WO2018235483A1 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
WO2018235483A1
WO2018235483A1 PCT/JP2018/019428 JP2018019428W WO2018235483A1 WO 2018235483 A1 WO2018235483 A1 WO 2018235483A1 JP 2018019428 W JP2018019428 W JP 2018019428W WO 2018235483 A1 WO2018235483 A1 WO 2018235483A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hole
valve body
passage
chamber
Prior art date
Application number
PCT/JP2018/019428
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2018235483A1 publication Critical patent/WO2018235483A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit

Definitions

  • the present invention relates to a variable displacement compressor in which a discharge displacement changes according to the pressure of a control pressure chamber such as a crank chamber.
  • a variable displacement compressor described in Patent Document 1 is known as an example of this type of variable displacement compressor.
  • the variable displacement compressor described in Patent Document 1 includes an air supply passage 28 connecting the crank chamber 5 and the discharge chamber 22, a bleed passage 27 connecting the crank chamber 5 and the suction chamber 21, and an air supply passage 28.
  • a first control valve CV1 capable of adjusting the opening degree and a second control valve CV2 capable of adjusting the opening degree of the bleed passage 27 are provided, and the pressure in the crank chamber 5 is controlled by the first control valve CV1 and the second control valve CV2. By controlling, it is constituted so that change of discharge capacity is possible.
  • the second control valve CV2 is incorporated in the valve housing 45 of the first control valve CV1 and integrated with the first control valve CV1.
  • the first control valve CV1 is formed in the valve housing 45 and the valve rod 45 having the valve body 43 that opens and closes the communication passage 47 that constitutes a part of the air supply passage 28, and the valve body 43 is accommodated.
  • the second control valve CV2 has a bottomed cylindrical spool 82 slidably held in the valve chamber 46.
  • the spool 82 is formed with a hole 82e through which the valve body 43 of the actuating rod 40 is inserted.
  • a communication passage 47, a port 51, and a port 88 are formed in the valve housing 45.
  • One end of the communication passage 47 is connected to the port 52 (pressure region of the discharge chamber 22), and the other end of the communication passage 47 is open to the valve chamber 46.
  • One end of the port 51 is connected to the pressure region of the crank chamber 5, and the other end of the port 51 is open to the valve chamber 46.
  • One end of the port 88 is connected to the pressure area of the suction chamber 21, and the other end of the port 88 is open to the valve chamber 46.
  • the second control valve CV2 brings the communication passage 47 into communication with the port 51 via the communication passage 86 and causes the communication between the port 51 and the port 88
  • the valve body 43 of the first control valve CV1 closes the communication passage 47, the communication between the communication passage 47 and the port 51 is shut off and the port 51 and the ho 88 are communicated. There is.
  • the communication passage 86 for connecting the communication passage 47 and the port 51 is a gap between the hole 82 e formed in the spool 82 and the valve body portion 43. It functions as a fixed stop whose passage sectional area is set small. Therefore, even if the valve body 43 of the first control valve CV1 opens the communication passage 47, the refrigerant flow in the air supply passage 28 is squeezed by the communication passage 86 functioning as a fixed throttle, and an amount sufficient for the crank chamber 5 is obtained. Can not supply the refrigerant (gas) of As a result, the pressure increase in the crank chamber 5 becomes slow, and the decrease of the discharge capacity is delayed, which may result in the control of the discharge capacity becoming unstable. Then, this invention aims at providing the variable displacement compressor which can raise the pressure of control pressure chambers, such as the said crank chamber, more rapidly than before.
  • the control pressure chamber which changes the discharge capacity by changing the state of the compression unit, and the degree of opening of the supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber are controlled.
  • a variable displacement compressor is provided having a control valve that controls the degree of opening of a discharge passage connected to a suction chamber.
  • the control valve includes a housing extending in one direction and having an outer peripheral surface, a sub valve body unit, a cylindrical main valve body unit, a solenoid unit, and a pressure sensing device.
  • the housing is a valve chamber, one end is connected to the pressure area of the discharge chamber, the other end is a first valve hole opened to the valve chamber, one end is connected to the pressure area of the control pressure chamber, and the other is the above It has the 2nd valve hole opened to a valve storage chamber, and the discharge internal passage which one end connects to the pressure field of the suction chamber, and the other end opens to the valve storage chamber.
  • the sub valve body unit is provided in the valve storage chamber and operates in accordance with a pressure difference between the front and back, and communicates the first valve hole and the second valve hole, and the second valve hole.
  • the degree of opening of the discharge passage is controlled by switching to a second state in which the discharge internal passage is communicated.
  • the main valve body unit is extended so as to penetrate from one end to the other end of the sub valve body unit, and the first valve hole is formed by coming into contact with the first valve seat around the first valve hole. It has a main valve body that opens and closes.
  • the solenoid unit applies an urging force in the valve closing direction of the first valve hole to the main valve body unit.
  • the pressure sensing device applies an urging force in the valve opening direction of the first valve hole to the main valve body unit in response to an external pressure.
  • the sub valve body unit includes a sub valve body in which an insertion hole for insertion of the main valve body unit is formed, and a communication passage for communicating the first valve hole and the second valve hole. .
  • the sub valve body is disposed so as to surround the outer periphery of the main valve body and to be opposed to the first valve seat, and has a first sub valve portion having an outer peripheral surface in sliding contact with the inner peripheral surface of the valve storage chamber Including.
  • the communication passage is a cylindrical first communication passage between the inner peripheral surface of the insertion hole of the sub valve body and the outer peripheral surface of the main valve body unit, and the outer peripheral surface side of the first sub valve portion. And a second communication passage extending between the back pressure region and the first communication passage.
  • the control valve controls the degree of opening of the supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber, and the control pressure chamber and the suction chamber Control the opening of the discharge passage connecting the
  • a communication passage for connecting the first valve hole and the second valve hole is formed in the insertion hole of the sub valve body of the sub valve body unit that controls the opening degree of the discharge passage.
  • the end on the back pressure region side of the communication passage for communicating the first valve hole and the second valve hole is branched into the first communication passage and the second communication passage. Therefore, for example, even when the end portion on the back pressure region side of the first communication passage functions as a cylindrical throttle passage surrounding the main valve body, when the main valve body unit is opened, Since a refrigerant can be supplied from the discharge chamber to the control pressure chamber through the second communication passage in addition to the throttle passage, a sufficient amount of refrigerant is supplied to the control pressure chamber. As a result, the pressure in the control pressure chamber can be quickly increased, and the discharge capacity can be smoothly (rapidly) reduced. As a result, the discharge capacity can be stably controlled. In this way, it is possible to provide a variable displacement compressor capable of rapidly increasing the pressure in the control pressure chamber.
  • FIG. 1 is a cross-sectional view of a variable displacement compressor according to an embodiment of the present invention. It is a sectional view of a control valve of the variable displacement compressor. It is an enlarged view of the principal part in FIG. It is sectional drawing of the assembly of the subvalve body unit and case of the said variable displacement compressor. It is a figure for demonstrating the operation state of the said sub valve body unit, (A) shows the refrigerant supply state (1st state) to a crank chamber, (B) is just after valve closing of the 1st valve hole. A state is shown, and (C) shows a pressure-released state (second state) from the crank chamber. It is an enlarged view of the principal part in FIG. It is principal part sectional drawing which shows the modification of the said control valve. It is principal part sectional drawing which shows another modification of the said control valve.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a swash plate type variable displacement compressor to which the present invention is applied.
  • this variable displacement compressor is not particularly limited, it is mainly configured as a clutchless compressor applied to an air conditioner system for a vehicle.
  • the variable displacement compressor 100 is provided with a cylinder block 101 in which a plurality of cylinder bores 101 a are formed, a front housing 102 provided on one end side of the cylinder block 101, and a valve plate 103 on the other end side of the cylinder block 101. And the cylinder head 104.
  • the cylinder block 101, the front housing 102, the valve plate 103 and the cylinder head 104 are fastened by a plurality of through bolts 105 to constitute a compressor housing. Further, a crank chamber 140 is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 is provided so as to cross the crank chamber 140. The drive shaft 110 is rotatably supported by the compressor housing.
  • a center gasket is disposed between the front housing 102 and the cylinder block 101, and a cylinder other than the valve plate 103 is disposed between the cylinder block 101 and the cylinder head 104.
  • a gasket, a suction valve forming plate, a discharge valve forming plate and a head gasket are disposed.
  • a swash plate 111 is disposed around an axial middle portion of the drive shaft 110.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120 and rotates with the drive shaft 110. Further, the swash plate 111 is configured such that an angle (hereinafter referred to as “tilt angle”) with respect to the axis O of the drive shaft 110 can be changed.
  • the link mechanism 120 includes a first arm 112 a protruding from the rotor 112, a second arm 111 a protruding from the swash plate 111, and one end of the link mechanism 120 with respect to the first arm 112 a via the first connection pin 122.
  • the through hole 111b of the swash plate 111 through which the drive shaft 110 is inserted is formed in a shape that allows the swash plate 111 to tilt in the range of the maximum tilt angle and the minimum tilt angle.
  • the through hole 111 b is formed with a minimum inclination restricting portion that abuts on the drive shaft 110.
  • the minimum inclination restricting portion of the through hole 111 b has an inclination angle of almost 0 When it becomes °, it abuts on the drive shaft 110, and it is formed to restrict further tilting of the swash plate 111.
  • the swash plate 111 abuts on the rotor 112 and the inclination thereof is restricted.
  • the drive shaft 110 is provided with an inclination reducing spring 114 for urging the swash plate 111 in a direction to reduce the inclination of the swash plate 111, and an inclination increasing spring 115 for urging the swash plate 111 in a direction to increase the inclination of the swash plate 111. And are worn.
  • the tilt angle reducing spring 114 is disposed between the swash plate 111 and the rotor 112, and the tilt angle increasing spring 115 is mounted between the swash plate 111 and a spring support member 116 fixed to the drive shaft 110.
  • the biasing force of the tilt angle increasing spring 115 is set to be larger than the biasing force of the tilt angle reducing spring 114, and the drive shaft 110 rotates.
  • the swash plate 111 is positioned at a tilt angle at which the biasing force of the tilt angle reducing spring 114 and the biasing force of the tilt angle increasing spring 115 are balanced.
  • One end (left end in FIG. 1) of the drive shaft 110 extends through the boss portion 102 a of the front housing 102 to the outside of the front housing 102.
  • the power transmission device (not shown) is connected to the one end of the drive shaft 110.
  • a shaft seal device 130 is provided between the drive shaft 110 and the boss portion 102 a, and the inside of the crank chamber 140 is shut off from the outside by the shaft seal device 130.
  • the coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by the bearing 133 and the thrust plate 134 in the thrust direction.
  • the drive shaft 110 (and the rotor 112) is configured to rotate in synchronization with the rotation of the power transmission device by transmitting power from an external drive source to the power transmission device.
  • the clearance between the other end of the drive shaft 110, that is, the end on the thrust plate 134 side, and the thrust plate 134 is adjusted to a predetermined clearance by the adjustment screw 135.
  • a piston 136 is disposed in each cylinder bore 101a.
  • the outer space of the swash plate 111 and the vicinity thereof are accommodated in the inner space of the projecting portion of the piston 136 projecting into the crank chamber 140 via the pair of shoes 137, whereby the swash plate 111 Work together.
  • the piston 136 reciprocates in the cylinder bore 101 a by the rotation of the swash plate 111 accompanying the rotation of the drive shaft 110. Further, the stroke amount of the piston 136 changes in accordance with the inclination angle of the swash plate 111.
  • a suction chamber 141 is formed substantially at the center, and a discharge chamber 142 is formed to annularly surround the suction chamber 141.
  • the suction chamber 141 communicates with the cylinder bore 101a through a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate (not shown).
  • the discharge chamber 142 is in communication with the cylinder bore 101 a through a discharge valve (not shown) formed in the discharge valve forming plate (not shown) and a communication hole 103 b provided in the valve plate 103.
  • the suction chamber 141 is connected to the low pressure side of the refrigerant circuit of the air conditioning system (not shown) via the suction passage 104a.
  • a muffler 160 is provided to reduce noise and vibration due to pressure pulsation of the refrigerant.
  • the muffler 160 is formed of a muffler forming wall 101 b defined in the upper portion of the cylinder block 101 and a lid member 106 fastened to the muffler forming wall 101 b via a seal member (not shown).
  • a check valve 200 is disposed in the muffler space 143 in the muffler 160.
  • the check valve 200 is disposed at an end of the communication passage 144 communicating the discharge chamber 142 with the muffler space 143 on the muffler space 143 side.
  • the check valve 200 operates in response to the pressure difference between the communication passage 144 (upstream side) and the muffler space 143 (downstream side).
  • the check valve 200 is configured to shut off the communication passage 144 when the pressure difference is smaller than a predetermined value, and open the communication passage 144 when the pressure difference is larger than the predetermined value. It is done.
  • the discharge chamber 142 is connected to the high pressure side of the refrigerant circuit of the air-conditioning system via a discharge passage including the communication passage 144, the check valve 200, the muffler space 143, and the discharge port 106a. Further, the backflow of the refrigerant gas from the high pressure side of the refrigerant circuit of the air conditioning system toward the discharge chamber 142 is blocked by the check valve 200.
  • the low pressure side refrigerant (the refrigerant before compression) of the refrigerant circuit of the air conditioning system is led to the suction chamber 141 via the suction passage 104a.
  • the refrigerant in the suction chamber 141 is sucked into the cylinder bore 101 a by the reciprocating motion of the piston 136, compressed and discharged into the discharge chamber 142. That is, in the present embodiment, the cylinder bore 101 a and the piston 136 constitute a compression unit that compresses the refrigerant in the suction chamber 141. Then, the compressed refrigerant compressed by the compression unit is discharged to the discharge chamber 142, and thereafter, is led to the high pressure side of the refrigerant circuit of the air conditioning system via the discharge passage.
  • the cylinder head 104 is provided with a control valve 300.
  • the control valve 300 is disposed in a control valve receiving hole 104 b formed in the cylinder head 104.
  • the control valve 300 disposed in the control valve housing hole 104 b internally has a fluid passage that constitutes a part of the supply passage 145 that supplies the refrigerant (discharged refrigerant) in the discharge chamber 142 to the crank chamber 140. Then, the control valve 300 adjusts (controls) the opening degree (passage cross-sectional area) of the fluid passage (that is, the supply passage 145), thereby controlling the amount of refrigerant supplied from the discharge chamber 142 to the crank chamber 140.
  • a part of the fluid passage constitutes a part of a discharge passage 146 (more specifically, a first discharge passage 146a described later) connecting the crank chamber 140 and the suction chamber 141.
  • the control valve 300 adjusts (controls) the opening degree of the discharge passage 146 by adjusting (controlling) the opening degree (passage cross-sectional area) of a part of the fluid passage, whereby the crank chamber 140 to the suction chamber 141 It is configured to control the discharge amount of the refrigerant to the The supply passage 145, the discharge passage 146, and the control valve 300 will be described in detail later.
  • the pressure of the crank chamber 140 can be changed (adjusted) by controlling the amount of refrigerant supplied to the crank chamber 140 and the amount of refrigerant discharged from the crank chamber 140 by the control valve 300.
  • the displacement of the variable displacement compressor 100 can be changed by changing the inclination angle of the swash plate 111, that is, the stroke amount of the piston 136. Specifically, by changing the pressure in the crank chamber 140, the pressure difference between the front and back of each piston 136, in other words, the pressure difference between the compression chamber in the cylinder bore 101a sandwiching the piston 136 and the crank chamber 140, is used.
  • the inclination angle of 111 can be changed, and as a result, the stroke amount of the piston 136 changes and the displacement of the variable displacement compressor 100 changes.
  • the crank chamber 140 changes the state of the compression unit (specifically, the stroke amount of the piston 136) according to the internal pressure to change the discharge capacity of the variable displacement compressor 100. It has a function to change. Therefore, in the present embodiment, the crank chamber 140 corresponds to the "control pressure chamber" of the present invention.
  • the control valve 300 is mainly used to control the opening degree of the supply passage 145 and to control the opening degree of the discharge passage 146 to adjust the pressure in the crank chamber 140.
  • the inside of the control valve housing hole 104b is isolated from the external space by the five O-rings 300a to 300e, and the outer space of the control valve 300 in the control valve housing hole 104b is the bottom side of the control valve housing hole 104b. It is divided into a first outer space 104b1, a second outer space 104b2, a third outer space 104b3, and a fourth outer space 104b4 in order from (the pressure-sensitive device 330 side of the control valve 300 described later).
  • the first outer space 104b1 communicates with the suction chamber 141 via a communication passage 104c formed in the cylinder head 104.
  • the pressure Ps of the suction chamber 141 acts on the first outer space 104b1.
  • the second outer space 104 b 2 communicates with the discharge chamber 142 through a communication passage 104 d formed in the cylinder head 104. Therefore, the pressure Pd of the discharge chamber 142 acts on the second outer space 104b2.
  • the third outer space 104 b 3 communicates with the suction chamber 141 via a communication passage 104 e formed in the cylinder head 104. Therefore, the pressure Ps of the suction chamber 141 acts on the third outer space 104b3.
  • the fourth outer space 104b4 communicates with the crank chamber 140 through a communication passage 104f formed in the cylinder head 104, a through hole formed in the valve plate 103, and a communication passage 101c formed in the cylinder block 101. Therefore, the pressure Pc of the crank chamber 140 acts on the fourth outer space 104b4.
  • the supply passage 145 includes the communication passage 104 d, the second outer space 104 b 2, the fluid passage (described in detail later) inside the control valve 300, the fourth outer space 104 b 4, the communication passage 104 f, and the valve. It is comprised by the said through hole of the plate 103, and the channel
  • the supply passage 145 is opened and closed by the control valve 300 via the inside of the control valve 300.
  • the discharge passage 146 includes a first discharge passage 146a and a second discharge passage 146b.
  • the first discharge passage 146a includes the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, a part of the fluid passage inside the control valve 300 (details will be described in detail later),
  • the control valve 300 includes a second valve chamber 328, which will be described later, and a discharge internal passage 326, which is described later, of the control valve 300, a third outer space 104b3, and a passage passing through the communication passage 104e.
  • the first discharge passage 146 a is opened and closed by the control valve 300 via the inside of the control valve 300. As the first discharge passage 146 a is opened and closed by the control valve 300, the opening degree of the discharge passage 146 is adjusted.
  • the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, and a part of the fluid passage inside the control valve 300 (hereinafter, these are collectively ") Serves as the first discharge passage 146a and the supply passage 145.
  • the second discharge passage 146 b is a communication passage 101 d extending through the end surface of the cylinder block 101 on the front housing 102 side and extending toward the cylinder head 104, and is open at the end surface of the cylinder block 101 on the cylinder head 104 And a fixed stop 103 c formed in the valve plate 103.
  • the second discharge passage 146 b is provided to bypass the control valve 300, and constantly communicates the crank chamber 140 with the suction chamber 141.
  • FIG. 2 is a cross-sectional view of the control valve 300
  • FIG. 3 is an enlarged view of the main part in FIG.
  • the control valve 300 includes a valve housing 310, a pressure sensing device 330, a solenoid unit 340, a main valve unit 350, and a sub valve unit 360.
  • the valve housing 310 includes a substantially cylindrical valve body 311 and a bottomed cylindrical cap member 312 fixed to one end (the end opposite to the solenoid unit 340 side) of the valve body 311.
  • the valve housing 310 and a solenoid housing 341 described later of the solenoid unit 340 form a control valve housing having an outer peripheral surface that extends in one direction by being fitted to each other.
  • the control valve housing (310, 341) corresponds to the "housing" according to the present invention.
  • the cap member 312 cooperates with a recess 311 a formed on one end face of the valve body 311 to form a pressure sensitive chamber 313.
  • the pressure sensing chamber 313 is in communication with a space to which an external pressure acts via a communication hole 312 a formed on the side surface of the cap member 312. More specifically, in the present embodiment, the external pressure is the pressure Ps of the suction chamber 141, and the pressure sensing chamber 313 is in communication with the first outer space 104b1 where the pressure Ps of the suction chamber 141 acts via the communication hole 312a. There is.
  • a fitting hole 314, a first valve chamber 315, a first valve hole 316 and an insertion hole 317 are formed in the valve body 311 sequentially from the other end surface (end surface on the solenoid unit 340 side) 311b side.
  • the fitting hole 314 is formed as a cylindrical hole opened to the other end surface 311 b of the valve body 311.
  • the fitting hole 314 includes, for example, an enlarged diameter portion whose diameter on the side of connection with the first valve chamber 315 is increased by centering or the like and a smaller diameter fitting portion than the diameter enlarged portion. Is formed.
  • a bottomed cylindrical case 318 including a cylindrical peripheral wall 318a and an end wall 318b provided at one end of the peripheral wall 318a is fitted.
  • the case 318 a portion on the end wall 318b side of the peripheral wall 318a is fitted to the end on the enlarged diameter portion side in the fitting portion of the fitting hole 314, and the tip of the peripheral wall 318a is the fitting hole 314 Contact with the inner bottom surface (the connection surface between the fitting hole 314 and the first valve chamber 315).
  • the case 318 is positioned in the fitting hole 314 of the valve body 311 and fixed to the valve body 311.
  • the solenoid unit 340 is fitted by the edge part by the side of the other end surface 311b in the said fitting site
  • the end face of the solenoid unit 340 is located in front of the end wall 318b of the case 318, and between the end face of the solenoid unit 340 and the end wall 318b of the case 318.
  • the communication space 319 is formed in the Further, a second valve hole 320 is opened at the center of the end wall 318 b of the case 318, and a discharge hole 318 c is opened at the peripheral wall 318 a of the case 318.
  • the second valve hole 320 is disposed on the center line X of the valve body 311.
  • the first valve chamber 315 is formed as a cylindrical hole smaller in diameter than the fitting hole 314 (specifically, the fitting portion).
  • the forming wall of the first valve chamber 315 of the valve body 311 cooperates with the case 318 to form a valve accommodating chamber 321 for accommodating a main valve body 351 and an auxiliary valve body unit 360 of the main valve body unit 350 described later.
  • the valve storage chamber 321 is configured by the internal space of the case 318 and the first valve chamber 315.
  • the first valve hole 316 is formed (opened) on the bottom surface of the first valve chamber 315.
  • the insertion hole 317 linearly extends from the first valve hole 316 and opens in the pressure sensing chamber 313. That is, the first valve hole 316 and the insertion hole 317 have the same diameter.
  • the portion on the pressure sensing chamber 313 side of the insertion hole 317 constitutes a support hole 317a for slidably supporting the main valve unit 350, and the first valve hole is larger than the support hole 317a in the insertion hole 317.
  • the portion on the side 316 constitutes a communication space 317 b for communicating the first valve hole 316 with the support hole 317 a.
  • one end of the support hole 317a is in communication with the first valve hole 316 via the communication space 317b, and the other end of the support hole 317a is open to the pressure sensing chamber 313.
  • a back pressure relief throttle passage 325 having a first port 322, a second port 323, a third port 324, and a throttle portion is formed.
  • One end of the first port 322 opens at a portion between the O-ring 300a and the O-ring 300b on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the second outer space 104b2). Connected to the area.
  • the other end of the first port 322 is open to the inner peripheral surface of the communication space 317b.
  • one end of the first valve hole 316 is connected to the pressure area of the discharge chamber 142 via the communication space 317 b and the first port 322, and the other end of the first valve hole 316 is open to the valve accommodating chamber 321. doing. Specifically, the other end of the first valve hole 316 is opened to one end wall of the valve storage chamber 321 (the bottom surface of the first valve chamber 315).
  • One end of the second port 323 opens at a portion between the O ring 300 c and the O ring 300 d on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the fourth outer space 104 b 4). Connected to the area.
  • the other end of the second port 323 is open to the inner peripheral surface of the communication space 319 at the fitting portion of the fitting hole 314.
  • one end of the second valve hole 320 is connected to the pressure region of the crank chamber 140 via the communication space 319 and the second port 323, and the other end of the second valve hole 320 is open to the valve storage chamber 321. doing.
  • the other end of the second valve hole 320 is opened to the other end wall of the valve accommodating chamber 321 (the inner end surface of the end wall 318 b of the case 318).
  • One end of the third port 324 is opened at a portion between the O ring 300 b and the O ring 300 c on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the third outer space 104 b 3). Connected to the area.
  • the other end of the third port 324 is open at the inner peripheral surface of the enlarged diameter portion of the fitting hole 314.
  • the first port 322, the second port 323, and the third port 324 are respectively formed at a plurality of locations separated in the circumferential direction of the valve body 311, and extend in the radial direction of the valve body 311.
  • the third port 324 a space 314a between the inner peripheral surface of the widening portion of the fitting hole 314 and the outer peripheral surface of the peripheral wall 318a of the case 318, and the discharge hole 318c of the peripheral wall 318a of the case 318.
  • the passage formed constitutes an exhaust internal passage 326 inside the control valve 300 which constitutes a part of the first discharge passage 146a.
  • One end of the discharge internal passage 326 is connected to the pressure region of the suction chamber 141, and the other end of the discharge internal passage 326 is open to the valve storage chamber 321.
  • one end of the discharge internal passage 326 (that is, the one end of the third port 324) is opened in a portion corresponding to the third outer space 104b3 in the outer peripheral surface of the valve body 311 to Connected Further, the other end of the discharge internal passage 326 (that is, one end of the discharge hole 318c on the valve storage chamber 321 side) is opened to the inner peripheral surface of the valve storage chamber 321 (inner peripheral surface of the peripheral wall 318a of the case 318) There is.
  • the discharge holes 318c are formed, for example, at a plurality of locations separated in the circumferential direction of the circumferential wall 318a, and extend in the radial direction of the circumferential wall 318a.
  • One end of the back pressure relief throttle passage 325 is open at a portion between the third port 324 and the O-ring 300 b in the outer peripheral surface of the valve body 311 (a portion corresponding to the third outer space 104 b 3).
  • a first valve seat 327 formed around the first valve hole 316 in the bottom surface of the first valve chamber 315 and the sub valve body unit 360 (details will be described later)
  • the first region S1 is opened as a back pressure region between the first sub valve portion 362a).
  • the pressure sensitive device 330 is disposed in the pressure sensitive chamber 313.
  • the pressure-sensitive device 330 includes a bellows 330a having a bottom, a closing member 330b closing an open end of the bellows 330a, and a first biasing device disposed inside the bellows 330a and urging the bellows 330a in a direction to extend the bellows 330a.
  • a member (compression coil spring) 330c, and a second biasing member (compression coil spring) 330d which is disposed between the closing member 330b and the valve body 311 and biases the bellows in a contracting direction.
  • the inside of the bellows 330a is in a vacuum state, and the bellows 330a expands and contracts in response to the external pressure.
  • the external pressure is the pressure of the suction chamber 141
  • the bellows 330a expands and contracts in response to the pressure of the pressure sensing chamber 313 (that is, the pressure Ps of the suction chamber 141).
  • the bellows 330 a extends as the pressure sensing chamber 313 (the pressure Ps of the suction chamber 141) decreases.
  • the solenoid unit 340 includes a solenoid housing 341, a fixed core 342 incorporated in the solenoid housing 341, a movable core 343, a biasing member 344, a housing member 345 and a coil assembly 346.
  • the solenoid housing 341 holds or accommodates the fixed core 342, the movable core 343, the biasing member 344, the housing member 345 and the coil assembly 346.
  • the solenoid housing 341 includes a cylindrical peripheral wall portion 341a and an end wall portion 341b fixed to one end (an end portion on the valve housing 310 side) of the peripheral wall portion 341a.
  • the fixed core 342 has a small diameter portion 342a on one end surface side and a large diameter portion 342b on the other end surface side larger in diameter than the small diameter portion 342a.
  • An insertion hole 342c is formed through the fixed core 342 in the axial direction.
  • valve housing 310 and the solenoid unit 340 are integrated with each other by being fitted into a fitting hole 314 formed in the other end surface 311 b.
  • control valve housing (310, 341) including the valve housing 310 (valve body 311, cap member 312) and the solenoid housing 341 is configured.
  • the movable core 343 is disposed with a predetermined gap between the movable core 343 and the one end surface of the fixed core 342.
  • the solenoid housing 341, the fixed core 342 and the movable core 343 are made of a magnetic material.
  • the biasing member 344 is disposed between the fixed core 342 and the movable core 343 and biases the movable core 343 away from the one end surface of the fixed core 342.
  • a compression coil spring is used as the biasing member 344.
  • the housing member 345 is formed of a nonmagnetic material in a bottomed cylindrical shape. The housing member 345 accommodates the small diameter portion 342 a of the fixed core 342, the movable core 343 and the biasing member 344 so that the movable core 343 can move in the distraction direction with respect to the one end surface of the fixed core 342.
  • the coil assembly 346 includes a solenoid coil (hereinafter simply referred to as "coil") 346a and a closing member 346b.
  • the coil 346 a is covered with resin and disposed around the housing member 345.
  • the coil 346 a is housed in a housing space formed inside the peripheral wall portion 341 a of the solenoid housing 341.
  • the closing member 346b is a member for closing the other end of the peripheral wall portion 341a of the solenoid housing 341, and is formed of, for example, magnetic free-cutting steel.
  • the closing member 346b is disposed around the movable core 343 in the radial direction, and is integrated with the coil 346a by a resin.
  • Main valve body unit 350 includes main valve body 351, first rod 352 and second rod 353, and extends from one end to the other end of sub valve body unit 360 housed in valve housing chamber 321. It is extended to penetrate.
  • the main valve body 351, the first rod 352 and the second rod 353 are integrally formed to constitute a cylindrical (rod-like) main valve body unit 350.
  • the main valve body 351 is accommodated in the first valve chamber 315 of the valve accommodation chamber 321 to open and close the first valve hole 316.
  • the peripheral portion of the end portion of the main valve body 351 on the side of the first valve hole 316 separates and contacts the first valve seat 327 around the first valve hole 316 of the bottom surface of the first valve chamber 315
  • the first valve hole 316 is opened and closed.
  • the first rod 352 is inserted into an insertion hole 317 formed in the valve body 311.
  • the first rod 352 has a large diameter portion 352 a and a small diameter portion 352 b smaller in diameter than the large diameter portion 352 a.
  • the large diameter portion 352 a is slidably supported by the support hole 317 a of the insertion hole 317, and the small diameter portion 352 b is inserted into the first valve hole 316 and the communication space 317 b of the insertion hole 317.
  • the second rod 353 is inserted into an insertion hole 342 c formed in the fixed core 342.
  • One end of the second rod 353 is connected to the end of the main valve body 351 opposite to the first valve hole 316 side, and the other end of the second rod 353 is connected to the movable core 343.
  • the second rod 353 has a large diameter portion 353 a and a small diameter portion 353 b smaller in diameter than the large diameter portion 353 a.
  • the large diameter portion 353 a is inserted into the insertion hole 342 c, and the small diameter portion 353 b is disposed in the valve storage chamber 321.
  • a predetermined range on the small diameter portion 353 b side of the large diameter portion 353 a is disposed in a second valve hole 320 formed in the end wall 318 b of the case 318 fitted in the fitting hole 341.
  • the second rod 353 further includes a first guiding portion 353 c and a second guiding portion 353 d.
  • the first guide portion 353c constitutes an end of the second rod 353 on the main valve body 351 side, and has a conical outer peripheral surface that gradually expands in diameter toward the main valve body 351 side.
  • the second guide portion 353d is provided between the small diameter portion 353b and the large diameter portion 353a, and has a conical outer peripheral surface which gradually expands in diameter toward the large diameter portion 353a (that is, the second valve hole 320).
  • the bellows 330a expands and contracts in response to the pressure Ps of the suction chamber 141. Then, when the bellows 330a is extended to a predetermined length or more as the pressure Ps of the suction chamber 141 decreases, the closing member 330b is connected to the other end of the first rod 352 of the main valve unit 350, and the main valve The unit 350 is biased in the direction in which the main valve body 351 opens the first valve hole 316.
  • the pressure-sensitive device 330 exerts an urging force in the valve opening direction of the first valve hole 316 on the main valve body unit 350.
  • the solenoid unit 340 when the coil 346a is energized, an electromagnetic force is generated to move the movable core 343 toward the one end surface of the fixed core 342. Then, when the movable iron core 343 is moved by the generated electromagnetic force, the main valve body unit 350 is biased in the direction in which the main valve body 351 closes the first valve hole 316.
  • the solenoid unit 340 is energized in the valve closing direction of the first valve hole 316 in the main valve unit 350 by the coil 346a being energized and the movable core 343 moving toward the one end face of the fixed core 342.
  • the adjustment operation of the opening degree of the supply passage 145 in the control valve 300 will be briefly described.
  • the amount of energization of the coil 346a of the solenoid unit 340 is set by a controller (not shown) Be done.
  • the coil 346a is driven by pulse width modulation (PWM control) at a predetermined frequency in the range of 400 Hz to 500 Hz, for example, to set the amount of energization.
  • PWM control pulse width modulation
  • the control valve 300 causes the first valve hole 316 (i.e., the supply passage) by (the main valve body 351 of) the main valve body unit 350 such that the pressure Ps of the suction chamber 141 becomes a predetermined value corresponding to the amount of current supplied.
  • the discharge amount of the variable displacement compressor 100 is controlled by adjusting the opening degree of 145).
  • the control valve 300 operates to autonomously adjust the opening degree of the first valve hole 316 (that is, the supply passage 145) in response to the pressure Ps of the suction chamber 141.
  • the control device turns OFF the coil 346a of the solenoid unit 340.
  • the movable core 343 moves in a direction away from the one end surface of the fixed core 342 by the biasing force of the biasing member 344 and the main valve body unit 350 (the The valve body 351 moves in the direction to open the first valve hole 316, and the first valve hole 316 (ie, the supply passage 145) is maximally opened.
  • FIG. 4 is an enlarged sectional view of an assembly of the sub valve body unit 360 and the case 318.
  • the secondary valve body unit 360 is assembled integrally with the case 318 as shown in FIG.
  • the assembly is fixed to the valve body 311 by the case 318 being fitted and positioned in the fitting hole 314 as described above, as shown in FIGS. 2 and 3.
  • the sub valve body unit 360 is accommodated in the valve accommodating chamber 321 composed of the internal space of the case 318 and the first valve chamber 315.
  • the partitioning member 361 has a first valve chamber 315 in which the first valve hole 316 opens, a second valve chamber 320 in which the first valve hole 316 opens, and a second valve chamber 328 in which the discharge internal passage 326 (specifically, the discharge hole 318c) opens. It is a member that divides into In the present embodiment, the valve storage chamber 321 is composed of the internal space of the case 318 and the first valve chamber 315 as described above.
  • the second valve chamber 328 is constituted by the internal space of the case 318.
  • a fitting hole 318d for the dividing member 361 and a small diameter hole 318e having a smaller diameter than the fitting hole 318d are formed at the open end of the peripheral wall 318a of the case 318.
  • the division member 361 is formed in a substantially disk shape, the penetration hole 361a is penetratingly formed by the center part.
  • the sub valve body 362 is inserted into the insertion hole 361 a.
  • An annular projection 361 b surrounding the insertion hole 361 a and projecting toward the first valve chamber 315 is formed on the surface of the partitioning member 361 on the first valve chamber 315 side.
  • the partitioning member 361 is fitted in the fitting hole 318d, and the peripheral edge thereof abuts on the connection surface between the fitting hole 318d and the small diameter hole 318e, and is positioned and fixed to the case 318.
  • the sub valve body 362 integrally includes a first sub valve portion 362 a, a second sub valve portion 362 b, and a shaft portion 362 c.
  • An insertion hole 364 for insertion of the main valve unit 350 is formed in the sub valve body 362.
  • the insertion hole 364 is formed to extend along the center line of the sub valve body 362 from one end of the sub valve body 362 to the other end. The details of the insertion hole 364 will be described in detail later.
  • the first sub valve portion 362 a is disposed to surround the outer periphery of the main valve body 351 of the main valve body unit 350 and to face the first valve seat 327.
  • the first sub-valve portion 362 a has an outer peripheral surface that slidably contacts the inner peripheral surface of the valve storage chamber 321.
  • the first sub-valve portion 362 a is a member disposed in the first valve chamber 315 of the valve storage chamber 321 and in contact with the first valve seat 327 formed around the first valve hole 316.
  • the second sub valve portion 362 b is disposed in the second valve chamber 328 of the valve storage chamber 321 and is formed around the second valve hole 320 (specifically, the surface of the end wall 318 b on the second valve chamber 328 side) And a second valve seat 318f (see FIGS. 3 and 4).
  • the shaft portion 362c connects the first sub valve portion 362a and the second sub valve portion 362b and penetrates the dividing member 361 and has an axis smaller than the outer diameters of the first sub valve portion 362a and the second sub valve portion 362b. It is a member having an outer diameter.
  • the communication passage 363 is a passage for connecting the first valve hole 316 and the second valve hole 320, and includes a first communication passage 363a and a second communication passage 363b.
  • the first communication passage 363 a is a passage formed of a cylindrical region between the inner peripheral surface of the insertion hole 364 of the sub valve body 362 and the outer peripheral surface of the main valve unit 350.
  • the second communication passage 363b is a passage extending through the outer peripheral surface side of the first sub valve portion 362a and communicating the first region (back pressure region) S1 with the first communication passage 363a.
  • the details of the auxiliary valve body 362, the first communication passage 363a, and the second communication passage 363b will be described later. [Operation of secondary valve unit] FIG.
  • FIG. 5 is a cross-sectional view of an essential part for explaining the operation state of the sub valve body unit 360
  • FIG. 5 (A) shows a refrigerant supply state (first state) from the discharge chamber 142 to the crank chamber 140
  • 5B shows the state immediately after the first valve hole 316 is closed in the first state (the state immediately after the valve closing)
  • FIG. 5C shows the state from the crank chamber 140 to the suction chamber 141.
  • a pressure release state (second state). That is, the sub valve body unit 360 is configured to switch between the first state and the second state.
  • the end face of the sub valve body 362 on the side of the first valve hole 316 receives the pressure in the region of the supply passage 145 closer to the discharge chamber 142 than the sub valve body 362, ie, the so-called back pressure Pm.
  • s1> s2 or s1 ⁇ s2 can be set.
  • the valve body 311 is formed with the back pressure relief throttle passage 325 that communicates the first region S1 with the suction chamber 141.
  • the back pressure relief throttle passage 325 has a throttle portion, the amount of refrigerant flowing out of the first region S1 into the suction chamber 141 via the back pressure relief throttle passage 325 is small.
  • the main valve body 351 of the main valve body unit 350 is separated from the first valve seat 327 in a state where the first sub valve portion 362a is in contact with the first valve seat 327 (the second state in FIG. 5C). Then, when the first valve hole 316 is opened, the back pressure Pm acting on the first sub valve portion 362a becomes high.
  • the first sub valve portion 362a starts to separate from the first valve seat 327. Then, as shown in FIG. 5A, when the second sub valve portion 362b abuts on the second valve seat 318f, the first sub valve portion 362a is most separated from the first valve seat 327 (see FIG. State 1). Thereby, the sub valve body unit 360 switches from the second state to the first state. In the first state, the communication between the second valve hole 320 and the discharge internal passage 326 is cut off, and the first discharge passage 146a of the discharge passages 146 connecting the crank chamber 140 and the suction chamber 141 is closed.
  • the first valve hole 316 and the second valve hole 320 communicate with each other through the communication passage 363, and the supply passage 145 communicating the discharge chamber 142 with the crank chamber 140 is opened. That is, when the main valve body unit 350 opens the first valve hole 316, the first discharge passage 146a passing through the inside of the control valve 300 in the discharge passage 146 is closed simultaneously with the first valve hole 316 and The refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 through the communication passage 363 including the first communication passage 363a and the second communication passage 363b. As a result, only the second discharge passage 146 b provided to bypass the control valve 300 in the discharge passage 146 and always communicating between the crank chamber 140 and the suction chamber 141 is opened.
  • the minimum opening area is the opening area of the fixed stop 103c. Therefore, the discharge of the refrigerant from the crank chamber 140 to the suction chamber 141 is suppressed. Then, in this state, the refrigerant flowing from the first valve hole 316 is promptly supplied to the crank chamber 140 via the communication passage 363 formed of the first communication passage 363a and the second communication passage 363b, whereby the crank chamber 140 is produced. Pressure is likely to rise. As a result, the pressure in the crank chamber 140 rapidly rises according to the opening degree of the supply passage 145, the inclination angle of the swash plate 111 decreases from the maximum, and the piston stroke (discharge volume) can be rapidly controlled. .
  • the supply passage 145 includes the communication passage 104 d (see FIG. 1), the second outer space 104 b 2 (see FIGS. 1 and 2), the first port 322, the communication space 317 b, and the first valve hole 316. , First region S1, communication passage 363 (first communication passage 363a, second communication passage 363b), second valve hole 320, communication space portion 319, second port 323, fourth outer space 104b4 (FIGS. 1 and 2) (See reference), the communication passage 104f, the through hole of the valve plate 103, and the communication passage 101c.
  • the fluid passage in the control valve 300 that constitutes a part of the supply passage 145 is the first port 322, the communication space 317b, the first valve hole 316, the first region S1, and the communication passage. 363 (a first communication passage 363a, a second communication passage 363b), a second valve hole 320, a communication space 319, and a second port 323.
  • the switching operation from the first state to the second state will be described.
  • the main valve body unit 350 starts to move in the valve closing direction.
  • the main valve body 351 abuts on the first valve seat 327 as shown in FIG.
  • the refrigerant in the first valve chamber 315 is used for back pressure relief.
  • the back pressure Pm discharged to the suction chamber 141 via the throttle passage 325 and acting on the first sub valve portion 362 a gradually decreases. Thereafter, when the back pressure Pm becomes lower than the pressure Pc of the crank chamber 140 (in the state of Pm-Pc ⁇ 0), the refrigerant passes through the second valve hole 320 and the first communication passage 363a to the first valve chamber 315 side. Backflow toward the The sub valve body 362 is pressed by the backflowing refrigerant flow to move to the first valve seat 327 side, and the second sub valve portion 362 b starts to separate from the second valve seat 318 f.
  • the main valve body unit 350 closes the first valve hole 316, the supply passage 145 is closed, and at the same time, the second valve hole 320 and the discharge internal passage 326 communicate with each other, and the first discharge passage 146a,
  • the refrigerant in the crank chamber 140 is discharged to the suction chamber 141 via the second discharge passage 146 b.
  • the supply of the refrigerant from the discharge chamber 142 to the crank chamber 140 is stopped, and the discharge passage 146 is fully opened. Therefore, the refrigerant in the crank chamber 140 is quickly discharged to the suction chamber 141 via the second discharge passage 146 b (fixed throttle 103 c) and the first discharge passage 146 a.
  • the first discharge passage 146a is formed by the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, the second port 323, the communication space 319, and the second valve hole. 320, the second valve chamber 328, the discharge internal passage 326 (specifically, the discharge hole 318c, the space 314a, the third port 324), the third outer space 104b3, and the communication passage 104e.
  • a part of the fluid passage in the control valve 300 which constitutes a part of the first discharge passage 146 a is the second valve hole 320, the communication space 319, and the second port 323.
  • the combined passage serving as the first discharge passage 146a and the supply passage 145 is the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, and the control valve. It is a part of the fluid passage inside of 300 (that is, the second port 323, the communication space 319, and the second valve hole 320).
  • the main valve body 351 of the main valve body unit 350 is separated from the first valve seat 327 and the first region S1 between the first valve seat 327 and the first sub valve portion 362a.
  • the pressure i.e., the back pressure Pm
  • the first valve hole 316 and the second valve hole 320 are communicated with each other via the communication passage 363 and the second valve hole 320 is communicated with the discharge internal passage 326.
  • the main valve body 351 abuts on the first valve seat 327 and the pressure (back pressure Pm) in the first region S1 decreases in the sub valve body 362, the first valve hole 316 and the second valve hole 320.
  • the sub valve body unit 360 is provided in the valve storage chamber 321 and operates in accordance with the front / rear differential pressure (the pressure difference) ⁇ P to connect the first valve hole 316 and the second valve hole 320
  • the opening degree of the discharge passage 146 is controlled by switching to the second state in which the second valve hole 320 and the discharge internal passage 326 communicate with each other.
  • the first sub-valve portion 362a includes a sliding portion 362a1, a front end 362a2, and a rear end 362a3.
  • the sliding portion 362a1 has an outer peripheral surface that is in sliding contact with the inner peripheral surface of the valve storage chamber 321 (more specifically, the first valve chamber 315), and the first valve chamber 315 and the first region S1 on the first valve hole 316 side. It divides into the 2nd field S2 by the side of division member 361.
  • the sliding portion 362a1 is formed in a substantially cylindrical shape and has an outer diameter larger than the outer diameter of the rear end portion 362a3.
  • the outer peripheral surface of the sliding portion 362 a 1 is slidably supported by the inner peripheral surface of the first valve chamber 315.
  • a first small diameter hole portion 364a is formed through the radial center portion of the sliding portion 362a1.
  • One end of the first small diameter hole 364a is opposed to the first valve hole 316 and connected to the first region S1, and the other end of the first small diameter hole 364a is a first large diameter hole 364b of the rear end 362a3 described later.
  • a communication passage 363b1 that constitutes a part of the second communication passage 363b is formed.
  • the communication passage 363b1 is a passage for causing the first region S1 and the second region S2 to communicate with each other.
  • the communication passage 363b1 is, for example, a groove (slit) formed on the outer peripheral surface of the sliding portion 362a1.
  • the communication passage 363b1 may be one, but in the present embodiment, the communication passage 363b1 is a groove extending in the axial direction of the sliding portion 362a1 at a plurality of angular positions separated in the circumferential direction of the sliding portion 362a1. In addition, in the cross-sectional angular position shown to a figure, although the communication path 363b1 is one, it is formed in multiple numbers in fact.
  • the front end portion 362a2 is formed at an end portion of the sliding portion 362a1 on the first region S1 side, and is in contact with the first valve seat 327. The front end portion 362a2 protrudes, for example, in an annular shape from an end of the sliding portion 362a1 on the first region S1 side.
  • a second communication passage throttle passage 363b2 which constitutes a part of the second communication passage 363b is formed.
  • the passage cross sectional area of the second communication passage throttle passage 363b2 is set to be the minimum passage cross sectional area of the second communication passage 363b, and the second communication passage throttle passage 363b2 is the throttle portion of the second communication passage 363b.
  • Configure The second communication passage throttle passage 363b2 penetrates the front end portion 362a2 at a predetermined angular position in the circumferential direction of the annular front end portion 362a2, and communicates the radially inner region and the radially outer region of the front end portion 362a2 .
  • the rear end portion 362a3 extends from the end on the second region S2 side of the sliding portion 362a1 toward the partitioning member 361 and has a flush outer peripheral surface and is formed in a tubular shape.
  • the outer diameter of the rear end portion 362a3 is smaller than the outer diameter of the sliding portion 362a1, and is formed to be approximately the same as the outer diameter of the annular projecting portion 361b of the partitioning member 361.
  • the end of the shaft 362c is fitted to the open end of the cylindrical rear end 362a3. In a state where the shaft portion 362c is fitted to the rear end portion 362a3, the rear end portion 362a3 has a columnar first large diameter hole portion 364b having an inner diameter equal to the outer diameter of the shaft portion 362c.
  • the first large diameter hole 364b has an inner diameter larger than that of the first small diameter hole 364a, and is connected to the other end of the first small diameter hole 364a.
  • a rear end through hole 363b3 which constitutes a part of the second communication passage 363b is formed through the peripheral wall of the rear end 362a3.
  • the rear end through hole 363b3 penetrates the peripheral wall of the rear end 362a3 at a predetermined angular position in the circumferential direction of the rear end 362a3, and the area in the second area S2 and the rear end 362a3 (that is, the first large diameter hole It communicates with the portion 364b).
  • the second sub valve portion 362 b is, for example, integrally formed with the shaft portion 362 c.
  • a cylindrical second small diameter hole portion 364c and a cylindrical second large diameter hole portion 364d having a diameter larger than that of the second small diameter hole portion 364c. And are formed.
  • One end of the second small diameter hole portion 364c is opened at one end surface of the integrally formed body and connected to the first large diameter hole portion 364b, and the other end of the second small diameter hole portion 364c is a second large diameter hole portion 364d.
  • one end of the second large diameter hole portion 364d is connected to the second small diameter hole portion 364c, and the other end of the second large diameter hole portion 364d is opened to the other end face of the integrally formed body so that the second valve hole 320 is formed. It is opposite to.
  • the inner diameter of the second small diameter hole 364 c is set larger than the outer diameter of the main valve body 351.
  • the inner diameter of the second large diameter hole 364 d is set to, for example, the same diameter as the inner diameter of the second valve hole 320.
  • the main valve body 351 of the main valve body unit 350 is inserted through the first small diameter hole portion 364a of the sliding portion 362a1.
  • a first guiding portion 353c of the second rod 353 of the main valve body unit 350 is disposed in the first large diameter hole 364b of the rear end portion 362a3.
  • the small diameter portion 353b of the second rod 353 of the main valve unit 350 is disposed in the second small diameter hole portion 364c of the integrally formed body of the second sub valve portion 362b and the shaft portion 362c, and the second large diameter portion
  • the second guiding portion 353d of the second rod 353 is disposed in the hole 364d.
  • the first small diameter hole 364a, the first large diameter hole 364b, the second small diameter hole 364c, and the second large diameter hole 364d extend from the one end of the sub valve body 362 along the center line X of the valve body 311. It is formed to penetrate through the other end. Therefore, in the present embodiment, the insertion holes 364 for insertion of the main valve body unit 350 are the first small diameter hole 364a, the first large diameter hole 364b, the second small diameter hole 364c, and the second large diameter hole 364d.
  • the insertion hole 364 in the first sub valve portion 362 a which is the first valve seat side end portion of the sub valve body 362, includes the first small diameter hole portion 364 a and the first small diameter hole portion 364 a through which the main valve body 351 is inserted.
  • the small diameter hole portion 364a is formed into a stepped cylindrical shape including a first large diameter hole portion 364b having a larger diameter.
  • the insertion hole 364 at the second valve seat side end of the sub valve body 362 faces the second small diameter hole 364c and the second valve seat 318f communicating with the first large diameter hole 364b and the second small diameter hole It is formed in the shape of a stepped cylinder including a second large diameter hole 364 d having a diameter larger than that of the portion 364 c.
  • the insertion hole 364 is formed to insert the main valve unit 350 in a noncontact manner. Thereby, even if the main valve body unit 350 is slightly vibrated by PWM control, direct transmission of the fine vibration to the sub valve body unit 360 can be avoided.
  • the first communication passage 363a which is a cylindrical passage between the inner peripheral surface of the insertion hole 364 of the sub valve body 362 and the outer peripheral surface of the main valve unit 350, has a first small diameter hole portion.
  • the inner circumferential surface of 364a, the inner circumferential surface of the first large diameter hole 364b, the inner circumferential surface of the second small diameter hole 364c, the inner circumferential surface of the second large diameter hole 364d, and the outer circumferential surface of the main valve unit 350 And a cylindrical passage in the region between them.
  • the first valve seat 327 includes a recess 327a, a main valve body valve seat surface 327b, and a sub valve body valve seat surface 327c.
  • the recess 327a is formed in a concave shape, and the other end of the first valve hole 316 is opened at the bottom of the recess.
  • the main valve body valve seat surface 327b is formed around the first valve hole 316 at the bottom of the recess of the recess 327a, and an annular portion with which the peripheral portion of the end of the main valve body 351 on the first valve hole 316 side abuts.
  • the auxiliary valve body valve seat surface 327c is formed around the recess 327a, and the peripheral portion of the end portion of the auxiliary valve body 362 on the first valve hole 316 side (that is, the front end 362a2 of the first auxiliary valve portion 362a) is It is an annular seat that contacts. Therefore, the first state where the front end portion 362a2 of the first sub valve portion 362a is separated from the sub valve body valve seat surface 327c and the state immediately after the valve closing (FIGS. 5A and 5B) In the above, the region of the first valve chamber 315 from the first valve seat 327 to the sliding portion 362a1 corresponds to the first region S1 as a back pressure region.
  • the recess 327a in the first valve seat 327 A region defined by the front end portion 362a2 and an end face of the sliding portion 362a1 on the first valve seat 327 side corresponds to a first region S1 as a back pressure region.
  • the first region S1 is the inside of the first small diameter hole portion 364a of the first communication passage 363a.
  • the first large diameter hole 364b is in communication with the first large diameter hole 364b through an annular passage formed of a gap between the circumferential surface and the outer peripheral surface of the main valve body 351, and the communication passage 363b1 of the sliding portion 362a1 and the rear end portion
  • the first large diameter hole 364b (first communication passage 363a) is formed via a passage passing through the rear end through hole 363b3 of 362a3 (that is, a passage extending via the outer peripheral surface side of the first sub valve portion 362a). It communicates.
  • the first region S1 is between the inner circumferential surface of the first small diameter hole 364a of the first communication passage 363a and the outer circumferential surface of the main valve body 351.
  • the second communication passage throttle passage 363b2 of the front end portion 362a2, the communication passage 363b1 of the sliding portion 362a1, and the rear end portion 362a3 communicate with the first large diameter hole portion 364b through an annular passage formed of a gap. It communicates with the first large diameter hole 364b (first communication passage 363a) through the passage passing through the rear end through hole 363b3 (that is, the passage extending through the outer peripheral surface side of the first sub valve portion 362a) Do.
  • the second communication passage 363 b extending through the outer peripheral surface side of the first sub valve portion 362 a communicates the first region S 1 as the back pressure region and the first communication passage 363 a
  • an end of the first communication passage 363a on the first valve hole 316 side (that is, a portion corresponding to the first small diameter hole 364a) is a first communication passage throttle passage 365 surrounding the main valve body 351. (Refer to FIG. 6).
  • the second communication passage 363b has a predetermined minimum passage cross sectional area.
  • the minimum passage cross-sectional area of the second communication passage 363b in this contact state is defined by the passage cross-sectional area of the second communication passage throttle passage 363b2.
  • the minimum passage cross-sectional area of the second communication passage 363b in this contact state is set, for example, to be larger than the passage cross-sectional area of the first communication passage throttle passage 365.
  • the minimum passage sectional area of the second communication passage 363b (in other words, the minimum passage of the second communication passage 363b in the separated state)
  • the cross-sectional area is set larger than the minimum passage cross-sectional area of the first communication passage 363a (in the present embodiment, the passage cross-sectional area of the first communication passage throttle passage 365).
  • the minimum passage cross-sectional area of the second communication passage 363b in this separated state is, for example, substantially defined by the passage cross-sectional area of the communication passage 363b1 of the second communication passage 363b.
  • the sub valve body 362 is a receiving surface 366 with which the refrigerant flowing into the first communication path 363 a via the second valve hole 320 collides, and the dynamic pressure in the direction approaching the first valve seat 327 Receiving surface 366.
  • the receiving surface 366 includes a first receiving surface 366a, a second receiving surface 366b, and a third receiving surface 366c.
  • the first receiving surface 366a is formed by an annular end face connecting the first large diameter hole 364b and the first small diameter hole 364a, and is provided in the first sub valve 362a.
  • the second receiving surface 366b is formed by an annular end face that connects the second large diameter hole 364d and the second small diameter hole 364c, and is provided in the second sub valve 362b.
  • the third receiving surface 366c is configured by an end exposed to the second region S2 in the sliding portion 362a1.
  • the main valve body unit 350 (specifically, the second rod 353) has the first guiding portion 353c and the second guiding portion 353d.
  • the first guide portion 353c is disposed in the first large diameter hole portion 364b, and has a conical outer peripheral surface that gradually expands in diameter toward the main valve body 351 side.
  • the first guiding portion 353 c guides the refrigerant flowing into the portion corresponding to the first large diameter hole portion 364 b of the first communication passage 363 a via the second valve hole 320 toward the first receiving surface 366 a.
  • the second guide portion 353d is disposed in the second large diameter hole portion 364d and provided between the small diameter portion 353b and the large diameter portion 353a, and is a cone which gradually expands in diameter toward the second valve hole 320 side. It has an outer peripheral surface of The second guiding portion 353 d guides the refrigerant flowing into the portion of the first communication passage 363 a corresponding to the second large diameter hole portion 364 d via the first valve hole 316 toward the second valve hole 320.
  • the back pressure Pm in the first region S 1 rises quickly, and the sub valve body 362 is removed from the first valve seat 327 Separated and then abut on the second valve seat 318f (first state).
  • the refrigerant passing through the communication passage 363b1 and the rear end through hole 363b3 is the refrigerant passing through the first communication passage throttle passage 365 in the first large diameter hole portion 364b. Merge with.
  • the refrigerant having flowed into the first large diameter hole 364 b is between the inner circumferential surface of the second small diameter hole 364 c and the inner circumferential surface of the second large diameter hole 364 d and the outer circumferential surface of the main valve body unit 350.
  • the crank chamber 140 is supplied via the cylindrical passage (the first communication passage 363a), the second valve hole 320, the communication space 319, and the second port 323.
  • the refrigerant flowing into the second large diameter hole 364 d flows along the outer peripheral surface of the second guide portion 353 d and is efficiently guided to the second valve hole 320.
  • the refrigerant flows back toward the first valve chamber 315 via the second valve hole 320 and the first communication passage 363a.
  • the refrigerant is a cylindrical passage formed of a region between the inner peripheral surface of the second large diameter hole portion 364 d and the inner peripheral surface of the second small diameter hole portion 364 c and the outer peripheral surface of the main valve body unit 350 ( It flows backward through the first communication passage 363a) and is led into the first large diameter hole 364b.
  • the refrigerant is guided toward the second receiving surface 366b by the outer peripheral surface of the large diameter portion 353a of the second rod 353 in the second valve hole 320, and collides with the second receiving surface 366b.
  • the large diameter hole portion 364b In the large diameter hole portion 364b, it is guided toward the first receiving surface 366a by the first guide portion 353c and collides with the first receiving surface 366a. Then, most of the refrigerant in the first large diameter hole 364b flows into the second region S2 through the rear end through hole 363b3 and collides with the third receiving surface 366c, and the communication passage 363b1, the first region The air is discharged into the suction chamber 141 via the S 1 and the back pressure relief throttle passage 325. As a result, the sub valve body 362 is pressed by the backflowing refrigerant flow, moves toward the first valve seat 327, contacts the first valve seat 327, and switches to the second state shown in FIG. 5C. . In the second state shown in FIG.
  • the control valve 300 controls the degree of opening of the supply passage 145 that supplies the refrigerant in the discharge chamber 142 to the crank chamber 140, and also between the crank chamber 140 and the suction chamber 141. The opening degree of the discharge passage 146 to be connected is controlled.
  • the communication passage 363 for connecting the first valve hole 316 and the second valve hole 320 is an insertion hole of the sub valve body 362 of the sub valve unit 360 that controls the opening degree of the discharge passage 146.
  • a first area as a back pressure area that extends via the cylindrical first communication passage 363a between the inner peripheral surface of 364 and the outer peripheral surface of the main valve unit 350 and the outer peripheral surface side of the first sub valve portion 362a
  • a second communication passage 363 b is provided that communicates S 1 with the first communication passage 363 a. That is, the end on the back pressure region side of the communication passage 363 for communicating the first valve hole 316 and the second valve hole 320 is branched into two paths.
  • the main valve body unit 350 is opened. Since the refrigerant can be supplied from the discharge chamber 142 to the crank chamber 140 through the second communication passage 363b in addition to the first communication passage throttle passage 365, a sufficient amount of refrigerant is supplied to the crank chamber 140 . As a result, the pressure in the crank chamber 140 is quickly boosted, and the discharge displacement can be smoothly (rapidly) reduced. As a result, the discharge displacement can be stably controlled.
  • variable displacement compressor 100 capable of rapidly increasing the pressure in the crank chamber 140 (in other words, preventing a delay in the pressure increase in the crank chamber 140).
  • a back pressure relief throttle passage 325 communicating between the suction chamber 141 and the first region S1 as a back pressure region is formed in the valve body 311.
  • the back pressure Pm is rapidly reduced, and the second valve hole 320 and the first communication passage 363a are passed.
  • the end on the first valve hole 316 side of the first communication passage 363 a constitutes a first communication passage throttle passage 365 surrounding the main valve body 351, and the sub valve body 362 serves as the first valve seat 327.
  • the second communication passage 363 b has a predetermined minimum passage cross-sectional area.
  • the first communication passage throttle passage 365 is provided at the end of the first communication passage 363a on the first valve hole 316 side, and the second communication passage 363b at the end on the first valve hole 316 side is the second link. Passage throttle passage 363 b 2 was provided.
  • the first communication passage throttle passage 365 and the second communication passage throttle passage 363 b 2 By the throttling effect, the back pressure Pm in the first region S1 can be quickly increased, and the sub valve body 362 can be smoothly separated from the first valve seat 327.
  • the minimum passage cross-sectional area of the second communication passage 363b in the contact state (the state in which the sub valve body 362 contacts the first valve seat 327, for example, the second state in FIG. 5C). Is set larger than the passage cross-sectional area of the first communication passage throttle passage 365.
  • the first communication passage throttle passage 365 becomes the throttle portion of the entire communication passage 363, and the refrigerant flow linearly flowing from the first valve hole 316 toward the sub valve body 362 is the first connection.
  • Passage throttle passage 365 effectively squeezes.
  • the back pressure Pm in the first region S1 can be raised more quickly.
  • the minimum passage cross-sectional area of the second communication passage 363b in the separated state (the state in which the sub valve body 362 is separated from the first valve seat 327, for example, the first state in FIG. 5A).
  • the passage cross-sectional area of the first communication passage throttle passage 365 Is set larger than the minimum passage cross-sectional area of the first communication passage 363a (in the present embodiment, the passage cross-sectional area of the first communication passage throttle passage 365).
  • the main passage of the entire communication passage 363 in the separated state (the first state in FIG. 5A) can be secured by the second communication passage 363 b, so the passage of the first communication passage throttle passage 365
  • the cross sectional area can be set smaller. Therefore, the throttling effect of the first communication passage throttle passage 365 immediately after the main valve body 351 opens the first valve hole 316 in the contact state (the second state of FIG. 5C) is more effective. Can be enhanced. As a result, immediately after the main valve body 351 opens the first valve hole 316 in the contact state (the second state in FIG.
  • the back pressure Pm in the first region S1 can be made faster.
  • the secondary valve body 362 can be smoothly separated from the first valve seat 327 by raising it, and in the separated state (FIG. 5A), the refrigerant is discharged from the discharge chamber 142 through the second communication passage 363b.
  • the crank chamber 140 can be appropriately supplied.
  • the first valve seat 327 is a recess 327a formed in a concave shape, and the recess 327a in which the other end of the first valve hole 316 is opened in the recess bottom and the recess bottom of the recess 327a
  • first region S1 can be formed between the sub valve body 362 and the main valve body valve seat surface 327 b in a state of being in contact with the 327 c).
  • first region S1 can be formed between the sub valve body 362 and the main valve body valve seat surface 327 b in a state of being in contact with the 327 c).
  • the sub valve body 362 is a receiving surface 366 with which the refrigerant flowing into the first communication passage 363 a via the second valve hole 320 collides, and the dynamic pressure in the direction approaching the first valve seat 327 Receiving surface 366.
  • the dynamic pressure can be effectively received by the receiving surface 366 by the backflowing refrigerant flow, so that the sub valve body 362 can be smoothly moved toward the first valve seat 327.
  • the sub valve body 362 is controlled from the first state (FIG. 5A) to the second state. In order to move it to the state (FIG.
  • the sub valve body 362 is moved in the direction approaching the first valve seat 327 by the dynamic pressure acting on the receiving surface 366 without providing biasing means such as a spring. It can be done. Therefore, the pressure in the crank chamber 140 can be rapidly reduced (in other words, the delay in the pressure release of the crank chamber 140 can be prevented).
  • the receiving surface 366 includes a first receiving surface 366a, a second receiving surface 366b, and a third receiving surface 366c.
  • the first receiving surface 366a is provided in the first sub-valve portion 362a
  • the second receiving surface 366b is provided in the second sub-valve portion 362b
  • the third receiving surface 366c is a second region in the sliding portion 362a1. It comprises the end exposed to S2.
  • the dynamic pressure due to the backflow of refrigerant can be reliably received by the second receiving surface 366b and the first receiving surface 366a in the first communication passage 363a, and the third communication passage 363b
  • the receiving surface 366c can reliably receive pressure.
  • the main valve body unit 350 directs the refrigerant that has flowed into the portion of the first communication passage 363a corresponding to the first large diameter hole portion 364b via the second valve hole 320 toward the first receiving surface 366a. It has the 1st guidance part 353c which guides. Thereby, the dynamic pressure can be received more efficiently at the first receiving surface 366a.
  • the case 318 is fitted in the fitting hole 314 of the valve body 311, and the valve body 311 (specifically, the forming wall of the first valve chamber 315) cooperates with the case 318 to accommodate the valve.
  • the chamber 321 is formed, the present invention is not limited to this.
  • the configurations of the first modification shown in FIG. 7 and the second modification shown in FIG. 8 can be adopted.
  • case 318 is not provided.
  • a peripheral wall 316c fitted in the fitting hole 314 integrally with the partition member 361 extends toward the second valve hole 320, and a discharge hole 318c is opened in the peripheral wall 316c.
  • the large diameter portion 342b of the fixed core 342 has a protrusion 342b1 protruding toward the first valve hole 316, and the end of the protrusion 342b1 is a second port in the fitting portion of the fitting hole 314. It is located in the predetermined position by the side of the 1st valve hole 316 from the opening position of H.323. The other end of the second valve hole 320 is opened at the center of the protrusion 342b1. Further, instead of the communication space portion 319, a communication passage 319 'communicating the one end of the second valve hole 320 and the second port 323 is formed in the inside of the projecting portion 342b1.
  • the large diameter portion 342b (projecting portion 342b1) of the fixed core 342 is fitted in the fitting hole 314, the protrusion 342b1 of the large diameter portion 342b on the first valve hole 316 side
  • the end face abuts the end of the peripheral wall 316c.
  • the valve accommodating chamber 321 is formed by the end face of the large diameter portion 342 b (projecting portion 342 b 1) of the fixed core 342, the inner peripheral surface of the peripheral wall 316 c and the inner peripheral surface of the forming wall of the first valve chamber 315 of the valve body 311. It is formed.
  • the valve body 311 forms the valve storage chamber 321 in cooperation with the peripheral wall 316 c of the dividing member 361 and the large diameter portion 342 b (more specifically, the protruding portion 342 b 1) of the fixed core 342.
  • the second valve seat 318f can be formed using the end surface of the large diameter portion 342b of the fixed core 342 (specifically, the end surface of the protrusion 342b1).
  • valve structure can be simplified. Also in the second modification of control valve 300 shown in FIG. 8, case 318 is not provided.
  • a first valve chamber 315, a first valve hole 316 and an insertion hole 317 are formed in the valve body 311 sequentially from the other end surface (end surface on the solenoid unit 340 side) 311b side.
  • the large diameter portion 342 b of the fixed core 342 is fitted in a fitting hole 341 d formed in the end wall portion 341 b of the solenoid housing 341.
  • the large diameter portion 342 b of the fixed core 342 has a protruding portion 342 b 1 that protrudes toward the first valve hole 316.
  • the protrusion 342b1 has, in order from the valve body 311 side, a first fitting hole 342b11, a second fitting hole 342b12 having a diameter smaller than that of the first fitting hole 342b11, and a cylindrical shape having a diameter smaller than that of the second fitting hole.
  • a cylindrical space 342 b 13 is formed.
  • a predetermined range on the other end surface 311b side of the valve body 311 is fitted into the first fitting hole 342b11, and the partitioning member 361 is fitted and positioned in the second fitting hole 342b12.
  • the second sub valve portion 362 b is disposed in the cylindrical space portion 342 b 13.
  • the third port 324 penetrates the peripheral wall of the protrusion 342b1 and opens in the cylindrical space 342b13, and the other end of the second valve hole 320 is open at the center of the bottom of the cylindrical space 342b13.
  • the second port 323 penetrates the peripheral wall of the protrusion 342 b 1 and is connected to the second valve hole 320.
  • part around the 2nd valve hole 320 in the said bottom face of cylindrical space part 342b13 of protrusion part 342b1 comprises the 2nd valve seat 318f.
  • the second valve chamber 328 is formed of the cylindrical space 342b13, and the valve housing 321 is the inner circumferential surface of the cylindrical space 342b13 in the valve body 311 and the inner circumferential surface of the first fitting hole 342b11. And the inner peripheral surface of the forming wall of the first valve chamber 315 of the valve body 311.
  • the valve body 311 forms the valve storage chamber 321 in cooperation with the large diameter portion 342 b (more specifically, the protrusion 342 b 1) of the fixed core 342.
  • the valve housing 310, the solenoid housing 341, and the projecting portion 342b1 of the large diameter portion 342b of the fixed core 342 are control valves having an outer peripheral surface extending in one direction by fitting each other. It constitutes a housing.
  • the control valve housing (310, 341, 342b1) corresponds to the "housing" according to the present invention.
  • the valve storage chamber 321 can be formed without providing the case 318, so the number of parts can be reduced.
  • the discharge internal passage 326 communicating between the pressure area of the suction chamber 141 and the valve storage chamber 321 can be formed with a simple structure by only the third port 324.
  • the second communication passage throttle passage 363b2 is provided at the front end portion 362a2 of the first sub valve portion 362a, but the second communication passage throttle passage 363b2 may not be provided. In this case, when the sub valve body 362 abuts on the first valve seat 327, the second communication passage 363 b is closed.
  • the back pressure region in the state immediately after the peripheral portion on the first valve hole 316 side of the main valve body 351 is separated from the main valve body valve seat surface 327b
  • the back pressure Pm in the first region S1 can be raised more quickly.
  • the pressure-sensitive device 330 operates in response to the pressure Ps in the suction chamber 141.
  • the present invention is not limited to this, and is configured to operate in response to an appropriate external pressure. It is also good.
  • the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and changes are possible based on the technical idea of the present invention.
  • Discharge passage 300 control valve 310: valve housing (housing) 316: first valve hole 320: second valve hole 321: valve storage chamber 325: back pressure relief throttle passage 326: discharge internal passage 327: first valve seat, 327a: recessed portion, 327b: valve seat surface for main valve body, 327c: valve seat surface for secondary valve body, 330: pressure-sensitive device, 341: solenoid housing (housing), 342b1: projecting portion (Housing), 340: Solenoid unit, 350: Main valve body unit, 351: Main valve body, 353c: First guide portion, 360: Secondary valve body unit, 362a: First secondary valve portion, 62 secondary valve body 363 communication passage 363a first communication passage 363b second communication passage 364 insertion hole 364a

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Lift Valve (AREA)
  • Multiple-Way Valves (AREA)

Abstract

According to the present invention, the pressure in a crank chamber increases quickly in a variable capacity compressor. This variable capacity compressor has a control valve 300 configured to control the opening degree of a supply passage for supplying a refrigerant in a discharge chamber to a crank chamber and the opening degree of a discharge passage between the crank chamber and an intake chamber. In the control valve 300, a communication passage 363 for communicating a first valve hole 316 and a second valve hole 320 includes: a cylindrical first communication passage 363a between the inner peripheral surface of a through-hole 364 of a sub valve body 362 of a sub valve body unit 360 and the outer peripheral surface of a main valve body unit 350; and a second communication passage 363b which extends past the outer peripheral surface side of a first sub valve part 362a of the sub valve body 362 and through which a first region S1, serving as a back pressure region, and the first communication passage 363a communicate with each other.

Description

可変容量圧縮機Variable displacement compressor
 本発明は、クランク室などの制御圧室の圧力に応じて吐出容量が変化する可変容量圧縮機に関する。 The present invention relates to a variable displacement compressor in which a discharge displacement changes according to the pressure of a control pressure chamber such as a crank chamber.
 この種の可変容量圧縮機の一例として、特許文献1に記載の可変容量圧縮機が知られている。特許文献1に記載の可変容量圧縮機は、クランク室5と吐出室22とを接続する給気通路28と、クランク室5と吸入室21とを接続する抽気通路27と、給気通路28の開度を調整可能な第1制御弁CV1と、抽気通路27の開度を調整可能な第2制御弁CV2とを備え、クランク室5の圧力を第1制御弁CV1及び第2制御弁CV2により制御することにより吐出容量を変更可能に構成されている。そして、第2制御弁CV2は、第1制御弁CV1のバルブハウジング45内に組込まれ、第1制御弁CV1と一体化されている。
 詳しくは、第1制御弁CV1は、給気通路28の一部を構成する連通路47を開閉する弁体部43を有する作動ロッド40と、バルブハウジング45に形成され弁体部43が収容される弁室46と、作動ロッド40を作動させるソレノイド部60とを有する。第2制御弁CV2は、弁室46内に摺動可能に保持される有底円筒状のスプール82を有する。このスプール82には、作動ロッド40の弁体部43が挿通される孔82eが形成されている。バルブハウジング45には、連通路47、ポート51、及び、ポート88が形成されている。連通路47の一端はポート52(吐出室22の圧力領域)に接続し、連通路47の他端は弁室46に開口している。ポート51の一端はクランク室5の圧力領域に接続しポート51の他端は弁室46に開口している。ポート88の一端は吸入室21の圧力領域に接続し、ポート88の他端は弁室46に開口している。第2制御弁CV2は、第1制御弁CV1の弁体部43が連通路47を開くと、連通路86を介して連通路47とポート51とを連通させると共にポート51とポート88との連通を遮断し、第1制御弁CV1の弁体部43が連通路47を閉じると、連通路47とポート51との連通を遮断すると共にポート51とホーと88とを連通するように構成されている。
A variable displacement compressor described in Patent Document 1 is known as an example of this type of variable displacement compressor. The variable displacement compressor described in Patent Document 1 includes an air supply passage 28 connecting the crank chamber 5 and the discharge chamber 22, a bleed passage 27 connecting the crank chamber 5 and the suction chamber 21, and an air supply passage 28. A first control valve CV1 capable of adjusting the opening degree and a second control valve CV2 capable of adjusting the opening degree of the bleed passage 27 are provided, and the pressure in the crank chamber 5 is controlled by the first control valve CV1 and the second control valve CV2. By controlling, it is constituted so that change of discharge capacity is possible. The second control valve CV2 is incorporated in the valve housing 45 of the first control valve CV1 and integrated with the first control valve CV1.
Specifically, the first control valve CV1 is formed in the valve housing 45 and the valve rod 45 having the valve body 43 that opens and closes the communication passage 47 that constitutes a part of the air supply passage 28, and the valve body 43 is accommodated. Valve chamber 46 and a solenoid section 60 for operating the actuating rod 40. The second control valve CV2 has a bottomed cylindrical spool 82 slidably held in the valve chamber 46. The spool 82 is formed with a hole 82e through which the valve body 43 of the actuating rod 40 is inserted. A communication passage 47, a port 51, and a port 88 are formed in the valve housing 45. One end of the communication passage 47 is connected to the port 52 (pressure region of the discharge chamber 22), and the other end of the communication passage 47 is open to the valve chamber 46. One end of the port 51 is connected to the pressure region of the crank chamber 5, and the other end of the port 51 is open to the valve chamber 46. One end of the port 88 is connected to the pressure area of the suction chamber 21, and the other end of the port 88 is open to the valve chamber 46. When the valve body 43 of the first control valve CV1 opens the communication passage 47, the second control valve CV2 brings the communication passage 47 into communication with the port 51 via the communication passage 86 and causes the communication between the port 51 and the port 88 When the valve body 43 of the first control valve CV1 closes the communication passage 47, the communication between the communication passage 47 and the port 51 is shut off and the port 51 and the ho 88 are communicated. There is.
特開2002−21721号公報Japanese Patent Application Laid-Open No. 2002-21721
 しかしながら、特許文献1に記載の可変容量圧縮機においては、連通路47とポート51とを連通するための連通路86は、スプール82に形成された孔82eと弁体部43との間の隙間からなり、通路断面積が小さく設定された固定絞りとして機能している。したがって、第1制御弁CV1の弁体部43が連通路47を開いたとしても、給気通路28内の冷媒流が固定絞りとして機能する連通路86により絞られ、クランク室5に十分な量の冷媒(ガス)を供給することができない。そのため、クランク室5の圧力の昇圧が緩慢になり、吐出容量の減少が遅れてしまい、ひいては、吐出容量の制御が不安定になるおそれがあった。
 そこで、本発明は、従来に比べて、前記クランク室等の制御圧室の圧力を速やかに昇圧させることができる可変容量圧縮機を提供することを目的とする。
However, in the variable displacement compressor described in Patent Document 1, the communication passage 86 for connecting the communication passage 47 and the port 51 is a gap between the hole 82 e formed in the spool 82 and the valve body portion 43. It functions as a fixed stop whose passage sectional area is set small. Therefore, even if the valve body 43 of the first control valve CV1 opens the communication passage 47, the refrigerant flow in the air supply passage 28 is squeezed by the communication passage 86 functioning as a fixed throttle, and an amount sufficient for the crank chamber 5 is obtained. Can not supply the refrigerant (gas) of As a result, the pressure increase in the crank chamber 5 becomes slow, and the decrease of the discharge capacity is delayed, which may result in the control of the discharge capacity becoming unstable.
Then, this invention aims at providing the variable displacement compressor which can raise the pressure of control pressure chambers, such as the said crank chamber, more rapidly than before.
 本発明の一側面によると、圧縮前の冷媒が導かれる吸入室、前記吸入室内の冷媒を圧縮する圧縮部、前記圧縮部によって圧縮された圧縮後の冷媒が吐出される吐出室、内部圧力に応じて前記圧縮部の状態を変化させて吐出容量を変化させる制御圧室、及び、前記吐出室内の冷媒を前記制御圧室に供給する供給通路の開度を制御すると共に前記制御圧室と前記吸入室との間を接続する排出通路の開度を制御する制御弁を有する可変容量圧縮機が提供される。前記制御弁は、一方向に延伸し外周面を有するハウジングと、副弁体ユニットと、円柱状の主弁体ユニットと、ソレノイドユニットと、感圧装置とを含む。前記ハウジングは、弁収容室、一端が前記吐出室の圧力領域に接続し他端が前記弁収容室に開口する第1弁孔、一端が前記制御圧室の圧力領域に接続し他端が前記弁収容室に開口する第2弁孔、及び、一端が前記吸入室の圧力領域に接続し他端が前記弁収容室に開口する排出内部通路を有する。前記副弁体ユニットは、前記弁収容室内に設けられ前後差圧に応じて作動し、前記第1弁孔と前記第2弁孔とを連通させる第1の状態と、前記第2弁孔と前記排出内部通路とを連通させる第2の状態とに切り替わることにより前記排出通路の開度を制御する。前記主弁体ユニットは、前記副弁体ユニットの一端から他端に亘って貫通するように延設され、前記第1弁孔の周囲の第1弁座に離接して前記第1弁孔を開閉する主弁体を有する。前記ソレノイドユニットは、前記主弁体ユニットに前記第1弁孔の閉弁方向の付勢力を作用させる。前記感圧装置は、外部圧力に応答して前記主弁体ユニットに前記第1弁孔の開弁方向の付勢力を作用させる。前記副弁体ユニットは、前記主弁体ユニットの挿通用の挿通孔が形成された副弁体と、前記第1弁孔と前記第2弁孔とを連通させるための連通路と、を含む。前記副弁体は、前記主弁体の外周を囲み且つ前記第1弁座に対向するように配置されると共に前記弁収容室の内周面に摺接する外周面を有する第1副弁部を含む。前記副弁体は、前記主弁体が前記第1弁座から離間して前記第1弁座と前記第1副弁部との間の背圧領域の圧力が上昇した場合に、前記連通路を介して前記第1弁孔と前記第2弁孔とを連通させると共に前記第2弁孔と前記排出内部通路との連通を遮断し、前記主弁体が前記第1弁座に当接して前記背圧領域の圧力が低下した場合に、前記第1弁孔と前記第2弁孔との連通を遮断すると共に前記第2弁孔と前記排出内部通路とを連通するように移動する構成とする。前記連通路は、前記副弁体の前記挿通孔の内周面と前記主弁体ユニットの外周面との間の円筒状の第1連通路と、前記第1副弁部の外周面側を経由して延び前記背圧領域と前記第1連通路とを連通する第2連通路とを含む。 According to one aspect of the present invention, a suction chamber to which refrigerant before compression is introduced, a compression unit that compresses the refrigerant in the suction chamber, a discharge chamber to which the refrigerant after compression compressed by the compression unit is discharged, internal pressure Accordingly, the control pressure chamber which changes the discharge capacity by changing the state of the compression unit, and the degree of opening of the supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber are controlled. A variable displacement compressor is provided having a control valve that controls the degree of opening of a discharge passage connected to a suction chamber. The control valve includes a housing extending in one direction and having an outer peripheral surface, a sub valve body unit, a cylindrical main valve body unit, a solenoid unit, and a pressure sensing device. The housing is a valve chamber, one end is connected to the pressure area of the discharge chamber, the other end is a first valve hole opened to the valve chamber, one end is connected to the pressure area of the control pressure chamber, and the other is the above It has the 2nd valve hole opened to a valve storage chamber, and the discharge internal passage which one end connects to the pressure field of the suction chamber, and the other end opens to the valve storage chamber. The sub valve body unit is provided in the valve storage chamber and operates in accordance with a pressure difference between the front and back, and communicates the first valve hole and the second valve hole, and the second valve hole. The degree of opening of the discharge passage is controlled by switching to a second state in which the discharge internal passage is communicated. The main valve body unit is extended so as to penetrate from one end to the other end of the sub valve body unit, and the first valve hole is formed by coming into contact with the first valve seat around the first valve hole. It has a main valve body that opens and closes. The solenoid unit applies an urging force in the valve closing direction of the first valve hole to the main valve body unit. The pressure sensing device applies an urging force in the valve opening direction of the first valve hole to the main valve body unit in response to an external pressure. The sub valve body unit includes a sub valve body in which an insertion hole for insertion of the main valve body unit is formed, and a communication passage for communicating the first valve hole and the second valve hole. . The sub valve body is disposed so as to surround the outer periphery of the main valve body and to be opposed to the first valve seat, and has a first sub valve portion having an outer peripheral surface in sliding contact with the inner peripheral surface of the valve storage chamber Including. In the sub valve body, when the main valve body is separated from the first valve seat and the pressure in the back pressure region between the first valve seat and the first sub valve portion is increased, the communication passage Communication between the first valve hole and the second valve hole and blocking communication between the second valve hole and the discharge internal passage, and the main valve body abuts on the first valve seat When the pressure in the back pressure region decreases, the communication between the first valve hole and the second valve hole is shut off, and the second valve hole is moved so as to communicate with the discharge internal passage. Do. The communication passage is a cylindrical first communication passage between the inner peripheral surface of the insertion hole of the sub valve body and the outer peripheral surface of the main valve body unit, and the outer peripheral surface side of the first sub valve portion. And a second communication passage extending between the back pressure region and the first communication passage.
 本発明の前記一側面による前記可変容量圧縮機によれば、前記制御弁は前記吐出室内の冷媒を前記制御圧室に供給する供給通路の開度を制御すると共に前記制御圧室と前記吸入室と間を接続する排出通路の開度を制御する。前記制御弁において、前記第1弁孔と前記第2弁孔とを連通させるための連通路は、前記排出通路の開度を制御する副弁体ユニットの前記副弁体の前記挿通孔の内周面と前記主弁体ユニットの外周面との間の円筒状の第1連通路と、前記第1副弁部の外周面側を経由して延び前記背圧領域と前記第1連通路とを連通する第2連通路とを含む。つまり、前記第1弁孔と前記第2弁孔とを連通させるための連通路の背圧領域側の端部は、前記第1連通路と前記第2連通路とに分岐している。したがって、例えば、前記第1連通路の前記背圧領域側の端部が前記主弁体を囲む円筒状の絞り通路として機能させた場合であっても、前記主弁体ユニットが開弁時に、前記絞り通路に加えて前記第2連通路を介して冷媒を前記吐出室から前記制御圧室に供給することができるため、前記制御圧室に十分な量の冷媒が供給される。その結果、前記制御圧室の圧力が速やかに昇圧して、吐出容量がスムース(速やか)に減少し、ひいては、吐出容量を安定的に制御することができる。
 このようにして、前記制御圧室の圧力を速やかに昇圧させることができる可変容量圧縮機を提供することができる。
In the variable displacement compressor according to the aspect of the present invention, the control valve controls the degree of opening of the supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber, and the control pressure chamber and the suction chamber Control the opening of the discharge passage connecting the In the control valve, a communication passage for connecting the first valve hole and the second valve hole is formed in the insertion hole of the sub valve body of the sub valve body unit that controls the opening degree of the discharge passage. A cylindrical first communication passage between the circumferential surface and the outer circumferential surface of the main valve body unit, and the back pressure region and the first communication passage extending via the outer circumferential surface side of the first sub valve portion And a second communication passage communicating with each other. That is, the end on the back pressure region side of the communication passage for communicating the first valve hole and the second valve hole is branched into the first communication passage and the second communication passage. Therefore, for example, even when the end portion on the back pressure region side of the first communication passage functions as a cylindrical throttle passage surrounding the main valve body, when the main valve body unit is opened, Since a refrigerant can be supplied from the discharge chamber to the control pressure chamber through the second communication passage in addition to the throttle passage, a sufficient amount of refrigerant is supplied to the control pressure chamber. As a result, the pressure in the control pressure chamber can be quickly increased, and the discharge capacity can be smoothly (rapidly) reduced. As a result, the discharge capacity can be stably controlled.
In this way, it is possible to provide a variable displacement compressor capable of rapidly increasing the pressure in the control pressure chamber.
本発明の一実施形態における可変容量圧縮機の断面図である。1 is a cross-sectional view of a variable displacement compressor according to an embodiment of the present invention. 前記可変容量圧縮機の制御弁の断面図である。It is a sectional view of a control valve of the variable displacement compressor. 図2における要部の拡大図である。It is an enlarged view of the principal part in FIG. 前記可変容量圧縮機の副弁体ユニットとケースとの組立体の断面図である。It is sectional drawing of the assembly of the subvalve body unit and case of the said variable displacement compressor. 前記副弁体ユニットの動作状態を説明するための図面であり、(A)はクランク室への冷媒供給状態(第1の状態)を示し、(B)は第1弁孔の閉弁直後の状態を示し、(C)はクランク室からの放圧状態(第2の状態)を示す。It is a figure for demonstrating the operation state of the said sub valve body unit, (A) shows the refrigerant supply state (1st state) to a crank chamber, (B) is just after valve closing of the 1st valve hole. A state is shown, and (C) shows a pressure-released state (second state) from the crank chamber. 図3における要部の拡大図である。It is an enlarged view of the principal part in FIG. 前記制御弁の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the said control valve. 前記制御弁の別の変形例を示す要部断面図である。It is principal part sectional drawing which shows another modification of the said control valve.
[可変容量圧縮機の全体構成]
 以下、本発明の実施形態を添付図面に基づいて説明する。図1は、本発明が適用された斜板式の可変容量圧縮機の概略構成を示す断面図である。この可変容量圧縮機は、特に限定されるものではないが、主に車両用のエアコンシステムに適用されるクラッチレス圧縮機として構成されている。
 可変容量圧縮機100は、複数のシリンダボア101aが形成されたシリンダブロック101と、シリンダブロック101の一端側に設けられたフロントハウジング102と、シリンダブロック101の他端側にバルブプレート103を介して設けられたシリンダヘッド104と、を含む。そして、シリンダブロック101、フロントハウジング102、バルブプレート103及びシリンダヘッド104は、複数の通しボルト105によって締結されて圧縮機ハウジングを構成している。
 また、シリンダブロック101とフロントハウジング102とによってクランク室140が形成され、クランク室140内を横断するように駆動軸110が設けられている。駆動軸110は、前記圧縮機ハウジングに回転自在に支持されている。なお、図では省略しているが、フロントハウジング102とシリンダブロック101との間にはセンターガスケットが配置され、シリンダブロック101とシリンダヘッド104との間には、バルブプレート103の他にも、シリンダガスケット、吸入弁形成板、吐出弁形成板及びヘッドガスケットが配置されている。
 駆動軸110の軸方向の中間部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112にリンク機構120を介して連結され、駆動軸110と共に回転する。また、斜板111は、駆動軸110の軸線Oに対する角度(以下「傾角」という)が変更可能に構成されている。
 リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121と、を含む。
 駆動軸110が挿通される斜板111の貫通孔111bは、斜板111が最大傾角と最小傾角の範囲で傾動可能な形状に形成されている。貫通孔111bには駆動軸110と当接する最小傾角規制部が形成されている。斜板111が駆動軸110の軸線Oに直交するときの斜板111の傾角(最小傾角)を0°とした場合、貫通孔111bの前記最小傾角規制部は、斜板111の傾角がほぼ0°となると駆動軸110に当接し、斜板111のそれ以上の傾動を規制するように形成されている。また、斜板111は、その傾角が最大傾角となるとロータ112に当接してそれ以上の傾動が規制される。
 駆動軸110には、斜板111の傾角を減少させる方向に斜板111を付勢する傾角減少バネ114と、斜板111の傾角を増大させる方向に斜板111を付勢する傾角増大バネ115とが装着されている。傾角減少バネ114は、斜板111とロータ112との間に配置され、傾角増大バネ115は、斜板111と駆動軸110に固定されたバネ支持部材116との間に装着されている。
 ここで、斜板111の傾角が前記最小傾角であるとき、傾角増大バネ115の付勢力の方が傾角減少バネ114の付勢力よりも大きくなるように設定されており、駆動軸110が回転していないとき、斜板111は、傾角減少バネ114の付勢力と傾角増大バネ115の付勢力とがバランスする傾角に位置決めされる。
 駆動軸110の一端(図1における左端)は、フロントハウジング102のボス部102a内を貫通してフロントハウジング102の外側まで延在している。そして、駆動軸110の前記一端に図示省略の動力伝達装置が連結されている。駆動軸110とボス部102aとの間には軸封装置130が設けられており、軸封装置130によってクランク室140内は外部から遮断されている。
 駆動軸110とロータ112の連結体は、ラジアル方向においては軸受131、132で支持され、スラスト方向においては軸受133、スラストプレート134で支持されている。そして、駆動軸110(及びロータ112)は、外部駆動源からの動力が前記動力伝達装置に伝達されることにより、前記動力伝達装置の回転と同期して回転するように構成されている。なお、駆動軸110の他端、すなわち、スラストプレート134側の端部と、スラストプレート134との隙間は、調整ネジ135によって所定の隙間に調整されている。
 各シリンダボア101a内には、ピストン136が配置されている。ピストン136のクランク室140内に突出する突出部の内側空間には、一対のシュー137を介して、斜板111の外周部及びその近傍が収容され、これにより、斜板111は、ピストン136と連動する。そして、駆動軸110の回転に伴う斜板111の回転によってピストン136がシリンダボア101a内を往復動する。また、ピストン136のストローク量は、斜板111の傾角に応じて変化する。
 シリンダヘッド104には、ほぼ中央に吸入室141が形成されると共に、吸入室141を環状に取り囲むように吐出室142が形成されている。吸入室141は、バルブプレート103に設けられた連通孔103a及び前記吸入弁形成板(図示省略)に形成された吸入弁(図示省略)を介してシリンダボア101aに連通している。吐出室142は、前記吐出弁形成板(図示省略)に形成された吐出弁(図示省略)及びバルブプレート103に設けられた連通孔103bを介してシリンダボア101aに連通している。
 吸入室141は、吸入通路104aを介して図示省略の前記エアコンシステムの冷媒回路の低圧側に接続されている。
 シリンダブロック101の上部には、冷媒の圧力脈動による騒音・振動を低減するため、マフラ160が設けられる。マフラ160は、シリンダブロック101の上部に区画形成されたマフラ形成壁101bと、マフラ形成壁101bに図示省略のシール部材を介して締結された蓋部材106とによって形成されている。マフラ160内のマフラ空間143には、逆止弁200が配置されている。
 逆止弁200は、吐出室142とマフラ空間143とを連通する連通路144のマフラ空間143側の端部に配置されている。逆止弁200は、連通路144(上流側)とマフラ空間143(下流側)との圧力差に応答して動作する。具体的には、逆止弁200は、前記圧力差が所定値より小さい場合には連通路144を遮断し、前記圧力差が前記所定値より大きい場合には連通路144を開放するように構成されている。
 吐出室142は、連通路144、逆止弁200、マフラ空間143及び吐出ポート106aで構成される吐出通路を介して、前記エアコンシステムの前記冷媒回路の高圧側に接続されている。また、前記エアコンシステムの前記冷媒回路の高圧側から吐出室142に向かう冷媒ガスの逆流が逆止弁200によって阻止される。
 前記エアコンシステムの前記冷媒回路の低圧側の冷媒(圧縮前の冷媒)は、吸入通路104aを介して吸入室141に導かれる。吸入室141内の冷媒は、ピストン136の往復運動によってシリンダボア101a内に吸入され、圧縮されて吐出室142に吐出される。すなわち、本実施形態においては、シリンダボア101a及びピストン136によって吸入室141内の冷媒を圧縮する圧縮部が構成されている。そして、前記圧縮部によって圧縮された圧縮後の冷媒は、吐出室142に吐出され、その後、前記吐出通路を介して前記エアコンシステムの前記冷媒回路の高圧側へと導かれる。
 シリンダヘッド104には、制御弁300が設けられている。制御弁300は、シリンダヘッド104に形成された制御弁収容穴104bに配置されている。
 制御弁収容穴104bに配置された制御弁300は、吐出室142内の冷媒(吐出冷媒)をクランク室140に供給する供給通路145の一部を構成する流体通路を内部に有している。そして、制御弁300は、前記流体通路(つまり、供給通路145)の開度(通路断面積)を調整(制御)し、これによって、吐出室142からクランク室140への冷媒の供給量を制御するように構成されている。
 また、前記流体通路の一部はクランク室140と吸入室141との間を接続する排出通路146(詳しくは、後述する第1排出通路146a)の一部を構成している。制御弁300は、前記流体通路の一部の開度(通路断面積)を調整(制御)することにより排出通路146の開度を調整(制御)し、これによって、クランク室140から吸入室141への冷媒の排出量を制御するように構成されている。なお、供給通路145、排出通路146及び制御弁300については後に詳述する。
 このように、制御弁300がクランク室140への冷媒の供給量とクランク室140からの冷媒の排出量を制御することによってクランク室140の圧力を変化させる(調整する)ことができ、これによって、斜板111の傾角、つまり、ピストン136のストローク量を変化させて可変容量圧縮機100の吐出容量を変化させることができる。
 詳しくは、クランク室140の圧力を変化させることにより、各ピストン136の前後の圧力差、換言すると、ピストン136を挟むシリンダボア101a内の圧縮室とクランク室140との圧力差を利用して斜板111の傾角を変化させることができ、その結果、ピストン136のストローク量が変化して可変容量圧縮機100の吐出容量が変化する。具体的には、クランク室140の圧力を低下させると、斜板111の傾角が大きくなってピストン136のストローク量が増加し、これによって、可変容量圧縮機100の吐出容量が増加するようになっている。
 換言すれば、可変容量圧縮機100において、クランク室140は、内部圧力に応じて前記圧縮部の状態(具体的にはピストン136のストローク量)を変化させて可変容量圧縮機100の吐出容量を変化させる機能を有している。したがって、本実施形態においてはクランク室140が本発明の「制御圧室」に相当する。そして、制御弁300は、主に、供給通路145の開度を制御すると共に排出通路146の開度を制御し、クランク室140の圧力を調整するために用いられる。
 ここで、図1に示されるように、制御弁300の外周面には、5つのOリング300a~300eが取り付けられている。そして、これら5つのOリング300a~300eによって、制御弁収容穴104b内が外部空間から遮断されると共に、制御弁収容穴104b内における制御弁300の外側空間が、制御弁収容穴104bの底面側(後述する制御弁300の感圧装置330側)から順に、第1外側空間104b1と、第2外側空間104b2と、第3外側空間104b3と、第4外側空間104b4とに区画されている。
 第1外側空間104b1は、シリンダヘッド104に形成された連通路104cを介して吸入室141に連通している。したがって、第1外側空間104b1には、吸入室141の圧力Psが作用する。第2外側空間104b2は、シリンダヘッド104に形成された連通路104dを介して吐出室142に連通している。したがって、第2外側空間104b2には、吐出室142の圧力Pdが作用する。第3外側空間104b3は、シリンダヘッド104に形成された連通路104eを介して吸入室141に連通している。したがって、第3外側空間104b3には、吸入室141の圧力Psが作用する。第4外側空間104b4は、シリンダヘッド104に形成された連通路104f、バルブプレート103に形成された貫通孔及びシリンダブロック101に形成された連通路101cを介してクランク室140に連通している。したがって、第4外側空間104b4には、クランク室140の圧力Pcが作用する。
[供給通路]
 次に、供給通路145について説明する。本実施形態においては、供給通路145は、連通路104d、第2外側空間104b2、制御弁300の内部の前記流体通路(詳しくは後に詳述する)、第4外側空間104b4、連通路104f、バルブプレート103の前記貫通孔、及び、連通路101cを経由する通路により構成されている。供給通路145は、制御弁300の内部を経由し制御弁300によって開閉される。
[排出通路]
 次に、排出通路146について説明する。本実施形態においては、排出通路146は、第1排出通路146aと第2排出通路146bとを備えている。
 第1排出通路146aは、連通路101c、バルブプレート103の前記貫通孔、連通路104f、第4外側空間104b4、制御弁300の内部の前記流体通路の一部(詳しくは後に詳述する)、制御弁300の内部の後述する第2弁室328、制御弁300の内部の後述する排出内部通路326、第3外側空間104b3、及び、連通路104eを経由する通路により構成されている。第1排出通路146aは制御弁300の内部を経由し制御弁300によって開閉される。第1排出通路146aが制御弁300により開閉されることにより、排出通路146の開度が調整される。
 ここで、連通路101c、バルブプレート103の前記貫通孔、連通路104f、第4外側空間104b4、及び、制御弁300の内部の前記流体通路の一部(以下において、これらをまとめて「兼用通路」という)は、第1排出通路146aと供給通路145とを兼ねている。この兼用通路においては、クランク室140から冷媒を排出するとき(排出通路146として機能するとき)とクランク室140に冷媒を供給するとき(供給通路145として機能するとき)とでは、冷媒の流れ方向が逆になる。
 また、本実施形態において、第2排出通路146bは、シリンダブロック101のフロントハウジング102側の端面を貫通してシリンダヘッド104側に延びる連通路101d、シリンダブロック101のシリンダヘッド104側の端面に開口する空間101e、及び、バルブプレート103に形成された固定絞り103cにより構成されている。第2排出通路146bは、制御弁300を迂回するように設けられ、クランク室140と吸入室141との間を常時連通している。なお、制御弁300によって開かれたときの第1排出通路146aの流路断面積は、第2排出通路146bの固定絞り103cの流路断面積より大きく設定されている。
[制御弁]
 次に、図2及び図3を参照して制御弁300について詳細に説明する。図2は、制御弁300の断面図であり、図3は、図2における要部の拡大図である。
 図2に示されるように、制御弁300は、バルブハウジング310と、感圧装置330と、ソレノイドユニット340と、主弁体ユニット350と、副弁体ユニット360とを含む。
[バルブハウジング]
 バルブハウジング310は、略円柱状のバルブボディ311と、バルブボディ311の一端(ソレノイドユニット340側とは反対側の端部)に固定された有底円筒状のキャップ部材312と、を含む。本実施形態では、バルブハウジング310とソレノイドユニット340の後述するソレノイドハウジング341は、互いに嵌合することにより、一方向に延伸し外周面を有する制御弁ハウジングを構成している。本実施形態において、前記制御弁ハウジング(310,341)が本発明に係る「ハウジング」に相当する。
 キャップ部材312は、バルブボディ311の一端面に形成された凹部311aと協働して感圧室313を形成する。感圧室313は、キャップ部材312の側面に形成された連通孔312aを介して外部圧力が作用する空間に連通している。詳しくは、本実施形態では、前記外部圧力が吸入室141の圧力Psであり、感圧室313は連通孔312aを介して吸入室141の圧力Psが作用する第1外側空間104b1に連通している。
 バルブボディ311には、他端面(ソレノイドユニット340側の端面)311b側から順に、嵌合穴314、第1弁室315、第1弁孔316及び挿通孔317が形成されている。嵌合穴314、第1弁室315、第1弁孔316及び挿通孔317は、バルブボディ311の延仲方向の中心線(=制御弁300の中心線)X上に配置されている。
 嵌合穴314は、バルブボディ311の他端面311bに開口する円柱状の穴として形成されている。嵌合穴314は、例えば、第1弁室315との接続側が中繰り加工等により拡径された拡径部位と、拡径部位より小径の嵌合部位とからなり、全体として段付き円柱状に形成されている。嵌合穴314には、円筒状の周壁318aと周壁318aの一端に設けられる端壁318bとからなる有底円筒状のケース318が嵌合される。詳しくは、ケース318は、周壁318aの端壁318b側の部位が嵌合穴314の前記嵌合部位における前記拡径部位側の端部に嵌合すると共に、周壁318aの先端が嵌合穴314の内底面(嵌合穴314と第1弁室315との接続面)に当接している。これにより、ケース318は、バルブボディ311の嵌合穴314内で位置決めされ、バルブボディ311に固定される。そして、嵌合穴314の前記嵌合部位における他端面311b側の端部には、ソレノイドユニット340が嵌合される。ケース318が嵌合穴314内で位置決めされた状態で、ソレノイドユニット340の端面はケース318の端壁318bの手前に位置しており、ソレノイドユニット340の端面とケース318の端壁318bとの間に連通空間部319が構成されている。
 また、ケース318の端壁318bの中央部には第2弁孔320が開口され、ケース318の周壁318aには、排出孔318cが開口されている。第2弁孔320は、詳しくは、バルブボディ311の中心線X上に配置されている。すなわち、第2弁孔320、嵌合穴314、第1弁室315、第1弁孔316及び挿通孔317は、同一の中心線を有している。
 第1弁室315は、嵌合穴314(詳しくは前記嵌合部位)よりも小径の円柱状の穴として形成されている。バルブボディ311の第1弁室315の形成壁は、ケース318と協働して、主弁体ユニット350の後述する主弁体351及び副弁体ユニット360を収容する弁収容室321を形成する。換言すると、本実施形態では、弁収容室321は、ケース318の内部空間と第1弁室315とにより構成されている。
 第1弁孔316は、第1弁室315の底面に形成されている(開口している)。挿通孔317は、第1弁孔316から直線状に延びて感圧室313に開口している。すなわち、第1弁孔316と挿通孔317とは同一の径を有している。
 本実施形態において、挿通孔317の感圧室313側の部位は、主弁体ユニット350を摺動自在に支持する支持孔317aを構成し、挿通孔317における支持孔317aよりも第1弁孔316側の部位は、第1弁孔316と支持孔317aとを連通する連通空間部317bを構成している。つまり、支持孔317aの一端は、連通空間部317bを介して第1弁孔316に連通しており、支持孔317aの他端は、感圧室313に開口している。
 また、バルブボディ311には、第1ポート322、第2ポート323、第3ポート324、及び、絞り部を有する背圧逃し用絞り通路325が形成されている。
 第1ポート322の一端は、バルブボディ311の外周面におけるOリング300aとOリング300bとの間の部位(つまり、第2外側空間104b2に対応する部位)に開口して、吐出室142の圧力領域に接続している。そして、第1ポート322の他端は、連通空間部317bの内周面に開口している。ここで、第1弁孔316の一端は、連通空間部317b及び第1ポート322を介して吐出室142の圧力領域に接続し、第1弁孔316の他端は、弁収容室321に開口している。詳しくは、第1弁孔316の他端は、弁収容室321の一端壁(第1弁室315の底面)に開口されている。
 第2ポート323の一端は、バルブボディ311の外周面におけるOリング300cとOリング300dとの間の部位(つまり、第4外側空間104b4に対応する部位)に開口して、クランク室140の圧力領域に接続している。そして、第2ポート323の他端は、嵌合穴314の前記嵌合部位における連通空間部319の内周面に開口している。ここで、第2弁孔320の一端は、連通空間部319及び第2ポート323を介してクランク室140の圧力領域に接続し、第2弁孔320の他端は、弁収容室321に開口している。詳しくは、第2弁孔320の他端は、弁収容室321の他端壁(ケース318の端壁318bの内端面)に開口されている。
 第3ポート324の一端は、バルブボディ311の外周面におけるOリング300bとOリング300cとの間の部位(つまり、第3外側空間104b3に対応する部位)に開口して、吸入室141の圧力領域に接続している。そして、第3ポート324の他端は、嵌合穴314の前記拡径部位の内周面に開口している。なお、第1ポート322、第2ポート323、及び、第3ポート324は、それぞれ、バルブボディ311の周方向に離間した複数の箇所に形成され、バルブボディ311の径方向に延びている。
 本実施形態では、第3ポート324、嵌合穴314の前記拡幅部位の内周面とケース318の周壁318aの外周面との間の空間314a、及び、ケース318の周壁318aの排出孔318cによって形成される通路が、第1排出通路146aの一部を構成する制御弁300の内部の排出内部通路326を構成する。排出内部通路326の一端は、吸入室141の圧力領域に接続し、排出内部通路326の他端は弁収容室321に開口する。詳しくは、排出内部通路326の一端(つまり、第3ポート324の前記一端)は、バルブボディ311の外周面における第3外側空間104b3に対応する部位に開口して、吸入室141の圧力領域に接続している。また、排出内部通路326の前記他端(つまり、排出孔318cの弁収容室321側の一端)は、弁収容室321の内周面(ケース318の周壁318aの内周面)に開口されている。なお、排出孔318cは、例えば、周壁318aの周方向に離間した複数の箇所に形成され、周壁318aの径方向に延びている。
 背圧逃し用絞り通路325の一端は、バルブボディ311の外周面における第3ポート324とOリング300bとの間の部位(第3外側空間104b3に対応する部位)に開口して、吸入室141の圧力領域に接続している。そして、背圧逃し用絞り通路325の他端は、第1弁室315の底面における第1弁孔316の周囲に形成される第1弁座327と副弁体ユニット360(詳しくは後述する第1副弁部362a)との間の背圧領域としての第1領域S1に開口している。
[感圧装置]
 感圧装置330は、感圧室313に配置されている。感圧装置330は、有底蛇腹状のベローズ330aと、ベローズ330aの開口端を閉塞する閉塞部材330bと、ベローズ330aの内部に配置されてベローズ330aを伸長させる方向に付勢する第1付勢部材(圧縮コイルバネ)330cと、閉塞部材330bとバルブボディ311との間に配置されてベローズを収縮させる方向に付勢する第2付勢部材(圧縮コイルバネ)330dと、を含む。
 ベローズ330aの内部は、真空状態となっており、ベローズ330aは、外部圧力に応答して伸縮する。本実施形態では、前記外部圧力は吸入室141の圧力であり、ベローズ330aは、感圧室313の圧力(すなわち、吸入室141の圧力Ps)に応答して伸縮する。具体的には、ベローズ330aは、感圧室313(吸入室141の圧力Ps)の低下に伴って伸長する。
[ソレノイドユニット]
 ソレノイドユニット340は、ソレノイドハウジング341と、ソレノイドハウジング341に内蔵された固定鉄心342、可動鉄心343、付勢部材344、収容部材345及びコイル組立体346とを含む。
 ソレノイドハウジング341は、固定鉄心342、可動鉄心343、付勢部材344、収容部材345及びコイル組立体346を保持又は収容する。ソレノイドハウジング341は、円筒状の周壁部341aと、周壁部341aの一端(バルブハウジング310側の端部)に固定された端壁部341bとを含む。
 固定鉄心342は、一端面側の小径部342aと、小径部342aよりも大径の他端面側の大径部342bと、を有する。固定鉄心342には、挿通孔342cが軸方向に貫通形成されている。そして、バルブボディ311の他端面311b側の所定範囲がソレノイドハウジング341の端壁部341bに形成された嵌合穴341dに嵌合されると共に、固定鉄心342の大径部342bがバルブボディ311の他端面311bに形成された嵌合穴314に嵌合されて、バルブハウジング310とソレノイドユニット340とが一体化されている。そして、バルブハウジング310(バルブボディ311、キャップ部材312)とソレノイドハウジング341とからなる前記制御弁ハウジング(310,341)が構成される。
 可動鉄心343は、固定鉄心342の前記一端面との間に所定の隙間を有して配置されている。なお、ソレノイドハウジング341、固定鉄心342及び可動鉄心343は、磁性材料で形成されている。
 付勢部材344は、固定鉄心342と可動鉄心343との間に配置され、可動鉄心343を固定鉄心342の前記一端面から離れる方向に付勢する。本実施形態においては、圧縮コイルバネが付勢部材344として用いられている。
 収容部材345は、非磁性材料で有底円筒状に形成されている。収容部材345は、可動鉄心343が固定鉄心342の前記一端面に対して離接方向に移動可能なように、固定鉄心342の小径部342a、可動鉄心343及び付勢部材344を収容する。
 コイル組立体346は、ソレノイドコイル(以下単に「コイル」という)346aと、閉塞部材346bと、を含む。コイル346aは、樹脂で覆われており、収容部材345の周囲に配置されている。本実施形態において、コイル346aは、ソレノイドハウジング341の周壁部341aの内側に形成された収容空間に収容されている。閉塞部材346bは、ソレノイドハウジング341の周壁部341aの他端を閉塞する部材であり、例えば磁性快削鋼で形成されている。閉塞部材346bは、可動鉄心343の径方向の周囲に配置され、樹脂によってコイル346aと一体化されている。なお、図2中の346cは、コイル組立体346の樹脂部である。
 そして、コイル346aが通電されると、ソレノイドハウジング341、固定鉄心342、可動鉄心343及びコイル組立体346の閉塞部材346bは、磁気回路を形成し、付勢部材344の付勢力に抗して可動鉄心343を固定鉄心342の前記一端面に向かって移動させる電磁力(磁気吸引力)を発生する。
[主弁体ユニット]
 主弁体ユニット350は、主弁体351と、第1ロッド352と、第2ロッド353と、を含み、弁収容室321内に収容された副弁体ユニット360の一端から他端に亘って貫通するように延設されている。本実施形態においては、主弁体351、第1ロッド352及び第2ロッド353が一体に形成されて円柱状(ロッド状)の主弁体ユニット350を構成している。
 主弁体351は、弁収容室321のうちの第1弁室315に収容されて第1弁孔316を開閉する。具体的には、主弁体351は、その第1弁孔316側の端部の周縁部が第1弁室315の前記底面の第1弁孔316の周囲の第1弁座327に離接することによって第1弁孔316を開閉する。
 第1ロッド352は、バルブボディ311に形成された挿通孔317に挿通される。第1ロッド352の一端は、主弁体351の第1弁孔316側の前記端部の中央部に連結され、第1ロッド352の他端は、感圧装置330の閉塞部材330bに離間可能に連結されている。
 具体的には、図3に示すように、第1ロッド352は、大径部352aと、大径部352aよりも小径の小径部352bと、を有する。そして、大径部352aが挿通孔317の支持孔317aに摺動自在に支持され、小径部352bが第1弁孔316と挿通孔317の連通空間部317bとに挿通されている。
 第2ロッド353は、固定鉄心342に形成された挿通孔342cに挿通されている。第2ロッド353の一端は、主弁体351の第1弁孔316側とは反対側の端部に連結され、第2ロッド353の他端は、可動鉄心343に連結されている。
 本実施形態では、第2ロッド353は、図3に示すように、大径部353aと、大径部353aよりも小径の小径部353bと、を有する。そして、大径部353aが挿通孔342cに挿通され、小径部353bが弁収容室321に配置されている。大径部353aの小径部353b側の所定範囲は、嵌合孔341に嵌合されたケース318の端壁318bに形成された第2弁孔320内に配置されている。
 また、本実施形態では、第2ロッド353は、図3に示すように、さらに、第1案内部353cと、第2案内部353dと、を有する。第1案内部353cは、第2ロッド353の主弁体351側の端部を構成し、主弁体351側に向うにしたがって徐々に拡径する円錐状の外周面を有する。第2案内部353dは、小径部353bと大径部353aとの間に設けられ、大径部353a(つまり第2弁孔320)側に向うにしたがって徐々に拡径する円錐状の外周面を有する。
 ここで、上述のように、感圧装置330において、ベローズ330aは、吸入室141の圧力Psに応答して伸縮する。そして、吸入室141の圧力Psの低下に伴ってベローズ330aが所定長さ以上に伸長すると、閉塞部材330bが主弁体ユニット350の第1ロッド352の前記他端に連結されて、主弁体ユニット350は、主弁体351が第1弁孔316を開く方向に付勢される。つまり、感圧装置330は、外部圧力である吸入室141の圧力Psに応答して主弁体ユニット350に第1弁孔316の開弁方向の付勢力を作用させる。
 また、ソレノイドユニット340においては、コイル346aが通電されると可動鉄心343を固定鉄心342の前記一端面に向かって移動させる電磁力が発生する。そして、発生した電磁力によって可動鉄心343が移動すると、主弁体ユニット350は、主弁体351が第1弁孔316を閉じる方向に付勢される。つまり、ソレノイドユニット340は、コイル346aが通電されて可動鉄心343が固定鉄心342の前記一端面に向かって移動することによって、主弁体ユニット350に第1弁孔316の閉弁方向の付勢力を作用させる。
[供給通路の開度の調整動作]
 次に、制御弁300における供給通路145の開度の調整動作を簡単に説明する。
 前記エアコンシステムの作動時、つまり可変容量圧縮機100の作動状態では、空調設定(車室設定温度)や外部環境などに基づき、図示省略の制御装置によってソレノイドユニット340のコイル346aの通電量が設定される。コイル346aは、例えば、400Hz~500Hzの範囲の所定の周波数でパルス幅変調(PWM制御)により駆動されて、前記通電量が設定される。すると、制御弁300は、吸入室141の圧力Psが前記通電量に対応する所定値になるように、主弁体ユニット350(の主弁体351)によって第1弁孔316(すなわち、供給通路145)の開度を調整して可変容量圧縮機100の吐出容量を制御する。具体的には、制御弁300は、吸入室141の圧力Psの圧力に応答して第1弁孔316(すなわち、供給通路145)の開度を自律的に調整するように動作する。
 また、前記エアコンシステムの作動が停止される、つまり可変容量圧縮機100が作動状態から非作動状態に切り替わると、前記制御装置によってソレノイドユニット340のコイル346aへの通電がOFFされる。すると、ソレノイドユニット340においては、付勢部材344の付勢力によって可動鉄心343が固定鉄心342の前記一端面から離れる方向に移動し、可動鉄心343の移動に伴って主弁体ユニット350(の主弁体351)が第1弁孔316を開く方向に移動し、第1弁孔316(すなわち、供給通路145)が最大に開かれる。これにより、冷媒がクランク室140に供給されてクランク室140の圧力が上昇し、可変容量圧縮機100の吐出容量が最小となる。
[副弁体ユニットの概要]
 図4は、副弁体ユニット360とケース318との組立体の拡大断面図である。副弁体ユニット360は、図4に示すように、ケース318と一体に組立てられる。前記組立体は、図2及び図3に示すように、ケース318が前述したように嵌合穴314に嵌合されて位置決めされることにより、バルブボディ311に固定される。これにより、副弁体ユニット360は、ケース318の前記内部空間と第1弁室315とからなる弁収容室321内に収容された状態になる。
 副弁体ユニット360は、弁収容室321内に固定される区画部材361と、弁収容室321に収容され弁収容室321の中心軸(=バルブボディ311の中心線X)の延伸方向)に沿って移動する副弁体362と、連通路363とを含む。
 区画部材361は、弁収容室321を、第1弁孔316が開口する第1弁室315と第2弁孔320及び排出内部通路326(詳しくは排出孔318c)が開口する第2弁室328とに区画する部材である。本実施形態では、弁収容室321は前述したようにケース318の前記内部空間と第1弁室315とからなる。したがって、第2弁室328はケース318の前記内部空間により構成されている。
 本実施形態では、ケース318の周壁318aの開口端部には、図4に示すように、区画部材361用の嵌合穴318dと、嵌合穴318dより小径の小径孔部318eが形成されている。そして、区画部材361は、概ね円盤状に形成されると共に、その中央部に挿通孔361aが貫通形成されている。挿通孔361aには、副弁体362が挿通される。区画部材361の第1弁室315側の面には、挿通孔361aを囲むと共に第1弁室315側に突出する円環状の突出部361bが形成されている。区画部材361は、例えば、嵌合穴318dに嵌合されると共に、その周縁部が嵌合穴318dと小径孔部318eとの接続面に当接して、ケース318に位置決め固定される。
 副弁体362は、具体的には、図4に示すように、第1副弁部362aと、第2副弁部362bと、軸部362cとを一体的に備える。副弁体362には、主弁体ユニット350の挿通用の挿通孔364が形成されている。挿通孔364は、副弁体362の一端から他端に亘って副弁体362の中心線に沿って貫通するように形成されている。挿通孔364の詳細については後に詳述する。
 第1副弁部362aは、主弁体ユニット350の主弁体351の外周を囲み且つ第1弁座327に対向するように配置される。そして、第1副弁部362aは、弁収容室321の内周面に摺接する外周面を有する。第1副弁部362aは、弁収容室321のうちの第1弁室315に配置され、第1弁孔316の周囲に形成される第1弁座327に離接する部材である。
 第2副弁部362bは、弁収容室321のうちの第2弁室328に配置され、第2弁孔320の周囲(詳しくは端壁318bの第2弁室328側の面)に形成される第2弁座318f(図3及び図4参照)に離接する部材である。
 軸部362cは、第1副弁部362aと第2副弁部362bとを連結すると共に区画部材361を貫通し且つ第1副弁部362a及び第2副弁部362bの外径よりも小さい軸外径を有する部材である。
 連通路363は、第1弁孔316と第2弁孔320とを連通させるための通路であり、第1連通路363aと第2連通路363bとを含む。第1連通路363aは、副弁体362の挿通孔364の内周面と主弁体ユニット350の外周面との間の円筒状の領域からなる通路である。第2連通路363bは、第1副弁部362aの外周面側を経由して延び第1領域(背圧領域)S1と第1連通路363aとを連通する通路である。なお、副弁体362及び第1連通路363a及び第2連通路363bの詳細については、後に説明する。
[副弁体ユニットの動作]
 図5は、副弁体ユニット360の動作状態を説明するための要部断面図であり、図5(A)は吐出室142からクランク室140への冷媒供給状態(第1の状態)を示し、図5(B)は前記第1の状態において第1弁孔316が閉弁された直後の状態(閉弁直後の状態)を示し、図5(C)はクランク室140から吸入室141への放圧状態(第2の状態)を示す。つまり、副弁体ユニット360は、前記第1の状態と前記第2の状態との間で切り替わるように構成されている。
 副弁体362の第1弁孔316側の端面は、供給通路145のうちの副弁体362より吐出室142側の領域の圧力、いわゆる背圧Pmを受ける。一方、副弁体362の第2弁孔320側の端面は、クランク室140の圧力Pcを受ける。そして、副弁体362は、背圧Pmと圧力Pcとの圧力差ΔP(ΔP=Pm−Pc)に応答して、弁収容室321内を中心線Xの延伸方向に移動する。なお、背圧Pmを受ける中心線X方向の副弁体362の受圧面積s1とクランク室140の圧力Pcを受ける副弁体362の受圧面積s2は、例えばs1=s2に設定されるが、副弁体362の動作を調整するためs1>s2或いはs1<s2に設定することができる。また、本実施形態では、前述したように、バルブボディ311には、第1領域S1と吸入室141とを連通する背圧逃し用絞り通路325が形成されている。この背圧逃し用絞り通路325は、主弁体ユニット350が第1弁孔316を閉弁して供給通路145が閉鎖されたとき、第1領域S1内の冷媒を吸入室141側へと逃がすために設けられている。背圧逃し用絞り通路325は絞り部を有するので、第1領域S1から背圧逃し用絞り通路325を介して吸入室141に流出する冷媒の量は僅かである。
 まず、前記第2の状態から前記第1の状態への切替動作について説明する。
 第1副弁部362aが第1弁座327に当接している状態(図5(C)、第2の状態)で、主弁体ユニット350の主弁体351が第1弁座327から離間して第1弁孔316が開弁されると、第1副弁部362aに作用する背圧Pmが高くなる。その後、背圧Pmがクランク室140の圧力Pcよりも高くなると(Pm−Pc>0の状態では)、第1副弁部362aが第1弁座327から離間し始める。そして、図5(A)に示すように、第2副弁部362bが第2弁座318fに当接したとき、第1副弁部362aが第1弁座327から最大に離間した状態(第1の状態)となる。これにより、副弁体ユニット360は、第2の状態から第1の状態に切り替わる。この第1の状態では、第2弁孔320と排出内部通路326との連通が遮断されてクランク室140と吸入室141とを連通する排出通路146のうちの第1排出通路146aが閉鎖されると同時に、第1弁孔316と第2弁孔320とが連通路363を介して連通されて吐出室142とクランク室140とを連通する供給通路145が開放される。
 つまり、主弁体ユニット350が第1弁孔316を開弁すると、排出通路146のうちの制御弁300の内部を経由する第1排出通路146aが閉鎖されると同時に、第1弁孔316と第2弁孔320とが連通され、第1連通路363a及び第2連通路363bからなる連通路363を介して吐出室142の冷媒がクランク室140に供給されるようになる。
 これによって、排出通路146のうちの制御弁300を迂回するように設けられクランク室140と吸入室141との間を常時連通する第2排出通路146bのみが開放される状態となり、排出通路146の最小開口面積が固定絞り103cの開口面積となる。このため、クランク室140から吸入室141への冷媒の排出が抑制される状態となる。そして、この状態で、第1弁孔316から流入した冷媒が第1連通路363a及び第2連通路363bからなる連通路363を介して速やかにクランク室140へ供給されることにより、クランク室140の圧力が上昇し易くなる。その結果、供給通路145の開度に応じてクランク室140内の圧力が速やかに上昇して斜板111の傾斜角が最大から減少し、ピストンストローク(吐出容量)を速やかに制御することができる。
 また、本実施形態では、供給通路145は、連通路104d(図1参照)、第2外側空間104b2(図1及び図2参照)、第1ポート322、連通空間部317b、第1弁孔316、第1領域S1、連通路363(第1連通路363a、第2連通路363b)、第2弁孔320、連通空間部319、第2ポート323、第4外側空間104b4(図1及び図2参照)、連通路104f、バルブプレート103の前記貫通孔、及び、連通路101cから構成されている。したがって、本実施形態では、供給通路145の一部を構成する制御弁300の内部の前記流体通路は、第1ポート322、連通空間部317b、第1弁孔316、第1領域S1、連通路363(第1連通路363a、第2連通路363b)、第2弁孔320、連通空間部319、第2ポート323である。
 次に、前記第1の状態から前記第2の状態への切替動作について説明する。
 第2副弁部362bが第2弁座318fに当接している状態(図5(A)、第1の状態)で、主弁体ユニット350閉弁方向に移動し始める。そして、主弁体351が図5(B)に示すように第1弁座327に当接して第1弁孔316が閉弁されると、第1弁室315内の冷媒は背圧逃し用絞り通路325を介して吸入室141に排出され、第1副弁部362aに作用する背圧Pmが徐々に低くなる。その後、背圧Pmがクランク室140の圧力Pcよりも低くなると(Pm−Pc<0の状態では)、冷媒が第2弁孔320及び第1連通路363aを経由して第1弁室315側に向って逆流する。副弁体362はこの逆流する冷媒流に押圧されて第1弁座327側に移動して、第2副弁部362bが第2弁座318fから離間し始める。そして、第1副弁部362aが、図5(C)に示すように、第1弁座327に当接したとき、第2副弁部362bが第2弁座318fから最大に離間した状態となる(第1の状態→第2の状態)。これにより、副弁体ユニット360は第1の状態から第2の状態に切り替わる。この第2の状態では、第2弁孔320と排出内部通路326とが第2弁室328を介して連通されて、第1排出通路146aの開度が最大開度になると同時に、第1弁孔316と第2弁孔320との連通路363を介した連通が遮断されて供給通路145が閉鎖される。
 つまり、主弁体ユニット350が第1弁孔316を閉弁すると、供給通路145が閉鎖されると同時に、第2弁孔320と排出内部通路326とが連通され、第1排出通路146aと、第2排出通路146bとを介してクランク室140の冷媒が吸入室141に排出されるようになる。
 これによって、吐出室142からクランク室140に向けた冷媒の供給が停止されると共に、排出通路146が最大に開放された状態となる。このため、クランク室140の冷媒は第2排出通路146b(固定絞り103c)及び第1排出通路146aを介して速やかに吸入室141に排出される。その結果、クランク室140の圧力が吸入室141の圧力と速やかに同等となって斜板の傾斜角が最大となり、ピストンストローク(吐出容量)が速やかに最大となる。
 また、本実施形態では、第1排出通路146aは、連通路101c、バルブプレート103の前記貫通孔、連通路104f、第4外側空間104b4、第2ポート323、連通空間部319、第2弁孔320、第2弁室328、排出内部通路326(詳しくは、排出孔318c、空間314a、第3ポート324)、第3外側空間104b3、及び、連通路104eから構成される。したがって、本実施形態では、第1排出通路146aの一部を構成する制御弁300の内部の前記流体通路の一部は、第2弁孔320、連通空間部319、第2ポート323である。そして、本実施形態において、第1排出通路146aと供給通路145とを兼ねる前記兼用通路は、連通路101c、バルブプレート103の前記貫通孔、連通路104f、第4外側空間104b4、及び、制御弁300の内部の前記流体通路の一部(つまり、第2ポート323、連通空間部319、第2弁孔320)である。
 このように、副弁体362は、主弁体ユニット350の主弁体351が第1弁座327から離間して第1弁座327と第1副弁部362aとの間の第1領域S1の圧力(つまり、背圧Pm)が上昇した場合に、連通路363を介して第1弁孔316と第2弁孔320とを連通させると共に第2弁孔320と排出内部通路326との連通を遮断するように移動する。一方、副弁体362は、主弁体351が第1弁座327に当接して第1領域S1の圧力(背圧Pm)が低下した場合に、第1弁孔316と第2弁孔320との連通を遮断すると共に第2弁孔320と排出内部通路326とを連通するように移動する。
 換言すると、副弁体ユニット360は、弁収容室321内に設けられ前後差圧(前記圧力差)ΔPに応じて作動し、第1弁孔316と第2弁孔320とを連通させる第1の状態と、第2弁孔320と排出内部通路326とを連通させる第2の状態とに切り替わることにより排出通路146の開度を制御するように構成されている。
[副弁体ユニットの詳細構造]
 次に、副弁体362の第1副弁部362a、第2副弁部362b及び軸部362cの構造について、図3、図4及び図6を参照して詳述する。図6は、図3における要部の拡大図である。
 第1副弁部362aは、摺動部362a1と、前端部362a2と、後端部362a3とを含む。
 摺動部362a1は、弁収容室321(詳しくは第1弁室315)の内周面に摺接する外周面を有し、第1弁室315を第1弁孔316側の第1領域S1と区画部材361側の第2領域S2とに区画する。摺動部362a1は、概ね円柱状に形成され、後端部362a3の外径よりも大きい外径を有する。摺動部362a1の外周面が第1弁室315の内周面に摺動可能に支持されている。
 摺動部362a1の径方向中央部には、第1小径孔部364aが貫通形成される。第1小径孔部364aの一端は第1弁孔316に対向して第1領域S1に接続し、第1小径孔部364aの他端は後端部362a3の後述する第1大径孔部364bに接続する。
 また、摺動部362a1には、第2連通路363bの一部を構成する連通路363b1が形成されている。連通路363b1は、第1領域S1と第2領域S2とを連通させるための通路である。連通路363b1は、例えば、摺動部362a1の外周面に形成される溝(スリット)からなる。連通路363b1は、一つでもよいが、本実施形態では、摺動部362a1の周方向に離間した複数の角度位置において、摺動部362a1の軸線方向にそれぞれ延びる溝からなるものとする。なお、図に示す断面角度位置では、連通路363b1は一つであるが、実際には複数形成されている。
 前端部362a2は、摺動部362a1の第1領域S1側の端部に形成され第1弁座327に離接する。前端部362a2は、例えば、摺動部362a1の第1領域S1側の端部から円環状に突設される。
 前端部362a2には、第2連通路363bの一部を構成する第2連通路用絞り通路363b2が形成されている。第2連通路用絞り通路363b2の通路断面積は、第2連通路363bの最小通路断面積になるように設定されており、第2連通路用絞り通路363b2は第2連通路363bの絞り部を構成する。第2連通路用絞り通路363b2は、円環状の前端部362a2の周方向の所定角度位置で前端部362a2を貫通し、前端部362a2の径方向内側領域と径方向外側領域とを連通している。
 後端部362a3は、摺動部362a1の第2領域S2側の端部から区画部材361側に向って延伸すると共に面一な外周面を有し筒状に形成される。後端部362a3の外径は、摺動部362a1の外径よりも小さく、区画部材361の円環状の突出部361bの外径と同程度に形成される。筒状の後端部362a3の開口端部には、軸部362cの端部が嵌合される。軸部362cが後端部362a3に嵌合された状態で、後端部362a3は、軸部362cの外径と同径の内径を有する円柱状の第1大径孔部364bを有する。この第1大径孔部364bは、第1小径孔部364aよりも大きい内径を有し、第1小径孔部364aの前記他端に接続する。
 また、後端部362a3の周壁には、第2連通路363bの一部を構成する後端部貫通孔363b3が貫通形成されている。後端部貫通孔363b3は、後端部362a3の周方向の所定角度位置で後端部362a3の周壁を貫通し、第2領域S2と後端部362a3内の領域(つまり、第1大径孔部364b)とを連通している。
 第2副弁部362bは、例えば、軸部362cと伴に一体的に形成されている。この第2副弁部362bと軸部362cとの一体形成体には、円柱状の第2小径孔部364cと、第2小径孔部364cより大径の円柱状の第2大径孔部364dとが形成されている。第2小径孔部364cの一端は、前記一体形成体の一端面に開口して第1大径孔部364bに接続し、第2小径孔部364cの他端は第2大径孔部364dに接続している。また、第2大径孔部364dの一端は第2小径孔部364cに接続し、第2大径孔部364dの他端は、前記一体形成体の他端面に開口して第2弁孔320に対向している。第2小径孔部364cの内径は、主弁体351の外径より大きく設定されている。第2大径孔部364dの内径は、例えば、第2弁孔320の内径と同径に設定されている。
[主弁体ユニット挿通用の挿通孔]
 次に、主弁体ユニット350の挿通用の挿通孔364について、図3、図4及び図6を参照して詳述する。
 本実施形態では、摺動部362a1の第1小径孔部364aには、主弁体ユニット350の主弁体351が挿通される。また、後端部362a3の第1大径孔部364bには、主弁体ユニット350の第2ロッド353の第1案内部353cが配置される。そして、第2副弁部362bと軸部362cとの前記一体形成体の第2小径孔部364cには、主弁体ユニット350の第2ロッド353の小径部353bが配置され、第2大径孔部364dには、第2ロッド353の第2案内部353dが配置される。そして、第1小径孔部364a、第1大径孔部364b、第2小径孔部364c及び第2大径孔部364dは、バルブボディ311の中心線Xに沿って副弁体362の一端から他端に亘って貫通するように形成されている。したがって、本実施形態では、主弁体ユニット350の挿通用の挿通孔364は、第1小径孔部364a、第1大径孔部364b、第2小径孔部364c及び第2大径孔部364dにより構成されている。
 換言すると、本実施形態では、副弁体362の第1弁座側端部である第1副弁部362aにおける挿通孔364は、主弁体351が挿通される第1小径孔部364aと第1小径孔部364aより大径の第1大径孔部364bとからなる段付き円柱状に形成されている。また、副弁体362の第2弁座側端部における挿通孔364は、第1大径孔部364bに連通する第2小径孔部364cと第2弁座318fに面すると共に第2小径孔部364cより大径の第2大径孔部364dとからなる段付き円柱状に形成されている。なお、挿通孔364は、主弁体ユニット350を非接触で挿通するように形成されている。これによって、主弁体ユニット350がPWM制御により微振動しても、この微振動が副弁体ユニット360に直接的に伝達されることを回避することができる。
[第1連通路及び第2連通路]
 また、本実施形態では、副弁体362の挿通孔364の内周面と主弁体ユニット350の外周面との間の円筒状の通路である第1連通路363aは、第1小径孔部364aの内周面、第1大径孔部364bの内周面、第2小径孔部364cの内周面及び第2大径孔部364dの内周面と、主弁体ユニット350の外周面との間の領域からなる円筒状の通路により構成されている。
 ここで、本実施形態では、第1弁座327は、図6に示すように、凹部327aと、主弁体用弁座面327bと、副弁体用弁座面327cとを含む。凹部327aは、凹状に形成され、その凹部底面に第1弁孔316の前記他端が開口される。主弁体用弁座面327bは、凹部327aの前記凹部底面における第1弁孔316の周囲に形成され、主弁体351の第1弁孔316側の端部の周縁部が当接する円環状の座面である。副弁体用弁座面327cは、凹部327aの周囲に形成され、副弁体362の第1弁孔316側の端部の周縁部(つまり、第1副弁部362aの前端部362a2)が当接する円環状の座面である。したがって、第1副弁部362aの前端部362a2が副弁体用弁座面327cから離間している前記第1の状態及び前記閉弁直後の状態(図5(A)及び図5(B))においては、第1弁室315のうちの第1弁座327から摺動部362a1までの領域が、背圧領域としての第1領域S1に相当する。一方、第1副弁部362aの前端部362a2が副弁体用弁座面327cに当接している前記第2の状態(図5(C))においては、第1弁座327における凹部327aと、前端部362a2と、摺動部362a1の第1弁座327側の端面とにより区画された領域が、背圧領域としての第1領域S1に相当する。
 前記第1の状態及び前記閉弁直後の状態(図5(A)及び図5(B))においては、第1領域S1は、第1連通路363aのうちの第1小径孔部364aの内周面と主弁体351の外周面との間の隙間からなる円環状の通路を介して第1大径孔部364bに連通すると共に、摺動部362a1の連通路363b1、及び、後端部362a3の後端部貫通孔363b3を経由する通路(つまり、第1副弁部362aの外周面側を経由して延びる通路)を介して第1大径孔部364b(第1連通路363a)に連通する。そして、前記第2の状態(図5C)においては、第1領域S1は、第1連通路363aのうちの第1小径孔部364aの内周面と主弁体351の外周面との間の隙間からなる円環状の通路を介して第1大径孔部364bに連通すると共に、前端部362a2の第2連通路用絞り通路363b2、摺動部362a1の連通路363b1、及び、後端部362a3の後端部貫通孔363b3を経由する通路(つまり、第1副弁部362aの外周面側を経由して延びる通路)を介して第1大径孔部364b(第1連通路363a)に連通する。
 このように、本実施形態では、第1副弁部362aの外周面側を経由して延び前記背圧領域としての第1領域S1と第1連通路363aとを連通する第2連通路363bは、前端部362a2の第2連通路用絞り通路363b2、摺動部362a1の連通路363b1、及び、後端部362a3の後端部貫通孔363b3を経由する通路により構成されている。
 本実施形態では、第1連通路363aの第1弁孔316側の端部(つまり、第1小径孔部364aに対応する部位)は、主弁体351を囲む第1連通路用絞り通路365(図6参照)を構成している。そして、副弁体362が第1弁座327に当接した状態において、第2連通路363bは所定の最小通路断面積を有する。本実施形態では、この当接状態における第2連通路363bの最小通路断面積は、第2連通路用絞り通路363b2の通路断面積により規定されている。この当接状態における第2連通路363bの最小通路断面積は、例えば、第1連通路用絞り通路365の通路断面積より大きく設定されている。
 また、本実施形態では、副弁体362が第1弁座327と離間している状態において、第2連通路363bの最小通路断面積(換言すると、離間状態における第2連通路363bの最小通路断面積)は、第1連通路363aの最小通路断面積(本実施形態では、第1連通路用絞り通路365の通路断面積)より大きく設定されている。この離間状態における第2連通路363bの前記最小通路断面積は、例えば、概ね、第2連通路363bのうちの連通路363b1の通路断面積により規定されている。
[受け面及び案内部]
 本実施形態では、副弁体362は、第2弁孔320を介して第1連通路363aに流入する冷媒が衝突する受け面366であって、第1弁座327に近づく方向に向かう動圧を受ける受け面366を有する。
 具体的には、本実施形態では、受け面366は、第1受け面366aと、第2受け面366bと、第3受け面366cとを含む。
 第1受け面366aは、第1大径孔部364bと第1小径孔部364aとの間を接続する円環状の端面により構成され、第1副弁部362a内に設けられる。第2受け面366bは、第2大径孔部364dと第2小径孔部364cとの間を接続する円環状の端面により構成され、第2副弁部362b内に設けられる。第3受け面366cは、摺動部362a1における第2領域S2に露出する端部により構成される。
 また、本実施形態では、主弁体ユニット350(詳しくは第2ロッド353)は、前述したように、第1案内部353cと第2案内部353dとを有する。第1案内部353cは、第1大径孔部364bに配置されると共に、主弁体351側に向うにしたがって徐々に拡径する円錐状の外周面を有している。第1案内部353cは、第2弁孔320を介して第1連通路363aの第1大径孔部364bに対応する部分に流入した冷媒を第1受け面366aに向けて案内する。第2案内部353dは、第2大径孔部364dに配置されると共に小径部353bと大径部353aとの間に設けられ、第2弁孔320側に向うにしたがって徐々に拡径する円錐状の外周面を有している。第2案内部353dは、第1弁孔316を介して第1連通路363aの第2大径孔部364dに対応する部分に流入した冷媒を第2弁孔320に向けて案内する。
[冷媒流の経路]
 次に、副弁体ユニット360の各動作状態における冷媒流の経路について、図5を参照して詳述する。
 図5(C)に示す第2の状態で、第1弁孔316が開弁された直後においては、凹部327aと前端部362a2の第1弁座327側の端面とにより区画された第1領域S1内へ第1弁孔316から流入した冷媒は、第1連通路363aの第1連通路用絞り通路365を介して第1大径孔部364b内に流入すると共に、第2連通路363bの第2連通路用絞り通路363b2を介して前端部362a2の前記径方向外側の領域に流入する。そして、第1連通路用絞り通路365及び第2連通路用絞り通路363b2の絞り効果により、第1領域S1内の背圧Pmが速やかに上昇し、副弁体362が第1弁座327から離れ、その後、第2弁座318fに当接する(第1の状態)。
 図5(A)に示す第1の状態において、連通路363b1及び後端部貫通孔363b3を経由した冷媒は、第1大径孔部364b内で第1連通路用絞り通路365を経由した冷媒と合流する。そして、第1大径孔部364b内に流入した冷媒は、第2小径孔部364cの内周面及び第2大径孔部364dの内周面と主弁体ユニット350の外周面との間の領域からなる円筒状の通路(第1連通路363a)、第2弁孔320、連通空間部319、及び、第2ポート323を経由してクランク室140に供給される。このとき、第2大径孔部364dに流入した冷媒は、第2案内部353dの外周面に沿って流れて第2弁孔320に効率的に案内される。
 図5(B)に示す第1弁孔316の閉弁直後の状態においては、冷媒が第2弁孔320及び第1連通路363aを経由して第1弁室315側に向って逆流する。詳しくは、冷媒は、第2大径孔部364dの内周面及び第2小径孔部364cの内周面と、主弁体ユニット350の外周面との間の領域からなる円筒状の通路(第1連通路363a)を経由して逆流して、第1大径孔部364b内に導かれる。この逆流の際に、冷媒は、第2弁孔320内では第2ロッド353の大径部353aの外周面により第2受け面366bに向けて案内されて第2受け面366bに衝突し、第1大径孔部364b内では第1案内部353cにより第1受け面366aに向けて案内されて第1受け面366aに衝突する。そして、第1大径孔部364b内の冷媒の大半は、後端部貫通孔363b3を介して第2領域S2内に流れて第3受け面366cに衝突すると共に、連通路363b1、第1領域S1及び背圧逃し用絞り通路325を経由して吸入室141内に排出される。これにより、副弁体362はこの逆流する冷媒流に押圧されて第1弁座327側に移動して、第1弁座327に当接し、図5(C)に示す第2の状態に切り替わる。
 図5(C)に示す第2の状態では、第2副弁部362bは第2弁座318fから離間しているため、第2弁孔320は第2弁室328に連通する。したがって、第2弁孔320から流入した冷媒は、第2弁室328、排出内部通路326(排出孔318c、314a、第3ポート324)を経由して吸入室141に排出される。
 本実施形態による可変容量圧縮機100によれば、制御弁300は吐出室142内の冷媒をクランク室140に供給する供給通路145の開度を制御すると共にクランク室140と吸入室141と間を接続する排出通路146の開度を制御する。この制御弁300において、第1弁孔316と第2弁孔320とを連通させるための連通路363は、排出通路146の開度を制御する副弁体ユニット360の副弁体362の挿通孔364の内周面と主弁体ユニット350の外周面との間の円筒状の第1連通路363aと、第1副弁部362aの外周面側を経由して延び背圧領域として第1領域S1と第1連通路363aとを連通する第2連通路363bとを含む。つまり、第1弁孔316と第2弁孔320とを連通させるための連通路363の背圧領域側の端部は、二経路に分岐している。したがって、第1連通路363aの前記背圧領域側の端部を本実施形態のように第1連通路用絞り通路365として機能させた場合であっても、主弁体ユニット350が開弁時に、第1連通路用絞り通路365に加えて第2連通路363bを介して冷媒を吐出室142からクランク室140に供給することができるため、クランク室140に十分な量の冷媒が供給される。その結果、クランク室140の圧力が速やかに昇圧して、吐出容量がスムース(速やか)に減少し、ひいては、吐出容量を安定的に制御することができる。
 このようにして、クランク室140の圧力を速やかに昇圧させること(換言すると、クランク室140の昇圧の遅れを防止すること)ができる可変容量圧縮機100を提供することができる。
 本実施形態では、吸入室141と背圧領域としての第1領域S1との間を連通する背圧逃し用絞り通路325が、バルブボディ311に形成されている。これにより、主弁体351による第1弁孔316の閉弁後(図5(B)の状態)において、背圧Pmを速やかに低下させ、第2弁孔320及び第1連通路363aを経由して第1弁室315側に向って逆流する冷媒流を容易に発生させることができる。
 本実施形態では、第1連通路363aの第1弁孔316側の端部は主弁体351を囲む第1連通路用絞り通路365を構成し、副弁体362が第1弁座327に当接した状態において、第2連通路363bは所定の最小通路断面積を有している。詳しくは、第1連通路363aの第1弁孔316側の端部に第1連通路用絞り通路365を設けると共に、第2連通路363bの第1弁孔316側の端部に第2連通路用絞り通路363b2を設けた。これにより、図5(C)の第2の状態で、主弁体351が第1弁孔316を開弁した直後において、第1連通路用絞り通路365及び第2連通路用絞り通路363b2の絞り効果により、第1領域S1内の背圧Pmを速やかに上昇させ、副弁体362を第1弁座327からスムースに離間させることができる。
 本実施形態では、前記当接状態(副弁体362が第1弁座327に当接した状態、例えば、図5(C)の第2の状態)における第2連通路363bの最小通路断面積は、第1連通路用絞り通路365の通路断面積より大きく設定されている。これにより、前記当接状態において、第1連通路用絞り通路365が連通路363全体の絞り部となり、第1弁孔316から副弁体362に向かって直線的に流れる冷媒流が第1連通路用絞り通路365により効果的に絞られる。その結果、主弁体351が第1弁孔316を開弁した直後において、第1領域S1内の背圧Pmをより速やかに上昇させることができる。
 本実施形態では、前記離間状態(副弁体362が第1弁座327と離間している状態、例えば、図5(A)の第1の状態)における第2連通路363bの最小通路断面積は、第1連通路363aの最小通路断面積(本実施形態では、第1連通路用絞り通路365の通路断面積)より大きく設定されている。これにより、前記離間状態(図5(A)の第1の状態)における連通路363全体の主通路を第2連通路363bにより確保することができるため、第1連通路用絞り通路365の通路断面積をより小さく設定することができる。したがって、前記当接状態(図5(C)の第2の状態)で、主弁体351が第1弁孔316を開弁した直後における第1連通路用絞り通路365の絞り効果をより効果的に高めることができる。その結果、前記当接状態(図5(C)の第2の状態)で主弁体351が第1弁孔316を開弁した直後に、第1領域S1内の背圧Pmをより速やかに上昇させ、副弁体362を第1弁座327からスムースに離間させることができるると共に、前記離間状態(図5(A))で、第2連通路363bを介して冷媒を吐出室142からクランク室140に適切に供給できる。
 本実施形態では、第1弁座327は、凹状に形成される凹部327aであって、その凹部底面に第1弁孔316の前記他端が開口される凹部327aと、凹部327aの前記凹部底面における第1弁孔316の周囲に形成される主弁体用弁座面327bと、凹部327aの周囲に形成される副弁体用弁座面327cと、を含む構成とした。これにより、図5(C)に示す第2の状態で、第1弁座327における凹部327aと、前端部362a2と、摺動部362a1の第1弁座327側の端面とにより区画された領域に、背圧領域(第1領域S1)を形成することができる。つまり、主弁体351が第1弁座327(詳しくは主弁体用弁座面327b)に当接し、且つ、副弁体362が第1弁座327(詳しくは副弁体用弁座面327c)に当接した状態で、副弁体362と主弁体用弁座面327bとの間に背圧領域(第1領域S1)を形成することができる。その結果、図5(C)に示す第2の状態で、主弁体351の第1弁孔316側の周縁部が主弁体用弁座面327bから離間した直後に、冷媒を主弁体351の前記周縁部と主弁体用弁座面327bとの間を通じて背圧領域に流入させて、背圧Pmをさらに速やかに上昇させることができる。
 本実施形態では、副弁体362は、第2弁孔320を介して第1連通路363aに流入した冷媒が衝突する受け面366であって、第1弁座327に近づく方向に向かう動圧を受ける受け面366を有する。これにより、逆流する冷媒流による前記動圧を受け面366により効果的に受圧することができるため、副弁体362を第1弁座327に向かってスムースに移動させることができる。その結果、例えば、背圧領域(第1領域S1)の背圧Pmの低下が不十分であっても、副弁体362を前記第1の状態(図5(A))から前記第2の状態(図5(C))に移動させるために、バネ等の付勢手段を設けることなく、受け面366に作用する前記動圧により副弁体362を第1弁座327に近づく方向に移動させることができる。したがって、クランク室140の圧力を速やかに低下させること(換言するとクランク室140の放圧の遅れを防止すること)ができる。
 本実施形態では、受け面366は、第1受け面366aと、第2受け面366bと、第3受け面366cとを含み。そして、第1受け面366aは第1副弁部362a内に設けられ、第2受け面366bは第2副弁部362b内に設けられ、第3受け面366cは摺動部362a1における第2領域S2に露出する端部により構成される。これにより、逆流する冷媒流による前記動圧を、第1連通路363aにおいては第2受け面366b及び第1受け面366aにより確実に受圧することができると共に、第2連通路363bにおいては第3受け面366cにより確実に受圧することができる。
 本実施形態では、主弁体ユニット350は、第2弁孔320を介して第1連通路363aの第1大径孔部364bに対応する部分に流入した冷媒を第1受け面366aに向けて案内する第1案内部353cを有する。これにより、第1受け面366aにおいてより効率的に前記動圧を受圧することができる。
 なお、本実施形態では、バルブボディ311の嵌合穴314内にケース318を嵌合させ、バルブボディ311(詳しくは第1弁室315の形成壁)は、ケース318と協働して弁収容室321を形成するものとしたが、これに限らず、例えば、図7に示す第1変形例や図8に示す第2変形例の構成を採用することができる。
 詳しくは、図7に示す制御弁300の第1変形例では、ケース318は設けられていない。第1変形例では、区画部材361と一体的に嵌合穴314に嵌合する周壁316cが第2弁孔320側に向って延び、この周壁316cに排出孔318cが開口されている。また、固定鉄心342の大径部342bは、第1弁孔316側に突出する突出部342b1を有し、この突出部342b1の端部は嵌合穴314の前記嵌合部位内における第2ポート323の開口位置より第1弁孔316側の所定位置に位置する。この突出部342b1の中央部には、第2弁孔320の前記他端が開口されている。また、連通空間部319に替って、突出部342b1の内部には、第2弁孔320の前記一端と第2ポート323とを連通する連通路319’が形成されている。
 また、第1変形例では、固定鉄心342の大径部342b(突出部342b1)が嵌合穴314に嵌合された状態で、大径部342bの突出部342b1の第1弁孔316側の端面が周壁316cの端部に当接する。その結果、弁収容室321は、固定鉄心342の大径部342b(突出部342b1)の端面と周壁316cの内周面とバルブボディ311の第1弁室315の形成壁の内周面とにより形成される。そして、突出部342b1の前記端面における第2弁孔320の周囲の円環状の部位が、第2弁座318fを構成する。
 換言すると、第1変形例では、バルブボディ311は、区画部材361の周壁316c及び固定鉄心342の大径部342b(詳しくは突出部342b1)と協働して弁収容室321を形成している。
 第1変形例では、第2弁座318fを固定鉄心342の大径部342bの端面(詳しくは突出部342b1の端面)を利用して形成することができる。また、ケース318の周壁318aに相当する部材(周壁316c)を区画部材361と一体的に形成することにより、弁構造を簡素化することができる。
 また、図8に示す制御弁300の第2変形例においても、ケース318は設けられていない。第2変形例では、バルブボディ311には、他端面(ソレノイドユニット340側の端面)311b側から順に、第1弁室315、第1弁孔316及び挿通孔317が形成されている。固定鉄心342の大径部342bは、ソレノイドハウジング341の端壁部341bに形成された嵌合穴341dに嵌合される。固定鉄心342の大径部342bは、第1弁孔316側に突出する突出部342b1を有する。この突出部342b1には、バルブボディ311側から順に、第1嵌合穴342b11、第1嵌合穴342b11より小径の第2嵌合穴342b12、及び、第2嵌合穴より小径の円柱状の円柱空間部342b13が形成されている。第1嵌合穴342b11には、バルブボディ311の他端面311b側の所定範囲が嵌合し、第2嵌合穴342b12には、区画部材361が嵌合して位置決めされる。
 第2変形例では、第2副弁部362bは、円柱空間部342b13に配置される。また、第3ポート324は、突出部342b1の周壁を貫通して、円柱空間部342b13に開口し、この円柱空間部342b13の底面の中央部に、第2弁孔320の前記他端が開口されている。第2ポート323は、突出部342b1の周壁を貫通して、第2弁孔320に接続している。そして、突出部342b1の円柱空間部342b13の前記底面における第2弁孔320の周囲の円環状の部位が、第2弁座318fを構成する。したがって、第2変形例では、第2弁室328は円柱空間部342b13からなり、弁収容室321は、バルブボディ311における円柱空間部342b13の内周面及び第1嵌合穴342b11の内周面と、バルブボディ311の第1弁室315の形成壁の内周面とにより形成される。
 換言すると、第2変形例では、バルブボディ311は、固定鉄心342の大径部342b(詳しくは突出部342b1)と協働して弁収容室321を形成している。
 また、第2変形例では、バルブハウジング310と、ソレノイドハウジング341と、固定鉄心342の大径部342bにおける突出部342b1は、互いに嵌合することにより、一方向に延伸し外周面を有する制御弁ハウジングを構成している。第2変形例では、前記制御弁ハウジング(310,341,342b1)が本発明に係る「ハウジング」に相当する。
 第2変形例では、ケース318を設けることなく弁収容室321を形成することができるため、部品点数を削減できる。そして、吸入室141の圧力領域と弁収容室321との間を連通する排出内部通路326を第3ポート324のみにより簡素な構造で形成することができる。
 また、本実施形態では、第1副弁部362aの前端部362a2に第2連通路用絞り通路363b2を設けたが、第2連通路用絞り通路363b2は設けなくてもよい。この場合、副弁体362が第1弁座327に当接したとき、第2連通路363bは閉鎖される。これにより、例えば、図5(C)に示す第2の状態で、主弁体351の第1弁孔316側の周縁部が主弁体用弁座面327bから離間した直後における背圧領域(第1領域S1)の背圧Pmをより速やかに上昇させることができる。
 また、本実施形態では、感圧装置330は、吸入室141の圧力Psに応答して作動するものとしたが、これに限らず、適宜の外部圧力に応答して作動するように構成してもよい。
 なお、本発明は、上述の各実施形態に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能であることはもちろんである。
[Overall configuration of variable displacement compressor]
Hereinafter, embodiments of the present invention will be described based on the attached drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a swash plate type variable displacement compressor to which the present invention is applied. Although this variable displacement compressor is not particularly limited, it is mainly configured as a clutchless compressor applied to an air conditioner system for a vehicle.
The variable displacement compressor 100 is provided with a cylinder block 101 in which a plurality of cylinder bores 101 a are formed, a front housing 102 provided on one end side of the cylinder block 101, and a valve plate 103 on the other end side of the cylinder block 101. And the cylinder head 104. The cylinder block 101, the front housing 102, the valve plate 103 and the cylinder head 104 are fastened by a plurality of through bolts 105 to constitute a compressor housing.
Further, a crank chamber 140 is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 is provided so as to cross the crank chamber 140. The drive shaft 110 is rotatably supported by the compressor housing. Although not shown in the drawings, a center gasket is disposed between the front housing 102 and the cylinder block 101, and a cylinder other than the valve plate 103 is disposed between the cylinder block 101 and the cylinder head 104. A gasket, a suction valve forming plate, a discharge valve forming plate and a head gasket are disposed.
A swash plate 111 is disposed around an axial middle portion of the drive shaft 110. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120 and rotates with the drive shaft 110. Further, the swash plate 111 is configured such that an angle (hereinafter referred to as “tilt angle”) with respect to the axis O of the drive shaft 110 can be changed.
The link mechanism 120 includes a first arm 112 a protruding from the rotor 112, a second arm 111 a protruding from the swash plate 111, and one end of the link mechanism 120 with respect to the first arm 112 a via the first connection pin 122. And a link arm 121, the other end of which is rotatably coupled to the second arm 111a via the second coupling pin 123.
The through hole 111b of the swash plate 111 through which the drive shaft 110 is inserted is formed in a shape that allows the swash plate 111 to tilt in the range of the maximum tilt angle and the minimum tilt angle. The through hole 111 b is formed with a minimum inclination restricting portion that abuts on the drive shaft 110. When the inclination angle (minimum inclination angle) of the swash plate 111 when the swash plate 111 is orthogonal to the axis O of the drive shaft 110 is 0 °, the minimum inclination restricting portion of the through hole 111 b has an inclination angle of almost 0 When it becomes °, it abuts on the drive shaft 110, and it is formed to restrict further tilting of the swash plate 111. In addition, when the inclination angle of the swash plate 111 reaches the maximum inclination angle, the swash plate 111 abuts on the rotor 112 and the inclination thereof is restricted.
The drive shaft 110 is provided with an inclination reducing spring 114 for urging the swash plate 111 in a direction to reduce the inclination of the swash plate 111, and an inclination increasing spring 115 for urging the swash plate 111 in a direction to increase the inclination of the swash plate 111. And are worn. The tilt angle reducing spring 114 is disposed between the swash plate 111 and the rotor 112, and the tilt angle increasing spring 115 is mounted between the swash plate 111 and a spring support member 116 fixed to the drive shaft 110.
Here, when the tilt angle of the swash plate 111 is the minimum tilt angle, the biasing force of the tilt angle increasing spring 115 is set to be larger than the biasing force of the tilt angle reducing spring 114, and the drive shaft 110 rotates. When not, the swash plate 111 is positioned at a tilt angle at which the biasing force of the tilt angle reducing spring 114 and the biasing force of the tilt angle increasing spring 115 are balanced.
One end (left end in FIG. 1) of the drive shaft 110 extends through the boss portion 102 a of the front housing 102 to the outside of the front housing 102. The power transmission device (not shown) is connected to the one end of the drive shaft 110. A shaft seal device 130 is provided between the drive shaft 110 and the boss portion 102 a, and the inside of the crank chamber 140 is shut off from the outside by the shaft seal device 130.
The coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by the bearing 133 and the thrust plate 134 in the thrust direction. The drive shaft 110 (and the rotor 112) is configured to rotate in synchronization with the rotation of the power transmission device by transmitting power from an external drive source to the power transmission device. The clearance between the other end of the drive shaft 110, that is, the end on the thrust plate 134 side, and the thrust plate 134 is adjusted to a predetermined clearance by the adjustment screw 135.
A piston 136 is disposed in each cylinder bore 101a. The outer space of the swash plate 111 and the vicinity thereof are accommodated in the inner space of the projecting portion of the piston 136 projecting into the crank chamber 140 via the pair of shoes 137, whereby the swash plate 111 Work together. Then, the piston 136 reciprocates in the cylinder bore 101 a by the rotation of the swash plate 111 accompanying the rotation of the drive shaft 110. Further, the stroke amount of the piston 136 changes in accordance with the inclination angle of the swash plate 111.
In the cylinder head 104, a suction chamber 141 is formed substantially at the center, and a discharge chamber 142 is formed to annularly surround the suction chamber 141. The suction chamber 141 communicates with the cylinder bore 101a through a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate (not shown). The discharge chamber 142 is in communication with the cylinder bore 101 a through a discharge valve (not shown) formed in the discharge valve forming plate (not shown) and a communication hole 103 b provided in the valve plate 103.
The suction chamber 141 is connected to the low pressure side of the refrigerant circuit of the air conditioning system (not shown) via the suction passage 104a.
In the upper portion of the cylinder block 101, a muffler 160 is provided to reduce noise and vibration due to pressure pulsation of the refrigerant. The muffler 160 is formed of a muffler forming wall 101 b defined in the upper portion of the cylinder block 101 and a lid member 106 fastened to the muffler forming wall 101 b via a seal member (not shown). In the muffler space 143 in the muffler 160, a check valve 200 is disposed.
The check valve 200 is disposed at an end of the communication passage 144 communicating the discharge chamber 142 with the muffler space 143 on the muffler space 143 side. The check valve 200 operates in response to the pressure difference between the communication passage 144 (upstream side) and the muffler space 143 (downstream side). Specifically, the check valve 200 is configured to shut off the communication passage 144 when the pressure difference is smaller than a predetermined value, and open the communication passage 144 when the pressure difference is larger than the predetermined value. It is done.
The discharge chamber 142 is connected to the high pressure side of the refrigerant circuit of the air-conditioning system via a discharge passage including the communication passage 144, the check valve 200, the muffler space 143, and the discharge port 106a. Further, the backflow of the refrigerant gas from the high pressure side of the refrigerant circuit of the air conditioning system toward the discharge chamber 142 is blocked by the check valve 200.
The low pressure side refrigerant (the refrigerant before compression) of the refrigerant circuit of the air conditioning system is led to the suction chamber 141 via the suction passage 104a. The refrigerant in the suction chamber 141 is sucked into the cylinder bore 101 a by the reciprocating motion of the piston 136, compressed and discharged into the discharge chamber 142. That is, in the present embodiment, the cylinder bore 101 a and the piston 136 constitute a compression unit that compresses the refrigerant in the suction chamber 141. Then, the compressed refrigerant compressed by the compression unit is discharged to the discharge chamber 142, and thereafter, is led to the high pressure side of the refrigerant circuit of the air conditioning system via the discharge passage.
The cylinder head 104 is provided with a control valve 300. The control valve 300 is disposed in a control valve receiving hole 104 b formed in the cylinder head 104.
The control valve 300 disposed in the control valve housing hole 104 b internally has a fluid passage that constitutes a part of the supply passage 145 that supplies the refrigerant (discharged refrigerant) in the discharge chamber 142 to the crank chamber 140. Then, the control valve 300 adjusts (controls) the opening degree (passage cross-sectional area) of the fluid passage (that is, the supply passage 145), thereby controlling the amount of refrigerant supplied from the discharge chamber 142 to the crank chamber 140. It is configured to
Further, a part of the fluid passage constitutes a part of a discharge passage 146 (more specifically, a first discharge passage 146a described later) connecting the crank chamber 140 and the suction chamber 141. The control valve 300 adjusts (controls) the opening degree of the discharge passage 146 by adjusting (controlling) the opening degree (passage cross-sectional area) of a part of the fluid passage, whereby the crank chamber 140 to the suction chamber 141 It is configured to control the discharge amount of the refrigerant to the The supply passage 145, the discharge passage 146, and the control valve 300 will be described in detail later.
Thus, the pressure of the crank chamber 140 can be changed (adjusted) by controlling the amount of refrigerant supplied to the crank chamber 140 and the amount of refrigerant discharged from the crank chamber 140 by the control valve 300. The displacement of the variable displacement compressor 100 can be changed by changing the inclination angle of the swash plate 111, that is, the stroke amount of the piston 136.
Specifically, by changing the pressure in the crank chamber 140, the pressure difference between the front and back of each piston 136, in other words, the pressure difference between the compression chamber in the cylinder bore 101a sandwiching the piston 136 and the crank chamber 140, is used. The inclination angle of 111 can be changed, and as a result, the stroke amount of the piston 136 changes and the displacement of the variable displacement compressor 100 changes. Specifically, when the pressure in the crank chamber 140 is reduced, the inclination angle of the swash plate 111 is increased and the stroke amount of the piston 136 is increased, whereby the displacement of the variable displacement compressor 100 is increased. ing.
In other words, in the variable displacement compressor 100, the crank chamber 140 changes the state of the compression unit (specifically, the stroke amount of the piston 136) according to the internal pressure to change the discharge capacity of the variable displacement compressor 100. It has a function to change. Therefore, in the present embodiment, the crank chamber 140 corresponds to the "control pressure chamber" of the present invention. The control valve 300 is mainly used to control the opening degree of the supply passage 145 and to control the opening degree of the discharge passage 146 to adjust the pressure in the crank chamber 140.
Here, as shown in FIG. 1, five O-rings 300a to 300e are attached to the outer peripheral surface of the control valve 300. The inside of the control valve housing hole 104b is isolated from the external space by the five O-rings 300a to 300e, and the outer space of the control valve 300 in the control valve housing hole 104b is the bottom side of the control valve housing hole 104b. It is divided into a first outer space 104b1, a second outer space 104b2, a third outer space 104b3, and a fourth outer space 104b4 in order from (the pressure-sensitive device 330 side of the control valve 300 described later).
The first outer space 104b1 communicates with the suction chamber 141 via a communication passage 104c formed in the cylinder head 104. Therefore, the pressure Ps of the suction chamber 141 acts on the first outer space 104b1. The second outer space 104 b 2 communicates with the discharge chamber 142 through a communication passage 104 d formed in the cylinder head 104. Therefore, the pressure Pd of the discharge chamber 142 acts on the second outer space 104b2. The third outer space 104 b 3 communicates with the suction chamber 141 via a communication passage 104 e formed in the cylinder head 104. Therefore, the pressure Ps of the suction chamber 141 acts on the third outer space 104b3. The fourth outer space 104b4 communicates with the crank chamber 140 through a communication passage 104f formed in the cylinder head 104, a through hole formed in the valve plate 103, and a communication passage 101c formed in the cylinder block 101. Therefore, the pressure Pc of the crank chamber 140 acts on the fourth outer space 104b4.
[Supply passage]
Next, the supply passage 145 will be described. In the present embodiment, the supply passage 145 includes the communication passage 104 d, the second outer space 104 b 2, the fluid passage (described in detail later) inside the control valve 300, the fourth outer space 104 b 4, the communication passage 104 f, and the valve. It is comprised by the said through hole of the plate 103, and the channel | path which passes through the communicating channel 101c. The supply passage 145 is opened and closed by the control valve 300 via the inside of the control valve 300.
[Discharge passage]
Next, the discharge passage 146 will be described. In the present embodiment, the discharge passage 146 includes a first discharge passage 146a and a second discharge passage 146b.
The first discharge passage 146a includes the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, a part of the fluid passage inside the control valve 300 (details will be described in detail later), The control valve 300 includes a second valve chamber 328, which will be described later, and a discharge internal passage 326, which is described later, of the control valve 300, a third outer space 104b3, and a passage passing through the communication passage 104e. The first discharge passage 146 a is opened and closed by the control valve 300 via the inside of the control valve 300. As the first discharge passage 146 a is opened and closed by the control valve 300, the opening degree of the discharge passage 146 is adjusted.
Here, the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, and a part of the fluid passage inside the control valve 300 (hereinafter, these are collectively ") Serves as the first discharge passage 146a and the supply passage 145. In this shared passage, the refrigerant flow direction when discharging the refrigerant from the crank chamber 140 (when functioning as the discharge passage 146) and when supplying the refrigerant to the crank chamber 140 (when functioning as the supply passage 145) Is reversed.
Further, in the present embodiment, the second discharge passage 146 b is a communication passage 101 d extending through the end surface of the cylinder block 101 on the front housing 102 side and extending toward the cylinder head 104, and is open at the end surface of the cylinder block 101 on the cylinder head 104 And a fixed stop 103 c formed in the valve plate 103. The second discharge passage 146 b is provided to bypass the control valve 300, and constantly communicates the crank chamber 140 with the suction chamber 141. The flow passage cross-sectional area of the first discharge passage 146a when opened by the control valve 300 is set larger than the flow passage cross-sectional area of the fixed throttle 103c of the second discharge passage 146b.
[Control valve]
Next, the control valve 300 will be described in detail with reference to FIGS. 2 and 3. FIG. 2 is a cross-sectional view of the control valve 300, and FIG. 3 is an enlarged view of the main part in FIG.
As shown in FIG. 2, the control valve 300 includes a valve housing 310, a pressure sensing device 330, a solenoid unit 340, a main valve unit 350, and a sub valve unit 360.
[Valve housing]
The valve housing 310 includes a substantially cylindrical valve body 311 and a bottomed cylindrical cap member 312 fixed to one end (the end opposite to the solenoid unit 340 side) of the valve body 311. In the present embodiment, the valve housing 310 and a solenoid housing 341 described later of the solenoid unit 340 form a control valve housing having an outer peripheral surface that extends in one direction by being fitted to each other. In the present embodiment, the control valve housing (310, 341) corresponds to the "housing" according to the present invention.
The cap member 312 cooperates with a recess 311 a formed on one end face of the valve body 311 to form a pressure sensitive chamber 313. The pressure sensing chamber 313 is in communication with a space to which an external pressure acts via a communication hole 312 a formed on the side surface of the cap member 312. More specifically, in the present embodiment, the external pressure is the pressure Ps of the suction chamber 141, and the pressure sensing chamber 313 is in communication with the first outer space 104b1 where the pressure Ps of the suction chamber 141 acts via the communication hole 312a. There is.
A fitting hole 314, a first valve chamber 315, a first valve hole 316 and an insertion hole 317 are formed in the valve body 311 sequentially from the other end surface (end surface on the solenoid unit 340 side) 311b side. The fitting hole 314, the first valve chamber 315, the first valve hole 316, and the insertion hole 317 are disposed on the center line X of the valve body 311 in the extending direction (= the center line of the control valve 300).
The fitting hole 314 is formed as a cylindrical hole opened to the other end surface 311 b of the valve body 311. The fitting hole 314 includes, for example, an enlarged diameter portion whose diameter on the side of connection with the first valve chamber 315 is increased by centering or the like and a smaller diameter fitting portion than the diameter enlarged portion. Is formed. In the fitting hole 314, a bottomed cylindrical case 318 including a cylindrical peripheral wall 318a and an end wall 318b provided at one end of the peripheral wall 318a is fitted. Specifically, in the case 318, a portion on the end wall 318b side of the peripheral wall 318a is fitted to the end on the enlarged diameter portion side in the fitting portion of the fitting hole 314, and the tip of the peripheral wall 318a is the fitting hole 314 Contact with the inner bottom surface (the connection surface between the fitting hole 314 and the first valve chamber 315). Thereby, the case 318 is positioned in the fitting hole 314 of the valve body 311 and fixed to the valve body 311. And the solenoid unit 340 is fitted by the edge part by the side of the other end surface 311b in the said fitting site | part of the fitting hole 314. As shown in FIG. With the case 318 positioned in the fitting hole 314, the end face of the solenoid unit 340 is located in front of the end wall 318b of the case 318, and between the end face of the solenoid unit 340 and the end wall 318b of the case 318. The communication space 319 is formed in the
Further, a second valve hole 320 is opened at the center of the end wall 318 b of the case 318, and a discharge hole 318 c is opened at the peripheral wall 318 a of the case 318. Specifically, the second valve hole 320 is disposed on the center line X of the valve body 311. That is, the second valve hole 320, the fitting hole 314, the first valve chamber 315, the first valve hole 316, and the insertion hole 317 have the same center line.
The first valve chamber 315 is formed as a cylindrical hole smaller in diameter than the fitting hole 314 (specifically, the fitting portion). The forming wall of the first valve chamber 315 of the valve body 311 cooperates with the case 318 to form a valve accommodating chamber 321 for accommodating a main valve body 351 and an auxiliary valve body unit 360 of the main valve body unit 350 described later. . In other words, in the present embodiment, the valve storage chamber 321 is configured by the internal space of the case 318 and the first valve chamber 315.
The first valve hole 316 is formed (opened) on the bottom surface of the first valve chamber 315. The insertion hole 317 linearly extends from the first valve hole 316 and opens in the pressure sensing chamber 313. That is, the first valve hole 316 and the insertion hole 317 have the same diameter.
In the present embodiment, the portion on the pressure sensing chamber 313 side of the insertion hole 317 constitutes a support hole 317a for slidably supporting the main valve unit 350, and the first valve hole is larger than the support hole 317a in the insertion hole 317. The portion on the side 316 constitutes a communication space 317 b for communicating the first valve hole 316 with the support hole 317 a. That is, one end of the support hole 317a is in communication with the first valve hole 316 via the communication space 317b, and the other end of the support hole 317a is open to the pressure sensing chamber 313.
Further, in the valve body 311, a back pressure relief throttle passage 325 having a first port 322, a second port 323, a third port 324, and a throttle portion is formed.
One end of the first port 322 opens at a portion between the O-ring 300a and the O-ring 300b on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the second outer space 104b2). Connected to the area. The other end of the first port 322 is open to the inner peripheral surface of the communication space 317b. Here, one end of the first valve hole 316 is connected to the pressure area of the discharge chamber 142 via the communication space 317 b and the first port 322, and the other end of the first valve hole 316 is open to the valve accommodating chamber 321. doing. Specifically, the other end of the first valve hole 316 is opened to one end wall of the valve storage chamber 321 (the bottom surface of the first valve chamber 315).
One end of the second port 323 opens at a portion between the O ring 300 c and the O ring 300 d on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the fourth outer space 104 b 4). Connected to the area. The other end of the second port 323 is open to the inner peripheral surface of the communication space 319 at the fitting portion of the fitting hole 314. Here, one end of the second valve hole 320 is connected to the pressure region of the crank chamber 140 via the communication space 319 and the second port 323, and the other end of the second valve hole 320 is open to the valve storage chamber 321. doing. Specifically, the other end of the second valve hole 320 is opened to the other end wall of the valve accommodating chamber 321 (the inner end surface of the end wall 318 b of the case 318).
One end of the third port 324 is opened at a portion between the O ring 300 b and the O ring 300 c on the outer peripheral surface of the valve body 311 (that is, a portion corresponding to the third outer space 104 b 3). Connected to the area. The other end of the third port 324 is open at the inner peripheral surface of the enlarged diameter portion of the fitting hole 314. The first port 322, the second port 323, and the third port 324 are respectively formed at a plurality of locations separated in the circumferential direction of the valve body 311, and extend in the radial direction of the valve body 311.
In this embodiment, the third port 324, a space 314a between the inner peripheral surface of the widening portion of the fitting hole 314 and the outer peripheral surface of the peripheral wall 318a of the case 318, and the discharge hole 318c of the peripheral wall 318a of the case 318. The passage formed constitutes an exhaust internal passage 326 inside the control valve 300 which constitutes a part of the first discharge passage 146a. One end of the discharge internal passage 326 is connected to the pressure region of the suction chamber 141, and the other end of the discharge internal passage 326 is open to the valve storage chamber 321. Specifically, one end of the discharge internal passage 326 (that is, the one end of the third port 324) is opened in a portion corresponding to the third outer space 104b3 in the outer peripheral surface of the valve body 311 to Connected Further, the other end of the discharge internal passage 326 (that is, one end of the discharge hole 318c on the valve storage chamber 321 side) is opened to the inner peripheral surface of the valve storage chamber 321 (inner peripheral surface of the peripheral wall 318a of the case 318) There is. The discharge holes 318c are formed, for example, at a plurality of locations separated in the circumferential direction of the circumferential wall 318a, and extend in the radial direction of the circumferential wall 318a.
One end of the back pressure relief throttle passage 325 is open at a portion between the third port 324 and the O-ring 300 b in the outer peripheral surface of the valve body 311 (a portion corresponding to the third outer space 104 b 3). Connected to the pressure area of the The other end of the back pressure relief throttle passage 325 is a first valve seat 327 formed around the first valve hole 316 in the bottom surface of the first valve chamber 315 and the sub valve body unit 360 (details will be described later) The first region S1 is opened as a back pressure region between the first sub valve portion 362a).
[Pressure-sensitive device]
The pressure sensitive device 330 is disposed in the pressure sensitive chamber 313. The pressure-sensitive device 330 includes a bellows 330a having a bottom, a closing member 330b closing an open end of the bellows 330a, and a first biasing device disposed inside the bellows 330a and urging the bellows 330a in a direction to extend the bellows 330a. A member (compression coil spring) 330c, and a second biasing member (compression coil spring) 330d which is disposed between the closing member 330b and the valve body 311 and biases the bellows in a contracting direction.
The inside of the bellows 330a is in a vacuum state, and the bellows 330a expands and contracts in response to the external pressure. In the present embodiment, the external pressure is the pressure of the suction chamber 141, and the bellows 330a expands and contracts in response to the pressure of the pressure sensing chamber 313 (that is, the pressure Ps of the suction chamber 141). Specifically, the bellows 330 a extends as the pressure sensing chamber 313 (the pressure Ps of the suction chamber 141) decreases.
[Solenoid unit]
The solenoid unit 340 includes a solenoid housing 341, a fixed core 342 incorporated in the solenoid housing 341, a movable core 343, a biasing member 344, a housing member 345 and a coil assembly 346.
The solenoid housing 341 holds or accommodates the fixed core 342, the movable core 343, the biasing member 344, the housing member 345 and the coil assembly 346. The solenoid housing 341 includes a cylindrical peripheral wall portion 341a and an end wall portion 341b fixed to one end (an end portion on the valve housing 310 side) of the peripheral wall portion 341a.
The fixed core 342 has a small diameter portion 342a on one end surface side and a large diameter portion 342b on the other end surface side larger in diameter than the small diameter portion 342a. An insertion hole 342c is formed through the fixed core 342 in the axial direction. Then, a predetermined range on the other end surface 311 b side of the valve body 311 is fitted into a fitting hole 341 d formed in the end wall portion 341 b of the solenoid housing 341, and the large diameter portion 342 b of the fixed iron core 342 is of the valve body 311. The valve housing 310 and the solenoid unit 340 are integrated with each other by being fitted into a fitting hole 314 formed in the other end surface 311 b. Then, the control valve housing (310, 341) including the valve housing 310 (valve body 311, cap member 312) and the solenoid housing 341 is configured.
The movable core 343 is disposed with a predetermined gap between the movable core 343 and the one end surface of the fixed core 342. The solenoid housing 341, the fixed core 342 and the movable core 343 are made of a magnetic material.
The biasing member 344 is disposed between the fixed core 342 and the movable core 343 and biases the movable core 343 away from the one end surface of the fixed core 342. In the present embodiment, a compression coil spring is used as the biasing member 344.
The housing member 345 is formed of a nonmagnetic material in a bottomed cylindrical shape. The housing member 345 accommodates the small diameter portion 342 a of the fixed core 342, the movable core 343 and the biasing member 344 so that the movable core 343 can move in the distraction direction with respect to the one end surface of the fixed core 342.
The coil assembly 346 includes a solenoid coil (hereinafter simply referred to as "coil") 346a and a closing member 346b. The coil 346 a is covered with resin and disposed around the housing member 345. In the present embodiment, the coil 346 a is housed in a housing space formed inside the peripheral wall portion 341 a of the solenoid housing 341. The closing member 346b is a member for closing the other end of the peripheral wall portion 341a of the solenoid housing 341, and is formed of, for example, magnetic free-cutting steel. The closing member 346b is disposed around the movable core 343 in the radial direction, and is integrated with the coil 346a by a resin. Reference numeral 346c in FIG. 2 denotes a resin portion of the coil assembly 346.
When the coil 346a is energized, the solenoid housing 341, the fixed core 342, the movable core 343, and the closing member 346b of the coil assembly 346 form a magnetic circuit and move against the biasing force of the biasing member 344 An electromagnetic force (magnetic attraction force) is generated to move the iron core 343 toward the one end surface of the fixed iron core 342.
[Main valve unit]
Main valve body unit 350 includes main valve body 351, first rod 352 and second rod 353, and extends from one end to the other end of sub valve body unit 360 housed in valve housing chamber 321. It is extended to penetrate. In the present embodiment, the main valve body 351, the first rod 352 and the second rod 353 are integrally formed to constitute a cylindrical (rod-like) main valve body unit 350.
The main valve body 351 is accommodated in the first valve chamber 315 of the valve accommodation chamber 321 to open and close the first valve hole 316. Specifically, the peripheral portion of the end portion of the main valve body 351 on the side of the first valve hole 316 separates and contacts the first valve seat 327 around the first valve hole 316 of the bottom surface of the first valve chamber 315 Thus, the first valve hole 316 is opened and closed.
The first rod 352 is inserted into an insertion hole 317 formed in the valve body 311. One end of the first rod 352 is connected to the central portion of the end of the main valve body 351 on the first valve hole 316 side, and the other end of the first rod 352 is separable to the closing member 330 b of the pressure sensing device 330 Is linked to
Specifically, as shown in FIG. 3, the first rod 352 has a large diameter portion 352 a and a small diameter portion 352 b smaller in diameter than the large diameter portion 352 a. The large diameter portion 352 a is slidably supported by the support hole 317 a of the insertion hole 317, and the small diameter portion 352 b is inserted into the first valve hole 316 and the communication space 317 b of the insertion hole 317.
The second rod 353 is inserted into an insertion hole 342 c formed in the fixed core 342. One end of the second rod 353 is connected to the end of the main valve body 351 opposite to the first valve hole 316 side, and the other end of the second rod 353 is connected to the movable core 343.
In the present embodiment, as shown in FIG. 3, the second rod 353 has a large diameter portion 353 a and a small diameter portion 353 b smaller in diameter than the large diameter portion 353 a. The large diameter portion 353 a is inserted into the insertion hole 342 c, and the small diameter portion 353 b is disposed in the valve storage chamber 321. A predetermined range on the small diameter portion 353 b side of the large diameter portion 353 a is disposed in a second valve hole 320 formed in the end wall 318 b of the case 318 fitted in the fitting hole 341.
Further, in the present embodiment, as shown in FIG. 3, the second rod 353 further includes a first guiding portion 353 c and a second guiding portion 353 d. The first guide portion 353c constitutes an end of the second rod 353 on the main valve body 351 side, and has a conical outer peripheral surface that gradually expands in diameter toward the main valve body 351 side. The second guide portion 353d is provided between the small diameter portion 353b and the large diameter portion 353a, and has a conical outer peripheral surface which gradually expands in diameter toward the large diameter portion 353a (that is, the second valve hole 320). Have.
Here, as described above, in the pressure sensitive device 330, the bellows 330a expands and contracts in response to the pressure Ps of the suction chamber 141. Then, when the bellows 330a is extended to a predetermined length or more as the pressure Ps of the suction chamber 141 decreases, the closing member 330b is connected to the other end of the first rod 352 of the main valve unit 350, and the main valve The unit 350 is biased in the direction in which the main valve body 351 opens the first valve hole 316. That is, in response to the pressure Ps of the suction chamber 141 which is the external pressure, the pressure-sensitive device 330 exerts an urging force in the valve opening direction of the first valve hole 316 on the main valve body unit 350.
In the solenoid unit 340, when the coil 346a is energized, an electromagnetic force is generated to move the movable core 343 toward the one end surface of the fixed core 342. Then, when the movable iron core 343 is moved by the generated electromagnetic force, the main valve body unit 350 is biased in the direction in which the main valve body 351 closes the first valve hole 316. That is, the solenoid unit 340 is energized in the valve closing direction of the first valve hole 316 in the main valve unit 350 by the coil 346a being energized and the movable core 343 moving toward the one end face of the fixed core 342. To work.
[Adjustment operation of opening degree of supply passage]
Next, the adjustment operation of the opening degree of the supply passage 145 in the control valve 300 will be briefly described.
At the time of operation of the air-conditioner system, that is, in the operation state of the variable displacement compressor 100, the amount of energization of the coil 346a of the solenoid unit 340 is set by a controller (not shown) Be done. The coil 346a is driven by pulse width modulation (PWM control) at a predetermined frequency in the range of 400 Hz to 500 Hz, for example, to set the amount of energization. Then, the control valve 300 causes the first valve hole 316 (i.e., the supply passage) by (the main valve body 351 of) the main valve body unit 350 such that the pressure Ps of the suction chamber 141 becomes a predetermined value corresponding to the amount of current supplied. The discharge amount of the variable displacement compressor 100 is controlled by adjusting the opening degree of 145). Specifically, the control valve 300 operates to autonomously adjust the opening degree of the first valve hole 316 (that is, the supply passage 145) in response to the pressure Ps of the suction chamber 141.
Further, when the operation of the air conditioning system is stopped, that is, when the variable displacement compressor 100 is switched from the operating state to the non-operating state, the control device turns OFF the coil 346a of the solenoid unit 340. Then, in the solenoid unit 340, the movable core 343 moves in a direction away from the one end surface of the fixed core 342 by the biasing force of the biasing member 344 and the main valve body unit 350 (the The valve body 351 moves in the direction to open the first valve hole 316, and the first valve hole 316 (ie, the supply passage 145) is maximally opened. As a result, the refrigerant is supplied to the crank chamber 140, the pressure in the crank chamber 140 is increased, and the displacement of the variable displacement compressor 100 is minimized.
[Supply of secondary valve unit]
FIG. 4 is an enlarged sectional view of an assembly of the sub valve body unit 360 and the case 318. As shown in FIG. The secondary valve body unit 360 is assembled integrally with the case 318 as shown in FIG. The assembly is fixed to the valve body 311 by the case 318 being fitted and positioned in the fitting hole 314 as described above, as shown in FIGS. 2 and 3. As a result, the sub valve body unit 360 is accommodated in the valve accommodating chamber 321 composed of the internal space of the case 318 and the first valve chamber 315.
The sub valve body unit 360 is provided in the partition member 361 fixed in the valve storage chamber 321 and in the central axis of the valve storage chamber 321 (= the extending direction of the center line X of the valve body 311) of the valve storage chamber 321. It includes a sub valve body 362 moving along and a communication passage 363.
The partitioning member 361 has a first valve chamber 315 in which the first valve hole 316 opens, a second valve chamber 320 in which the first valve hole 316 opens, and a second valve chamber 328 in which the discharge internal passage 326 (specifically, the discharge hole 318c) opens. It is a member that divides into In the present embodiment, the valve storage chamber 321 is composed of the internal space of the case 318 and the first valve chamber 315 as described above. Therefore, the second valve chamber 328 is constituted by the internal space of the case 318.
In the present embodiment, as shown in FIG. 4, a fitting hole 318d for the dividing member 361 and a small diameter hole 318e having a smaller diameter than the fitting hole 318d are formed at the open end of the peripheral wall 318a of the case 318. There is. And while the division member 361 is formed in a substantially disk shape, the penetration hole 361a is penetratingly formed by the center part. The sub valve body 362 is inserted into the insertion hole 361 a. An annular projection 361 b surrounding the insertion hole 361 a and projecting toward the first valve chamber 315 is formed on the surface of the partitioning member 361 on the first valve chamber 315 side. For example, the partitioning member 361 is fitted in the fitting hole 318d, and the peripheral edge thereof abuts on the connection surface between the fitting hole 318d and the small diameter hole 318e, and is positioned and fixed to the case 318.
Specifically, as shown in FIG. 4, the sub valve body 362 integrally includes a first sub valve portion 362 a, a second sub valve portion 362 b, and a shaft portion 362 c. An insertion hole 364 for insertion of the main valve unit 350 is formed in the sub valve body 362. The insertion hole 364 is formed to extend along the center line of the sub valve body 362 from one end of the sub valve body 362 to the other end. The details of the insertion hole 364 will be described in detail later.
The first sub valve portion 362 a is disposed to surround the outer periphery of the main valve body 351 of the main valve body unit 350 and to face the first valve seat 327. The first sub-valve portion 362 a has an outer peripheral surface that slidably contacts the inner peripheral surface of the valve storage chamber 321. The first sub-valve portion 362 a is a member disposed in the first valve chamber 315 of the valve storage chamber 321 and in contact with the first valve seat 327 formed around the first valve hole 316.
The second sub valve portion 362 b is disposed in the second valve chamber 328 of the valve storage chamber 321 and is formed around the second valve hole 320 (specifically, the surface of the end wall 318 b on the second valve chamber 328 side) And a second valve seat 318f (see FIGS. 3 and 4).
The shaft portion 362c connects the first sub valve portion 362a and the second sub valve portion 362b and penetrates the dividing member 361 and has an axis smaller than the outer diameters of the first sub valve portion 362a and the second sub valve portion 362b. It is a member having an outer diameter.
The communication passage 363 is a passage for connecting the first valve hole 316 and the second valve hole 320, and includes a first communication passage 363a and a second communication passage 363b. The first communication passage 363 a is a passage formed of a cylindrical region between the inner peripheral surface of the insertion hole 364 of the sub valve body 362 and the outer peripheral surface of the main valve unit 350. The second communication passage 363b is a passage extending through the outer peripheral surface side of the first sub valve portion 362a and communicating the first region (back pressure region) S1 with the first communication passage 363a. The details of the auxiliary valve body 362, the first communication passage 363a, and the second communication passage 363b will be described later.
[Operation of secondary valve unit]
FIG. 5 is a cross-sectional view of an essential part for explaining the operation state of the sub valve body unit 360, and FIG. 5 (A) shows a refrigerant supply state (first state) from the discharge chamber 142 to the crank chamber 140. 5B shows the state immediately after the first valve hole 316 is closed in the first state (the state immediately after the valve closing), and FIG. 5C shows the state from the crank chamber 140 to the suction chamber 141. Indicates a pressure release state (second state). That is, the sub valve body unit 360 is configured to switch between the first state and the second state.
The end face of the sub valve body 362 on the side of the first valve hole 316 receives the pressure in the region of the supply passage 145 closer to the discharge chamber 142 than the sub valve body 362, ie, the so-called back pressure Pm. On the other hand, the end face on the second valve hole 320 side of the sub valve body 362 receives the pressure Pc of the crank chamber 140. Then, in response to the pressure difference ΔP (ΔP = Pm−Pc) between the back pressure Pm and the pressure Pc, the auxiliary valve body 362 moves in the valve accommodating chamber 321 in the extending direction of the center line X. The pressure receiving area s1 of the sub valve body 362 in the center line X direction receiving the back pressure Pm and the pressure receiving area s2 of the sub valve body 362 receiving the pressure Pc in the crank chamber 140 are set to, for example, s1 = s2. In order to adjust the operation of the valve body 362, s1> s2 or s1 <s2 can be set. In the present embodiment, as described above, the valve body 311 is formed with the back pressure relief throttle passage 325 that communicates the first region S1 with the suction chamber 141. When the main valve unit 350 closes the first valve hole 316 and the supply passage 145 is closed, the back pressure relief throttle passage 325 releases the refrigerant in the first region S1 to the suction chamber 141 side. Provided for Since the back pressure relief throttle passage 325 has a throttle portion, the amount of refrigerant flowing out of the first region S1 into the suction chamber 141 via the back pressure relief throttle passage 325 is small.
First, the switching operation from the second state to the first state will be described.
The main valve body 351 of the main valve body unit 350 is separated from the first valve seat 327 in a state where the first sub valve portion 362a is in contact with the first valve seat 327 (the second state in FIG. 5C). Then, when the first valve hole 316 is opened, the back pressure Pm acting on the first sub valve portion 362a becomes high. After that, when the back pressure Pm becomes higher than the pressure Pc of the crank chamber 140 (in the state of Pm-Pc> 0), the first sub valve portion 362a starts to separate from the first valve seat 327. Then, as shown in FIG. 5A, when the second sub valve portion 362b abuts on the second valve seat 318f, the first sub valve portion 362a is most separated from the first valve seat 327 (see FIG. State 1). Thereby, the sub valve body unit 360 switches from the second state to the first state. In the first state, the communication between the second valve hole 320 and the discharge internal passage 326 is cut off, and the first discharge passage 146a of the discharge passages 146 connecting the crank chamber 140 and the suction chamber 141 is closed. At the same time, the first valve hole 316 and the second valve hole 320 communicate with each other through the communication passage 363, and the supply passage 145 communicating the discharge chamber 142 with the crank chamber 140 is opened.
That is, when the main valve body unit 350 opens the first valve hole 316, the first discharge passage 146a passing through the inside of the control valve 300 in the discharge passage 146 is closed simultaneously with the first valve hole 316 and The refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 through the communication passage 363 including the first communication passage 363a and the second communication passage 363b.
As a result, only the second discharge passage 146 b provided to bypass the control valve 300 in the discharge passage 146 and always communicating between the crank chamber 140 and the suction chamber 141 is opened. The minimum opening area is the opening area of the fixed stop 103c. Therefore, the discharge of the refrigerant from the crank chamber 140 to the suction chamber 141 is suppressed. Then, in this state, the refrigerant flowing from the first valve hole 316 is promptly supplied to the crank chamber 140 via the communication passage 363 formed of the first communication passage 363a and the second communication passage 363b, whereby the crank chamber 140 is produced. Pressure is likely to rise. As a result, the pressure in the crank chamber 140 rapidly rises according to the opening degree of the supply passage 145, the inclination angle of the swash plate 111 decreases from the maximum, and the piston stroke (discharge volume) can be rapidly controlled. .
Further, in the present embodiment, the supply passage 145 includes the communication passage 104 d (see FIG. 1), the second outer space 104 b 2 (see FIGS. 1 and 2), the first port 322, the communication space 317 b, and the first valve hole 316. , First region S1, communication passage 363 (first communication passage 363a, second communication passage 363b), second valve hole 320, communication space portion 319, second port 323, fourth outer space 104b4 (FIGS. 1 and 2) (See reference), the communication passage 104f, the through hole of the valve plate 103, and the communication passage 101c. Therefore, in the present embodiment, the fluid passage in the control valve 300 that constitutes a part of the supply passage 145 is the first port 322, the communication space 317b, the first valve hole 316, the first region S1, and the communication passage. 363 (a first communication passage 363a, a second communication passage 363b), a second valve hole 320, a communication space 319, and a second port 323.
Next, the switching operation from the first state to the second state will be described.
In the state where the second sub valve portion 362b is in contact with the second valve seat 318f (the first state in FIG. 5A), the main valve body unit 350 starts to move in the valve closing direction. When the main valve body 351 abuts on the first valve seat 327 as shown in FIG. 5B and the first valve hole 316 is closed, the refrigerant in the first valve chamber 315 is used for back pressure relief. The back pressure Pm discharged to the suction chamber 141 via the throttle passage 325 and acting on the first sub valve portion 362 a gradually decreases. Thereafter, when the back pressure Pm becomes lower than the pressure Pc of the crank chamber 140 (in the state of Pm-Pc <0), the refrigerant passes through the second valve hole 320 and the first communication passage 363a to the first valve chamber 315 side. Backflow toward the The sub valve body 362 is pressed by the backflowing refrigerant flow to move to the first valve seat 327 side, and the second sub valve portion 362 b starts to separate from the second valve seat 318 f. Then, when the first sub valve portion 362a contacts the first valve seat 327 as shown in FIG. 5C, the second sub valve portion 362b is most separated from the second valve seat 318f. (First state → second state). Thereby, the sub valve body unit 360 switches from the first state to the second state. In this second state, the second valve hole 320 and the discharge internal passage 326 are communicated via the second valve chamber 328, and the opening degree of the first discharge passage 146a becomes the maximum opening degree, and at the same time, the first valve The communication between the hole 316 and the second valve hole 320 via the communication passage 363 is interrupted, and the supply passage 145 is closed.
That is, when the main valve body unit 350 closes the first valve hole 316, the supply passage 145 is closed, and at the same time, the second valve hole 320 and the discharge internal passage 326 communicate with each other, and the first discharge passage 146a, The refrigerant in the crank chamber 140 is discharged to the suction chamber 141 via the second discharge passage 146 b.
As a result, the supply of the refrigerant from the discharge chamber 142 to the crank chamber 140 is stopped, and the discharge passage 146 is fully opened. Therefore, the refrigerant in the crank chamber 140 is quickly discharged to the suction chamber 141 via the second discharge passage 146 b (fixed throttle 103 c) and the first discharge passage 146 a. As a result, the pressure in the crank chamber 140 promptly becomes equal to the pressure in the suction chamber 141, the inclination angle of the swash plate is maximized, and the piston stroke (discharge displacement) is rapidly maximized.
Further, in the present embodiment, the first discharge passage 146a is formed by the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, the second port 323, the communication space 319, and the second valve hole. 320, the second valve chamber 328, the discharge internal passage 326 (specifically, the discharge hole 318c, the space 314a, the third port 324), the third outer space 104b3, and the communication passage 104e. Therefore, in the present embodiment, a part of the fluid passage in the control valve 300 which constitutes a part of the first discharge passage 146 a is the second valve hole 320, the communication space 319, and the second port 323. In the present embodiment, the combined passage serving as the first discharge passage 146a and the supply passage 145 is the communication passage 101c, the through hole of the valve plate 103, the communication passage 104f, the fourth outer space 104b4, and the control valve. It is a part of the fluid passage inside of 300 (that is, the second port 323, the communication space 319, and the second valve hole 320).
Thus, in the sub valve body 362, the main valve body 351 of the main valve body unit 350 is separated from the first valve seat 327 and the first region S1 between the first valve seat 327 and the first sub valve portion 362a. When the pressure (i.e., the back pressure Pm) increases, the first valve hole 316 and the second valve hole 320 are communicated with each other via the communication passage 363 and the second valve hole 320 is communicated with the discharge internal passage 326. Move to shut off. On the other hand, when the main valve body 351 abuts on the first valve seat 327 and the pressure (back pressure Pm) in the first region S1 decreases in the sub valve body 362, the first valve hole 316 and the second valve hole 320. And the second valve hole 320 and the discharge internal passage 326 to communicate with each other.
In other words, the sub valve body unit 360 is provided in the valve storage chamber 321 and operates in accordance with the front / rear differential pressure (the pressure difference) ΔP to connect the first valve hole 316 and the second valve hole 320 The opening degree of the discharge passage 146 is controlled by switching to the second state in which the second valve hole 320 and the discharge internal passage 326 communicate with each other.
[Detailed structure of sub valve body unit]
Next, the structures of the first sub valve portion 362a, the second sub valve portion 362b, and the shaft portion 362c of the sub valve body 362 will be described in detail with reference to FIG. 3, FIG. 4 and FIG. FIG. 6 is an enlarged view of the main part in FIG.
The first sub-valve portion 362a includes a sliding portion 362a1, a front end 362a2, and a rear end 362a3.
The sliding portion 362a1 has an outer peripheral surface that is in sliding contact with the inner peripheral surface of the valve storage chamber 321 (more specifically, the first valve chamber 315), and the first valve chamber 315 and the first region S1 on the first valve hole 316 side. It divides into the 2nd field S2 by the side of division member 361. The sliding portion 362a1 is formed in a substantially cylindrical shape and has an outer diameter larger than the outer diameter of the rear end portion 362a3. The outer peripheral surface of the sliding portion 362 a 1 is slidably supported by the inner peripheral surface of the first valve chamber 315.
A first small diameter hole portion 364a is formed through the radial center portion of the sliding portion 362a1. One end of the first small diameter hole 364a is opposed to the first valve hole 316 and connected to the first region S1, and the other end of the first small diameter hole 364a is a first large diameter hole 364b of the rear end 362a3 described later. Connect to
Further, in the sliding portion 362a1, a communication passage 363b1 that constitutes a part of the second communication passage 363b is formed. The communication passage 363b1 is a passage for causing the first region S1 and the second region S2 to communicate with each other. The communication passage 363b1 is, for example, a groove (slit) formed on the outer peripheral surface of the sliding portion 362a1. The communication passage 363b1 may be one, but in the present embodiment, the communication passage 363b1 is a groove extending in the axial direction of the sliding portion 362a1 at a plurality of angular positions separated in the circumferential direction of the sliding portion 362a1. In addition, in the cross-sectional angular position shown to a figure, although the communication path 363b1 is one, it is formed in multiple numbers in fact.
The front end portion 362a2 is formed at an end portion of the sliding portion 362a1 on the first region S1 side, and is in contact with the first valve seat 327. The front end portion 362a2 protrudes, for example, in an annular shape from an end of the sliding portion 362a1 on the first region S1 side.
At the front end portion 362a2, a second communication passage throttle passage 363b2 which constitutes a part of the second communication passage 363b is formed. The passage cross sectional area of the second communication passage throttle passage 363b2 is set to be the minimum passage cross sectional area of the second communication passage 363b, and the second communication passage throttle passage 363b2 is the throttle portion of the second communication passage 363b. Configure The second communication passage throttle passage 363b2 penetrates the front end portion 362a2 at a predetermined angular position in the circumferential direction of the annular front end portion 362a2, and communicates the radially inner region and the radially outer region of the front end portion 362a2 .
The rear end portion 362a3 extends from the end on the second region S2 side of the sliding portion 362a1 toward the partitioning member 361 and has a flush outer peripheral surface and is formed in a tubular shape. The outer diameter of the rear end portion 362a3 is smaller than the outer diameter of the sliding portion 362a1, and is formed to be approximately the same as the outer diameter of the annular projecting portion 361b of the partitioning member 361. The end of the shaft 362c is fitted to the open end of the cylindrical rear end 362a3. In a state where the shaft portion 362c is fitted to the rear end portion 362a3, the rear end portion 362a3 has a columnar first large diameter hole portion 364b having an inner diameter equal to the outer diameter of the shaft portion 362c. The first large diameter hole 364b has an inner diameter larger than that of the first small diameter hole 364a, and is connected to the other end of the first small diameter hole 364a.
In addition, a rear end through hole 363b3 which constitutes a part of the second communication passage 363b is formed through the peripheral wall of the rear end 362a3. The rear end through hole 363b3 penetrates the peripheral wall of the rear end 362a3 at a predetermined angular position in the circumferential direction of the rear end 362a3, and the area in the second area S2 and the rear end 362a3 (that is, the first large diameter hole It communicates with the portion 364b).
The second sub valve portion 362 b is, for example, integrally formed with the shaft portion 362 c. In the integrally formed body of the second sub-valve portion 362b and the shaft portion 362c, a cylindrical second small diameter hole portion 364c and a cylindrical second large diameter hole portion 364d having a diameter larger than that of the second small diameter hole portion 364c. And are formed. One end of the second small diameter hole portion 364c is opened at one end surface of the integrally formed body and connected to the first large diameter hole portion 364b, and the other end of the second small diameter hole portion 364c is a second large diameter hole portion 364d. Connected Further, one end of the second large diameter hole portion 364d is connected to the second small diameter hole portion 364c, and the other end of the second large diameter hole portion 364d is opened to the other end face of the integrally formed body so that the second valve hole 320 is formed. It is opposite to. The inner diameter of the second small diameter hole 364 c is set larger than the outer diameter of the main valve body 351. The inner diameter of the second large diameter hole 364 d is set to, for example, the same diameter as the inner diameter of the second valve hole 320.
[Insertion hole for main valve body unit insertion]
Next, the insertion holes 364 for insertion of the main valve body unit 350 will be described in detail with reference to FIGS. 3, 4 and 6.
In the present embodiment, the main valve body 351 of the main valve body unit 350 is inserted through the first small diameter hole portion 364a of the sliding portion 362a1. In addition, a first guiding portion 353c of the second rod 353 of the main valve body unit 350 is disposed in the first large diameter hole 364b of the rear end portion 362a3. The small diameter portion 353b of the second rod 353 of the main valve unit 350 is disposed in the second small diameter hole portion 364c of the integrally formed body of the second sub valve portion 362b and the shaft portion 362c, and the second large diameter portion The second guiding portion 353d of the second rod 353 is disposed in the hole 364d. The first small diameter hole 364a, the first large diameter hole 364b, the second small diameter hole 364c, and the second large diameter hole 364d extend from the one end of the sub valve body 362 along the center line X of the valve body 311. It is formed to penetrate through the other end. Therefore, in the present embodiment, the insertion holes 364 for insertion of the main valve body unit 350 are the first small diameter hole 364a, the first large diameter hole 364b, the second small diameter hole 364c, and the second large diameter hole 364d. It is composed of
In other words, in the present embodiment, the insertion hole 364 in the first sub valve portion 362 a, which is the first valve seat side end portion of the sub valve body 362, includes the first small diameter hole portion 364 a and the first small diameter hole portion 364 a through which the main valve body 351 is inserted. The small diameter hole portion 364a is formed into a stepped cylindrical shape including a first large diameter hole portion 364b having a larger diameter. In addition, the insertion hole 364 at the second valve seat side end of the sub valve body 362 faces the second small diameter hole 364c and the second valve seat 318f communicating with the first large diameter hole 364b and the second small diameter hole It is formed in the shape of a stepped cylinder including a second large diameter hole 364 d having a diameter larger than that of the portion 364 c. The insertion hole 364 is formed to insert the main valve unit 350 in a noncontact manner. Thereby, even if the main valve body unit 350 is slightly vibrated by PWM control, direct transmission of the fine vibration to the sub valve body unit 360 can be avoided.
[First communication passage and second communication passage]
In the present embodiment, the first communication passage 363a, which is a cylindrical passage between the inner peripheral surface of the insertion hole 364 of the sub valve body 362 and the outer peripheral surface of the main valve unit 350, has a first small diameter hole portion. The inner circumferential surface of 364a, the inner circumferential surface of the first large diameter hole 364b, the inner circumferential surface of the second small diameter hole 364c, the inner circumferential surface of the second large diameter hole 364d, and the outer circumferential surface of the main valve unit 350 And a cylindrical passage in the region between them.
Here, in the present embodiment, as shown in FIG. 6, the first valve seat 327 includes a recess 327a, a main valve body valve seat surface 327b, and a sub valve body valve seat surface 327c. The recess 327a is formed in a concave shape, and the other end of the first valve hole 316 is opened at the bottom of the recess. The main valve body valve seat surface 327b is formed around the first valve hole 316 at the bottom of the recess of the recess 327a, and an annular portion with which the peripheral portion of the end of the main valve body 351 on the first valve hole 316 side abuts. It is the seat of The auxiliary valve body valve seat surface 327c is formed around the recess 327a, and the peripheral portion of the end portion of the auxiliary valve body 362 on the first valve hole 316 side (that is, the front end 362a2 of the first auxiliary valve portion 362a) is It is an annular seat that contacts. Therefore, the first state where the front end portion 362a2 of the first sub valve portion 362a is separated from the sub valve body valve seat surface 327c and the state immediately after the valve closing (FIGS. 5A and 5B) In the above, the region of the first valve chamber 315 from the first valve seat 327 to the sliding portion 362a1 corresponds to the first region S1 as a back pressure region. On the other hand, in the second state (FIG. 5C) in which the front end portion 362a2 of the first sub valve portion 362a is in contact with the sub valve body valve seat surface 327c, the recess 327a in the first valve seat 327 A region defined by the front end portion 362a2 and an end face of the sliding portion 362a1 on the first valve seat 327 side corresponds to a first region S1 as a back pressure region.
In the first state and the state immediately after the valve closing (FIGS. 5A and 5B), the first region S1 is the inside of the first small diameter hole portion 364a of the first communication passage 363a. The first large diameter hole 364b is in communication with the first large diameter hole 364b through an annular passage formed of a gap between the circumferential surface and the outer peripheral surface of the main valve body 351, and the communication passage 363b1 of the sliding portion 362a1 and the rear end portion The first large diameter hole 364b (first communication passage 363a) is formed via a passage passing through the rear end through hole 363b3 of 362a3 (that is, a passage extending via the outer peripheral surface side of the first sub valve portion 362a). It communicates. In the second state (FIG. 5C), the first region S1 is between the inner circumferential surface of the first small diameter hole 364a of the first communication passage 363a and the outer circumferential surface of the main valve body 351. The second communication passage throttle passage 363b2 of the front end portion 362a2, the communication passage 363b1 of the sliding portion 362a1, and the rear end portion 362a3 communicate with the first large diameter hole portion 364b through an annular passage formed of a gap. It communicates with the first large diameter hole 364b (first communication passage 363a) through the passage passing through the rear end through hole 363b3 (that is, the passage extending through the outer peripheral surface side of the first sub valve portion 362a) Do.
As described above, in the present embodiment, the second communication passage 363 b extending through the outer peripheral surface side of the first sub valve portion 362 a communicates the first region S 1 as the back pressure region and the first communication passage 363 a The second communication passage throttle passage 363b2 of the front end portion 362a2, the communication passage 363b1 of the sliding portion 362a1, and a passage passing through the rear end through hole 363b3 of the rear end portion 362a3.
In the present embodiment, an end of the first communication passage 363a on the first valve hole 316 side (that is, a portion corresponding to the first small diameter hole 364a) is a first communication passage throttle passage 365 surrounding the main valve body 351. (Refer to FIG. 6). Then, in a state where the sub valve body 362 is in contact with the first valve seat 327, the second communication passage 363b has a predetermined minimum passage cross sectional area. In the present embodiment, the minimum passage cross-sectional area of the second communication passage 363b in this contact state is defined by the passage cross-sectional area of the second communication passage throttle passage 363b2. The minimum passage cross-sectional area of the second communication passage 363b in this contact state is set, for example, to be larger than the passage cross-sectional area of the first communication passage throttle passage 365.
Further, in the present embodiment, in the state where the sub valve body 362 is separated from the first valve seat 327, the minimum passage sectional area of the second communication passage 363b (in other words, the minimum passage of the second communication passage 363b in the separated state) The cross-sectional area is set larger than the minimum passage cross-sectional area of the first communication passage 363a (in the present embodiment, the passage cross-sectional area of the first communication passage throttle passage 365). The minimum passage cross-sectional area of the second communication passage 363b in this separated state is, for example, substantially defined by the passage cross-sectional area of the communication passage 363b1 of the second communication passage 363b.
[Receiving surface and guide part]
In the present embodiment, the sub valve body 362 is a receiving surface 366 with which the refrigerant flowing into the first communication path 363 a via the second valve hole 320 collides, and the dynamic pressure in the direction approaching the first valve seat 327 Receiving surface 366.
Specifically, in the present embodiment, the receiving surface 366 includes a first receiving surface 366a, a second receiving surface 366b, and a third receiving surface 366c.
The first receiving surface 366a is formed by an annular end face connecting the first large diameter hole 364b and the first small diameter hole 364a, and is provided in the first sub valve 362a. The second receiving surface 366b is formed by an annular end face that connects the second large diameter hole 364d and the second small diameter hole 364c, and is provided in the second sub valve 362b. The third receiving surface 366c is configured by an end exposed to the second region S2 in the sliding portion 362a1.
Further, in the present embodiment, as described above, the main valve body unit 350 (specifically, the second rod 353) has the first guiding portion 353c and the second guiding portion 353d. The first guide portion 353c is disposed in the first large diameter hole portion 364b, and has a conical outer peripheral surface that gradually expands in diameter toward the main valve body 351 side. The first guiding portion 353 c guides the refrigerant flowing into the portion corresponding to the first large diameter hole portion 364 b of the first communication passage 363 a via the second valve hole 320 toward the first receiving surface 366 a. The second guide portion 353d is disposed in the second large diameter hole portion 364d and provided between the small diameter portion 353b and the large diameter portion 353a, and is a cone which gradually expands in diameter toward the second valve hole 320 side. It has an outer peripheral surface of The second guiding portion 353 d guides the refrigerant flowing into the portion of the first communication passage 363 a corresponding to the second large diameter hole portion 364 d via the first valve hole 316 toward the second valve hole 320.
[Refrigerant flow path]
Next, the refrigerant flow path in each operating state of the sub valve body unit 360 will be described in detail with reference to FIG.
Immediately after the first valve hole 316 is opened in the second state shown in FIG. 5C, the first region divided by the recess 327a and the end face of the front end portion 362a2 on the first valve seat 327 side The refrigerant flowing into the S1 from the first valve hole 316 flows into the first large diameter hole 364b via the first communication passage throttle passage 365 of the first communication passage 363a, and the refrigerant in the second communication passage 363b It flows into the radially outer region of the front end portion 362a2 through the second communication passage throttle passage 363b2. Then, due to the throttling effect of the first communication passage throttle passage 365 and the second communication passage throttle passage 363 b 2, the back pressure Pm in the first region S 1 rises quickly, and the sub valve body 362 is removed from the first valve seat 327 Separated and then abut on the second valve seat 318f (first state).
In the first state shown in FIG. 5A, the refrigerant passing through the communication passage 363b1 and the rear end through hole 363b3 is the refrigerant passing through the first communication passage throttle passage 365 in the first large diameter hole portion 364b. Merge with. The refrigerant having flowed into the first large diameter hole 364 b is between the inner circumferential surface of the second small diameter hole 364 c and the inner circumferential surface of the second large diameter hole 364 d and the outer circumferential surface of the main valve body unit 350. The crank chamber 140 is supplied via the cylindrical passage (the first communication passage 363a), the second valve hole 320, the communication space 319, and the second port 323. At this time, the refrigerant flowing into the second large diameter hole 364 d flows along the outer peripheral surface of the second guide portion 353 d and is efficiently guided to the second valve hole 320.
In the state immediately after the closing of the first valve hole 316 shown in FIG. 5B, the refrigerant flows back toward the first valve chamber 315 via the second valve hole 320 and the first communication passage 363a. Specifically, the refrigerant is a cylindrical passage formed of a region between the inner peripheral surface of the second large diameter hole portion 364 d and the inner peripheral surface of the second small diameter hole portion 364 c and the outer peripheral surface of the main valve body unit 350 ( It flows backward through the first communication passage 363a) and is led into the first large diameter hole 364b. At the time of the reverse flow, the refrigerant is guided toward the second receiving surface 366b by the outer peripheral surface of the large diameter portion 353a of the second rod 353 in the second valve hole 320, and collides with the second receiving surface 366b. In the large diameter hole portion 364b, it is guided toward the first receiving surface 366a by the first guide portion 353c and collides with the first receiving surface 366a. Then, most of the refrigerant in the first large diameter hole 364b flows into the second region S2 through the rear end through hole 363b3 and collides with the third receiving surface 366c, and the communication passage 363b1, the first region The air is discharged into the suction chamber 141 via the S 1 and the back pressure relief throttle passage 325. As a result, the sub valve body 362 is pressed by the backflowing refrigerant flow, moves toward the first valve seat 327, contacts the first valve seat 327, and switches to the second state shown in FIG. 5C. .
In the second state shown in FIG. 5C, since the second sub valve portion 362b is separated from the second valve seat 318f, the second valve hole 320 communicates with the second valve chamber 328. Therefore, the refrigerant flowing from the second valve hole 320 is discharged to the suction chamber 141 via the second valve chamber 328 and the discharge internal passage 326 (discharge holes 318c, 314a, third port 324).
According to the variable displacement compressor 100 according to the present embodiment, the control valve 300 controls the degree of opening of the supply passage 145 that supplies the refrigerant in the discharge chamber 142 to the crank chamber 140, and also between the crank chamber 140 and the suction chamber 141. The opening degree of the discharge passage 146 to be connected is controlled. In the control valve 300, the communication passage 363 for connecting the first valve hole 316 and the second valve hole 320 is an insertion hole of the sub valve body 362 of the sub valve unit 360 that controls the opening degree of the discharge passage 146. A first area as a back pressure area that extends via the cylindrical first communication passage 363a between the inner peripheral surface of 364 and the outer peripheral surface of the main valve unit 350 and the outer peripheral surface side of the first sub valve portion 362a A second communication passage 363 b is provided that communicates S 1 with the first communication passage 363 a. That is, the end on the back pressure region side of the communication passage 363 for communicating the first valve hole 316 and the second valve hole 320 is branched into two paths. Therefore, even when the end on the back pressure region side of the first communication passage 363a functions as the first communication passage throttle passage 365 as in the present embodiment, the main valve body unit 350 is opened. Since the refrigerant can be supplied from the discharge chamber 142 to the crank chamber 140 through the second communication passage 363b in addition to the first communication passage throttle passage 365, a sufficient amount of refrigerant is supplied to the crank chamber 140 . As a result, the pressure in the crank chamber 140 is quickly boosted, and the discharge displacement can be smoothly (rapidly) reduced. As a result, the discharge displacement can be stably controlled.
In this manner, it is possible to provide the variable displacement compressor 100 capable of rapidly increasing the pressure in the crank chamber 140 (in other words, preventing a delay in the pressure increase in the crank chamber 140).
In the present embodiment, a back pressure relief throttle passage 325 communicating between the suction chamber 141 and the first region S1 as a back pressure region is formed in the valve body 311. As a result, after the first valve hole 316 is closed by the main valve body 351 (the state of FIG. 5B), the back pressure Pm is rapidly reduced, and the second valve hole 320 and the first communication passage 363a are passed. Thus, it is possible to easily generate a refrigerant flow that flows back toward the first valve chamber 315 side.
In the present embodiment, the end on the first valve hole 316 side of the first communication passage 363 a constitutes a first communication passage throttle passage 365 surrounding the main valve body 351, and the sub valve body 362 serves as the first valve seat 327. In the abutting state, the second communication passage 363 b has a predetermined minimum passage cross-sectional area. Specifically, the first communication passage throttle passage 365 is provided at the end of the first communication passage 363a on the first valve hole 316 side, and the second communication passage 363b at the end on the first valve hole 316 side is the second link. Passage throttle passage 363 b 2 was provided. Thus, immediately after the main valve body 351 opens the first valve hole 316 in the second state shown in FIG. 5C, the first communication passage throttle passage 365 and the second communication passage throttle passage 363 b 2 By the throttling effect, the back pressure Pm in the first region S1 can be quickly increased, and the sub valve body 362 can be smoothly separated from the first valve seat 327.
In the present embodiment, the minimum passage cross-sectional area of the second communication passage 363b in the contact state (the state in which the sub valve body 362 contacts the first valve seat 327, for example, the second state in FIG. 5C). Is set larger than the passage cross-sectional area of the first communication passage throttle passage 365. Thereby, in the contact state, the first communication passage throttle passage 365 becomes the throttle portion of the entire communication passage 363, and the refrigerant flow linearly flowing from the first valve hole 316 toward the sub valve body 362 is the first connection. Passage throttle passage 365 effectively squeezes. As a result, immediately after the main valve body 351 opens the first valve hole 316, the back pressure Pm in the first region S1 can be raised more quickly.
In this embodiment, the minimum passage cross-sectional area of the second communication passage 363b in the separated state (the state in which the sub valve body 362 is separated from the first valve seat 327, for example, the first state in FIG. 5A). Is set larger than the minimum passage cross-sectional area of the first communication passage 363a (in the present embodiment, the passage cross-sectional area of the first communication passage throttle passage 365). Thus, the main passage of the entire communication passage 363 in the separated state (the first state in FIG. 5A) can be secured by the second communication passage 363 b, so the passage of the first communication passage throttle passage 365 The cross sectional area can be set smaller. Therefore, the throttling effect of the first communication passage throttle passage 365 immediately after the main valve body 351 opens the first valve hole 316 in the contact state (the second state of FIG. 5C) is more effective. Can be enhanced. As a result, immediately after the main valve body 351 opens the first valve hole 316 in the contact state (the second state in FIG. 5C), the back pressure Pm in the first region S1 can be made faster. The secondary valve body 362 can be smoothly separated from the first valve seat 327 by raising it, and in the separated state (FIG. 5A), the refrigerant is discharged from the discharge chamber 142 through the second communication passage 363b. The crank chamber 140 can be appropriately supplied.
In the present embodiment, the first valve seat 327 is a recess 327a formed in a concave shape, and the recess 327a in which the other end of the first valve hole 316 is opened in the recess bottom and the recess bottom of the recess 327a The main valve body valve seat surface 327b formed around the first valve hole 316 and the sub valve body valve seat surface 327c formed around the recess 327a. Thus, in the second state shown in FIG. 5C, a region defined by the concave portion 327a of the first valve seat 327, the front end portion 362a2, and the end face of the sliding portion 362a1 on the first valve seat 327 side. The back pressure area (first area S1) can be formed. That is, the main valve body 351 abuts on the first valve seat 327 (more specifically, the main valve body valve seat surface 327b), and the sub valve body 362 is the first valve seat 327 (more specifically, the sub valve body valve seat surface A back pressure region (first region S1) can be formed between the sub valve body 362 and the main valve body valve seat surface 327 b in a state of being in contact with the 327 c). As a result, immediately after the peripheral portion on the first valve hole 316 side of the main valve body 351 is separated from the main valve body valve seat surface 327b in the second state shown in FIG. The back pressure Pm can be more rapidly raised by flowing into the back pressure region through the space between the peripheral portion 351 and the main valve body valve seat surface 327 b.
In the present embodiment, the sub valve body 362 is a receiving surface 366 with which the refrigerant flowing into the first communication passage 363 a via the second valve hole 320 collides, and the dynamic pressure in the direction approaching the first valve seat 327 Receiving surface 366. Thus, the dynamic pressure can be effectively received by the receiving surface 366 by the backflowing refrigerant flow, so that the sub valve body 362 can be smoothly moved toward the first valve seat 327. As a result, for example, even if the reduction of the back pressure Pm in the back pressure region (the first region S1) is insufficient, the sub valve body 362 is controlled from the first state (FIG. 5A) to the second state. In order to move it to the state (FIG. 5C), the sub valve body 362 is moved in the direction approaching the first valve seat 327 by the dynamic pressure acting on the receiving surface 366 without providing biasing means such as a spring. It can be done. Therefore, the pressure in the crank chamber 140 can be rapidly reduced (in other words, the delay in the pressure release of the crank chamber 140 can be prevented).
In the present embodiment, the receiving surface 366 includes a first receiving surface 366a, a second receiving surface 366b, and a third receiving surface 366c. The first receiving surface 366a is provided in the first sub-valve portion 362a, the second receiving surface 366b is provided in the second sub-valve portion 362b, and the third receiving surface 366c is a second region in the sliding portion 362a1. It comprises the end exposed to S2. Thus, the dynamic pressure due to the backflow of refrigerant can be reliably received by the second receiving surface 366b and the first receiving surface 366a in the first communication passage 363a, and the third communication passage 363b The receiving surface 366c can reliably receive pressure.
In the present embodiment, the main valve body unit 350 directs the refrigerant that has flowed into the portion of the first communication passage 363a corresponding to the first large diameter hole portion 364b via the second valve hole 320 toward the first receiving surface 366a. It has the 1st guidance part 353c which guides. Thereby, the dynamic pressure can be received more efficiently at the first receiving surface 366a.
In the present embodiment, the case 318 is fitted in the fitting hole 314 of the valve body 311, and the valve body 311 (specifically, the forming wall of the first valve chamber 315) cooperates with the case 318 to accommodate the valve. Although the chamber 321 is formed, the present invention is not limited to this. For example, the configurations of the first modification shown in FIG. 7 and the second modification shown in FIG. 8 can be adopted.
Specifically, in the first modification of control valve 300 shown in FIG. 7, case 318 is not provided. In the first modified example, a peripheral wall 316c fitted in the fitting hole 314 integrally with the partition member 361 extends toward the second valve hole 320, and a discharge hole 318c is opened in the peripheral wall 316c. The large diameter portion 342b of the fixed core 342 has a protrusion 342b1 protruding toward the first valve hole 316, and the end of the protrusion 342b1 is a second port in the fitting portion of the fitting hole 314. It is located in the predetermined position by the side of the 1st valve hole 316 from the opening position of H.323. The other end of the second valve hole 320 is opened at the center of the protrusion 342b1. Further, instead of the communication space portion 319, a communication passage 319 'communicating the one end of the second valve hole 320 and the second port 323 is formed in the inside of the projecting portion 342b1.
In the first modification, the large diameter portion 342b (projecting portion 342b1) of the fixed core 342 is fitted in the fitting hole 314, the protrusion 342b1 of the large diameter portion 342b on the first valve hole 316 side The end face abuts the end of the peripheral wall 316c. As a result, the valve accommodating chamber 321 is formed by the end face of the large diameter portion 342 b (projecting portion 342 b 1) of the fixed core 342, the inner peripheral surface of the peripheral wall 316 c and the inner peripheral surface of the forming wall of the first valve chamber 315 of the valve body 311. It is formed. And the annular part around the 2nd valve hole 320 in the above-mentioned end face of projection part 342b1 constitutes the 2nd valve seat 318f.
In other words, in the first modification, the valve body 311 forms the valve storage chamber 321 in cooperation with the peripheral wall 316 c of the dividing member 361 and the large diameter portion 342 b (more specifically, the protruding portion 342 b 1) of the fixed core 342. .
In the first modification, the second valve seat 318f can be formed using the end surface of the large diameter portion 342b of the fixed core 342 (specifically, the end surface of the protrusion 342b1). Further, by integrally forming a member (peripheral wall 316 c) corresponding to the peripheral wall 318 a of the case 318 with the partitioning member 361, the valve structure can be simplified.
Also in the second modification of control valve 300 shown in FIG. 8, case 318 is not provided. In the second modified example, a first valve chamber 315, a first valve hole 316 and an insertion hole 317 are formed in the valve body 311 sequentially from the other end surface (end surface on the solenoid unit 340 side) 311b side. The large diameter portion 342 b of the fixed core 342 is fitted in a fitting hole 341 d formed in the end wall portion 341 b of the solenoid housing 341. The large diameter portion 342 b of the fixed core 342 has a protruding portion 342 b 1 that protrudes toward the first valve hole 316. The protrusion 342b1 has, in order from the valve body 311 side, a first fitting hole 342b11, a second fitting hole 342b12 having a diameter smaller than that of the first fitting hole 342b11, and a cylindrical shape having a diameter smaller than that of the second fitting hole. A cylindrical space 342 b 13 is formed. A predetermined range on the other end surface 311b side of the valve body 311 is fitted into the first fitting hole 342b11, and the partitioning member 361 is fitted and positioned in the second fitting hole 342b12.
In the second modified example, the second sub valve portion 362 b is disposed in the cylindrical space portion 342 b 13. The third port 324 penetrates the peripheral wall of the protrusion 342b1 and opens in the cylindrical space 342b13, and the other end of the second valve hole 320 is open at the center of the bottom of the cylindrical space 342b13. ing. The second port 323 penetrates the peripheral wall of the protrusion 342 b 1 and is connected to the second valve hole 320. And the annular | circular shaped site | part around the 2nd valve hole 320 in the said bottom face of cylindrical space part 342b13 of protrusion part 342b1 comprises the 2nd valve seat 318f. Therefore, in the second modification, the second valve chamber 328 is formed of the cylindrical space 342b13, and the valve housing 321 is the inner circumferential surface of the cylindrical space 342b13 in the valve body 311 and the inner circumferential surface of the first fitting hole 342b11. And the inner peripheral surface of the forming wall of the first valve chamber 315 of the valve body 311.
In other words, in the second modified example, the valve body 311 forms the valve storage chamber 321 in cooperation with the large diameter portion 342 b (more specifically, the protrusion 342 b 1) of the fixed core 342.
Further, in the second modification, the valve housing 310, the solenoid housing 341, and the projecting portion 342b1 of the large diameter portion 342b of the fixed core 342 are control valves having an outer peripheral surface extending in one direction by fitting each other. It constitutes a housing. In the second modification, the control valve housing (310, 341, 342b1) corresponds to the "housing" according to the present invention.
In the second modification, the valve storage chamber 321 can be formed without providing the case 318, so the number of parts can be reduced. Further, the discharge internal passage 326 communicating between the pressure area of the suction chamber 141 and the valve storage chamber 321 can be formed with a simple structure by only the third port 324.
Moreover, in the present embodiment, the second communication passage throttle passage 363b2 is provided at the front end portion 362a2 of the first sub valve portion 362a, but the second communication passage throttle passage 363b2 may not be provided. In this case, when the sub valve body 362 abuts on the first valve seat 327, the second communication passage 363 b is closed. Thus, for example, in the second state shown in FIG. 5C, the back pressure region (in the state immediately after the peripheral portion on the first valve hole 316 side of the main valve body 351 is separated from the main valve body valve seat surface 327b The back pressure Pm in the first region S1) can be raised more quickly.
In the present embodiment, the pressure-sensitive device 330 operates in response to the pressure Ps in the suction chamber 141. However, the present invention is not limited to this, and is configured to operate in response to an appropriate external pressure. It is also good.
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and changes are possible based on the technical idea of the present invention.
 100…可変容量圧縮機、101a…シリンダボア(圧縮部)、136…ピストン(圧縮部)、140…クランク室(制御圧室)、141…吸入室、142…吐出室、145…供給通路、146…排出通路、300…制御弁、310…バルブハウジング(ハウジング)、316…第1弁孔、320…第2弁孔、321…弁収容室、325…背圧逃し用絞り通路、326…排出内部通路、327…第1弁座、327a…凹部、327b…主弁体用弁座面、327c…副弁体用弁座面、330…感圧装置、341…ソレノイドハウジング(ハウジング)、342b1…突出部(ハウジング)、340…ソレノイドユニット、350…主弁体ユニット、351…主弁体、353c…第1案内部、360…副弁体ユニット、362a…第1副弁部、362…副弁体、363…連通路、363a…第1連通路、363b…第2連通路、364…挿通孔、364a…第1小径孔部、364b…第1大径孔部、364c…第2小径孔部、364d…第2大径孔部、365…第1連通路用絞り通路、366…受け面、366a…第1受け面、366b…第2受け面、S1…第1領域(背圧領域) 100: variable displacement compressor, 101a: cylinder bore (compression unit), 136: piston (compression unit), 140: crank chamber (control pressure chamber), 141: suction chamber, 142: discharge chamber, 145: supply passage, 146: ... Discharge passage 300: control valve 310: valve housing (housing) 316: first valve hole 320: second valve hole 321: valve storage chamber 325: back pressure relief throttle passage 326: discharge internal passage 327: first valve seat, 327a: recessed portion, 327b: valve seat surface for main valve body, 327c: valve seat surface for secondary valve body, 330: pressure-sensitive device, 341: solenoid housing (housing), 342b1: projecting portion (Housing), 340: Solenoid unit, 350: Main valve body unit, 351: Main valve body, 353c: First guide portion, 360: Secondary valve body unit, 362a: First secondary valve portion, 62 secondary valve body 363 communication passage 363a first communication passage 363b second communication passage 364 insertion hole 364a first small diameter hole portion 364b first large diameter hole portion 364c first 2 Small diameter hole portion, 364d: Second large diameter hole portion, 365: Throttling passage for the first communication passage, 366: Receiving surface, 366a: First receiving surface, 366b: Second receiving surface, S1: First region (back Pressure area)

Claims (12)

  1.  圧縮前の冷媒が導かれる吸入室、前記吸入室内の冷媒を圧縮する圧縮部、前記圧縮部によって圧縮された圧縮後の冷媒が吐出される吐出室、内部圧力に応じて前記圧縮部の状態を変化させて吐出容量を変化させる制御圧室、及び、前記吐出室内の冷媒を前記制御圧室に供給する供給通路の開度を制御すると共に前記制御圧室と前記吸入室との間を接続する排出通路の開度を制御する制御弁を有する可変容量圧縮機であって、
     前記制御弁は、
     一方向に延伸し外周面を有するハウジングであって、弁収容室、一端が前記吐出室の圧力領域に接続し他端が前記弁収容室に開口する第1弁孔、一端が前記制御圧室の圧力領域に接続し他端が前記弁収容室に開口する第2弁孔、及び、一端が前記吸入室の圧力領域に接続し他端が前記弁収容室に開口する排出内部通路を有するハウジングと、
     前記弁収容室内に設けられ前後差圧に応じて作動し、前記第1弁孔と前記第2弁孔とを連通させる第1の状態と、前記第2弁孔と前記排出内部通路とを連通させる第2の状態とに切り替わることにより前記排出通路の開度を制御する副弁体ユニットと、
     前記副弁体ユニットの一端から他端に亘って貫通するように延設され、前記第1弁孔の周囲の第1弁座に離接して前記第1弁孔を開閉する主弁体を有する円柱状の主弁体ユニットと、
     前記主弁体ユニットに前記第1弁孔の閉弁方向の付勢力を作用させるソレノイドユニットと、
     外部圧力に応答して前記主弁体ユニットに前記第1弁孔の開弁方向の付勢力を作用させる感圧装置と、
     を含み、
     前記副弁体ユニットは、
     前記主弁体の外周を囲み且つ前記第1弁座に対向するように配置されると共に前記弁収容室の内周面に摺接する外周面を有する第1副弁部を含む副弁体であって、前記主弁体ユニットの挿通用の挿通孔が形成された副弁体と、
     前記第1弁孔と前記第2弁孔とを連通させるための連通路と、
     を含み、
     前記副弁体は、前記主弁体が前記第1弁座から離間して前記第1弁座と前記第1副弁部との間の背圧領域の圧力が上昇した場合に、前記連通路を介して前記第1弁孔と前記第2弁孔とを連通させると共に前記第2弁孔と前記排出内部通路との連通を遮断し、前記主弁体が前記第1弁座に当接して前記背圧領域の圧力が低下した場合に、前記第1弁孔と前記第2弁孔との連通を遮断すると共に前記第2弁孔と前記排出内部通路とを連通するように移動する構成とし、
     前記連通路は、前記副弁体の前記挿通孔の内周面と前記主弁体ユニットの外周面との間の円筒状の第1連通路と、前記第1副弁部の外周面側を経由して延び前記背圧領域と前記第1連通路とを連通する第2連通路とを含む、可変容量圧縮機。
    According to the internal pressure, a suction chamber into which the refrigerant before compression is introduced, a compression unit for compressing the refrigerant in the suction chamber, a discharge chamber for discharging the refrigerant after compression compressed by the compression unit, and the internal pressure A control pressure chamber that changes a discharge capacity by changing it, and controls an opening degree of a supply passage that supplies the refrigerant in the discharge chamber to the control pressure chamber, and connects between the control pressure chamber and the suction chamber. A variable displacement compressor having a control valve for controlling the opening degree of a discharge passage, comprising:
    The control valve is
    A housing extending in one direction and having an outer peripheral surface, the valve storage chamber, a first valve hole having one end connected to the pressure area of the discharge chamber and the other end opening to the valve storage chamber, and one end the control pressure chamber A second valve hole connected to the pressure region of the valve and the other end opening to the valve chamber, and a discharge internal passage having one end connected to the pressure region of the suction chamber and the other end opening to the valve chamber When,
    A first state is provided in the valve storage chamber and operates according to the back and forth differential pressure to communicate the first valve hole and the second valve hole, and communicates the second valve hole and the discharge internal passage. A sub valve body unit that controls the opening degree of the discharge passage by switching to a second state;
    The sub valve body unit has a main valve body extending from one end to the other end of the sub valve body unit and opening and closing the first valve hole by coming into contact with the first valve seat around the first valve hole. A cylindrical main valve unit,
    A solenoid unit that applies an urging force in a valve closing direction of the first valve hole to the main valve body unit;
    A pressure-sensitive device that applies an urging force in the valve opening direction of the first valve hole to the main valve body unit in response to an external pressure;
    Including
    The sub valve unit is
    The sub valve body includes a first sub valve portion disposed so as to surround the outer periphery of the main valve body and to be opposed to the first valve seat and has an outer peripheral surface in sliding contact with the inner peripheral surface of the valve storage chamber. And an auxiliary valve body in which an insertion hole for insertion of the main valve body unit is formed;
    A communication passage for connecting the first valve hole and the second valve hole;
    Including
    In the sub valve body, when the main valve body is separated from the first valve seat and the pressure in the back pressure region between the first valve seat and the first sub valve portion is increased, the communication passage Communication between the first valve hole and the second valve hole and blocking communication between the second valve hole and the discharge internal passage, and the main valve body abuts on the first valve seat When the pressure in the back pressure region decreases, the communication between the first valve hole and the second valve hole is shut off, and the second valve hole is moved so as to communicate with the discharge internal passage. ,
    The communication passage is a cylindrical first communication passage between the inner peripheral surface of the insertion hole of the sub valve body and the outer peripheral surface of the main valve body unit, and the outer peripheral surface side of the first sub valve portion. A variable displacement compressor, comprising: a second communication passage extending therethrough and communicating the back pressure region with the first communication passage.
  2.  前記ハウジングには、一端が前記ハウジングの前記外周面に開口して前記吸入室の圧力領域に接続し、他端が前記背圧領域に開口する背圧逃し用絞り通路が形成される、請求項1に記載の可変容量圧縮機。 The housing is formed with a back pressure throttling passage having one end opened to the outer peripheral surface of the housing and connected to the pressure area of the suction chamber and the other end opened to the back pressure area. The variable displacement compressor according to 1.
  3.  前記第1弁孔の前記他端が前記弁収容室の一端壁に開口され、前記第2弁孔の前記他端が前記弁収容室の他端壁に開口され、前記排出内部通路の前記他端が前記弁収容室の内周面に開口され、
     前記副弁体ユニットは、前記第1の状態では、前記副弁体が前記第1弁座から離間すると共に前記第2弁孔の周囲の第2弁座に当接し、前記第2の状態では、前記副弁体が前記第1弁座に当接すると共に前記第2弁座から離間するように作動する、請求項1又は2に記載の可変容量圧縮機。
    The other end of the first valve hole is opened to one end wall of the valve storage chamber, the other end of the second valve hole is opened to the other end wall of the valve storage chamber, and the other of the discharge internal passage The end is opened to the inner peripheral surface of the valve storage chamber,
    In the first state, the auxiliary valve body unit separates the auxiliary valve body from the first valve seat and abuts on a second valve seat around the second valve hole, and in the second state The variable displacement compressor according to claim 1, wherein the auxiliary valve body is operated to abut the first valve seat and to be separated from the second valve seat.
  4.  前記副弁体が前記第1弁座と離間している状態において、前記第2連通路の最小通路断面積は、前記第1連通路の最小通路断面積より大きく設定されている、請求項1~3のいずれか一つに記載の可変容量圧縮機。 The minimum passage cross-sectional area of the second communication passage is set larger than the minimum passage cross-sectional area of the first communication passage in a state where the sub valve body is separated from the first valve seat. The variable displacement compressor according to any one of ~ 3.
  5.  前記第1連通路の前記第1弁孔側の端部は前記主弁体を囲む第1連通路用絞り通路を構成し、
     前記副弁体が前記第1弁座に当接したとき、前記第2連通路は閉鎖される、請求項3に記載の可変容量圧縮機。
    An end of the first communication passage on the first valve hole side constitutes a first communication passage throttle passage surrounding the main valve body,
    The variable displacement compressor according to claim 3, wherein the second communication passage is closed when the sub valve body abuts on the first valve seat.
  6.  前記第1連通路の前記第1弁孔側の端部は前記主弁体を囲む第1連通路用絞り通路を構成し、
     前記副弁体が前記第1弁座に当接した状態において、前記第2連通路は所定の最小通路断面積を有する、請求項3に記載の可変容量圧縮機。
    An end of the first communication passage on the first valve hole side constitutes a first communication passage throttle passage surrounding the main valve body,
    The variable displacement compressor according to claim 3, wherein the second communication passage has a predetermined minimum passage cross-sectional area in a state where the sub valve body abuts on the first valve seat.
  7.  前記第1弁座は、
     凹状に形成される凹部であって、その凹部底面に前記第1弁孔の前記他端が開口される凹部と、
     前記凹部の前記凹部底面における前記第1弁孔の周囲に形成され、前記主弁体の前記第1弁孔側の端部の周縁部が当接する円環状の主弁体用弁座面と、
     前記凹部の周囲に形成され、前記副弁体の前記第1弁孔側の端部の周縁部が当接する円環状の副弁体用弁座面と、
     を含む、請求項3~6のいずれか一つに記載の可変容量圧縮機。
    The first valve seat is
    A concave portion formed in a concave shape, wherein the other end of the first valve hole is opened on the bottom surface of the concave portion;
    An annular main valve body valve seat surface which is formed around the first valve hole in the concave portion bottom surface of the concave portion and in contact with the peripheral edge portion of the end portion on the first valve hole side of the main valve body;
    An annular auxiliary valve body seat surface formed around the recess and in contact with a peripheral edge portion of an end portion of the auxiliary valve body on the first valve hole side;
    7. The variable displacement compressor according to any one of claims 3 to 6, comprising
  8.  前記副弁体は、前記第2弁孔を介して前記第1連通路に流入した冷媒が衝突する受け面であって、前記第1弁座に近づく方向に向かう動圧を受ける受け面を有する、請求項3~7のいずれか一つに記載の可変容量圧縮機。 The sub valve body is a receiving surface on which the refrigerant flowing into the first communication passage via the second valve hole collides, and has a receiving surface receiving dynamic pressure in a direction approaching the first valve seat The variable displacement compressor according to any one of claims 3 to 7.
  9.  前記副弁体の第1弁座側端部である前記第1副弁部における前記挿通孔は、前記主弁体が挿通される第1小径孔部と前記第1小径孔部より大径の第1大径孔部とからなる段付き円柱状に形成され、
     前記受け面は、前記第1大径孔部と前記第1小径孔部との間を接続する円環状の第1受け面を含む、請求項8に記載の可変容量圧縮機。
    The insertion hole in the first sub valve portion, which is the first valve seat side end portion of the sub valve body, has a diameter larger than the first small diameter hole portion through which the main valve body is inserted and the first small diameter hole portion It is formed in a stepped cylindrical shape consisting of a first large diameter hole,
    The variable displacement compressor according to claim 8, wherein the receiving surface includes an annular first receiving surface connecting between the first large diameter hole and the first small diameter hole.
  10.  前記主弁体ユニットは、前記第2弁孔を介して前記第1連通路の前記第1大径孔部に対応する部分に流入した冷媒を前記第1受け面に向けて案内する第1案内部を有する、請求項9に記載の可変容量圧縮機。 The main valve body unit is a first guide for guiding the refrigerant, which has flowed into a portion corresponding to the first large diameter hole portion of the first communication passage via the second valve hole, toward the first receiving surface. The variable displacement compressor according to claim 9, comprising:
  11.  前記副弁体の第2弁座側端部における前記挿通孔は、前記第1大径孔部に連通する第2小径孔部と前記第2弁座に面すると共に前記第2小径孔部より大径の第2大径孔部とからなる段付き円柱状に形成され、
     前記受け面は、前記第2大径孔部と前記第2小径孔部との間を接続する円環状の第2受け面を含む、請求項8~10のいずれか一つに記載の可変容量圧縮機。
    The insertion hole at the second valve seat side end of the sub valve body faces the second small diameter hole communicating with the first large diameter hole and the second valve seat, and the second small diameter hole from the second small diameter hole Stepped cylindrical shape with large diameter second large diameter hole,
    The variable capacity according to any one of claims 8 to 10, wherein the receiving surface includes an annular second receiving surface connecting between the second large diameter hole and the second small diameter hole. Compressor.
  12.  前記外部圧力が前記吸入室の圧力である、請求項1~11のいずれか一つに記載の可変容量圧縮機。 12. The variable displacement compressor according to any one of claims 1 to 11, wherein the external pressure is a pressure of the suction chamber.
PCT/JP2018/019428 2017-06-19 2018-05-15 Variable capacity compressor WO2018235483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119982A JP2019002384A (en) 2017-06-19 2017-06-19 Variable displacement compressor
JP2017-119982 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018235483A1 true WO2018235483A1 (en) 2018-12-27

Family

ID=64737234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019428 WO2018235483A1 (en) 2017-06-19 2018-05-15 Variable capacity compressor

Country Status (2)

Country Link
JP (1) JP2019002384A (en)
WO (1) WO2018235483A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384695B (en) 2018-07-12 2022-12-06 伊格尔工业股份有限公司 Capacity control valve
US11994120B2 (en) 2018-07-12 2024-05-28 Eagle Industry Co., Ltd. Capacity control valve
CN112384696B (en) 2018-07-12 2022-05-03 伊格尔工业股份有限公司 Capacity control valve
EP3822485B1 (en) 2018-07-13 2024-04-10 Eagle Industry Co., Ltd. Capacity control valve
CN112513461B (en) 2018-08-08 2022-12-23 伊格尔工业股份有限公司 Capacity control valve
WO2020032088A1 (en) 2018-08-08 2020-02-13 イーグル工業株式会社 Capacity control valve
JP7387237B2 (en) 2018-08-08 2023-11-28 イーグル工業株式会社 capacity control valve
CN112955684B (en) * 2018-11-07 2023-05-16 伊格尔工业股份有限公司 Capacity control valve
JP7326329B2 (en) 2018-12-04 2023-08-15 イーグル工業株式会社 capacity control valve
EP3933197A4 (en) 2019-03-01 2022-11-30 Eagle Industry Co., Ltd. Capacity control valve
WO2020204131A1 (en) 2019-04-03 2020-10-08 イーグル工業株式会社 Capacity control valve
KR20210142187A (en) * 2019-04-03 2021-11-24 이구루코교 가부시기가이샤 capacity control valve
KR20220159471A (en) 2020-04-23 2022-12-02 이구루코교 가부시기가이샤 capacity control valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346843A (en) * 1993-06-11 1994-12-20 Toyota Autom Loom Works Ltd Clutchless one-sided piston type variable displacement compressor and its displacement control method
JP2002021721A (en) * 2000-07-07 2002-01-23 Toyota Industries Corp Capacity control mechanism for variable displacement compressor
JP2004346880A (en) * 2003-05-23 2004-12-09 Toyota Industries Corp Displacement control mechanism of variable displacement compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346843A (en) * 1993-06-11 1994-12-20 Toyota Autom Loom Works Ltd Clutchless one-sided piston type variable displacement compressor and its displacement control method
JP2002021721A (en) * 2000-07-07 2002-01-23 Toyota Industries Corp Capacity control mechanism for variable displacement compressor
JP2004346880A (en) * 2003-05-23 2004-12-09 Toyota Industries Corp Displacement control mechanism of variable displacement compressor

Also Published As

Publication number Publication date
JP2019002384A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2018235483A1 (en) Variable capacity compressor
US11873805B2 (en) Capacity control valve
JPWO2019167912A1 (en) Capacity control valve
JP4100254B2 (en) Capacity control mechanism of variable capacity compressor
EP3754190B1 (en) Capacity control valve
US8439652B2 (en) Suction throttle valve for variable displacement type compressor
JPWO2020013154A1 (en) Capacity control valve
CN109154285B (en) Variable displacement compressor
JP2020034130A (en) Compressor
CN113661324B (en) Capacity control valve
CN111699320B (en) Variable displacement compressor
JP7423169B2 (en) capacity control valve
WO2019139132A1 (en) Variable capacity compressor
WO2018101094A1 (en) Variable-capacity compressor
US11339773B2 (en) Variable displacement compressor
CN111656011A (en) Capacity control valve for variable capacity compressor
JP7185568B2 (en) variable capacity compressor
JP6871810B2 (en) Variable capacitance compressor control valve
WO2023002887A1 (en) Capacity control valve
WO2022009795A1 (en) Capacity control valve
US20180073499A1 (en) Variable-capacity compressor
WO2024070420A1 (en) Variable displacement compressor
CN113167263B (en) Capacity control valve
KR102112215B1 (en) Variable displacement swash plate type compressor
WO2020026699A1 (en) Variable capacity compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821400

Country of ref document: EP

Kind code of ref document: A1