a steam pipe
- the reference numeral 53 is a valve
- the reference numeral 56 is a skeleton plate of the entire heat retaining cavity, which constitutes a strong pressure-resistant sealing cavity, all of which are fully protected.
- reference numeral 57 is an insulating spacer of the whole heat retaining cavity
- reference numeral 43 is steam.
- the hair storage box, reference numeral 45 is a mirror, which is provided with a skeleton plate 56 as a carrier, reference numeral 68 is a heat retaining material layer, which is provided with a skeleton plate 56 as a carrier, and reference numeral 49 is a surrounding heat retaining cavity.
- reference numeral 53 is a valve
- reference numeral 50 is another co-planar mirror symmetrical with the coplanar mirror 39
- reference numeral 60 is a liquid return pipe, and one end thereof is connected to the lower portion of the steam storage box
- the steam storage tank also functions as a vapor-liquid separator because the steam entering the steam storage tank 43 from the inlet pipe 42 may be saturated steam, often a vapor-liquid mixture, entering the steam storage tank, and the liquid sinking. The steam is ejected.
- Reference numeral 4 is an automatic heliostat height angle axis
- reference numeral 1 is an automatic heliostat azimuth axis.
- Figure 11 is a front elevational view of the inter-thermal storage unit.
- Reference numeral 69 in the figure is a heat transfer medium output pipe which is fixed to the nozzle of the heat storage tank 51 of the storage and replacement unit, reference numeral 70 is a phase change heat storage medium, and reference numeral 71 is a heat transfer medium input pipe.
- Reference numeral 72 is an infusion pump, and reference numeral 47 is a steam pipe of a steam generator from which high pressure steam is ejected, and the steam pipe passes through the valve 53 or is connected to a superheated steam processing device for heating.
- reference numeral 73 is a phase change heat storage medium.
- the inlet port of the molten salt is fixedly connected to the heat storage chamber wall of the storage and replacement unit, and is connected to the heat storage tank 51, and the reference numeral 59 is a steam generator 52.
- the inlet pipe is connected through the valve and the preheater, reference numeral 45 is a mirror of the whole heat retaining cavity, and reference numeral 74 is an output port of the phase change heat storage medium such as molten salt for replacement Phase change heat storage material, reference numeral 75 is the insulated leg of the whole heat retaining cavity
- Reference numeral 52 is a steam generator
- reference numeral 76 is a heat transfer fin of the steam generator
- reference numeral 57 is a heat insulating support pad for the entire heat retaining cavity
- reference numeral 48 is a partition of the entire heat retaining cavity.
- the thermal layer reference numeral 56 is its skeleton plate, and all the pipes which are emitted from the entire heat retaining cavity or enter the entire heat retaining cavity are fixedly connected thereto, which is the mirror 45 and the heat insulating layer 48.
- a carrier which is a strong, all-sealed ply that can withstand pressure, in the space between the heat storage tank 51 of the storage and replacement unit and the wall of the entire heat retaining chamber, either low pressure gas or vacuum, or It is an approximate vacuum or a normal pressure gas.
- Reference numeral 49 is soil or sand outside the entire heat retention chamber.
- the embodiment of the general storage system can be easily combined from the components of the circulation system of the thermal storage unit and the direct heat storage unit according to the description of the claims. Narration.
- FIG. 12 is a pneumatic shock absorber for a hinged concentrator
- reference numeral 77 is a sliding chamber as a bearing member
- reference numeral 78 is a hole for fixing the sliding portion of the hinge member
- reference numeral 79 is a piston.
- Reference numeral 80 is a rotating shaft
- reference numeral 81 is a screw hole for fixing the piston to the rotating shaft
- the piston is used as a hinge
- C is a shutter
- FIG. 12 is a state when the storm indirectly forces the rotating shaft to rotate in a clockwise direction, when the storm stops. After that, the return spring will force the shaft to be reset in the counterclockwise direction.
- the piston is screwed into the sliding chamber, and the shutter is closed to leave a state of micro-gap, and the air pressure forces the piston 79 to slowly enter the sliding chamber 77 for shock absorption purposes.
- Figure 13 (a) is a hydraulic shock absorber.
- reference numeral 82 is a baffle fixed to the mandrel 83, and the mandrel 83 is fixed to the frame 12, and reference numeral 84 is a cavity case which is statically sealed with the mandrel 83, and reference numeral 86 is and
- the shutter 85 is formed as a movable connecting door.
- the shutter 85 is fixed to the concentrating frame 20, and the concentrating frame 20 and the shutter 85 are combined with the mandrel 83 and the cavity 84 to be dynamically sealed.
- the working medium is injected into the cavity formed by the shutter 85 and the mandrel 83.
- the shutter 86 When the concentrating mirror and its frame encounter a destructive storm and rotate together with the concentrating mirror, the shutter 86 is opened, the working medium flows backward, and the rotation is almost There is no resistance. When the storm is over, the condenser frame 1 is reversed by the force of the return spring. When the shutter is to be reset, the shutter 86 is closed to prevent rotation. When the working medium is slowly flowing out of the gap, the condenser is allowed to be slowly reset to avoid vibration.
- Figure 13 (b) is another assembly form of Figure 13 (a).
- reference numeral 82 is a baffle plate which is fixed to the hinge shaft 87, but the present hinge shaft is a rotation shaft instead of a mandrel, and the hinge shaft 87 and the chamber casing 84 are fixedly connected and still statically sealed, and the hinge shaft 87 is provided. At the same time, it is fixedly connected with the concentrating mirror frame 20. When the concentrating mirror rotates to avoid the storm, it rotates together with the concentrating mirror frame, and forms a movable connection with the frame 12, and the shutter 86 is hinged on the shutter casing 85, and the shutter casing and the frame are common.
- the hinged shaft 87 and the cavity casing 84 form a dynamic seal, and the working medium is injected into the cavity formed by the cavity casing 84, the shutter casing 85 and the hinge shaft 4.
- the concentrating mirror frame 20 is fast-moving to avoid the storm, and the mechanism of slowly reversing at the time of resetting is the same as described above.
- the invention utilizes the three-hearted collection point skillfully, so that the automatic connection with the Japanese machine can accurately track the sun in a full-scale manner, and the middle connecting pipe does not have a large swing, so the transition pipe and the intermediate pipe can be used inexpensively.
- the high-pressure resistant rigid material is manufactured, because the pipe is basically fixed, it is convenient to add heat-preserving material around the middle pipe, so that the heat loss is greatly reduced. It is more convenient to store the heat storage steam generating equipment in the underground heat preservation chamber.
- This configuration of the heat storage component is the most reasonable because it blocks the three ways of heat loss, namely radiation, conduction and convection. . Therefore, the heat storage time is prolonged and the power generation can be generated day and night, which can avoid the discontinuity of photovoltaic power generation and the impact on the large power grid.
- the two axes accurately track the sun, and the light and heat conversion efficiency is high. Compared to the trough and Fresnel-type uniaxial tracking sun, the daylighting surface of the present invention is always perpendicular to the sun, saving concentrating mirrors and cost.
- the concentrating mirror of the present invention is easy to manufacture and low in cost.
- This photothermal power station can use the cost-effective single-port heat collecting tube that I invented, and the cost is much less than the cost of the double-port heat collecting tube used in the trough type or Fresnel type photothermal power station.
- the present invention can carry various solar high-heat engines by using a constant-torque precision tracking machine, it can realize high-capacity and high-precision automatic tracking of the sun, so the concentration ratio can be high, so the thermoelectric conversion efficiency can be high, and the sunlight is hot. The cost of the machine is low.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种定管高效光热发电站,是利用太阳能产生高温高压蒸汽而推动蒸汽轮机和发电机进行发电的系统。它由带有全自动双轴跟日机(2)的阳光高热机群、储能产汽部件、动力转换和发电部件及辅助设备构成。可用于建设大型或超大型阳光高热发电站而为电网供电;也可建设分布式小型阳光高热发电站为居民小区或工厂、农场、部队营房等各单位供电。
Description
本发明属于太阳能光热发电的可再生能源领域。
现在利用太阳光热发电的设备,有塔式的、碟式的、槽式的和菲涅尔式的。塔式的占地面积很大,浪费的太阳光能很多,热量储存损耗大,成本高;碟式的发电功率较小,不易多台联合大功率发电;槽式的和菲涅尔式的一般都是单轴跟踪,跟踪误差大,阳光损失多,产热效率低。
发明内容
本发明就是要解决这些问题,要发明一种阳光产热效率高、不怕暴风干扰破坏、便于高效长时间存储热量以使昼夜都能发电、便于多机联合而超大规模发电并且成本较低的定管高效光热发电站。
一种定管高效光热发电站,包括阳光高热机群、储热产汽部件、管道阀门、热能转换及发电部件和辅助设备,其特殊之处在于:
A、所述阳光高热机群是由多台阳光高热机按照特殊的连接方式组成的;
B、所述阳光高热机包括自动跟日机部件、聚光镜部件、集热器部件和机架部件,聚光镜部件和集热器部件及机架部件都由自动跟日机运载;
a、所述自动跟日机是双轴全自动跟日机,是方位角高度角式自动跟日机,高度角轴中心线和方位角轴中心线构成一个交汇点或近似交汇点;
b、安装在所述自动跟日机上的聚光镜是在阳光照射下能产生焦线或焦带的聚光镜,所述聚光镜是固定式的聚光镜或是自动躲避暴风式聚光镜,它的横剖面,即垂直于焦线或焦带的方向的剖面,是两条曲线或两条折线或两条曲折线,所述曲折线是曲线折线复合线,这两条 曲线或两条折线或两条曲折线是不相连接的或是互相连接的;所述聚光镜的纵剖面,即平行于焦线或焦带方向的剖面是直线;所述焦线或焦带把聚光镜划分为分布于其两侧的两个分支,这两支聚光镜是互不连接的或是互相连接的或是部分连接的,位于所述焦线或焦带的同一侧面的一支聚光镜,无论是否连为一片,统称为共面镜,聚光镜在自动跟日机上的安装位置必须使其焦线或焦带的中心线与所述自动跟日机的高度角轴心线相平行或近似平行,并使其焦线或焦带的中心点与自动跟日机的高度角轴中心线和方位角轴中心线的交汇点相重合或近似相重合,这个重合点或近似重合点名为三心集合点,简称三心集点,所述聚光镜的骨架和自动跟日机的载物架固定连接,并且由自动跟日机运载;
c、所述集热器部件包括集热管、过渡管和中连管及管接头和管支架,所述集热管由罩管和管芯构成,罩管是密封管,罩管和管芯外表面之间有密封性固定连接处,管芯的绝大部分被密封于罩管中,这部分叫作吸热段,其外表带有吸热层,管芯的一个端口伸出到罩管之外或者两个端口伸出到罩管之外;只有一个端口伸出到罩管之外而另一端头是封闭的并密封于罩管之内的管芯与罩管构成的集热管叫单口集热管,与单口集热管对应的过渡管叫内过渡管,内过渡管的一个端口安装在单口集热管的管芯内端即吸热段之内,另一端口伸出到集热管芯的外端之外,在集热管芯外端和内过渡管外表面之间是固定连接的;与双口集热管对应的是外过渡管,它的一个端口与伸出到罩管之外的管芯经管接头间接地或直接的连接通,另一端口与所述中连管在阳光高热机的三心集点处经过挠性管接头而连接通;所述罩管和管芯吸热段之间是真空或近似真空;并在这两者之间或者有定位的管支架,或者无定位的管支架;所述罩管是透明的或近似透明的;
所述中连管是两端开口的保热管,它的两端的位置分别安置在相邻近的两台阳光高热机的各自的三心集点处或三心集点的邻近处,中连管的每一端口或是经过过渡管而间接的与对应的集热管芯在阳光高热机的三心集点处连接通,或是直接的与对应的集热管芯在对应的三心集点处连接通,在中连管和过渡管之间的连接点处,或在中连管和集热管芯之间的连接点处,或在外过渡管和集热管芯之间的连接点处 都有管接头作媒介,所述管接头是挠性活动的或是刚性的,内过渡管和集热管芯之间是直接连接通而无管接头;所述过渡管是能把集热管芯与中连管连接通的保热管,或是能把同一台阳光高热机的两个集热管芯连接通的保热管,过渡管和集热管轴中心线相平行或近似平行;
所述集热管的管轴中心线和聚光镜的焦线或焦带的中心线是相重合的,或近似相重合的,集热管由管支架支撑,管支架与自动跟日机的载物架固定连接;
d、所述阳光高热机群中的各台阳光高热机的集热器之间都是用中连管按照上述连接方式通过挠性管接头或刚性管接头把它们连接通的;
C、所述储热产汽部件简称储产部件,它或是储热换热产汽一体器,简称储换一体器,或者是导热和相变储热和产汽总系统,简称导储总系统,或者是无换热的储产系统,或者是综合储产部件;各种储产部件都安置于全方保热腔的隔热材料支垫上,或是部分安置于全方保热腔的隔热支垫上;
D、所述全方保热腔是从各个方面把热量传递的全部方式给以严密堵绝而构成保热腔室,它是一个空腔,它或者是被安装于地面之下,或者是有一部分被安装于地面之下,或者是被安装于地面之上;
E、所述阳光高热机群中,位于最接近储产部件的机群终端的阳光高热机的中连管是直接的或经过固定桩后间接地和储产部件连接通,储产部件的蒸汽发生器和喷汽管连接通,喷汽管的另一端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再和用于把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接的经过阀门和把热能转换为机械能和电能的发电设备的动力部件连接通;位于阳光高热机群的另一端即机群始端的阳光高热机的中连管和从储产部件中返回来的输送导热介质的管路即回路管连接通,或者和输送工作介质的泵连接通。
所述储换一体器被安置于全方保热腔底的隔热支垫上,所述储换一体器是直热式的或是间热式的,直热式储换一体器包括装有导热介质和被简称为汽液工质的汽液工作介质的储热箱,导热介质或是装于盘管中而沉浸于汽液工作介质中,或是直接包围装有汽液工质的容器 而直接换热,在储热箱壁上固连有导热介质的进口管嘴和出口管嘴,还固连有汽液工质的进口管嘴和出口管嘴,所谓管嘴即管接头;所谓工质是能够进行汽液相变而能进行膨胀作功的工作物质;
导热介质的进口管嘴经过所用连接管道和距储热箱最近的即机群终端的阳光高热机的中连管直接或间接连接通,导热介质的出口管嘴经过回路管道和机群始端的阳光高热机的中连管直接或间接的连接通,所述回路管道包括连接管和阀门及管接头,或者还包括泵;汽液工质的进口管嘴经过所用管道直接或间接的和预热设备连接通,其出口管嘴和喷汽管连接通;
所述间热式储换一体器安置于全方保热腔底的隔热支垫上,所述间热式储换一体器包括储热箱、相变储热材料、导热介质盘管和蒸汽发生器,所述导热介质盘管沉浸于相变储热材料中,相变储热材料包围蒸汽发生器而和它进行传热连接,储热箱壁和导热介质的进口管的管嘴和出口管的管嘴分别固连,还和相变储热介质的进口管的管嘴和出口管的管嘴固连,所述与储热箱壁连接的导热介质的进口管和出口管直接或间接的分别与阳光高热机群终端和始端的中连管连接通,与储热箱连接的蒸汽发生器的进口管直接或间接的和预热设备连接通,与储热箱连接的蒸汽发生器的出口管为喷汽管,它的外端口或者先与用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通。
所述导储总系统安置于全方保热腔底的隔热支垫上,或者部分安置于全方保热腔底的隔热支垫上,所述导储总系统包括导热介质子系统、相变储热子系统、换热设备和蒸汽发生器,所述导热介质子系统包括导热介质泵、导热介质箱和管道阀门循环系统,所述导热介质泵安装于管道阀门循环系统中,导热介质循环管路中的第一部分由阳光高热机群的各个集热管、过渡管和中连管构成,第二部分由沉浸于相变储热子系统中的导热介质盘管构成,第三部分由导热介质回路中的管道阀门构成,导热介质循环管路和导热介质箱连接通;所述相变储热子系统包括相变储热箱、预热器和沉浸于相变储热箱中的导热介质盘管,或者还包括循环泵,预热器和导热介质盘管都和相变储热箱中 的相变储热材料作传热连接,相变储热材料通过换热设备和蒸汽发生器作传热连接,蒸汽发生器的进口管直接或间接的和预热器连接通,蒸汽发生器的出口管的外端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通,蒸汽发生器是带有导热翅片的或是不带翅片的。
所述无换热储产系统是循环式的或是非循环式的,循环式无换热储产系统包括蒸汽储发箱、液体回路管道阀门、工质输送泵、阳光高热机群中的管道和阀门以及高压止回阀;非循环无换热储产系统没有液体回路管,而是只用排液管,所述蒸汽储发箱安置于全方保热腔室的隔热支垫上,所述蒸汽储发箱的箱壁上有进口管嘴和出口管嘴,还有排液管嘴,其进口管嘴或直接的与进汽管的内端口连接通,或经过高压止回阀从而间接的与进汽管内端口连接通,进汽管外端口直接的或经过固定桩后而间接的和机群终端阳光高热机的中连管经过挠性的或刚性的管接头而连接通,进汽管外端口或者直接的和机群终端阳光高热机的过渡管经过挠性的或刚性的管接头而连接通,此管接头必须位于机群终端阳光高热机的三心集点处或其邻近处,所述蒸汽储发箱的出口管嘴和喷汽管的一端连接通,喷汽管另一端口或者通过用于升温的过热蒸汽加工设备后和能把热能变为机械能和电能的发电设备的动力部件连接通,或者直接和能把热能变为机械能和电能的发电设备的动力部件连接通;
所述排液管嘴和非循环式无换热储产系统的排液管的内端连接通,排液管的外端伸出到全方保热腔之外和阀门连接通;或者所述排液管嘴和循环式无换热储产系统的液体回路管的内端连接通,液体回路管的外端直接或间接的和工质输送泵连接通,工质输送泵和用于把工质再加热的机群始端阳光高热机的中连管连接通;
所述综合储产部件是把上述两种或多种储产部件组成配套进行工作,或交替进行工作而组成的综合系统。
所述全方保热腔是由包括上方和下方在内的任何方向的全方位的壁壳所包围而成的空腔,包括隔热门或隔热盖子在内的所有各方向腔 壁都至少由三层构成,内层是反射镜,中间层是骨架板或骨板,外层是隔热材料,在其腔壁上除了安装与内装物相对应的各种用于连接管接头和管道的管嘴之外,或者还固连有用于排气以产生真空的管嘴及阀门,或者无此种管嘴及阀门;在全方保热腔的壁壳和它的内装物的外壁之间的空间中,或有低压气体,或是真空,或是接近真空,或是常压气体,在此空腔底板上,装有用于安置物件的隔热支垫。
所述自动躲避暴风的聚光镜是由双连镜板单元构成,或是由三连镜板单元构成,所述双连镜板单元包括主镜轴、附镜轴、聚光镜的主镜板、附镜板、弹簧和限位器,或者还包括防震器,所述主镜轴沿着平行于焦线或焦带的方向和机架连接,所述主镜板和附镜板直接经过附镜轴和弹簧把它们铰接而构成镜板单元,把此镜板单元中的主镜板铰接在所述主镜轴上,使附镜轴和主镜轴相平行,主镜轴中心线到所述镜板单元两边的距离不相等,即把镜板构成偏轴式结构,构成聚光镜单元;只能向单一方向旋转的所述附镜板的外边缘到主镜轴中心线的距离大于由主镜板外边缘到主镜轴中心线的距离,每个聚光镜单元的正确工作位置由弹簧和限位器定其位。
三连镜板躲风镜包括一个主镜板和两个附镜板、一个主镜轴和两个附镜轴及弹簧和限位器,主镜轴沿着平行于焦线或焦带的方向与机架连接,主镜板铰接在主镜轴上,用弹簧和限位器保持它的正确工作状态,在主镜板两侧边连接附镜轴,两个附镜板分别铰接在主镜板的两侧的附镜轴上,用弹簧和限位器保持附镜板的正确工作状态,两个附镜轴和主镜轴相互平行或者近似平行。
所述防震器是气压防震器,或是液压防震器,或者是弹力防震器,所述液压防震器是以固连于承铰接件的心轴为铰接轴,或者所述液压防震器是以固连于铰接件的转轴为铰接轴,所述气压防震器包括滑腔和与之相连的活塞,活塞插入滑腔中,在滑腔上有小孔,小孔中有活门,活门和滑腔活动链接,活塞和滑腔分别安装于承铰接件和被铰接件,并以铰接轴心为转矩中心。
以固连于承铰接件的心轴为铰接轴的液压防震器包括腔壳、挡板、活门和活门支壳与心轴,挡板固接于和承铰接件固连的心轴,腔壳穿在所述心轴上并与心轴作静密封连接,腔壳包含挡板和活门支壳之一 部分,并与该部分作动密封连接,活门与其支壳活动连接,并以其为载体,活门和挡板之间所夹的空间能够扩大或缩小,活门支壳和铰接件固连,因而和所述心轴成动密封,在腔壳与心轴和活门支壳之间充填工作介质;
以固连于铰接件的转轴为铰接轴的液压防震器包括腔壳、挡板、活门和活门支壳与转轴,腔壳和挡板固连于转轴,载有活门的活门支壳与承铰接件固连,上述包含挡板和活门支壳一部分的静止的腔壳此时变为转动的腔壳并与转轴固连构成静密封,而与活门支壳仍然构成动密封,在腔壳和转轴及活门支壳之间充填工作介质。
图1是阳光高热机的主视图;
图2是图1的俯视图;
图3是双连镜单元自动躲暴风式阳光高热机的主视图;
图4是图3的俯视图;
图5是三连镜单元自动躲暴风式阳光高热机的主视图;
图6是图5的俯视图;
图7是非循环无换热储产系统主视图;
图8是第一类直热式储换一体器的循环系统图;
图9是第二类直热式储换一体器的循环系统图;
图10是循环式无换热储产系统的主视图;
图11是间热式储换一体器的主视图;
图12是气压防震器的剖视图;
图13(a)是液压防震器的剖视图;
图13(b)是液压防震器的另一种组合形式的剖视图。
在图1中,附图标记1是自动跟日机方位角轴,其和底座14相连,附图标记2是自动跟日机本身,附图标记3是聚光镜的1支,附图标记4是自动跟日机高度角轴,附图标记5是自动跟日机的载物架,它能运载一切需要跟踪太阳的器件,附图标记6是集热器的管支架,附 图标记7是集热管的透明罩管,附图标记8是过渡管,它的一端被浸泡在集热管芯10的工作介质中,另一端伸出集热管芯之外和中连管11连接通;附图标记9是两支聚光镜之间的顶连杆,附图标记10是集热管芯,附图标记11是中连管,用于把邻近的两台阳光高热机的集热器连接通,它的两端的管接头分别位于邻近的阳光高热机的三心集点处或其邻近处,因此,中连管可用廉价的普通钢管而外加隔热材料做成。在管接头处可用挠性活动管接头。附图标记12是机架,附图标记13是自动跟日机的U型支板,它和载物架及高度角轴固连,附图标记14是底座。
在图2中,附图标记15是集热管尾部,其是全密封的,它被安置于管支架6上,附图标记16是两个集热管芯之间的连通管,其余附图标记的含义和图1中相同。
在图3中,附图标记1是自动跟日机方位角轴,附图标记2是自动跟日机,附图标记3代表所有聚光镜的附镜,附图标记4是自动跟日机高度角轴,附图标记5是载物架,附图标记6是集热器的管支架,附图标记7是集热管的透明罩管,附图标记8是过渡管,用于把集热管芯和中连管连接通,附图标记27是限位器,用于和弹力相对抗而使聚光镜保持正确的工作状态,附图标记9是把两支聚光镜连在一起的顶连杆,附图标记10是集热管芯,附图标记28是聚光镜的主镜板,附图标记11是中连管,用于把邻近的两台阳光高热机的集热器连接通,它的两端分别和各台阳光高热机的过渡管或集热管芯在各台机器的三心集点处或其邻近处用挠性管接头连接通,附图标记29是主弹簧,最好用扭簧,扭簧的一端压在主镜板上,另一端压在机架上,附图标记30是主镜轴,用于把聚光镜铰接在与机架固连的框架上,附图标记31是附镜轴,用于把以附镜3为代表的附镜经过附镜轴铰接在主镜板上,附扭簧18的一端压在主镜板上,另一端压在附镜板上,因此,可设定在遇到暴风时,若风力由上向下吹,则风力反抗附扭簧之力而迫使附镜板向下转动,因附弹簧的弹力稍弱于主弹簧,故附镜板转到顺风方向时,由于主镜板在主镜轴心的下部分面积变小,在主镜轴以上部分的面积较大,故受风力大。所以主镜板将沿着顺时针方向一直转到接近于顺风方向,使受风力最小以免破坏聚光镜和整台机器,当暴风过 后,主镜和附镜受弹力和限位器27的力而恢复正确工作状态。由于弹力出力很猛,为了避免主、附镜恢复原位时不会震坏,所以应在主镜轴和附镜轴上分别安装防震器。图3表示出当暴风由下往上吹时,附镜不能往上转动,主、附镜变成一个整体,是一支共面镜,它们在主镜轴以下的面积大于在主镜轴以上的面积,所以暴风会使此共面镜仍沿顺时针方向转动,直到受风力较小的位置为止。暴风过后,弹簧和限位器使此共面镜复位。图3中的附图标记13是自动跟日机的U型支架,它固连于高度角轴4,用于和载物架固连,附图标记19是与机架固连的框架,附图标记12是机架,附图标记14是底座。
图4是图3的俯视图。在图4中,附图标记15是固连于管支架6上的集热管尾部,附图标记23是把两个内过渡管连接通的连管和管接头,附图标记27是限位器,附图标记12是机架,附图标记24是聚光镜的上端面,附图标记25是集热管芯10和中连管11之间的挠性管接头,附图标记26是主镜板28和其附镜的接缝。
在图5中,附图标记1至附图标记8的含义和图3的一样,兹不重复。附图标记20是聚光镜的边框,附图标记9是顶连杆,附图标记10是集热管芯,附图标记18是上附镜的附扭簧,附图标记21是上附镜板,它经过附镜轴31铰接在主镜板28的边框22上,它只能向上转,附镜轴31与主镜边框固连,附图标记11是中连管,附图标记29是主弹簧,附图标记30是主镜轴,附图标记27是限位器,附图标记17是下附镜轴,附图标记13是U形支板,它和高度角轴及载物架固连,附图标记17'是下附镜簧,附图标记33是与机架固连的镜支框,附图标记12是机架,上附镜和下附镜的旋转方向相同。无论暴风从何方吹来,总有一个附镜旋转而造成偏心力矩,达到避风目的。
图6是图5的俯视图,在图6中,附图标记15是集热管尾部,它被固连在管支架6上,附图标记34是中连管和两个过渡管的连管35之间的挠性管接头,36是同一台阳光高热机的两个集热管芯之间的连管,附图标记37是三通管接头,它把中连管端口和两个集热管芯同时连接通或和两个过渡管同时连接通,此连接方式使中连管的端口距三心集点更近,附图标记38是镜板接缝。
图7是非循环式无换热储产系统主视图。在图7中,表示了机群 终端的两台阳光高热机的相互连接情况和储产部件的结构。图中附图标记2是自动跟日机,附图标记13是与载物架固连的U形支板,附图标记5是载物架,附图标记16是单口集热管的管芯的连通管,附图标记8是从单口集热管芯内伸出端口的过渡管,附图标记11是中连管,附图标记39是共面的聚光镜板的剖切面,附图标记9是顶连杆,附图标记40是中连管及其挠性管接头,用于把中连管连接在固定不动的支柱41上,附图标记42是进汽管,它的一端和中连管的管接头连接通,另一端经过高压止回阀(未画出)和储发箱43连接通,附图标记44是介于储发箱43和全方保热腔的反射镜45之间的低压气体或近似真空,附图标记56是全方保热腔的骨架板,附图标记46是储发箱的排液管,由于高压蒸汽在某种情况下难免会凝结一部分液体,需要定期排出。附图标记47是喷汽管,它的一端和储发箱连接通,另一端通过阀门而直接或间接的和能把热能变成机械能和电能的发电设备的动力部件连接通。附图标记45是反射镜,用于把储发箱辐射出的红外线反射回去,附图标记48是隔热层,附图标记49是土壤或沙石,在土壤或沙石49和隔热层48之间有空气隙。附图标记41是支桩,附图标记50是与共面镜39对称的另一支共面镜,附图标记4是自动跟日机高度角轴,附图标记1是自动跟日机方位角轴,它固连于底座。
图8是第一类直热式储换一体器的循环系统图。阳光高热机群把导热介质,例如把导热油加热后,流入储换一体器的储热箱51中,进行换热,把蒸汽发生器52加热到产生高温高压蒸汽,由喷汽管47中喷出作功。在图8中,从附图标记1到附图标记9所指零部件的含义与图7的相同。附图标记54是导热介质油的进油管,附图标记47是蒸汽发生器52的喷汽管,附图标记53是阀门,附图标记55是进油管的阀门,附图标记56是全方保热腔的骨架板,它是隔热层48和反射镜45的载体,是坚固的可承压密封的板层,附图标记57是全方保热腔的隔热支垫,附图标记58是装入储换一体器储热箱51中的导热介质,例如导热油,附图标记59是储换一体器中的蒸汽发生器的进液管,它的外端和预热器连接通,附图标记52是蒸汽发生器,其中是被导热介质加热的汽液混合物,附图标记53是阀门,附图标记41是支桩,附图标记50是和共面镜39相对称的另一支共面镜,附图标记60是导 热介质的例如导热油的回液管,附图标记4是自动跟日机高度角轴,附图标记1是自动跟日机方位角轴,附图标记61是机群始端阳光高热机,附图标记13是U形支板,附图标记5是载物架,附图标记62是导热介质的例如导热油输送泵,附图标记63是全方保热腔的排气管和阀门。
图9是第二类直热式储换一体器的循环系统图,它和图8所不同的是全方保热腔的形状和构造不同,在图9中附图标记表示的各零部件的名称和作用都和图8的相同,图9中的全方保热腔是圆管状的,在全方保热腔壁和装于其内的储换一体器之间是真空或接近真空,如附图标记64所示,用于把空气的对流传热消除。在全密封的全方保热腔的壁壳中的骨架板和反射镜及隔热材料都是由两端封闭的管子的上下两半或两部分构成,其管状骨架板一般是耐高压的钢板。
图10是循环式无换热储产系统图。在图10中,附图标记13是U型支板,附图标记5是载物架,附图标记62是工质输送泵,附图标记66是双口集热管,它的集热管芯的两端从它的罩管两端伸出去,分别和外过渡管的外端口连接通,外过渡管另一端即图中的外过渡管8和中连管11连接通,外过渡管8被包在隔热材料中,附图标记39是共面的聚光镜板的剖切面,附图标记9是顶连杆,附图标记40是中连管及其挠性管接头,用于把中连管连接在固定的支桩41上,附图标记42是进汽管,它的上端和支桩上的中连管的管接头连接通,其下端经过高压止回阀67和蒸汽储发箱43连接通,附图标记47是喷汽管,附图标记53是阀门,附图标记56是全方保热腔的骨架板,由它构成坚固的能承受压力的密封腔体,所有经过全方保热腔壁进入或穿出的管道都和它固定连接,附图标记57是全方保热腔的隔热支垫,附图标记43是蒸汽储发箱,附图标记45是反射镜,它以骨架板56为载体,附图标记68是保热材料层,它以骨架板56为载体,附图标记49是包围全方保热腔的土壤或沙石,附图标记53是阀门,附图标记50是与共面镜39对称的另一支共面镜,附图标记60是回液管,其一端和蒸汽储发箱的下部连接通,蒸汽储发箱也起着汽液分离器的作用,因为由进汽管42中进入蒸汽储发箱43的可能是饱和蒸汽,往往是汽液混合物,进入蒸汽储发箱中,液体下沉,蒸汽喷出。回液管的另一端和工质输 送泵62连接通,工质输送泵62把回液打入机群始端阳光高热机61的中连管或过渡管,经集热管再加热。附图标记4是自动跟日机高度角轴,附图标记1是自动跟日机方位角轴。
图11是间热式储换一体器的主视图。图中附图标记69是导热介质输出管,它和储换一体器的储热箱51的管嘴固连,附图标记70是相变储热介质,附图标记71是导热介质输入管,附图标记72是输液泵,附图标记47是蒸汽发生器的喷汽管,高压蒸汽由此喷出,此喷汽管经过阀门53以后,或者和用于升温的过热蒸汽加工设备连接通,然后和能把热能变为机械能和电能的动力部件连接通,或者由喷汽管和阀门53直接和能把热能变为机械能和电能的动力部件连接通,附图标记73是相变储热介质的例如熔盐的进入口,它和全方保热腔壁固连后和储换一体器的储热箱壁固连,并和储热箱51连接通,附图标记59是蒸汽发生器52的进液管,它经过阀门和预热器连接通,附图标记45是全方保热腔的反射镜,附图标记74是相变储热介质的例如熔盐的输出口,用于更换相变储热材料,附图标记75是全方保热腔的隔热支腿,附图标记52是蒸汽发生器,附图标记76是蒸汽发生器的导热翅片,附图标记57是全方保热腔的隔热支垫,附图标记48是全方保热腔的隔热层,附图标记56是其骨架板,所有从全方保热腔中发出的,或进入全方保热腔的管道,都和它固定连接,它是反射镜45和隔热层48的载体,它是能承受压力的坚固的全方位密封的板层,在储换一体器的储热箱51和全方保热腔壁之间的空间中,或是低压气体,或是真空,或是近似真空,或是常压气体。附图标记49是全方保热腔之外的土壤或沙石。
所述导储总系统的实施例,按照权利要求书的叙述,很容易从间热式储换一体器和直热式储换一体器的循环系统的零部件把它们组合而得出,兹不赘述。
图12是可供铰接聚光镜用的气压防震器,附图标记77是作为承铰接件的滑腔,附图标记78是固定承铰接件滑腔用的孔,附图标记79是活塞,附图标记80是转轴,附图标记81是把活塞固定在转轴上的螺丝孔,活塞作为铰接件,C是活门,图12是当暴风间接地迫使转轴沿顺时针方向旋转后的状态,当暴风停止后,复位簧将迫使转轴沿逆 时针方向复位,此时活塞旋入滑腔中,活门关闭成留有微隙状态,空气压力迫使活塞79缓慢进入滑腔77,达到减震目的。
图13(a)是液压防震器。图中,附图标记82是固接于心轴83的挡板,心轴83固接于机架12,附图标记84是和心轴83作成静密封的腔壳,附图标记86是和活门支壳85做成活动连接的活门,活门支壳85固接于聚光镜边框20,聚光镜边框20和活门支壳85共同和心轴83及腔壳84做成动密封,在由腔壳84和活门支壳85及心轴83所构成的空腔中注入工作介质,当聚光镜及其边框遇到破坏性暴风而和聚光镜一同作避风旋转时,活门86被打开,工作介质向后流,旋转几乎无阻力,当暴风过后,聚光镜框1受复位簧之力反转欲复位时,活门86关闭,阻止旋转,待工作介质由缝隙慢慢流出时,才允许聚光镜缓慢复位,避免震动。
图13(b)是图13(a)另一装配形式。图中,附图标记82是挡板,它和铰接轴87固连,但现在的铰接轴是转轴而非心轴,铰接轴87和腔壳84固连并仍旧做成静密封,铰接轴87同时和聚光镜边框20固连,当聚光镜为躲暴风而旋转时,它和聚光镜边框一同转动,它和机架12构成活动连接,活门86铰接在活门支壳85上,活门支壳和机架共同和铰接轴87及腔壳84构成动密封,在由腔壳84和活门支壳85及铰接轴4三者构成的空腔中注入工作介质。聚光镜边框20为躲暴风而快转,和复位时而缓慢反转的机理与上述相同。
本发明由于巧妙的利用了三心集点,所以,在自动跟日机双轴精准全方位跟踪太阳时,中连管不会有大幅度的摆动,故过渡管和中连管都可用廉价并耐高压的刚性材料制造,由于管子基本固定,所以便于在中连管周边加保热材料,使热损大大减小。更便于把储热产汽设备储存于地下的全方保热腔中,储热部件的这种构造是最合理的,因为它把热损失的三种途径即辐射、传导和对流都堵绝了。因而储热时间延长而可昼夜发电,能避免光伏发电的间断性和对大电网的冲击。
根据本发明的权利要求书,还可作出更多的实施例,都属于本发明权利要求书保护的范围。
本发明的优点
1、双轴精准跟踪太阳,光热转换效率高。相比于槽式的和菲涅尔 式的单轴跟踪太阳,本发明的采光面始终和太阳垂直,能节约聚光镜和成本。
2、用定管连接各台阳光高热机,便于建设超大规模光热发电站,而且保热良好。
3、便于把储热部件装在地下的全方保热腔中,能大规模储热,储热时间延长。
4、能进行昼夜连续发电,避免光伏发电的间断性和对电网的波动性冲击。
5、和难以储热的碟式太阳光热发电所用旋转抛物面镜比较,本发明的聚光镜容易制造又成本低。
6、本光热发电站,能使用本人发明的成本低廉的单口集热管,其成本远小于槽式的或菲涅尔式的光热发电站所用双口集热管的成本。
7、由于本发明可用恒矩精准跟踪机运载各台阳光高热机,能实现大运载量而高精度的自动跟踪太阳,所以聚光比可以很高,从而热电转换效率可以很高,而阳光高热机的成本低。
8、和塔式太阳能热发电站相比,由于跟踪精准和焦距短,不浪费阳光,可节约聚光镜数量和地面面积,建站成本低。
9、在一定程度上,可代替烧煤或烧油的火力发电,减少雾霾和二氧化碳排放,保护环境和人类健康并节能。
Claims (9)
- 一种定管高效光热发电站,包括阳光高热机群、储热产汽部件、管道阀门、热能转换及发电部件和辅助设备,其特征在于:A、所述阳光高热机群是由多台阳光高热机按照特殊的连接方式组成的;B、所述阳光高热机包括自动跟日机部件、聚光镜部件、集热器部件和机架部件,聚光镜部件和集热器部件及机架部件都由自动跟日机运载;a、所述自动跟日机是双轴全自动跟日机,是方位角高度角式自动跟日机,高度角轴中心线和方位角轴中心线构成一个交汇点或近似交汇点;b、安装在所述自动跟日机上的聚光镜是在阳光照射下能产生焦线或焦带的聚光镜,所述聚光镜是固定式的聚光镜或是自动躲避暴风式聚光镜,它的横剖面,即垂直于焦线或焦带的方向的剖面,是两条曲线或两条折线或两条曲折线,所述曲折线是曲线折线复合线,这两条曲线或两条折线或两条曲折线是不相连接的或是互相连接的;所述聚光镜的纵剖面,即平行于焦线或焦带方向的剖面是直线;所述焦线或焦带把聚光镜划分为分布于其两侧的两个分支,这两支聚光镜是互不连接的或是互相连接的或是部分连接的,位于所述焦线或焦带的同一侧面的一支聚光镜,无论是否连为一片,统称为共面镜,聚光镜在自动跟日机上的安装位置必须使其焦线或焦带的中心线与所述自动跟日机的高度角轴心线相平行或近似平行,并使其焦线或焦带的中心点与自动跟日机的高度角轴中心线和方位角轴中心线的交汇点相重合或近似相重合,这个重合点或近似重合点名为三心集合点,简称三心集点,所述聚光镜的骨架和自动跟日机的载物架固定连接,并且由自动跟日机运载;c、所述集热器部件包括集热管、过渡管和中连管及管接头和管支架,所述集热管由罩管和管芯构成,罩管是密封管,罩管和管芯外表面之间有密封性固定连接处,管芯的绝大部分被密封于罩管中,这部分叫作吸热段,其外表带有吸热层,管芯的一个端口伸出到罩管之外 或者两个端口伸出到罩管之外;只有一个端口伸出到罩管之外而另一端头是封闭的并密封于罩管之内的管芯与罩管构成的集热管叫单口集热管,与单口集热管对应的过渡管叫内过渡管,内过渡管的一个端口安装在单口集热管的管芯内端即吸热段之内,另一端口伸出到集热管芯的外端之外,在集热管芯外端和内过渡管外表面之间是固定连接的;与双口集热管对应的是外过渡管,它的一个端口与伸出到罩管之外的管芯经管接头间接地或直接的连接通,另一端口与所述中连管在阳光高热机的三心集点处经过挠性管接头而连接通;所述罩管和管芯吸热段之间是真空或近似真空;并在这两者之间或者有定位的管支架,或者无定位的管支架;所述罩管是透明的或近似透明的;所述中连管是两端开口的保热管,它的两端的位置分别安置在相邻近的两台阳光高热机的各自的三心集点处或三心集点的邻近处,中连管的每一端口或是经过过渡管而间接的与对应的集热管芯在阳光高热机的三心集点处连接通,或是直接的与对应的集热管芯在对应的三心集点处连接通,在中连管和过渡管之间的连接点处,或在中连管和集热管芯之间的连接点处,或在外过渡管和集热管芯之间的连接点处都有管接头作媒介,所述管接头是挠性活动的或是刚性的,内过渡管和集热管芯之间是直接连接通而无管接头;所述过渡管是能把集热管芯与中连管连接通的保热管,或是能把同一台阳光高热机的两个集热管芯连接通的保热管,过渡管和集热管轴中心线相平行或近似平行;所述集热管的管轴中心线和聚光镜的焦线或焦带的中心线是相重合的,或近似相重合的,集热管由管支架支撑,管支架与自动跟日机的载物架固定连接;d、所述阳光高热机群中的各台阳光高热机的集热器之间都是用中连管按照上述连接方式通过挠性管接头或刚性管接头把它们连接通的;C、所述储热产汽部件简称储产部件,它或是储热换热产汽一体器,简称储换一体器,或者是导热和相变储热和产汽总系统,简称导储总系统,或者是无换热的储产系统,或者是综合储产部件;各种储产部件都安置于全方保热腔的隔热材料支垫上,或是部分安置于全方保热腔的隔热支垫上;D、所述全方保热腔是从各个方面把热量传递的全部方式给以严密堵绝而构成保热腔室,它是一个空腔,它或者是被安装于地面之下,或者是有一部分被安装于地面之下,或者是被安装于地面之上;E、所述阳光高热机群中,位于最接近储产部件的机群终端的阳光高热机的中连管是直接的或经过固定桩后间接地和储产部件连接通,储产部件的蒸汽发生器和喷汽管连接通,喷汽管的另一端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再和用于把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接的经过阀门和把热能转换为机械能和电能的发电设备的动力部件连接通;位于阳光高热机群的另一端即机群始端的阳光高热机的中连管和从储产部件中返回来的输送导热介质的管路即回路管连接通,或者和输送工作介质的泵连接通。
- 根据权利要求1所述的定管高效光热发电站,其特征在于:所述储换一体器被安置于全方保热腔底的隔热支垫上,所述储换一体器是直热式的或是间热式的,直热式储换一体器包括装有导热介质和被简称为汽液工质的汽液工作介质的储热箱,导热介质或是装于盘管中而沉浸于汽液工作介质中,或是直接包围装有汽液工质的容器而直接换热,在储热箱壁上固连有导热介质的进口管嘴和出口管嘴,还固连有汽液工质的进口管嘴和出口管嘴,所谓管嘴即管接头;所谓工质是能够进行汽液相变而能进行膨胀作功的工作物质;导热介质的进口管嘴经过所用连接管道和距储热箱最近的即机群终端的阳光高热机的中连管直接或间接连接通,导热介质的出口管嘴经过回路管道和机群始端的阳光高热机的中连管直接或间接的连接通,所述回路管道包括连接管和阀门及管接头,或者还包括泵;汽液工质的进口管嘴经过所用管道直接或间接的和预热设备连接通,其出口管嘴和喷汽管连接通;所述间热式储换一体器安置于全方保热腔底的隔热支垫上,所述间热式储换一体器包括储热箱、相变储热材料、导热介质盘管和蒸汽发生器,所述导热介质盘管沉浸于相变储热材料中,相变储热材料包围蒸汽发生器而和它进行传热连接,储热箱壁和导热介质的进口管的 管嘴和出口管的管嘴分别固连,还和相变储热介质的进口管的管嘴和出口管的管嘴固连,所述与储热箱壁连接的导热介质的进口管和出口管直接或间接的分别与阳光高热机群终端和始端的中连管连接通,与储热箱连接的蒸汽发生器的进口管直接或间接的和预热设备连接通,与储热箱连接的蒸汽发生器的出口管为喷汽管,它的外端口或者先与用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通。
- 根据权利要求1所述的定管高效光热发电站,其特征在于:所述导储总系统安置于全方保热腔底的隔热支垫上,或者部分安置于全方保热腔底的隔热支垫上,所述导储总系统包括导热介质子系统、相变储热子系统、换热设备和蒸汽发生器,所述导热介质子系统包括导热介质泵、导热介质箱和管道阀门循环系统,所述导热介质泵安装于管道阀门循环系统中,导热介质循环管路中的第一部分由阳光高热机群的各个集热管、过渡管和中连管构成,第二部分由沉浸于相变储热子系统中的导热介质盘管构成,第三部分由导热介质回路中的管道阀门构成,导热介质循环管路和导热介质箱连接通;所述相变储热子系统包括相变储热箱、预热器和沉浸于相变储热箱中的导热介质盘管,或者还包括循环泵,预热器和导热介质盘管都和相变储热箱中的相变储热材料作传热连接,相变储热材料通过换热设备和蒸汽发生器作传热连接,蒸汽发生器的进口管直接或间接的和预热器连接通,蒸汽发生器的出口管的外端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通,蒸汽发生器是带有导热翅片的或是不带翅片的。
- 根据权利要求1所述的定管高效光热发电站,其特征在于:所述无换热储产系统是循环式的或是非循环式的,循环式无换热储产系统包括蒸汽储发箱、液体回路管道阀门、工质输送泵、阳光高热机群 中的管道和阀门以及高压止回阀;非循环无换热储产系统没有液体回路管,而是只用排液管,所述蒸汽储发箱安置于全方保热腔室的隔热支垫上,所述蒸汽储发箱的箱壁上有进口管嘴和出口管嘴,还有排液管嘴,其进口管嘴或直接的与进汽管的内端口连接通,或经过高压止回阀从而间接的与进汽管内端口连接通,进汽管外端口直接的或经过固定桩后而间接的和机群终端阳光高热机的中连管经过挠性的或刚性的管接头而连接通,进汽管外端口或者直接的和机群终端阳光高热机的过渡管经过挠性的或刚性的管接头而连接通,此管接头必须位于机群终端阳光高热机的三心集点处或其邻近处,所述蒸汽储发箱的出口管嘴和喷汽管的一端连接通,喷汽管另一端口或者通过用于升温的过热蒸汽加工设备后和能把热能变为机械能和电能的发电设备的动力部件连接通,或者直接和能把热能变为机械能和电能的发电设备的动力部件连接通;所述排液管嘴和非循环式无换热储产系统的排液管的内端连接通,排液管的外端伸出到全方保热腔之外和阀门连接通;或者所述排液管嘴和循环式无换热储产系统的液体回路管的内端连接通,液体回路管的外端直接或间接的和工质输送泵连接通,工质输送泵和用于把工质再加热的机群始端阳光高热机的中连管连接通;所述综合储产部件是把上述两种或多种储产部件组成配套进行工作,或交替进行工作而组成的综合系统。
- 根据权利要求1所述的定管高效光热发电站,其特征在于:所述全方保热腔是由包括上方和下方在内的任何方向的全方位的壁壳所包围而成的空腔,包括隔热门或隔热盖子在内的所有各方向腔壁都至少由三层构成,内层是反射镜,中间层是骨架板或骨板,外层是隔热材料,在其腔壁上除了安装与内装物相对应的各种用于连接管接头和管道的管嘴之外,或者还固连有用于排气以产生真空的管嘴及阀门,或者无此种管嘴及阀门;在全方保热腔的壁壳和它的内装物的外壁之间的空间中,或有低压气体,或是真空,或是接近真空,或是常压气体,在此空腔底板上,装有用于安置物件的隔热支垫。
- 根据权利要求1所述的定管高效光热发电站,其特征在于:所述自动躲避暴风的聚光镜是由双连镜板单元构成,或是由三连镜板单元构成,所述双连镜板单元包括主镜轴、附镜轴、聚光镜的主镜板、附镜板、弹簧和限位器,或者还包括防震器,所述主镜轴沿着平行于焦线或焦带的方向和机架连接,所述主镜板和附镜板直接经过附镜轴和弹簧把它们铰接而构成镜板单元,把此镜板单元中的主镜板铰接在所述主镜轴上,使附镜轴和主镜轴相平行,主镜轴中心线到所述镜板单元两边的距离不相等,即把镜板构成偏轴式结构,构成聚光镜单元;只能向单一方向旋转的所述附镜板的外边缘到主镜轴中心线的距离大于由主镜板外边缘到主镜轴中心线的距离,每个聚光镜单元的正确工作位置由弹簧和限位器定其位。
- 根据权利要求6所述的定管高效光热发电站,其特征在于:三连镜板躲风镜包括一个主镜板和两个附镜板、一个主镜轴和两个附镜轴及弹簧和限位器,主镜轴沿着平行于焦线或焦带的方向与机架连接,主镜板铰接在主镜轴上,用弹簧和限位器保持它的正确工作状态,在主镜板两侧边连接附镜轴,两个附镜板分别铰接在主镜板的两侧的附镜轴上,用弹簧和限位器保持附镜板的正确工作状态,两个附镜轴和主镜轴相互平行或者近似平行。
- 根据权利要求6所述的定管高效光热发电站,其特征在于:所述防震器是气压防震器,或是液压防震器,或者是弹力防震器,所述液压防震器是以固连于承铰接件的心轴为铰接轴,或者所述液压防震器是以固连于铰接件的转轴为铰接轴,所述气压防震器包括滑腔和与之相连的活塞,活塞插入滑腔中,在滑腔上有小孔,小孔中有活门,活门和滑腔活动链接,活塞和滑腔分别安装于承铰接件和被铰接件,并以铰接轴心为转矩中心。
- 根据权利要求8所述定管高效光热发电站,其特征在于:以固连于承铰接件的心轴为铰接轴的液压防震器包括腔壳、挡板、活门和活门支壳与心轴,挡板固接于和承铰接件固连的心轴,腔壳穿在所述 心轴上并与心轴作静密封连接,腔壳包含挡板和活门支壳之一部分,并与该部分作动密封连接,活门与其支壳活动连接,并以其为载体,活门和挡板之间所夹的空间能够扩大或缩小,活门支壳和铰接件固连,因而和所述心轴成动密封,在腔壳与心轴和活门支壳之间充填工作介质;以固连于铰接件的转轴为铰接轴的液压防震器包括腔壳、挡板、活门和活门支壳与转轴,腔壳和挡板固连于转轴,载有活门的活门支壳与承铰接件固连,上述包含挡板和活门支壳一部分的静止的腔壳此时变为转动的腔壳并与转轴固连构成静密封,而与活门支壳仍然构成动密封,在腔壳和转轴及活门支壳之间充填工作介质。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710518620 | 2017-06-29 | ||
CN201710518620.8 | 2017-06-29 | ||
CN201710944244.9 | 2017-10-11 | ||
CN201710944244.9A CN107906769A (zh) | 2017-06-29 | 2017-10-11 | 定管高效光热发电站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019001089A1 true WO2019001089A1 (zh) | 2019-01-03 |
Family
ID=61841289
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082806 WO2019001089A1 (zh) | 2017-06-29 | 2018-04-12 | 定管高效光热发电站 |
PCT/CN2019/088970 WO2020001221A1 (zh) | 2017-06-29 | 2019-05-29 | 合成高效光热发电站 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088970 WO2020001221A1 (zh) | 2017-06-29 | 2019-05-29 | 合成高效光热发电站 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN107906769A (zh) |
WO (2) | WO2019001089A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110185591A (zh) * | 2019-07-05 | 2019-08-30 | 河北道荣新能源科技有限公司 | 一种用于农业产业园的光热发电供能系统 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107906769A (zh) * | 2017-06-29 | 2018-04-13 | 王存义 | 定管高效光热发电站 |
CN110657591A (zh) * | 2018-06-29 | 2020-01-07 | 王存义 | 碟储高聚光热发电站 |
CN113623876A (zh) * | 2020-05-08 | 2021-11-09 | 王存义 | 阳光锅炉机 |
CN113623877A (zh) * | 2020-05-08 | 2021-11-09 | 王存义 | 阳光高热机 |
CN118481939B (zh) * | 2024-07-02 | 2024-12-13 | 鑫泰光电(山东)有限公司 | 一种光热发电系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392378A (zh) * | 2001-06-15 | 2003-01-22 | 王存义 | 功倍太阳万能器 |
CN202560494U (zh) * | 2012-05-03 | 2012-11-28 | 中国华能集团清洁能源技术研究院有限公司 | 一种集成式太阳能热发电系统 |
US20130086904A1 (en) * | 2010-04-19 | 2013-04-11 | Dave Bent | Solar Thermal Power Plant |
CN103899503A (zh) * | 2012-12-28 | 2014-07-02 | 光之源工业(以色列)有限公司 | 热电站 |
CN104583686A (zh) * | 2012-06-29 | 2015-04-29 | 金振暎 | 聚光太阳能发电系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1432767A (zh) * | 2002-03-18 | 2003-07-30 | 王存义 | U管太阳万能器 |
JP2010162780A (ja) * | 2009-01-16 | 2010-07-29 | Seiko Epson Corp | 情報機器の防水構造 |
CN101634497A (zh) * | 2009-08-05 | 2010-01-27 | 张福隆 | 真空储热反射镜追日太阳能热水器及太阳灶 |
CN106602973A (zh) * | 2015-10-15 | 2017-04-26 | 王存义 | 板立风光电热倍增机 |
CN107906769A (zh) * | 2017-06-29 | 2018-04-13 | 王存义 | 定管高效光热发电站 |
CN208890704U (zh) * | 2017-06-29 | 2019-05-21 | 王存义 | 定管高效光热发电站 |
-
2017
- 2017-10-11 CN CN201710944244.9A patent/CN107906769A/zh active Pending
-
2018
- 2018-04-12 WO PCT/CN2018/082806 patent/WO2019001089A1/zh active Application Filing
- 2018-06-29 CN CN201810702609.1A patent/CN109981032A/zh active Pending
-
2019
- 2019-05-29 WO PCT/CN2019/088970 patent/WO2020001221A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392378A (zh) * | 2001-06-15 | 2003-01-22 | 王存义 | 功倍太阳万能器 |
US20130086904A1 (en) * | 2010-04-19 | 2013-04-11 | Dave Bent | Solar Thermal Power Plant |
CN202560494U (zh) * | 2012-05-03 | 2012-11-28 | 中国华能集团清洁能源技术研究院有限公司 | 一种集成式太阳能热发电系统 |
CN104583686A (zh) * | 2012-06-29 | 2015-04-29 | 金振暎 | 聚光太阳能发电系统 |
CN103899503A (zh) * | 2012-12-28 | 2014-07-02 | 光之源工业(以色列)有限公司 | 热电站 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110185591A (zh) * | 2019-07-05 | 2019-08-30 | 河北道荣新能源科技有限公司 | 一种用于农业产业园的光热发电供能系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107906769A (zh) | 2018-04-13 |
WO2020001221A1 (zh) | 2020-01-02 |
CN109981032A (zh) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020001221A1 (zh) | 合成高效光热发电站 | |
CN208578679U (zh) | 一种基于塔式定日镜的改良布雷顿光热发电系统 | |
CN102235759B (zh) | 热驱动的液体自循环方法、装置及应用这些装置的液体自循环系统 | |
Barone et al. | Solar thermal collectors | |
US9989278B1 (en) | Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same | |
ES2427835T3 (es) | Aparato para obtener electricidad a partir de energía solar | |
AU2013270295B2 (en) | Solar photo-thermal receiving device | |
CN204084894U (zh) | 一种使用脉动热管的线性菲涅尔式太阳能集热器 | |
CN105042891B (zh) | 一种碟式太阳能集热利用系统 | |
US20130152914A1 (en) | Panel with longitudinal mirrors for a solar power plant | |
US4148293A (en) | Solar energy receptor apparatus | |
CN103062743B (zh) | 一种腔体式自然循环式太阳能饱和蒸汽锅炉 | |
CN208890704U (zh) | 定管高效光热发电站 | |
Patel et al. | Comparative study of thermal performance of spiral tube solar water heater with straight tube solar water heater | |
CN106712712B (zh) | 一种光伏热电一体式综合发电装置 | |
CN209639285U (zh) | 一种基于v型吸热壁腔式太阳能吸收器的碟式发电装置 | |
Collares-Pereira et al. | Linear Fresnel reflector (LFR) plants using superheated steam, molten salts, and other heat transfer fluids | |
CN206988033U (zh) | 一种蝶式熔盐光热发电系统 | |
CN108375212B (zh) | 一种用于碟式太阳能反射镜聚热的集热管 | |
CN211903325U (zh) | 平板型真空管太阳能集热器 | |
CN202734300U (zh) | 一种太阳能光热接收装置 | |
Valenzuela | STE plants with parabolic trough collectors | |
WO2020001463A1 (zh) | 碟储高聚光热发电站 | |
CN104236131A (zh) | 一种带有相变蓄热室模块的太阳能平板集热器 | |
Henkel | New solar thermal energy applications for commercial, industrial, and government facilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824644 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18824644 Country of ref document: EP Kind code of ref document: A1 |