WO2019000642A1 - A method for preparing a flexible perovskite solar cell by blade coating - Google Patents

A method for preparing a flexible perovskite solar cell by blade coating Download PDF

Info

Publication number
WO2019000642A1
WO2019000642A1 PCT/CN2017/100919 CN2017100919W WO2019000642A1 WO 2019000642 A1 WO2019000642 A1 WO 2019000642A1 CN 2017100919 W CN2017100919 W CN 2017100919W WO 2019000642 A1 WO2019000642 A1 WO 2019000642A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
blade coating
perovskite
layer
hole transport
Prior art date
Application number
PCT/CN2017/100919
Other languages
French (fr)
Inventor
Baomin Xu
Jishu GAO
Hang HU
Jiabang CHEN
Chang Liu
Jianchang Wu
Original Assignee
South University Of Science And Technology Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South University Of Science And Technology Of China filed Critical South University Of Science And Technology Of China
Publication of WO2019000642A1 publication Critical patent/WO2019000642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure belongs to the field related to the energy material technology, and relates to a method for preparing a flexible perovskite solar cell, especially to a method for preparing a flexible perovskite solar cell by blade coating.
  • Perovskite solar cell is a novel solar cell evolved from the dye-sensitized solar cell.
  • the perovskite layer first absorbs photons to produce electron-hole pairs when accepting irradiation from sunlight. Due to the difference in the exciton binding energy of the perovskite material, these carriers either become free carriers or form excitons. Then, these uncomposited electrons and holes are collected separately by the electron transport layer and the hole transport layer, i.e., the electrons are transported from the perovskite layer to the electron transport layer and finally collected by the conductive substrate; and the holes are transported from the perovskite layer to the hole transport layer and finally collected by the metal electrode.
  • Perovskite solar cell comprises from bottom to top a glass conductive substrate (FTO) , an electron transport layer (ETM) , a perovskite light absorption layer (including a porous support) , a hole transport layer (HTM) and a back electrode, respectively.
  • FTO glass conductive substrate
  • ETM electron transport layer
  • HTM hole transport layer
  • the spin coating method is still the major method, and a uniform perovskite film can be obtained more conveniently by this method.
  • this technique has the disadvantages of great loss of raw materials, high cost, low rate, and is unsuitable for large-scale industrial production.
  • the perovskite layer and other major related functional layers are mainly prepared in a glove box depending on the protection from inert gas. This is a huge restriction to the future mass production of the perovskite.
  • Conductive glass substrate is commonly used in the current technologies, however the glass substrate has strong brittleness, and cannot be bent, which will bring limitations to the subsequent preparation of the functional layers, meanwhile seriously restricting the large-scale use of the perovskite solar cells.
  • the present disclosure aims at providing a simple and efficient method for preparing a flexible perovskite solar cell by use of blade coating, which mainly shows benefits of more simple and efficient printing preparation method, low requirement for the equipment and cost saving, moreover a high-quality flexible perovskite solar cell can be prepared efficiently in the air using the method according to the present disclosure.
  • the present disclosure provides a method for preparing a flexible perovskite solar cell by blade coating, which comprises the following step:
  • a hole transport layer, a perovskite layer and an electron transport layer can be prepared successively on the flexible conductive substrate by a blade coating method, then a back electrode is prepared on the electron transport layer.
  • an electron transport layer, a perovskite layer and a hole transport layer can be prepared successively on a flexible conductive substrate by a blade coating method, then a back electrode is prepared on the hole transport layer.
  • the back electrode is any one or a combination of both of a metal electrode and a carbon electrode.
  • the method comprises the following steps:
  • the flexible conductive substrate is heated at 60°C-70°C, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 ⁇ m-60 ⁇ m;
  • the temperature of the hole transport layer is 130°C-135°C
  • the temperature of the mixed solution is 80°C-90°C
  • the blade coating speed is 15 mm/s-20 mm/s
  • the height of the blade is 50 ⁇ m-80 ⁇ m
  • the temperature of the perovskite layer is 25°C-30°C
  • the blade coating speed is 18 mm/s-25 mm/s
  • the height of the blade is 65 ⁇ m-80 ⁇ m
  • the method for allowing the temperature of the hole transport layer to be 130°C in step (2) can be in such a manner that the composite layer composed of the flexible conductive substrate and the hole transport layer is placed on a hot stage which is heated to 130°C.
  • the composite layer is immediately removed away from the hot stage after the completion of blade coating in step (2) .
  • the method comprises the following steps:
  • the temperature of the flexible conductive substrate is 25°C-30°C
  • the blade coating speed is 18 mm/s-25 mm/s
  • the height of the blade is 65 ⁇ m-80 ⁇ m
  • the temperature of the electron transport layer is 130°C-135°C
  • the temperature of the mixed solution is 80°C-90°C
  • the blade coating speed is 15 mm/s-20 mm/s
  • the height of the blade is 50 ⁇ m-80 ⁇ m
  • the perovskite layer is heated at a temperature of 60°C-70°C, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 ⁇ m-60 ⁇ m;
  • the method for allowing the temperature of the electron transport layer to be 130°C in step (2) can be in such a manner that the composite layer composed of the flexible conductive substrate and the electron transport layer is placed on a hot stage which is heated to 130°C.
  • the size of the flexible conductive substrate is (2 cm-4 cm) ⁇ (2 cm-4 cm) , for example 2 cm ⁇ 2 cm, 3 cm ⁇ 3 cm or 4 cm ⁇ 4 cm, and the like.
  • the size of the flexible conductive substrate according to the present disclosure is preferably (2 cm-4 cm) ⁇ (2 cm-4 cm) , such that more uniform film-forming area can be obtained on a larger area by use of the blade coating process, and the performance of the resulting flexible perovskite solar cell can be improved by selecting a uniform film-forming area for the subsequent steps.
  • the flexible conductive substrate is a transparent polymer film with indium tin oxide (ITO) , preferably any one of polyethylene naphthalate (PEN) /ITO, polyethylene terephthalate (PET) /ITO or polyimide (PI) /ITO.
  • ITO indium tin oxide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PI polyimide
  • the solution of the hole transport layer is a mixed solution of poly (3, 4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT: PSS) , polystyrene sulfonic acid (PSSA) and isopropanol.
  • PEDOT polyethylenedioxythiophene
  • PSSA polystyrene sulfonic acid
  • the mass ratio of (PEDOT: PSS) , PSSA and isopropanol is 1: (0.25-0.5) : (3-5) .
  • the solution of the hole transport layer is filtered prior to use in order to improve the uniformity and increase the film-forming effect.
  • the ratio of the volume of the solution of the hole transport layer to the area of the flexible conductive substrate is 35 ⁇ L/ (1.5 cm ⁇ 1.5 cm) , and under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained.
  • the precursor solution of the perovskite is prepared by the method of mixing lead acetate and methylamine iodide in a molar ratio of 1: 1, then dissolving the resulting mixture in N,N-dimethylformamide (DMF) .
  • DMF N,N-dimethylformamide
  • the concentration of the precursor solution of the perovskite is 500 mg/ml-600 mg/ml, for example 500 mg/ml, 540 mg/ml, 550 mg/ml, 560 mg/ml, 580 mg/ml or 600 mg/ml, and the like, and preferably 580 mg/ml.
  • the ratio of the volume of the precursor solution of the perovskite to the area of the flexible conductive substrate is 70 ⁇ L/ (1.5 cm ⁇ 1.5 cm) . Under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained, and the contact with the electron transport layer or the hole transport layer is better as well.
  • the precursor solution of the electron transport layer is a solution of methyl [6.6] -phenyl-C61-butyrate (PCBM) and/or methyl [6.6] -phenyl-C71-butyrate (PCBM) in chlorobenzene.
  • PCBM methyl [6.6] -phenyl-C61-butyrate
  • PCBM methyl [6.6] -phenyl-C71-butyrate
  • the concentration of the precursor solution of the electron transport layer is 15 mg/ml-20 mg/ml, and preferably 20 mg/ml.
  • the solution of the electron transport layer is filtered prior to use in order to improve the uniformity and increase the film-forming effect.
  • the ratio of the volume of the precursor solution of the electron transport layer to the area of the flexible conductive substrate is (35 ⁇ L-40 ⁇ L) / (1.5 cm ⁇ 1.5 cm) , and under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained, and the contact with the perovskite layer is better as well.
  • the standing time is 25 min-35 min, and preferably 30 min.
  • the method for preparing a back electrode on the perovskite layer is any one of evaporation, screen printing or printing.
  • the method further comprises a step of cutting or cropping the flexible solar cell for test or for preparing the device.
  • the present disclosure has the following beneficial effects:
  • the present disclosure adopts a transparent polymer film flexible substrate with ITO instead of the traditional glass substrate, and all the functional layers (the hole transport layer, the perovskite layer and the electron transport layer) are coated with a blade coating method instead of a spin coating method, furthermore, the lead source is limited to lead acetate and the parameters such as the temperature of the blade coating solution during blade coating, the temperature of the flexible conductive substrate or the composite substrate (i.e.
  • a composite substrate consisted of a flexible conductive substrate and a hole transport layer and/or an electron transport layer
  • the blade coating speed and the height of blade, etc. are adjusted, such that a high-quality flexible perovskite solar cell can be prepared efficiently in the air (air humidity is 30 or lower) , thereby replacing the preparation in a glove box, making the operation easier and reducing the cost, meanwhile reducing the effect of introduction of unfavorable factors on the preparation method and properties of the products.
  • Figure 1 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 1.
  • Figure 2 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 2.
  • Figure 3 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 3.
  • Figure 4 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 4.
  • the present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating a hole transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the hole transport layer, then coating an electron transport layer on the perovskite layer, and finally evaporating a metal electrode.
  • the flexible conductive substrate was heated at 60°C, the blade coating speed was 20 mm/s, and the height of the blade was 50 ⁇ m;
  • the temperature of the hole transport layer was 130°C
  • the temperature of the mixed solution was 85°C
  • the blade coating speed was 20 mm/s
  • the height of the blade was 50 ⁇ m
  • the temperature of the perovskite layer was 25°C
  • the blade coating speed was 20 mm/s
  • the height of the blade was 75 ⁇ m
  • the present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating an electron transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the electron transport layer, then coating a hole transport layer on the perovskite layer, and finally evaporating a metal electrode.
  • the temperature of the flexible conductive substrate was 25°C-30°C, the blade coating speed was 18 mm/s, and the height of the blade was 75 ⁇ m;
  • the temperature of the electron transport layer was 132°C
  • the temperature of the mixed solution was 90°C
  • the blade coating speed was 15 mm/s
  • the height of the blade was 80 ⁇ m
  • the temperature of the perovskite layer was 68°C, the blade coating speed was 25mm/s, and the height of the blade was 63 ⁇ m;
  • the present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating a hole transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the hole transport layer, then coating an electron transport layer on the perovskite layer, and finally printing a carbon electrode.
  • the flexible conductive substrate was heated at 65°C, the blade coating speed was 25 mm/s, and the height of the blade was 60 ⁇ m;
  • the temperature of the hole transport layer was 135°C
  • the temperature of the mixed solution was 88°C
  • the blade coating speed was 22 mm/s
  • the height of the blade was 65 ⁇ m
  • the present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating an electron transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the electron transport layer, then coating a hole transport layer on the perovskite layer, and finally printing a carbon electrode.
  • blade coating 45 ⁇ L of a solution of an electron transport layer (a solution of PCBM in chlorobenzene with a concentration of 30 mg/ml) on a flexible conductive substrate (1.5 cm ⁇ 1.5 cm), which was then allowed to stand for 40 min and dried to obtain an electron transport layer on the flexible conductive substrate;
  • the temperature of the electron transport layer was 130°C
  • the temperature of the mixed solution was 90°C
  • the blade coating speed was 20 mm/s
  • the height of the blade was 65 ⁇ m
  • the temperature of the perovskite layer was 70°C
  • the blade coating speed was 20 mm/s
  • the height of the blade was 60 ⁇ m

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for preparing a flexible perovskite solar cell by blade coating, which comprises the following steps: preparing a hole transport layer, a perovskite layer and an electron transport layer on a flexible conductive substrate by a blade coating method. The method is simple in preparation process and has low requirements for the equipment, the advantages from using the blade coating method lie in that the costs can be saved to the greatest extent and the green production can be realized.

Description

A METHOD FOR PREPARING A FLEXIBLE PEROVSKITE SOLAR CELL BY BLADE COATING FIELD
The present disclosure belongs to the field related to the energy material technology, and relates to a method for preparing a flexible perovskite solar cell, especially to a method for preparing a flexible perovskite solar cell by blade coating.
BACKGROUND
Perovskite solar cell is a novel solar cell evolved from the dye-sensitized solar cell. The perovskite layer first absorbs photons to produce electron-hole pairs when accepting irradiation from sunlight. Due to the difference in the exciton binding energy of the perovskite material, these carriers either become free carriers or form excitons. Then, these uncomposited electrons and holes are collected separately by the electron transport layer and the hole transport layer, i.e., the electrons are transported from the perovskite layer to the electron transport layer and finally collected by the conductive substrate; and the holes are transported from the perovskite layer to the hole transport layer and finally collected by the metal electrode. Perovskite solar cell comprises from bottom to top a glass conductive substrate (FTO) , an electron transport layer (ETM) , a perovskite light absorption layer (including a porous support) , a hole transport layer (HTM) and a back electrode, respectively.
In the existing methods, the spin coating method is still the major method, and a uniform perovskite film can be obtained more conveniently by this method. However, this technique has the disadvantages of great loss of raw materials, high cost, low rate, and is unsuitable for large-scale industrial production. In the current technologies, the perovskite layer and other major related functional layers are mainly prepared in a glove box depending on the protection from inert gas. This is a huge restriction to the future mass production of the perovskite. Conductive glass substrate is commonly used in the current technologies, however the glass substrate has strong brittleness, and cannot be bent, which will bring limitations to the subsequent preparation of the functional layers, meanwhile seriously restricting the large-scale use of the perovskite solar cells.
SUMMARY
In view of the above-mentioned problems existing in the related technics, the present disclosure aims at providing a simple and efficient method for preparing a flexible perovskite solar cell by use of blade coating, which mainly shows benefits of more simple and efficient printing preparation method, low requirement for the equipment and cost saving, moreover a high-quality flexible perovskite solar cell can be prepared efficiently in the air using the method according to the present disclosure.
To achieve the above objects, the present disclosure adopts the following technical solution:
The present disclosure provides a method for preparing a flexible perovskite solar cell by blade coating, which comprises the following step:
preparing a hole transport layer, a perovskite layer and an electron transport layer on a flexible conductive substrate by a blade coating method.
In the present disclosure, a hole transport layer, a perovskite layer and an electron transport layer can be prepared successively on the flexible conductive substrate by a blade coating method, then a back electrode is prepared on the electron transport layer. Alternatively, an electron transport layer, a perovskite layer and a hole transport layer can be prepared successively on a flexible conductive substrate by a blade coating method, then a back electrode is prepared on the hole transport layer.
Preferably, the back electrode is any one or a combination of both of a metal electrode and a carbon electrode.
As a preferred technical solution of the method according to the present disclosure, the method comprises the following steps:
(1) blade coating a precursor solution of a hole transport layer on a flexible conductive substrate, then annealing at 110℃-120℃ for 15 min-20 min to obtain a hole transport layer on the flexible conductive substrate;
wherein during blade coating, the flexible conductive substrate is heated at 60℃-70℃, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 μm-60 μm;
(2) blade coating a precursor solution of perovskite on the hole transport layer, then annealing at 90℃-95℃ for 10 min-30 min to obtain a perovskite layer on the hole transport layer;
wherein during blade coating, the temperature of the hole transport layer is 130℃-135℃, the temperature of the mixed solution is 80℃-90℃, the blade coating speed is 15 mm/s-20 mm/s, and the height of the blade is 50 μm-80 μm;
(3) blade coating a solution of an electron transport layer on the perovskite layer, which is then allowed to stand and dried to obtain an electron transport layer on the perovskite layer;
wherein during blade coating, the temperature of the perovskite layer is 25℃-30℃, the blade coating speed is 18 mm/s-25 mm/s, and the height of the blade is 65 μm-80 μm;
(4) preparing a back electrode on the electron transport layer to obtain a flexible perovskite solar cell.
In this preferred technical solution, the method for allowing the temperature of the hole transport layer to be 130℃ in step (2) can be in such a manner that the composite layer composed of the flexible conductive substrate and the hole transport layer is placed on a hot stage which is  heated to 130℃.
In this preferred technical solution, the composite layer is immediately removed away from the hot stage after the completion of blade coating in step (2) .
As a further preferred technical solution of the method according to the present disclosure, the method comprises the following steps:
(1) blade coating a solution of an electron transport layer on a flexible conductive substrate, which is then allowed to stand and dried to obtain an electron transport layer on the flexible conductive substrate;
wherein during blade coating, the temperature of the flexible conductive substrate is 25℃-30℃, the blade coating speed is 18 mm/s-25 mm/s, and the height of the blade is 65 μm-80 μm;
(2) blade coating a precursor solution of perovskite on the electron transport layer, then annealing at 90℃-95℃ for 10 min-30 min to obtain a perovskite layer on the electron transport layer;
wherein during blade coating, the temperature of the electron transport layer is 130℃-135℃, the temperature of the mixed solution is 80℃-90℃, the blade coating speed is 15 mm/s-20 mm/s, and the height of the blade is 50 μm-80 μm;
(3) blade coating a solution of a hole transport layer on the perovskite layer, then annealing at 110℃-120℃ for 15 min-20 min to obtain a hole transport layer on the perovskite layer;
wherein during blade coating, the perovskite layer is heated at a temperature of 60℃-70℃, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 μm-60 μm;
(4) preparing a back electrode on the hole transport layer to obtain a flexible perovskite solar cell.
In this preferred technical solution, the method for allowing the temperature of the electron transport layer to be 130℃ in step (2) can be in such a manner that the composite layer composed of the flexible conductive substrate and the electron transport layer is placed on a hot stage which is heated to 130℃.
Preferably, the size of the flexible conductive substrate is (2 cm-4 cm) × (2 cm-4 cm) , for example 2 cm × 2 cm, 3 cm × 3 cm or 4 cm × 4 cm, and the like.
The size of the flexible conductive substrate according to the present disclosure is preferably (2 cm-4 cm) × (2 cm-4 cm) , such that more uniform film-forming area can be obtained on a larger area by use of the blade coating process, and the performance of the resulting flexible perovskite solar cell can be improved by selecting a uniform film-forming area for the subsequent steps.
Preferably, the flexible conductive substrate is a transparent polymer film with indium tin  oxide (ITO) , preferably any one of polyethylene naphthalate (PEN) /ITO, polyethylene terephthalate (PET) /ITO or polyimide (PI) /ITO.
Preferably, the solution of the hole transport layer is a mixed solution of poly (3, 4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT: PSS) , polystyrene sulfonic acid (PSSA) and isopropanol.
Preferably, in the solution of the hole transport layer, the mass ratio of (PEDOT: PSS) , PSSA and isopropanol is 1: (0.25-0.5) : (3-5) .
Preferably, the solution of the hole transport layer is filtered prior to use in order to improve the uniformity and increase the film-forming effect.
Preferably, the ratio of the volume of the solution of the hole transport layer to the area of the flexible conductive substrate is 35 μL/ (1.5 cm × 1.5 cm) , and under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained.
Preferably, the precursor solution of the perovskite is prepared by the method of mixing lead acetate and methylamine iodide in a molar ratio of 1: 1, then dissolving the resulting mixture in N,N-dimethylformamide (DMF) .
Preferably, the concentration of the precursor solution of the perovskite is 500 mg/ml-600 mg/ml, for example 500 mg/ml, 540 mg/ml, 550 mg/ml, 560 mg/ml, 580 mg/ml or 600 mg/ml, and the like, and preferably 580 mg/ml.
Preferably, the ratio of the volume of the precursor solution of the perovskite to the area of the flexible conductive substrate is 70 μL/ (1.5 cm × 1.5 cm) . Under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained, and the contact with the electron transport layer or the hole transport layer is better as well.
The precursor solution of the electron transport layer is a solution of methyl [6.6] -phenyl-C61-butyrate (PCBM) and/or methyl [6.6] -phenyl-C71-butyrate (PCBM) in chlorobenzene.
Preferably, the concentration of the precursor solution of the electron transport layer is 15 mg/ml-20 mg/ml, and preferably 20 mg/ml.
Preferably, the solution of the electron transport layer is filtered prior to use in order to improve the uniformity and increase the film-forming effect.
Preferably, the ratio of the volume of the precursor solution of the electron transport layer to the area of the flexible conductive substrate is (35 μL-40 μL) / (1.5 cm × 1.5 cm) , and under the condition of such ratio, a suitable film-forming thickness and good uniformity can be obtained, and the contact with the perovskite layer is better as well.
Preferably, the standing time is 25 min-35 min, and preferably 30 min.
Preferably, the method for preparing a back electrode on the perovskite layer is any one of evaporation, screen printing or printing.
Preferably, the method further comprises a step of cutting or cropping the flexible solar cell for test or for preparing the device.
Compared with the related technics, the present disclosure has the following beneficial effects:
(1) the present disclosure adopts a transparent polymer film flexible substrate with ITO instead of the traditional glass substrate, and all the functional layers (the hole transport layer, the perovskite layer and the electron transport layer) are coated with a blade coating method instead of a spin coating method, furthermore, the lead source is limited to lead acetate and the parameters such as the temperature of the blade coating solution during blade coating, the temperature of the flexible conductive substrate or the composite substrate (i.e. a composite substrate consisted of a flexible conductive substrate and a hole transport layer and/or an electron transport layer) , the blade coating speed and the height of blade, etc., are adjusted, such that a high-quality flexible perovskite solar cell can be prepared efficiently in the air (air humidity is 30 or lower) , thereby replacing the preparation in a glove box, making the operation easier and reducing the cost, meanwhile reducing the effect of introduction of unfavorable factors on the preparation method and properties of the products.
(2) The process for preparing the flexible perovskite solar cell according to the present disclosure is simple and has low requirements for the equipment, the advantages from using the blade coating method lie in that the costs can be saved to the greatest extent and the green production can be realized; use of flexible substrate to replace the traditional glass substrate can achieve the flexibility of the perovskite solar cell, broaden the application scope of the perovskite solar cell, and open a door for marketization of the perovskite solar cell.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 1.
Figure 2 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 2.
Figure 3 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 3.
Figure 4 is a schematic diagram of the structure of a flexible perovskite solar cell according to Example 4.
DETAILED DESCRIPTION
The technical solution of the present disclosure will be further described below by way of  specific embodiments in combination with accompanying drawings.
Example 1
The present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating a hole transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the hole transport layer, then coating an electron transport layer on the perovskite layer, and finally evaporating a metal electrode.
The schematic diagram of the structure of a flexible perovskite solar cell according to the present example is shown in Figure 1.
Preparation:
(1) blade coating 35 μL of a precursor solution of a hole transport layer (a mixed solution obtained by mixing (PEDOT: PSS) , PSSA and isopropanol in a mass ratio of 1: 0.25: 3) on a flexible conductive substrate (1.5 cm × 1.5 cm) , then annealing at 110℃ for 15 min to obtain a hole transport layer on the flexible conductive substrate;
wherein during blade coating, the flexible conductive substrate was heated at 60℃, the blade coating speed was 20 mm/s, and the height of the blade was 50 μm;
(2) blade coating 70 μL of a precursor solution of perovskite (with a concentration of 580 mg/ml) on the hole transport layer, then annealing at 90℃ for 10 min to obtain a perovskite layer on the hole transport layer;
wherein during blade coating, the temperature of the hole transport layer was 130℃, the temperature of the mixed solution was 85℃, the blade coating speed was 20 mm/s, and the height of the blade was 50 μm;
(3) blade coating 40 μL of a precursor solution of an electron transport layer (asolution of PCBM in chlorobenzene with a concentration of 20 mg/ml) on the perovskite layer, which was then allowed to stand for 30 min and dried to obtain an electron transport layer on the perovskite layer;
wherein during blade coating, the temperature of the perovskite layer was 25℃, the blade coating speed was 20 mm/s, and the height of the blade was 75 μm;
(4) evaporating Ag electrode on the electron transport layer to obtain a flexible perovskite solar cell.
Example 2
The present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating an electron transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the electron transport layer, then coating a hole transport layer on the perovskite layer, and finally  evaporating a metal electrode.
The schematic diagram of the structure of a flexible perovskite solar cell according to the present example is shown in Figure 2.
(1) blade coating 50 μL of a solution of an electron transport layer (asolution of PCBM in chlorobenzene with a concentration of 5 mg/ml) on a flexible conductive substrate (2 cm × 2 cm) , which was then allowed to stand for 50 min and dried to obtain an electron transport layer on the flexible conductive substrate, a uniform film-forming area was selected for the subsequent steps;
wherein during blade coating, the temperature of the flexible conductive substrate was 25℃-30℃, the blade coating speed was 18 mm/s, and the height of the blade was 75 μm;
(2) blade coating 50 μl of a precursor solution of perovskite on the electron transport layer, then annealing at 95℃ for 30 min to obtain a perovskite layer on the electron transport layer;
wherein during blade coating, the temperature of the electron transport layer was 132℃, the temperature of the mixed solution was 90℃, the blade coating speed was 15 mm/s, and the height of the blade was 80 μm;
(3) blade coating a solution of a hole transport layer on the perovskite layer, then annealing at 116℃ for 15 min to obtain a hole transport layer on the perovskite layer;
wherein during blade coating, the temperature of the perovskite layer was 68℃, the blade coating speed was 25mm/s, and the height of the blade was 63 μm;
(4) evaporating Ag electrode on the hole transport layer to obtain a flexible perovskite solar cell.
Example 3
The present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating a hole transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the hole transport layer, then coating an electron transport layer on the perovskite layer, and finally printing a carbon electrode.
The schematic diagram of the structure of a flexible perovskite solar cell according to the present example is shown in Figure 3.
(1) blade coating 30 μL of a precursor solution of a hole transport layer (a mixed solution obtained by mixing (PEDOT: PSS) , PSSA and isopropanol in a mass ratio of 1: 0.5: 4) on a flexible conductive substrate (3 cm × 3 cm) , then annealing at 120℃ for 18 min to obtain a hole transport layer on the flexible conductive substrate, a uniform film-forming area was selected for the subsequent steps;
wherein during blade coating, the flexible conductive substrate was heated at 65℃, the blade  coating speed was 25 mm/s, and the height of the blade was 60 μm;
(2) blade coating 80 μL of a precursor solution of perovskite on the hole transport layer, then annealing at 95℃ for 20 min to obtain a perovskite layer on the hole transport layer;
wherein during blade coating, the temperature of the hole transport layer was 135℃, the temperature of the mixed solution was 88℃, the blade coating speed was 22 mm/s, and the height of the blade was 65 μm;
(3) blade coating 55 μL of a precursor solution of an electron transport layer (a solution of PCBM in chlorobenzene with a concentration of 15 mg/ml) on the perovskite layer, which was then allowed to stand for 45 min and dried to obtain an electron transport layer on the perovskite layer; wherein during blade coating, the temperature of the perovskite layer was 30℃, the blade coating speed was 20 mm/s, and the height of the blade was 80 μm;
(4) printing carbon electrode on the electron transport layer to obtain a flexible perovskite solar cell.
Example 4
The present example provides a method for preparing a flexible perovskite solar cell by blade coating, specifically the method comprises the steps of first coating an electron transport layer on a flexible substrate, followed by coating a perovskite layer as a photosensitive layer on the basis of the electron transport layer, then coating a hole transport layer on the perovskite layer, and finally printing a carbon electrode.
The schematic diagram of the structure of a flexible perovskite solar cell according to the present example is shown in Figure 4.
(1) blade coating 45 μL of a solution of an electron transport layer (a solution of PCBM in chlorobenzene with a concentration of 30 mg/ml) on a flexible conductive substrate (1.5 cm × 1.5 cm), which was then allowed to stand for 40 min and dried to obtain an electron transport layer on the flexible conductive substrate;
(2) blade coating 90 μl of a precursor solution of perovskite on the electron transport layer, then annealing at 90℃ for 12 min to obtain a perovskite layer on the electron transport layer;
wherein during blade coating, the temperature of the electron transport layer was 130℃, the temperature of the mixed solution was 90℃, the blade coating speed was 20 mm/s, and the height of the blade was 65 μm;
(3) blade coating a solution of a hole transport layer on the perovskite layer, then annealing at 115℃ for 20 min to obtain a hole transport layer on the perovskite layer;
wherein during blade coating, the temperature of the perovskite layer was 70℃, the blade coating speed was 20 mm/s, and the height of the blade was 60 μm;
(4) printing a carbon back electrode on the hole transport layer to obtain a flexible perovskite solar cell.
Applicant has stated that although the detailed methods of the present disclosure have been described by the above examples in the present disclosure, the present disclosure is not limited thereto, that is to say, it is not meant that the present disclosure has to be implemented depending on the above detailed methods. It will be apparent to those skilled in the art that any improvements made to the present disclosure, equivalent replacements to the raw materials of the products of the present disclosure and addition of adjuvant ingredients, and selections of the specific implementations, etc., all fall within the protection scope and the disclosure scope of the present disclosure.

Claims (10)

  1. A method for preparing a flexible perovskite solar cell by blade coating, wherein the method comprises the following step:
    preparing a hole transport layer, a perovskite layer and an electron transport layer on a flexible conductive substrate by a blade coating method.
  2. The method according to claim 1, wherein a hole transport layer, a perovskite layer and an electron transport layer are prepared successively on a flexible conductive substrate by a blade coating method;
    preferably, an electron transport layer, a perovskite layer and a hole transport layer are prepared successively on a flexible conductive substrate by a blade coating method.
  3. The method according to claim 1 or 2, wherein the method further comprises the step of preparing a back electrode on the hole transport layer or the electron transport layer;
    preferably, the back electrode is any one or a combination of both of a metal electrode and a carbon electrode.
  4. The method according to any one of claims 1-3, wherein the method comprises the following steps:
    (1) blade coating a precursor solution of a hole transport layer on a flexible conductive substrate, then annealing at 110℃-120℃ for 15 min-20 min to obtain a hole transport layer on the flexible conductive substrate;
    wherein during blade coating, the flexible conductive substrate is heated at 60℃-70℃, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 μm-60 μm;
    (2) blade coating a precursor solution of perovskite on the hole transport layer, then annealing at 90℃-95℃ for 10 min-30 min to obtain a perovskite layer on the hole transport layer;
    wherein during blade coating, the temperature of the hole transport layer is 130℃-135℃, the temperature of the mixed solution is 80℃-90℃, the blade coating speed is 15 mm/s-20 mm/s, and the height of the blade is 50 μm-80 μm;
    (3) blade coating a solution of an electron transport layer on the perovskite layer, which is then allowed to stand and dried to obtain an electron transport layer on the perovskite layer;
    wherein during blade coating, the temperature of the perovskite layer is 25℃-30℃, the blade coating speed is 18 mm/s-25 mm/s, and the height of the blade is 65 μm-80 μm;
    (4) preparing a back electrode on the electron transport layer to obtain a flexible perovskite solar cell.
  5. The method according to any one of claims 1-3, wherein the method comprises the following steps:
    (1) blade coating a solution of an electron transport layer on a flexible conductive substrate, which is then allowed to stand and dried to obtain an electron transport layer on the flexible  conductive substrate;
    wherein during blade coating, the temperature of the flexible conductive substrate is 25℃-30℃, the blade coating speed is 18 mm/s-25 mm/s, and the height of the blade is 65 μm-80 μm;
    (2) blade coating a precursor solution of a perovskite on the electron transport layer, then annealing at 90℃-95℃ for 10 min-30 min to obtain a perovskite layer on the electron transport layer;
    wherein during blade coating, the temperature of the electron transport layer is 130℃-135℃, the temperature of the mixed solution is 80℃-90℃, the blade coating speed is 15 mm/s-20 mm/s, and the height of the blade is 50 μm-80 μm;
    (3) blade coating a solution of a hole transport layer on the perovskite layer, then annealing at 110℃-120℃ for 15 min-20 min to obtain a hole transport layer on the perovskite layer;
    wherein during blade coating, the perovskite layer is heated at a temperature of 60℃-70℃, the blade coating speed is 20 mm/s-25 mm/s, and the height of the blade is 50 μm-60 μm;
    (4) preparing a back electrode on the hole transport layer to obtain a flexible perovskite solar cell.
  6. The method according to claim 4 or 5, wherein the size of the flexible conductive substrate is (2 cm -4 cm) × (2 cm -4 cm) ;
    preferably, the flexible conductive substrate is a transparent polymer film with indium tin oxide (ITO) , preferably any one of polyethylene naphthalate (PEN) /ITO, polyethylene terephthalate (PET) /ITO or polyimide (PI) /ITO;
    preferably, the solution of the hole transport layer is a mixed solution of poly (3, 4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT: PSS) , polystyrene sulfonic acid (PSSA) and isopropanol;
    preferably, the mass ratio of PEDOT: PSS, PSSA and isopropanol in the precursor solution of the hole transport layer is 1: (0.25-0.5) : (3-5) ;
    preferably, the solution of the hole transport layer is filtered prior to use;
    preferably, the ratio of the volume of the solution of the hole transport layer to the area of the flexible conductive substrate is 35 μL/ (1.5 cm × 1.5 cm) .
  7. The method according to claim 4 or 5, wherein the precursor solution of the perovskite is prepared by a method of mixing lead acetate and methylamine iodide in a molar ratio of 1: 1, then dissolving the resulting mixture in N, N-dimethylformamide (DMF) ;
    preferably, the concentration of the precursor solution of the perovskite is 500 mg/ml-600 mg/ml, and preferably 580 mg/ml;
    preferably, the ratio of the precursor solution of the perovskite to the area of the flexible conductive substrate is 70 μL/ (1.5 cm × 1.5 cm) .
  8. The method according to claim 4 or 5, wherein the precursor solution of the electron transport layer is a solution of methyl [6.6] -phenyl-C61-butyrate (PCBM) and/or methyl [6.6] -phenyl-C71-butyrate (PCBM) in chlorobenzene;
    preferably, the concentration of the precursor solution of the electron transport layer is 15 mg/ml-20 mg/ml, and preferably 20 mg/ml;
    preferably, the solution of the electron transport layer is filtered prior to use;
    preferably, the ratio of the volume of the precursor solution of the electron transport layer to the area of the flexible conductive substrate is (35 μL-40 μL) / (1.5 cm × 1.5 cm) .
  9. The method according to claim 4 or 5, wherein the standing time is 25 min-50 min, preferably 30 min;
    preferably, the method for preparing a back electrode on the perovskite layer is any one of evaporation, screen printing or printing.
  10. The method according to any one of claims 1-9, wherein the method further comprises a step of cutting or cropping the flexible perovskite solar cell.
PCT/CN2017/100919 2017-06-28 2017-09-07 A method for preparing a flexible perovskite solar cell by blade coating WO2019000642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710506286.4 2017-06-28
CN201710506286.4A CN107275494B (en) 2017-06-28 2017-06-28 Blade coating preparation method of flexible perovskite solar cell

Publications (1)

Publication Number Publication Date
WO2019000642A1 true WO2019000642A1 (en) 2019-01-03

Family

ID=60071263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100919 WO2019000642A1 (en) 2017-06-28 2017-09-07 A method for preparing a flexible perovskite solar cell by blade coating

Country Status (2)

Country Link
CN (1) CN107275494B (en)
WO (1) WO2019000642A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289358A (en) * 2019-06-11 2019-09-27 浙江浙能技术研究院有限公司 A kind of perovskite film-forming process
CN111613727A (en) * 2020-07-02 2020-09-01 中国科学技术大学 Negative electrode buffer layer-containing inverse perovskite solar cell and preparation method thereof
CN111864079A (en) * 2020-08-31 2020-10-30 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN112542548A (en) * 2020-12-08 2021-03-23 云南师范大学 Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof
CN113437220A (en) * 2021-02-21 2021-09-24 南开大学 Method for preparing perovskite thin film and solar cell on textured substrate through solution
CN113782684A (en) * 2021-09-10 2021-12-10 华能新能源股份有限公司 Perovskite thin film and preparation method thereof
CN115331863A (en) * 2022-07-28 2022-11-11 西北核技术研究所 Flexible perovskite alpha-type nuclear battery and preparation method thereof
CN117881257A (en) * 2024-03-11 2024-04-12 浙江省白马湖实验室有限公司 Preparation method of high-efficiency carbon electrode perovskite solar cell

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148326A1 (en) * 2018-01-30 2019-08-08 南方科技大学 Method for preparing perovskite thin film and application thereof
CN108400242A (en) * 2018-02-01 2018-08-14 王敏帅 A kind of hearth electrode type flexibility perovskite solar cell and preparation method thereof
CN109103338B (en) * 2018-07-23 2020-06-19 武汉理工大学 Preparation method of large-area perovskite thin film and battery pack thereof
CN109166970B (en) * 2018-08-14 2022-03-29 陕西师范大学 Perovskite device and preparation method thereof
CN109319170B (en) * 2018-08-21 2021-04-20 电子科技大学 Method for manufacturing lunar vehicle self-powered piezoelectric tire
CN109216548A (en) * 2018-10-22 2019-01-15 东莞理工学院 A kind of perovskite solar battery scrapes coating preparation method
CN109216561A (en) * 2018-10-22 2019-01-15 东莞理工学院 A kind of flexibility perovskite solar battery scrapes coating preparation method
CN109904329A (en) * 2019-02-13 2019-06-18 南方科技大学 Knife coating structure of modified efficient perovskite solar cell and preparation method
CN110311037B (en) * 2019-06-24 2023-04-28 浙江理工大学 Hole transport layer for flexible perovskite solar cell, and preparation method and application thereof
CN112510157A (en) * 2020-11-12 2021-03-16 深圳市惠能材料科技研发中心(有限合伙) Method for preparing perovskite solar cell in large area through all air
CN112599680A (en) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 Flexible perovskite solar cell based on polyimide substrate and preparation method thereof
CN114203917B (en) * 2021-12-16 2023-12-19 华能新能源股份有限公司 Conductive electrode and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787029A1 (en) * 2013-04-01 2014-10-08 Kabushiki Kaisha Toshiba Transparent conductive film and electric device
CN105226191A (en) * 2015-09-25 2016-01-06 中国电子科技集团公司第四十八研究所 Flexible perovskite solar cell and preparation technology thereof
WO2016026294A1 (en) * 2014-08-19 2016-02-25 武汉大学 Perovskite film photovoltaic cell based on sno2 and preparation method therefor
CN105470401A (en) * 2015-11-24 2016-04-06 武汉理工大学 Manufacturing method of perovskite solar cell based on wire rod scraping and coating
CN105679941A (en) * 2016-01-22 2016-06-15 杭州众能光电科技有限公司 P-type delafossite structure semiconductor material-based plane structure perovskite solar cell and preparation thereof
CN106058057A (en) * 2016-08-12 2016-10-26 中国科学院重庆绿色智能技术研究院 Flexible perovskite solar cell
CN106449989A (en) * 2016-12-01 2017-02-22 苏州大学 Perovskite solar battery and preparation method thereof
CN106654020A (en) * 2017-01-24 2017-05-10 中国科学院上海硅酸盐研究所 Bulk-heterojunction perovskite thin film, production method thereof and solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681284B (en) * 2015-03-31 2017-05-24 中国工程物理研究院材料研究所 Paper type perovskite solar cell compound photoanode and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787029A1 (en) * 2013-04-01 2014-10-08 Kabushiki Kaisha Toshiba Transparent conductive film and electric device
WO2016026294A1 (en) * 2014-08-19 2016-02-25 武汉大学 Perovskite film photovoltaic cell based on sno2 and preparation method therefor
CN105226191A (en) * 2015-09-25 2016-01-06 中国电子科技集团公司第四十八研究所 Flexible perovskite solar cell and preparation technology thereof
CN105470401A (en) * 2015-11-24 2016-04-06 武汉理工大学 Manufacturing method of perovskite solar cell based on wire rod scraping and coating
CN105679941A (en) * 2016-01-22 2016-06-15 杭州众能光电科技有限公司 P-type delafossite structure semiconductor material-based plane structure perovskite solar cell and preparation thereof
CN106058057A (en) * 2016-08-12 2016-10-26 中国科学院重庆绿色智能技术研究院 Flexible perovskite solar cell
CN106449989A (en) * 2016-12-01 2017-02-22 苏州大学 Perovskite solar battery and preparation method thereof
CN106654020A (en) * 2017-01-24 2017-05-10 中国科学院上海硅酸盐研究所 Bulk-heterojunction perovskite thin film, production method thereof and solar cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289358A (en) * 2019-06-11 2019-09-27 浙江浙能技术研究院有限公司 A kind of perovskite film-forming process
CN111613727B (en) * 2020-07-02 2022-09-09 中国科学技术大学 Negative electrode buffer layer-containing inverse perovskite solar cell and preparation method thereof
CN111613727A (en) * 2020-07-02 2020-09-01 中国科学技术大学 Negative electrode buffer layer-containing inverse perovskite solar cell and preparation method thereof
CN111864079B (en) * 2020-08-31 2022-12-06 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN111864079A (en) * 2020-08-31 2020-10-30 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN112542548A (en) * 2020-12-08 2021-03-23 云南师范大学 Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof
CN112542548B (en) * 2020-12-08 2023-10-20 云南师范大学 Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof
CN113437220A (en) * 2021-02-21 2021-09-24 南开大学 Method for preparing perovskite thin film and solar cell on textured substrate through solution
CN113782684A (en) * 2021-09-10 2021-12-10 华能新能源股份有限公司 Perovskite thin film and preparation method thereof
CN113782684B (en) * 2021-09-10 2022-10-21 华能新能源股份有限公司 Perovskite thin film and preparation method thereof
CN115331863A (en) * 2022-07-28 2022-11-11 西北核技术研究所 Flexible perovskite alpha-type nuclear battery and preparation method thereof
CN117881257A (en) * 2024-03-11 2024-04-12 浙江省白马湖实验室有限公司 Preparation method of high-efficiency carbon electrode perovskite solar cell
CN117881257B (en) * 2024-03-11 2024-05-28 浙江省白马湖实验室有限公司 Preparation method of high-efficiency carbon electrode perovskite solar cell

Also Published As

Publication number Publication date
CN107275494B (en) 2021-06-04
CN107275494A (en) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019000642A1 (en) A method for preparing a flexible perovskite solar cell by blade coating
CN108365102B (en) Stable and efficient two-dimensional layered perovskite solar cell and preparation method thereof
CN105070841B (en) Preparation method of perovskite solar cell
CN107359246B (en) Manufacturing method of methylamine lead iodoperovskite solar cell
CN100481561C (en) Solvent processing method for raising polymer thin film solar battery effect
US12057273B2 (en) Method for preparing inorganic perovskite battery based on synergistic effect of gradient annealing and antisolvent, and prepared inorganic perovskite battery
CN108269918B (en) Porous perovskite thin film, carbon slurry and solar cell based on carbon electrode
CN109755394B (en) Method for preparing perovskite solar cell by applying air knife coating
CN108321298B (en) A kind of high efficiency planar heterojunction perovskite thin film solar battery and preparation method
CN108389969B (en) Green solvent system and mixed solution for preparing perovskite layer of perovskite solar cell
US11476432B2 (en) Inverted thick 2D hybrid perovskite solar cell insensitive to film thickness and method for preparing the same
CN109411607A (en) Solar battery and preparation method thereof and the method for improving calcium titanium ore bed transmission characteristic
CN106480422B (en) A kind of method preparing polycrystalline perovskite thin film and solar cell device
CN109786555B (en) Perovskite solar cell and preparation method
CN109216557A (en) One kind being based on citric acid/SnO2Perovskite solar battery of electron transfer layer and preparation method thereof
CN111129315A (en) Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof
CN109904329A (en) Knife coating structure of modified efficient perovskite solar cell and preparation method
CN109768167B (en) Perovskite solar cell without current lag and preparation method thereof
CN112490363B (en) Preparation method of perovskite solar cell based on magnetron sputtering zinc oxide/tin dioxide double electron transmission layer
CN111092157A (en) Preparation method of efficient and stable perovskite solar cell
CN206148472U (en) Perovskite solar cell based on super thin metal transparent electrode
CN206040711U (en) Solar cell
CN103151462B (en) A kind of based on TiO2hybrid solar cell of homogeneity core-shell nano array and preparation method thereof
CN114784192A (en) High-stability wide-band-gap perovskite solar cell and preparation method thereof
CN113948642A (en) Tin-based perovskite thin film and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916415

Country of ref document: EP

Kind code of ref document: A1