WO2018235088A1 - Magnification glasses with multiple cameras - Google Patents

Magnification glasses with multiple cameras Download PDF

Info

Publication number
WO2018235088A1
WO2018235088A1 PCT/IL2018/050691 IL2018050691W WO2018235088A1 WO 2018235088 A1 WO2018235088 A1 WO 2018235088A1 IL 2018050691 W IL2018050691 W IL 2018050691W WO 2018235088 A1 WO2018235088 A1 WO 2018235088A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
glasses
processor
view
magnification
Prior art date
Application number
PCT/IL2018/050691
Other languages
French (fr)
Inventor
Itzhak LUXEMBOURG
Original Assignee
Luxembourg Itzhak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxembourg Itzhak filed Critical Luxembourg Itzhak
Priority to US16/625,780 priority Critical patent/US10877262B1/en
Priority to EP18820877.1A priority patent/EP3642662B1/en
Publication of WO2018235088A1 publication Critical patent/WO2018235088A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • G02B25/004Magnifying glasses having binocular arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/462Displaying means of special interest characterised by constructional features of the display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • A61B6/51
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates generally to magnification glasses and more specifically to magnification glasses that comprise multiple cameras each with the same working distance but providing different magnification.
  • loupes are generally swiveled into position in front of the practitioner's eyes when magnification is required and then swiveled away when not required. Achieving different levels of magnification usually requires swapping the loupe lenses.
  • Optical loupes are relatively heavy due to their glass lenses and stick out once in position, occupying between 3- 10cm of space in front of the practitioner's eyes. Further - they are often fixed inside the glasses - permanently obstructing the view and requiring switching of glasses for different magnifications.
  • An alternative to the optical loupe is use of a digital loupe comprising a digital camera that feeds an image to a small screen.
  • the camera/screen combination can be mounted onto a headband or mounted as part of the glass in front of the practitioner's eyes when magnification is required.
  • the image from the digital camera can then be digitally zoomed for greater magnification.
  • the disadvantage of digital zoom is that the quality of the image suffers as the zoom is increased due to the reduced number of pixels in use, and therefore the range of magnification is limited.
  • the use of optical magnification combined with a digital camera is possible but requires the use of auto-focus digital cameras which are more expensive and also heavier than the non-auto-focus equivalents.
  • the background art therefore does not teach or suggest a system for close range magnification glasses using cost-effective digital cameras that can provide an extended range of magnification. It would also be desirable to be able to capture and transmit the view as seen through the magnification device.
  • the presently claimed invention provides wearable glasses featuring variable magnification of close range subjects by using camera array comprising a plurality of cost-effective fixed focus, fixed distance, fixed magnification digital cameras each providing different magnification while maintaining the same working distance.
  • the image captured by the camera array is displayed to the user using viewing assemblies that are one of: screens placed in front of the glasses; or image projection onto the glasses lenses, or a headset comprising viewing screens.
  • the image displayed may be any of: the magnified view captured by the camera array; or virtual reality, or augmented reality; or any of these overlaid with relevant textual or image data.
  • infrared images or images lit with ultraviolet light are provided.
  • the use of multiple fixed focus cameras each providing output images of different magnification for a fixed working distance lowers the cost of implementation, results in a magnification device with a more compact and lighter form factor, and increases the magnification range for digital camera based magnification glasses.
  • the close range fixed working distance is preferably between 10-40cm.
  • Each of the fixed focus cameras in the array has a lens providing different maximum magnification allowing for fast switching between different levels of magnification.
  • a first camera lens provides up to 6X magnification and a second camera lens provides up to 10X magnification.
  • a first camera lens provides up to 5X magnification and a second camera lens provides up to 10X magnification.
  • any combination of cameras is provided for the magnification and working distance required by the particular application.
  • more than two cameras may be provided per array.
  • the images captured by each camera in the array are provided to a processing unit that outputs a selected image from one of the cameras depending on the magnification required.
  • Digital magnification of the output image is preferably provided from the camera with the lowest magnification lens up till the camera with the highest magnification lens with a seamless switch of the output image between the image captured from the first camera and the image captured from the second camera.
  • the captured image is displayed on one or both of the left and right viewing assemblies.
  • the camera array may be duplicated with each array feeding a respective left or right viewing assembly to therefore provide magnified stereoscopic vision.
  • the control of the magnification provided is via any suitable control device including but not limited to a joystick, foot pedal, speech control, switch mounted on the glasses or attached to them or similar.
  • the image captured by the cameras can preferably be saved such as to non-volatile storage or transmitted for display on a local or remote display.
  • the image displayed can preferably be overlaid with relevant textual or image data.
  • the displays can preferably be divided into a bifocal arrangement for display of different views or overlay data on different parts of each display.
  • magnification glasses comprising: a first camera array for capturing a magnified image in the field of view of the glasses comprising at least a first camera and a second camera wherein each of the first camera and the second camera provide different levels of magnification, wherein the first camera and the second camera have the same working distance.
  • the working distance is fixed between 150mm to 400mm.
  • each of the first and second cameras provides a different magnification of between 2X and 10X.
  • the working distance is fixed in a subrange between 150mm to 400mm.
  • the working distance is fixed in a range between 150mm to 400mm.
  • the glasses further comprise a first viewer assembly and a processor, wherein the processor receives a first magnified image captured by the first camera and a second magnified image captured by the second camera and transmits either one of the first image or the second image for display on the first viewer assembly, wherein the processor is a computing device.
  • the processor digitally zooms either one of the first magnified image or the second magnified image before transmission to the first viewer assembly.
  • the first viewer assembly comprises at least one of: a display screen positioned in front of the glasses frame; a display screen mounted in the glasses frame; or a projector for projecting on a lens in the frame.
  • one or more of the cameras comprises an infrared camera.
  • the processor provides for display on the viewer assembly at least one of: the magnified view captured by the camera assembly; a virtual reality view; an augmented reality view; a data view; or an infrared view.
  • the glasses further comprise a second camera array and a second viewer assembly positioned on the same side of the glasses, wherein the first camera array and a first viewer assembly are positioned on the opposite side of the glasses wherein the first and second camera arrays are spaced horizontally apart so as to capture stereoscopic vision, wherein the processor transmits the image from the first camera array to the first viewer assembly and wherein the processor transmits the image from the second camera array to the second viewer assembly.
  • the camera arrays are mounted on the glasses.
  • the camera arrays are mounted on a headband.
  • each camera comprises a lens and an image sensor.
  • the processor is housed inside the frames.
  • the processor is housed in an external enclosure.
  • the glasses further comprise a controller selected from the group consisting of: a joystick, a foot pedal, speech control, and a switch.
  • the glasses further comprise an illumination source.
  • the illumination source comprises an ultraviolet light.
  • electro-optical magnifying glasses comprising: a wearable display; and a first camera array for capturing a magnified image in the field of view of the glasses comprising at least a first camera and a second camera wherein each of the first camera and the second camera provide different levels of magnification, wherein the first camera and the second camera have the same working distance.
  • the working distance is fixed between 150mm to 400mm.
  • each of the first and second cameras provides a different magnification of between 2X and 10X.
  • the glasses further comprise a processor, wherein the processor receives a first magnified image captured by the first camera and a second magnified image captured by the second camera and transmits either one of the first image or the second image for display on the display, wherein the processor is a computing device.
  • the processor digitally zooms either one of the first magnified image or the second magnified image before transmission to the first viewer assembly.
  • one or more of the cameras comprises an infrared camera.
  • the processor provides for display on the display of at least one of: the magnified view captured by the camera assembly; a virtual reality view; an augmented reality view; a data view; or an infrared view.
  • magnification glasses comprising: wearable glasses frames with lenses; a first camera array comprising at least two fixed focus cameras capturing a magnified view of the field of view of the glasses; and a viewer assembly comprising at least one of: a display screen in front of at least one of the lenses for displaying at least the magnified view from one of the cameras; or a projector for projecting at least the magnified view from one of the cameras on at least one of the lenses.
  • the glasses further comprise a second camera array wherein each of the first and second arrays are spaced horizontally apart so as to capture stereoscopic vision.
  • the camera arrays are mounted on the glasses.
  • the camera arrays are mounted on a headband.
  • each camera comprises a lens and an image sensor and preferably the lens provides a magnification of between 2X and 10X.
  • each camera comprises a graphics card.
  • each camera has a working distance of 150mm to 400mm.
  • the glasses further comprise a processor for receiving the image captured by the cameras and transmitting the image to the display screen or the projector, wherein the processor is a computing device.
  • the processor is housed inside the frames.
  • the processor is housed in an external enclosure.
  • the viewer assembly can be swiveled away from the frames.
  • the viewer assembly displays at least one of: a magnified view captured by the cameras; a virtual reality view; an augmented reality view; a data view, or a combination of these.
  • the glasses further comprise a controller selected from the group consisting of: a joystick, a foot pedal, speech control, and a switch.
  • magnification glasses comprising: wearable glasses frames; at least two fixed focus camera capturing a magnified view of the field of view of the glasses; and a display screen in front of the glasses for displaying the magnified view from one of the cameras.
  • magnification glasses may also refer to “loupe glasses”.
  • camera array or “camera assembly” or “camera set” as used herein refer to a set of cameras each with different magnification or other capabilities.
  • close range refers to a distance of 10-40cm.
  • working distance is the distance wherein the image captured by the camera/s is in focus.
  • Implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof.
  • several selected steps could be implemented by hardware or by software on any operating system of any firmware or a combination thereof.
  • selected steps of the invention could be implemented as a chip or a circuit.
  • selected steps of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system.
  • selected steps of the method and system of the invention could be described as being performed by a data processor, such as a computing platform for executing a plurality of instructions.
  • any device featuring a data processor and the ability to execute one or more instructions may be described as a computer, including but not limited to any type of personal computer (PC), single board computer (SBC), field-programmable gate array (FPGA), a server, a distributed server, a virtual server, a cloud computing platform, a cellular telephone, an IP telephone, a smartphone, or a PDA (personal digital assistant). Any two or more of such devices in communication with each other may optionally comprise a "network” or a "computer network”.
  • FIGS. 1A-1E are illustrations of magnification glasses according to at least some embodiments of the present invention.
  • FIG. 2 is an illustration of magnification glasses according to at least some embodiments of the present invention.
  • FIGS. 3A-3F are illustrations of the use of magnification glasses according to at least some embodiments of the present invention.
  • FIGS. 4A and 4B show an illustration of a magnification headset according to at least some embodiments of the present invention.
  • FIG. 5 shows an illustrative graph of the level of magnification provided by a magnification glasses according to at least some embodiments of the present invention.
  • Figures 1A-1E show magnification glasses according to at least some embodiments of the present invention.
  • Figures 1A and ID shown a front view of the magnification glasses 100
  • figures IB and IE show a rear view of the magnification glasses 100
  • figure 1C shows a top view of the magnification glasses 100.
  • glasses 100 comprise a glasses frame 102 as known in the art.
  • Frame 102 is shaped as a frame of a standard pair of glasses as known in the art and is made from materials as known in the art such as plastic or any other suitable material.
  • the design of frame 102 as shown in the figures should not be considered limiting.
  • Glasses 100 comprise lenses 104.
  • Lenses 104 are optically clear and manufactured from glass or plastic or other composite material as known in the art.
  • Lenses 104 are optionally adapted to the optical needs of the specific wearer such as featuring prescription lenses.
  • lenses 104 are optionally coated with reflective materials to enable projection of an image thereon as will be described further below.
  • lenses 104 are not provided such as when viewer 122 comprises a display screen 122S.
  • Frames comprise arms 106 wherein arms 106 fit over the ears of the wearer and nose bridge 108 for supporting glasses 100 on the nose of the wearer as known in the art.
  • a camera assembly 110 is mounted on top of frame 102.
  • two camera assemblies 110A and HOB are provided, each providing information for the view provided to the left or right eye so as to enable stereoscopic vision where the camera assembly 110A on the right provides for the image of the right eye and the camera assembly HOB on the left provides for the image of the left eye.
  • Each camera assembly 110 comprises at least two cameras 112 however the embodiment as shown should not be considered limiting and more than two cameras 112 may be provided.
  • first camera 112A and second camera 112B each comprise a lens 160, and image sensor 162.
  • any suitable combination of lens 160 and image sensor 162 are used and the specifications provided below should not be considered limiting.
  • Cameras 112 are chosen with differing specifications resulting in a fixed working distance that suits the close range working environment. Camera specifications include but are not limited to apertures, sensor size, focal length, FOV (field of view), DOF (depth of field), and so forth.
  • Camera 112 has a fixed working distance of between 100-400 mm. Different lens and camera combinations are preferably chosen to provide specific fixed close range working distances adapted to the specific application.
  • An exemplary lens of first camera 112A is a 25mm FL f/8 lens such as the Blue Series M12 VideoTM Imaging Lens with the following specifications:
  • An exemplary lens of second camera 112B is a 10mm FL f/8, such as the Blue Series M12 VideoTM Imaging Lens with the following specifications:
  • each camera 112 the lens 160 is fitted to an image sensor 162.
  • An exemplary image sensor 162 such as provided in each of cameras 112A and 112B is the CAM130_CUMI1820_MOD 13 MP camera such as provided by e-con SystemsTM with the following specifications:
  • image sensor 162 is chosen along with lens 160 to provide a specific magnification and working distance and the exemplary image sensor described above should not be considered limiting.
  • camera 112 may be added to camera assembly 110 wherein each additional camera 112 provides a different level of magnification while maintaining the same working distance as other cameras 112 in camera assembly 110.
  • camera 112 comprises an infrared (IR) camera (not shown) capable of capturing IR images wherein processor 130 converts the captured IR images into images in the visible spectrum for display on viewer assemblies 120.
  • IR infrared
  • Camera assembly 110 optionally comprises an illumination source 116 which may be any of an LED, LED array, or fiber optic array or any other illumination source.
  • illumination source 116 comprises an ultraviolet (UV) light.
  • Camera assembly 110 is connected to a processor 130 and a power source 140.
  • processor 130 and power source 140 are embedded inside frame 102.
  • processor 130 and power source 140 are provided in an external enclosure 260 (figure 2A).
  • the electrical connections between camera assembly 110 and processor 130 and power source 140 are made using cables embedded inside frame 102. Where an external enclosure 260 is provided, the cables 262 are visible connecting the components of glasses 200.
  • an external enclosure 260 is shown as part of the embodiment of figure 2A, it should be appreciated that alternative embodiments are possible such as the glasses 100 with an external enclosure or the glasses 200 with processor 130 and power source 140 embedded within frame 102.
  • the image sensor 162 of each camera 112 communicates with processor 130 using any suitable protocol such as the non-liming example of the MIPI Camera Serial Interface.
  • Processor 130 is a computing device as defined herein.
  • Processor 130 is preferably in wireless or wired communication with an external processor (not shown) or data source such as a server (not shown).
  • processor 130 is a Qualcomm® Qualcomm® Qualcomm® Qualcomm® SnapdragonTM 410/410E processor.
  • a non-limiting example of an external processor is an Intel® Core i7-5557U.
  • power source 140 include a battery or wired mains connection with a voltage adaptor.
  • Optionally glasses 100 are connected to an external camera 132 by either wired or wireless connection.
  • the image captured by external camera 132 is provided to processor 130 for transmitting to viewer assembly 120.
  • Viewer assembly 120 is mounted on the side of frame 102.
  • Viewer assembly 120 comprises viewer 122 and associated electronics (not shown).
  • Viewer assembly 120 is shown here as duplicated with one viewer assembly 120 per eye of the user.
  • only one viewer assembly 120 is provided.
  • viewer assembly 122 can be tilted away from lenses 104 so as not to obstruct the view of the practitioner when viewer assembly 120 is not needed.
  • Viewer assembly 122 can optionally be tilted upwards or to the sides.
  • the position of viewers 122 as shown is illustrative and should not be considered limiting.
  • viewer 122 comprises a display screen 122S that is viewed by the user through lenses 104.
  • a non-limiting example of such a screen is the Vufine+TM.
  • viewer 122 comprises a projector 122P for projecting an image onto lenses 104.
  • a projector 122P is the LumusTM OE33 with the following specifications:
  • Controller buttons 124 are integrated into viewer assembly for control of the functioning of glasses 100. Alternatively controller buttons are provided on a separate controller (not shown) that is connected wirelessly or wired to processor 130.
  • Non-limiting examples of controller buttons 124 include a joystick, foot pedal, speech control, switch mounted on glasses 100 or attached to glasses 100 or similar. Control of glasses 100 by controller buttons 124 includes but is not limited to powering on and off, selecting the view shown on viewer 122, activating illumination source 116, activating UV light (not shown), and so forth.
  • FIG 2 is an illustration of magnification glasses according to at least some embodiments of the present invention.
  • the components of glasses 200 as shown in figure 2 are the same as those of figures 1A- 1C, however, in the embodiment of figure 2, camera assembly 110 is mounted on a headband 210. Cables 262 interconnect camera assemblies 110, viewer assemblies 120, processor 130 and power source 140 where processor 130 and power source 140 are provided inside enclosure 260. Where possible, cables (not shown) are embedded inside frames 102.
  • FIGS 3A-3F are illustrations of the use of magnification glasses according to at least some embodiments of the present invention.
  • the usage is illustrated with the embodiment of figures 1A- 1C and also ID- IE as indicated below, however glasses 200 of figure 2 are also used in the same way as illustrated in figures 3A-3F and as described herein and therefore the description should be considered to include these.
  • the views of figures 3A-3F are rear views showing the user view through glasses 100 or 200.
  • the illustrated non- limiting application is use of the glasses such as by a dentist or oral hygienist. Any other usage is possible and the use of the glasses of the present invention is not limited to dentistry.
  • a user sees an unaided view of a patient through the lenses 104 of glasses 100.
  • viewer assemblies 120 are swiveled sideways so as not to obstruct the view of the user.
  • the user chooses to view a magnified view of the patient and selects a first level of magnification using buttons 124.
  • This first level of magnification is provided by first camera 112A.
  • the video from first camera 112A is communicated to processor 130 and processor 130 connects the video to viewer assemblies 120.
  • viewer assemblies 120 When there are left and right first cameras 112A, their respective video streams are connected to left and right viewer assemblies 120 respectively and viewer assemblies 120 use left and right projectors 122P to project the magnified image onto lenses 104 as shown.
  • Figure 3C depicts the view after the user has again selected to increase the magnification by pressing the appropriate button 124.
  • the image from the first camera 112A is digitally zoomed and then at a predefined crossover point the feed to viewer assembly 120 is switched to the second level of magnification provided by second camera 112B.
  • the video from second camera 112B is communicated to processor 130 and processor 130 connects the video to viewer assemblies 120 where viewer assemblies 120 use projectors 122P to project the magnified image onto lenses 104 as shown.
  • their respective video streams are connected to left and right viewer assemblies 120 respectively.
  • cameras 112 each with a set magnification level which is selected by the processor depending on the control of the user such that as a user activates buttons 124 for increased magnification the view shown by viewer assembly 120 is magnified as shown in figure 3G.
  • cameras 112 with different capabilities such as IR or external cameras, and the images captured from these may be selected using controller buttons 124 for display on viewer assemblies 120.
  • the method of displaying the magnified view will vary as follows:
  • viewer 122 is a display screen 122S such as shown in figure 3D, the magnified or other view is shown on viewer 122S;
  • viewer 122 is a projector 122P such as shown in figures 3B, 3C, 3E and 3F, the magnified or other view is projected on the front of lenses 104.
  • the type of video or image shown on the screen 122S or projection 122P may be any one of the following:
  • VR Virtual reality
  • Augmented reality Where the view captured by camera assembly 110 is augmented with data or other indications where the AR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
  • Data view where data related to the particular application is displayed to the user.
  • the viewer 122S could display an x-ray of the mouth of the patient such as in figure 3E.
  • a bifocal view as in figure 3F shows patient data on a bottom portion of the lens with the magnified or unmagnified view visible in the upper portion of the lens.
  • the split view may divide the lens in left and right portions, or multiple portions other than those shown.
  • the same view is shown on each lens but optionally the view is different.
  • the data for this data view is provided by an external data source that is connected to glasses 100 or 200;
  • Infrared view where the view is the IR video or image captured by camera assembly 110 when camera assembly 110 comprises at least one IR camera;
  • External camera view where the view is the view captured by an external camera 132 connected to glasses 100 or 200.
  • Magnification headset 400 is a headset as known in the art providing the functionality of glasses 100 in a headset arrangement. Items with the same drawing numbers as used above with reference to figures 1A- 1E have the same functionality. Magnification headset 400 may also be referred to herein as a "wearable display” or as "magnification glasses”.
  • Headset 400 comprises camera assemblies 110 each comprising two cameras
  • the images from camera assemblies 110 are displayed on viewers 122H where each of viewers 122H are screens mounted in headset 400 and positioned in front of the eyes of the wearer of headset 400.
  • viewers 122H are screens mounted in headset 400 and positioned in front of the eyes of the wearer of headset 400.
  • a single screen 122H is provided that is divided into two viewing portions (left and right)
  • camera assemblies 110 comprise more than two cameras each.
  • Camera assembly 110 is connected to a processor 130 and a power source 140 that are embedded inside headset 400.
  • the electrical connections between camera assembly 110 and the processor 130 and power source 140 are made using cables embedded inside headset 400.
  • the image sensor 162 of each camera 112 communicates with the processor 130 using any suitable protocol such as the non- liming example of the MIPI Camera Serial Interface.
  • headset 400 is connected to an external camera 132 by either wired or wireless connection.
  • the image captured by external camera 132 is provided to the processor 130 for transmitting to viewer assembly 120.
  • the type of video or image shown on screens 122H may be any one of the following:
  • VR virtual reality
  • Augmented reality Where the view captured by camera assembly 110 is augmented with data or other indications where the AR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
  • Data view where data related to the particular application is displayed to the user as described above with reference to figures 3E and 3F;
  • Infrared view where the view is the IR video or image captured by camera assembly 110 when camera assembly 110 comprises at least one IR camera;
  • External camera view where the view is the view captured by an external camera 132 connected to headset 400.
  • FIG 5 shows an illustrative graph of the level of magnification provided by a magnification glasses according to at least some embodiments of the present invention.
  • the graph 500 shows magnification for glasses 100, 200 or 400 as described in hereinabove.
  • camera assembly 110 comprises two cameras 112A and 112B, wherein first camera 112A provides magnification of 2X and second camera 112B provides magnification of 6X.
  • magnification levels are illustrative and should not be considered limiting.
  • the magnification of the captured image shown on viewing assembly 120 varies between 2X and 10X.
  • the working distance remains fixed at a specific working distance even as the magnification changes.
  • controller 130 transmits the output of first camera 112A to viewing assembly 120 such that the captured image is shown with a magnification of 2X.
  • the image of camera 112A is digitally zoomed by controller 130 such that the captured image is shown with increasing magnification.
  • the increase in magnification is preferably triggered by a user of the glasses activating controller buttons 124 such as a button (not shown) for increasing magnification.
  • the image of camera 112A is digitally zoomed by controller 130 such that the captured image is shown on the viewing assembly with
  • controller transmits the output of second camera 112B to viewing assembly 120 such that the captured image is shown with a magnification of 6X.
  • the switch at point 506 between the capture of first camera 112A and the capture of second camera 112B is preferably seamless and the user of glasses is not aware of the switch.
  • On slope 508 of graph 500 the image of camera 112B is digitally zoomed by controller 130 such that the captured image is shown with increasing magnification.
  • controller buttons 124 such as a button (not shown) for increasing magnification.
  • magnification of the captured image displayed on viewing assembly 120 is therefore in the range of 2X- 10X and may be increased or decreased between this range by the user activating controller buttons 124.
  • controller 130 switches from camera 112B to camera 112A.

Abstract

Magnification glasses comprising: a first camera array comprising at least a first camera and a second camera wherein each of the first camera and the second camera provide different magnification for capturing a magnified image in the field of view of the glasses, wherein the first camera and the second camera have the same working distance.

Description

MAGNIFICATION GLASSES WITH MULTIPLE CAMERAS
FIELD OF THE INVENTION
The present invention relates generally to magnification glasses and more specifically to magnification glasses that comprise multiple cameras each with the same working distance but providing different magnification.
BACKGROUND OF THE INVENTION
For many medical and industrial applications it is useful for the practitioner to have a magnified view of the work surface or patient. For example, dentists often need to magnify the area being worked on in the patient's mouth. Other practitioners needing close range magnified views include dermatologists, surgeons, gemologists such as for viewing gems, or agronomists such as for inspecting leaves and other plant parts. In the past this was most often achieved by wearing a headset or pair of glasses with optical loupes attached. In use, the loupes are generally swiveled into position in front of the practitioner's eyes when magnification is required and then swiveled away when not required. Achieving different levels of magnification usually requires swapping the loupe lenses. Optical loupes are relatively heavy due to their glass lenses and stick out once in position, occupying between 3- 10cm of space in front of the practitioner's eyes. Further - they are often fixed inside the glasses - permanently obstructing the view and requiring switching of glasses for different magnifications.
An alternative to the optical loupe is use of a digital loupe comprising a digital camera that feeds an image to a small screen. As with the optical loupe solution the camera/screen combination can be mounted onto a headband or mounted as part of the glass in front of the practitioner's eyes when magnification is required. The image from the digital camera can then be digitally zoomed for greater magnification. The disadvantage of digital zoom is that the quality of the image suffers as the zoom is increased due to the reduced number of pixels in use, and therefore the range of magnification is limited. The use of optical magnification combined with a digital camera is possible but requires the use of auto-focus digital cameras which are more expensive and also heavier than the non-auto-focus equivalents.
The background art therefore does not teach or suggest a system for close range magnification glasses using cost-effective digital cameras that can provide an extended range of magnification. It would also be desirable to be able to capture and transmit the view as seen through the magnification device.
SUMMARY OF THE INVENTION
The presently claimed invention provides wearable glasses featuring variable magnification of close range subjects by using camera array comprising a plurality of cost-effective fixed focus, fixed distance, fixed magnification digital cameras each providing different magnification while maintaining the same working distance. The image captured by the camera array is displayed to the user using viewing assemblies that are one of: screens placed in front of the glasses; or image projection onto the glasses lenses, or a headset comprising viewing screens. The image displayed may be any of: the magnified view captured by the camera array; or virtual reality, or augmented reality; or any of these overlaid with relevant textual or image data. Optionally, infrared images or images lit with ultraviolet light are provided.
The use of multiple fixed focus cameras each providing output images of different magnification for a fixed working distance lowers the cost of implementation, results in a magnification device with a more compact and lighter form factor, and increases the magnification range for digital camera based magnification glasses. The close range fixed working distance is preferably between 10-40cm.
Each of the fixed focus cameras in the array has a lens providing different maximum magnification allowing for fast switching between different levels of magnification. In an exemplary and preferable embodiment a first camera lens provides up to 6X magnification and a second camera lens provides up to 10X magnification. Alternatively a first camera lens provides up to 5X magnification and a second camera lens provides up to 10X magnification. Alternatively any combination of cameras is provided for the magnification and working distance required by the particular application. Optionally more than two cameras may be provided per array.
The images captured by each camera in the array are provided to a processing unit that outputs a selected image from one of the cameras depending on the magnification required. Digital magnification of the output image is preferably provided from the camera with the lowest magnification lens up till the camera with the highest magnification lens with a seamless switch of the output image between the image captured from the first camera and the image captured from the second camera.
Preferably the captured image is displayed on one or both of the left and right viewing assemblies. Alternatively the camera array may be duplicated with each array feeding a respective left or right viewing assembly to therefore provide magnified stereoscopic vision. The control of the magnification provided is via any suitable control device including but not limited to a joystick, foot pedal, speech control, switch mounted on the glasses or attached to them or similar. The image captured by the cameras can preferably be saved such as to non-volatile storage or transmitted for display on a local or remote display. The image displayed can preferably be overlaid with relevant textual or image data. The displays can preferably be divided into a bifocal arrangement for display of different views or overlay data on different parts of each display.
According to at least some embodiments of the present invention, there are provided magnification glasses comprising: a first camera array for capturing a magnified image in the field of view of the glasses comprising at least a first camera and a second camera wherein each of the first camera and the second camera provide different levels of magnification, wherein the first camera and the second camera have the same working distance. Preferably the working distance is fixed between 150mm to 400mm. Preferably each of the first and second cameras provides a different magnification of between 2X and 10X. Preferably the working distance is fixed in a subrange between 150mm to 400mm. Preferably the working distance is fixed in a range between 150mm to 400mm.
Preferably the glasses further comprise a first viewer assembly and a processor, wherein the processor receives a first magnified image captured by the first camera and a second magnified image captured by the second camera and transmits either one of the first image or the second image for display on the first viewer assembly, wherein the processor is a computing device. Preferably the processor digitally zooms either one of the first magnified image or the second magnified image before transmission to the first viewer assembly.
Preferably the first viewer assembly comprises at least one of: a display screen positioned in front of the glasses frame; a display screen mounted in the glasses frame; or a projector for projecting on a lens in the frame. Optionally one or more of the cameras comprises an infrared camera. Preferably the processor provides for display on the viewer assembly at least one of: the magnified view captured by the camera assembly; a virtual reality view; an augmented reality view; a data view; or an infrared view.
Preferably the glasses further comprise a second camera array and a second viewer assembly positioned on the same side of the glasses, wherein the first camera array and a first viewer assembly are positioned on the opposite side of the glasses wherein the first and second camera arrays are spaced horizontally apart so as to capture stereoscopic vision, wherein the the processor transmits the image from the first camera array to the first viewer assembly and wherein the processor transmits the image from the second camera array to the second viewer assembly.
Optionally the camera arrays are mounted on the glasses. Alternatively the camera arrays are mounted on a headband. Preferably each camera comprises a lens and an image sensor. Preferably the processor is housed inside the frames. Optionally the processor is housed in an external enclosure. Preferably the glasses further comprise a controller selected from the group consisting of: a joystick, a foot pedal, speech control, and a switch. Preferably the glasses further comprise an illumination source. Optionally the illumination source comprises an ultraviolet light.
According to further embodiments of the present invention, there are provided electro-optical magnifying glasses comprising: a wearable display; and a first camera array for capturing a magnified image in the field of view of the glasses comprising at least a first camera and a second camera wherein each of the first camera and the second camera provide different levels of magnification, wherein the first camera and the second camera have the same working distance. Preferably the working distance is fixed between 150mm to 400mm. Preferably each of the first and second cameras provides a different magnification of between 2X and 10X.
Preferably the glasses further comprise a processor, wherein the processor receives a first magnified image captured by the first camera and a second magnified image captured by the second camera and transmits either one of the first image or the second image for display on the display, wherein the processor is a computing device.
Preferably the processor digitally zooms either one of the first magnified image or the second magnified image before transmission to the first viewer assembly. Optionally one or more of the cameras comprises an infrared camera. Preferably the processor provides for display on the display of at least one of: the magnified view captured by the camera assembly; a virtual reality view; an augmented reality view; a data view; or an infrared view.
According to further embodiments of the present invention, there are provided magnification glasses comprising: wearable glasses frames with lenses; a first camera array comprising at least two fixed focus cameras capturing a magnified view of the field of view of the glasses; and a viewer assembly comprising at least one of: a display screen in front of at least one of the lenses for displaying at least the magnified view from one of the cameras; or a projector for projecting at least the magnified view from one of the cameras on at least one of the lenses. Preferably the glasses further comprise a second camera array wherein each of the first and second arrays are spaced horizontally apart so as to capture stereoscopic vision. Optionally the camera arrays are mounted on the glasses. Optionally the camera arrays are mounted on a headband.
Preferably each camera comprises a lens and an image sensor and preferably the lens provides a magnification of between 2X and 10X. Preferably each camera comprises a graphics card. Preferably each camera has a working distance of 150mm to 400mm. Preferably the glasses further comprise a processor for receiving the image captured by the cameras and transmitting the image to the display screen or the projector, wherein the processor is a computing device. Optionally the processor is housed inside the frames. Optionally the processor is housed in an external enclosure.
Preferably the viewer assembly can be swiveled away from the frames. Preferably the viewer assembly displays at least one of: a magnified view captured by the cameras; a virtual reality view; an augmented reality view; a data view, or a combination of these. Preferably the glasses further comprise a controller selected from the group consisting of: a joystick, a foot pedal, speech control, and a switch.
According to further embodiments of the present invention, there are provided magnification glasses comprising: wearable glasses frames; at least two fixed focus camera capturing a magnified view of the field of view of the glasses; and a display screen in front of the glasses for displaying the magnified view from one of the cameras.
As used herein the term "image" is used to described the digital capture from the cameras but it should be appreciated that in practice a stream of images or video is captured and the term image as used herein covers all of these capture types. The term "magnification glasses" may also refer to "loupe glasses".
The terms "camera array" or "camera assembly" or "camera set" as used herein refer to a set of cameras each with different magnification or other capabilities.
The term "close range" as used herein refers to a distance of 10-40cm. The term "working distance" as used herein is the distance wherein the image captured by the camera/s is in focus.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
Implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present invention, several selected steps could be implemented by hardware or by software on any operating system of any firmware or a combination thereof. For example, as hardware, selected steps of the invention could be implemented as a chip or a circuit. As software, selected steps of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the invention could be described as being performed by a data processor, such as a computing platform for executing a plurality of instructions.
Although the present invention is described with regard to a "computing device", a "computer", or "mobile device", it should be noted that optionally any device featuring a data processor and the ability to execute one or more instructions may be described as a computer, including but not limited to any type of personal computer (PC), single board computer (SBC), field-programmable gate array (FPGA), a server, a distributed server, a virtual server, a cloud computing platform, a cellular telephone, an IP telephone, a smartphone, or a PDA (personal digital assistant). Any two or more of such devices in communication with each other may optionally comprise a "network" or a "computer network". BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in connection with certain preferred embodiments with reference to the following illustrative figures so that it may be more fully understood. With specific reference now to the figures in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
FIGS. 1A-1E, are illustrations of magnification glasses according to at least some embodiments of the present invention;
FIG. 2 is an illustration of magnification glasses according to at least some embodiments of the present invention;
FIGS. 3A-3F are illustrations of the use of magnification glasses according to at least some embodiments of the present invention;
FIGS. 4A and 4B show an illustration of a magnification headset according to at least some embodiments of the present invention; and
FIG. 5 shows an illustrative graph of the level of magnification provided by a magnification glasses according to at least some embodiments of the present invention.
In all the figures similar reference numerals identify similar parts.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention will be more fully understood from the following detailed description of the preferred embodiments thereof, taken together with the drawings. Reference is now made to Figures 1A-1E, which show magnification glasses according to at least some embodiments of the present invention. Figures 1A and ID shown a front view of the magnification glasses 100, figures IB and IE show a rear view of the magnification glasses 100, and figure 1C shows a top view of the magnification glasses 100.
As shown, glasses 100 comprise a glasses frame 102 as known in the art. Frame 102 is shaped as a frame of a standard pair of glasses as known in the art and is made from materials as known in the art such as plastic or any other suitable material. The design of frame 102 as shown in the figures should not be considered limiting. Glasses 100 comprise lenses 104. Lenses 104 are optically clear and manufactured from glass or plastic or other composite material as known in the art. Lenses 104 are optionally adapted to the optical needs of the specific wearer such as featuring prescription lenses. In some embodiments, lenses 104 are optionally coated with reflective materials to enable projection of an image thereon as will be described further below. Optionally lenses 104 are not provided such as when viewer 122 comprises a display screen 122S.
Frames comprise arms 106 wherein arms 106 fit over the ears of the wearer and nose bridge 108 for supporting glasses 100 on the nose of the wearer as known in the art.
A camera assembly 110 is mounted on top of frame 102. In the embodiment as shown, two camera assemblies 110A and HOB are provided, each providing information for the view provided to the left or right eye so as to enable stereoscopic vision where the camera assembly 110A on the right provides for the image of the right eye and the camera assembly HOB on the left provides for the image of the left eye. Each camera assembly 110 comprises at least two cameras 112 however the embodiment as shown should not be considered limiting and more than two cameras 112 may be provided.
In a preferred embodiment first camera 112A and second camera 112B each comprise a lens 160, and image sensor 162. Optionally any suitable combination of lens 160 and image sensor 162 are used and the specifications provided below should not be considered limiting. Cameras 112 are chosen with differing specifications resulting in a fixed working distance that suits the close range working environment. Camera specifications include but are not limited to apertures, sensor size, focal length, FOV (field of view), DOF (depth of field), and so forth. Camera 112 has a fixed working distance of between 100-400 mm. Different lens and camera combinations are preferably chosen to provide specific fixed close range working distances adapted to the specific application. An exemplary lens of first camera 112A is a 25mm FL f/8 lens such as the Blue Series M12 Video™ Imaging Lens with the following specifications:
• Focal Length FL (mm) : 25.0
. Aperture (f/#): f/2.5
· Working Distance (mm): 150 - 400
• Maximum Camera Sensor Format: 1/2"
• Distortion (%): 0.3 Diagonal, 0.14 Horizontal
. Field of View: 1/2"
• Sensor: 35 - 60mm
· Length (mm):30.0
• Outer Diameter (mm) : 14.0
An exemplary lens of second camera 112B is a 10mm FL f/8, such as the Blue Series M12 Video™ Imaging Lens with the following specifications:
• Focal Length FL (mm): 10.0
· Aperture (f/#):f/8
• Working Distance (mm): 150 - 400
• Maximum Camera Sensor Format: 1/3 "
• Distortion (%):-1.5 Diagonal, -0.87 Horizontal
. Field of View, 1/3"
· Sensor:72 - 120mm
• Length (mm): 17
• Outer Diameter (mm) : 14.0
In each camera 112 the lens 160 is fitted to an image sensor 162. An exemplary image sensor 162 such as provided in each of cameras 112A and 112B is the CAM130_CUMI1820_MOD 13 MP camera such as provided by e-con Systems™ with the following specifications:
• CMOS Image Sensor from Aptina™ / ON Semiconductor®
• 1.25 μηι pixel size with Aptina / ON Semiconductor A-PixHS™ BSI technology
· 1/2.3" optical form-factor
• Dynamic Range: 65.8 dB
. SNRMAX : 36.3 dB
• Electronic Rolling Shutter • Responsivity: 0.62V/lux-sec
As above, image sensor 162 is chosen along with lens 160 to provide a specific magnification and working distance and the exemplary image sensor described above should not be considered limiting.
As above, additional cameras 112 may be added to camera assembly 110 wherein each additional camera 112 provides a different level of magnification while maintaining the same working distance as other cameras 112 in camera assembly 110. Optionally, camera 112 comprises an infrared (IR) camera (not shown) capable of capturing IR images wherein processor 130 converts the captured IR images into images in the visible spectrum for display on viewer assemblies 120.
Camera assembly 110 optionally comprises an illumination source 116 which may be any of an LED, LED array, or fiber optic array or any other illumination source. Optionally illumination source 116 comprises an ultraviolet (UV) light.
Camera assembly 110 is connected to a processor 130 and a power source 140. As shown (figure 1C) processor 130 and power source 140 are embedded inside frame 102. Optionally processor 130 and power source 140 are provided in an external enclosure 260 (figure 2A). The electrical connections between camera assembly 110 and processor 130 and power source 140 are made using cables embedded inside frame 102. Where an external enclosure 260 is provided, the cables 262 are visible connecting the components of glasses 200. Although an external enclosure 260 is shown as part of the embodiment of figure 2A, it should be appreciated that alternative embodiments are possible such as the glasses 100 with an external enclosure or the glasses 200 with processor 130 and power source 140 embedded within frame 102. The image sensor 162 of each camera 112 communicates with processor 130 using any suitable protocol such as the non-liming example of the MIPI Camera Serial Interface.
Processor 130 is a computing device as defined herein. Processor 130 is preferably in wireless or wired communication with an external processor (not shown) or data source such as a server (not shown). A non-limiting example of processor 130 is a Qualcomm® Snapdragon™ 410/410E processor. A non-limiting example of an external processor is an Intel® Core i7-5557U. Non-limiting examples of power source 140 include a battery or wired mains connection with a voltage adaptor.
Optionally glasses 100 are connected to an external camera 132 by either wired or wireless connection. The image captured by external camera 132 is provided to processor 130 for transmitting to viewer assembly 120.
Viewer assembly 120 is mounted on the side of frame 102. Viewer assembly 120 comprises viewer 122 and associated electronics (not shown). Viewer assembly 120 is shown here as duplicated with one viewer assembly 120 per eye of the user. Optionally, only one viewer assembly 120 is provided. Optionally, viewer assembly 122 can be tilted away from lenses 104 so as not to obstruct the view of the practitioner when viewer assembly 120 is not needed. Viewer assembly 122 can optionally be tilted upwards or to the sides. The position of viewers 122 as shown is illustrative and should not be considered limiting.
As shown in figures 1A- 1C, viewer 122 comprises a display screen 122S that is viewed by the user through lenses 104. A non-limiting example of such a screen is the Vufine+™.
In an alternative embodiment as shown in figures ID- IE, viewer 122 comprises a projector 122P for projecting an image onto lenses 104. A non-limiting example of such a projector 122P is the Lumus™ OE33 with the following specifications:
• Resolution: 1280 x 720
. FOV: Diagonal 40°
· Configuration: Side-mounted
• Orientation: Landscape
• Transparency: True see-through
Controller buttons 124 are integrated into viewer assembly for control of the functioning of glasses 100. Alternatively controller buttons are provided on a separate controller (not shown) that is connected wirelessly or wired to processor 130.
Non-limiting examples of controller buttons 124 include a joystick, foot pedal, speech control, switch mounted on glasses 100 or attached to glasses 100 or similar. Control of glasses 100 by controller buttons 124 includes but is not limited to powering on and off, selecting the view shown on viewer 122, activating illumination source 116, activating UV light (not shown), and so forth.
Reference is now made to figure 2 which is an illustration of magnification glasses according to at least some embodiments of the present invention. The components of glasses 200 as shown in figure 2 are the same as those of figures 1A- 1C, however, in the embodiment of figure 2, camera assembly 110 is mounted on a headband 210. Cables 262 interconnect camera assemblies 110, viewer assemblies 120, processor 130 and power source 140 where processor 130 and power source 140 are provided inside enclosure 260. Where possible, cables (not shown) are embedded inside frames 102.
Reference is now made to figures 3A-3F which are illustrations of the use of magnification glasses according to at least some embodiments of the present invention. The usage is illustrated with the embodiment of figures 1A- 1C and also ID- IE as indicated below, however glasses 200 of figure 2 are also used in the same way as illustrated in figures 3A-3F and as described herein and therefore the description should be considered to include these. The views of figures 3A-3F are rear views showing the user view through glasses 100 or 200. The illustrated non- limiting application is use of the glasses such as by a dentist or oral hygienist. Any other usage is possible and the use of the glasses of the present invention is not limited to dentistry.
As shown in figure 3A, a user sees an unaided view of a patient through the lenses 104 of glasses 100. In the embodiment of figures 1A-1C, viewer assemblies 120 are swiveled sideways so as not to obstruct the view of the user.
In figure 3B, based on the embodiment of figures ID-IE, the user chooses to view a magnified view of the patient and selects a first level of magnification using buttons 124. This first level of magnification is provided by first camera 112A. The video from first camera 112A is communicated to processor 130 and processor 130 connects the video to viewer assemblies 120. When there are left and right first cameras 112A, their respective video streams are connected to left and right viewer assemblies 120 respectively and viewer assemblies 120 use left and right projectors 122P to project the magnified image onto lenses 104 as shown.
Figure 3C depicts the view after the user has again selected to increase the magnification by pressing the appropriate button 124. In this case the image from the first camera 112A is digitally zoomed and then at a predefined crossover point the feed to viewer assembly 120 is switched to the second level of magnification provided by second camera 112B. The video from second camera 112B is communicated to processor 130 and processor 130 connects the video to viewer assemblies 120 where viewer assemblies 120 use projectors 122P to project the magnified image onto lenses 104 as shown. When there are left and right second cameras 112B, their respective video streams are connected to left and right viewer assemblies 120 respectively. As above, there may optionally be more cameras 112 each with a set magnification level which is selected by the processor depending on the control of the user such that as a user activates buttons 124 for increased magnification the view shown by viewer assembly 120 is magnified as shown in figure 3G. . Further, as above, there may be cameras 112 with different capabilities such as IR or external cameras, and the images captured from these may be selected using controller buttons 124 for display on viewer assemblies 120.
Depending on the type of viewer 122 used, the method of displaying the magnified view will vary as follows:
When viewer 122 is a display screen 122S such as shown in figure 3D, the magnified or other view is shown on viewer 122S;
When viewer 122 is a projector 122P such as shown in figures 3B, 3C, 3E and 3F, the magnified or other view is projected on the front of lenses 104.
The type of video or image shown on the screen 122S or projection 122P may be any one of the following:
Magnification: where the view is the magnified video or image captured by camera assembly 110;
Virtual reality (VR): where the projected VR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
Augmented reality (AR): Where the view captured by camera assembly 110 is augmented with data or other indications where the AR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
Data view: where data related to the particular application is displayed to the user. In a non-limiting example for a dentistry application the viewer 122S could display an x-ray of the mouth of the patient such as in figure 3E. In a further non- limiting example a bifocal view as in figure 3F shows patient data on a bottom portion of the lens with the magnified or unmagnified view visible in the upper portion of the lens. Alternatively the split view may divide the lens in left and right portions, or multiple portions other than those shown. Preferably the same view is shown on each lens but optionally the view is different. The data for this data view is provided by an external data source that is connected to glasses 100 or 200;
Infrared view: where the view is the IR video or image captured by camera assembly 110 when camera assembly 110 comprises at least one IR camera;
External camera view: where the view is the view captured by an external camera 132 connected to glasses 100 or 200.
Reference is now made to figures 4A and 4B which show an illustration of a magnification headset according to at least some embodiments of the present invention. Magnification headset 400 is a headset as known in the art providing the functionality of glasses 100 in a headset arrangement. Items with the same drawing numbers as used above with reference to figures 1A- 1E have the same functionality. Magnification headset 400 may also be referred to herein as a "wearable display" or as "magnification glasses".
Headset 400 comprises camera assemblies 110 each comprising two cameras
112A and 112B. The images from camera assemblies 110 are displayed on viewers 122H where each of viewers 122H are screens mounted in headset 400 and positioned in front of the eyes of the wearer of headset 400. Optionally a single screen 122H is provided that is divided into two viewing portions (left and right) Optionally camera assemblies 110 comprise more than two cameras each.
Camera assembly 110 is connected to a processor 130 and a power source 140 that are embedded inside headset 400. The electrical connections between camera assembly 110 and the processor 130 and power source 140 are made using cables embedded inside headset 400. The image sensor 162 of each camera 112 communicates with the processor 130 using any suitable protocol such as the non- liming example of the MIPI Camera Serial Interface.
Optionally headset 400 is connected to an external camera 132 by either wired or wireless connection. The image captured by external camera 132 is provided to the processor 130 for transmitting to viewer assembly 120.
The type of video or image shown on screens 122H may be any one of the following:
Magnification: where the view is the magnified video or image captured by camera assembly 110; Virtual reality (VR): where the projected VR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
Augmented reality (AR): Where the view captured by camera assembly 110 is augmented with data or other indications where the AR view is constructed by processor 130 or alternatively by a connected external processor (not shown);
Data view: where data related to the particular application is displayed to the user as described above with reference to figures 3E and 3F;
Infrared view: where the view is the IR video or image captured by camera assembly 110 when camera assembly 110 comprises at least one IR camera;
External camera view: where the view is the view captured by an external camera 132 connected to headset 400.
Reference is now made to figure 5 which shows an illustrative graph of the level of magnification provided by a magnification glasses according to at least some embodiments of the present invention. The graph 500 shows magnification for glasses 100, 200 or 400 as described in hereinabove. For graph 500 camera assembly 110 comprises two cameras 112A and 112B, wherein first camera 112A provides magnification of 2X and second camera 112B provides magnification of 6X. These magnification levels are illustrative and should not be considered limiting.
As shown in graph 500, the magnification of the captured image shown on viewing assembly 120 varies between 2X and 10X. The working distance remains fixed at a specific working distance even as the magnification changes. At point 502, controller 130 transmits the output of first camera 112A to viewing assembly 120 such that the captured image is shown with a magnification of 2X. On slope 504 of graph 500 the image of camera 112A is digitally zoomed by controller 130 such that the captured image is shown with increasing magnification. The increase in magnification is preferably triggered by a user of the glasses activating controller buttons 124 such as a button (not shown) for increasing magnification.
At point 506 of graph 500, the image of camera 112A is digitally zoomed by controller 130 such that the captured image is shown on the viewing assembly with
6X magnification. At this point controller transmits the output of second camera 112B to viewing assembly 120 such that the captured image is shown with a magnification of 6X. The switch at point 506 between the capture of first camera 112A and the capture of second camera 112B is preferably seamless and the user of glasses is not aware of the switch. On slope 508 of graph 500 the image of camera 112B is digitally zoomed by controller 130 such that the captured image is shown with increasing magnification. As before the increase in magnification is preferably triggered by a user of the glasses activating controller buttons 124 such as a button (not shown) for increasing magnification.
It should be appreciated that the magnification of the captured image displayed on viewing assembly 120 is therefore in the range of 2X- 10X and may be increased or decreased between this range by the user activating controller buttons 124. When the output magnification decrease below 6X at point 506, controller 130 switches from camera 112B to camera 112A.
In the detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that these are specific embodiments and that the present invention may be practiced also in different ways that embody the characterizing features of the invention as described and claimed herein. Combinations of the above embodiments are also considered. As a non-limiting example, the headset of figures 4A and 4B could use the projectors as described for the viewing assembly of figures 1A-1E.
It is to be understood that the invention is not limited in its application to the details set forth in the description contained herein or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Those skilled in the art will readily appreciate that various
modifications and changes can be applied to the embodiments of the invention as hereinbefore described without departing from its scope, defined in and by the appended claims.

Claims

LISTING OF CLAIMS:
1. Magnification glasses comprising: a first camera array for capturing a magnified image in the field of view of said glasses comprising at least a first camera and a second camera wherein each of said first camera and said second camera provide different levels of magnification, wherein said first camera and said second camera have the same working distance.
2. The glasses of claim 1 wherein said working distance is between 150mm to 400mm.
3. The glasses of claim 2 wherein each of said first and second cameras provides a different magnification of between 2X and 10X.
4. The glasses of claim 3 further comprising a first viewer assembly and a processor, wherein said processor receives a first magnified image captured by said first camera and a second magnified image captured by said second camera and transmits either one of said first image or said second image for display on said first viewer assembly, wherein said processor is a computing device.
5. The glasses of claim 4 wherein said processor digitally zooms either one of said first magnified image or said second magnified image before transmission to said first viewer assembly.
6. The glasses of claim 5 wherein said first viewer assembly comprises at least one of:
i. a display screen positioned in front of said glasses frame; ii. a display screen mounted in said glasses frame; or
iii. a projector for projecting on a lens in said frame.
7. The glasses of claim 6 wherein one or more of said cameras comprises an infrared camera.
8. The glasses of claim 7 wherein said processor provides for display on said viewer assembly at least one of:
a. said magnified view captured by said camera assembly; b. a virtual reality view;
c. an augmented reality view;
d. a data view; or
e. an infrared view.
9. The glasses of claim 8 further comprising a second camera array and a second viewer assembly positioned on the same side of said glasses, wherein said first camera array and a first viewer assembly are positioned on the opposite side of said glasses wherein said first and second camera arrays are spaced horizontally apart so as to capture stereoscopic vision, wherein the said processor transmits the image from said first camera array to said first viewer assembly and wherein said processor transmits the image from said second camera array to said second viewer assembly.
10. The glasses of claim 9 wherein said camera arrays are mounted on said glasses.
11. The glasses of claim 9 wherein said camera arrays are mounted on a headband.
12. The glasses of claim 9 wherein each camera comprises a lens and an image sensor.
13. The glasses of claim 9 wherein said processor is housed inside said frames.
14. The glasses of claim 9 wherein said processor is housed in an external enclosure.
15. The glasses of claim 1 further comprising a controller selected from the group consisting of: a joystick, a foot pedal, speech control, and a switch.
16. The glasses of claim 9 further comprising an illumination source.
17. The glasses of claim 16 wherein said illumination source comprises an ultraviolet light.
18. Electro-optical magnifying glasses comprising:
a. a wearable display; and
b. a first camera array for capturing a magnified image in the field of view of said glasses comprising at least a first camera and a second camera wherein each of said first camera and said second camera provide different levels of magnification, wherein said first camera and said second camera have the same working distance.
19. The glasses of claim 18 wherein said working distance is between 150mm to 400mm.
20. The glasses of claim 19 wherein each of said first and second cameras provides a different magnification of between 2X and 10X.
21. The glasses of claim 20 further comprising a processor, wherein said processor receives a first magnified image captured by said first camera and a second magnified image captured by said second camera and transmits either one of said first image or said second image for display on said display, wherein said processor is a computing device.
22. The glasses of claim 21 wherein said processor digitally zooms either one of said first magnified image or said second magnified image before transmission to said first viewer assembly.
23. The glasses of claim 22 wherein one or more of said cameras comprises an infrared camera.
24. The glasses of claim 23 wherein said processor provides for display on said display of at least one of:
a. said magnified view captured by said camera assembly; b. a virtual reality view;
c. an augmented reality view;
d. a data view; or
e. an infrared view.
PCT/IL2018/050691 2017-06-21 2018-06-21 Magnification glasses with multiple cameras WO2018235088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/625,780 US10877262B1 (en) 2017-06-21 2018-06-21 Magnification glasses with multiple cameras
EP18820877.1A EP3642662B1 (en) 2017-06-21 2018-06-21 Magnification glasses with multiple cameras

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762522692P 2017-06-21 2017-06-21
US62/522,692 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235088A1 true WO2018235088A1 (en) 2018-12-27

Family

ID=64736952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2018/050691 WO2018235088A1 (en) 2017-06-21 2018-06-21 Magnification glasses with multiple cameras

Country Status (3)

Country Link
US (1) US10877262B1 (en)
EP (1) EP3642662B1 (en)
WO (1) WO2018235088A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154688A1 (en) * 2019-01-24 2020-07-30 Cao Group, Inc Electronic loupe
WO2021019440A1 (en) * 2019-07-29 2021-02-04 Eye Tech Lab S.R.L. Augmented reality magnifier eyewear
US11006093B1 (en) 2020-01-22 2021-05-11 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
IL244255A (en) 2016-02-23 2017-04-30 Vertical Optics Llc Wearable vision redirecting devices
WO2019211741A1 (en) 2018-05-02 2019-11-07 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
CN111552076B (en) * 2020-05-13 2022-05-06 歌尔科技有限公司 Image display method, AR glasses and storage medium
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195918A (en) * 1977-11-14 1980-04-01 Charles Freche Illuminating spectacles with variable magnifying power
WO2008015002A1 (en) * 2006-08-02 2008-02-07 Swiss Medical Technology Gmbh Eyewear with segmented look-through elements
US20150293345A1 (en) * 2012-11-19 2015-10-15 Orangedental Gmbh & Co. Kg Magnification loupe with display system
US20160358327A1 (en) * 2015-06-05 2016-12-08 Marc Lemchen Apparatus and Method for Image Capture of Medical or Dental Images Using a Head Mounted Camera and Computer System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2233047C (en) * 1998-02-02 2000-09-26 Steve Mann Wearable camera system with viewfinder means
WO2015127146A1 (en) * 2014-02-19 2015-08-27 Evergaze, Inc. Apparatus and method for improving, augmenting or enhancing vision
CA2949241A1 (en) * 2014-05-20 2015-11-26 University Of Washington Through Its Center For Commercialization Systems and methods for mediated-reality surgical visualization
US9690119B2 (en) * 2015-05-15 2017-06-27 Vertical Optics, LLC Wearable vision redirecting devices
IL244255A (en) 2016-02-23 2017-04-30 Vertical Optics Llc Wearable vision redirecting devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195918A (en) * 1977-11-14 1980-04-01 Charles Freche Illuminating spectacles with variable magnifying power
WO2008015002A1 (en) * 2006-08-02 2008-02-07 Swiss Medical Technology Gmbh Eyewear with segmented look-through elements
US20150293345A1 (en) * 2012-11-19 2015-10-15 Orangedental Gmbh & Co. Kg Magnification loupe with display system
US20160358327A1 (en) * 2015-06-05 2016-12-08 Marc Lemchen Apparatus and Method for Image Capture of Medical or Dental Images Using a Head Mounted Camera and Computer System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3642662A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154688A1 (en) * 2019-01-24 2020-07-30 Cao Group, Inc Electronic loupe
CN113366367A (en) * 2019-01-24 2021-09-07 西尔欧集团 Electronic magnifier
WO2021019440A1 (en) * 2019-07-29 2021-02-04 Eye Tech Lab S.R.L. Augmented reality magnifier eyewear
US11006093B1 (en) 2020-01-22 2021-05-11 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11166006B2 (en) 2020-01-22 2021-11-02 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11412202B2 (en) 2020-01-22 2022-08-09 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11611735B2 (en) 2020-01-22 2023-03-21 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing

Also Published As

Publication number Publication date
EP3642662A4 (en) 2020-06-10
US20200386982A1 (en) 2020-12-10
EP3642662B1 (en) 2023-05-03
US10877262B1 (en) 2020-12-29
EP3642662A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
EP3642662B1 (en) Magnification glasses with multiple cameras
US5777715A (en) Low vision rehabilitation system
US9301682B2 (en) Eye examination apparatus with digital image output
EP3732523A1 (en) Head-mounted display device and display system
US20090059364A1 (en) Systems and methods for electronic and virtual ocular devices
US9687140B2 (en) Auto zoom for video camera
US9578213B2 (en) Surgical telescope with dual virtual-image screens
KR101650706B1 (en) Device for wearable display
JP2018513656A (en) Eyeglass structure for image enhancement
US9172860B2 (en) Computational camera and method for setting multiple focus planes in a captured image
JP2017134399A (en) Glasses-free 3d display device without requiring interpupillary distance adjustment
US20240061272A1 (en) Electronic loupe
JP2008123257A (en) Remote operation support system and display control method
JP3205552B2 (en) 3D image pickup device
JP4952204B2 (en) Remote work support system and display method thereof
CN113454989A (en) Head-mounted display device
US20200166752A1 (en) Display for use in display apparatus
CN109040737A (en) A kind of live streaming glasses based on 3D augmented reality
CN210605346U (en) Variable-focus 3D (three-dimensional) camera device with crossed light paths
JP3330129B2 (en) Video display device
JPH11341399A (en) Spectacle type image display device
US20240022680A1 (en) Electronic loupe
JP2010166456A (en) Video system
WO2019131689A1 (en) Head-mounted display device and display system
CN106444043A (en) Head-mounted visualization device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018820877

Country of ref document: EP

Effective date: 20200121