WO2018221608A1 - Vehicle body coating method and vehicle body coating system - Google Patents

Vehicle body coating method and vehicle body coating system Download PDF

Info

Publication number
WO2018221608A1
WO2018221608A1 PCT/JP2018/020806 JP2018020806W WO2018221608A1 WO 2018221608 A1 WO2018221608 A1 WO 2018221608A1 JP 2018020806 W JP2018020806 W JP 2018020806W WO 2018221608 A1 WO2018221608 A1 WO 2018221608A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
coating machine
shaping air
painting
paint
Prior art date
Application number
PCT/JP2018/020806
Other languages
French (fr)
Japanese (ja)
Inventor
士郎 山田
浩 軸屋
邦治 山内
Original Assignee
Abb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb株式会社 filed Critical Abb株式会社
Priority to JP2018565433A priority Critical patent/JP6634532B2/en
Publication of WO2018221608A1 publication Critical patent/WO2018221608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces

Definitions

  • the present invention relates to a vehicle body coating method and a vehicle body coating system in which a vehicle body is painted using a rotary atomizing head type coating machine.
  • a rotary atomizing head type coating machine with good paint application efficiency and finish is used.
  • This coating machine passes through the rotary shaft for supplying paint, an air motor that uses compressed air as a power source, a hollow rotary shaft that is rotatably supported by the air motor and has a tip protruding forward from the air motor.
  • a feed tube extending to the tip of the rotating shaft, an outer peripheral surface attached to the tip of the rotating shaft and expanding in a cup shape, an inner peripheral surface diffusing paint supplied from the feed tube, and the tip.
  • a rotary atomizing head having a discharge edge for discharging paint.
  • a shaping air ring is provided on the outer periphery of the rotary atomizing head so that the tip is located behind the discharge edge of the rotary atomizing head.
  • the shaping air ring is disposed so as to surround the rotary atomizing head, and a plurality of first shaping air ejection holes for ejecting the first shaping air toward the periphery of the discharge edge, A large number of nozzles that are positioned radially inward of the first shaping air ejection hole, surround the rotary atomizing head, and eject second shaping air along the outer peripheral surface of the rotary atomizing head.
  • the second shaping air ejection hole is provided on the outer periphery of the rotary atomizing head so that the tip is located behind the discharge edge of the rotary atomizing head.
  • the shaping air ring is disposed so as to surround the rotary atomizing head, and a plurality of first shaping air ejection holes for ejecting the first shaping air toward the periphery of the discharge edge,
  • the coating machine configured as described above controls the flow rate of the shaping air ejected from the first shaping air ejection hole and the second shaping air ejection hole.
  • the structure which adjusts the magnitude
  • the coating machine adjusts the size of the paint pattern according to the size of the paint surface in order to reduce the amount of paint that is removed from the paint surface and to be discarded, and to perform high-quality and efficient painting. There is a need to.
  • a large pattern coating machine capable of spraying paint with a large coating pattern is provided.
  • painting is performed by providing a plurality of painting robots equipped with small pattern coating machines.
  • painting will be performed by installing multiple painting robots equipped with large pattern coating machines.
  • the painting booth has painting machines (painting robots) on both the left and right sides of the vehicle body.
  • the painting machine on the left paints the left side of the body, and the painting machine on the right paints the right side of the body.
  • It has a configuration.
  • it is necessary to alternately perform painting by the left painting machine and painting by the right painting machine so that the left painting machine and the right painting machine do not interfere with each other. For this reason, at the time of a painting operation, since either the left or the right coating machine is in a standby state, there is a problem that the operation rate of the painting operation is lowered.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to allow a coating pattern to be adjusted over a wide range from a small pattern to a large pattern using a coating machine having the same structure. It is an object of the present invention to provide a method for painting a vehicle body and a painting system for a vehicle body that can coat both the inner and outer surfaces of the vehicle body.
  • a vehicle body painting method includes a conveyance line for conveying a vehicle body having an inner surface and an outer surface, a one-side coating machine arranged on one side in a width direction across the conveyance line, and the conveyance An other-side coating machine disposed on the other side in the width direction across the line, the one-side coating machine and the other-side coating machine having the same structure for spraying paint from a rotary atomizing head
  • the coating pattern of the paint is configured to be adjustable to a minimum pattern, a maximum pattern, and an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern.
  • the inner surface on one side of the body is painted using the minimum pattern or the intermediate pattern, and the other-side coating machine is configured such that the one-side coating machine paints the inner surface on one side of the body.
  • the maximum power Or the intermediate pattern is used to paint the outer surface on the other side of the body
  • the other side coating machine is used to coat the inner surface on the other side of the body using the minimum pattern or the intermediate pattern.
  • the one-side coating machine uses the maximum pattern or the intermediate pattern in parallel with the other-side coating machine coating the inner surface of the other side of the body. It is characterized by painting the outer surface.
  • a vehicle body coating system includes a transport line for transporting a vehicle body having an inner surface and an outer surface, and a one-side coating machine disposed on one side in the width direction across the transport line;
  • the other side coating machine disposed on the other side in the width direction across the transport line, and the one side coating machine and the other side coating machine have the same structure for spraying the paint from the rotary atomizing head
  • a coating machine wherein the coating pattern size of the paint is configured to be adjustable to a minimum pattern, a maximum pattern, and an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern, and the one-side coating
  • the machine coats the inner surface on one side of the body using the minimum pattern or the intermediate pattern, and the other-side coating machine coats the inner surface on one side of the body with the one-side coating machine.
  • the outer surface of the other side of the body is painted using the maximum pattern or the intermediate pattern, and the other side coating machine applies the inner surface of the other side of the body using the minimum pattern or the intermediate pattern. Paint, the one side painting machine using the maximum pattern or the intermediate pattern in parallel with the other side painting machine painting the inner surface of the other side of the body; The outer surface is painted.
  • FIG. 3 is a lateral view of the rotary atomizing head type coating machine in which the rotary atomizing head is omitted as viewed from the direction of arrows III-III in FIG. 1.
  • FIG. 4 is a longitudinal sectional view of a first shaping air ejection hole of the shaping air ring as viewed from the direction of arrows IV-IV in FIG. 3.
  • FIG. 5 is a longitudinal sectional view of a second shaping air ejection hole of the shaping air ring as viewed from the direction of arrows VV in FIG. 3.
  • It is explanatory drawing which shows an example of the various conditions for adjusting the coating pattern of a rotary atomizing head type coating machine.
  • It is a top view which shows the coating system of the vehicle body which concerns on embodiment of this invention.
  • It is a front view which expands and shows the body by which painting is performed by the painting system of a vehicle body.
  • It is a time chart which shows a part of flow of the painting work by the left side painting machine and the right side painting machine.
  • It is a longitudinal cross-sectional view which shows the indirect charging type rotary atomizing head type coating machine which concerns on the modification of this invention.
  • FIGS. 1 to 9 a vehicle body coating system according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 9.
  • a coating system including a rotary atomizing head type coating machine capable of adjusting a painting pattern to a minimum pattern, a maximum pattern, and an intermediate pattern is applied to a painting booth of a vehicle body is illustrated.
  • the painting includes base painting, clear painting, and intermediate painting.
  • the case of performing clear painting as finish painting will be described.
  • the configuration of the rotary atomizing head type coater will be described.
  • this coating machine there are an electrostatic coating machine that applies a high voltage to a sprayed paint and a non-electrostatic coating machine that performs a coating without applying a high voltage to the paint.
  • a rotary atomizing head type coating machine configured as a direct charging type electrostatic coating machine that directly applies a high voltage to a coating material will be described as an example.
  • a rotary atomizing head type coating machine 1 constitutes one type of coating machine having the same structure that is commonly used in a coating booth 22 described later (hereinafter referred to as a rotary atomizing head type).
  • the painting machine 1 is called “painting machine 1”).
  • the painting machine 1 ⁇ / b> L constituting the one-side painting machine is arranged on the left side of the vehicle booth 22 with the vehicle body 11 interposed therebetween.
  • the coating machine 1R which comprises the other side coating machine.
  • the coating machine 1 is configured as a direct charging type electrostatic coating machine that directly applies a high voltage to a paint by a high voltage generator (not shown).
  • the coating machine 1 is attached to the tips of the arms 24A of a plurality of, for example, eight coating robots 24 described later.
  • the coating machine 1 includes a housing 2, an air motor 3, a rotating shaft 4, a feed tube 5, a rotary atomizing head 6, and a shaping air ring 7 which will be described later.
  • the housing 2 includes a housing main body 2A formed in a disc shape located on the rear side, and a cylindrical cover cylinder 2B extending from the outer peripheral side of the housing main body 2A toward the front side.
  • the housing body 2A is attached to the tip of the arm 24A of the painting robot 24 described above via a robot connection holder (not shown).
  • an air motor 3 to be described later is attached to the front side of the housing main body 2A so as to be positioned in the cover tube 2B.
  • a base end side of a feed tube 5 described later is fixedly attached to the axial center position of the housing main body 2A (axis line OO of the rotary shaft 4 described later).
  • the air motor 3 is provided in the housing 2 coaxially with the housing 2 (on the axis OO).
  • the air motor 3 rotates the rotary shaft 4 and the rotary atomizing head 6 at a high speed of 3 to 150 krpm, for example, using compressed air as a power source.
  • the air motor 3 includes a stepped cylindrical motor case 3A attached to the front side of the housing body 2A, a turbine 3B rotatably accommodated at a rear position of the motor case 3A, and a rotating shaft 4 provided in the motor case 3A. And an air bearing 3C that rotatably supports the motor.
  • turbine air is supplied to the turbine 3B from a turbine air source 27 described later.
  • the rotational speed of the turbine 3B that is, the rotational speed of the rotary atomizing head 6 is controlled in accordance with the flow rate of the turbine air.
  • the rotary shaft 4 is formed as a cylindrical body that is rotatably supported by the air motor 3 via an air bearing 3C.
  • the rotating shaft 4 is disposed in the motor case 3A so as to extend in the axial direction about the axis OO.
  • the rotating shaft 4 has a base end side (rear end side) integrally attached to the center of the turbine 3B, and a tip projecting forward from the motor case 3A.
  • a rotary atomizing head 6 is attached to the tip of the rotary shaft 4.
  • the feed tube 5 extends through the rotary shaft 4 to the tip of the rotary shaft 4.
  • the distal end side of the feed tube 5 protrudes from the distal end of the rotary shaft 4 and extends into the rotary atomizing head 6.
  • the proximal end side of the feed tube 5 is fixedly attached to the center position of the housing body 2 ⁇ / b> A of the housing 2.
  • the feed tube 5 has an internal paint flow path connected to a paint supply source 28 described later including a color change valve device.
  • the feed tube 5 supplies the paint from the paint channel toward the rotary atomizing head 6 when performing the painting operation.
  • a cleaning fluid such as thinner or air can be supplied from the paint channel toward the rotary atomizing head 6.
  • the feed tube 5 may be formed as a double pipe arranged coaxially, with a central flow path as a paint flow path and an outer annular flow path as a cleaning fluid flow path.
  • the rotary atomizing head 6 is attached to the tip of the rotary shaft 4 and is formed in a cup shape whose diameter increases from the rear side toward the front side.
  • the rotary atomizing head 6 sprays the paint supplied from the feed tube 5 by being rotated at a high speed together with the rotary shaft 4 by the air motor 3.
  • the proximal end side of the rotary atomizing head 6 is attached to the distal end portion of the rotary shaft 4 as a cylindrical attachment portion 6A.
  • a rotary atomizing head 6 having a diameter of 40 mm at a discharge edge 6D described later is used.
  • a rotary atomizing head having a diameter smaller than 30 mm and a rotary atomizing head having a large diameter exceeding 50 mm may be used.
  • an outer peripheral surface 6B that expands in a cup shape toward the front side and a paint supplied from the feed tube 5 by widening in a funnel shape toward the front side are thin films.
  • an inner peripheral surface 6C that forms a coating thin film surface that diffuses while being formed.
  • the tip position of the inner peripheral surface 6C is a discharge edge 6D that discharges paint in a tangential direction when rotating.
  • a disc-shaped hub member 6E is provided on the inner side of the rotary atomizing head 6 so as to be located in the inner circumferential surface 6C.
  • the hub member 6E smoothly guides the paint supplied from the feed tube 5 to the inner peripheral surface 6C.
  • the rotary atomizing head 6 is provided with an annular partition wall 6F by reducing the diameter of the position separated to the rear side of the hub member 6E.
  • the annular partition wall 6F surrounds the tip of the feed tube 5 with a slight gap to form a paint reservoir 6G.
  • the rotary atomizing head 6 formed in this way is supplied with paint from the feed tube 5 while being rotated at high speed by the air motor 3.
  • the rotary atomizing head 6 sprays the paint as innumerable paint particles atomized by centrifugal force from the discharge edge 6D through the paint reservoir 6G, the hub member 6E, and the inner peripheral surface 6C (coating thin film surface). To do.
  • the shaping air ring 7 is provided on the front side of the housing 2 in the axial direction.
  • the shaping air ring 7 has an axial tip positioned behind the discharge end edge 6D of the rotary atomizing head 6 by a fixed length, and a space around the outer peripheral surface 6B of the rotary atomizing head 6 with a gap. It is placed around.
  • the shaping air ring 7 ejects shaping air from a first shaping air ejection hole 9 and a second shaping air ejection hole 10 described later. Thereby, the shaping air ring 7 can arrange the coating pattern of the paint into a desired size and shape while atomizing the paint sprayed from the discharge edge 6D of the rotary atomizing head 6.
  • the shaping air ring 7 includes a ring main body 8, a first shaping air ejection hole 9, and a second shaping air ejection hole 10 which will be described later.
  • the ring body 8 is formed as a stepped cylinder surrounding the rotary atomizing head 6.
  • the rear side of the ring body 8 is attached to the cover cylinder 2 ⁇ / b> B of the housing 2. Thereby, the ring main body 8 fixes the air motor 3 in the cover cylinder 2B.
  • the outer peripheral side of the ring body 8 is tapered in a tapered shape toward the front side. Furthermore, a first shaping air ejection hole 9 and a second shaping air ejection hole 10 are provided in the distal end surface 8A of the ring body 8 so as to open.
  • the first shaping air ejection hole 9 is disposed so as to surround the rotary atomizing head 6. That is, a large number of first shaping air ejection holes 9 are provided continuously in the circumferential direction in a state where the first shaping air ejection holes 9 are opened in the front end surface 8A of the shaping air ring 7. Each first shaping air ejection hole 9 is connected to a later-described first shaping air source 29 (referred to as a first SA source 29 for short) via a first air supply path 9A.
  • the first shaping air ejection hole 9 is formed as a small-diameter round hole.
  • the first shaping air ejection hole 9 acts in the direction in which the paint particles sprayed from the rotary atomizing head 6 are spread (in the direction in which the coating pattern is enlarged).
  • first shaping air ejection holes 9 are provided in the circumferential direction surrounding the entire circumference of the rotary atomizing head 6.
  • the number N1 of first shaping air ejection holes 9 is set to be larger than the number N2 of second shaping air ejection holes 10 described later. That is, the number N1 of the first shaping air ejection holes 9 is set as the following formula 1 when the diameter dimension at the discharge end edge 6D of the rotary atomizing head 6 is 40 mm.
  • the distance between adjacent first shaping air ejection holes 9 is the dimension W1.
  • the interval dimension W1 is set as shown in the following formula 2.
  • the inner diameter dimension d1 of the first shaping air ejection hole 9 is set to be larger than the inner diameter dimension d2 of the second shaping air ejection hole 10 described later. That is, the inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9 is set as shown in Equation 3 below.
  • the axis O1-O1 of the first shaping air ejection hole 9 is inclined with respect to the axis OO of the rotary shaft 4 at an angle ⁇ 1 in the direction opposite to the rotational direction of the rotary atomizing head 6.
  • the inclination angle ⁇ 1 is set as in the following equation 4.
  • the first shaping air ejection hole 9 blows the first shaping air toward the paint particles immediately after being discharged from the discharge edge 6D of the rotary atomizing head 6. Therefore, as shown in FIG. 2, the first shaping air ejection hole 9 is provided at a position separated from the discharge end edge 6D in the radial direction by a distance dimension L1.
  • the distance dimension L1 is set as shown in Equation 5 below.
  • the first shaping air ejection hole 9 is substantially parallel to the axis OO in the radial direction of the rotating shaft 4 (shaping air ring 7) (as viewed from the direction shown in FIG. 2). .
  • a large number of first shaping air ejection holes 9 formed under the above-described conditions are the first from the front to the liquid yarn of the paint flying in the tangential direction from the discharge end edge 6D of the rotary atomizing head 6. Make the shaping air collide. Thereby, the first shaping air ejection hole 9 can positively atomize the sprayed paint.
  • the first shaping air ejection hole 9 can adjust the size of the coating pattern in cooperation with the second shaping air described later by adjusting the flow rate (flow velocity) of the first shaping air. it can.
  • the second shaping air ejection holes 10 are disposed radially inside the first shaping air ejection holes 9 so as to surround the rotary atomizing head 6.
  • the second shaping air ejection hole 10 ejects the second shaping air along the outer peripheral surface 6 ⁇ / b> B of the rotary atomizing head 6.
  • the second shaping air ejection hole 10 is composed of a small-diameter round hole substantially in the same manner as the first shaping air ejection hole 9, and is opened in the front end surface 8 ⁇ / b> A of the ring body 8 constituting the shaping air ring 7.
  • One is provided.
  • the second shaping air ejection hole 10 is connected to a later-described second shaping air source 30 (abbreviated as the second SA source 30) through a second air supply path 10A.
  • the second shaping air ejection hole 10 acts in the direction of narrowing the paint particles sprayed from the rotary atomizing head 6 (the direction of reducing the coating pattern).
  • a plurality of second shaping air ejection holes 10 are provided between the rotary atomizing head 6 and the first shaping air ejection hole 9 so as to surround the entire circumference in the circumferential direction.
  • the number of second shaping air ejection holes 10 is set to be smaller than the number of first shaping air ejection holes 9. That is, the number N2 of the second shaping air ejection holes 10 is set as the following formula 6 when the diameter dimension at the discharge end edge 6D of the rotary atomizing head 6 is 40 mm.
  • the number N2 of the second shaping air ejection holes 10 has a relationship of the following Expression 7 with respect to the number N1 of the first shaping air ejection holes 9.
  • the interval between adjacent second shaping air ejection holes 10 is the dimension W2.
  • the spacing dimension W2 is set to a value larger than the spacing dimension W1 of the first shaping air ejection hole 9, that is, a range of the following formula 8.
  • the inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10 is set as shown in the following equation (9).
  • the number N1 of the first shaping air ejection holes 9 is larger than the number N2 of the second shaping air ejection holes 10.
  • the inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9 is set to a value larger than the inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10. Therefore, the flow rate of the first shaping air ejected from the first shaping air ejection hole 9 can be lowered without changing the air supply amount. Thereby, the problem of the double pattern which has occurred when the flow velocity of the first shaping air is high can be solved. In addition, the diameter of the coating pattern can be reduced while maintaining a good coating state.
  • the number N2 of the second shaping air ejection holes 10 is smaller than the number N1 of the first shaping air ejection holes 9.
  • the inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10 is set smaller than the inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9. Therefore, when the supply amount of air is the same, the flow speed of the second shaping air ejected from each second shaping air ejection hole 10 can be increased. Thereby, the 2nd shaping air can enlarge a painting pattern, maintaining a favorable painting state by cooperation with 1st shaping air.
  • the axis O2-O2 of the second shaping air ejection hole 10 is inclined with respect to the axis OO of the rotary shaft 4 at an angle ⁇ 2 in the direction opposite to the rotational direction of the rotary atomizing head 6.
  • the inclination angle ⁇ 2 is set to a value smaller than the inclination angle ⁇ 1 of the first shaping air ejection hole 9, that is, the following formula 10.
  • each second shaping air ejection hole 10 ejects the second shaping air along the outer peripheral surface 6B of the rotary atomizing head 6. Therefore, as shown in FIG. 2, the second shaping air ejection hole 10 is located at a position separated from the discharge end edge 6D in the radial direction by a distance dimension L2 (position overlapping the rotary atomizing head 6 when viewed from the front). ).
  • the distance dimension L2 is set as in the following formula 11.
  • the second shaping air ejection hole 10 is substantially parallel to the axis OO in the radial direction of the rotating shaft 4 (shaping air ring 7). Then, the second shaping air ejection hole 10 is configured such that the discharged second shaping air has an angle ⁇ with respect to the outer peripheral surface 6B of the rotary atomizing head 6 (an incident angle of the second shaping air with respect to the outer peripheral surface 6B). set to collide at ⁇ ).
  • the incident angle ⁇ of the second shaping air is set as shown in Equation 12 below.
  • the second shaping air collides with the outer peripheral surface 6B of the rotary atomizing head 6 and scatters.
  • the incident angle ⁇ of the second shaping air becomes small, the second shaping air directly collides with the paint particles sprayed from the rotary atomizing head 6 and the shape of the coating pattern becomes unstable.
  • the incident angle ⁇ of the second shaping air can be stabilized and a good coating pattern can be obtained.
  • the second shaping air ejection hole 10 formed under the conditions as described above causes the second shaping air to collide with the liquid yarn of the paint separated from the discharge end edge 6D of the rotary atomizing head 6. Thereby, the 2nd shaping air ejection hole 10 can suppress the useless spreading
  • the size (pattern width) of the coating pattern can be switched between 50 to 100 mm, 200 to 300 mm, 300 to 400 mm, and 400 to 500 mm.
  • the numerical conditions of the flow rate of the first shaping air (first SA flow rate), the flow rate of the second shaping air (second SA flow rate), the discharge amount of the paint, and the rotation speed of the rotary atomizing head 6 are as follows: Each is controlled to the value shown in FIG. In FIG. 6, the minimum pattern to be described later is a numerical condition with a pattern width of 50 to 100 mm, the maximum pattern is a numerical condition with a pattern width of 400 to 500 mm, and the intermediate pattern has a pattern width of 200 to 200 mm. Numerical conditions at 400 mm. For the intermediate pattern, numerical conditions are described separately for the narrow intermediate pattern (200 to 300 mm) and the large intermediate pattern (300 to 400 mm).
  • the flow rate ratio between the first shaping air and the second shaping air is 50 to 200/600 NL (normal liters), and the discharge amount of the paint is 100.
  • the rotational speed of the rotary atomizing head is 20 to 35 krpm.
  • the flow rate ratio between the first shaping air and the second shaping air is 300/50 to 200 NL
  • the paint discharge rate is 300 to 500 cc / min
  • the rotating fog The rotation speed of the chemical head is 25 to 55 krpm.
  • the flow rate ratio between the first shaping air and the second shaping air, the discharge amount of the paint, and the rotary atomizing head as with the minimum and maximum patterns.
  • the rotation speed is set to an appropriate numerical condition.
  • each dimension of the above-mentioned coating pattern are those for finishing coating (clear coating).
  • each dimension is set to be about 100 mm larger.
  • the coating pattern of the coating machine 1 used in the present embodiment consists of three types: a minimum pattern, an intermediate pattern, and a maximum pattern.
  • the minimum pattern is a range of 1.0 to 2.5 times the diameter of the rotary atomizing head 6.
  • the pattern width is 50 to 100 mm.
  • the maximum pattern is a range of 10 to 12 times the diameter of the rotary atomizing head 6.
  • the pattern width is 400 to 500 mm.
  • the intermediate pattern has a pattern width of 200 to 400 mm between the minimum pattern and the maximum pattern.
  • This intermediate pattern is divided into a narrow intermediate pattern having a pattern width of 200 to 300 mm and a large intermediate pattern having a pattern width of 300 to 400 mm. Therefore, the coating machine 1 can adjust the size of the coating pattern to three types while maintaining a good spray state. As a result, one type of coating machine 1 can be used for both inner surface coating and outer surface coating of a vehicle body 11 described later.
  • the flow rate of the shaping air, the flow rate of the coating material, and the rotational speed of the rotary atomizing head 6 are obtained. Is controlled. As an example, in the minimum pattern (50 to 100 mm), the flow rate of the second shaping air is increased more than the flow rate of the first shaping air, the flow rate of the paint is decreased, and the rotational speed of the rotary atomizing head 6 is reduced. It is formed by lowering.
  • the flow rate of the second shaping air is made smaller than the flow rate of the first shaping air, the flow rate of the paint is increased, and the rotational speed of the rotary atomizing head 6 is increased. Formed by. Further, in the intermediate pattern (200 to 400 mm), the flow rate of the first shaping air, the flow rate of the second shaping air, the flow rate of the paint, and the rotation speed of the rotary atomizing head 6 are intermediate values of the above-described values. Is set.
  • the minimum pattern may be formed by increasing the rotational speed of the rotary atomizing head 6, and the maximum pattern may be formed by decreasing the rotational speed of the rotary atomizing head 6.
  • the body 11 includes a body main body 12 having a structure elongated in the front and rear directions, a total of four doors 13 that can be opened and closed on both the left and right sides of the body main body 12, and the front side of the body main body 12.
  • An engine hood 14 that can be opened and closed, a back door 15 that can be opened and closed on the rear side of the body body 12, a front bumper 16 that is provided at the front end of the body body 12, and a rear end portion of the body body 12 And a rear bumper 17 provided.
  • the body body 12 includes a left front fender 12A, a right front fender 12B, a left rear fender 12C, a right rear fender 12D, a roof 12E, a left front pillar 12F, a right front pillar 12G, a left rear pillar 12H, and a right rear pillar 12J.
  • These left front fender 12A, right front fender 12B, left rear fender 12C, right rear fender 12D, roof 12E, left front pillar 12F, right front pillar 12G, left rear pillar 12H, and right rear pillar 12J each have an inner surface and an outer surface.
  • the left front pillar 12F, the right front pillar 12G, the left rear pillar 12H, and the right rear pillar 12J constitute a narrow portion of the outer surface of the body 11.
  • a radiator support 12K is provided on the front side of the body body 12 so as to extend leftward and rightward between the front part of the left front fender 12A and the front part of the right front fender 12B.
  • the radiator support 12K supports a radiator such as a radiator (not shown) and constitutes a part of the inner surface (inner plate) of the body main body 12.
  • Each of the four doors 13 has a window frame 13A between the body 12 and the roof 12E.
  • This window frame 13A constitutes a narrow portion of the outer surface of the body 11 together with the pillars 12F, 12G, 12H, and 12J of the body main body 12.
  • the inside of the window frame 13A is a non-painting space 13B that is out of the window frame 13A to be painted.
  • a door knob 13 ⁇ / b> C having the same color as that of the body 11 is attached to each door 13.
  • the door knob 13C constitutes a small component, and is disposed in the non-painting space 13B in the rear door 13 via a knob jig 18 as a jig.
  • the knob jig 18 has, for example, a fixing portion 18A that can be inserted into a groove on the attachment target side.
  • the fixed portion 18A is attached to a position where no trouble occurs when the door 13 is painted, for example, in a glass movement groove (not shown) located below the window frame 13A in the door 13.
  • each door knob 13C can be painted together with the door 13 as a part of the operation
  • the knob jig 18 may be attached to the door 13 using a fastening member or the like.
  • the front bumper 16 is attached to the front end portion of the body main body 12.
  • the front bumper 16 is attached to the front portion of the body body 12 using a front bumper jig 19 as a jig.
  • the front bumper 16 is attached to the body main body 12 with no gap between the edge portion and the body main body 12.
  • the front bumper jig 19 is a jig for forming a gap between the body main body 12 and the front bumper 16 so that the edge (end surface) of the front bumper 16 can be painted.
  • the gap dimension between the edge of the front bumper 16 and the body main body 12 by the front bumper jig 19 is set to 10 mm to 30 mm toward the front side.
  • the rear bumper 17 is attached to the rear end portion of the body main body 12.
  • the rear bumper 17 is attached to the rear portion of the body body 12 using a rear bumper jig 20 as a jig.
  • the rear bumper jig 20 forms a gap between the body body 12 and the rear bumper 17 so that the edge (end surface) of the rear bumper 17 can be painted. It is a jig.
  • the gap between the edge of the rear bumper 17 and the body body 12 by the rear bumper jig 20 is set to 10 mm to 30 mm toward the rear side.
  • a gap can be formed between the body body 12 and the front bumper 16 by using the front bumper jig 19.
  • the front bumper 16 can coat from the end surface of the front bumper 16 to the inner surface side through the said clearance gap.
  • the front bumper 16 can be painted with the same paint as the body main body 12 and the engine hood 14, the same hue as the surrounding body main body 12 and engine hood 14 can be obtained.
  • the rear bumper jig 20 can form a gap between the body body 12 and the rear bumper 17. Thereby, at the time of a painting operation
  • the painting system 21 includes a painting booth 22 that forms a long painting space, a conveyance line 23 extending along the painting booth 22, and a plurality of units disposed on both sides of the conveyance line 23, for example, a total of eight.
  • the painting robot 24 includes a painting machine 24 and a painting machine 1 (1L, 1R) attached to the tip of an arm 24A of each painting robot 24.
  • each painting robot 24 can use a robot having the same structure.
  • the painting booth 22 includes a long rectangular parallelepiped building 22A extending along the transfer line 23, an air conditioner for preparing the environment in the building 22A, and a waste paint recovery device (none of which are shown). Has been.
  • This one coating booth 22 is provided with an inner surface outer surface simultaneous coating area 25 located on the upstream side in the conveying direction of the body 11 and an outer surface coating area 26 located on the downstream side in the conveying direction of the body 11.
  • the conveyance line 23 conveys the body 11 within the building 22 ⁇ / b> A of the painting booth 22.
  • the conveyance line 23 is configured by, for example, a rail 23A that extends straight in the center in the left and right directions of the building 22A, and a pedestal 23B (see FIG. 8) on which the body 11 is mounted and moved along the rail 23A. Yes.
  • the eight painting robots 24 six painting robots 24 located in the inner surface / outer surface simultaneous painting area 25 upstream of the transfer line 23 are used to paint both the inner surface and the outer surface of the body 11. It is done. Further, the two painting robots 24 located in the outer surface painting area 26 on the downstream side of the transfer line 23 are used for painting only the outer surface side of the body 11.
  • the painting machine 1 is attached to the tip of the arm 24A of each of the eight painting robots 24. That is, the assembly of the eight coating robots 24 and the coating machine 1 is common to all the units.
  • the coating machine 1 can coat both the inner surface side and the outer surface side of the body 11 as described above. Therefore, for example, if one painting robot 24 or painting machine 1 fails and can no longer be used, the remaining seven assemblies with low availability will be used instead of the unusable ones. can do. As a result, standby of the spare assembly can be made unnecessary.
  • the painting machine 1 is a painting machine 1L as a one-side painting machine that is attached to each painting robot 24 arranged on the left side in the width direction across the conveyance line 23.
  • a painting machine 1R as the other-side painting machine.
  • the rotary atomizing head 6 is applied to a high voltage via the housing 2, the rotary shaft 4 and the like. Thereby, the paint particles sprayed from the rotary atomizing head 6 can be in a state of being charged to a high voltage. Paint particles sprayed from the rotary atomizing head 6, that is, charged paint particles, fly toward the body 11 as an object to be coated connected to the ground, and can be applied efficiently.
  • the first shaping air ejection hole 9 and the second shaping air ejection hole of the shaping air ring 7 are used to atomize the spray paint and adjust the coating pattern.
  • the shaping air is ejected from 10.
  • the first shaping air ejection hole 9 is inclined and opened in the direction opposite to the rotation direction of the rotary atomizing head 6.
  • the first shaping air can collide from the front against the liquid yarn of the paint flying in the tangential direction from the discharge edge 6D of the rotary atomizing head 6, and atomizing the paint. Can do.
  • the second shaping air when the second shaping air is ejected, the compressed air is supplied from the second shaping air source 30 through the second air supply path 10A, and the second shaping air is ejected from each second shaping air ejection hole 10. Air is spouted out. At this time, the second shaping air ejection hole 10 supplies the second shaping air toward the outer peripheral surface 6 ⁇ / b> B of the rotary atomizing head 6. Thus, the second shaping air can adjust the size of the coating pattern widely in cooperation with the first shaping air.
  • This painting operation is performed in the inner surface / outer surface simultaneous painting area 25 of the painting booth 22.
  • the painting operation is performed by a set of the left painting robot 24 and the left painting machine 1L located upstream in the conveyance direction of the conveyance line 23, and a combination of the right painting robot 24 and the right painting machine 1R. Is done.
  • paint is sprayed on the left side of the inner surface of the engine hood 14 using the left coating machine 1L.
  • the inner surface side of the engine hood 14 has an intermediate-sized paint surface. Therefore, when painting the inner surface side of the engine hood 14, the flow rate of the first and second shaping air, the amount of paint discharged, and the rotational speed of the rotary atomizing head 6 are set so that the painting pattern becomes an intermediate pattern. Controlled. That is, the pattern width (size) of the coating pattern is adjusted to 200 to 400 mm, which is an intermediate pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
  • the radiator support 12K is a part of the inner surface and has a narrow painted surface. Therefore, when the radiator support 12K is to be painted, the pattern is changed to the minimum pattern even when the painting pattern is being painted with an intermediate pattern. That is, the flow rates of the first shaping air and the second shaping air, the discharge amount of the paint, and the rotation speed of the rotary atomizing head 6 are controlled so that the coating pattern becomes the minimum pattern. Specifically, the pattern width (size) of the coating pattern is adjusted to 50 to 100 mm which is the minimum pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
  • the outer surface of the right front fender 12B is painted using the right painting machine 1R in parallel with this painting operation. ing.
  • the outer surface side of the right front fender 12B has a coating surface having an intermediate size. Therefore, when painting the outer surface side of the right front fender 12B, the pattern width (size) of the painting pattern is adjusted to 200 to 400 mm, which is an intermediate pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
  • the right side of the inner side of the engine hood 14 is now used by using the right side coating machine 1R. Paint the right side and the right side of the radiator support 12K. In parallel with the painting of the right side portion of the inner surface of the engine hood 14 and the right side portion of the radiator support 12K, the outer surface of the left front fender 12A is painted using the left coating machine 1L.
  • the painting pattern control by these paintings is the same as the above-described painting pattern control on the opposite side in the left and right directions, and will be omitted.
  • the outer surface of the engine hood 14 and the outer surface of the roof 12E of the body main body 12 have large painted surfaces.
  • This outer surface coating is performed in the outer surface coating area 26.
  • the coating pattern is adjusted to a maximum pattern of 400 to 500 mm. Thereby, the left coating machine 1L can efficiently coat a wide painted surface.
  • illustration of the time chart of the painting work in the outer surface painting area 26 is omitted.
  • the right side portion such as the outer surface of the engine hood 14 and the outer surface of the roof 12E of the body body 12 is painted, it is performed in the outer surface coating area 26. Also in this case, the coating pattern is adjusted to 400 to 500 mm which is the maximum pattern. Thereby, the right coating machine 1R can efficiently coat a wide painted surface.
  • the coating machine 1 includes an air motor 3 that uses compressed air as a power source, a hollow rotary shaft 4 that is rotatably supported by the air motor 3 and has a tip protruding forward from the air motor 3.
  • a feed tube 5 that extends through the rotary shaft 4 to the tip of the rotary shaft 4 to supply the paint, an outer peripheral surface 6B that is attached to the tip of the rotary shaft 4 and expands in a cup shape, and is supplied from the feed tube 5
  • the rotary atomizing head 6 having an inner peripheral surface 6C for diffusing the applied paint and a discharge edge 6D that is located at the tip and discharges the paint, surrounds the outer periphery of the rotary atomizing head 6, and the tip is the rotary fog.
  • a shaping air ring 7 disposed behind the discharge end edge 6D of the chemical head 6 is included.
  • the shaping air ring 7 includes a large number of first shaping air ejection holes 9 that eject shaping air toward the periphery of the discharge edge 6D, and the radially inner side of each first shaping air ejection hole 9.
  • a plurality of second shaping air ejection holes 10 are disposed so as to surround the rotary atomizing head 6 and eject the shaping air along the outer peripheral surface 6B of the rotary atomizing head 6.
  • the coating machine 1 is formed as one type of coating machine having the same structure for spraying paint from the rotary atomizing head 6. Moreover, the coating machine 1 adjusts the size of the coating pattern when the paint is sprayed from the rotary atomizing head 6 to the minimum pattern, the maximum pattern, and the intermediate pattern between the minimum pattern and the maximum pattern. It is configured to be possible.
  • the coating pattern of the coating machine 1 having the same structure is composed of three types: a minimum pattern (50 to 100 mm), a maximum pattern (400 to 500 mm), and an intermediate pattern (200 to 400 mm). In this case, these coating patterns can be adjusted while maintaining a good spray state. As a result, the coating machine 1 having the same structure can be used for both the inner surface coating and the outer surface coating of the body 11.
  • the vehicle body painting system 21 is provided with a plurality of painting robots 24.
  • the painting machine 1 according to the present embodiment can be attached as a common painting machine to the plurality of painting robots 24. That is, the painting system 21 is provided with a plurality of assemblies including the painting machine 1 and the painting robot 24.
  • each coating machine 1 can paint the inner surface and the outer surface of the body 11.
  • the coating machine 1L located on the left side in the width direction of the transfer line 23 the coating machine 1R located on the right side is coated with the inner surface coating of the body 11 in parallel.
  • the outer surface of the body 11 can be painted. That is, the painting machine 1L and the painting machine 1R can be operated at the same time, and the operating rate of the painting equipment can be improved. Further, by painting different painted surfaces simultaneously with two or more coating machines 1, the painting time of the body 11 can be shortened and the productivity can be improved.
  • the number of assemblies including the painting machine 1 and the painting robot 24 can be reduced.
  • the painting booth 22 can be reduced in size.
  • facilities such as an air conditioner and a waste paint recovery device for preparing the environment in the building 22 ⁇ / b> A can be reduced, and running costs can be reduced.
  • the coating machine 1 with the same structure is used as a common coating machine. Therefore, for example, when a failure occurs in one painting robot 24 or the painting machine 1 and it cannot be used, the painting machine 1 having a low operation rate among the remaining seven machines can be operated instead. Thereby, the spare coating machine 1 and the painting robot 24 can be made unnecessary.
  • a vehicle body 11 includes a body main body 12 made of a structure that is long in the front and rear directions, and doors 13 that can be opened and closed on both the left and right sides of the body main body 12. And a front bumper 16 provided at the front end portion of the body main body 12, a rear bumper 17 provided at the rear end portion of the body main body 12, and a door knob 13 ⁇ / b> C as a small component provided in each door 13.
  • the front bumper 16 is attached to the body main body 12 using a front bumper jig 19 with a gap formed between the front bumper 16 and the body main body 12.
  • the rear bumper 17 is attached to the body main body 12 using a rear bumper jig 20 with a gap formed between the rear bumper 17 and the body main body 12.
  • the body 11 is transported by the transport line 23 with the left and right doors 13, the front bumper 16 and the rear bumper 17 being attached to the body main body 12.
  • the front bumper 16 and the rear bumper 17 can be painted at the same time. Thereby, the body 11 and each bumper 16 and 17 can be finished in the same color. Further, by providing a gap between the body 11 and each bumper 16, 17, the end surface (bumper edge) of each bumper 16, 17 can be painted when each bumper 16, 17 is painted. it can.
  • each door knob 13C is disposed using a knob jig 18 in a non-painting space 13B located on the door 13 and excluded from the object to be painted.
  • the body 11 can paint the body main body 12, the left and right doors 13, and the door knobs 13C together, and the body main body 12 and the door knobs 13C can be finished in the same color.
  • the coating machine 1 (1L, 1R) serving as the one-side coating machine and the other-side coating machine includes a large number of shaping air ejection holes 9, 10 for adjusting the coating pattern of the paint sprayed from the rotary atomizing head 6.
  • the coating of the inner surface and the outer surface of the body 11 controls the flow rate of the shaping air ejected from the shaping air ejection holes 9 and 10. Thereby, the coating pattern of the paint can be adjusted to the minimum pattern, the maximum pattern, and the intermediate pattern.
  • the vehicle body painting system 21 is disposed on the left side in the width direction across the conveyance line 23 for conveying the vehicle body 11 having an inner surface and an outer surface, and the conveyance line 23.
  • the coating machine 1L and the coating machine 1R arranged on the right side in the width direction across the conveyance line 23 are provided.
  • Each of the coating machines 1L and 1R is a coating machine having the same structure that sprays the paint from the rotary atomizing head 6, and the size of the paint coating pattern is the minimum pattern, the maximum pattern, the minimum pattern, and the maximum Adjustment is possible to an intermediate pattern that is intermediate to the pattern.
  • the coating machine 1L uses the minimum pattern or the intermediate pattern to paint the inner surface on the left side of the body 11, and the coating machine 1R parallels the coating machine 1L that paints the inner surface on the left side of the body 11.
  • the right outer surface of the body 11 can be painted using the maximum pattern or the intermediate pattern.
  • the painting machine 1R uses the minimum pattern or the intermediate pattern to paint the inner surface on the right side of the body 11, and the coating machine 1L performs the painting on the right side inner surface of the body 11,
  • the left outer surface of the body 11 can be painted using a maximum pattern or an intermediate pattern.
  • the left coating machine 1L controls the flow rate of the shaping air ejected from the first shaping air ejection hole 9 and the second shaping air ejection hole 10, thereby using the minimum pattern or the intermediate pattern on the left side of the body 11.
  • the left outer surface of the body 11 is painted using the maximum pattern or the intermediate pattern.
  • the right coating machine 1R controls the body 11 using the maximum pattern or the intermediate pattern by controlling the flow rate of the shaping air ejected from the first shaping air ejection hole 9 and the second shaping air ejection hole 10.
  • the right outer surface of the body 11 can be painted, and the right inner surface of the body 11 can be painted using a minimum pattern or an intermediate pattern.
  • the inner diameter dimension d1 of the first shaping air ejection hole 9 is set to 0.8 mm ⁇ d1 ⁇ 1.2 mm, and the inner diameter dimension d2 of the second shaping air ejection hole 10 is 0.5 mm ⁇ d2 ⁇ 0.8 mm. Is set to
  • the number N2 of the second shaping air ejection holes 10 is set to 1 / 3N1 ⁇ N2 ⁇ 1 / 2N1 of the number N1 of the first shaping air ejection holes 9.
  • the inclination angle ⁇ 1 of the first shaping air ejection hole 9 is set to 40 degrees ⁇ ⁇ 1 ⁇ 55 degrees with respect to the axis OO of the rotating shaft 4, and the inclination angle ⁇ 2 of the second shaping air ejection hole 10 is It is set to 8 degrees ⁇ ⁇ 2 ⁇ 15 degrees with respect to the axis OO of the rotating shaft 4.
  • the incident angle ⁇ of the second shaping air ejected from the second shaping air ejection hole 10 with respect to the outer peripheral surface 6B of the rotary atomizing head 6 is set to 12 degrees ⁇ ⁇ ⁇ 13.4 degrees.
  • the present invention is not limited to this, and may be configured as a modification shown in FIG. That is, the rotary atomizing head type coating machine 31 has an external electrode 32 that discharges a high voltage at the outer peripheral position of the housing 2, and paint particles sprayed from the rotary atomizing head 6 by the discharge from the external electrode 32. You may comprise as an indirect charging type coating machine which applies a high voltage. Furthermore, the present invention can also be applied to a non-electrostatic coating machine that performs coating without applying a high voltage to the paint.
  • each door knob 13C as a small part is arranged in the non-painting space 13B in the window frame 13A of the door 13 located on the rear side.
  • the door knob 13C may be disposed in the windshield window frame positioned between the engine hood 14 and the roof 12E and in the window frame of the back door 15.
  • the small parts include a door mirror cover, a lid that covers the fuel filler opening, and the like, and these small parts may be coated together with the body.
  • the rotary atomizing head 6 having a diameter of 40 mm is used.
  • a rotary atomizing head having a diameter dimension of 30 mm or less or a diameter dimension of 50 mm or more may be used.
  • the number of first shaping air ejection holes is 40 to 45
  • the number of second shaping air ejection holes is 24 to 30.
  • the distance between the adjacent first shaping air ejection holes is set in the range of 2.2 mm to 2.8 mm.
  • the distance between the adjacent second shaping air ejection holes is set in the range of 3.0 mm to 3.8 mm.
  • the number of first shaping air ejection holes is 65 to 75, and the number of second shaping air ejection holes is 28 to 38.
  • the interval between the adjacent first shaping air ejection holes is set in the range of 1.1 mm to 1.8 mm. Further, the distance between the adjacent second shaping air ejection holes is set in the range of 2.2 mm to 2.4 mm.
  • the left painting machine 1L paints the left outer surface of the body 11 using the maximum pattern or the intermediate pattern
  • the right painting machine 1R uses the maximum pattern or the middle pattern.
  • the case where the right outer surface is painted has been described as an example.
  • the present invention is not limited to this, and in the process in which the coating machine 1L paints the left outer surface of the body 11 using the maximum pattern or the intermediate pattern, the narrow portion of the left outer surface of the body 11 is not concerned.
  • the coating machine 1L can perform coating using the minimum pattern.
  • the coating machine 1R performs the minimum pattern for the narrow portion of the outer surface on the right side of the body 11. Can be used to paint.
  • the outer surface of the body 11 has a narrow painted surface (narrow portion) suitable for painting using the minimum pattern, for example, the left front pillar 12F and the right front pillar 12G of the body main body 12.
  • the left coating machine 1L can coat the left front pillar 12F of the body main body 12 using the minimum pattern.
  • the right painting machine 1R can paint the right front pillar 12G of the body main body 12 using the minimum pattern.
  • each pillar 12F, 12G which is a narrow portion of the painted surface
  • the amount of paint coming off the painted surface can be reduced.
  • the coating material discarded can be reduced.
  • a suitable coating film can be formed.
  • the left front pillar 12F and the right front pillar 12G, the left rear pillar 12H, the right rear pillar 12J of the body main body 12 and the window frame 13A of the door 13 are painted using a minimum pattern as a narrow portion of the outer surface of the body 11. can do.
  • the painting booth 22 paints the inner surface / outer surface simultaneous painting area 25 for simultaneously painting the inner surface and the outer surface of the body 11 and the outer surface of the body 11 that has not been completely painted in the inner surface / outer surface simultaneous painting area 25.
  • the case where the outer surface painting area 26 is provided is illustrated. However, the present invention is not limited to this, and when the entire body 11 can be painted only with the inner surface / outer surface simultaneous coating area 25, the outer surface coating area 26 may be omitted.

Abstract

The present invention comprises: a conveyance line (23) for conveying a vehicle body (11) including an inner surface and an outer surface; a left-side coating machine (1L) that is disposed on the left side in the width direction across the conveyance line (23); and a right-side coating machine (1R) that is disposed on the right side in the width direction across the conveyance line (23). The left-side coating machine (1L) and the right-side coating machine (1R) have the same structure for spraying a coating from a rotary atomizing head (6). The coating machines (1L, 1R) are configured such that the size of a coating pattern of the coating can be adjusted to a minimum pattern, a maximum pattern, and an intermediate pattern that is between the minimum pattern and the maximum pattern.

Description

車両ボディの塗装方法および車両ボディの塗装システムVehicle body painting method and vehicle body painting system
 本発明は、回転霧化頭型の塗装機を用いて車両のボディを塗装する車両ボディの塗装方法および車両ボディの塗装システムに関する。 The present invention relates to a vehicle body coating method and a vehicle body coating system in which a vehicle body is painted using a rotary atomizing head type coating machine.
 一般に、車両のボディを塗装する場合には、塗料の塗着効率、塗装仕上りが良好な回転霧化頭型の塗装機が用いられている。この塗装機は、圧縮エアを動力源とするエアモータと、前記エアモータに回転自在に支持され先端が前記エアモータから前側に突出した中空な回転軸と、塗料を供給するために前記回転軸内を通って前記回転軸の先端まで延びたフィードチューブと、前記回転軸の先端に取付けられ、カップ状に拡開する外周面と前記フィードチューブから供給された塗料を拡散する内周面と先端に位置して塗料を放出する放出端縁とを有する回転霧化頭とによって構成されている。 Generally, when painting the body of a vehicle, a rotary atomizing head type coating machine with good paint application efficiency and finish is used. This coating machine passes through the rotary shaft for supplying paint, an air motor that uses compressed air as a power source, a hollow rotary shaft that is rotatably supported by the air motor and has a tip protruding forward from the air motor. A feed tube extending to the tip of the rotating shaft, an outer peripheral surface attached to the tip of the rotating shaft and expanding in a cup shape, an inner peripheral surface diffusing paint supplied from the feed tube, and the tip. And a rotary atomizing head having a discharge edge for discharging paint.
 また、回転霧化頭の外周には、先端が前記回転霧化頭の放出端縁よりも後方に位置するようにシェーピングエアリングが設けられている。このシェーピングエアリングは、前記回転霧化頭を取囲んで配置され、前記放出端縁の周囲に向けて第1のシェーピングエアを噴出する多数個の第1のシェーピングエア噴出孔と、前記各第1のシェーピングエア噴出孔よりも径方向の内側に位置して前記回転霧化頭を取囲んで配置され、前記回転霧化頭の外周面に沿わせて第2のシェーピングエアを噴出する多数個の第2のシェーピングエア噴出孔とを備えている。 In addition, a shaping air ring is provided on the outer periphery of the rotary atomizing head so that the tip is located behind the discharge edge of the rotary atomizing head. The shaping air ring is disposed so as to surround the rotary atomizing head, and a plurality of first shaping air ejection holes for ejecting the first shaping air toward the periphery of the discharge edge, A large number of nozzles that are positioned radially inward of the first shaping air ejection hole, surround the rotary atomizing head, and eject second shaping air along the outer peripheral surface of the rotary atomizing head. The second shaping air ejection hole.
 このように構成された塗装機は、第1のシェーピングエア噴出孔と第2のシェーピングエア噴出孔とから噴出されるシェーピングエアの流量を制御している。これにより、シェーピングエアによって塗装機の回転霧化頭から噴霧される塗料の塗装パターンの大きさを調整する構成が知られている(特許文献1)。 The coating machine configured as described above controls the flow rate of the shaping air ejected from the first shaping air ejection hole and the second shaping air ejection hole. Thereby, the structure which adjusts the magnitude | size of the coating pattern of the coating material sprayed from the rotary atomization head of a coating machine with shaping air is known (patent document 1).
特開2004-305874号公報JP 2004-305874 A
 車両のボディを塗装する場合には、塗装面の端部まで均一な塗膜が形成されるように、塗装面の端部から外れた位置まで塗料を噴霧している。この場合、塗装機は、塗装面から外れて廃棄される塗料の量を抑制すると共に、高品質で効率の良い塗装を行うために、塗装面の広さに応じて塗装パターンの大きさを調整する必要がある。 When painting the body of a vehicle, the paint is sprayed to a position off the edge of the painted surface so that a uniform coating film is formed up to the edge of the painted surface. In this case, the coating machine adjusts the size of the paint pattern according to the size of the paint surface in order to reduce the amount of paint that is removed from the paint surface and to be discarded, and to perform high-quality and efficient painting. There is a need to.
 例えば、ボディを構成するエンジンフード、ルーフ、ドア等が有する大きな外面を塗装する場合は、大きな塗装パターンを用いることにより効率よく塗装を行う。一方で、ピラー、ラジエータサポート等が有する細長い内面を塗装する場合には、大き過ぎる塗装パターンによって噴霧した塗料が塗装面からはみ出さないように、小さな塗装パターンを用いて塗装を行う。しかし、塗装パターンは、大きさだけを調整すればよいものではなく、塗装面に対して均一に塗料を噴霧して良好な塗膜が得られるようにする必要がある。従って、同一構造をもった1種類の塗装機から噴霧される塗料の塗装パターンを、小さな塗装パターンから大きな塗装パターンまで安定的に調整することは困難となっている。 For example, when painting the large outer surface of the engine hood, roof, door, etc. that make up the body, painting is done efficiently by using a large paint pattern. On the other hand, when painting the elongated inner surface of a pillar, radiator support, or the like, painting is performed using a small coating pattern so that the sprayed paint does not protrude from the painted surface due to an excessively large coating pattern. However, the coating pattern need not be adjusted only in size, and it is necessary to obtain a good coating film by spraying the paint uniformly on the painted surface. Accordingly, it is difficult to stably adjust the coating pattern of paint sprayed from one type of coating machine having the same structure from a small coating pattern to a large coating pattern.
 このため、車両のボディを塗装する場合には、ボディの内面を塗装するのに適した小さな塗装パターンで塗料を噴霧することができる小パターン塗装機と、ボディの外面を塗装するのに適した大きな塗装パターンで塗料を噴霧することができる大パターン塗装機とを設けている。そして、ボディ内面塗装ブースでは、小パターン塗装機が取付けられた塗装ロボットを複数台設けて塗装を行う。また、ボディ外面塗装ブースでは、大パターン塗装機が取付けられた塗装ロボットを複数台設けて塗装を行う。 Therefore, when painting the body of a vehicle, it is suitable for painting a small pattern coating machine that can spray paint with a small painting pattern suitable for painting the inner surface of the body and the outer surface of the body. A large pattern coating machine capable of spraying paint with a large coating pattern is provided. In the body inner surface painting booth, painting is performed by providing a plurality of painting robots equipped with small pattern coating machines. In the body exterior painting booth, painting will be performed by installing multiple painting robots equipped with large pattern coating machines.
 この場合には、2つの塗装ブースを設置するために広いスペースが必要になってしまう。また、2つの塗装ブースを設置した場合、多くの塗装ロボットや塗装機が必要になる上に、塗料の供給装置、塗装ブース内の環境を整えるための空調装置、廃棄塗料の回収装置等の設備が、各塗装ブース毎に必要になってしまう。さらに、小パターン塗装機と大パターン塗装機とでは、使用している部品が異なるから、予備の部品を多数確保しなくてはならない。 In this case, a large space is required to install two painting booths. In addition, when two painting booths are installed, many painting robots and painting machines are required, as well as equipment such as paint supply equipment, air conditioning equipment for preparing the environment inside the paint booth, and waste paint collection equipment However, it will be necessary for each painting booth. Furthermore, since the parts used are different between the small pattern coater and the large pattern coater, a large number of spare parts must be secured.
 一方、塗装ブースは、車両のボディを挟んだ左,右両側に塗装機(塗装ロボット)が配置され、左側の塗装機がボディの左側を塗装し、右側の塗装機がボディの右側を塗装する構成となっている。この塗装ブースでは、左側の塗装機と右側の塗装機とが干渉しないように、左側の塗装機による塗装と右側の塗装機による塗装とを交互に行う必要がある。このため、塗装作業時には、左,右いずれか一方の塗装機が待機状態になるから、塗装作業の稼働率が低下するという問題がある。 On the other hand, the painting booth has painting machines (painting robots) on both the left and right sides of the vehicle body. The painting machine on the left paints the left side of the body, and the painting machine on the right paints the right side of the body. It has a configuration. In this painting booth, it is necessary to alternately perform painting by the left painting machine and painting by the right painting machine so that the left painting machine and the right painting machine do not interfere with each other. For this reason, at the time of a painting operation, since either the left or the right coating machine is in a standby state, there is a problem that the operation rate of the painting operation is lowered.
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、同一構造の塗装機を用いて、塗装パターンを小さなパターンから大きなパターンまで広範囲に調整できるようにし、この塗装機で車両のボディの内面と外面の両方を塗装できるようにした車両ボディの塗装方法および車両ボディの塗装システムを提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to allow a coating pattern to be adjusted over a wide range from a small pattern to a large pattern using a coating machine having the same structure. It is an object of the present invention to provide a method for painting a vehicle body and a painting system for a vehicle body that can coat both the inner and outer surfaces of the vehicle body.
 本発明による車両ボディの塗装方法は、内面と外面とを有する車両のボディを搬送するための搬送ラインと、前記搬送ラインを挟む幅方向の一側に配置された一側塗装機と、前記搬送ラインを挟む幅方向の他側に配置された他側塗装機と、を備え、前記一側塗装機および前記他側塗装機は、回転霧化頭から塗料を噴霧する同一構造をもった塗装機であって、塗料の塗装パターンの大きさが、最小パターンと、最大パターンと、前記最小パターンと前記最大パターンとの中間となった中間パターンとに調整可能に構成され、前記一側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの一側の前記内面を塗装し、前記他側塗装機は、前記一側塗装機が前記ボディの一側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装し、前記他側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの他側の前記内面を塗装し、前記一側塗装機は、前記他側塗装機が前記ボディの他側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装することを特徴とする。 A vehicle body painting method according to the present invention includes a conveyance line for conveying a vehicle body having an inner surface and an outer surface, a one-side coating machine arranged on one side in a width direction across the conveyance line, and the conveyance An other-side coating machine disposed on the other side in the width direction across the line, the one-side coating machine and the other-side coating machine having the same structure for spraying paint from a rotary atomizing head The coating pattern of the paint is configured to be adjustable to a minimum pattern, a maximum pattern, and an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern. The inner surface on one side of the body is painted using the minimum pattern or the intermediate pattern, and the other-side coating machine is configured such that the one-side coating machine paints the inner surface on one side of the body. In parallel, the maximum power Or the intermediate pattern is used to paint the outer surface on the other side of the body, and the other side coating machine is used to coat the inner surface on the other side of the body using the minimum pattern or the intermediate pattern. The one-side coating machine uses the maximum pattern or the intermediate pattern in parallel with the other-side coating machine coating the inner surface of the other side of the body. It is characterized by painting the outer surface.
 また、本発明による車両ボディの塗装システムは、内面と外面とを有する車両のボディを搬送するための搬送ラインと、前記搬送ラインを挟む幅方向の一側に配置された一側塗装機と、前記搬送ラインを挟む幅方向の他側に配置された他側塗装機と、を備え、前記一側塗装機および前記他側塗装機は、回転霧化頭から塗料を噴霧する同一構造をもった塗装機であって、塗料の塗装パターンの大きさが、最小パターンと、最大パターンと、前記最小パターンと前記最大パターンとの中間となった中間パターンとに調整可能に構成され、前記一側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの一側の前記内面を塗装し、前記他側塗装機は、前記一側塗装機が前記ボディの一側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装し、前記他側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの他側の前記内面を塗装し、前記一側塗装機は、前記他側塗装機が前記ボディの他側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装することを特徴とする。 A vehicle body coating system according to the present invention includes a transport line for transporting a vehicle body having an inner surface and an outer surface, and a one-side coating machine disposed on one side in the width direction across the transport line; The other side coating machine disposed on the other side in the width direction across the transport line, and the one side coating machine and the other side coating machine have the same structure for spraying the paint from the rotary atomizing head A coating machine, wherein the coating pattern size of the paint is configured to be adjustable to a minimum pattern, a maximum pattern, and an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern, and the one-side coating The machine coats the inner surface on one side of the body using the minimum pattern or the intermediate pattern, and the other-side coating machine coats the inner surface on one side of the body with the one-side coating machine. In parallel with The outer surface of the other side of the body is painted using the maximum pattern or the intermediate pattern, and the other side coating machine applies the inner surface of the other side of the body using the minimum pattern or the intermediate pattern. Painting, the one side painting machine using the maximum pattern or the intermediate pattern in parallel with the other side painting machine painting the inner surface of the other side of the body; The outer surface is painted.
 本発明によれば、同一構造をもった1種類の塗装機を用いて、塗装パターンを小さなパターンから大きなパターンまで広範囲に調整することができ、この塗装機で車両のボディの内面と外面の両方を塗装することができる。 According to the present invention, it is possible to adjust a coating pattern in a wide range from a small pattern to a large pattern using a single type of coating machine having the same structure, and with this coating machine, both the inner surface and the outer surface of the vehicle body Can be painted.
本発明の実施の形態に係る回転霧化頭型塗装機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotary atomizing head type coating machine which concerns on embodiment of this invention. 回転霧化頭とシェーピングエアリングの前側部分を拡大して示す正面図である。It is a front view which expands and shows the rotation atomization head and the front side part of the shaping air ring. 回転霧化頭を省略した回転霧化頭型塗装機を図1中の矢示III-III方向から見た横面図である。FIG. 3 is a lateral view of the rotary atomizing head type coating machine in which the rotary atomizing head is omitted as viewed from the direction of arrows III-III in FIG. 1. シェーピングエアリングの第1のシェーピングエア噴出孔を図3中の矢示IV-IV方向から見た縦断面図である。FIG. 4 is a longitudinal sectional view of a first shaping air ejection hole of the shaping air ring as viewed from the direction of arrows IV-IV in FIG. 3. シェーピングエアリングの第2のシェーピングエア噴出孔を図3中の矢示V-V方向から見た縦断面図である。FIG. 5 is a longitudinal sectional view of a second shaping air ejection hole of the shaping air ring as viewed from the direction of arrows VV in FIG. 3. 回転霧化頭型塗装機の塗装パターンを調整するための各種条件の一例を示す説明図である。It is explanatory drawing which shows an example of the various conditions for adjusting the coating pattern of a rotary atomizing head type coating machine. 本発明の実施の形態に係る車両ボディの塗装システムを示す平面図である。It is a top view which shows the coating system of the vehicle body which concerns on embodiment of this invention. 車両ボディの塗装システムによって塗装が施されるボディを拡大して示す正面図である。It is a front view which expands and shows the body by which painting is performed by the painting system of a vehicle body. 左側の塗装機と右側の塗装機による塗装作業の一部の流れを示すタイムチャートである。It is a time chart which shows a part of flow of the painting work by the left side painting machine and the right side painting machine. 本発明の変形例に係る間接帯電式の回転霧化頭型塗装機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indirect charging type rotary atomizing head type coating machine which concerns on the modification of this invention.
 以下、本発明の実施の形態に係る車両ボディの塗装システムを、図1ないし図9に従って詳細に説明する。本実施の形態では、例えば塗装パターンが最小パターンと最大パターンと中間パターンとに調整可能な回転霧化頭型塗装機を備えた塗装システムを、車両のボディの塗装ブースに適用した場合を例示している。また、塗装には、ベース塗装、クリア塗装、中塗り塗装があり、本実施の形態では、仕上げ塗装となるクリア塗装を行う場合について述べる。 Hereinafter, a vehicle body coating system according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 9. In this embodiment, for example, a case where a coating system including a rotary atomizing head type coating machine capable of adjusting a painting pattern to a minimum pattern, a maximum pattern, and an intermediate pattern is applied to a painting booth of a vehicle body is illustrated. ing. The painting includes base painting, clear painting, and intermediate painting. In this embodiment, the case of performing clear painting as finish painting will be described.
 まず、回転霧化頭型塗装機の構成について述べる。この塗装機には、噴霧する塗料に高電圧を印加して塗装を行う静電塗装機と、塗料に高電圧を印加することなく塗装を行う非静電塗装機とが存在している。これから述べる実施の形態では、塗料に高電圧を直接的に印加する直接帯電式の静電塗装機として構成された回転霧化頭型塗装機を例に挙げて説明する。 First, the configuration of the rotary atomizing head type coater will be described. In this coating machine, there are an electrostatic coating machine that applies a high voltage to a sprayed paint and a non-electrostatic coating machine that performs a coating without applying a high voltage to the paint. In the embodiment described below, a rotary atomizing head type coating machine configured as a direct charging type electrostatic coating machine that directly applies a high voltage to a coating material will be described as an example.
 図1において、回転霧化頭型塗装機1は、後述する塗装ブース22内で、共通して用いられる同一構造をもった1種類の塗装機を構成している(以下、回転霧化頭型塗装機1を「塗装機1」という)。また、塗装機1は、塗装ブース22で車両のボディ11を挟んで左側に配置されるものが一側塗装機を構成する塗装機1Lとなる。一方、塗装機1は、右側に配置されるものが他側塗装機を構成する塗装機1Rとなる。この塗装機1は、高電圧発生器(図示せず)により塗料に高電圧を直接的に印加する直接帯電式の静電塗装機として構成されている。図7に示すように、塗装機1は、後述する複数台、例えば8台の塗装ロボット24のアーム24Aの先端にそれぞれ取付けられている。 In FIG. 1, a rotary atomizing head type coating machine 1 constitutes one type of coating machine having the same structure that is commonly used in a coating booth 22 described later (hereinafter referred to as a rotary atomizing head type). The painting machine 1 is called “painting machine 1”). Further, in the painting machine 1, the painting machine 1 </ b> L constituting the one-side painting machine is arranged on the left side of the vehicle booth 22 with the vehicle body 11 interposed therebetween. On the other hand, as for the coating machine 1, what is arrange | positioned at the right side becomes the coating machine 1R which comprises the other side coating machine. The coating machine 1 is configured as a direct charging type electrostatic coating machine that directly applies a high voltage to a paint by a high voltage generator (not shown). As shown in FIG. 7, the coating machine 1 is attached to the tips of the arms 24A of a plurality of, for example, eight coating robots 24 described later.
 塗装機1は、後述のハウジング2、エアモータ3、回転軸4、フィードチューブ5、回転霧化頭6、シェーピングエアリング7を含んで構成されている。 The coating machine 1 includes a housing 2, an air motor 3, a rotating shaft 4, a feed tube 5, a rotary atomizing head 6, and a shaping air ring 7 which will be described later.
 ハウジング2は、後側に位置して円板状に形成されたハウジング本体2Aと、ハウジング本体2Aの外周側から前側に向けて延びた円筒状のカバー筒2Bとを含んで構成されている。ハウジング本体2Aは、ロボット接続用のホルダ(図示せず)を介して前述した塗装ロボット24のアーム24Aの先端に取付けられている。一方、ハウジング本体2Aの前側には、カバー筒2B内に位置して後述のエアモータ3が取付けられている。さらに、ハウジング本体2Aの軸中心位置(後述する回転軸4の軸線O-O)には、後述するフィードチューブ5の基端側が固定的に取付けられている。 The housing 2 includes a housing main body 2A formed in a disc shape located on the rear side, and a cylindrical cover cylinder 2B extending from the outer peripheral side of the housing main body 2A toward the front side. The housing body 2A is attached to the tip of the arm 24A of the painting robot 24 described above via a robot connection holder (not shown). On the other hand, an air motor 3 to be described later is attached to the front side of the housing main body 2A so as to be positioned in the cover tube 2B. Further, a base end side of a feed tube 5 described later is fixedly attached to the axial center position of the housing main body 2A (axis line OO of the rotary shaft 4 described later).
 エアモータ3は、ハウジング2内に当該ハウジング2と同軸(軸線O-O上)に設けられている。このエアモータ3は、圧縮エアを動力源として回転軸4および回転霧化頭6を、例えば3~150krpmの高速で回転するものである。エアモータ3は、ハウジング本体2Aの前側に取付けられた段付円筒状のモータケース3Aと、モータケース3Aの後側位置に回転可能に収容されたタービン3Bと、モータケース3Aに設けられ回転軸4を回転可能に支持するエア軸受3Cとを含んで構成されている。 The air motor 3 is provided in the housing 2 coaxially with the housing 2 (on the axis OO). The air motor 3 rotates the rotary shaft 4 and the rotary atomizing head 6 at a high speed of 3 to 150 krpm, for example, using compressed air as a power source. The air motor 3 includes a stepped cylindrical motor case 3A attached to the front side of the housing body 2A, a turbine 3B rotatably accommodated at a rear position of the motor case 3A, and a rotating shaft 4 provided in the motor case 3A. And an air bearing 3C that rotatably supports the motor.
 ここで、タービン3Bには、後述するタービンエア源27からタービンエアが供給される。このタービンエアの流量に応じてタービン3Bの回転数、即ち、回転霧化頭6の回転数が制御される。 Here, turbine air is supplied to the turbine 3B from a turbine air source 27 described later. The rotational speed of the turbine 3B, that is, the rotational speed of the rotary atomizing head 6 is controlled in accordance with the flow rate of the turbine air.
 回転軸4は、エアモータ3にエア軸受3Cを介して回転自在に支持された筒体として形成されている。この回転軸4は、モータケース3Aに軸線O-Oを中心とし軸方向に延びて配置されている。回転軸4は、基端側(後端側)がタービン3Bの中央に一体的に取付けられ、先端がモータケース3Aから前側に突出している。回転軸4の先端部には、回転霧化頭6が取付けられている。 The rotary shaft 4 is formed as a cylindrical body that is rotatably supported by the air motor 3 via an air bearing 3C. The rotating shaft 4 is disposed in the motor case 3A so as to extend in the axial direction about the axis OO. The rotating shaft 4 has a base end side (rear end side) integrally attached to the center of the turbine 3B, and a tip projecting forward from the motor case 3A. A rotary atomizing head 6 is attached to the tip of the rotary shaft 4.
 フィードチューブ5は、回転軸4内を通って回転軸4の先端まで延びている。フィードチューブ5の先端側は、回転軸4の先端から突出して回転霧化頭6内に延在している。フィードチューブ5の基端側は、ハウジング2のハウジング本体2Aの中央位置に固定的に取付けられている。フィードチューブ5は、内部の塗料流路が、色替弁装置を含む後述の塗料供給源28に接続されている。 The feed tube 5 extends through the rotary shaft 4 to the tip of the rotary shaft 4. The distal end side of the feed tube 5 protrudes from the distal end of the rotary shaft 4 and extends into the rotary atomizing head 6. The proximal end side of the feed tube 5 is fixedly attached to the center position of the housing body 2 </ b> A of the housing 2. The feed tube 5 has an internal paint flow path connected to a paint supply source 28 described later including a color change valve device.
 フィードチューブ5は、塗装作業を行うときに、塗料流路から回転霧化頭6に向けて塗料を供給するものである。一方、付着塗料の洗浄作業を行うときには、塗料流路から回転霧化頭6に向け、例えばシンナ、エア等の洗浄流体を供給することができる。なお、フィードチューブ5は、同軸に配置された2重管として形成し、中央の流路を塗料流路とし、外側の環状流路を洗浄流体流路とする構成としてもよい。 The feed tube 5 supplies the paint from the paint channel toward the rotary atomizing head 6 when performing the painting operation. On the other hand, when performing the cleaning operation of the adhering paint, a cleaning fluid such as thinner or air can be supplied from the paint channel toward the rotary atomizing head 6. The feed tube 5 may be formed as a double pipe arranged coaxially, with a central flow path as a paint flow path and an outer annular flow path as a cleaning fluid flow path.
 回転霧化頭6は、回転軸4の先端に取付けられ、後側から前側に向けて拡径するカップ状に形成されている。回転霧化頭6は、エアモータ3によって回転軸4と一緒に高速回転されることにより、フィードチューブ5から供給される塗料等を噴霧するものである。回転霧化頭6の基端側は、円筒状の取付部6Aとなって回転軸4の先端部に取付けられている。ここで、回転霧化頭6は、一例として、後述する放出端縁6Dにおける直径寸法が40mmのものが用いられている。これ以外にも、例えば直径寸法が30mmよりも小径な回転霧化頭、50mmを超える大径な回転霧化頭を用いる構成としてもよい。 The rotary atomizing head 6 is attached to the tip of the rotary shaft 4 and is formed in a cup shape whose diameter increases from the rear side toward the front side. The rotary atomizing head 6 sprays the paint supplied from the feed tube 5 by being rotated at a high speed together with the rotary shaft 4 by the air motor 3. The proximal end side of the rotary atomizing head 6 is attached to the distal end portion of the rotary shaft 4 as a cylindrical attachment portion 6A. Here, as an example, a rotary atomizing head 6 having a diameter of 40 mm at a discharge edge 6D described later is used. In addition to this, for example, a rotary atomizing head having a diameter smaller than 30 mm and a rotary atomizing head having a large diameter exceeding 50 mm may be used.
 回転霧化頭6の取付部6Aの前側には、前側に向けカップ状に拡開する外周面6Bと、前側に向け漏斗状に大きく拡開することによりフィードチューブ5から供給された塗料を薄膜化しつつ拡散する塗料薄膜化面をなす内周面6Cとが設けられている。この内周面6Cの先端位置は、回転時に塗料を接線方向に放出する放出端縁6Dとなっている。 On the front side of the mounting portion 6A of the rotary atomizing head 6, an outer peripheral surface 6B that expands in a cup shape toward the front side and a paint supplied from the feed tube 5 by widening in a funnel shape toward the front side are thin films. And an inner peripheral surface 6C that forms a coating thin film surface that diffuses while being formed. The tip position of the inner peripheral surface 6C is a discharge edge 6D that discharges paint in a tangential direction when rotating.
 一方、回転霧化頭6の内側には、内周面6Cの奥部に位置して円板状のハブ部材6Eが設けられている。このハブ部材6Eは、フィードチューブ5から供給された塗料を内周面6Cに円滑に導くものである。さらに、回転霧化頭6には、ハブ部材6Eの後側に離間した位置を縮径することにより環状隔壁6Fが設けられている。この環状隔壁6Fは、フィードチューブ5の先端部を僅かな隙間をもって取囲むことにより、塗料溜り6Gを形成している。 On the other hand, a disc-shaped hub member 6E is provided on the inner side of the rotary atomizing head 6 so as to be located in the inner circumferential surface 6C. The hub member 6E smoothly guides the paint supplied from the feed tube 5 to the inner peripheral surface 6C. Further, the rotary atomizing head 6 is provided with an annular partition wall 6F by reducing the diameter of the position separated to the rear side of the hub member 6E. The annular partition wall 6F surrounds the tip of the feed tube 5 with a slight gap to form a paint reservoir 6G.
 このように形成された回転霧化頭6は、エアモータ3によって高速回転された状態でフィードチューブ5から塗料が供給される。これにより、回転霧化頭6は、塗料を塗料溜り6G、ハブ部材6E、内周面6C(塗料薄膜化面)を介し、放出端縁6Dから遠心力によって微粒化した無数の塗料粒子として噴霧するものである。 The rotary atomizing head 6 formed in this way is supplied with paint from the feed tube 5 while being rotated at high speed by the air motor 3. As a result, the rotary atomizing head 6 sprays the paint as innumerable paint particles atomized by centrifugal force from the discharge edge 6D through the paint reservoir 6G, the hub member 6E, and the inner peripheral surface 6C (coating thin film surface). To do.
 次に、本発明の特徴部分であるシェーピングエアリング7の構成について述べる。 Next, the configuration of the shaping air ring 7 which is a characteristic part of the present invention will be described.
 シェーピングエアリング7は、ハウジング2の軸方向の前側に設けられている。シェーピングエアリング7は、軸方向の先端が回転霧化頭6の放出端縁6Dよりも一定長さ後側に位置し、かつ、前記回転霧化頭6の外周面6Bの周囲を隙間をもって取囲んで配置されている。シェーピングエアリング7は、後述する第1のシェーピングエア噴出孔9および第2のシェーピングエア噴出孔10からシェーピングエアを噴出するものである。これにより、シェーピングエアリング7は、回転霧化頭6の放出端縁6Dから噴霧される塗料を微粒化しつつ、塗料の塗装パターンを所望の大きさ、形状に整えることができる。 The shaping air ring 7 is provided on the front side of the housing 2 in the axial direction. The shaping air ring 7 has an axial tip positioned behind the discharge end edge 6D of the rotary atomizing head 6 by a fixed length, and a space around the outer peripheral surface 6B of the rotary atomizing head 6 with a gap. It is placed around. The shaping air ring 7 ejects shaping air from a first shaping air ejection hole 9 and a second shaping air ejection hole 10 described later. Thereby, the shaping air ring 7 can arrange the coating pattern of the paint into a desired size and shape while atomizing the paint sprayed from the discharge edge 6D of the rotary atomizing head 6.
 シェーピングエアリング7は、後述するリング本体8、第1のシェーピングエア噴出孔9、第2のシェーピングエア噴出孔10を含んで構成されている。 The shaping air ring 7 includes a ring main body 8, a first shaping air ejection hole 9, and a second shaping air ejection hole 10 which will be described later.
 リング本体8は、回転霧化頭6を取囲む段付き円筒体として形成されている。リング本体8の後側は、ハウジング2のカバー筒2Bに取付けられている。これにより、リング本体8は、カバー筒2B内にエアモータ3を固定している。一方、リング本体8の外周側は、前側に向けてテーパ状に縮径している。さらに、リング本体8の先端面8Aには、第1のシェーピングエア噴出孔9と第2のシェーピングエア噴出孔10が開口して設けられている。 The ring body 8 is formed as a stepped cylinder surrounding the rotary atomizing head 6. The rear side of the ring body 8 is attached to the cover cylinder 2 </ b> B of the housing 2. Thereby, the ring main body 8 fixes the air motor 3 in the cover cylinder 2B. On the other hand, the outer peripheral side of the ring body 8 is tapered in a tapered shape toward the front side. Furthermore, a first shaping air ejection hole 9 and a second shaping air ejection hole 10 are provided in the distal end surface 8A of the ring body 8 so as to open.
 第1のシェーピングエア噴出孔9は、回転霧化頭6を取囲んで配置されている。即ち、第1のシェーピングエア噴出孔9は、シェーピングエアリング7の先端面8Aに開口した状態で周方向に連続して多数個設けられている。各第1のシェーピングエア噴出孔9は、第1のエア供給路9Aを介して後述する第1のシェーピングエア源29(略して、第1のSA源29という)に接続されている。第1のシェーピングエア噴出孔9は、小径な丸孔として形成されている。そして、第1のシェーピングエア噴出孔9は、回転霧化頭6から噴霧された塗料粒子を広げる方向(塗装パターンを大きくする方向)に作用するものである。 The first shaping air ejection hole 9 is disposed so as to surround the rotary atomizing head 6. That is, a large number of first shaping air ejection holes 9 are provided continuously in the circumferential direction in a state where the first shaping air ejection holes 9 are opened in the front end surface 8A of the shaping air ring 7. Each first shaping air ejection hole 9 is connected to a later-described first shaping air source 29 (referred to as a first SA source 29 for short) via a first air supply path 9A. The first shaping air ejection hole 9 is formed as a small-diameter round hole. The first shaping air ejection hole 9 acts in the direction in which the paint particles sprayed from the rotary atomizing head 6 are spread (in the direction in which the coating pattern is enlarged).
 ここで、第1のシェーピングエア噴出孔9は、回転霧化頭6の全周を取囲んで周方向に多数個設けられている。第1のシェーピングエア噴出孔9の個数N1は、後述する第2のシェーピングエア噴出孔10の個数N2よりも多い個数に設定されている。即ち、第1のシェーピングエア噴出孔9の個数N1は、回転霧化頭6の放出端縁6Dにおける直径寸法が40mmの場合、下記数1のように設定されている。 Here, a large number of first shaping air ejection holes 9 are provided in the circumferential direction surrounding the entire circumference of the rotary atomizing head 6. The number N1 of first shaping air ejection holes 9 is set to be larger than the number N2 of second shaping air ejection holes 10 described later. That is, the number N1 of the first shaping air ejection holes 9 is set as the following formula 1 when the diameter dimension at the discharge end edge 6D of the rotary atomizing head 6 is 40 mm.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この場合、図3に示すように、隣合う第1のシェーピングエア噴出孔9の間隔寸法は、寸法W1となる。この間隔寸法W1は、下記数2のように設定されている。 In this case, as shown in FIG. 3, the distance between adjacent first shaping air ejection holes 9 is the dimension W1. The interval dimension W1 is set as shown in the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、図4に示すように、第1のシェーピングエア噴出孔9の内径寸法d1は、後述する第2のシェーピングエア噴出孔10の内径寸法d2よりも大きな寸法に設定されている。即ち、第1のシェーピングエア噴出孔9の開口端の内径寸法d1は、下記数3のように設定されている。 Further, as shown in FIG. 4, the inner diameter dimension d1 of the first shaping air ejection hole 9 is set to be larger than the inner diameter dimension d2 of the second shaping air ejection hole 10 described later. That is, the inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9 is set as shown in Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 一方、第1のシェーピングエア噴出孔9の軸線O1-O1は、回転軸4の軸線O-Oに対し、回転霧化頭6の回転方向と逆方向に角度α1をもって傾斜している。この傾斜角度α1は、下記数4のように設定されている。 On the other hand, the axis O1-O1 of the first shaping air ejection hole 9 is inclined with respect to the axis OO of the rotary shaft 4 at an angle α1 in the direction opposite to the rotational direction of the rotary atomizing head 6. The inclination angle α1 is set as in the following equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 さらに、第1のシェーピングエア噴出孔9は、回転霧化頭6の放出端縁6Dから放出された直後の塗料粒子に向けて第1のシェーピングエアを吹き付けるものである。そこで、図2に示すように、第1のシェーピングエア噴出孔9は、放出端縁6Dよりも径方向の外側に距離寸法L1だけ離れた位置に設けられている。この場合、距離寸法L1は、下記数5のように設定されている。 Further, the first shaping air ejection hole 9 blows the first shaping air toward the paint particles immediately after being discharged from the discharge edge 6D of the rotary atomizing head 6. Therefore, as shown in FIG. 2, the first shaping air ejection hole 9 is provided at a position separated from the discharge end edge 6D in the radial direction by a distance dimension L1. In this case, the distance dimension L1 is set as shown in Equation 5 below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 そして、第1のシェーピングエア噴出孔9は、回転軸4(シェーピングエアリング7)の径方向(図2で示す方向から見た状態)では、軸線O-Oに対してほぼ平行となっている。以上のような条件で形成されている多数個の第1のシェーピングエア噴出孔9は、回転霧化頭6の放出端縁6Dから接線方向に飛行してくる塗料の液糸に正面から第1のシェーピングエアを衝突させる。これにより、第1のシェーピングエア噴出孔9は、噴霧された塗料を積極的に微粒化させることができる。しかも、第1のシェーピングエア噴出孔9は、第1のシェーピングエアの流量(流速)を調整することにより、後述する第2のシェーピングエアと協働して塗装パターンの大きさを調整することができる。 The first shaping air ejection hole 9 is substantially parallel to the axis OO in the radial direction of the rotating shaft 4 (shaping air ring 7) (as viewed from the direction shown in FIG. 2). . A large number of first shaping air ejection holes 9 formed under the above-described conditions are the first from the front to the liquid yarn of the paint flying in the tangential direction from the discharge end edge 6D of the rotary atomizing head 6. Make the shaping air collide. Thereby, the first shaping air ejection hole 9 can positively atomize the sprayed paint. Moreover, the first shaping air ejection hole 9 can adjust the size of the coating pattern in cooperation with the second shaping air described later by adjusting the flow rate (flow velocity) of the first shaping air. it can.
 第2のシェーピングエア噴出孔10は、各第1のシェーピングエア噴出孔9よりも径方向の内側に位置して回転霧化頭6を取囲んで配置されている。第2のシェーピングエア噴出孔10は、回転霧化頭6の外周面6Bに沿わせて第2のシェーピングエアを噴出するものである。第2のシェーピングエア噴出孔10は、第1のシェーピングエア噴出孔9とほぼ同様に、小径な丸孔からなり、シェーピングエアリング7を構成するリング本体8の先端面8Aに開口した状態で多数個設けられている。第2のシェーピングエア噴出孔10は、第2のエア供給路10Aを介して後述する第2のシェーピングエア源30(略して、第2のSA源30という)に接続されている。そして、第2のシェーピングエア噴出孔10は、回転霧化頭6から噴霧された塗料粒子を狭める方向(塗装パターンを小さくする方向)に作用するものである。 The second shaping air ejection holes 10 are disposed radially inside the first shaping air ejection holes 9 so as to surround the rotary atomizing head 6. The second shaping air ejection hole 10 ejects the second shaping air along the outer peripheral surface 6 </ b> B of the rotary atomizing head 6. The second shaping air ejection hole 10 is composed of a small-diameter round hole substantially in the same manner as the first shaping air ejection hole 9, and is opened in the front end surface 8 </ b> A of the ring body 8 constituting the shaping air ring 7. One is provided. The second shaping air ejection hole 10 is connected to a later-described second shaping air source 30 (abbreviated as the second SA source 30) through a second air supply path 10A. The second shaping air ejection hole 10 acts in the direction of narrowing the paint particles sprayed from the rotary atomizing head 6 (the direction of reducing the coating pattern).
 ここで、第2のシェーピングエア噴出孔10は、回転霧化頭6と第1のシェーピングエア噴出孔9との間に周方向の全周を取囲んで多数個設けられている。第2のシェーピングエア噴出孔10の個数は、第1のシェーピングエア噴出孔9の個数よりも少ない個数に設定されている。即ち、第2のシェーピングエア噴出孔10の個数N2は、回転霧化頭6の放出端縁6Dにおける直径寸法が40mmの場合、下記数6のように設定されている。 Here, a plurality of second shaping air ejection holes 10 are provided between the rotary atomizing head 6 and the first shaping air ejection hole 9 so as to surround the entire circumference in the circumferential direction. The number of second shaping air ejection holes 10 is set to be smaller than the number of first shaping air ejection holes 9. That is, the number N2 of the second shaping air ejection holes 10 is set as the following formula 6 when the diameter dimension at the discharge end edge 6D of the rotary atomizing head 6 is 40 mm.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、第2のシェーピングエア噴出孔10の個数N2は、第1のシェーピングエア噴出孔9の個数N1に対して、下記数7の関係にある。 Here, the number N2 of the second shaping air ejection holes 10 has a relationship of the following Expression 7 with respect to the number N1 of the first shaping air ejection holes 9.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この場合、図3に示すように、隣合う第2のシェーピングエア噴出孔10の間隔寸法は、寸法W2となる。この間隔寸法W2は、第1のシェーピングエア噴出孔9の間隔寸法W1よりも大きな値、即ち、下記数8の範囲に設定されている。 In this case, as shown in FIG. 3, the interval between adjacent second shaping air ejection holes 10 is the dimension W2. The spacing dimension W2 is set to a value larger than the spacing dimension W1 of the first shaping air ejection hole 9, that is, a range of the following formula 8.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、図5に示すように、第2のシェーピングエア噴出孔10の開口端の内径寸法d2は、下記数9のように設定されている。 Further, as shown in FIG. 5, the inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10 is set as shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、第1のシェーピングエア噴出孔9は、その個数N1を第2のシェーピングエア噴出孔10の個数N2よりも多くしている。また、第1のシェーピングエア噴出孔9の開口端の内径寸法d1は、第2のシェーピングエア噴出孔10の開口端の内径寸法d2よりも大きな値に設定している。従って、エアの供給量を変えることなく、第1のシェーピングエア噴出孔9から噴出される第1のシェーピングエアの流速を下げることができる。これにより、第1のシェーピングエアの流速が高い場合に発生していた2重パターンという不具合を解消することができる。また、良好な塗装状態を維持しつつ、塗装パターンを小径化することができる。 Thus, the number N1 of the first shaping air ejection holes 9 is larger than the number N2 of the second shaping air ejection holes 10. The inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9 is set to a value larger than the inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10. Therefore, the flow rate of the first shaping air ejected from the first shaping air ejection hole 9 can be lowered without changing the air supply amount. Thereby, the problem of the double pattern which has occurred when the flow velocity of the first shaping air is high can be solved. In addition, the diameter of the coating pattern can be reduced while maintaining a good coating state.
 一方、第2のシェーピングエア噴出孔10は、その個数N2を第1のシェーピングエア噴出孔9の個数N1よりも少なくしている。また、第2のシェーピングエア噴出孔10の開口端の内径寸法d2は、第1のシェーピングエア噴出孔9の開口端の内径寸法d1よりも小さく設定している。従って、エアの供給量が同じ場合、各第2のシェーピングエア噴出孔10から噴出される第2のシェーピングエアの流速を上げることができる。これにより、第2のシェーピングエアは、第1のシェーピングエアとの協働によって良好な塗装状態を維持しつつ、塗装パターンを大きくすることができる。 On the other hand, the number N2 of the second shaping air ejection holes 10 is smaller than the number N1 of the first shaping air ejection holes 9. The inner diameter dimension d2 of the opening end of the second shaping air ejection hole 10 is set smaller than the inner diameter dimension d1 of the opening end of the first shaping air ejection hole 9. Therefore, when the supply amount of air is the same, the flow speed of the second shaping air ejected from each second shaping air ejection hole 10 can be increased. Thereby, the 2nd shaping air can enlarge a painting pattern, maintaining a favorable painting state by cooperation with 1st shaping air.
 一方、第2のシェーピングエア噴出孔10の軸線O2-O2は、回転軸4の軸線O-Oに対し、回転霧化頭6の回転方向と逆方向に角度α2をもって傾斜している。この傾斜角度α2は、第1のシェーピングエア噴出孔9の傾斜角度α1よりも小さな値、即ち、下記数10のように設定されている。 On the other hand, the axis O2-O2 of the second shaping air ejection hole 10 is inclined with respect to the axis OO of the rotary shaft 4 at an angle α2 in the direction opposite to the rotational direction of the rotary atomizing head 6. The inclination angle α2 is set to a value smaller than the inclination angle α1 of the first shaping air ejection hole 9, that is, the following formula 10.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 さらに、各第2のシェーピングエア噴出孔10は、回転霧化頭6の外周面6Bに沿わせて第2のシェーピングエアを噴出するものである。そこで、図2に示すように、第2のシェーピングエア噴出孔10は、放出端縁6Dよりも径方向の内側に距離寸法L2だけ離れた位置(前面から見て回転霧化頭6に重なる位置)に設けられている。この場合、距離寸法L2は、下記数11のように設定されている。 Furthermore, each second shaping air ejection hole 10 ejects the second shaping air along the outer peripheral surface 6B of the rotary atomizing head 6. Therefore, as shown in FIG. 2, the second shaping air ejection hole 10 is located at a position separated from the discharge end edge 6D in the radial direction by a distance dimension L2 (position overlapping the rotary atomizing head 6 when viewed from the front). ). In this case, the distance dimension L2 is set as in the following formula 11.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 図2に示すように、第2のシェーピングエア噴出孔10は、回転軸4(シェーピングエアリング7)の径方向では、軸線O-Oに対してほぼ平行となっている。この上で、第2のシェーピングエア噴出孔10は、吐出された第2のシェーピングエアが回転霧化頭6の外周面6Bに対して角度β(外周面6Bに対する第2のシェーピングエアの入射角β)で衝突するように設定されている。この第2のシェーピングエアの入射角βは、下記数12のように設定されている。 As shown in FIG. 2, the second shaping air ejection hole 10 is substantially parallel to the axis OO in the radial direction of the rotating shaft 4 (shaping air ring 7). Then, the second shaping air ejection hole 10 is configured such that the discharged second shaping air has an angle β with respect to the outer peripheral surface 6B of the rotary atomizing head 6 (an incident angle of the second shaping air with respect to the outer peripheral surface 6B). set to collide at β). The incident angle β of the second shaping air is set as shown in Equation 12 below.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 この場合、第2のシェーピングエアの入射角βが大きくなると、回転霧化頭6の外周面6Bに第2のシェーピングエアが衝突して飛散してしまう。一方、第2のシェーピングエアの入射角βが小さくなると、回転霧化頭6から噴霧された塗料粒子に直接的に第2のシェーピングエアが衝突し、塗装パターンの形状が不安定になる。これに対し、第2のシェーピングエアの入射角βを上述した値の範囲に設定することにより、第2のシェーピングエアを安定させて良好な塗装パターンを得ることができる。 In this case, when the incident angle β of the second shaping air increases, the second shaping air collides with the outer peripheral surface 6B of the rotary atomizing head 6 and scatters. On the other hand, when the incident angle β of the second shaping air becomes small, the second shaping air directly collides with the paint particles sprayed from the rotary atomizing head 6 and the shape of the coating pattern becomes unstable. On the other hand, by setting the incident angle β of the second shaping air within the above-described value range, the second shaping air can be stabilized and a good coating pattern can be obtained.
 以上のような条件で形成されている第2のシェーピングエア噴出孔10は、回転霧化頭6の放出端縁6Dから切離される塗料の液糸に第2のシェーピングエアを衝突させる。これにより、第2のシェーピングエア噴出孔10は、塗料粒子の無駄な拡散を抑えて塗装パターンを安定させることができる。しかも、第2のシェーピングエア噴出孔10は、第2のシェーピングエアの流量(流速)を調整することにより、第1のシェーピングエアと協働して塗装パターンの大きさを調整することができる。 The second shaping air ejection hole 10 formed under the conditions as described above causes the second shaping air to collide with the liquid yarn of the paint separated from the discharge end edge 6D of the rotary atomizing head 6. Thereby, the 2nd shaping air ejection hole 10 can suppress the useless spreading | diffusion of a coating particle, and can stabilize a coating pattern. Moreover, the second shaping air ejection hole 10 can adjust the size of the coating pattern in cooperation with the first shaping air by adjusting the flow rate (flow velocity) of the second shaping air.
 ここで、塗装機1によって塗装パターンの大きさを調整する場合の方法の一例について、塗装対象として車両のボディ11の内面と外面を仕上げ塗装する場合の塗装パターンの切換条件を述べる。 Here, as an example of a method for adjusting the size of the coating pattern by the coating machine 1, conditions for switching the coating pattern when the inner surface and the outer surface of the vehicle body 11 are painted as objects to be painted will be described.
 図6に示すように、塗装パターンの大きさ(パターン幅)は、50~100mm、200~300mm、300~400mm、400~500mmに切換えることができる。この場合には、第1のシェーピングエアの流量(第1SA流量)、第2のシェーピングエアの流量(第2SA流量)、塗料の吐出量および回転霧化頭6の回転数の各数値条件は、それぞれ図6に示される値に制御される。図6中で、後述する最小パターンは、パターン幅が50~100mmでの数値条件であり、最大パターンは、パターン幅が400~500mmでの数値条件であり、中間パターンは、パターン幅が200~400mmでの数値条件である。なお、中間パターンは、小幅中間パターン(200~300mm)と大幅中間パターン(300~400mm)とを、分けて数値条件を記載している。 As shown in FIG. 6, the size (pattern width) of the coating pattern can be switched between 50 to 100 mm, 200 to 300 mm, 300 to 400 mm, and 400 to 500 mm. In this case, the numerical conditions of the flow rate of the first shaping air (first SA flow rate), the flow rate of the second shaping air (second SA flow rate), the discharge amount of the paint, and the rotation speed of the rotary atomizing head 6 are as follows: Each is controlled to the value shown in FIG. In FIG. 6, the minimum pattern to be described later is a numerical condition with a pattern width of 50 to 100 mm, the maximum pattern is a numerical condition with a pattern width of 400 to 500 mm, and the intermediate pattern has a pattern width of 200 to 200 mm. Numerical conditions at 400 mm. For the intermediate pattern, numerical conditions are described separately for the narrow intermediate pattern (200 to 300 mm) and the large intermediate pattern (300 to 400 mm).
 具体的には、最小パターンで内面を塗装する場合には、第1のシェーピングエアと第2のシェーピングエアとの流量比は、50~200/600NL(ノルマルリットル)、塗料の吐出量は、100~150cc/min、回転霧化頭の回転数は、20~35krpmである。一方、最大パターンで外面を塗装する場合には、第1のシェーピングエアと第2のシェーピングエアとの流量比は、300/50~200NL、塗料の吐出量は、300~500cc/min、回転霧化頭の回転数は、25~55krpmである。さらに、中間パターンで内面と外面を塗装する場合には、最小パターン、最大パターンと同様に、第1のシェーピングエアと第2のシェーピングエアとの流量比、塗料の吐出量および回転霧化頭の回転数は、適切な数値条件に設定される。 Specifically, when the inner surface is painted with a minimum pattern, the flow rate ratio between the first shaping air and the second shaping air is 50 to 200/600 NL (normal liters), and the discharge amount of the paint is 100. The rotational speed of the rotary atomizing head is 20 to 35 krpm. On the other hand, when the outer surface is painted with the maximum pattern, the flow rate ratio between the first shaping air and the second shaping air is 300/50 to 200 NL, the paint discharge rate is 300 to 500 cc / min, and the rotating fog The rotation speed of the chemical head is 25 to 55 krpm. Further, when the inner and outer surfaces are painted with an intermediate pattern, the flow rate ratio between the first shaping air and the second shaping air, the discharge amount of the paint, and the rotary atomizing head, as with the minimum and maximum patterns. The rotation speed is set to an appropriate numerical condition.
 上述した塗装パターンの寸法は、仕上げ塗装(クリア塗装)を行う場合のものである。例えば、下塗り塗装(プライマ塗装)を施す場合には、各寸法が100mm程度大きく設定される。 The dimensions of the above-mentioned coating pattern are those for finishing coating (clear coating). For example, when undercoating (primer coating) is applied, each dimension is set to be about 100 mm larger.
 本実施の形態で用いられる塗装機1の塗装パターンは、最小パターン、中間パターン、最大パターンの3種類からなる。ここで、最小パターンとは、回転霧化頭6の直径寸法の1.0~2.5倍の範囲である。回転霧化頭6の直径寸法が40mmの場合、パターン幅は50~100mmとなる。また、最大パターンとは、回転霧化頭6の直径寸法の10~12倍の範囲である。回転霧化頭6の直径寸法が40mmの場合、パターン幅は400~500mmとなる。さらに、中間パターンとは、最小パターンと最大パターンとの間で、パターン幅は200~400mmとなる。なお、この中間パターンは、パターン幅が200~300mmの小幅中間パターンと、300~400mmの大幅中間パターンとに分けられる。従って、塗装機1は、良好な噴霧状態を維持したままで、塗装パターンの大きさを3種類に調整することができる。この結果、1種類の塗装機1を、後述する車両のボディ11の内面塗装と外面塗装との両方に使用することができる。 The coating pattern of the coating machine 1 used in the present embodiment consists of three types: a minimum pattern, an intermediate pattern, and a maximum pattern. Here, the minimum pattern is a range of 1.0 to 2.5 times the diameter of the rotary atomizing head 6. When the diameter of the rotary atomizing head 6 is 40 mm, the pattern width is 50 to 100 mm. The maximum pattern is a range of 10 to 12 times the diameter of the rotary atomizing head 6. When the diameter of the rotary atomizing head 6 is 40 mm, the pattern width is 400 to 500 mm. Further, the intermediate pattern has a pattern width of 200 to 400 mm between the minimum pattern and the maximum pattern. This intermediate pattern is divided into a narrow intermediate pattern having a pattern width of 200 to 300 mm and a large intermediate pattern having a pattern width of 300 to 400 mm. Therefore, the coating machine 1 can adjust the size of the coating pattern to three types while maintaining a good spray state. As a result, one type of coating machine 1 can be used for both inner surface coating and outer surface coating of a vehicle body 11 described later.
 本実施の形態による塗装機1を用いて仕上げ塗装を施す場合には、所望の塗装パターン、所望の膜厚を得るために、シェーピングエアの流量、塗料の流量、回転霧化頭6の回転数が制御される。その一例としては、最小パターン(50~100mm)は、第1のシェーピングエアの流量よりも第2のシェーピングエアの流量を多くし、塗料の流量を少なくし、回転霧化頭6の回転数を低くすることによって形成される。また、最大パターン(400~500mm)は、第1のシェーピングエアの流量よりも第2のシェーピングエアの流量を少なくし、塗料の流量を多くし、回転霧化頭6の回転数を高くすることによって形成される。さらに、中間パターン(200~400mm)では、第1のシェーピングエアの流量、第2のシェーピングエアの流量、塗料の流量、回転霧化頭6の回転数が、上述した各値の中間の値に設定される。なお、最小パターンは、回転霧化頭6の回転数を高くして形成してもよく、最大パターンは、回転霧化頭6の回転数を低くして形成してもよい。 When finishing coating is performed using the coating machine 1 according to the present embodiment, in order to obtain a desired coating pattern and a desired film thickness, the flow rate of the shaping air, the flow rate of the coating material, and the rotational speed of the rotary atomizing head 6 are obtained. Is controlled. As an example, in the minimum pattern (50 to 100 mm), the flow rate of the second shaping air is increased more than the flow rate of the first shaping air, the flow rate of the paint is decreased, and the rotational speed of the rotary atomizing head 6 is reduced. It is formed by lowering. In the maximum pattern (400 to 500 mm), the flow rate of the second shaping air is made smaller than the flow rate of the first shaping air, the flow rate of the paint is increased, and the rotational speed of the rotary atomizing head 6 is increased. Formed by. Further, in the intermediate pattern (200 to 400 mm), the flow rate of the first shaping air, the flow rate of the second shaping air, the flow rate of the paint, and the rotation speed of the rotary atomizing head 6 are intermediate values of the above-described values. Is set. The minimum pattern may be formed by increasing the rotational speed of the rotary atomizing head 6, and the maximum pattern may be formed by decreasing the rotational speed of the rotary atomizing head 6.
 次に、塗装機1を車両のボディ11を塗装する車両ボディの塗装システム21に適用した場合について説明する。 Next, the case where the coating machine 1 is applied to a vehicle body coating system 21 that paints the vehicle body 11 will be described.
 まず、図7、図8に示すように、塗装対象(被塗物)となる車両のボディ11について述べる。このボディ11は、前,後方向に長尺な構造体からなるボディ本体12と、ボディ本体12の左,右両側にそれぞれ開閉可能に設けられる合計4枚のドア13と、ボディ本体12の前側に開閉可能に設けられるエンジンフード14と、ボディ本体12の後側に開閉可能に設けられるバックドア15と、ボディ本体12の前端部に設けられるフロントバンパ16と、ボディ本体12の後端部に設けられるリヤバンパ17とを含んで構成されている。 First, as shown in FIGS. 7 and 8, a vehicle body 11 to be painted (object to be coated) will be described. The body 11 includes a body main body 12 having a structure elongated in the front and rear directions, a total of four doors 13 that can be opened and closed on both the left and right sides of the body main body 12, and the front side of the body main body 12. An engine hood 14 that can be opened and closed, a back door 15 that can be opened and closed on the rear side of the body body 12, a front bumper 16 that is provided at the front end of the body body 12, and a rear end portion of the body body 12 And a rear bumper 17 provided.
 ボディ本体12は、左前フェンダ12A、右前フェンダ12B、左後フェンダ12C、右後フェンダ12D、ルーフ12E、左前ピラー12F、右前ピラー12G、左後ピラー12H、右後ピラー12Jを備えている。これら左前フェンダ12A、右前フェンダ12B、左後フェンダ12C、右後フェンダ12D、ルーフ12E、左前ピラー12F、右前ピラー12G、左後ピラー12H、右後ピラー12Jは、それぞれ内面と外面とを有している。ここで、左前ピラー12F、右前ピラー12G、左後ピラー12H、右後ピラー12Jは、ボディ11の外面の狭幅部分を構成している。 The body body 12 includes a left front fender 12A, a right front fender 12B, a left rear fender 12C, a right rear fender 12D, a roof 12E, a left front pillar 12F, a right front pillar 12G, a left rear pillar 12H, and a right rear pillar 12J. These left front fender 12A, right front fender 12B, left rear fender 12C, right rear fender 12D, roof 12E, left front pillar 12F, right front pillar 12G, left rear pillar 12H, and right rear pillar 12J each have an inner surface and an outer surface. Yes. Here, the left front pillar 12F, the right front pillar 12G, the left rear pillar 12H, and the right rear pillar 12J constitute a narrow portion of the outer surface of the body 11.
 また、ボディ本体12の前側には、左前フェンダ12Aの前部と右前フェンダ12Bの前部との間を左,右方向に延びてラジエータサポート12Kが設けられている。このラジエータサポート12Kは、ラジエータ(図示せず)等の放熱器を支持するもので、ボディ本体12の内面(内板)の一部を構成している。 Further, a radiator support 12K is provided on the front side of the body body 12 so as to extend leftward and rightward between the front part of the left front fender 12A and the front part of the right front fender 12B. The radiator support 12K supports a radiator such as a radiator (not shown) and constitutes a part of the inner surface (inner plate) of the body main body 12.
 4枚のドア13は、ボディ本体12のルーフ12Eとの間にそれぞれ窓枠13Aを有している。この窓枠13Aは、ボディ本体12の各ピラー12F,12G,12H,12Jと一緒にボディ11の外面の狭幅部分を構成している。窓枠13Aの内部は、塗装対象となる窓枠13Aから外れた非塗装空間13Bとなっている。ここで、各ドア13には、ボディ11と同色のドアノブ13Cが取付けられる。このドアノブ13Cは、小型部品を構成するもので、治具としてのノブ用治具18を介して後側のドア13内の非塗装空間13Bに配置されている。 Each of the four doors 13 has a window frame 13A between the body 12 and the roof 12E. This window frame 13A constitutes a narrow portion of the outer surface of the body 11 together with the pillars 12F, 12G, 12H, and 12J of the body main body 12. The inside of the window frame 13A is a non-painting space 13B that is out of the window frame 13A to be painted. Here, a door knob 13 </ b> C having the same color as that of the body 11 is attached to each door 13. The door knob 13C constitutes a small component, and is disposed in the non-painting space 13B in the rear door 13 via a knob jig 18 as a jig.
 ノブ用治具18は、例えば、取付対象側の溝部に差し込むことができる固定部18Aを有している。固定部18Aは、ドア13を塗装するときに不具合が生じない位置、例えば、ドア13内で窓枠13Aの下側に位置するガラスの移動溝(図示せず)に取付けられている。これにより、各ドアノブ13Cは、ドア13を塗装するときの作業の一部としてドア13と一緒に塗装することができる。なお、ノブ用治具18は、締結部材等を用いてドア13に取付ける構成としてもよい。 The knob jig 18 has, for example, a fixing portion 18A that can be inserted into a groove on the attachment target side. The fixed portion 18A is attached to a position where no trouble occurs when the door 13 is painted, for example, in a glass movement groove (not shown) located below the window frame 13A in the door 13. Thereby, each door knob 13C can be painted together with the door 13 as a part of the operation | work when painting the door 13. As shown in FIG. The knob jig 18 may be attached to the door 13 using a fastening member or the like.
 フロントバンパ16は、ボディ本体12の前端部に取付けられるものである。このフロントバンパ16は、治具としてのフロントバンパ用治具19を用いてボディ本体12の前部に取付けられている。まず、車両のボディ11の完成体では、フロントバンパ16は、その縁部とボディ本体12との間に隙間がない状態でボディ本体12に対して取付けられるものである。これに対し、フロントバンパ用治具19は、フロントバンパ16の縁部(端面)の塗装が可能となるように、ボディ本体12とフロントバンパ16との間に隙間を形成するための冶具である。このとき、フロントバンパ用治具19によるフロントバンパ16の縁部とボディ本体12との間の隙間寸法は、前側に向けて10mm~30mmに設定されている。 The front bumper 16 is attached to the front end portion of the body main body 12. The front bumper 16 is attached to the front portion of the body body 12 using a front bumper jig 19 as a jig. First, in the completed body 11 of the vehicle, the front bumper 16 is attached to the body main body 12 with no gap between the edge portion and the body main body 12. On the other hand, the front bumper jig 19 is a jig for forming a gap between the body main body 12 and the front bumper 16 so that the edge (end surface) of the front bumper 16 can be painted. . At this time, the gap dimension between the edge of the front bumper 16 and the body main body 12 by the front bumper jig 19 is set to 10 mm to 30 mm toward the front side.
 リヤバンパ17は、ボディ本体12の後端部に取付けられるものである。これに対し、塗装作業時には、このリヤバンパ17は、治具としてのリヤバンパ用治具20を用いてボディ本体12の後部に取付けられている。リヤバンパ用治具20は、フロントバンパ用治具19と同様に、リヤバンパ17の縁部(端面)の塗装が可能となるように、ボディ本体12とリヤバンパ17との間に隙間を形成するための冶具である。このとき、リヤバンパ用治具20によるリヤバンパ17の縁部とボディ本体12との間の隙間寸法は、後側に向けて10mm~30mmに設定されている。 The rear bumper 17 is attached to the rear end portion of the body main body 12. On the other hand, during the painting operation, the rear bumper 17 is attached to the rear portion of the body body 12 using a rear bumper jig 20 as a jig. Similar to the front bumper jig 19, the rear bumper jig 20 forms a gap between the body body 12 and the rear bumper 17 so that the edge (end surface) of the rear bumper 17 can be painted. It is a jig. At this time, the gap between the edge of the rear bumper 17 and the body body 12 by the rear bumper jig 20 is set to 10 mm to 30 mm toward the rear side.
 従って、フロントバンパ用治具19を用いることにより、ボディ本体12とフロントバンパ16との間には、隙間を形成することができる。これにより、塗装作業時には、前記隙間を通してフロントバンパ16の端面から内面側まで塗装することができる。しかも、フロントバンパ16は、ボディ本体12、エンジンフード14と同じ塗料で塗装できるから、周囲のボディ本体12、エンジンフード14と色合いを同じにすることができる。 Therefore, a gap can be formed between the body body 12 and the front bumper 16 by using the front bumper jig 19. Thereby, at the time of a painting operation | work, it can coat from the end surface of the front bumper 16 to the inner surface side through the said clearance gap. In addition, since the front bumper 16 can be painted with the same paint as the body main body 12 and the engine hood 14, the same hue as the surrounding body main body 12 and engine hood 14 can be obtained.
 同様に、リヤバンパ用治具20は、ボディ本体12とリヤバンパ17との間に隙間を形成できる。これにより、塗装作業時には、前記隙間を通してリヤバンパ17の端面から内面側まで塗装することができる。しかも、リヤバンパ17も、周囲のボディ本体12、バックドア15と色合いを同じにすることができる。 Similarly, the rear bumper jig 20 can form a gap between the body body 12 and the rear bumper 17. Thereby, at the time of a painting operation | work, it can coat from the end surface of the rear bumper 17 to the inner surface side through the said clearance gap. Moreover, the rear bumper 17 can also have the same hue as the surrounding body body 12 and back door 15.
 次に、前述した車両のボディ11に塗装を施すための車両ボディの塗装システム21について、図7を参照して説明する。 Next, a vehicle body coating system 21 for coating the vehicle body 11 described above will be described with reference to FIG.
 この塗装システム21は、長尺な塗装空間を形成する塗装ブース22と、塗装ブース22に沿って延びた搬送ライン23と、搬送ライン23を挟んだ両側に配置された複数台、例えば、合計8台の塗装ロボット24と、各塗装ロボット24のアーム24Aの先端に取付けられた塗装機1(1L、1R)とを含んで構成されている。ここで、各塗装ロボット24は、同一構造をもったロボットを用いることができる。 The painting system 21 includes a painting booth 22 that forms a long painting space, a conveyance line 23 extending along the painting booth 22, and a plurality of units disposed on both sides of the conveyance line 23, for example, a total of eight. The painting robot 24 includes a painting machine 24 and a painting machine 1 (1L, 1R) attached to the tip of an arm 24A of each painting robot 24. Here, each painting robot 24 can use a robot having the same structure.
 塗装ブース22は、搬送ライン23に沿って延びる長尺な直方体状の建屋22Aと、建屋22A内の環境を整えるための空調装置、廃棄塗料の回収装置(いずれも図示せず)を含んで構成されている。この1つの塗装ブース22には、ボディ11の搬送方向の上流側に位置する内面外面同時塗装エリア25と、ボディ11の搬送方向の下流側に位置する外面塗装エリア26とが設けられている。 The painting booth 22 includes a long rectangular parallelepiped building 22A extending along the transfer line 23, an air conditioner for preparing the environment in the building 22A, and a waste paint recovery device (none of which are shown). Has been. This one coating booth 22 is provided with an inner surface outer surface simultaneous coating area 25 located on the upstream side in the conveying direction of the body 11 and an outer surface coating area 26 located on the downstream side in the conveying direction of the body 11.
 搬送ライン23は、塗装ブース22の建屋22A内でボディ11を搬送するものである。搬送ライン23は、例えば、建屋22Aの左,右方向の中央を真直ぐに延びたレール23Aと、ボディ11が搭載されレール23Aに沿って移動される台座23B(図8参照)とにより構成されている。 The conveyance line 23 conveys the body 11 within the building 22 </ b> A of the painting booth 22. The conveyance line 23 is configured by, for example, a rail 23A that extends straight in the center in the left and right directions of the building 22A, and a pedestal 23B (see FIG. 8) on which the body 11 is mounted and moved along the rail 23A. Yes.
 8台の塗装ロボット24のうち、搬送ライン23の上流側の内面外面同時塗装エリア25に位置する6台の塗装ロボット24は、ボディ11の内面側と外面側との両方を塗装するのに用いられる。また、搬送ライン23の下流側の外面塗装エリア26に位置する2台の塗装ロボット24は、ボディ11の外面側だけを塗装するのに用いられる。 Of the eight painting robots 24, six painting robots 24 located in the inner surface / outer surface simultaneous painting area 25 upstream of the transfer line 23 are used to paint both the inner surface and the outer surface of the body 11. It is done. Further, the two painting robots 24 located in the outer surface painting area 26 on the downstream side of the transfer line 23 are used for painting only the outer surface side of the body 11.
 塗装機1は、8台の塗装ロボット24のアーム24Aの先端にそれぞれ取付けられている。即ち、8台の塗装ロボット24と塗装機1との組立体は、全台で共通となっている。ここで、塗装機1は、前述したようにボディ11の内面側と外面側との両方を塗装することができる。従って、例えば1台の塗装ロボット24または塗装機1に不具合が生じて使用できなくなった場合には、残りの7台の組立体うち稼働率が低い組立体を、使用できない組立体の代わりに稼動することができる。これにより、予備の組立体の待機を不用にすることができる。 The painting machine 1 is attached to the tip of the arm 24A of each of the eight painting robots 24. That is, the assembly of the eight coating robots 24 and the coating machine 1 is common to all the units. Here, the coating machine 1 can coat both the inner surface side and the outer surface side of the body 11 as described above. Therefore, for example, if one painting robot 24 or painting machine 1 fails and can no longer be used, the remaining seven assemblies with low availability will be used instead of the unusable ones. can do. As a result, standby of the spare assembly can be made unnecessary.
 塗装機1は、搬送ライン23を挟む幅方向の左側に配置された各塗装ロボット24に取付けられたものが一側塗装機としての塗装機1Lとなる。一方、塗装機1は、右側に配置された各塗装ロボット24に取付けられたものが他側塗装機としての塗装機1Rとなる。 The painting machine 1 is a painting machine 1L as a one-side painting machine that is attached to each painting robot 24 arranged on the left side in the width direction across the conveyance line 23. On the other hand, in the painting machine 1, what is attached to each painting robot 24 arranged on the right side is a painting machine 1R as the other-side painting machine.
 本実施の形態による車両ボディの塗装システム21によるボディ11の塗装作業を行うときの動作について説明する。 The operation when the body 11 is painted by the vehicle body painting system 21 according to the present embodiment will be described.
 まず、塗装機1によって塗料を噴霧する動作について説明する。タービンエア源27からエアモータ3のタービン3Bに圧縮エアを供給し、エアモータ3によって回転軸4と回転霧化頭6を高速で回転する。この状態で、塗料供給源28の色替弁装置で選択された塗料がフィードチューブ5の塗料流路から回転霧化頭6に供給される。これにより、回転霧化頭6は、供給された塗料を塗料粒子として噴霧する。 First, the operation of spraying paint with the coating machine 1 will be described. Compressed air is supplied from the turbine air source 27 to the turbine 3B of the air motor 3, and the rotary shaft 4 and the rotary atomizing head 6 are rotated at high speed by the air motor 3. In this state, the paint selected by the color changing valve device of the paint supply source 28 is supplied from the paint flow path of the feed tube 5 to the rotary atomizing head 6. Thereby, the rotary atomizing head 6 sprays the supplied paint as paint particles.
 この場合、回転霧化頭6は、ハウジング2、回転軸4等を介して高電圧に印加している。これにより、回転霧化頭6から噴霧された塗料粒子を、高電圧に帯電した状態とすることができる。回転霧化頭6から噴霧される塗料粒子、即ち、帯電塗料粒子は、アースに接続された被塗物としてのボディ11に向けて飛行し、効率よく塗着することができる。 In this case, the rotary atomizing head 6 is applied to a high voltage via the housing 2, the rotary shaft 4 and the like. Thereby, the paint particles sprayed from the rotary atomizing head 6 can be in a state of being charged to a high voltage. Paint particles sprayed from the rotary atomizing head 6, that is, charged paint particles, fly toward the body 11 as an object to be coated connected to the ground, and can be applied efficiently.
 一方、回転霧化頭6から塗料を噴霧したときには、この噴霧塗料の微粒化と塗装パターンの調整のために、シェーピングエアリング7の第1のシェーピングエア噴出孔9と第2のシェーピングエア噴出孔10からシェーピングエアを噴出している。 On the other hand, when the paint is sprayed from the rotary atomizing head 6, the first shaping air ejection hole 9 and the second shaping air ejection hole of the shaping air ring 7 are used to atomize the spray paint and adjust the coating pattern. The shaping air is ejected from 10.
 第1のシェーピングエアを噴出する場合には、第1のエア供給路9Aを通じて第1のシェーピングエア源29から圧縮エアを供給し、各第1のシェーピングエア噴出孔9から第1のシェーピングエアを噴出する。このときに、第1のシェーピングエア噴出孔9は、回転霧化頭6の回転方向と逆方向に傾斜して開口している。これにより、第1のシェーピングエアは、回転霧化頭6の放出端縁6Dから接線方向に飛行してくる塗料の液糸に対し、正面から衝突することができ、この塗料を微粒化することができる。 When ejecting the first shaping air, compressed air is supplied from the first shaping air source 29 through the first air supply path 9A, and the first shaping air is ejected from each first shaping air ejection hole 9. Erupts. At this time, the first shaping air ejection hole 9 is inclined and opened in the direction opposite to the rotation direction of the rotary atomizing head 6. Thus, the first shaping air can collide from the front against the liquid yarn of the paint flying in the tangential direction from the discharge edge 6D of the rotary atomizing head 6, and atomizing the paint. Can do.
 一方、第2のシェーピングエアを噴出する場合には、第2のエア供給路10Aを通じて第2のシェーピングエア源30から圧縮エアを供給し、各第2のシェーピングエア噴出孔10から第2のシェーピングエアを噴出する。このときに、第2のシェーピングエア噴出孔10は、回転霧化頭6の外周面6Bに向けて第2のシェーピングエアを供給する。これにより、第2のシェーピングエアは、第1のシェーピングエアと協働して、塗装パターンの大きさを幅広く調整することができる。 On the other hand, when the second shaping air is ejected, the compressed air is supplied from the second shaping air source 30 through the second air supply path 10A, and the second shaping air is ejected from each second shaping air ejection hole 10. Air is spouted out. At this time, the second shaping air ejection hole 10 supplies the second shaping air toward the outer peripheral surface 6 </ b> B of the rotary atomizing head 6. Thus, the second shaping air can adjust the size of the coating pattern widely in cooperation with the first shaping air.
 次に、塗装機1を備えた車両ボディの塗装システム21による車両のボディ11の塗装方法について述べる。ここでは、ボディ11の塗装作業のうち、その一部の塗装作業について、図9のタイムチャートを参照しつつ説明する。 Next, a method of painting the vehicle body 11 by the vehicle body painting system 21 equipped with the painting machine 1 will be described. Here, a part of the painting work of the body 11 will be described with reference to the time chart of FIG.
 ボディ11の塗装作業として、左前フェンダ12A、右前フェンダ12Bの外面、ラジエータサポート12K、エンジンフード14の内面を塗装する場合の塗装手順の一例について述べる。この塗装作業は、塗装ブース22の内面外面同時塗装エリア25で行われる。この場合、塗装作業は、搬送ライン23の搬送方向の上流側に位置する左側の塗装ロボット24と左側の塗装機1Lの組と、右側の塗装ロボット24と右側の塗装機1Rの組とによって実施される。 As an example of the painting work of the body 11, an example of a painting procedure when painting the outer surfaces of the left front fender 12A, the right front fender 12B, the radiator support 12K, and the inner surface of the engine hood 14 will be described. This painting operation is performed in the inner surface / outer surface simultaneous painting area 25 of the painting booth 22. In this case, the painting operation is performed by a set of the left painting robot 24 and the left painting machine 1L located upstream in the conveyance direction of the conveyance line 23, and a combination of the right painting robot 24 and the right painting machine 1R. Is done.
 まず、左側の塗装機1Lを用いてエンジンフード14の内面の左側部分に塗料を噴霧して塗装する。このエンジンフード14の内面側は、中間の大きさの塗装面を有している。従って、エンジンフード14の内面側を塗装する場合には、第1、第2のシェーピングエアの流量、塗料の吐出量および回転霧化頭6の回転数は、塗装パターンが中間パターンとなるように、制御される。即ち、塗装パターンのパターン幅(大きさ)は、中間パターンとなる200~400mmに調整される。これにより、塗装面に適した大きさの塗装パターンによって、塗料が塗装面からはみ出さないように効率よく塗装を行うことができる。 First, paint is sprayed on the left side of the inner surface of the engine hood 14 using the left coating machine 1L. The inner surface side of the engine hood 14 has an intermediate-sized paint surface. Therefore, when painting the inner surface side of the engine hood 14, the flow rate of the first and second shaping air, the amount of paint discharged, and the rotational speed of the rotary atomizing head 6 are set so that the painting pattern becomes an intermediate pattern. Controlled. That is, the pattern width (size) of the coating pattern is adjusted to 200 to 400 mm, which is an intermediate pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
 続いて、左側の塗装機1Lを用いてラジエータサポート12Kの左側部分に塗料を噴霧して塗装する。このラジエータサポート12Kは、内面の一部となるもので、狭い塗装面を有している。従って、ラジエータサポート12Kを塗装する場合には、塗装パターンが中間パターンで塗装を行っている過程であっても、最小パターンに変更される。即ち、第1のシェーピングエアと第2のシェーピングエアの流量、塗料の吐出量および回転霧化頭6の回転数は、塗装パターンが最小パターンとなるように、制御される。具体的には、塗装パターンのパターン幅(大きさ)は、最小パターンとなる50~100mmに調整される。これにより、塗装面に適した大きさの塗装パターンによって、塗料が塗装面からはみ出さないように効率よく塗装を行うことができる。 Then, paint is sprayed on the left part of the radiator support 12K using the left coating machine 1L. The radiator support 12K is a part of the inner surface and has a narrow painted surface. Therefore, when the radiator support 12K is to be painted, the pattern is changed to the minimum pattern even when the painting pattern is being painted with an intermediate pattern. That is, the flow rates of the first shaping air and the second shaping air, the discharge amount of the paint, and the rotation speed of the rotary atomizing head 6 are controlled so that the coating pattern becomes the minimum pattern. Specifically, the pattern width (size) of the coating pattern is adjusted to 50 to 100 mm which is the minimum pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
 一方、左側の塗装機1Lを用いて、エンジンフード14とラジエータサポート12Kを塗装しているときには、この塗装作業と並行し、右側の塗装機1Rを用いて、右前フェンダ12Bの外面の塗装を行っている。この右前フェンダ12Bの外面側は、中間の大きさの塗装面を有している。従って、右前フェンダ12Bの外面側を塗装する場合には、塗装パターンのパターン幅(大きさ)は、中間パターンとなる200~400mmに調整される。これにより、塗装面に適した大きさの塗装パターンによって、塗料が塗装面からはみ出さないように効率よく塗装を行うことができる。 On the other hand, when the engine hood 14 and the radiator support 12K are being painted using the left painting machine 1L, the outer surface of the right front fender 12B is painted using the right painting machine 1R in parallel with this painting operation. ing. The outer surface side of the right front fender 12B has a coating surface having an intermediate size. Therefore, when painting the outer surface side of the right front fender 12B, the pattern width (size) of the painting pattern is adjusted to 200 to 400 mm, which is an intermediate pattern. Thereby, it can coat efficiently so that a paint may not protrude from a paint surface by the paint pattern of the size suitable for a paint surface.
 さらに、左側の塗装機1Lを用いて、エンジンフード14の内面の左側部分とラジエータサポート12Kの左側部分の塗装が終了したら、今度は、右側の塗装機1Rを用いて、エンジンフード14の内面の右側部分とラジエータサポート12Kの右側部分の塗装を行う。このエンジンフード14の内面の右側部分とラジエータサポート12Kの右側部分の塗装と並行し、左側の塗装機1Lを用いて、左前フェンダ12Aの外面の塗装を行う。これらの塗装による塗装パターン制御は、前述した左,右方向の反対側の塗装パターン制御と同様であるため省略する。 Further, when the left side portion of the inner surface of the engine hood 14 and the left side portion of the radiator support 12K are finished using the left side coating machine 1L, the right side of the inner side of the engine hood 14 is now used by using the right side coating machine 1R. Paint the right side and the right side of the radiator support 12K. In parallel with the painting of the right side portion of the inner surface of the engine hood 14 and the right side portion of the radiator support 12K, the outer surface of the left front fender 12A is painted using the left coating machine 1L. The painting pattern control by these paintings is the same as the above-described painting pattern control on the opposite side in the left and right directions, and will be omitted.
 一方、エンジンフード14の外面、ボディ本体12のルーフ12Eの外面等は、大きな塗装面を有している。この外面塗装は、外面塗装エリア26で行われる。例えば、左側の塗装機1Lを用いてエンジンフード14の外面の左側部分を塗装する場合には、塗装パターンは、最大パターンとなる400~500mmに調整される。これにより、左側の塗装機1Lは、広い塗装面を効率よく塗装することができる。なお、外面塗装エリア26での塗装作業のタイムチャートは図示を省略する。 On the other hand, the outer surface of the engine hood 14 and the outer surface of the roof 12E of the body main body 12 have large painted surfaces. This outer surface coating is performed in the outer surface coating area 26. For example, when the left portion of the outer surface of the engine hood 14 is painted using the left coating machine 1L, the coating pattern is adjusted to a maximum pattern of 400 to 500 mm. Thereby, the left coating machine 1L can efficiently coat a wide painted surface. In addition, illustration of the time chart of the painting work in the outer surface painting area 26 is omitted.
 同様に、エンジンフード14の外面、ボディ本体12のルーフ12Eの外面等の右側部分を塗装する場合には、外面塗装エリア26で行われる。この場合も、塗装パターンは、最大パターンとなる400~500mmに調整される。これにより、右側の塗装機1Rは、広い塗装面を効率よく塗装することができる。  Similarly, when the right side portion such as the outer surface of the engine hood 14 and the outer surface of the roof 12E of the body body 12 is painted, it is performed in the outer surface coating area 26. Also in this case, the coating pattern is adjusted to 400 to 500 mm which is the maximum pattern. Thereby, the right coating machine 1R can efficiently coat a wide painted surface. *
 かくして、本実施の形態によれば、塗装機1は、圧縮エアを動力源とするエアモータ3と、エアモータ3に回転自在に支持され先端がエアモータ3から前側に突出した中空な回転軸4と、塗料を供給するために回転軸4内を通って回転軸4の先端まで延びたフィードチューブ5と、回転軸4の先端に取付けられ、カップ状に拡開する外周面6Bとフィードチューブ5から供給された塗料を拡散する内周面6Cと先端に位置して塗料を放出する放出端縁6Dとを有する回転霧化頭6と、回転霧化頭6の外周を取囲むと共に、先端が回転霧化頭6の放出端縁6Dよりも後方に配置されたシェーピングエアリング7とを含んで構成されている。このシェーピングエアリング7は、放出端縁6Dの周囲に向けてシェーピングエアを噴出する多数個の第1のシェーピングエア噴出孔9と、各第1のシェーピングエア噴出孔9よりも径方向の内側に位置して回転霧化頭6を取囲んで配置され、回転霧化頭6の外周面6Bに沿わせてシェーピングエアを噴出する多数個の第2のシェーピングエア噴出孔10とを備えている。 Thus, according to the present embodiment, the coating machine 1 includes an air motor 3 that uses compressed air as a power source, a hollow rotary shaft 4 that is rotatably supported by the air motor 3 and has a tip protruding forward from the air motor 3. A feed tube 5 that extends through the rotary shaft 4 to the tip of the rotary shaft 4 to supply the paint, an outer peripheral surface 6B that is attached to the tip of the rotary shaft 4 and expands in a cup shape, and is supplied from the feed tube 5 The rotary atomizing head 6 having an inner peripheral surface 6C for diffusing the applied paint and a discharge edge 6D that is located at the tip and discharges the paint, surrounds the outer periphery of the rotary atomizing head 6, and the tip is the rotary fog. A shaping air ring 7 disposed behind the discharge end edge 6D of the chemical head 6 is included. The shaping air ring 7 includes a large number of first shaping air ejection holes 9 that eject shaping air toward the periphery of the discharge edge 6D, and the radially inner side of each first shaping air ejection hole 9. A plurality of second shaping air ejection holes 10 are disposed so as to surround the rotary atomizing head 6 and eject the shaping air along the outer peripheral surface 6B of the rotary atomizing head 6.
 この上で、塗装機1は、回転霧化頭6から塗料を噴霧する同一構造をもった1種類の塗装機として形成している。また、塗装機1は、回転霧化頭6から塗料を噴霧したときの塗装パターンの大きさが、最小パターンと、最大パターンと、最小パターンと最大パターンとの中間となった中間パターンとに調整可能に構成されている。 On this, the coating machine 1 is formed as one type of coating machine having the same structure for spraying paint from the rotary atomizing head 6. Moreover, the coating machine 1 adjusts the size of the coating pattern when the paint is sprayed from the rotary atomizing head 6 to the minimum pattern, the maximum pattern, and the intermediate pattern between the minimum pattern and the maximum pattern. It is configured to be possible.
 即ち、同一構造をもった塗装機1の塗装パターンは、最小パターン(50~100mm)、最大パターン(400~500mm)、中間パターン(200~400mm)の3種類からなる。この場合、これらの塗装パターンは、良好な噴霧状態を維持したままで調整することができる。この結果、同一構造の塗装機1を、ボディ11の内面塗装と外面塗装との両方に使用することができる。 That is, the coating pattern of the coating machine 1 having the same structure is composed of three types: a minimum pattern (50 to 100 mm), a maximum pattern (400 to 500 mm), and an intermediate pattern (200 to 400 mm). In this case, these coating patterns can be adjusted while maintaining a good spray state. As a result, the coating machine 1 having the same structure can be used for both the inner surface coating and the outer surface coating of the body 11.
 車両ボディの塗装システム21には、複数台の塗装ロボット24が設けられている。本実施の形態による塗装機1は、この複数台の塗装ロボット24に対して共通の塗装機として取付けることができる。即ち、塗装システム21には、塗装機1と塗装ロボット24とからなる組立体が複数台設けられている。 The vehicle body painting system 21 is provided with a plurality of painting robots 24. The painting machine 1 according to the present embodiment can be attached as a common painting machine to the plurality of painting robots 24. That is, the painting system 21 is provided with a plurality of assemblies including the painting machine 1 and the painting robot 24.
 従って、各塗装機1は、ボディ11の内面も外面も塗装できる。これにより、例えば、搬送ライン23の幅方向の左側に位置する塗装機1Lによってボディ11の内面を塗装しているときには、このボディ11の内面塗装と並行して、右側に位置する塗装機1Rによってボディ11の外面を塗装することができる。即ち、塗装機1Lと塗装機1Rとを同時に稼働することができ、塗装設備の稼働率を向上することができる。また、2台以上の塗装機1によって同時に異なる塗装面を塗装することにより、ボディ11の塗装時間を短縮することができ、生産性を向上することができる。 Therefore, each coating machine 1 can paint the inner surface and the outer surface of the body 11. Thereby, for example, when the inner surface of the body 11 is painted by the coating machine 1L located on the left side in the width direction of the transfer line 23, the coating machine 1R located on the right side is coated with the inner surface coating of the body 11 in parallel. The outer surface of the body 11 can be painted. That is, the painting machine 1L and the painting machine 1R can be operated at the same time, and the operating rate of the painting equipment can be improved. Further, by painting different painted surfaces simultaneously with two or more coating machines 1, the painting time of the body 11 can be shortened and the productivity can be improved.
 1台の塗装機1および塗装ロボット24の稼働率を高めたことにより、塗装機1および塗装ロボット24からなる組立体の台数を削減することができる。これにより、塗装ブース22を小型化することができる。また、塗装ブース22を小型化したことにより、建屋22A内の環境を整えるための空調装置、廃棄塗料の回収装置等の設備を小型化でき、ランニングコストを低減することができる。 By increasing the operating rate of one painting machine 1 and the painting robot 24, the number of assemblies including the painting machine 1 and the painting robot 24 can be reduced. Thereby, the painting booth 22 can be reduced in size. Further, by reducing the size of the painting booth 22, facilities such as an air conditioner and a waste paint recovery device for preparing the environment in the building 22 </ b> A can be reduced, and running costs can be reduced.
 さらに、同一構造の塗装機1を共通塗装機として用いている。従って、例えば1台の塗装ロボット24または塗装機1に不具合が生じて使用できなくなった場合には、残りの7台のうち稼働率が低い塗装機1等を代わりに稼動することができる。これにより、予備の塗装機1や塗装ロボット24を不用にすることができる。 Furthermore, the coating machine 1 with the same structure is used as a common coating machine. Therefore, for example, when a failure occurs in one painting robot 24 or the painting machine 1 and it cannot be used, the painting machine 1 having a low operation rate among the remaining seven machines can be operated instead. Thereby, the spare coating machine 1 and the painting robot 24 can be made unnecessary.
 一方、本実施の形態によれば、車両のボディ11は、前,後方向に長尺な構造体からなるボディ本体12と、ボディ本体12の左,右両側にそれぞれ開閉可能に設けられるドア13と、ボディ本体12の前端部に設けられるフロントバンパ16およびボディ本体12の後端部に設けられるリヤバンパ17と、各ドア13に設けられる小型部品としてのドアノブ13Cとを含んで構成されている。そして、フロントバンパ16は、ボディ本体12との間に隙間を形成した状態で、フロントバンパ用治具19を用いてボディ本体12に取付けられている。また、リヤバンパ17は、ボディ本体12との間に隙間を形成した状態で、リヤバンパ用治具20を用いてボディ本体12に取付けられている。 On the other hand, according to the present embodiment, a vehicle body 11 includes a body main body 12 made of a structure that is long in the front and rear directions, and doors 13 that can be opened and closed on both the left and right sides of the body main body 12. And a front bumper 16 provided at the front end portion of the body main body 12, a rear bumper 17 provided at the rear end portion of the body main body 12, and a door knob 13 </ b> C as a small component provided in each door 13. The front bumper 16 is attached to the body main body 12 using a front bumper jig 19 with a gap formed between the front bumper 16 and the body main body 12. The rear bumper 17 is attached to the body main body 12 using a rear bumper jig 20 with a gap formed between the rear bumper 17 and the body main body 12.
 この上で、ボディ11は、ボディ本体12に左,右のドア13とフロントバンパ16とリヤバンパ17とが取付けられた状態で搬送ライン23によって搬送される。 Further, the body 11 is transported by the transport line 23 with the left and right doors 13, the front bumper 16 and the rear bumper 17 being attached to the body main body 12.
 従って、ボディ11を塗装するときには、同時にフロントバンパ16とリヤバンパ17も塗装することができる。これにより、ボディ11と各バンパ16,17とを同じ色に仕上げることができる。また、ボディ11と各バンパ16,17との間に隙間を設けたことにより、各バンパ16,17を塗装しているときに各バンパ16,17の端面(バンパ縁部)も塗装することができる。 Therefore, when the body 11 is painted, the front bumper 16 and the rear bumper 17 can be painted at the same time. Thereby, the body 11 and each bumper 16 and 17 can be finished in the same color. Further, by providing a gap between the body 11 and each bumper 16, 17, the end surface (bumper edge) of each bumper 16, 17 can be painted when each bumper 16, 17 is painted. it can.
 また、各ドアノブ13Cは、ドア13に位置し塗装対象から外れた非塗装空間13Bにノブ用治具18を用いて配設されている。これにより、ボディ11は、ボディ本体12と左,右のドア13と各ドアノブ13Cとを一緒に塗装することができ、ボディ本体12と各ドアノブ13Cとを同じ色に仕上げることができる。 Further, each door knob 13C is disposed using a knob jig 18 in a non-painting space 13B located on the door 13 and excluded from the object to be painted. Thereby, the body 11 can paint the body main body 12, the left and right doors 13, and the door knobs 13C together, and the body main body 12 and the door knobs 13C can be finished in the same color.
 一側塗装機および他側塗装機となる塗装機1(1L,1R)は、回転霧化頭6から噴霧された塗料の塗装パターンを調整するための多数個のシェーピングエア噴出孔9,10を有している。また、ボディ11の内面の塗装と外面の塗装とでは、各シェーピングエア噴出孔9,10から噴出されるシェーピングエアの流量を制御している。これにより、塗料の塗装パターンは、最小パターンと最大パターンと中間パターンとに調整することができる。 The coating machine 1 (1L, 1R) serving as the one-side coating machine and the other-side coating machine includes a large number of shaping air ejection holes 9, 10 for adjusting the coating pattern of the paint sprayed from the rotary atomizing head 6. Have. In addition, the coating of the inner surface and the outer surface of the body 11 controls the flow rate of the shaping air ejected from the shaping air ejection holes 9 and 10. Thereby, the coating pattern of the paint can be adjusted to the minimum pattern, the maximum pattern, and the intermediate pattern.
 上述したように、本実施の形態による車両ボディの塗装システム21は、内面と外面とを有する車両のボディ11を搬送するための搬送ライン23と、搬送ライン23を挟む幅方向の左側に配置された塗装機1Lと、搬送ライン23を挟む幅方向の右側に配置された塗装機1Rとを備えている。各塗装機1L,1Rは、回転霧化頭6から塗料を噴霧する同一構造をもった塗装機であって、塗料の塗装パターンの大きさが、最小パターンと、最大パターンと、最小パターンと最大パターンとの中間となった中間パターンとに調整が可能に構成されている。また、塗装機1Lは、最小パターンまたは中間パターンを用いて、ボディ11の左側の内面を塗装し、塗装機1Rは、塗装機1Lがボディ11の左側の内面を塗装するのと並行して、最大パターンまたは中間パターンを用いて、ボディ11の右側の外面を塗装することができる。さらに、塗装機1Rは、最小パターンまたは中間パターンを用いて、ボディ11の右側の内面を塗装し、塗装機1Lは、塗装機1Rがボディ11の右側の内面を塗装するのと並行して、最大パターンまたは中間パターンを用いて、ボディ11の左側の外面を塗装することができる。 As described above, the vehicle body painting system 21 according to the present embodiment is disposed on the left side in the width direction across the conveyance line 23 for conveying the vehicle body 11 having an inner surface and an outer surface, and the conveyance line 23. The coating machine 1L and the coating machine 1R arranged on the right side in the width direction across the conveyance line 23 are provided. Each of the coating machines 1L and 1R is a coating machine having the same structure that sprays the paint from the rotary atomizing head 6, and the size of the paint coating pattern is the minimum pattern, the maximum pattern, the minimum pattern, and the maximum Adjustment is possible to an intermediate pattern that is intermediate to the pattern. In addition, the coating machine 1L uses the minimum pattern or the intermediate pattern to paint the inner surface on the left side of the body 11, and the coating machine 1R parallels the coating machine 1L that paints the inner surface on the left side of the body 11. The right outer surface of the body 11 can be painted using the maximum pattern or the intermediate pattern. Furthermore, the painting machine 1R uses the minimum pattern or the intermediate pattern to paint the inner surface on the right side of the body 11, and the coating machine 1L performs the painting on the right side inner surface of the body 11, The left outer surface of the body 11 can be painted using a maximum pattern or an intermediate pattern.
 左側の塗装機1Lは、第1のシェーピングエア噴出孔9および第2のシェーピングエア噴出孔10から噴出されるシェーピングエアの流量を制御することにより、最小パターンまたは中間パターンを用いてボディ11の左側の内面を塗装すると共に、最大パターンまたは中間パターンを用いてボディ11の左側の外面を塗装する。また、右側の塗装機1Rは、第1のシェーピングエア噴出孔9および第2のシェーピングエア噴出孔10から噴出されるシェーピングエアの流量を制御することにより、最大パターンまたは中間パターンを用いてボディ11の右側の外面を塗装すると共に、最小パターンまたは中間パターンを用いてボディ11の右側の内面を塗装することができる。 The left coating machine 1L controls the flow rate of the shaping air ejected from the first shaping air ejection hole 9 and the second shaping air ejection hole 10, thereby using the minimum pattern or the intermediate pattern on the left side of the body 11. In addition, the left outer surface of the body 11 is painted using the maximum pattern or the intermediate pattern. Further, the right coating machine 1R controls the body 11 using the maximum pattern or the intermediate pattern by controlling the flow rate of the shaping air ejected from the first shaping air ejection hole 9 and the second shaping air ejection hole 10. The right outer surface of the body 11 can be painted, and the right inner surface of the body 11 can be painted using a minimum pattern or an intermediate pattern.
 第1のシェーピングエア噴出孔9の内径寸法d1は、0.8mm≦d1≦1.2mmに設定され、第2のシェーピングエア噴出孔10の内径寸法d2は、0.5mm≦d2≦0.8mmに設定されている。 The inner diameter dimension d1 of the first shaping air ejection hole 9 is set to 0.8 mm ≦ d1 ≦ 1.2 mm, and the inner diameter dimension d2 of the second shaping air ejection hole 10 is 0.5 mm ≦ d2 ≦ 0.8 mm. Is set to
 第2のシェーピングエア噴出孔10の個数N2は、第1のシェーピングエア噴出孔9の個数N1の1/3N1≦N2≦1/2N1に設定されている。 The number N2 of the second shaping air ejection holes 10 is set to 1 / 3N1 ≦ N2 ≦ 1 / 2N1 of the number N1 of the first shaping air ejection holes 9.
 第1のシェーピングエア噴出孔9の傾斜角度α1は、回転軸4の軸線O-Oに対して40度≦α1≦55度に設定され、第2のシェーピングエア噴出孔10の傾斜角度α2は、回転軸4の軸線O-Oに対して8度≦α2≦15度に設定されている。 The inclination angle α1 of the first shaping air ejection hole 9 is set to 40 degrees ≦ α1 ≦ 55 degrees with respect to the axis OO of the rotating shaft 4, and the inclination angle α2 of the second shaping air ejection hole 10 is It is set to 8 degrees ≦ α2 ≦ 15 degrees with respect to the axis OO of the rotating shaft 4.
 回転霧化頭6の外周面6Bに対する第2のシェーピングエア噴出孔10から噴出される第2のシェーピングエアの入射角βは、12度≦β≦13.4度に設定されている。 The incident angle β of the second shaping air ejected from the second shaping air ejection hole 10 with respect to the outer peripheral surface 6B of the rotary atomizing head 6 is set to 12 degrees ≦ β ≦ 13.4 degrees.
 なお、実施の形態では、回転霧化頭型塗装機1として、回転霧化頭6に供給される塗料に高電圧を直接的に印加する直接帯電式の静電塗装機を例に挙げて説明した。しかし、本発明はこれに限らず、図10に示す変形例のように構成してもよい。即ち、回転霧化頭型塗装機31は、ハウジング2の外周位置に高電圧を放電する外部電極32を有し、この外部電極32からの放電によって回転霧化頭6から噴霧された塗料粒子に高電圧を印加する間接帯電式の塗装機として構成してもよい。さらに、本発明は、塗料に高電圧を印加することなく塗装を行う非静電塗装機にも適用することができる。 In the embodiment, as the rotary atomizing head type coating machine 1, a direct charging type electrostatic coating machine that directly applies a high voltage to the paint supplied to the rotary atomizing head 6 will be described as an example. did. However, the present invention is not limited to this, and may be configured as a modification shown in FIG. That is, the rotary atomizing head type coating machine 31 has an external electrode 32 that discharges a high voltage at the outer peripheral position of the housing 2, and paint particles sprayed from the rotary atomizing head 6 by the discharge from the external electrode 32. You may comprise as an indirect charging type coating machine which applies a high voltage. Furthermore, the present invention can also be applied to a non-electrostatic coating machine that performs coating without applying a high voltage to the paint.
 また、実施の形態では、小型部品としての各ドアノブ13Cは、後側に位置するドア13の窓枠13A内の非塗装空間13Bに配置した場合を例示している。しかし、本発明はこれに限らず、例えば、エンジンフード14とルーフ12Eとの間に位置するフロントガラス用の窓枠内、バックドア15の窓枠内に、ドアノブ13Cを配置する構成としてもよい。また、小型部品としては、ドアノブ13C以外にも、ドアミラーのカバー、給油口を覆う蓋体等があり、これらの小型部品をボディと一緒に塗装する構成としてもよい。 Further, in the embodiment, the case where each door knob 13C as a small part is arranged in the non-painting space 13B in the window frame 13A of the door 13 located on the rear side is illustrated. However, the present invention is not limited to this. For example, the door knob 13C may be disposed in the windshield window frame positioned between the engine hood 14 and the roof 12E and in the window frame of the back door 15. . In addition to the door knob 13C, the small parts include a door mirror cover, a lid that covers the fuel filler opening, and the like, and these small parts may be coated together with the body.
 また、実施の形態では、直径寸法が40mmの回転霧化頭6を用いた場合を例示している。しかし、本発明はこれに限らず、例えば、直径寸法が30mm以下または直径寸法が50mm以上の回転霧化頭を用いる構成としてもよい。直径寸法が30mmの回転霧化頭では、第1のシェーピングエア噴出孔の個数が40~45個となり、第2のシェーピングエア噴出孔の個数が24~30個となる。この場合、隣合う第1のシェーピングエア噴出孔の間隔寸法は、2.2mm~2.8mmの範囲に設定されている。さらに、隣合う第2のシェーピングエア噴出孔の間隔寸法は、3.0mm~3.8mmの範囲に設定されている。 In the embodiment, the case where the rotary atomizing head 6 having a diameter of 40 mm is used is illustrated. However, the present invention is not limited to this. For example, a rotary atomizing head having a diameter dimension of 30 mm or less or a diameter dimension of 50 mm or more may be used. In a rotary atomizing head having a diameter of 30 mm, the number of first shaping air ejection holes is 40 to 45, and the number of second shaping air ejection holes is 24 to 30. In this case, the distance between the adjacent first shaping air ejection holes is set in the range of 2.2 mm to 2.8 mm. Further, the distance between the adjacent second shaping air ejection holes is set in the range of 3.0 mm to 3.8 mm.
 一方、直径寸法が50mmの回転霧化頭では、第1のシェーピングエア噴出孔の個数が65~75個となり、第2のシェーピングエア噴出孔の個数が28~38個となる。この場合、隣合う第1のシェーピングエア噴出孔の間隔寸法は、1.1mm~1.8mmの範囲に設定されている。さらに、隣合う第2のシェーピングエア噴出孔の間隔寸法は、2.2mm~2.4mmの範囲に設定されている。 On the other hand, in a rotary atomizing head having a diameter of 50 mm, the number of first shaping air ejection holes is 65 to 75, and the number of second shaping air ejection holes is 28 to 38. In this case, the interval between the adjacent first shaping air ejection holes is set in the range of 1.1 mm to 1.8 mm. Further, the distance between the adjacent second shaping air ejection holes is set in the range of 2.2 mm to 2.4 mm.
 実施の形態では、左側の塗装機1Lは、最大パターンまたは中間パターンを用いて、ボディ11の左側の外面を塗装し、右側の塗装機1Rは、最大パターンまたは中間パターンを用いて、ボディ11の右側の外面を塗装した場合を例に挙げて説明した。しかし、本発明はこれに限らず、塗装機1Lが、最大パターンまたは中間パターンを用いて、ボディ11の左側の外面を塗装する過程で、ボディ11の左側の外面のうちの狭幅部分に関しては、塗装機1Lは、最小パターンを用いて塗装することができる。一方、塗装機1Rが、最大パターンまたは中間パターンを用いて、ボディ11の右側の外面を塗装する過程で、ボディ11の右側の外面のうちの狭幅部分に関しては、塗装機1Rは、最小パターンを用いて塗装することができる。 In the embodiment, the left painting machine 1L paints the left outer surface of the body 11 using the maximum pattern or the intermediate pattern, and the right painting machine 1R uses the maximum pattern or the middle pattern. The case where the right outer surface is painted has been described as an example. However, the present invention is not limited to this, and in the process in which the coating machine 1L paints the left outer surface of the body 11 using the maximum pattern or the intermediate pattern, the narrow portion of the left outer surface of the body 11 is not concerned. The coating machine 1L can perform coating using the minimum pattern. On the other hand, in the process in which the painting machine 1R paints the outer surface on the right side of the body 11 using the maximum pattern or the intermediate pattern, the coating machine 1R performs the minimum pattern for the narrow portion of the outer surface on the right side of the body 11. Can be used to paint.
 具体的には、ボディ11の外面に、最小パターンを用いて塗装するのに適した狭幅な塗装面(狭幅部分)、例えばボディ本体12の左前ピラー12F、右前ピラー12Gがある場合には、左側の塗装機1Lは、最小パターンを用いてボディ本体12の左前ピラー12Fを塗装することができる。また、右側の塗装機1Rは、最小パターンを用いてボディ本体12の右前ピラー12Gを塗装することができる。 Specifically, when the outer surface of the body 11 has a narrow painted surface (narrow portion) suitable for painting using the minimum pattern, for example, the left front pillar 12F and the right front pillar 12G of the body main body 12. The left coating machine 1L can coat the left front pillar 12F of the body main body 12 using the minimum pattern. Further, the right painting machine 1R can paint the right front pillar 12G of the body main body 12 using the minimum pattern.
 この場合には、塗装面の狭幅部分となる各ピラー12F,12Gに合わせて塗装パターンを小さくすることにより、塗装面を外れる塗料の量を少なくすることができる。これにより、廃棄される塗料を削減することができる。また、狭幅部分だけに塗料を噴霧できるから、適切な塗膜を形成することができる。また、左前ピラー12F、右前ピラー12G以外にも、ボディ11の外面の狭幅部分として、ボディ本体12の左後ピラー12H、右後ピラー12J、ドア13の窓枠13Aを最小パターンを用いて塗装することができる。 In this case, by reducing the coating pattern in accordance with each pillar 12F, 12G, which is a narrow portion of the painted surface, the amount of paint coming off the painted surface can be reduced. Thereby, the coating material discarded can be reduced. Moreover, since a coating material can be sprayed only to a narrow-width part, a suitable coating film can be formed. In addition to the left front pillar 12F and the right front pillar 12G, the left rear pillar 12H, the right rear pillar 12J of the body main body 12 and the window frame 13A of the door 13 are painted using a minimum pattern as a narrow portion of the outer surface of the body 11. can do.
 さらに、実施の形態では、塗装ブース22は、ボディ11の内面と外面とを同時に塗装する内面外面同時塗装エリア25と、内面外面同時塗装エリア25で塗装し切れなかったボディ11の外面を塗装する外面塗装エリア26とを設けた場合を例示している。しかし、本発明はこれに限るものではなく、内面外面同時塗装エリア25だけでボディ11の全体を塗装できる場合には、外面塗装エリア26を省略する構成としてもよい。 Furthermore, in the embodiment, the painting booth 22 paints the inner surface / outer surface simultaneous painting area 25 for simultaneously painting the inner surface and the outer surface of the body 11 and the outer surface of the body 11 that has not been completely painted in the inner surface / outer surface simultaneous painting area 25. The case where the outer surface painting area 26 is provided is illustrated. However, the present invention is not limited to this, and when the entire body 11 can be painted only with the inner surface / outer surface simultaneous coating area 25, the outer surface coating area 26 may be omitted.
 1,31 回転霧化頭型塗装機
 1L 回転霧化頭型塗装機(一側塗装機)
 1R 回転霧化頭型塗装機(他側塗装機)
 3 エアモータ
 4 回転軸
 5 フィードチューブ
 6 回転霧化頭
 6B 外周面
 6C 内周面
 6D 放出端縁
 7 シェーピングエアリング
 9 第1のシェーピングエア噴出孔
 10 第2のシェーピングエア噴出孔
 11 ボディ
 12 ボディ本体
 12F 左前ピラー(狭幅部分)
 12G 右前ピラー(狭幅部分)
 12H 左後ピラー(狭幅部分)
 12J 右後ピラー(狭幅部分)
 13 ドア
 13A 窓枠(狭幅部分)
 13B 非塗装空間
 13C ドアノブ(小型部品)
 16 フロントバンパ
 17 リヤバンパ
 18 ノブ用治具(治具)
 19 フロントバンパ用治具(治具)
 20 リヤバンパ用治具(治具)
 21 車両ボディの塗装システム
 23 搬送ライン
 O-O 回転軸の軸線
 N1 第1のシェーピングエア噴出孔の個数
 N2 第2のシェーピングエア噴出孔の個数
 d1 第1のシェーピングエア噴出孔の開口端の内径寸法
 d2 第2のシェーピングエア噴出孔の開口端の内径寸法
 α1 回転軸の軸線に対する第1のシェーピングエア噴出孔の軸線の角度
 α2 回転軸の軸線に対する第2のシェーピングエア噴出孔の軸線の角度
 L1 放出端縁と第1のシェーピングエア噴出孔との径方向の距離寸法
 L2 放出端縁と第2のシェーピングエア噴出孔との径方向の距離寸法
 β 回転霧化頭の外周面に対する第2のシェーピングエアの入射角
1,31 Rotary atomizing head type coating machine 1L Rotary atomizing head type coating machine (one side coating machine)
1R Rotary atomizing head type coating machine (other side coating machine)
DESCRIPTION OF SYMBOLS 3 Air motor 4 Rotating shaft 5 Feed tube 6 Rotating atomizing head 6B Outer peripheral surface 6C Inner peripheral surface 6D Discharge end edge 7 Shaping air ring 9 First shaping air ejection hole 10 Second shaping air ejection hole 11 Body 12 Body main body 12F Front left pillar (narrow part)
12G right front pillar (narrow width part)
12H Left rear pillar (narrow part)
12J Right rear pillar (narrow part)
13 Door 13A Window frame (narrow part)
13B Non-painting space 13C Door knob (small parts)
16 Front bumper 17 Rear bumper 18 Knob jig
19 Front bumper jig (jig)
20 Rear bumper jig (jig)
21 Vehicle Body Painting System 23 Conveyance Line OO Axis of Rotating Shaft N1 Number of First Shaping Air Blowout Holes N2 Number of Second Shaping Air Blowout Holes d1 Inner Diameter of Open End of First Shaping Air Blowout Hole d2 Inner diameter dimension of the opening end of the second shaping air ejection hole α1 Angle of the axis of the first shaping air ejection hole with respect to the axis of the rotation axis α2 Angle of the axis of the second shaping air ejection hole with respect to the axis of the rotation axis L1 Release Distance in the radial direction between the edge and the first shaping air ejection hole L2 Distance in the radial direction between the discharge edge and the second shaping air ejection hole β Second shaping air with respect to the outer peripheral surface of the rotary atomizing head Angle of incidence

Claims (13)

  1.  内面と外面とを有する車両のボディを搬送するための搬送ラインと、
     前記搬送ラインを挟む幅方向の一側に配置された一側塗装機と、
     前記搬送ラインを挟む幅方向の他側に配置された他側塗装機と、を備え、
     前記一側塗装機および前記他側塗装機は、回転霧化頭から塗料を噴霧する同一構造をもった塗装機であって、塗料の塗装パターンの大きさが、最小パターンと、最大パターンと、前記最小パターンと前記最大パターンとの中間となった中間パターンとに調整可能に構成され、
     前記一側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの一側の前記内面を塗装し、
     前記他側塗装機は、前記一側塗装機が前記ボディの一側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装し、
     前記他側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの他側の前記内面を塗装し、
     前記一側塗装機は、前記他側塗装機が前記ボディの他側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装することを特徴とする車両ボディの塗装方法。
    A transport line for transporting a vehicle body having an inner surface and an outer surface;
    A one-side coating machine disposed on one side in the width direction across the conveyance line;
    The other side coating machine disposed on the other side in the width direction across the conveyance line, and
    The one side coating machine and the other side coating machine are coating machines having the same structure for spraying paint from a rotary atomizing head, and the size of the paint coating pattern is a minimum pattern, a maximum pattern, It is configured to be adjustable to an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern,
    The one-side coating machine coats the inner surface on one side of the body using the minimum pattern or the intermediate pattern,
    The other side coating machine uses the maximum pattern or the intermediate pattern to parallelize the outer surface on the other side of the body in parallel with the one side coating machine coating the inner surface on one side of the body. Painted and
    The other side coating machine uses the minimum pattern or the intermediate pattern to coat the inner surface on the other side of the body,
    The one-side coating machine uses the maximum pattern or the intermediate pattern to parallelize the outer surface on one side of the body in parallel with the other-side coating machine coating the inner surface on the other side of the body. A vehicle body painting method characterized by painting.
  2.  前記一側塗装機が前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装する過程で、前記外面のうちの狭幅部分に関しては、前記一側塗装機は、前記最小パターンを用いて塗装し、
     前記他側塗装機が前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装する過程で、前記外面のうちの狭幅部分に関しては、前記他側塗装機は、前記最小パターンを用いて塗装することを特徴とする請求項1に記載の車両ボディの塗装方法。
    In the process in which the one-side coating machine coats the outer surface on one side of the body using the maximum pattern or the intermediate pattern, the one-side coating machine is Painted with the smallest pattern,
    In the process in which the other side coating machine coats the outer surface on the other side of the body using the maximum pattern or the intermediate pattern, for the narrow portion of the outer surface, the other side coating machine 2. The vehicle body painting method according to claim 1, wherein painting is performed using a minimum pattern.
  3.  前記一側塗装機および前記他側塗装機は、前記回転霧化頭から噴霧された塗料の塗装パターンを調整するための多数個のシェーピングエア噴出孔を有し、
     前記ボディの前記内面の塗装と前記外面の塗装とでは、前記各シェーピングエア噴出孔から噴出されるシェーピングエアの流量を制御することにより、塗料の塗装パターンが、前記最小パターンと前記最大パターンと前記中間パターンとに調整されることを特徴とする請求項1に記載の車両ボディの塗装方法。
    The one-side coating machine and the other-side coating machine have a large number of shaping air ejection holes for adjusting the coating pattern of the paint sprayed from the rotary atomizing head,
    In the coating of the inner surface and the coating of the outer surface of the body, by controlling the flow rate of the shaping air ejected from the respective shaping air ejection holes, the coating pattern of the paint is the minimum pattern, the maximum pattern, and the The vehicle body painting method according to claim 1, wherein the vehicle body is adjusted to an intermediate pattern.
  4.  前記ボディは、前,後方向に長尺な構造体からなるボディ本体と、前記ボディ本体の左,右両側にそれぞれ開閉可能に設けられるドアと、前記ボディ本体の前端部に設けられるフロントバンパおよび前記ボディ本体の後端部に設けられるリヤバンパとを含んで構成され、
     前記フロントバンパは、前記ボディ本体との間に隙間を形成した状態で、治具を用いて前記ボディ本体に取付けられており、
     前記リヤバンパは、前記ボディ本体との間に隙間を形成した状態で、治具を用いて前記ボディ本体に取付けられており、
     前記ボディは、前記ボディ本体に前記左,右のドアと前記フロントバンパと前記リヤバンパとが取付けられた状態で前記搬送ラインによって搬送されることを特徴とする請求項1に記載の車両ボディの塗装方法。
    The body includes a body body composed of a structure that is long in the front and rear directions, a door that can be opened and closed on both the left and right sides of the body body, a front bumper that is provided at a front end of the body body, and A rear bumper provided at the rear end of the body body,
    The front bumper is attached to the body body using a jig, with a gap formed between the front bumper and the body body,
    The rear bumper is attached to the body body using a jig in a state where a gap is formed between the body and the body.
    2. The vehicle body coating according to claim 1, wherein the body is transported by the transport line in a state where the left and right doors, the front bumper, and the rear bumper are attached to the body main body. Method.
  5.  前記ボディは、前,後方向に長尺な構造体からなるボディ本体と、前記ボディ本体の左,右両側にそれぞれ開閉可能に設けられるドアと、前記ボディ本体または前記ドアに設けられる小型部品とを含んで構成され、
     前記小型部品は、前記ボディ本体または前記ドアの内側であって、塗装対象から外れた非塗装空間に位置して治具を用いて配設されており、
     前記ボディは、前記ボディ本体と前記左,右のドアと前記小型部品とを一緒に前記搬送ラインによって搬送されることを特徴とする請求項1に記載の車両ボディの塗装方法。
    The body includes a body body formed of a structure that is long in the front and rear directions, a door that can be opened and closed on each of the left and right sides of the body body, and a small part that is provided on the body body or the door. Comprising
    The small part is disposed inside the body main body or the door and located in a non-painting space outside the object to be painted, using a jig,
    The vehicle body painting method according to claim 1, wherein the body is transported by the transport line together with the body main body, the left and right doors, and the small parts.
  6.  内面と外面とを有する車両のボディを搬送するための搬送ラインと、
     前記搬送ラインを挟む幅方向の一側に配置された一側塗装機と、
     前記搬送ラインを挟む幅方向の他側に配置された他側塗装機と、を備え、
     前記一側塗装機および前記他側塗装機は、回転霧化頭から塗料を噴霧する同一構造をもった塗装機であって、塗料の塗装パターンの大きさが、最小パターンと、最大パターンと、前記最小パターンと前記最大パターンとの中間となった中間パターンとに調整可能に構成され、
     前記一側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの一側の前記内面を塗装し、
     前記他側塗装機は、前記一側塗装機が前記ボディの一側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装し、
     前記他側塗装機は、前記最小パターンまたは前記中間パターンを用いて、前記ボディの他側の前記内面を塗装し、
     前記一側塗装機は、前記他側塗装機が前記ボディの他側の前記内面を塗装するのと並行して、前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装することを特徴とする車両ボディの塗装システム。
    A transport line for transporting a vehicle body having an inner surface and an outer surface;
    A one-side coating machine disposed on one side in the width direction across the conveyance line;
    The other side coating machine disposed on the other side in the width direction across the conveyance line, and
    The one side coating machine and the other side coating machine are coating machines having the same structure for spraying paint from a rotary atomizing head, and the size of the paint coating pattern is a minimum pattern, a maximum pattern, It is configured to be adjustable to an intermediate pattern that is intermediate between the minimum pattern and the maximum pattern,
    The one-side coating machine coats the inner surface on one side of the body using the minimum pattern or the intermediate pattern,
    The other side coating machine uses the maximum pattern or the intermediate pattern to parallelize the outer surface on the other side of the body in parallel with the one side coating machine coating the inner surface on one side of the body. Painted and
    The other side coating machine uses the minimum pattern or the intermediate pattern to coat the inner surface on the other side of the body,
    The one-side coating machine uses the maximum pattern or the intermediate pattern to parallelize the outer surface on one side of the body in parallel with the other-side coating machine coating the inner surface on the other side of the body. A vehicle body painting system characterized by painting.
  7.  前記一側塗装機が前記最大パターンまたは前記中間パターンを用いて、前記ボディの一側の前記外面を塗装する過程で、前記外面のうちの狭幅部分に関しては、前記一側塗装機は、前記最小パターンを用いて塗装し、
     前記他側塗装機が前記最大パターンまたは前記中間パターンを用いて、前記ボディの他側の前記外面を塗装する過程で、前記外面のうちの狭幅部分に関しては、前記他側塗装機は、前記最小パターンを用いて塗装することを特徴とする請求項6に記載の車両ボディの塗装システム。
    In the process in which the one-side coating machine coats the outer surface on one side of the body using the maximum pattern or the intermediate pattern, the one-side coating machine is Painted with the smallest pattern,
    In the process in which the other side coating machine coats the outer surface on the other side of the body using the maximum pattern or the intermediate pattern, for the narrow portion of the outer surface, the other side coating machine The vehicle body painting system according to claim 6, wherein painting is performed using a minimum pattern.
  8.  前記一側塗装機および前記他側塗装機は、
     圧縮エアを動力源とするエアモータと、
     前記エアモータに回転自在に支持され先端が前記エアモータから前側に突出した中空な回転軸と、
     塗料を供給するために前記回転軸内を通って前記回転軸の先端まで延びたフィードチューブと、
     前記回転軸の先端に取付けられ、カップ状に拡開する外周面と前記フィードチューブから供給された塗料を拡散する内周面と先端に位置して塗料を放出する放出端縁とを有する回転霧化頭と、
     前記回転霧化頭の外周を取囲むと共に、先端が前記回転霧化頭の前記放出端縁よりも後方に配置されたシェーピングエアリングと、からなり、
     前記シェーピングエアリングは、前記放出端縁の周囲に向けてシェーピングエアを噴出する多数個の第1のシェーピングエア噴出孔と、前記各第1のシェーピングエア噴出孔よりも径方向の内側に位置して前記回転霧化頭を取囲んで配置され、前記回転霧化頭の外周面に沿わせてシェーピングエアを噴出する多数個の第2のシェーピングエア噴出孔とを備えていることを特徴とする請求項6に記載の車両ボディの塗装システム。
    The one side coating machine and the other side coating machine are:
    An air motor powered by compressed air;
    A hollow rotating shaft that is rotatably supported by the air motor and has a tip protruding forward from the air motor;
    A feed tube extending through the rotary shaft to the tip of the rotary shaft to supply paint;
    A rotating mist attached to the tip of the rotating shaft and having an outer peripheral surface that expands in a cup shape, an inner peripheral surface that diffuses the paint supplied from the feed tube, and a discharge edge that is positioned at the tip and discharges the paint With the head
    A shaping air ring that surrounds the outer periphery of the rotary atomizing head and has a tip disposed rearward of the discharge end edge of the rotary atomizing head,
    The shaping air ring is positioned inward of the plurality of first shaping air ejection holes for ejecting the shaping air toward the periphery of the discharge end edge, and radially inward of the first shaping air ejection holes. And a plurality of second shaping air ejection holes for ejecting shaping air along the outer peripheral surface of the rotary atomization head. The vehicle body coating system according to claim 6.
  9.  前記一側塗装機は、前記一側塗装機の前記第1のシェーピングエア噴出孔および前記第2のシェーピングエア噴出孔から噴出されるシェーピングエアの流量を制御することにより、前記最小パターンまたは前記中間パターンを用いて前記ボディの一側の前記内面を塗装すると共に、前記最大パターンまたは前記中間パターンを用いて前記ボディの一側の前記外面を塗装し、
     前記他側塗装機は、前記他側塗装機の前記第1のシェーピングエア噴出孔および前記第2のシェーピングエア噴出孔から噴出されるシェーピングエアの流量を制御することにより、前記最大パターンまたは前記中間パターンを用いて前記ボディの他側の前記外面を塗装すると共に、前記最小パターンまたは前記中間パターンを用いて前記ボディの他側の前記内面を塗装する構成としたことを特徴とする請求項8に記載の車両ボディの塗装システム。
    The one-side coating machine controls the flow rate of the shaping air ejected from the first shaping air ejection hole and the second shaping air ejection hole of the one-side coating machine, thereby reducing the minimum pattern or the intermediate pattern. Painting the inner surface on one side of the body using a pattern, and painting the outer surface on one side of the body using the maximum pattern or the intermediate pattern;
    The other side coating machine controls the flow rate of the shaping air ejected from the first shaping air ejection hole and the second shaping air ejection hole of the other side coating machine, thereby increasing the maximum pattern or the intermediate pattern. 9. The structure according to claim 8, wherein the outer surface on the other side of the body is painted using a pattern, and the inner surface on the other side of the body is painted using the minimum pattern or the intermediate pattern. The vehicle body painting system described.
  10.  前記第1のシェーピングエア噴出孔の内径寸法(d1)は、0.8mm≦d1≦1.2mmに設定され、前記第2のシェーピングエア噴出孔の内径寸法(d2)は、0.5mm≦d2≦0.8mmに設定されていることを特徴とする請求項8に記載の車両ボディの塗装システム。 An inner diameter dimension (d1) of the first shaping air ejection hole is set to 0.8 mm ≦ d1 ≦ 1.2 mm, and an inner diameter dimension (d2) of the second shaping air ejection hole is 0.5 mm ≦ d2. 9. The vehicle body painting system according to claim 8, wherein ≦ 0.8 mm is set.
  11.  前記第2のシェーピングエア噴出孔の個数(N2)は、前記第1のシェーピングエア噴出孔の個数(N1)に対し、1/3N1≦N2≦1/2N1に設定されていることを特徴とする請求項8に記載の車両ボディの塗装システム。 The number (N2) of the second shaping air ejection holes is set to 1 / 3N1 ≦ N2 ≦ 1 / 2N1 with respect to the number (N1) of the first shaping air ejection holes. The vehicle body painting system according to claim 8.
  12.  前記第1のシェーピングエア噴出孔の傾斜角度(α1)は、前記回転軸の軸線(O-O)に対して40度≦α1≦55度に設定され、前記第2のシェーピングエア噴出孔の傾斜角度(α2)は、前記回転軸の軸線(O-O)に対して8度≦α2≦15度に設定されていることを特徴とする請求項8に記載の車両ボディの塗装システム。 The inclination angle (α1) of the first shaping air ejection hole is set to 40 degrees ≦ α1 ≦ 55 degrees with respect to the axis (OO) of the rotating shaft, and the inclination of the second shaping air ejection hole 9. The vehicle body painting system according to claim 8, wherein the angle (α2) is set to 8 degrees ≦ α2 ≦ 15 degrees with respect to the axis (OO) of the rotating shaft.
  13.  前記回転霧化頭の前記外周面に対する前記第2のシェーピングエア噴出孔から噴出される第2のシェーピングエアの入射角(β)は、12度≦β≦13.4度に設定されていることを特徴とする請求項8に記載の車両ボディの塗装システム。 An incident angle (β) of the second shaping air ejected from the second shaping air ejection hole with respect to the outer peripheral surface of the rotary atomizing head is set to 12 degrees ≦ β ≦ 13.4 degrees. The vehicle body painting system according to claim 8.
PCT/JP2018/020806 2017-06-01 2018-05-30 Vehicle body coating method and vehicle body coating system WO2018221608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565433A JP6634532B2 (en) 2017-06-01 2018-05-30 Vehicle body coating method and vehicle body coating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109145 2017-06-01
JP2017-109145 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221608A1 true WO2018221608A1 (en) 2018-12-06

Family

ID=64454664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020806 WO2018221608A1 (en) 2017-06-01 2018-05-30 Vehicle body coating method and vehicle body coating system

Country Status (2)

Country Link
JP (1) JP6634532B2 (en)
WO (1) WO2018221608A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234578A (en) * 1986-04-04 1987-10-14 Nissan Motor Co Ltd Method for coating vehicle body
JPS62247857A (en) * 1986-04-22 1987-10-28 Mazda Motor Corp Automatic spray painting method
JPH08229493A (en) * 1995-03-02 1996-09-10 Toyota Motor Corp Automatic spray coating method
JPH0952067A (en) * 1995-08-15 1997-02-25 Abb Ind Kk Automatic coating method for car body
JP2000167451A (en) * 1998-12-04 2000-06-20 Toyota Motor Corp Automobile painting system
JP2004305874A (en) * 2003-04-04 2004-11-04 Abb Kk Coating method
JP2013006235A (en) * 2011-06-24 2013-01-10 Yaskawa Electric Corp Painting system
WO2016163178A1 (en) * 2015-04-08 2016-10-13 Abb株式会社 Rotary atomizer head-type coater
JP2017047348A (en) * 2015-08-31 2017-03-09 Abb株式会社 Rotary atomization head type coating machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234578A (en) * 1986-04-04 1987-10-14 Nissan Motor Co Ltd Method for coating vehicle body
JPS62247857A (en) * 1986-04-22 1987-10-28 Mazda Motor Corp Automatic spray painting method
JPH08229493A (en) * 1995-03-02 1996-09-10 Toyota Motor Corp Automatic spray coating method
JPH0952067A (en) * 1995-08-15 1997-02-25 Abb Ind Kk Automatic coating method for car body
JP2000167451A (en) * 1998-12-04 2000-06-20 Toyota Motor Corp Automobile painting system
JP2004305874A (en) * 2003-04-04 2004-11-04 Abb Kk Coating method
JP2013006235A (en) * 2011-06-24 2013-01-10 Yaskawa Electric Corp Painting system
WO2016163178A1 (en) * 2015-04-08 2016-10-13 Abb株式会社 Rotary atomizer head-type coater
JP2017047348A (en) * 2015-08-31 2017-03-09 Abb株式会社 Rotary atomization head type coating machine

Also Published As

Publication number Publication date
JP6634532B2 (en) 2020-01-22
JPWO2018221608A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP4428973B2 (en) Rotating atomizing coating apparatus and coating method
US7611069B2 (en) Apparatus and method for a rotary atomizer with improved pattern control
CA2688090C (en) Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
JP2010510055A (en) Operating method for sprayer and corresponding painting equipment
JP2011524801A (en) General purpose atomizer
JP2005131590A (en) Device and method for spray coating
US10343179B2 (en) Painting device
JPH0899052A (en) Rotary atomizing head-type coating apparatus
JP6005497B2 (en) Rotary atomizing head type coating machine
JP6614757B2 (en) Rotary atomizing head type coating machine
JP6434676B2 (en) Rotary atomizing head type coating machine
WO2018221608A1 (en) Vehicle body coating method and vehicle body coating system
JP2002224611A (en) Coating method
JP3162855B2 (en) Bell type rotary atomizing head
JP3575290B2 (en) Rotary atomizing coating machine and rotary atomizing coating method
JP6973356B2 (en) Bell type painting device
JP5684672B2 (en) Coating method and coating apparatus
CN109689218B (en) Rotary atomizing head type coating machine
JP4194911B2 (en) Coating method and coating apparatus
JPH0141496Y2 (en)
JP2567072B2 (en) Rotary atomizing coating device
JPH03146151A (en) Bell type rotary coating device
JP7449438B1 (en) Rotating atomizing head type paint machine
JPH07213956A (en) Electrostatic coater
JP2510608B2 (en) Electrostatic coating equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565433

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809024

Country of ref document: EP

Kind code of ref document: A1