WO2018225530A1 - Image processing device, image processing method, program, and projector device - Google Patents

Image processing device, image processing method, program, and projector device Download PDF

Info

Publication number
WO2018225530A1
WO2018225530A1 PCT/JP2018/020112 JP2018020112W WO2018225530A1 WO 2018225530 A1 WO2018225530 A1 WO 2018225530A1 JP 2018020112 W JP2018020112 W JP 2018020112W WO 2018225530 A1 WO2018225530 A1 WO 2018225530A1
Authority
WO
WIPO (PCT)
Prior art keywords
test pattern
correction
color
projection plane
image
Prior art date
Application number
PCT/JP2018/020112
Other languages
French (fr)
Japanese (ja)
Inventor
宏昌 長沼
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2018225530A1 publication Critical patent/WO2018225530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to an image processing device, an image processing method, a program, and a projector device, and in particular, an image processing device and an image processing that are capable of correcting the influence of the surface shape and color of a projection surface more quickly.
  • the present invention relates to a method, a program, and a projector apparatus.
  • a panel such as DLP (Digital Light Processing) or liquid crystal is used to transmit or reflect light from a light source, so that an image is projected on a projection surface such as a screen. Configured to project.
  • DLP Digital Light Processing
  • liquid crystal is used to transmit or reflect light from a light source, so that an image is projected on a projection surface such as a screen. Configured to project.
  • the projected image when projecting an image by a projector device using a wall as a projection surface in daily life instead of a flat screen having perfect diffuse reflection characteristics, the projected image may be distorted according to the surface shape of the projection surface.
  • the color of the projected image may appear different depending on the color of the projection surface. Therefore, a projection plane distortion correction that corrects distortion generated in the image according to the surface shape of the projection plane is performed, and a projection plane color correction that corrects the color of the image according to the color of the projection plane is performed. Therefore, it is necessary to correct the influence of the surface shape and color of the projection surface.
  • a technique for correcting projection plane distortion by image processing a technique called active sensing using an imaging device is often used.
  • a test pattern is projected from the projector device, the corresponding points between the projector device and the imaging device are obtained, and the distortion amount of the projector device is estimated from known information, so that an image corresponding to the surface shape of the projection surface Can be corrected.
  • Patent Document 1 discloses a method of detecting a checker and a corner portion of the checker using a check pattern, and obtaining a corresponding point between the projector device and the imaging device.
  • a method for correcting the projection plane color by image processing conventionally, multiple colors are projected from the projector device, the color of the projection plane is estimated from the subtractive color mixture result with the projection plane, and the influence of the color is corrected.
  • a technique for obtaining a correction value to be used is often used.
  • the present disclosure has been made in view of such a situation, and makes it possible to more quickly correct the influence of the surface shape and color of the projection surface.
  • An image processing apparatus corrects distortion generated in an image according to a surface shape of the projection surface from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection surface.
  • a correction vector calculation unit that obtains a correction vector used in distortion correction
  • a correction data generation unit that generates correction data used in projection plane color correction that corrects the color of the image according to the color of the projection plane from the test pattern image
  • the test pattern includes circular dots arranged in a grid pattern on a white background, and the test pattern image used for calculation of the correction vector and generation of the correction data is one time of the test pattern. It was obtained by imaging.
  • An image processing method or program corrects distortion generated in an image according to a surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane.
  • the circular dots are arranged in a grid pattern on a white background, and the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern. is there.
  • a projector device includes a projection unit that projects a test pattern on an arbitrary projection plane, an imaging unit that captures the test pattern, and a test pattern image obtained as a result of imaging the test pattern by the imaging unit
  • a correction vector calculation unit for obtaining a correction vector used in correction of projection plane distortion for correcting distortion generated in the image according to the surface shape of the projection plane, and an image corresponding to the color of the projection plane from the test pattern image.
  • a correction data generation unit for generating correction data used in projection plane color correction for correcting the color of the test pattern, wherein the test pattern includes circular dots arranged in a grid pattern on a white background, The test pattern image used for generation of correction data is obtained by one imaging of the test pattern.
  • projection plane distortion correction is performed to correct distortion generated in an image according to a surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane.
  • a correction vector to be used is obtained, and correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane is generated from the test pattern image.
  • circular dots are arranged in a grid pattern on a white background, and the test pattern image used for calculating the correction vector and generating the correction data is obtained by capturing the test pattern once. It is assumed that it was obtained.
  • correction for the influence of the surface shape and color of the projection surface can be performed more quickly.
  • FIG. 18 is a block diagram which shows the structural example of one Embodiment of the projector apparatus to which this technique is applied. It is a figure which shows an example of a test pattern. It is a figure which shows the structural example of a captured image process part. It is a flowchart explaining the process which projects the image which correct
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a projector device to which the present technology is applied.
  • the projector device 11 includes a projection unit 12, an imaging unit 13, a projection image processing unit 14, a captured image processing unit 15, and a storage unit 16.
  • the projection plane distortion correction and the projection plane color correction can be performed based on the corresponding points.
  • the projection unit 12 projects an image on a projection surface (not shown) by transmitting or reflecting light emitted from the light source using, for example, DLP or liquid crystal.
  • the projection unit 12 corrects distortion generated in the image due to the surface shape of the projection surface, It is possible to project an image that has undergone projection plane color correction for correcting that the color of the image looks different depending on the color.
  • the projection unit 12 can project a test pattern (for example, FIG. 2 described later) used in the projection plane distortion correction and the projection plane color correction.
  • the imaging unit 13 uses, for example, an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor to image a test pattern that the projection unit 12 projects onto the projection surface.
  • an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor to image a test pattern that the projection unit 12 projects onto the projection surface.
  • CMOS Complementary Metal Oxide Semiconductor
  • an image obtained by imaging the test pattern by the imaging unit 13 (hereinafter referred to as a test pattern image as appropriate) is distorted due to the surface shape of the projection surface, and the color looks different depending on the color of the projection surface. It will be a thing.
  • the imaging unit 13 supplies the test pattern image to the captured image processing unit 15.
  • the projection image processing unit 14 performs projection plane distortion correction and projection plane color correction on an image reproduced by a reproduction device (not shown), and when projected onto the projection plane, there is no distortion and the colors look different.
  • the image processed so as not to occur is supplied to the projection unit 12.
  • the captured image processing unit 15 Based on the test pattern image supplied from the imaging unit 13, the captured image processing unit 15 generates correction vector calculation processing for obtaining a correction vector used in projection plane distortion correction and correction data used in projection plane color correction, for example. Correction data generation processing is performed. At this time, the captured image processing unit 15 can use the same test pattern image in the correction vector calculation process and the correction data generation process, and the imaging unit 13 needs to capture the test pattern only once.
  • the storage unit 16 stores a color ratio database that is referred to when the captured image processing unit 15 performs correction data generation processing. For example, as described later with reference to FIGS. 7 and 8, a color ratio database for performing projection plane color correction using a white region is obtained in advance and stored in the storage unit 16.
  • the color ratio database is a two-dimensional LUT (Lookup table) with the red color ratio (R / G) to green and the blue color ratio (B / G) to green as axes.
  • the projector apparatus 11 is configured, and the imaging unit 13 captures the test pattern projected by the projection unit 12 only once, and the correction vector is calculated using one test pattern image obtained by the imaging. Processing and correction data generation processing are performed.
  • the projector device 11 projects the test pattern in order to correct the projection plane distortion and projects the projection pattern without repeating many color projections in order to perform the projection plane color correction. The influence of the surface shape and color of the projection surface on the image can be corrected quickly.
  • FIG. 2 shows an example of a test pattern used for projection plane distortion correction and projection plane color correction of the projector apparatus 11.
  • the projector apparatus 11 employs a test pattern (so-called polka dot pattern) in which small circular dots are arranged in a grid pattern on a white background.
  • a test pattern for example, the dot area is black and the area other than the dot is white. If the coordinates of the dots arranged in a grid pattern can be obtained, the dot shape of the test pattern is not limited to a circle, and for example, various arbitrary shapes such as a square and a triangle can be adopted. .
  • the captured image processing unit 15 obtains a correction vector used in projection plane distortion correction from the dot arrangement by using one test pattern image obtained by one imaging of such a test pattern, and obtains a white region. Correction data used in projection plane color correction can be generated.
  • the captured image processing unit 15 includes a corresponding point detection unit 21, a correction vector calculation unit 22, a color ratio detection unit 23, and a correction data creation unit 24.
  • Corresponding point detection unit 21 detects the centroids of all dots copied in the test pattern image supplied from imaging unit 13 and calculates the centroid coordinates of those dots. Then, the corresponding point detection unit 21 holds the barycentric coordinates of the dots according to the arrangement order of the dots arranged in the test pattern (for example, the raster order from the upper left), and the coordinates of the image projected by the projection unit 12 Then, a corresponding point with the coordinates of the image captured by the imaging unit 13 is detected.
  • the corresponding point detection unit 21 does not need to obtain corresponding points with a fine granularity such as a pixel unit of the projected image.
  • the corresponding points have a granularity corresponding to dots that are discretely arranged in the test pattern. You can ask for.
  • the particle size of the dots arranged in the test pattern is set so that the surface shape of the projection surface is not extremely distorted and the coordinate density is sufficient for a curved surface with a gentle curvature.
  • the correction vector calculation unit 22 calculates a correction vector so that the barycentric coordinates of all the dots detected by the corresponding point detection unit 21 become a grid array. By applying this correction vector to the projection unit 12, distortion generated in the image can be geometrically corrected. In other words, the correction vector calculation unit 22 corrects the correction vector (that is, the barycentric coordinates of the detected dot) from the test pattern image in which the distortion is generated according to the surface shape of the projection surface. By calculating (correction vector having a grid array), it is possible to obtain a correction vector for correcting distortion generated in the image in accordance with the surface shape of the projection surface.
  • the color ratio detection unit 23 detects, for example, the color ratio using the white area in the test pattern of FIG. 2 for each corresponding point detected by the corresponding point detection unit 21.
  • the correction data creation unit 24 refers to the color ratio database stored in the storage unit 16, reads a correction value corresponding to the color ratio detected by the color ratio detection unit 23, and is detected by the corresponding point detection unit 21. Correction data including a plurality of correction values for each corresponding point is generated.
  • the test pattern (FIG. 2) used in the geometric correction is inverted and replaced with a color that will most contribute to the estimation of the color of the projection surface. That is, the correction data creation unit 24 corrects the correction data (that is, the detected color ratio to the detected color ratio) from the test pattern image that appears to be different depending on the color of the projection surface. Corresponding multiple correction values for each corresponding point) can be generated.
  • step S11 the projection unit 12 projects a test pattern as shown in FIG. 2 onto an arbitrary projection plane.
  • step S12 the imaging unit 13 images the test pattern projected on the projection plane by the projection unit 12, and supplies the test pattern image obtained as a result of the imaging to the captured image processing unit 15.
  • step S13 the captured image processing unit 15 performs a correction vector calculation process (see FIG. 5 described later) for obtaining a correction vector used in projection plane distortion correction, and supplies the correction vector to the projection image processing unit 14.
  • step S14 the captured image processing unit 15 performs correction data generation processing (see FIG. 6 described later) for generating correction data used in projection surface color correction, and supplies the correction data to the projection image processing unit 14.
  • step S15 the projection image processing unit 14 performs a projection image correction process for correcting distortion and color for the image to be projected. That is, the projection image processing unit 14 performs projection plane distortion correction using the correction vector supplied from the captured image processing unit 15 in step S13, and uses the correction data supplied from the captured image processing unit 15 in step S14. To correct the projection surface color. Then, by performing projection plane distortion correction and projection plane color correction by the projection image processing unit 14, distortion generated in the image due to the surface shape of the projection plane is corrected, and the color of the image looks different depending on the color of the projection plane. An image whose color has been corrected so as not to occur is supplied to the projection unit 12, and the projection unit 12 projects the image, and the processing is terminated.
  • FIG. 5 is a flowchart for explaining the correction vector calculation process in step S13 of FIG.
  • step S21 the corresponding point detection unit 21 detects all dots copied in the test pattern image supplied from the imaging unit 13 in step S12 of FIG.
  • step S22 the corresponding point detection unit 21 detects the centroids of all the dots detected in step S21, and calculates the centroid coordinates of those dots.
  • step S23 for example, when the corresponding point detection unit 21 performs processing in raster order, the corresponding point detection unit 21 searches for a dot closest to the upper left end as a processing target that first holds the barycentric coordinates.
  • step S24 the corresponding point detection unit 21 holds the barycentric coordinates of the dots specified by the search in step S23.
  • step S ⁇ b> 25 for example, when processing in raster order, the corresponding point detection unit 21 searches for a dot closest to the right in the right direction as a processing target immediately before as a processing target for holding the barycentric coordinates. To do.
  • step S26 the corresponding point detection unit 21 holds the barycentric coordinates of the dots specified by the search in step S25.
  • step S27 the corresponding point detection unit 21 determines whether or not all dots in the current horizontal line have been processed, for example, when processing is performed in raster order. For example, when the dot at the right end of the current horizontal line is the processing target, it is determined that all the dots on the current horizontal line are the processing target.
  • step S27 when the corresponding point detection unit 21 determines that all the dots in the current horizontal line are not to be processed, the process returns to step S25, and the next dot in the current horizontal line is processed. Thereafter, the same processing is repeated.
  • step S27 determines in step S27 that all dots in the current horizontal line are to be processed. If the corresponding point detection unit 21 determines in step S27 that all dots in the current horizontal line are to be processed, the process proceeds to step S28.
  • step S28 the corresponding point detection unit 21 moves the dot to be processed to the left end, and searches for the closest dot in the downward direction as the first dot of the next horizontal line.
  • step S29 the corresponding point detection unit 21 determines whether, for example, all horizontal lines are processed, for example, if processing is performed in raster order, whether the lowest horizontal line is processed. Determine. For example, if the closest dot in the downward direction is specified as a result of the search in step S28, it is determined that not all horizontal lines are to be processed.
  • step S29 when the corresponding point detection unit 21 determines that not all horizontal lines are to be processed, the process returns to step S26, and the horizontal line of the dot specified by the search in step S28 is set as a processing target. The same process is repeated.
  • step S30 the center-of-gravity coordinates are held from the upper left dot to the lower right dot, which is the processing target.
  • step S30 the correction vector calculation unit 22 calculates a correction vector in which the barycentric coordinates of all the dots detected and held by the corresponding point detection unit 21 in the processing of steps S21 to S29 become a grid array. And the correction vector calculation part 22 hold
  • FIG. 6 is a flowchart for explaining the correction data generation process in step S14 of FIG.
  • step S41 the color ratio detection unit 23 extracts the color of the projection plane by extracting and smoothing portions other than the dots of the test pattern image supplied from the imaging unit 13 in step S12 of FIG.
  • step S42 the color ratio detection unit 23 calculates and holds the red color ratio (R / G) to green and the blue color ratio (B / G) to green.
  • step S43 the correction data creation unit 24 refers to the color ratio database stored in the storage unit 16, and holds the color ratio detection unit 23 in step S42 for each corresponding point detected by the corresponding point detection unit 21. A correction value corresponding to the current color ratio is extracted.
  • step S44 the correction data creation unit 24 creates and holds correction data composed of the correction values extracted for each corresponding point in step S43, and the correction data generation process ends.
  • the projector device 11 can use the test pattern as shown in FIG. 2 to obtain a correction vector used for projection plane distortion correction and generate correction data used for projection plane color correction. . Then, the projection plane distortion correction is performed using the correction vector, and the image on which the projection plane color correction is performed using the correction data, that is, the distortion generated in the image due to the surface shape of the projection plane is corrected, and the color of the projection plane is corrected. It is possible to project an image that does not look different in the color of the image.
  • the projector device 11 since the projector device 11 only needs to capture the test pattern once, the image can be corrected more quickly.
  • the projector device 11 can correct all projection plane colors in the spectral range of the imaging unit 13 with high accuracy and create correction data at high speed. be able to.
  • the projector device 11 can perform projection plane distortion correction and projection plane color correction by one imaging of a test pattern, and the projected image
  • the influence of the surface shape and color of the projection surface can be quickly corrected.
  • the white area (area other than the dots) of the test pattern in FIG. 2 projected by the projection unit 12 is an output when all the panel colors of the projection unit 12 are turned on.
  • calculate the spectrum actually output by the product sum with the projected plane and perform signal processing so that the spectrum becomes the spectrum at the time of perfect diffuse reflection. By doing so, the projection plane color is corrected.
  • the color ratio database generation process will be described with reference to the flowchart of FIG.
  • the color ratio database can be generated by, for example, the captured image processing unit 15 using an image obtained by the imaging unit 13 capturing white images projected on projection surfaces of various colors.
  • step S51 the captured image processing unit 15 obtains a spectrum at the time of complete diffuse reflection, that is, the projector of the projection unit 12, from an image obtained by the imaging unit 13 capturing white projected on a screen having complete diffuse reflection characteristics. Extract the spectrum.
  • step S52 the captured image processing unit 15 calculates the product sum of the projector spectrum extracted in step S51 and the camera spectrum of the imaging unit 13 for observing the spectrum.
  • step S53 the captured image processing unit 15 holds the product-sum value calculated in step S52 as a corrected target color ratio.
  • step S54 the captured image processing unit 15 extracts the wall surface spectrum of the projection plane from the image obtained by the imaging unit 13 capturing the white color projected on the projection plane of the desired color.
  • step S55 the captured image processing unit 15 calculates the product sum of the wall surface spectrum extracted in step S54, the projector spectrum, and the camera spectrum.
  • step S56 since the product sum value calculated in step S55 is the actually observed color ratio, the captured image processing unit 15 obtains a comparison result between the color ratio and the correction target color ratio held in step S53. The correction target value is calculated.
  • step S57 the captured image processing unit 15 determines whether or not to end the generation of the color ratio database. For example, when white is projected on the projection planes of all desired colors and all of the correction target values are calculated, it is determined that the generation of the color ratio database is finished.
  • step S57 If it is determined in step S57 that the generation of the color ratio database is not terminated, the process returns to step S54, and the same process is repeated for the projection plane of the color for which the correction target value has not yet been calculated. Done.
  • step S57 if it is determined in step S57 that the generation of the color ratio database is to be terminated, the process proceeds to step S58.
  • step S58 the captured image processing unit 15 stores the correction target values calculated for the projection planes of all colors as a target by repeating the processing of steps S54 to S56 as the color ratio database of the storage unit 16, and the processing is as follows. Is terminated.
  • correction values (parameters) for correction calculated in advance are accumulated in the storage unit 16 as a color ratio database, the color ratio is obtained from the imaging result of the imaging unit 13, and the color A correction value for appropriate correction is adopted from the ratio.
  • the color ratio is obtained by previously obtaining the ratio of red to blue with respect to green from the spectral result of the known imaging unit 13, and using this as a key, a correction value can be selected from the color ratio database.
  • FIG. 8 shows an example of color ratio distribution registered as a color ratio database.
  • FIG. 8 plots the color ratio by obtaining the relationship with the spectral characteristics of the imaging unit 13 from a spectral database (SOCS: Standard Object Color Color Spectra) in which spectral reflectances of various materials are registered. Based on the color ratio plotted in this way, the captured image processing unit 15 can call a correction value corresponding to the estimated color of the projection plane and perform projection plane color correction according to the color of the projection plane. .
  • SOCS Standard Object Color Color Spectra
  • FIG. 9 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Memory and Programmable Read Only Memory
  • the CPU 101 loads the program stored in the ROM 102 and the EEPROM 104 to the RAM 103 via the bus 105 and executes the program, thereby performing the above-described series of processing.
  • a program executed by the computer (CPU 101) can be written in the ROM 102 in advance, and can be installed or updated from the outside in the EEPROM 104 via the input / output interface 105.
  • this technique can also take the following structures.
  • a correction vector for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in an image according to the surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane A calculation unit;
  • a correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image,
  • circular dots are arranged in a grid pattern on a white background,
  • the image processing apparatus, wherein the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern.
  • test pattern image Generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane;
  • circular dots are arranged in a grid pattern on a white background,
  • the test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern.
  • a projection unit that projects a test pattern on an arbitrary projection plane; An imaging unit for imaging the test pattern; A correction vector calculation unit for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane, from a test pattern image obtained as a result of imaging the test pattern by the imaging unit; , A correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image, In the test pattern, circular dots are arranged in a grid pattern on a white background, The test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern.

Abstract

The present disclosure relates to an image processing device, an image processing method, a program, and a projector device that facilitate prompt correction for the effect on the surface shape and the color on a projection surface. A correction vector calculating unit calculates a correction vector used for projection-surface distortion correction for correcting distortions generated in an image according to the surface shape of a projection surface on the basis of a test pattern image acquired by capturing a test pattern projected onto an arbitrary projection surface. A correction data generating unit generates correction data used for projection-surface color correction for correcting image colors according to the color of the projection surface on the basis of the test pattern image. The test pattern is formed from round dots arranged in a grid pattern on a white background. The test pattern image used to calculate the correction vector and to generate the correction data is acquired by a single capture of the test pattern. The present technique is applicable to, for example, a projector device equipped with a projection unit and an imaging unit.

Description

画像処理装置、画像処理方法、プログラム、およびプロジェクタ装置Image processing apparatus, image processing method, program, and projector apparatus
 本開示は、画像処理装置、画像処理方法、プログラム、およびプロジェクタ装置に関し、特に、投影面の表面形状および色の影響に対する補正を、より迅速に行うことができるようにした画像処理装置、画像処理方法、プログラム、およびプロジェクタ装置に関する。 The present disclosure relates to an image processing device, an image processing method, a program, and a projector device, and in particular, an image processing device and an image processing that are capable of correcting the influence of the surface shape and color of a projection surface more quickly. The present invention relates to a method, a program, and a projector apparatus.
 一般的に、プロジェクタ装置には様々な種類があり、例えば、DLP(Digital Light Processing)や液晶などのパネルを利用し、光源の光を透過または反射させることによって、スクリーンなどの投影面に画像を投影するように構成される。 In general, there are various types of projector devices. For example, a panel such as DLP (Digital Light Processing) or liquid crystal is used to transmit or reflect light from a light source, so that an image is projected on a projection surface such as a screen. Configured to project.
 ところで、完全拡散反射特性を備える平坦なスクリーンではなく、日常生活の中における壁を投影面としてプロジェクタ装置により画像を投影する場合、投影面の表面形状に応じて投影された画像に歪が生じたり、投影面の色に応じて投影された画像の色が異なって見えたりすることがある。そのため、投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正を施し、投影面の色に応じて画像の色を補正する投影面色補正を施して、投影される画像に対して投影面の表面形状および色が与える影響を補正する必要があった。 By the way, when projecting an image by a projector device using a wall as a projection surface in daily life instead of a flat screen having perfect diffuse reflection characteristics, the projected image may be distorted according to the surface shape of the projection surface. The color of the projected image may appear different depending on the color of the projection surface. Therefore, a projection plane distortion correction that corrects distortion generated in the image according to the surface shape of the projection plane is performed, and a projection plane color correction that corrects the color of the image according to the color of the projection plane is performed. Therefore, it is necessary to correct the influence of the surface shape and color of the projection surface.
 従来、画像処理により投影面歪補正を行うための手法として、撮像装置を利用したアクティブセンシングと称される手法が多く用いられている。この手法では、プロジェクタ装置からテストパターンを投影して、プロジェクタ装置と撮像装置との対応点を求め、既知の情報からプロジェクタ装置の歪量を推定することで、投影面の表面形状に応じて画像に生じる歪を補正することができる。 Conventionally, as a technique for correcting projection plane distortion by image processing, a technique called active sensing using an imaging device is often used. In this method, a test pattern is projected from the projector device, the corresponding points between the projector device and the imaging device are obtained, and the distortion amount of the projector device is estimated from known information, so that an image corresponding to the surface shape of the projection surface Can be corrected.
 例えば、特許文献1には、チェック模様のテストパターンを使用して、チェッカーとチェッカーのコーナーの部分を検出し、プロジェクタ装置と撮像装置との対応点を求める手法が開示されている。 For example, Patent Document 1 discloses a method of detecting a checker and a corner portion of the checker using a check pattern, and obtaining a corresponding point between the projector device and the imaging device.
 また、画像処理により投影面色補正を行うための手法として、従来、複数の色をプロジェクタ装置から投影し、投影面との減法混色結果から投影面の色を推定したり、その色による影響を補正する補正値を求めたりする手法が多く用いられている。 Also, as a method for correcting the projection plane color by image processing, conventionally, multiple colors are projected from the projector device, the color of the projection plane is estimated from the subtractive color mixture result with the projection plane, and the influence of the color is corrected. A technique for obtaining a correction value to be used is often used.
 しかしながら、日常生活の中における様々な壁を投影面とする場合、分光反射の違いから、実際の投影面の色とは違う色が推定されることが多かった。そのため、画像処理により投影面色補正を高精度に行うためには、プロジェクタ装置から多くの色を投影して、投影面との減法混色結果が期待値になるまで補正を繰り返す必要があった。従って、プロジェクタ装置から投影される多くの色を撮像する必要があるだけでなく、投影面との減法混色結果が期待値に収束するまでの時間を予測することは困難であった。 However, when various walls in daily life are used as the projection plane, a color different from the actual projection plane is often estimated from the difference in spectral reflection. Therefore, in order to perform projection surface color correction with high accuracy by image processing, it is necessary to project a large number of colors from the projector device and repeat correction until the subtractive color mixture result with the projection surface reaches an expected value. Therefore, it is not only necessary to image many colors projected from the projector apparatus, but it is difficult to predict the time until the subtractive color mixture result with the projection surface converges to the expected value.
国際公開第2016/002510号International Publication No. 2016/002510
 上述したように、日常生活の中における壁を投影面とした場合、投影面歪補正を行うためにテストパターンを投影し、さらに、投影面色補正を行うために多くの色の投影を繰り返す必要があった。従って、それらの処理には長時間を要しており、より迅速に処理を行うことが求められていた。 As described above, when a wall in daily life is used as a projection plane, it is necessary to project a test pattern in order to perform projection plane distortion correction, and to repeat projection of many colors in order to perform projection plane color correction. there were. Therefore, these processes require a long time, and it has been required to perform the processes more quickly.
 本開示は、このような状況に鑑みてなされたものであり、投影面の表面形状および色の影響に対する補正を、より迅速に行うことができるようにするものである。 The present disclosure has been made in view of such a situation, and makes it possible to more quickly correct the influence of the surface shape and color of the projection surface.
 本開示の一側面の画像処理装置は、任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部とを備え、前記テストパターンは、円形のドットが白地に格子状に配置されており、前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである。 An image processing apparatus according to one aspect of the present disclosure corrects distortion generated in an image according to a surface shape of the projection surface from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection surface. A correction vector calculation unit that obtains a correction vector used in distortion correction, and a correction data generation unit that generates correction data used in projection plane color correction that corrects the color of the image according to the color of the projection plane from the test pattern image The test pattern includes circular dots arranged in a grid pattern on a white background, and the test pattern image used for calculation of the correction vector and generation of the correction data is one time of the test pattern. It was obtained by imaging.
 本開示の一側面の画像処理方法またはプログラムは、任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求め、前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成するステップを含み、前記テストパターンは、円形のドットが白地に格子状に配置されており、前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである。 An image processing method or program according to one aspect of the present disclosure corrects distortion generated in an image according to a surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane. Obtaining a correction vector used in projection plane distortion correction, and generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane, The circular dots are arranged in a grid pattern on a white background, and the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern. is there.
 本開示の一側面のプロジェクタ装置は、任意の投影面にテストパターンを投影する投影部と、前記テストパターンを撮像する撮像部と、前記撮像部が前記テストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部とを備え、前記テストパターンは、円形のドットが白地に格子状に配置されており、前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである。 A projector device according to an aspect of the present disclosure includes a projection unit that projects a test pattern on an arbitrary projection plane, an imaging unit that captures the test pattern, and a test pattern image obtained as a result of imaging the test pattern by the imaging unit A correction vector calculation unit for obtaining a correction vector used in correction of projection plane distortion for correcting distortion generated in the image according to the surface shape of the projection plane, and an image corresponding to the color of the projection plane from the test pattern image. A correction data generation unit for generating correction data used in projection plane color correction for correcting the color of the test pattern, wherein the test pattern includes circular dots arranged in a grid pattern on a white background, The test pattern image used for generation of correction data is obtained by one imaging of the test pattern.
 本開示の一側面においては、任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルが求められ、前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データが生成される。そして、前記テストパターンは、円形のドットが白地に格子状に配置されており、前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものとされる。 In one aspect of the present disclosure, projection plane distortion correction is performed to correct distortion generated in an image according to a surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane. A correction vector to be used is obtained, and correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane is generated from the test pattern image. In the test pattern, circular dots are arranged in a grid pattern on a white background, and the test pattern image used for calculating the correction vector and generating the correction data is obtained by capturing the test pattern once. It is assumed that it was obtained.
 本開示の一側面によれば、投影面の表面形状および色の影響に対する補正を、より迅速に行うことができる。 According to one aspect of the present disclosure, correction for the influence of the surface shape and color of the projection surface can be performed more quickly.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用したプロジェクタ装置の一実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one Embodiment of the projector apparatus to which this technique is applied. テストパターンの一例を示す図である。It is a figure which shows an example of a test pattern. 撮像画像処理部の構成例を示す図である。It is a figure which shows the structural example of a captured image process part. 投影面の表面形状および色の影響に対応して補正を施した画像を投影する処理を説明するフローチャートである。It is a flowchart explaining the process which projects the image which correct | amended corresponding to the influence of the surface shape and color of a projection surface. 補正ベクトル算出処理を説明するフローチャートである。It is a flowchart explaining a correction vector calculation process. 補正データ生成処理を説明するフローチャートである。It is a flowchart explaining a correction data generation process. 色比データベースの生成処理を説明するフローチャートである。It is a flowchart explaining the production | generation process of a color ratio database. 色比データベースとして登録された色比の分布例を示す図である。It is a figure which shows the example of distribution of the color ratio registered as a color ratio database. 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。And FIG. 18 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present technology is applied will be described in detail with reference to the drawings.
 <プロジェクタ装置の構成例>
 図1は、本技術を適用したプロジェクタ装置の一実施の形態の構成例を示すブロック図である。
<Configuration example of projector device>
FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a projector device to which the present technology is applied.
 図1に示すように、プロジェクタ装置11は、投影部12、撮像部13、投影画像処理部14、撮像画像処理部15、および記憶部16を備えて構成され、投影部12と撮像部13との対応点に基づいて投影面歪補正および投影面色補正を行うことができる。 As shown in FIG. 1, the projector device 11 includes a projection unit 12, an imaging unit 13, a projection image processing unit 14, a captured image processing unit 15, and a storage unit 16. The projection plane distortion correction and the projection plane color correction can be performed based on the corresponding points.
 投影部12は、例えば、DLPや液晶などを利用して、光源から照射される光を透過または反射させることによって、図示しない投影面に画像を投影する。また、投影部12は、例えば、様々な表面形状および色の投影面に画像を投影する際には、投影面の表面形状によって画像に生じる歪を補正する投影面歪補正、および、投影面の色によって画像の色が異なって見えることを補正する投影面色補正が施された画像を投影することができる。さらに、投影部12は、投影面歪補正および投影面色補正において利用されるテストパターン(例えば、後述する図2)を投影することができる。 The projection unit 12 projects an image on a projection surface (not shown) by transmitting or reflecting light emitted from the light source using, for example, DLP or liquid crystal. In addition, for example, when projecting an image onto projection surfaces of various surface shapes and colors, the projection unit 12 corrects distortion generated in the image due to the surface shape of the projection surface, It is possible to project an image that has undergone projection plane color correction for correcting that the color of the image looks different depending on the color. Furthermore, the projection unit 12 can project a test pattern (for example, FIG. 2 described later) used in the projection plane distortion correction and the projection plane color correction.
 撮像部13は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子を使用して、投影部12が投影面に投影するテストパターンを撮像する。このとき、撮像部13がテストパターンを撮像して得られる画像(以下適宜、テストパターン画像と称する)は、投影面の表面形状によって歪みが生じ、投影面の色によって色が異なって見えるようなものとなる。そして、撮像部13は、テストパターン画像を撮像画像処理部15に供給する。 The imaging unit 13 uses, for example, an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor to image a test pattern that the projection unit 12 projects onto the projection surface. At this time, an image obtained by imaging the test pattern by the imaging unit 13 (hereinafter referred to as a test pattern image as appropriate) is distorted due to the surface shape of the projection surface, and the color looks different depending on the color of the projection surface. It will be a thing. Then, the imaging unit 13 supplies the test pattern image to the captured image processing unit 15.
 投影画像処理部14は、例えば、図示しない再生装置により再生される画像に対して、投影面歪補正および投影面色補正を施し、投影面に投影されたときに歪がなく、色が異なって見えることがないように画像処理された画像を、投影部12に供給する。 For example, the projection image processing unit 14 performs projection plane distortion correction and projection plane color correction on an image reproduced by a reproduction device (not shown), and when projected onto the projection plane, there is no distortion and the colors look different. The image processed so as not to occur is supplied to the projection unit 12.
 撮像画像処理部15は、撮像部13から供給されるテストパターン画像に基づき、例えば、投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出処理、および、投影面色補正で用いられる補正データを生成する補正データ生成処理を行う。このとき、撮像画像処理部15は、補正ベクトル算出処理および補正データ生成処理において同一のテストパターン画像を用いることができ、撮像部13は、テストパターンを1回だけ撮像すればよい。 Based on the test pattern image supplied from the imaging unit 13, the captured image processing unit 15 generates correction vector calculation processing for obtaining a correction vector used in projection plane distortion correction and correction data used in projection plane color correction, for example. Correction data generation processing is performed. At this time, the captured image processing unit 15 can use the same test pattern image in the correction vector calculation process and the correction data generation process, and the imaging unit 13 needs to capture the test pattern only once.
 記憶部16は、撮像画像処理部15が補正データ生成処理を行う際に参照する色比データベースを記憶する。例えば、図7および図8を参照して後述するように、白色の領域を使用して投影面色補正を行うための色比データベースが予め求められ、記憶部16に記憶される。例えば、色比データベースは、緑色に対する赤色の色比(R/G)および緑色に対する青色の色比(B/G)を軸として、2次元LUT(Look up Table)化されたものである。 The storage unit 16 stores a color ratio database that is referred to when the captured image processing unit 15 performs correction data generation processing. For example, as described later with reference to FIGS. 7 and 8, a color ratio database for performing projection plane color correction using a white region is obtained in advance and stored in the storage unit 16. For example, the color ratio database is a two-dimensional LUT (Lookup table) with the red color ratio (R / G) to green and the blue color ratio (B / G) to green as axes.
 このようにプロジェクタ装置11は構成されており、投影部12により投影されたテストパターンを撮像部13が1回だけ撮像し、その撮像により得られる1枚のテストパターン画像を使用して補正ベクトル算出処理および補正データ生成処理が行われる。これにより、プロジェクタ装置11は、従来のように、投影面歪補正を行うためにテストパターンを投影し、さらに、投影面色補正を行うために多くの色の投影を繰り返すことはなく、投影される画像に対して投影面の表面形状および色が与える影響を、迅速に補正することができる。 Thus, the projector apparatus 11 is configured, and the imaging unit 13 captures the test pattern projected by the projection unit 12 only once, and the correction vector is calculated using one test pattern image obtained by the imaging. Processing and correction data generation processing are performed. As a result, the projector device 11 projects the test pattern in order to correct the projection plane distortion and projects the projection pattern without repeating many color projections in order to perform the projection plane color correction. The influence of the surface shape and color of the projection surface on the image can be corrected quickly.
 <テストパターンの一例>
 図2には、プロジェクタ装置11の投影面歪補正および投影面色補正で利用されるテストパターンの一例が示されている。
<Example of test pattern>
FIG. 2 shows an example of a test pattern used for projection plane distortion correction and projection plane color correction of the projector apparatus 11.
 図2に示すように、プロジェクタ装置11は、小さな円形のドットが白地に格子状に配置されたテストパターン(所謂、水玉模様)を採用する。このテストパターンは、例えば、ドットの領域が黒色であり、ドット以外の領域が白色である。なお、格子状に配置されたドットの座標を求めることができれば、テストパターンのドットの形状は円形に限定されることはなく、例えば、四角形や三角形など様々な任意の形状を採用することができる。 As shown in FIG. 2, the projector apparatus 11 employs a test pattern (so-called polka dot pattern) in which small circular dots are arranged in a grid pattern on a white background. In this test pattern, for example, the dot area is black and the area other than the dot is white. If the coordinates of the dots arranged in a grid pattern can be obtained, the dot shape of the test pattern is not limited to a circle, and for example, various arbitrary shapes such as a square and a triangle can be adopted. .
 撮像画像処理部15は、このようなテストパターンの1回の撮像で得られる1枚のテストパターン画像を使用して、ドットの配置から投影面歪補正で用いられる補正ベクトルを求め、白色の領域から投影面色補正で用いられる補正データを生成することができる。 The captured image processing unit 15 obtains a correction vector used in projection plane distortion correction from the dot arrangement by using one test pattern image obtained by one imaging of such a test pattern, and obtains a white region. Correction data used in projection plane color correction can be generated.
 <撮像画像処理部の構成例>
 図3を参照して、撮像画像処理部15の構成、および、撮像画像処理部15において行われる処理について説明する。
<Configuration Example of Captured Image Processing Unit>
With reference to FIG. 3, the configuration of the captured image processing unit 15 and the processing performed in the captured image processing unit 15 will be described.
 図3に示すように、撮像画像処理部15は、対応点検出部21、補正ベクトル算出部22、色比検出部23、および補正データ作成部24を備えて構成される。 As shown in FIG. 3, the captured image processing unit 15 includes a corresponding point detection unit 21, a correction vector calculation unit 22, a color ratio detection unit 23, and a correction data creation unit 24.
 対応点検出部21は、撮像部13から供給されるテストパターン画像に写されている全てのドットの重心を検波し、それらのドットの重心座標を算出する。そして、対応点検出部21は、テストパターンに配置されているドットの並び順(例えば、左上からラスタ順)に応じてドットの重心座標を保持し、投影部12により投影される画像の座標と、撮像部13により撮像された画像の座標との対応点を検出する。 Corresponding point detection unit 21 detects the centroids of all dots copied in the test pattern image supplied from imaging unit 13 and calculates the centroid coordinates of those dots. Then, the corresponding point detection unit 21 holds the barycentric coordinates of the dots according to the arrangement order of the dots arranged in the test pattern (for example, the raster order from the upper left), and the coordinates of the image projected by the projection unit 12 Then, a corresponding point with the coordinates of the image captured by the imaging unit 13 is detected.
 また、対応点検出部21は、投影される画像の画素単位のような緻密な粒度で対応点を求める必要はなく、例えば、テストパターンにおいて離散的に配置されるドットに対応する粒度で対応点を求めればよい。例えば、テストパターンに配置されるドットの粒度は、投影面の表面形状が極端に歪んでなく、ゆるやかな曲率の曲面に対して十分な座標密度となるように設定される。 Further, the corresponding point detection unit 21 does not need to obtain corresponding points with a fine granularity such as a pixel unit of the projected image. For example, the corresponding points have a granularity corresponding to dots that are discretely arranged in the test pattern. You can ask for. For example, the particle size of the dots arranged in the test pattern is set so that the surface shape of the projection surface is not extremely distorted and the coordinate density is sufficient for a curved surface with a gentle curvature.
 補正ベクトル算出部22は、対応点検出部21により検出された全てのドットの重心座標が格子配列となるような補正ベクトルを算出する。この補正ベクトルを投影部12に適用することで、画像に生じる歪を幾何的に補正することができる。即ち、補正ベクトル算出部22は、投影面の表面形状に応じて歪が生じたテストパターン画像から、そのテストパターン画像の歪みを元に戻すような補正ベクトル(即ち、検出されたドットの重心座標を格子配列とする補正ベクトル)を算出することで、投影面の表面形状に応じて画像に生じる歪を補正するための補正ベクトルを求めることができる。 The correction vector calculation unit 22 calculates a correction vector so that the barycentric coordinates of all the dots detected by the corresponding point detection unit 21 become a grid array. By applying this correction vector to the projection unit 12, distortion generated in the image can be geometrically corrected. In other words, the correction vector calculation unit 22 corrects the correction vector (that is, the barycentric coordinates of the detected dot) from the test pattern image in which the distortion is generated according to the surface shape of the projection surface. By calculating (correction vector having a grid array), it is possible to obtain a correction vector for correcting distortion generated in the image in accordance with the surface shape of the projection surface.
 色比検出部23は、例えば、対応点検出部21により検出された対応点ごとに、図2のテストパターンにおける白色の領域を使用した色比を検出する。 The color ratio detection unit 23 detects, for example, the color ratio using the white area in the test pattern of FIG. 2 for each corresponding point detected by the corresponding point detection unit 21.
 補正データ作成部24は、記憶部16に記憶されている色比データベースを参照し、色比検出部23により検出された色比に対応する補正値を読み出して、対応点検出部21により検出された対応点ごとの複数の補正値からなる補正データを生成する。なお、投影面色補正に関しては、幾何補正で用いるテストパターン(図2)を反転させ、投影面の色の推定に最も寄与するであろう色に差し替える。即ち、補正データ作成部24は、投影面の色に応じて色が異なるものと見えるテストパターン画像から、そのテストパターン画像の色を元に戻すような補正データ(即ち、検出された色比に対応する、対応点ごとの複数の補正値)を生成することができる。 The correction data creation unit 24 refers to the color ratio database stored in the storage unit 16, reads a correction value corresponding to the color ratio detected by the color ratio detection unit 23, and is detected by the corresponding point detection unit 21. Correction data including a plurality of correction values for each corresponding point is generated. As for the projection surface color correction, the test pattern (FIG. 2) used in the geometric correction is inverted and replaced with a color that will most contribute to the estimation of the color of the projection surface. That is, the correction data creation unit 24 corrects the correction data (that is, the detected color ratio to the detected color ratio) from the test pattern image that appears to be different depending on the color of the projection surface. Corresponding multiple correction values for each corresponding point) can be generated.
 <プロジェクタ装置が実行する処理例>
 図4に示すフローチャートを参照して、プロジェクタ装置11が、投影面の表面形状および色の影響に対応して補正された画像を投影する処理の一例について説明する。
<Example of processing executed by projector device>
With reference to the flowchart shown in FIG. 4, an example of processing in which the projector device 11 projects an image corrected in accordance with the influence of the surface shape and color of the projection surface will be described.
 ステップS11において、投影部12は、任意の投影面に対して、図2に示したようなテストパターンを投影する。 In step S11, the projection unit 12 projects a test pattern as shown in FIG. 2 onto an arbitrary projection plane.
 ステップS12において、撮像部13は、投影部12により投影面に投影されているテストパターンを撮像して、その撮像の結果として得られるテストパターン画像を撮像画像処理部15に供給する。 In step S12, the imaging unit 13 images the test pattern projected on the projection plane by the projection unit 12, and supplies the test pattern image obtained as a result of the imaging to the captured image processing unit 15.
 ステップS13において、撮像画像処理部15は、投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出処理(後述する図5参照)を行って、補正ベクトルを投影画像処理部14に供給する。 In step S13, the captured image processing unit 15 performs a correction vector calculation process (see FIG. 5 described later) for obtaining a correction vector used in projection plane distortion correction, and supplies the correction vector to the projection image processing unit 14.
 ステップS14において、撮像画像処理部15は、投影面色補正で用いられる補正データを生成する補正データ生成処理(後述する図6参照)を行って、補正データを投影画像処理部14に供給する。 In step S14, the captured image processing unit 15 performs correction data generation processing (see FIG. 6 described later) for generating correction data used in projection surface color correction, and supplies the correction data to the projection image processing unit 14.
 ステップS15において、投影画像処理部14は、投影する画像に対して歪および色を補正する投影画像補正処理を行う。即ち、投影画像処理部14は、ステップS13で撮像画像処理部15から供給される補正ベクトルを用いて投影面歪補正を行うとともに、ステップS14で撮像画像処理部15から供給される補正データを用いて投影面色補正を行う。そして、投影画像処理部14により投影面歪補正および投影面色補正が施されることによって、投影面の表面形状によって画像に生じる歪が補正され、投影面の色によって画像の色が異なって見えることがないように色が補正された画像が投影部12に供給され、その画像を投影部12が投影して、処理は終了される。 In step S15, the projection image processing unit 14 performs a projection image correction process for correcting distortion and color for the image to be projected. That is, the projection image processing unit 14 performs projection plane distortion correction using the correction vector supplied from the captured image processing unit 15 in step S13, and uses the correction data supplied from the captured image processing unit 15 in step S14. To correct the projection surface color. Then, by performing projection plane distortion correction and projection plane color correction by the projection image processing unit 14, distortion generated in the image due to the surface shape of the projection plane is corrected, and the color of the image looks different depending on the color of the projection plane. An image whose color has been corrected so as not to occur is supplied to the projection unit 12, and the projection unit 12 projects the image, and the processing is terminated.
 図5は、図4のステップS13における補正ベクトル算出処理を説明するフローチャートである。 FIG. 5 is a flowchart for explaining the correction vector calculation process in step S13 of FIG.
 ステップS21において、対応点検出部21は、図4のステップS12で撮像部13から供給されるテストパターン画像に写されている全てのドットを検出する。 In step S21, the corresponding point detection unit 21 detects all dots copied in the test pattern image supplied from the imaging unit 13 in step S12 of FIG.
 ステップS22において、対応点検出部21は、ステップS21で検出した全てのドットの重心を検波し、それらのドットの重心座標を算出する。 In step S22, the corresponding point detection unit 21 detects the centroids of all the dots detected in step S21, and calculates the centroid coordinates of those dots.
 ステップS23において、対応点検出部21は、例えば、ラスタ順に処理を行う場合には、左上端に最も近いドットを、最初に重心座標の保持を行う処理対象として探索する。 In step S23, for example, when the corresponding point detection unit 21 performs processing in raster order, the corresponding point detection unit 21 searches for a dot closest to the upper left end as a processing target that first holds the barycentric coordinates.
 ステップS24において、対応点検出部21は、ステップS23の探索により特定されたドットの重心座標を保持する。 In step S24, the corresponding point detection unit 21 holds the barycentric coordinates of the dots specified by the search in step S23.
 ステップS25において、対応点検出部21は、例えば、ラスタ順に処理を行う場合には、直前に処理対象としたドットの右方向で最も近いドットを、次に重心座標の保持を行う処理対象として探索する。 In step S <b> 25, for example, when processing in raster order, the corresponding point detection unit 21 searches for a dot closest to the right in the right direction as a processing target immediately before as a processing target for holding the barycentric coordinates. To do.
 ステップS26において、対応点検出部21は、ステップS25の探索により特定されたドットの重心座標を保持する。 In step S26, the corresponding point detection unit 21 holds the barycentric coordinates of the dots specified by the search in step S25.
 ステップS27において、対応点検出部21は、例えば、ラスタ順に処理を行う場合には、現在の水平ラインにある全てのドットを処理対象としたか否かを判定する。例えば、現在の水平ラインの右端にあるドットが処理対象となっている場合には、現在の水平ラインにある全てのドットを処理対象としたと判定される。 In step S27, the corresponding point detection unit 21 determines whether or not all dots in the current horizontal line have been processed, for example, when processing is performed in raster order. For example, when the dot at the right end of the current horizontal line is the processing target, it is determined that all the dots on the current horizontal line are the processing target.
 ステップS27において、対応点検出部21が、現在の水平ラインにある全てのドットを処理対象としていないと判定した場合、処理はステップS25に戻り、現在の水平ラインで次のドットを処理対処として、以下、同様の処理が繰り返される。 In step S27, when the corresponding point detection unit 21 determines that all the dots in the current horizontal line are not to be processed, the process returns to step S25, and the next dot in the current horizontal line is processed. Thereafter, the same processing is repeated.
 一方、ステップS27において、対応点検出部21は、現在の水平ラインにある全てのドットを処理対象としたと判定された場合、処理はステップS28に進む。 On the other hand, if the corresponding point detection unit 21 determines in step S27 that all dots in the current horizontal line are to be processed, the process proceeds to step S28.
 ステップS28において、対応点検出部21は、処理対象とするドットを、左端に移動して、その下方向で最も近いドットを、次の水平ラインの最初のドットとして探索する。 In step S28, the corresponding point detection unit 21 moves the dot to be processed to the left end, and searches for the closest dot in the downward direction as the first dot of the next horizontal line.
 ステップS29において、対応点検出部21は、例えば、全ての水平ラインを処理対象としたか否か、例えば、ラスタ順に処理を行う場合には、最下端の水平ラインが処理対象とされたか否かを判定する。例えば、ステップS28における探索の結果、下方向で最も近いドットが特定された場合には、全ての水平ラインを処理対象としていないと判定される。 In step S29, the corresponding point detection unit 21 determines whether, for example, all horizontal lines are processed, for example, if processing is performed in raster order, whether the lowest horizontal line is processed. Determine. For example, if the closest dot in the downward direction is specified as a result of the search in step S28, it is determined that not all horizontal lines are to be processed.
 ステップS29において、対応点検出部21が、全ての水平ラインを処理対象としていないと判定した場合、処理はステップS26に戻り、ステップS28における探索で特定されたドットの水平ラインを処理対象として、以下、同様の処理が繰り返される。 In step S29, when the corresponding point detection unit 21 determines that not all horizontal lines are to be processed, the process returns to step S26, and the horizontal line of the dot specified by the search in step S28 is set as a processing target. The same process is repeated.
 一方、ステップS29において、対応点検出部21が、全ての水平ラインを処理対象としたと判定した場合、即ち、最下端の水平ラインまで処理対象とされている場合、処理はステップS30に進む。この場合、左上端のドットから右下端のドットまで処理対象とされて重心座標が保持されている。 On the other hand, if the corresponding point detection unit 21 determines in step S29 that all horizontal lines have been processed, that is, if the lowest horizontal line has been processed, the process proceeds to step S30. In this case, the center-of-gravity coordinates are held from the upper left dot to the lower right dot, which is the processing target.
 ステップS30において、補正ベクトル算出部22は、ステップS21乃至S29の処理で対応点検出部21により検出され、保持されている全てのドットの重心座標が格子配列となるような補正ベクトルを算出する。そして、補正ベクトル算出部22は、算出した補正ベクトルを保持し、補正ベクトル算出処理は終了される。 In step S30, the correction vector calculation unit 22 calculates a correction vector in which the barycentric coordinates of all the dots detected and held by the corresponding point detection unit 21 in the processing of steps S21 to S29 become a grid array. And the correction vector calculation part 22 hold | maintains the calculated correction vector, and a correction vector calculation process is complete | finished.
 図6は、図4のステップS14における補正データ生成処理を説明するフローチャートである。 FIG. 6 is a flowchart for explaining the correction data generation process in step S14 of FIG.
 ステップS41において、色比検出部23は、図4のステップS12で撮像部13から供給されるテストパターン画像のドット以外の部分を抽出して、平滑化することにより投影面の色を抽出する。 In step S41, the color ratio detection unit 23 extracts the color of the projection plane by extracting and smoothing portions other than the dots of the test pattern image supplied from the imaging unit 13 in step S12 of FIG.
 ステップS42において、色比検出部23は、緑色に対する赤色の色比(R/G)および緑色に対する青色の色比(B/G)を算出し、保持する。 In step S42, the color ratio detection unit 23 calculates and holds the red color ratio (R / G) to green and the blue color ratio (B / G) to green.
 ステップS43において、補正データ作成部24は、記憶部16に記憶されている色比データベースを参照し、対応点検出部21により検出された対応点ごとに、ステップS42で色比検出部23が保持している色比に対応した補正値を抽出する。 In step S43, the correction data creation unit 24 refers to the color ratio database stored in the storage unit 16, and holds the color ratio detection unit 23 in step S42 for each corresponding point detected by the corresponding point detection unit 21. A correction value corresponding to the current color ratio is extracted.
 ステップS44において、補正データ作成部24は、ステップS43で対応点ごとに抽出された補正値からなる補正データを作成して保持し、補正データ生成処理は終了される。 In step S44, the correction data creation unit 24 creates and holds correction data composed of the correction values extracted for each corresponding point in step S43, and the correction data generation process ends.
 以上のように、プロジェクタ装置11は、図2に示したようなテストパターンを利用して、投影面歪補正で用いられる補正ベクトルを求め、投影面色補正で用いられる補正データを生成することができる。そして、補正ベクトルを用いて投影面歪補正が施され、補正データを用いて投影面色補正が施された画像、即ち、投影面の表面形状によって画像に生じる歪が補正され、投影面の色によって画像の色が異なって見えることがないような画像を投影することができる。 As described above, the projector device 11 can use the test pattern as shown in FIG. 2 to obtain a correction vector used for projection plane distortion correction and generate correction data used for projection plane color correction. . Then, the projection plane distortion correction is performed using the correction vector, and the image on which the projection plane color correction is performed using the correction data, that is, the distortion generated in the image due to the surface shape of the projection plane is corrected, and the color of the projection plane is corrected. It is possible to project an image that does not look different in the color of the image.
 このとき、プロジェクタ装置11は、テストパターンの撮像を1回行うだけでよういので、画像に対する補正を、より迅速に行うことができる。また、プロジェクタ装置11は、上述したような色比データベースを採用することで、撮像部13の分光範囲のすべての投影面色の補正を高精度で行うことができるとともに、高速に補正データを作成することができる。 At this time, since the projector device 11 only needs to capture the test pattern once, the image can be corrected more quickly. In addition, by adopting the color ratio database as described above, the projector device 11 can correct all projection plane colors in the spectral range of the imaging unit 13 with high accuracy and create correction data at high speed. be able to.
 従って、プロジェクタ装置11は、例えば、色付きの歪んだ壁面に対して画像を投影する際に、テストパターンの1回の撮像で投影面歪補正および投影面色補正を行うことができ、投影される画像に対して投影面の表面形状および色が与える影響を、迅速に補正することができる。 Therefore, for example, when projecting an image on a colored distorted wall surface, the projector device 11 can perform projection plane distortion correction and projection plane color correction by one imaging of a test pattern, and the projected image Thus, the influence of the surface shape and color of the projection surface can be quickly corrected.
 <補正値の求め方の一例>
 図7および図8を参照して、白色を使用した投影面色補正において使用される補正値の求め方について説明する。
<An example of how to determine the correction value>
With reference to FIG. 7 and FIG. 8, a description will be given of how to obtain a correction value used in projection plane color correction using white.
 例えば、投影部12が投影する図2のテストパターンの白色の領域(ドット以外の領域)は、投影部12が有するパネル色すべてを点灯させたときの出力である。この白色を出力する際の分光特性を利用して、想定する投影面との積和により実際に出力されるスペクトルを計算し、そのスペクトルが、完全拡散反射時のスペクトルになるような信号処理を行うことにより、投影面色の補正が実現する。 For example, the white area (area other than the dots) of the test pattern in FIG. 2 projected by the projection unit 12 is an output when all the panel colors of the projection unit 12 are turned on. Using this spectral characteristic when outputting white, calculate the spectrum actually output by the product sum with the projected plane, and perform signal processing so that the spectrum becomes the spectrum at the time of perfect diffuse reflection. By doing so, the projection plane color is corrected.
 つまり、テストパターンを投影した場合、投影部12のプロジェクタスペクトルに基づいた光が出力される。通常のスクリーンは完全拡散反射特性を持つため、人間の目で見たり撮像部13で撮像したりした場合、プロジェクタスペクトルそのものの光が観測され、撮像部13の分光特性と投影部12のプロジェクタスペクトルの積和が観測される光の量になる。これに対し、壁面反射の場合には壁の反射スペクトル、例えば、色が付いている壁の場合、特定の波長が減衰するような特性が反射スペクトルに表れる。このため、色付きの壁の場合はプロジェクタスペクトルと壁の反射スペクトルの積和が、人間や撮像部13で観測される光になる。その光を撮像部13で観測するため、スクリーンと色付きの壁では検波される色合い、色比が異なるものとなる。 That is, when a test pattern is projected, light based on the projector spectrum of the projection unit 12 is output. Since a normal screen has complete diffuse reflection characteristics, when the image is viewed by the human eye or imaged by the imaging unit 13, the light of the projector spectrum itself is observed, and the spectral characteristics of the imaging unit 13 and the projector spectrum of the projection unit 12 are observed. Is the amount of light observed. On the other hand, in the case of wall reflection, a reflection spectrum of the wall, for example, in the case of a colored wall, a characteristic that a specific wavelength is attenuated appears in the reflection spectrum. For this reason, in the case of a colored wall, the product sum of the projector spectrum and the reflection spectrum of the wall becomes light that is observed by a person or the imaging unit 13. Since the light is observed by the imaging unit 13, the detected hue and color ratio are different between the screen and the colored wall.
 従って、様々な色の投影面ごとの色比を予め求めて、色比データベースとして記憶部16に記憶させておくことで、投影面の色に応じた色補正を行うことができる。 Therefore, by obtaining in advance the color ratio for each projection plane of various colors and storing it in the storage unit 16 as a color ratio database, it is possible to perform color correction according to the color of the projection plane.
 図7のフローチャートを参照して、色比データベースの生成処理について説明する。なお、色比データベースは、様々な色の投影面に投影された白色を撮像部13が撮像して得られる画像を用いて、例えば、撮像画像処理部15が生成することができる。 The color ratio database generation process will be described with reference to the flowchart of FIG. The color ratio database can be generated by, for example, the captured image processing unit 15 using an image obtained by the imaging unit 13 capturing white images projected on projection surfaces of various colors.
 ステップS51において、撮像画像処理部15は、完全拡散反射特性を備えるスクリーンに投影された白色を撮像部13が撮像して得られる画像から、完全拡散反射時のスペクトル、即ち、投影部12のプロジェクタスペクトルを抽出する。 In step S51, the captured image processing unit 15 obtains a spectrum at the time of complete diffuse reflection, that is, the projector of the projection unit 12, from an image obtained by the imaging unit 13 capturing white projected on a screen having complete diffuse reflection characteristics. Extract the spectrum.
 ステップS52において、撮像画像処理部15は、ステップS51で抽出したプロジェクタスペクトルと、スペクトルを観測するための撮像部13のカメラスペクトルとの積和を算出する。 In step S52, the captured image processing unit 15 calculates the product sum of the projector spectrum extracted in step S51 and the camera spectrum of the imaging unit 13 for observing the spectrum.
 ステップS53において、撮像画像処理部15は、ステップS52で算出した積和値を、補正目標色比として保持する。 In step S53, the captured image processing unit 15 holds the product-sum value calculated in step S52 as a corrected target color ratio.
 ステップS54において、撮像画像処理部15は、所望の色の投影面に投影された白色を撮像部13が撮像して得られる画像から、その投影面の壁面スペクトルを抽出する。 In step S54, the captured image processing unit 15 extracts the wall surface spectrum of the projection plane from the image obtained by the imaging unit 13 capturing the white color projected on the projection plane of the desired color.
 ステップS55において、撮像画像処理部15は、ステップS54で抽出した壁面スペクトルと、プロジェクタスペクトルおよびカメラスペクトルとの積和を算出する。 In step S55, the captured image processing unit 15 calculates the product sum of the wall surface spectrum extracted in step S54, the projector spectrum, and the camera spectrum.
 ステップS56において、撮像画像処理部15は、ステップS55で算出した積和値が実際に観測される色比になるため、その色比と、ステップS53で保持した補正目標色比との比較結果を、補正目標値として算出する。 In step S56, since the product sum value calculated in step S55 is the actually observed color ratio, the captured image processing unit 15 obtains a comparison result between the color ratio and the correction target color ratio held in step S53. The correction target value is calculated.
 ステップS57において、撮像画像処理部15は、色比データベースの生成を終了するか否かを判定する。例えば、所望の全ての色の投影面に白色を投影し、それら全ての補正目標値が算出された場合には、色比データベースの生成を終了すると判定される。 In step S57, the captured image processing unit 15 determines whether or not to end the generation of the color ratio database. For example, when white is projected on the projection planes of all desired colors and all of the correction target values are calculated, it is determined that the generation of the color ratio database is finished.
 ステップS57において、色比データベースの生成を終了しないと判定された場合、処理はステップS54に戻り、まだ補正目標値を算出していない色の投影面を対象として、以下、同様の処理が繰り返して行われる。 If it is determined in step S57 that the generation of the color ratio database is not terminated, the process returns to step S54, and the same process is repeated for the projection plane of the color for which the correction target value has not yet been calculated. Done.
 一方、ステップS57において、色比データベースの生成を終了すると判定された場合、処理はステップS58に進む。 On the other hand, if it is determined in step S57 that the generation of the color ratio database is to be terminated, the process proceeds to step S58.
 ステップS58において、撮像画像処理部15は、ステップS54乃至S56の処理を繰り返して全ての色の投影面を対象として算出された補正目標値を、記憶部16の色比データベースとして保存し、処理は終了される。 In step S58, the captured image processing unit 15 stores the correction target values calculated for the projection planes of all colors as a target by repeating the processing of steps S54 to S56 as the color ratio database of the storage unit 16, and the processing is as follows. Is terminated.
 プロジェクタ装置11では、このように事前に計算した補正のための補正値(パラメータ)を、色比データベースとして記憶部16に蓄積しておき、撮像部13の撮像結果から色比を求め、その色比から適切な補正のための補正値が採用される。ここで、色比とは、あらかじめ既知の撮像部13の分光結果から緑色に対する、赤色と青色の割合を求めたものであり、それをキーとして色比データベースから補正値を選択することができる。 In the projector device 11, correction values (parameters) for correction calculated in advance are accumulated in the storage unit 16 as a color ratio database, the color ratio is obtained from the imaging result of the imaging unit 13, and the color A correction value for appropriate correction is adopted from the ratio. Here, the color ratio is obtained by previously obtaining the ratio of red to blue with respect to green from the spectral result of the known imaging unit 13, and using this as a key, a correction value can be selected from the color ratio database.
 例えば、図8には、色比データベースとして登録された色比の分布例が示されている。 For example, FIG. 8 shows an example of color ratio distribution registered as a color ratio database.
 図8は、様々な材質の分光反射率が登録された分光データベース(SOCS:Standard Object Color Spectra)から、撮像部13の分光特性との関係を求めて色比をプロットしたものである。このようにプロットされる色比に基づいて、撮像画像処理部15は、推定された投影面の色に対応する補正値を呼び出して、投影面の色に応じた投影面色補正を行うことができる。 FIG. 8 plots the color ratio by obtaining the relationship with the spectral characteristics of the imaging unit 13 from a spectral database (SOCS: Standard Object Color Color Spectra) in which spectral reflectances of various materials are registered. Based on the color ratio plotted in this way, the captured image processing unit 15 can call a correction value corresponding to the estimated color of the projection plane and perform projection plane color correction according to the color of the projection plane. .
 図9は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。 FIG. 9 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
 コンピュータにおいて、CPU(Central Processing Unit)101,ROM(Read Only Memory)102,RAM(Random Access Memory)103、およびEEPROM(Electronically Erasable and Programmable Read Only Memory)104は、バス105により相互に接続されている。バス105には、さらに、入出力インタフェース106が接続されており、入出力インタフェース106が外部に接続される。 In a computer, a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, and an EEPROM (Electronically Erasable Memory and Programmable Read Only Memory) 104 are interconnected by a bus 105. . An input / output interface 106 is further connected to the bus 105, and the input / output interface 106 is connected to the outside.
 以上のように構成されるコンピュータでは、CPU101が、例えば、ROM102およびEEPROM104に記憶されているプログラムを、バス105を介してRAM103にロードして実行することにより、上述した一連の処理が行われる。また、コンピュータ(CPU101)が実行するプログラムは、ROM102に予め書き込んでおく他、入出力インタフェース105を介して外部からEEPROM104にインストールしたり、更新したりすることができる。 In the computer configured as described above, for example, the CPU 101 loads the program stored in the ROM 102 and the EEPROM 104 to the RAM 103 via the bus 105 and executes the program, thereby performing the above-described series of processing. A program executed by the computer (CPU 101) can be written in the ROM 102 in advance, and can be installed or updated from the outside in the EEPROM 104 via the input / output interface 105.
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、
 前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部と
 を備え、
 前記テストパターンは、円形のドットが白地に格子状に配置されており、
 前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
 画像処理装置。
(2)
 前記補正ベクトル算出部は、前記テストパターン画像から抽出した前記ドットの重心座標が格子配列となるような補正ベクトルを算出する
 上記(1)に記載の画像処理装置。
(3)
 前記補正データ生成部は、前記投影面に投影された前記テストパターンの白色の領域を使用して色比を検出し、予め求められている色比データベースを参照して、前記補正データを生成する
 上記(1)または(2)に記載の画像処理装置。
(4)
 任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求め、
 前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する
 ステップを含み、
 前記テストパターンは、円形のドットが白地に格子状に配置されており、
 前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
 画像処理方法。
(5)
 任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求め、
 前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する
 ステップを含み、
 前記テストパターンは、円形のドットが白地に格子状に配置されており、
 前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
 処理をコンピュータに実行させるプログラム。
(6)
 任意の投影面にテストパターンを投影する投影部と、
 前記テストパターンを撮像する撮像部と、
 前記撮像部が前記テストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、
 前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部と
 を備え、
 前記テストパターンは、円形のドットが白地に格子状に配置されており、
 前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
 プロジェクタ装置。
<Combination example of configuration>
In addition, this technique can also take the following structures.
(1)
A correction vector for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in an image according to the surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane A calculation unit;
A correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image,
In the test pattern, circular dots are arranged in a grid pattern on a white background,
The image processing apparatus, wherein the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern.
(2)
The image processing apparatus according to (1), wherein the correction vector calculation unit calculates a correction vector so that barycentric coordinates of the dots extracted from the test pattern image become a grid array.
(3)
The correction data generation unit detects a color ratio using a white region of the test pattern projected onto the projection plane, and generates the correction data with reference to a previously obtained color ratio database. The image processing apparatus according to (1) or (2) above.
(4)
From a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane, a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane is obtained.
Generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane;
In the test pattern, circular dots are arranged in a grid pattern on a white background,
The image processing method, wherein the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern.
(5)
From a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane, a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane is obtained.
Generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane;
In the test pattern, circular dots are arranged in a grid pattern on a white background,
The test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern. A program for causing a computer to execute processing.
(6)
A projection unit that projects a test pattern on an arbitrary projection plane;
An imaging unit for imaging the test pattern;
A correction vector calculation unit for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane, from a test pattern image obtained as a result of imaging the test pattern by the imaging unit; ,
A correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image,
In the test pattern, circular dots are arranged in a grid pattern on a white background,
The test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern.
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Note that the present embodiment is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure. Moreover, the effect described in this specification is an illustration to the last, and is not limited, There may exist another effect.
 11 プロジェクタ装置, 12 投影部, 13 撮像部, 14 投影画像処理部, 15 撮像画像処理部, 16 記憶部, 21 対応点検出部, 22 補正ベクトル算出部, 23 色比検出部, 24 補正データ作成部 11 projector device, 12 projection unit, 13 imaging unit, 14 projection image processing unit, 15 captured image processing unit, 16 storage unit, 21 corresponding point detection unit, 22 correction vector calculation unit, 23 color ratio detection unit, 24 correction data creation Part

Claims (6)

  1.  任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、
     前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部と
     を備え、
     前記テストパターンは、円形のドットが白地に格子状に配置されており、
     前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
     画像処理装置。
    A correction vector for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in an image according to the surface shape of the projection plane from a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane A calculation unit;
    A correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image,
    In the test pattern, circular dots are arranged in a grid pattern on a white background,
    The image processing apparatus, wherein the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern.
  2.  前記補正ベクトル算出部は、前記テストパターン画像から抽出した前記ドットの重心座標が格子配列となるような補正ベクトルを算出する
     請求項1に記載の画像処理装置。
    The image processing apparatus according to claim 1, wherein the correction vector calculation unit calculates a correction vector such that barycentric coordinates of the dots extracted from the test pattern image become a grid array.
  3.  前記補正データ生成部は、前記投影面に投影された前記テストパターンの白色の領域を使用して色比を検出し、予め求められている色比データベースを参照して、前記補正データを生成する
     請求項1に記載の画像処理装置。
    The correction data generation unit detects a color ratio using a white region of the test pattern projected onto the projection plane, and generates the correction data with reference to a previously obtained color ratio database. The image processing apparatus according to claim 1.
  4.  任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求め、
     前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する
     ステップを含み、
     前記テストパターンは、円形のドットが白地に格子状に配置されており、
     前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
     画像処理方法。
    From a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane, a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane is obtained.
    Generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane;
    In the test pattern, circular dots are arranged in a grid pattern on a white background,
    The image processing method, wherein the test pattern image used for calculating the correction vector and generating the correction data is obtained by one imaging of the test pattern.
  5.  任意の投影面に投影されたテストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求め、
     前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する
     ステップを含み、
     前記テストパターンは、円形のドットが白地に格子状に配置されており、
     前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
     処理をコンピュータに実行させるプログラム。
    From a test pattern image obtained as a result of imaging a test pattern projected on an arbitrary projection plane, a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane is obtained.
    Generating, from the test pattern image, correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane;
    In the test pattern, circular dots are arranged in a grid pattern on a white background,
    The test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern. A program for causing a computer to execute processing.
  6.  任意の投影面にテストパターンを投影する投影部と、
     前記テストパターンを撮像する撮像部と、
     前記撮像部が前記テストパターンを撮像した結果得られるテストパターン画像から、前記投影面の表面形状に応じて画像に生じる歪を補正する投影面歪補正で用いられる補正ベクトルを求める補正ベクトル算出部と、
     前記テストパターン画像から、前記投影面の色に応じて画像の色を補正する投影面色補正で用いられる補正データを生成する補正データ生成部と
     を備え、
     前記テストパターンは、円形のドットが白地に格子状に配置されており、
     前記補正ベクトルの算出および前記補正データの生成に用いられる前記テストパターン画像は、前記テストパターンの1回の撮像で得られたものである
     プロジェクタ装置。
    A projection unit that projects a test pattern on an arbitrary projection plane;
    An imaging unit for imaging the test pattern;
    A correction vector calculation unit for obtaining a correction vector used in projection plane distortion correction for correcting distortion generated in the image according to the surface shape of the projection plane, from a test pattern image obtained as a result of imaging the test pattern by the imaging unit; ,
    A correction data generation unit that generates correction data used in projection plane color correction for correcting the color of the image according to the color of the projection plane from the test pattern image,
    In the test pattern, circular dots are arranged in a grid pattern on a white background,
    The test pattern image used for calculation of the correction vector and generation of the correction data is obtained by one imaging of the test pattern.
PCT/JP2018/020112 2017-06-09 2018-05-25 Image processing device, image processing method, program, and projector device WO2018225530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-114257 2017-06-09
JP2017114257 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225530A1 true WO2018225530A1 (en) 2018-12-13

Family

ID=64565850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020112 WO2018225530A1 (en) 2017-06-09 2018-05-25 Image processing device, image processing method, program, and projector device

Country Status (1)

Country Link
WO (1) WO2018225530A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015205A (en) * 2002-06-04 2004-01-15 Olympus Corp Multi-projection system and correction data acquisition method in multi-projection system
JP2005150779A (en) * 2003-11-11 2005-06-09 Olympus Corp Method for calculating display characteristics correction data of image display apparatus, display characteristic correction data program, and apparatus for calculating display characteristics correction data
US20120074851A1 (en) * 2010-09-23 2012-03-29 Dolby Laboratories Licensing Corporation Method and System for Display Calibration with Feedback Determined by a Camera Device
US20130038740A1 (en) * 2011-08-12 2013-02-14 Apple Inc. Display light leakage
JP2014178393A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Image projection system and image projection method
JP2015158591A (en) * 2014-02-24 2015-09-03 株式会社リコー Image projection device, image projection system, and image projection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015205A (en) * 2002-06-04 2004-01-15 Olympus Corp Multi-projection system and correction data acquisition method in multi-projection system
JP2005150779A (en) * 2003-11-11 2005-06-09 Olympus Corp Method for calculating display characteristics correction data of image display apparatus, display characteristic correction data program, and apparatus for calculating display characteristics correction data
US20120074851A1 (en) * 2010-09-23 2012-03-29 Dolby Laboratories Licensing Corporation Method and System for Display Calibration with Feedback Determined by a Camera Device
US20130038740A1 (en) * 2011-08-12 2013-02-14 Apple Inc. Display light leakage
JP2014178393A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Image projection system and image projection method
JP2015158591A (en) * 2014-02-24 2015-09-03 株式会社リコー Image projection device, image projection system, and image projection method

Similar Documents

Publication Publication Date Title
US9800846B2 (en) Gestural control of visual projectors
JP6525570B2 (en) Image display system, control device, control method and program
JP2013197918A5 (en)
US11606538B2 (en) Automatic keystone correction in a projection system
JP2015060012A (en) Image processing system, image processing device, image processing method and image processing program as well as display system
WO2016204068A1 (en) Image processing apparatus and image processing method and projection system
JP2014197243A (en) Pattern processor, pattern processing method and pattern processing program
CN108550167B (en) Depth image generation method and device and electronic equipment
US20200045276A1 (en) Projector calibration method and projection system using the same
JP5596427B2 (en) Optical projection control method, optical projection control apparatus, optical projection control system, and program
CN114697623A (en) Projection surface selection and projection image correction method and device, projector and medium
KR20160040330A (en) A method of correcting for distorted image from fish-eye lens by using concentric circles type standard patterns
JP5560722B2 (en) Image processing apparatus, image display system, and image processing method
US9807340B2 (en) Method and apparatus for providing eye-contact function to multiple points of attendance using stereo image in video conference system
JP2014178141A (en) Calibration system and calibration method
WO2018225530A1 (en) Image processing device, image processing method, program, and projector device
JP6398235B2 (en) Image projection apparatus, image projection system, and control method for image projection apparatus
JP6745317B2 (en) Method for compensating colorimetry in a projection system, apparatus for performing the method, computer readable storage medium, and projection system
KR20150101343A (en) Video projection system
JP2017147638A (en) Video projection system, video processing apparatus, video processing program, and video processing method
JP2016072691A (en) Image processing system, control method of the same, and program
CN111739090B (en) Method and device for determining position of field of view and computer readable storage medium
JP7342856B2 (en) Information processing device, information processing method, program
JP2018182539A (en) Video processing apparatus, video processing method, and program
JP2013153392A (en) Image processing apparatus and image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP