WO2018221142A1 - 光ファイバケーブル及び光ファイバケーブルの製造方法 - Google Patents

光ファイバケーブル及び光ファイバケーブルの製造方法 Download PDF

Info

Publication number
WO2018221142A1
WO2018221142A1 PCT/JP2018/017936 JP2018017936W WO2018221142A1 WO 2018221142 A1 WO2018221142 A1 WO 2018221142A1 JP 2018017936 W JP2018017936 W JP 2018017936W WO 2018221142 A1 WO2018221142 A1 WO 2018221142A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
inclusion
core
fiber cable
shape
Prior art date
Application number
PCT/JP2018/017936
Other languages
English (en)
French (fr)
Inventor
清水 正砂
彰 鯰江
剛 多木
大里 健
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017109872A external-priority patent/JP6302120B1/ja
Priority claimed from JP2018039696A external-priority patent/JP7025958B2/ja
Priority to EP21215422.3A priority Critical patent/EP3988980B1/en
Priority to KR1020197033675A priority patent/KR102328960B1/ko
Priority to EP21215417.3A priority patent/EP3988979B1/en
Priority to EP21215426.4A priority patent/EP3988981B1/en
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to AU2018277435A priority patent/AU2018277435B2/en
Priority to EP18809868.5A priority patent/EP3633432B1/en
Priority to CN201880034975.2A priority patent/CN110662993B/zh
Priority to US16/610,018 priority patent/US11048054B2/en
Priority to CA3061885A priority patent/CA3061885C/en
Publication of WO2018221142A1 publication Critical patent/WO2018221142A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/48Overhead installation
    • G02B6/483Installation of aerial type

Definitions

  • the present invention relates to an optical fiber cable and a method for manufacturing an optical fiber cable.
  • This application claims priority based on Japanese Patent Application No. 2017-109872 filed in Japan on June 2, 2017 and Japanese Patent Application No. 2018-039696 filed in Japan on March 6, 2018. The contents are incorporated herein.
  • optical fiber cables as shown in Patent Documents 1 and 2 are known. These optical fiber cables are configured by housing a plurality of optical fibers in an outer jacket.
  • a core is formed by wrapping a plurality of optical fibers together with inclusions with a press-wound tape (also simply referred to as “press-winding”), and the core is accommodated in an outer jacket. Furthermore, running water in the optical fiber cable may be prevented by using inclusions having water absorption.
  • An object of the present invention is to provide an optical fiber cable having stable waterproof performance.
  • an optical fiber cable includes a core formed by wrapping a plurality of optical fibers and inner inclusions in a press-wrap, and disposed outside the core.
  • the method for manufacturing an optical fiber cable according to the second aspect of the present invention includes a step of forming a core by wrapping a plurality of optical fibers and inner inclusions with presser windings, and an outer inclusion attached to the outside of the core. Forming a jacket covering the core and the outer inclusion in a state.
  • an optical fiber cable having stable waterproof performance can be provided by the outer inclusions and the inner inclusions.
  • An optical fiber cable characterized by being twisted and arranged in the SZ shape becomes clear. Thereby, it can suppress that an inclusion is biased and arrange
  • the presser winding tape is wound so as to have an overlapping region where both edges overlap, and the outer inclusion is disposed at a position not adjacent to the overlapping region of the pressering tape. Thereby, it can suppress that an outer side inclusion enters the inside of a press-wound tape from the duplication area
  • the outer inclusion is disposed on the opposite side of the overlapping area of the presser winding tape as viewed from the core. Thereby, it can further suppress that an outside inclusion enters the inside of a press-wound tape from the overlap region of the press-wound tape.
  • the outer inclusions are arranged near the edge of the presser winding tape that is outside the overlapping region. Thereby, it can further suppress that an outside inclusion enters the inside of a press-wound tape from the overlap region of the press-wound tape.
  • the plurality of optical fibers be twisted and arranged in an SZ shape. Thereby, the transmission loss of an optical fiber can be suppressed.
  • the inner inclusion is twisted in an SZ shape together with the plurality of optical fibers. Thereby, both the inner inclusions and the plurality of optical fibers can be twisted in the SZ shape.
  • the inner inclusion is preferably arranged so as to cross the SZ-shaped gap of the optical fiber. Thereby, running water in the gap between the optical fibers can be suppressed.
  • phase of the SZ-shaped twist of the inner inclusion is shifted by 180 degrees with respect to the SZ-shaped twist of the optical fiber. Thereby, the running water in the gap between the optical fibers can be further suppressed.
  • the plurality of optical fibers and the inner inclusions are separately twisted into an SZ shape. Thereby, the twist of an inner inclusion can be arbitrarily set with respect to the twist of an optical fiber.
  • the inner inclusions are twisted in the SZ shape by attaching the inner inclusions along the longitudinal direction on the outer periphery of the plurality of optical fibers twisted in the SZ shape. Thereby, an inner inclusion can be twisted in SZ shape by a simple method.
  • the twists of the plurality of optical fibers are returned to each other. It is desirable to twist the inner inclusion in the SZ shape in the direction opposite to the twisting direction. Thereby, the phase of the SZ-shaped twist of the inner inclusion can be shifted by 180 degrees with respect to the SZ-shaped twist of the optical fiber, and water running in the gap of the optical fiber can be suppressed.
  • FIG. 1 is a cross-sectional view (hereinafter simply referred to as a transverse cross-sectional view) orthogonal to the longitudinal direction of the optical fiber cable 100 of the first embodiment.
  • the longitudinal direction of the optical fiber cable 100 is simply referred to as the longitudinal direction and is represented by the X axis.
  • the optical fiber cable 100 includes a main body portion having a core 3 and a support wire portion having a support wire 50.
  • the main body portion and the support line portion are formed in a substantially circular shape in a cross-sectional view.
  • the outer diameter of the main body is larger than the outer diameter of the support wire portion.
  • the support wire portion is configured by covering a support wire 50 made of a steel wire or the like with a jacket 60 (second covering portion 60B).
  • the support line portion and the main body portion are coupled by a jacket 60 (connection portion 60C).
  • connection portion 60C By cutting the connection portion 60C, the main body portion and the support wire portion can be separated.
  • optical fiber cable 100 both an optical fiber cable with a support line and an optical fiber cable having only a main body portion without a support line portion are simply referred to as “optical fiber cable 100”.
  • the optical fiber cable 100 includes a core 3 having an optical fiber unit 10, a pair of strength members 20, and a jacket 60. Further, the optical fiber cable 100 of the present embodiment includes an inner inclusion 40A and an outer inclusion 40B.
  • the optical fiber unit 10 is composed of a plurality of optical fibers 1 (optical fiber core wires).
  • the optical fiber unit 10 includes a plurality of intermittently connected optical fiber tapes (intermittently fixed tape cores).
  • the intermittently connected optical fiber tape is an optical fiber tape in which a plurality of optical fibers 1 are connected in parallel.
  • the direction in which the plurality of optical fibers 1 are arranged in parallel is referred to as the tape width direction.
  • connection portion 11 Two adjacent optical fibers 1 are connected by a connecting portion 11.
  • a plurality of connecting portions 11 that connect two adjacent optical fibers 1 are intermittently arranged in the longitudinal direction.
  • the plurality of connecting portions 11 of the optical fiber tape are intermittently arranged two-dimensionally in the longitudinal direction and the tape width direction.
  • the connecting portion 11 is formed by applying an ultraviolet curable resin serving as an adhesive to the optical fibers 1 arranged in parallel and then irradiating with ultraviolet rays to solidify.
  • a region other than the connecting portion 11 between two adjacent optical fibers 1 is a non-connecting portion 12 (separating portion).
  • the two adjacent optical fibers 1 are not constrained.
  • the connecting portions 11 and the non-connecting portions 12 are alternately arranged in the tape width direction.
  • the optical fiber tape can be spread in a mesh shape as shown in FIG. 2B.
  • the optical fiber tape can be rolled into a bundle, and a large number of optical fibers 1 can be accommodated at high density.
  • two adjacent optical fibers 1 may be in contact with each other or may be separated from each other.
  • 3A and 3B are explanatory diagrams of another intermittently connected optical fiber tape.
  • This intermittently connected optical fiber tape includes a plurality (four in this case) of pairs (fiber pairs) of optical fibers 1 connected in the longitudinal direction. Adjacent fiber pairs are intermittently connected by a connecting portion 11. Also in this intermittently connected optical fiber tape, the connecting portions 11 and the non-connecting portions 12 are alternately arranged in the tape width direction. Thereby, it is possible to spread the optical fiber tape in a mesh shape, or to round the fiber pair into a bundle.
  • the configuration of the intermittently connected optical fiber tape is not limited to that shown in the figure.
  • the arrangement of the connecting portions 11 may be changed, or the number of optical fibers 1 may be changed.
  • the optical fiber unit 10 may be configured by bundling a plurality of single-core optical fibers 1.
  • the core 3 includes an optical fiber unit 10 and a presser winding 2 (pressing winding tape). Specifically, the core 3 is formed by wrapping the optical fiber unit 10 with the presser winding 2. In the present embodiment, the core 3 further has an inner inclusion 40A. The inner inclusion 40A is arranged inside the presser winding 2.
  • the presser winding 2 is a member that wraps the optical fiber unit 10. By wrapping the optical fiber unit 10 with the presser winding 2, it is possible to prevent the optical fiber 1 from being buried (biting into) the outer sheath 60 when the outer sheath 60 is formed of molten resin.
  • the presser winding 2 is made of, for example, a plastic tape member. As a material of the presser winding 2, for example, polyethylene terephthalate (PET) can be used.
  • PET polyethylene terephthalate
  • the presser winding 2 in the cross section of the optical fiber cable 100, the presser winding 2 is wound in a spiral shape, and both edges of the presser winding 2 overlap to form an overlapping region 2a (see FIG. 1).
  • the inner inclusion 40A is an inclusion disposed inside the presser winding 2.
  • the inner inclusion 40A has a role of securing the volume of the space (accommodating space) in the first covering portion 60A in the outer jacket 60. That is, it is possible to prevent the accommodation space from being excessively narrowed by the inner inclusion 40 ⁇ / b> A resisting the pressure of the resin that becomes the outer cover 60 when the outer cover 60 is extruded.
  • an upper limit value and a lower limit value of the cross-sectional area of the accommodation space are provided, and the amount of the inner inclusion 40A so that the cross-sectional area of the accommodation space is within the range between the upper limit value and the lower limit value. May be adjusted.
  • the inner inclusion 40A is a water absorbent yarn.
  • running water in the inner side of the core 3 inner side of the presser foot 2
  • the inner inclusion 40A has water absorption.
  • the tensile body 20 is a member that resists shrinkage of the outer sheath 60 and suppresses distortion and bending applied to the optical fiber unit 10 (particularly, the optical fiber 1).
  • the strength member 20 is a linear member and is embedded in the outer jacket 60.
  • a non-metallic material or a metallic material can be used as the material of the strength member 20, a non-metallic material or a metallic material.
  • Non-metallic materials include fiber reinforced plastic (FRP) such as glass fiber reinforced plastic (GFRP), aramid fiber reinforced plastic (KFRP) reinforced with Kevlar (registered trademark), polyethylene fiber reinforced plastic reinforced with polyethylene fiber, etc. Is possible.
  • As the metallic material a metal wire such as a steel wire can be used.
  • the cross-sectional shape of the strength member 20 is circular in FIG.
  • the cross-sectional shape may be, for example, a flat shape, an elliptical shape, a rectangular shape, or a rectangular shape.
  • the strength member 20 is arranged in parallel to the longitudinal direction.
  • the core 3 is disposed between the pair of strength members 20.
  • the outer inclusion 40B is an inclusion arranged between the presser winding 2 and the outer jacket 60 (first covering portion 60A). That is, the outer inclusion 40 ⁇ / b> B is an inclusion arranged outside the presser winding 2.
  • the outer inclusion 40 ⁇ / b> B has a role of filling a gap between the presser winding 2 and the outer jacket 60.
  • the outer inclusion 40B is a water absorbent yarn. As described above, the outer inclusion 40 ⁇ / b> B has water absorption, so that running water in the gap between the presser winding 2 and the jacket 60 can be suppressed.
  • the outer jacket 60 is a member that covers other components.
  • the jacket 60 covers the periphery of the core 3, the pair of strength members 20, the outer inclusion 40 ⁇ / b> B, the support wire 50, and the like.
  • the jacket 60 includes a first covering portion 60A, a second covering portion 60B, and a connecting portion 60C.
  • the first covering portion 60A is a portion that collectively covers the periphery of the core 3, the pair of strength members 20, and the outer inclusion 40B.
  • the first covering portion 60A is formed in a substantially cylindrical shape.
  • the outer shape of the first covering portion 60A in the cross section is circular.
  • the second covering portion 60B is a portion that covers the support wire 50.
  • the connecting part 60C is a part that connects the first covering part 60A and the second covering part 60B.
  • the first covering portion 60A, the second covering portion 60B, and the connecting portion 60C are collectively formed of resin.
  • Examples of the material of the outer cover 60 include polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), and ethylene propylene copolymer (EP) ( PO) resin, polyvinyl chloride (PVC), and the like can be used.
  • the jacket 60 can be formed by extrusion molding or the like. It is desirable that the set temperature when extruding the outer jacket 60 is lower than the melting point of the presser winding 2.
  • the optical fiber unit 10 (the plurality of optical fibers 1) is twisted and arranged in an SZ shape inside the core 3 (holding roll 2). As a result, transmission loss can be suppressed and the optical fiber 1 can be easily taken out during the intermediate post-branching operation.
  • the outer inclusion 40B is vertically attached to the core 3 outside the core 3.
  • the optical fiber cable 100 can be more stably manufactured by assembling the outer inclusions 40B and the core 3 vertically.
  • the outer inclusion 40 ⁇ / b> B is disposed at a substantially constant position with respect to the core 3 in any cross section in the longitudinal direction of the optical fiber cable 100.
  • the inner inclusion 40A is disposed closer to the outer inclusion 40B side in the core 3 (presser winding 2).
  • the inner inclusion 40A and the outer inclusion 40B are disposed inside the optical fiber cable 100.
  • the waterproof property may be deteriorated on the opposite side of the core 3 due to being arranged unevenly.
  • the inner inclusions 40A in order to improve the waterproof property of the entire core 3, it is also conceivable to disperse and arrange the inner inclusions 40A inside the core 3 (presser winding 2). However, in that case, the amount of the inner inclusions 40A to be arranged in the core 3 is relatively large. Further, when the inner inclusions 40A are arranged in a distributed manner, the transmission loss of the optical fiber 1 may increase due to the shrinkage of the inner inclusions 40A (shrinkage due to heat at the time of extrusion molding of the jacket 60).
  • the inner inclusion 40A in a state of being twisted inside the presser winding 2.
  • the inner inclusion 40A contracts, the optical fiber unit 10 is wound by the inner inclusion 40A, thereby increasing the transmission loss of the optical fiber 1. there's a possibility that.
  • the inner inclusion 40A is twisted and arranged in an SZ shape inside the core 3 (presser winding 2).
  • the position of the inner inclusion 40A with respect to the core 3 changes along the longitudinal direction. Therefore, it is possible to prevent the inner inclusion 40A and the outer inclusion 40B from being biased and arranged inside the optical fiber cable 100, and it is possible to suppress a local decrease in waterproof properties. Further, even if the inner inclusion 40A contracts, the optical fiber unit 10 does not have to be wound around the inner inclusion 40A, so that an increase in transmission loss of the optical fiber 1 can be suppressed.
  • the twist pitch of the inner inclusion 40A twisted in the SZ shape is 3 m or less.
  • the twist pitch is an interval in the longitudinal direction of the reversal position in the rotation direction (see FIG. 5B).
  • the twist pitch is a distance in the longitudinal direction from the position where the winding direction of the inner inclusion 40A is reversed from the S direction to the Z direction until it is reversed from the Z direction to the S direction.
  • the outer inclusion 40 ⁇ / b> B is disposed so as not to be adjacent to the overlapping region 2 a of the presser winding 2. Thereby, it can suppress that the outer inclusion 40B enters the inner side of the presser winding 2 from the overlapping region 2a.
  • the outer inclusion 40B is disposed on the opposite side of the overlapping region 2a as viewed from the core 3 while being disposed so as not to be adjacent to the overlapping region 2a of the presser winding 2.
  • the overlapping region 2 a is arranged on the lower side in the figure with respect to the core 3, whereas the outer inclusion 40 ⁇ / b> B is arranged on the upper side in the figure with respect to the core 3. Yes.
  • the outer inclusion 40B enters the inside of the presser winding 2 from the overlapping region 2a.
  • FIG. 4 is an explanatory diagram of the manufacturing apparatus 70 for the optical fiber cable 100.
  • the manufacturing apparatus 70 includes a supply source of each member, a core collecting machine 71, an extruder 72, a cooler 73, and a drum 74.
  • the core collecting machine 71 is an apparatus that forms the core 3 by wrapping the optical fiber unit 10 and the inner inclusion 40A in the presser winding 2. For this reason, the core assembly 71 is supplied with the optical fiber unit 10 (for example, one or a plurality of intermittently connected optical fiber tapes), the inner inclusion 40A, and the presser winding 2.
  • the core aggregator 71 aggregates the optical fiber unit 10 and the inner inclusion 40A while twisting the optical fiber unit 10 and the inner inclusion 40A in an SZ shape (described later). Then, the core collecting machine 71 wraps the optical fiber unit 10 and the inner inclusion 40 ⁇ / b> A twisted in an SZ shape in the presser winding 2 to form the core 3, and sends the core 3 to the extruder 72.
  • the extruder 72 is a device for extruding the outer cover 60.
  • the extruder 72 is supplied with the core 3, the pair of strength members 20, the outer inclusion 40 ⁇ / b> B, and the support wire 50.
  • the optical fiber cable 100 in which the members are collectively covered with the jacket 60 is manufactured by extruding the molten resin from the die holes while inserting the members into the die holes (not shown) of the extruder 72.
  • the cooler 73 is a device that cools the jacket 60 of the optical fiber cable 100.
  • the drum 74 is a member that winds up the optical fiber cable 100.
  • FIG. 5A is an explanatory diagram of a first twisting method for the optical fiber unit 10 and the inner inclusion 40A.
  • the core collecting machine 71 has a rotating plate 6 (eye plate) that rotates and rotates (rotates in the SZ direction).
  • the rotating plate 6 is formed in a circular plate shape.
  • the rotating plate 6 has a plurality of unit holes 6a through which the optical fiber unit 10 (optical fiber tape) is inserted, and an interposition hole 6b through which the inner inclusion 40A is inserted.
  • the single rotation plate 6 is provided with the unit hole 6a and the interposition hole 6b, but the unit hole 6a and the interposition hole 6b may be provided in separate rotation plates 6.
  • the first twisting method is sometimes called “co-twisting” because the optical fiber unit 10 and the inner inclusion 40A are twisted together.
  • FIG. 5B is an explanatory diagram (conceptual diagram) of the optical fiber unit 10 and the inner inclusion 40A twisted in the SZ shape by the first twisting method.
  • FIG. 5B is a conceptual diagram for explaining the twisting method, and the scale of the drawing is not accurate (for example, the twisting pitch in the figure is 3 m or less, whereas the diameter of the optical fiber 1 is about 0.25 mm). Is).
  • the optical fiber unit 10 and the inner inclusion 40A are twisted together in an SZ shape.
  • the twist pitch (interval in the longitudinal direction of the reversal position in the rotation direction) of the optical fiber unit 10 and the inner inclusion 40A is substantially the same, and the reversal position in the rotation direction is also substantially the same.
  • the twist phases of the optical fiber unit 10 and the inner inclusion 40A substantially match.
  • the twist angle is substantially the same.
  • the inner inclusion 40 ⁇ / b> A is arranged so as to be sandwiched between the optical fibers 1 in the case of the first twisting method (co-twisting).
  • the optical fiber 1 and the inner inclusion 40A can be twisted into an SZ shape by a simple method.
  • the inner inclusion 40A is strongly restrained by the optical fiber 1.
  • the optical fiber 1 contracts due to heat at the time of extrusion molding of the jacket 60, the optical fiber 1 is likely to receive a force from the inner inclusion 40A, and the transmission loss of the optical fiber 1 may increase. .
  • it is desirable that the constraint between the inner inclusion 40A and the optical fiber 1 is weak. Therefore, in the twisting methods (second to fourth twisting methods) described below, the optical fiber 1 and the inner inclusion 40A are not twisted but twisted in an SZ shape.
  • FIG. 6A is an explanatory diagram of a second twisting method for the optical fiber unit 10 and the inner inclusion 40A.
  • the core collecting machine 71 has two rotating plates 7A and 7B that swing and rotate (rotate in the SZ direction).
  • the two rotating plates 7A and 7B include a unit rotating plate 7A for twisting the optical fiber unit 10 (optical fiber tape) and an intervening rotating plate 7B for twisting the inner inclusion 40A. It is.
  • the unit rotary plate 7A and the intervening rotary plate 7B are formed in a circular plate shape.
  • a plurality of unit holes 7a through which the optical fiber unit 10 is inserted are formed in the unit rotary plate 7A.
  • the intervening rotating plate 7B has an interposing hole 7b for inserting the inner inclusion 40A and a passing hole 7c for allowing the optical fiber unit 10 twisted by the unit rotating plate 7A to pass therethrough.
  • the passage hole 7c is formed at the center of the intervening rotating plate 7B.
  • the interposition hole 7b is located outside the passage hole 7c.
  • the optical fiber unit 10 is twisted in an SZ shape by rotating and rotating the unit rotating plate 7A. Since each optical fiber 1 has a circular cross section, irregularities due to the outer shape of the optical fiber 1 are formed on the outer periphery of the optical fiber unit 10 formed by bundling a plurality of optical fibers 1. In other words, on the outer periphery of the twisted optical fiber unit 10 (bundle of optical fibers 1), a concave shape is formed along the optical fiber 1 by a groove (gap between adjacent optical fibers 1 on the outer periphery of the optical fiber unit 10). Will be formed.
  • the grooves formed on the outer periphery of the optical fiber unit 10 are also formed in the SZ shape. That is, a groove between adjacent optical fibers 1 is formed in an SZ shape on the outer periphery of the bundle of optical fibers 1.
  • the interposition rotating plate 7B swings and rotates on the downstream side of the unit rotating plate 7A, so that the inner inclusion 40A is twisted in the SZ shape. And twisted in an SZ shape.
  • the SZ-shaped twist of the inner inclusion 40A can be arbitrarily set with respect to the SZ-shaped twist of the optical fiber unit 10 without any particular limitation.
  • FIG. 6B is an explanatory diagram (conceptual diagram) of the optical fiber unit 10 and the inner inclusion 40A twisted in an SZ shape by the second twisting method.
  • the second twisting method it is possible to make the twisting pitches of the optical fiber unit 10 and the inner inclusion 40A different from each other and the reversing positions in the rotation direction. Further, the twist angles of the optical fiber unit 10 and the inner inclusion 40A can be made different. That is, according to the second twisting method, the twist pitch, the twist angle, and the like of the inner inclusion 40 ⁇ / b> A can be arbitrarily set independently with respect to the twist of the optical fiber unit 10.
  • the inner inclusion 40A is disposed so as to cross the SZ-shaped groove formed on the outer periphery of the twisted optical fiber unit 10 (a bundle of optical fibers 1).
  • the inner inclusion 40A is disposed across the SZ-shaped groove. can do.
  • the inner inclusion 40A is sandwiched between the specific optical fibers 1 as shown in FIG. Running water can be suppressed.
  • the inner inclusion 40A can be arranged so as to cross more grooves, so that the gap between the optical fibers 1 Running water can be further suppressed.
  • the rotary plates 6 and 7B having the interposition holes 6b and 7b are swung in order to twist the inner inclusion 40A in the SZ shape. 71 becomes large. Therefore, in the twisting methods (third and fourth twisting methods) described below, the inner inclusions 40A are twisted in an SZ shape without largely moving the inner inclusions 40A by the rotating plate.
  • FIG. 7A is an explanatory diagram of a third twisting method of the optical fiber unit 10 and the inner inclusion 40A.
  • the core assembly 71 has a unit rotating plate 7A that swings and rotates (rotates in the SZ direction) to twist the optical fiber unit 10 (optical fiber tape).
  • the rotating plate for twisting the inner inclusion 40A is not provided, so the configuration of the core aggregation machine 71 can be simplified. .
  • the optical fiber unit 10 is twisted in an SZ shape by rotating the unit rotating plate 7A. Since each optical fiber 1 has a circular cross section, irregularities due to the outer shape of the optical fiber 1 are formed on the outer periphery of the optical fiber unit 10 formed by bundling a plurality of optical fibers 1. In other words, the above-described groove is formed along the optical fiber 1 on the outer periphery of the twisted optical fiber unit 10 (a bundle of optical fibers 1). Moreover, in this embodiment, since the some optical fiber 1 is twisted by SZ shape, the said groove
  • the inner inclusion 40A is vertically attached to the optical fiber unit 10 twisted in the SZ shape on the downstream side of the unit rotary plate 7A. Thereby, the inner inclusion 40A is attached to the outer periphery of the optical fiber unit 10 along the longitudinal direction.
  • the inner inclusion 40A is guided inside the groove.
  • the inner inclusion 40A is guided by the SZ-shaped groove and displaced in the circumferential direction, and the inner inclusion 40A is twisted in the SZ shape on the outer periphery of the optical fiber unit 10 (see FIG. 7B).
  • the twist angle of the inner inclusion 40A is the twist of the optical fiber unit 10. It becomes the same as the angle.
  • the inner inclusion 40A is usually thicker than the optical fiber 1, and the inner inclusion 40A is thicker than the width and depth of the groove.
  • the inner inclusion 40 ⁇ / b> A guided to the groove may come off the groove once guided while being attached to the outer periphery of the optical fiber unit 10.
  • the twist angle of the inner inclusion 40 ⁇ / b> A is smaller than the twist angle of the optical fiber unit 10.
  • the twist angle of the inner inclusion 40 ⁇ / b> A is equal to or less than the twist angle of the optical fiber unit 10.
  • the twist pitch or the rotation direction inversion position of the inner inclusion 40A is shifted from the twist pitch or the rotation direction inversion position of the optical fiber unit 10.
  • FIG. 7B is an explanatory diagram (conceptual diagram) of the optical fiber unit 10 and the inner inclusion 40A twisted in the SZ shape by the third twisting method.
  • the twist angle of the inner inclusion 40 ⁇ / b> A is smaller than the twist angle of the optical fiber unit 10.
  • the phase of the twist of the inner inclusion 40A with respect to the SZ-like twist of the optical fiber unit 10 can be changed.
  • at least one of the twisting pitch, the rotating position in the rotational direction, and the twisting angle of the optical fiber unit 10 and the inner inclusion 40A can be varied. Therefore, the inner inclusion 40A can be disposed so as to cross the SZ-shaped groove formed on the outer periphery of the optical fiber unit 10 (the bundle of optical fibers 1).
  • FIG. 8 is an explanatory diagram (conceptual diagram) of the fourth twisting method of the optical fiber unit 10 and the inner inclusion 40A.
  • the inner inclusion 40A is vertically attached to the optical fiber unit 10 twisted in an SZ shape.
  • the inner inclusions 40A are attached along the longitudinal direction on the outer periphery of the optical fiber unit 10 twisted in the SZ shape. For this reason, the core aggregation machine 71 does not need to be provided with the rotating plate for twisting the inner inclusion 40A.
  • the twist is returned so that the twist angle of the optical fiber unit 10 becomes small (the twist angle is changed). loosen).
  • the inner inclusions 40 ⁇ / b> A that are attached to the optical fiber unit 10 on the outer periphery of the optical fiber unit 10 are dragged to return the twist of the optical fiber unit 10.
  • the inner inclusion 40A is twisted in the SZ shape in the direction opposite to the SZ twist direction of the optical fiber unit 10.
  • the twisting pitch of the optical fiber unit 10 and the inner inclusion 40A is substantially the same, and the reversing position in the rotational direction is substantially the same, but the rotational direction at the reversing position is reversed. ing.
  • the twist phase of the inner inclusion 40A with respect to the SZ-shaped twist of the optical fiber unit 10 is shifted by 180 degrees.
  • the inner inclusion 40A can be disposed so as to cross more grooves, water running in the gaps of the optical fiber 1 can be further suppressed.
  • the optical fiber cable 100 of the present embodiment includes the core 3 formed by wrapping the plurality of optical fibers 1 and the inner inclusions 40 ⁇ / b> A with the presser winding 2, and the outer side disposed outside the core 3.
  • An inclusion 40B and a jacket 60 covering the core 3 and the outer inclusion 40B are provided.
  • the optical fiber cable 100 having stable waterproof performance can be provided.
  • the outer inclusion 40B and the inner inclusion 40A have water absorption. Thereby, the running water inside and outside the core 3 can be prevented more reliably.
  • the inner inclusion 40A is arranged so that the position in the core 3 changes along the longitudinal direction. Thereby, compared with the case where the position of 40 A of inner inclusions in the core 3 does not change, the bias
  • the outer inclusion 40B is vertically attached to the core 3. Thereby, it becomes easy to extrude the jacket 60, and the optical fiber cable 100 can be manufactured more stably.
  • the position of the inner inclusion 40A in the core 3 is changed in the longitudinal direction, and the outer inclusion 40B is vertically attached to the core 3.
  • the relative positions of the inner inclusion 40 ⁇ / b> A and the outer inclusion 40 ⁇ / b> B change along the longitudinal direction of the optical fiber cable 100. Therefore, the inner inclusion 40A and the outer inclusion 40B are restrained from being biased in the optical fiber cable 100, and the waterproof performance is prevented from locally deteriorating.
  • the inner inclusion 40A may be arranged so as to cross the groove by the second to fourth twisting methods. With this configuration, it is possible to suppress the water running phenomenon in which water moves so as to travel along the groove and to improve the waterproof performance more reliably. This effect can also be obtained when a plurality of optical fibers 1 are twisted in one direction (spiral).
  • the inner inclusion 40 ⁇ / b> A is arranged so as to cross the groove between the adjacent optical fibers 1 formed on the outer periphery of the bundle of the plurality of optical fibers 1 twisted together. Waterproof performance can be increased.
  • the presser winding 2 is wound so as to have an overlapping region 2a where both edges overlap, and the outer inclusion 40B is arranged at a position not adjacent to the overlapping region 2a. With this configuration, the outer inclusion 40B can be prevented from entering the inside of the presser winding 2 from the overlapping region 2a.
  • the core 3 is formed by wrapping the plurality of optical fibers 1 and the inner inclusions 40 ⁇ / b> A with press-wrapping, and the outer inclusions 40 ⁇ / b> B are attached to the outside of the core 3. And forming a jacket 60 that covers the core 3 and the outer inclusions 40B.
  • this manufacturing method it is possible to manufacture an optical fiber cable 100 having a stable waterproof performance, including the inner inclusion 40A and the outer inclusion 40B.
  • FIG. 9 is a cross-sectional view of the optical fiber cable 100 of the second embodiment.
  • symbol may be attached
  • the main body portion having the core 3 is formed in a rectangular shape (rectangular shape), and the support line portion having the support line 50 is formed in a circular shape in a cross sectional view.
  • the longitudinal direction (X direction) is the direction in which the optical fiber cable 100 extends.
  • the long side direction (width direction or Y direction) is a direction in which a pair of strength members 20 are arranged.
  • the short side direction (thickness direction or Z direction) is a direction in which the pair of separators 30 are arranged, and is orthogonal to both the long side direction and the long side direction.
  • the long side direction is a direction along the long side in the cross section of the optical fiber cable 100 (main body part).
  • the short side direction is a direction along the short side in the cross section of the optical fiber cable 100 (main body part).
  • the optical fiber cable 100 includes a core 3 having the optical fiber unit 10, a pair of strength members 20, and a jacket 60 as in the first embodiment. Furthermore, the optical fiber cable 100 of the second embodiment includes a pair of separators 30. Also in the second embodiment, the optical fiber cable 100 has an inner inclusion 40A and an outer inclusion 40B.
  • the optical fiber unit 10 is composed of a plurality of intermittently connected optical fiber tapes (intermittently fixed tape cores).
  • the optical fiber unit 10 of the second embodiment is composed of a single intermittently connected optical fiber tape.
  • the configuration of the optical fiber unit 10 can be changed as appropriate.
  • the optical fiber unit 10 may be configured by a plurality of optical fiber tapes, or may be configured by bundling a plurality of single-core optical fibers 1.
  • a 12-core optical fiber cable 100 is configured instead of an optical fiber cable that normally has 24 cores.
  • the inner inclusion 40A has a role of securing the volume of the accommodation space in the first covering portion 60A.
  • the inner inclusion 40A is a water absorbent yarn. Thereby, running water inside the core 3 (inside the presser winding 2) can be suppressed.
  • the separator 30 is a member for facilitating the separation work of the jacket 60.
  • the separator 30 is a tape-like (flat or belt-like) member, and is arranged between the core 3 (presser winding 2) and the outer jacket 60 along the longitudinal direction.
  • the thickness of the separator 30 is about 0.2 mm, for example.
  • the separator 30 is not fused or bonded to the jacket 60 and is formed of a material that can be easily peeled off from the jacket 60.
  • the tape-shaped separator 30 is disposed so that the tape surface is parallel to the width direction.
  • the pair of separators 30 are arranged side by side in the thickness direction.
  • a core 3 is disposed between the pair of separators 30.
  • the outer inclusions 40 ⁇ / b> B are disposed between the pair of separators 30.
  • the outer cover 60 of the second embodiment collectively covers the periphery of the core 3, the pair of strength members 20, the pair of separators 30, the outer inclusions 40B, the support wires 50, and the like.
  • the first covering portion 60A collectively covers the periphery of the core 3, the pair of strength members 20, the pair of separators 30, and the outer inclusion 40B.
  • coated parts are formed in the substantially rectangular shape in the cross section.
  • a plurality of notches 60N are formed on the outer surface of the first covering portion 60A.
  • a pair of notches 60N are provided on the upper and lower surfaces, respectively, but one notch may be formed on the upper and lower surfaces. Further, the notch 60N may be omitted as in the first embodiment. It is desirable that the set temperature when extruding the jacket 60 is lower than the melting point of the separator 30 or the presser winding 2.
  • the outer inclusion 40B is vertically attached to the outer side of the core 3, and the inner inclusion 40A is twisted and arranged in an SZ shape inside the core 3.
  • the position (position in the cross section of the optical fiber cable 100) of the inner inclusion 40A with respect to the core 3 changes along a longitudinal direction. Therefore, it is possible to prevent the inner inclusion 40A and the outer inclusion 40B from being biased and arranged inside the optical fiber cable 100, and it is possible to suppress a local decrease in waterproof properties. Further, even if the inner inclusion 40A contracts, the optical fiber unit 10 does not have to be wound around the inner inclusion 40A, so that an increase in transmission loss of the optical fiber 1 can be suppressed.
  • the outer inclusion 40B is arranged so as not to be adjacent to the overlapping region 2a of the presser winding 2. Thereby, it can suppress that the outer inclusion 40B enters the inside of the presser winding 2 from the overlapping region 2a.
  • the outer inclusions 40B are arranged so as not to be adjacent to the overlapping region 2a of the presser winding 2 while approaching the edge of the presser winding 2 that is outside the overlapping region 2a.
  • the outer inclusion 40B is viewed from the overlapping region 2a so as to approach the edge of the presser winding 2 outside the overlapping region 2a (the lower side in the drawing). It is arranged near the left side (the support line 50 side). Thereby, it can further suppress that the outer inclusion 40B enters the inside of the presser winding 2 from the overlapping region 2a.
  • FIG. 10 is an explanatory diagram of the manufacturing apparatus 70 for the optical fiber cable 100 according to the second embodiment.
  • the manufacturing apparatus 70 includes a supply source of each member, a core collecting machine 71, an extruder 72, a cooling machine 73, and a drum 74.
  • the core aggregation machine 71 arranges the inner inclusions 40 ⁇ / b> A in an SZ shape inside the core 3.
  • the method of twisting the inner inclusions 40A in the SZ shape by the core aggregation machine 71 may be the first to fourth twisting methods described above, or other methods.
  • the extruder 72 is supplied with the core 3, the pair of strength members 20, the outer inclusions 40 ⁇ / b> B, and the support wires 50.
  • the pair of separators 30 are also provided. Supplied.
  • an optical fiber cable 100 in which each member is collectively covered with a jacket 60 is formed by extruding the molten resin from the die hole while inserting each member into a die hole (not shown) of the extruder 72. Manufactured.
  • the optical fiber cable 100 includes a core 3 having the optical fiber unit 10, an outer inclusion 40 ⁇ / b> B, a pair of strength members 20, a pair of separators 30, a support wire 50, and a jacket 60. And.
  • the X direction is a direction in which the optical fiber cable 100 extends.
  • the Y direction is a direction in which the pair of strength members 20 face each other.
  • the Z direction is a direction orthogonal to both the X direction and the Y direction.
  • the X direction is referred to as the longitudinal direction
  • the Y direction is referred to as the width
  • the Z direction is referred to as the thickness direction.
  • a cross section perpendicular to the longitudinal direction is referred to as a transverse cross section.
  • the optical fiber unit 10 of the present embodiment is a so-called intermittently fixed tape core wire, and is formed by intermittently connecting a plurality of optical fibers 1 with a connecting portion 11. More specifically, a plurality of optical fibers 1 are arranged in parallel, and adjacent optical fibers 1 are connected by a connecting portion 11. The connecting portions 11 are arranged at regular intervals in the longitudinal direction. With respect to the position of the connecting portion 11 that connects the adjacent optical fibers 1, the connecting portion 11 that connects the adjacent optical fibers 1 next to the adjacent optical fibers 1 is disposed at a position shifted in the longitudinal direction. ing. Thus, the connection part 11 is arrange
  • the connecting portion 11 is formed of, for example, a UV curable resin or the like, and is bonded to the adjacent optical fibers 1 to connect these optical fibers 1 to each other.
  • the optical fibers 1 connected to each other by the connecting portion 11 are pulled away from each other in the width direction of the optical fiber unit 10 with fingers, so that the connecting portions 11 are separated from the optical fiber 1 by the force of fingers.
  • the connected state can be released.
  • the configuration of the optical fiber unit 10 is not limited to the intermittently fixed tape core wire. For example, a configuration in which a plurality of optical fibers 1 are bundled with a binding material or the like may be used.
  • an optical fiber or an optical fiber core can be used as the optical fiber 1.
  • the primary layer or secondary layer covering the bare wire of the optical fiber 1 is preferably formed of a UV curable resin.
  • the secondary layer itself may be colored, or a colored layer may be further provided on the outer periphery of the secondary layer. Alternatively, an identification marking may be provided on the outer periphery of the optical fiber 1.
  • the core 3 is formed by wrapping the optical fiber unit 10 and the inner inclusion 40 ⁇ / b> A with the presser winding 2.
  • the inner inclusion 40A is arranged inside the presser winding 2.
  • a plastic tape member or the like can be used as the presser winding 2.
  • a material of the presser winding for example, polyethylene terephthalate (PET) can be used.
  • the inner inclusion 40A it is desirable to use a yarn whose fineness can be freely changed.
  • a material for forming the inner inclusion 40A for example, polypropylene (PP), polyester (PEs), or the like can be used.
  • PP yarn is used as the inner inclusion 40A.
  • the material of the inner inclusion 40A is not limited to PP yarn, and a part or all of the material may be replaced with water absorbing yarn.
  • the optical fiber unit 10 and the inner inclusion 40A are wrapped by the presser winding 2 in a state of being twisted in an SZ shape.
  • intermediate post-branching work and the like can be facilitated while suppressing the application of tension and lateral pressure to the optical fiber 1.
  • the optical fiber unit 10 and the inner inclusion 40A may be twisted together in a spiral shape.
  • the outer inclusion 40 ⁇ / b> B is disposed in the gap between the presser winding 2 and the jacket 60, that is, outside the core 3.
  • the outer inclusion 40B can be formed using PP yarn or the like, like the inner inclusion 40A. In this manner, by disposing the inner inclusion 40A and the outer inclusion 40B on the inner side and the outer side of the core 3, respectively, running water on both the inner side and the outer side of the core 3 can be prevented.
  • the inner inclusion 40A also plays a role of securing the volume of the accommodation space described later when the number of cores of the optical fiber 1 included in the core 3 is small.
  • the accommodation space it is possible to prevent the accommodation space from being excessively narrowed by the inner inclusion 40 ⁇ / b> A resisting the pressure of the resin that becomes the outer cover 60 when the outer cover 60 is extruded.
  • the upper and lower limits of the cross-sectional area of the accommodation space are provided, and the amount of the inner inclusion 40A is adjusted so that the cross-sectional area of the accommodation space is within the range of the upper and lower limits. Also good.
  • the pair of strength members 20 are arranged so as to sandwich the core 3 and the outer inclusion 40B in the width direction.
  • a steel wire, metal fiber, aramid fiber, glass fiber, carbon fiber, FRP (fiber reinforced plastic), or the like can be used as the tensile body 20 .
  • the strength member 20 plays a role of suppressing the action of the tension on the optical fiber 1 against the tension acting on the optical fiber 1 in the longitudinal direction.
  • the pair of separators 30 are arranged so as to sandwich the core 3 and the outer inclusion 40B in the thickness direction.
  • Each separator 30 is formed in a plate shape extending in the width direction in a cross-sectional view, and is disposed substantially parallel to each other. Between the pair of separators 30, the jacket 60 partially enters from both sides in the width direction.
  • the pair of separators 30 and the outer cover 60 that enters between the pair of separators form a substantially rectangular accommodation space in a cross-sectional view.
  • the core 3 and the outer inclusion 40B are disposed in the substantially rectangular accommodation space.
  • the separator 30 As the material of the separator 30, a sheet material such as polypropylene, polyamide, or polyimide can be used.
  • the separator 30 is preferably formed of a material having a melting point higher than that of the outer cover 60 in order to prevent the outer cover 60 from being fused with the outer cover 60 when the outer cover 60 is extruded.
  • the support wire 50 is formed of a steel wire or the like.
  • the outer diameter of the support wire 50 is larger than the outer diameter of the strength member 20.
  • the support line 50 and the pair of strength members 20 are arranged side by side in the width direction.
  • the support line 50 is used as a suspension line for the overhead of the optical fiber cable 100.
  • the optical fiber cable 100 may not include the support wire 50.
  • the jacket 60 includes a first covering portion 60A, a second covering portion 60B, and a connecting portion 60C that connects the first covering portion 60A and the second covering portion 60B to each other.
  • the first covering portion 60A integrally covers the core 3, the outer inclusion 40B, the pair of separators 30, and the pair of strength members 20.
  • the second covering portion 60B covers the support wire 50.
  • coated parts are formed in the substantially rectangular shape by the cross sectional view.
  • a notch 60N is formed in a portion of the first covering portion 60A that covers the separator 30.
  • the notch 60 ⁇ / b> N is formed in a V shape in a cross-sectional view and gradually decreases in width toward the separator 30.
  • a pair of notches 60N are formed on the upper end surface and the lower end surface of the first covering portion 60A.
  • Examples of the material of the outer cover 60 include polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), and ethylene propylene copolymer (EP) ( PO) resin, polyvinyl chloride (PVC), and the like can be used.
  • the jacket 60 can be formed by extrusion molding or the like. Even in this case, since the optical fiber unit 10 is wrapped with the presser winding 2, it is possible to prevent the outer sheath 60 that flows at a high temperature from entering the gap between the optical fibers 1. In addition, it is desirable that the set temperature at the time of extruding the outer jacket 60 is lower than the melting point of the separator 30 or the presser winding 2 so that the separator 30 and the presser winding 2 and the outer cover 60 are not fused.
  • the optical fiber cable 100 of the present embodiment has a configuration in which four intermittently fixed tape cores are used as the optical fiber unit 10 and six of these intermittently fixed tape cores are wrapped with the presser winding 2.
  • As the inner inclusion 40A one water absorption yarn made of PEs having 1670 dtex was used.
  • As the outer inclusion 40B one water absorption yarn made of 1670 dtex PEs was used.
  • As the presser roll 2 a PET tape material having a thickness of 0.25 mm was used. The thickness of the first covering portion 60A in the thickness direction is about 3.5 mm, and the width in the width direction is about 5.5 mm.
  • the mounting density of the optical fiber 1 in the housing space formed by the pair of separators 30 and the jacket 60 that has entered between the separators 30 is in the range of 8.5 to 10.9 fibers / mm 2. became.
  • the mounting density of the optical fiber is a numerical value defined by the following formula (1).
  • Equation (1) d is the mounting density of the optical fiber, N is the number of optical fiber cores, S is the cross-sectional area of the accommodation space, and P is each member accommodated in the accommodation space (inner inclusion 40A, outer inclusion). 40B is the sum of the cross-sectional areas of the presser winding 2).
  • d N ⁇ (SP) (1)
  • the following advantages can be obtained by setting the mounting density d of the optical fiber 1 within a predetermined range. That is, if the mounting density d of the optical fiber 1 is too small, the possibility that the optical fiber 1 moves in the accommodation space increases. Moreover, the running water length at the time of a waterproof test becomes long, and possibility that it will fail a waterproof test becomes large. On the other hand, if the mounting density d of the optical fiber 1 is too large, transmission loss may increase.
  • the numerical range of the mounting density d described above is suitable as an index for achieving the desired performance of the optical fiber cable 100 when the amounts of the inner inclusions 40A and the outer inclusions 40B are fixed, for example.
  • the mounting density d described above does not limit the present invention, and the optical fiber cable 100 may be defined by an index other than the mounting density d depending on the type, shape, application, and the like of the optical fiber cable 100. .
  • the core 3 was formed by wrapping the optical fiber unit 10 and the inner inclusion 40 ⁇ / b> A with the presser winding 2 while SZ twisting them. Moreover, while forming the core 3, the outer inclusions 40B and the like were vertically attached to the core 3, and the first covering portion 60A was extruded around each member.
  • the extra length ratio is 99.85% to 100%.
  • the range was 2%.
  • the surplus length ratio refers to the ratio of the length of the outer inclusion 40B in a tensionless state to the length of the outer jacket 60 in the longitudinal direction. The length of the outer inclusion 40B in the tension-free state was measured by removing the outer inclusion 40B from the outer jacket 60.
  • Table 1 shows the results of confirming the transmission loss and waterproof performance of the plurality of optical fiber cables 100 having different surplus length ratios.
  • the transmission loss at a wavelength of 1550 nm was measured by OTDR (Optical Time Domain Reflectometer).
  • Table 1 below shows the maximum value of the transmission loss of the 24 optical fibers 1 included in each optical fiber cable 100.
  • the waterproof test was performed according to IEC 60794-1-22 F5B using tap water under conditions of a head length of 1 m and 24 hours. As a result, the case where the running water length was 3 m or less was accepted, and the case where the running water length exceeded 3 m was regarded as unacceptable.
  • Example 1 As shown in Table 1, within the range where the extra length ratio is 99.95% or more (Example 1), the transmission loss was 0.25 dB / km or less and the running water length was 3 m or less, and good results were obtained. . On the other hand, in the case where the extra length ratio is 99.85% (Comparative Example 1), the transmission loss is 0.28 dB / km, and the transmission loss is larger than that of Example 1, resulting in a failure. . This is considered to be due to the fact that Comparative Example 1 has a greater tension to act on the outer inclusion 40B than Example 1.
  • the extra length ratio of the outer inclusion 40B is 99.95% or more in order to keep the tension of the outer inclusion 40B within an appropriate range and suppress an increase in transmission loss.
  • the extra length ratio is 100.3% or more, the tension applied to the outer inclusion 40B when the outer inclusion 40B is covered with the first covering portion 60A is too low, so that the light is stably emitted. It was difficult to manufacture the fiber cable 100. Therefore, from the viewpoint of stably manufacturing the optical fiber cable 100, the extra length ratio is more preferably 100.2% or less.
  • optical fiber cable 100A of Comparative Example 2 As shown in FIG. 13 was manufactured and performance was confirmed.
  • the optical fiber cable 100A of the comparative example 2 does not have the inner inclusion 40A, and the amount of inclusions including the inner inclusion 40A and the outer inclusion 40B in the first embodiment is arranged as the outer inclusion 40C. did. That is, the optical fiber cable 100A of Comparative Example 2 has the same configuration as that of the optical fiber cable 100 of Example 1, except that the inner inclusion 40A of Example 1 is disposed outside the core 3.
  • Example 1 As shown in Table 1, in the optical fiber cable 100A of Comparative Example 2, the running water length exceeded 3 m, and the result of the waterproof test was rejected. This is because the inclusion in the inner side of the presser winding 2 does not exist, so that running water in the core 3 cannot be suppressed. From this, it can be seen that the inner inclusion 40A in Example 1 improves the waterproof performance of the optical fiber cable 100.
  • the presser winding 2 is greatly depressed toward the inside of the core 3 by the outer inclusion 40 ⁇ / b> C.
  • the core 3 is greatly deformed in this way, when the optical fiber unit 10 is twisted inside the core 3, the optical fiber unit 10 is caught by the recessed portion of the presser winding 2, and is not properly twisted.
  • the twisting is easily inhibited by the deformation of the core 3.
  • the inclusions 40 ⁇ / b> A and 40 ⁇ / b> B are arranged separately on both the inner side and the outer side of the core 3, thereby reducing deformation of the core 3. ing. Therefore, it is possible to suppress the occurrence of inconvenience such as the optical fiber unit 10 not being properly twisted.
  • the inclusions 40 ⁇ / b> A and 40 ⁇ / b> B are arranged on both the inside and the outside of the core 3, so that the running on both the inside and the outside of the core 3 is performed. Water can be prevented and waterproof performance can be secured. Further, for example, compared to the case where inclusions are arranged only outside the core 3, the inclusions are arranged separately on both the inner side and the outer side of the core 3 so that the outer inclusions press the core 3. The deformation of the core 3 can be reduced.
  • the transmission loss of the optical fiber 1 can be suppressed small by making the extra length ratio of the outer inclusion 40B 99.95% or more. Furthermore, when the extra length ratio of the outer inclusion 40B is set to 100.2% or less, the optical fiber cable 100 can be manufactured more stably.
  • a 4-fiber intermittent fixed tape core wire is used as the optical fiber unit 10 and the total number of cores included in the core 3 is 24.
  • the number of cores of the optical fiber unit 10 and the core 3 are The total number of hearts included can be changed as appropriate.
  • the mounting density is 6.5 to 13.5 / mm 2 in the case of 8 cores, and 6.8 to in the case of 12 cores. It was 10.6 pieces / mm 2 .
  • the mounting density was 7.5 to 9.0 pieces / mm 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

光ファイバケーブル100は、複数の光ファイバ1と内側介在物40Aとを押え巻き2で包んで形成されたコア3と、コア3の外側に配置された外側介在物40Bと、コア3および外側介在物40Bを被覆する外被60Aと、を備える。

Description

光ファイバケーブル及び光ファイバケーブルの製造方法
 本発明は、光ファイバケーブル及び光ファイバケーブルの製造方法に関する。
 本願は、2017年6月2日に日本に出願された特願2017-109872号、および2018年3月6日に日本に出願された特願2018-039696号に基づき優先権を主張し、その内容をここに援用する。
 従来から、特許文献1,2に示されるような光ファイバケーブルが知られている。これらの光ファイバケーブルは、複数の光ファイバを外被の内部に収容して構成されている。
日本国特開2014-219494号公報 日本国特開2014-139609号公報
 この種の光ファイバケーブルでは、複数の光ファイバを介在物とともに押え巻きテープ(単に「押さえ巻き」とも呼ばれる)で包むことでコアを形成し、このコアを外被内に収容する場合がある。更に、吸水性を有する介在物を用いることで、光ファイバケーブル内における走水を防止する場合がある。
 しかしながら、このようなコアを形成する場合には、介在物の位置や状態などによって、所望の防水性能が得られない場合があることが判った。
 本発明は、安定した防水性能を有する光ファイバケーブルを提供することを目的とする。
 上記課題を解決するために、本発明の第1態様に係る光ファイバケーブルは、複数の光ファイバと内側介在物とを押え巻きで包んで形成されたコアと、前記コアの外側に配置された外側介在物と、前記コアおよび外側介在物を被覆する外被と、を備える。
 また、本発明の第2態様に係る光ファイバケーブルの製造方法は、複数の光ファイバおよび内側介在物を押え巻きで包んでコアを形成する工程と、前記コアの外側に外側介在物を添えた状態で、前記コアおよび前記外側介在物を被覆する外被を形成する工程と、を有する。
 本発明の上記態様によれば、外側介在物および内側介在物によって、安定した防水性能を有する光ファイバケーブルを提供することができる。
第1実施形態の光ファイバケーブルの横断面図である。 間欠連結型の光ファイバテープの説明図である。 間欠連結型の光ファイバテープの説明図である。 別の間欠連結型の光ファイバテープの説明図である。 別の間欠連結型の光ファイバテープの説明図である。 光ファイバケーブルの製造装置の説明図である。 光ファイバユニットと内側介在物の第1の撚り方法の説明図である。 第1の撚り方法でSZ状に撚られた光ファイバユニット及び内側介在物の説明図(概念図)である。 光ファイバユニットと内側介在物の第2の撚り方法の説明図である。 第2の撚り方法でSZ状に撚られた光ファイバユニット及び内側介在物の説明図(概念図)である。 光ファイバユニットと内側介在物の第3の撚り方法の説明図である。 第3の撚り方法でSZ状に撚られた光ファイバユニット及び内側介在物の説明図である。 光ファイバユニットと内側介在物の第4の撚り方法の説明図(概念図)である。 第2実施形態の光ファイバケーブルの断面図である。 第2実施形態の光ファイバケーブルの製造装置の説明図である。 第3実施形態の光ファイバケーブルの横断面図である。 図11の光ファイバユニットの説明図である。 比較例の光ファイバケーブルの横断面図である。
 後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。複数本の光ファイバと内側介在物とを押え巻きテープで包んで形成されたコアと、前記コアの外側に配置された外側介在物と、前記コアを挟んで配置された一対の抗張力体と、前記コア、前記外側介在物及び前記一対の抗張力体を被覆する外被とを備え、前記外側介在物は、前記コアの外側に縦添えされており、前記内側介在物は、前記コアの内側でSZ状に撚られて配置されていることを特徴とする光ファイバケーブルが明らかとなる。これにより、介在物が光ファイバケーブルの内部で偏って配置されることを抑制でき、防水特性の局所的な低下を抑制できる。
 前記押え巻きテープは、両縁の重なる重複領域を有するように巻かれており、前記外側介在物は、前記押え巻きテープの重複領域に隣接しない位置に配置されていることが望ましい。これにより、外側介在物が押え巻きテープの重複領域から押え巻きテープの内側に入り込むことを抑制できる。
 前記外側介在物は、前記コアから見て前記押え巻きテープの前記重複領域の反対側に配置されていることが望ましい。これにより、外側介在物が押え巻きテープの重複領域から押え巻きテープの内側に入り込むことを更に抑制できる。
 前記外側介在物は、前記重複領域の外側になっている前記押え巻きテープの縁の方に寄って配置されていることが望ましい。これにより、外側介在物が押え巻きテープの重複領域から押え巻きテープの内側に入り込むことを更に抑制できる。
 前記複数本の光ファイバは、SZ状に撚られて配置されていることが望ましい。これにより、光ファイバの伝送損失を抑制できる。
 前記内側介在物は、前記複数本の光ファイバと一緒に、SZ状に撚り合わされていることが望ましい。これにより、内側介在物も複数の光ファイバもSZ状に撚ることができる。
 前記内側介在物は、前記光ファイバのSZ状の隙間を横切るように、配置されていることが望ましい。これにより、光ファイバの隙間での走水を抑制できる。
 前記内側介在物のSZ状の撚りの位相は、前記光ファイバのSZ状の撚りに対して180度ずれていることが望ましい。これにより、光ファイバの隙間での走水を更に抑制できる。
 複数本の光ファイバと、SZ状に撚られた内側介在物とを押え巻きテープで包んでコアを形成する工程と、前記コアの外側に縦添えさせた外側介在物と、前記コアを挟んで配置させた一対の抗張力体とを外被で一括被覆する工程とを行う光ファイバケーブルの製造方法が明らかとなる。これにより、介在物が光ファイバケーブルの内部で偏って配置されることを抑制でき、防水特性の局所的な低下を抑制できる。
 前記複数本の光ファイバと、前記内側介在物とを一緒にSZ状に撚り合わせることが望ましい。これにより、簡易な方法で、内側介在物及び複数の光ファイバをSZ状に撚ることができる。
 前記複数本の光ファイバと、前記内側介在物とを別々にSZ状に撚ることが望ましい。これにより、内側介在物の撚りを光ファイバの撚りに対して任意に設定できる。
 SZ状に撚った前記複数本の光ファイバの外周で長手方向に沿って前記内側介在物を添い合わせることによって、前記内側介在物をSZ状に撚ることが望ましい。これにより、簡易な方法で内側介在物をSZ状に撚ることができる。
 SZ状に撚った前記複数本の光ファイバの外周で長手方向に沿って前記内側介在物を添い合わせた後、前記複数本の光ファイバの撚りを戻すことによって、前記複数本の光ファイバの撚り方向とは逆方向に前記内側介在物をSZ状に撚ることが望ましい。これにより、内側介在物のSZ状の撚りの位相を、光ファイバのSZ状の撚りに対して180度ずらすことができ、光ファイバの隙間での走水を抑制できる。
 ===第1実施形態===
 <全体構成>
 図1は、第1実施形態の光ファイバケーブル100の長手方向に直交する断面図(以下、単に横断面図という)である。以下、光ファイバケーブル100の長手方向を単に長手方向といい、X軸で表す。
 光ファイバケーブル100は、コア3を有する本体部と、支持線50を有する支持線部とを備えている。本体部および支持線部は、横断面視で略円形に形成されている。本体部の外径は、支持線部の外径よりも大きい。
 支持線部は、鋼線などで構成された支持線50を外被60(第2被覆部60B)で被覆して構成されている。支持線部と本体部とは、外被60(接続部60C)で連結されている。接続部60Cを切断することによって、本体部と支持線部とを分離することができる。本明細書では、支持線付き光ファイバケーブルも、支持線部の無い本体部のみの光ファイバケーブルも、いずれも単に「光ファイバケーブル100」と呼ぶ。
 光ファイバケーブル100は、光ファイバユニット10を有するコア3と、一対の抗張力体20と、外被60とを備えている。また、本実施形態の光ファイバケーブル100は、内側介在物(inner filling)40Aと、外側介在物(outer filling)40Bと、を有する。
 光ファイバユニット10は、複数の光ファイバ1(光ファイバ心線)から構成されている。ここでは、光ファイバユニット10は、複数枚の間欠連結型の光ファイバテープ(間欠固定テープ心線)で構成されている。
 図2A及び図2Bは、間欠連結型の光ファイバテープの説明図である。間欠連結型の光ファイバテープは、複数の光ファイバ1を並列させて間欠的に連結した光ファイバテープである。以下の説明では、複数の光ファイバ1が並列された方向をテープ幅方向という。
 隣接する2つの光ファイバ1は、連結部11によって連結されている。隣接する2つの光ファイバ1を連結する複数の連結部11は、長手方向に間欠的に配置されている。また、光ファイバテープの複数の連結部11は、長手方向及びテープ幅方向に2次元的に間欠的に配置されている。連結部11は、接着剤となる紫外線硬化樹脂を、並列された光ファイバ1に塗布した後に紫外線を照射して固化することによって、形成されている。なお、連結部11を熱可塑性樹脂で構成することも可能である。
 隣接する2つの光ファイバ1間の連結部11以外の領域は、非連結部12(分離部)になっている。非連結部12では、隣接する2つの光ファイバ1同士は拘束されていない。連結部11および非連結部12は、テープ幅方向に交互に配置されている。これにより、テープ幅方向に広げるように力を加えることで、光ファイバテープを図2Bに示すように網目状に広げることができる。また、光ファイバテープを丸めて束状にすることが可能になり、多数の光ファイバ1を高密度に収容することが可能になる。なお、非連結部12において、隣接する2つの光ファイバ1が接触していても良いし、離間していても良い。
 図3A及び図3Bは、別の間欠連結型の光ファイバテープの説明図である。この間欠連結型の光ファイバテープは、長手方向にわたって連結された光ファイバ1の対(ファイバ対)を複数(ここでは4つ)備えている。隣接するファイバ対同士の間が、間欠的に連結部11で連結されている。この間欠連結型の光ファイバテープにおいても、連結部11および非連結部12は、テープ幅方向に交互に配置されている。これにより、光ファイバテープを網目状に広げたり、ファイバ対を丸めて束状にしたりすることが可能である。
 なお、間欠連結型光ファイバテープの構成は、図に示したものに限られない。例えば、連結部11の配置を変更しても良いし、光ファイバ1の数を変更しても良い。また、光ファイバユニット10の構成を適宜変更してもよい。例えば光ファイバユニット10は、複数の単心光ファイバ1を束ねて構成されていても良い。
 図1に示すように、コア3は、光ファイバユニット10と、押え巻き2(押さえ巻きテープ)とを有する。具体的には、コア3は、光ファイバユニット10を押え巻き2によって包むことによって形成されている。本実施形態では、コア3は、更に内側介在物40Aを有する。内側介在物40Aは、押え巻き2の内側に配置されている。
 押え巻き2は、光ファイバユニット10を包む部材である。光ファイバユニット10を押え巻き2で包むことによって、溶融樹脂で外被60を形成するときに、外被60の内部に光ファイバ1が埋没すること(食い込むこと)を防止できる。押え巻き2は、例えばプラスチック製のテープ部材で構成されている。押え巻き2の材質としては、例えばポリエチレンテレフタラート(PET)を用いることができる。本実施形態では、光ファイバケーブル100の横断面において、押え巻き2が渦巻き状に巻かれており、押え巻き2の両縁が重なることによって重複領域2a(図1参照)が形成されている。
 内側介在物40Aは、押え巻き2の内側に配置される介在物である。内側介在物40Aは、外被60における第1被覆部60A内の空間(収容空間)の体積を確保する役割を有している。すなわち、外被60を押出し成形する際に内側介在物40Aが外被60となる樹脂の圧力に抗することで、収容空間が過剰に狭くなってしまうことを抑止できる。なお、収容空間を適切に形成するため、収容空間の断面積の上限値及び下限値を設けて、収容空間の断面積が上限値と下限値の範囲内となるように内側介在物40Aの量を調整しても良い。
 本実施形態では、内側介在物40Aは、吸水性ヤーンである。このように、内側介在物40Aが吸水性を有することで、コア3の内側(押え巻き2の内側)における走水を抑制することができる。なお、内側介在物40Aとしては、繊度を自由に変更できるヤーンを用いることが望ましい。
 抗張力体20は、外被60の収縮に抗い、光ファイバユニット10(特に光ファイバ1)に印加される歪みや曲げを抑制する部材である。抗張力体20は、線状の部材であり、外被60の内部に埋設されている。抗張力体20の材料としては、ノンメタリック材料やメタリック材料が使用可能である。ノンメタリック材料としては、例えばガラス繊維強化プラスチック(GFRP)、ケブラー(登録商標)により強化したアラミド繊維強化プラスチック(KFRP)、ポリエチレン繊維により強化したポリエチレン繊維強化プラスチックなどの繊維強化プラスチック(FRP)が使用可能である。メタリック材料としては、鋼線などの金属線が使用可能である。抗張力体20の断面形状は、図1では円形状であるが、断面形状を例えば扁平形状、楕円形状、長方形状又は矩形状としても良い。抗張力体20は、長手方向に平行に配置されている。一対の抗張力体20の間には、コア3が配置されている。
 外側介在物40Bは、押え巻き2と外被60(第1被覆部60A)との間に配置される介在物である。つまり、外側介在物40Bは、押え巻き2の外側に配置される介在物である。外側介在物40Bは、押え巻き2と外被60との間の隙間を埋める役割を有している。本実施形態では、外側介在物40Bは、吸水性ヤーンである。このように外側介在物40Bが吸水性を有することで、押え巻き2と外被60との隙間における走水を抑制することができる。
 外被60は、他の構成要素を収容するように被覆する部材である。外被60は、コア3、一対の抗張力体20、外側介在物40B、支持線50などの周囲を一括被覆している。外被60は、第1被覆部60A、第2被覆部60B及び接続部60Cを有する。
 第1被覆部60Aは、コア3、一対の抗張力体20及び外側介在物40Bの周囲を一括被覆する部位である。第1被覆部60Aは、略円筒形状に形成されている。第1被覆部60Aの横断面における外形は円形状となっている。
 第2被覆部60Bは、支持線50を被覆する部位である。接続部60Cは、第1被覆部60Aと第2被覆部60Bとを接続する部位である。第1被覆部60A、第2被覆部60B及び接続部60Cは、樹脂により一括成形されている。
 外被60の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)などのポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)などを用いることができる。外被60は、押出し成形などにより形成することができる。外被60を押出し成形する際の設定温度は、押え巻き2の融点よりも低くすることが望ましい。
 <光ファイバ1と介在物の配置>
 光ファイバユニット10(複数の光ファイバ1)は、コア3(押え巻き2)の内部において、SZ状に撚られて配置されている。これにより、伝送損失を抑制することができるとともに、中間後分岐作業時に光ファイバ1を取り出し易くすることができる。
 外側介在物40Bは、コア3の外部において、コア3に縦添えされている。外被60を押出し成形する際に、チャンバーの中(溶融樹脂の中)において、コア3に対する外側介在物40Bの位置を変更することは難しい。このため、外側介在物40Bとコア3とを縦添え集合することで、より安定して光ファイバケーブル100を製造することができる。この結果、光ファイバケーブル100の長手方向のどの断面においても、外側介在物40Bは、コア3に対してほぼ一定の位置に配置されている。
 図1に示す横断面では、内側介在物40Aは、コア3(押え巻き2)の内部において、外側介在物40Bの側に寄って配置されている。但し、仮に光ファイバケーブル100の長手方向のどの断面においても内側介在物40Aが外側介在物40Bの近傍に配置されてしまうと、内側介在物40A及び外側介在物40Bが光ファイバケーブル100の内部で偏って配置されてしまい、コア3の反対側において防水特性が低下するおそれがある。
 ここで、コア3の全体の防水特性を高めるために、コア3(押え巻き2)の内部において、内側介在物40Aを分散配置することも考えられる。しかしながらその場合には、コア3内に配置すべき内側介在物40Aの量が比較的多くなってしまう。また、内側介在物40Aを分散配置した場合には、内側介在物40Aの収縮(外被60の押出し成形時の熱による収縮)によって光ファイバ1の伝送損失が増加する可能性がある。
 このため、内側介在物40Aは、押さえ巻き2の内側で撚られた状態で配置することが望ましい。但し、内側介在物40Aを一方向に螺旋状に撚った場合、内側介在物40Aが収縮すると、光ファイバユニット10が内側介在物40Aによって巻き締められることによって、光ファイバ1の伝送損失が増加する可能性がある。
 そこで、本実施形態では、内側介在物40Aは、コア3(押え巻き2)の内部において、SZ状に撚られて配置されている。これにより、コア3に対する内側介在物40Aの位置(光ファイバケーブル100の横断面における位置)が長手方向に沿って変化する。したがって、内側介在物40A及び外側介在物40Bが光ファイバケーブル100の内部で偏って配置されることを抑制でき、防水特性の局所的な低下を抑制できる。また、仮に内側介在物40Aが収縮しても、光ファイバユニット10が内側介在物40Aに巻き締められずに済むため、光ファイバ1の伝送損失の増大を抑制できる。
 本実施形態では、SZ状に撚られる内側介在物40Aの撚りピッチは3m以下であることが望ましい。ここで、撚りピッチとは、回転方向の反転位置の長手方向の間隔である(図5B参照)。言い換えると、撚りピッチは、内側介在物40Aの巻き方向がS方向からZ方向に反転する位置から、Z方向からS方向に反転するまでの間の長手方向の間隔である。内側介在物40Aの撚りピッチを3m以下にすることによって、コア3の内部の走水長を3m以下にすることができるため、防水試験の規格(IEC 60794-1-22 F5B)に光ファイバケーブル100を適合させることができる。
 また、図1に示すように、本実施形態では、外側介在物40Bは、押え巻き2の重複領域2aに隣接しないように配置されている。これにより、外側介在物40Bがの重複領域2aから押え巻き2の内側に入り込むことを抑制できる。
 更に、本実施形態では、外側介在物40Bは、押え巻き2の重複領域2aに隣接しないように配置されつつ、コア3から見て重複領域2aの反対側に配置されている。例えば、図1に示す断面では、重複領域2aがコア3に対して図中の下側に配置されているのに対し、外側介在物40Bはコア3に対して図中の上側に配置されている。これにより、外側介在物40Bが重複領域2aから押え巻き2の内側に入り込むことを更に抑制できる。
 <光ファイバケーブル100の製造方法>
 図4は、光ファイバケーブル100の製造装置70の説明図である。製造装置70は、各部材の供給源と、コア集合機71と、押出機72と、冷却機73と、ドラム74とを有する。
 コア集合機71は、光ファイバユニット10及び内側介在物40Aを押え巻き2に包むことによってコア3を形成する装置である。このため、コア集合機71には、光ファイバユニット10(例えば1つまたは複数の間欠連結型の光ファイバテープ)と、内側介在物40Aと、押え巻き2とが供給される。本実施形態では、コア集合機71は、光ファイバユニット10と内側介在物40AをSZ状に撚りながら、光ファイバユニット10と内側介在物40Aとを集合させている(後述)。そして、コア集合機71は、SZ状に撚られた光ファイバユニット10及び内側介在物40Aを押え巻き2に包んでコア3を形成し、コア3を押出機72に送り出す。
 押出機72は、外被60を押出し成形する装置である。押出機72には、コア3と、一対の抗張力体20と、外側介在物40Bと、支持線50とが供給される。押出機72のダイス穴(不図示)に各部材を挿通しながら、ダイス穴から溶融樹脂を押し出すことによって、各部材を外被60で一括被覆した光ファイバケーブル100が製造される。なお、外側介在物40Bがコア3の外側に添えられた状態で(縦添えされて)、外被60は押し出し成形される。
 冷却機73は、光ファイバケーブル100の外被60を冷却する装置である。ドラム74は、光ファイバケーブル100を巻き取る部材である。
 <第1の撚り方法(共撚り)>
 図5Aは、光ファイバユニット10と内側介在物40Aの第1の撚り方法の説明図である。
 コア集合機71は、揺動回転(SZ方向に回転)する回転板6(目板)を有する。回転板6は、円形の板状に形成されている。回転板6は、光ファイバユニット10(光ファイバテープ)を挿通させるための複数のユニット用穴6aと、内側介在物40Aを挿通させるための介在用穴6bとを有する。ここでは、1枚の回転板6にユニット用穴6a及び介在用穴6bが設けられているが、ユニット用穴6a及び介在用穴6bが別々の回転板6に設けられていても良い。ユニット用穴6a及び介在用穴6bが別々の回転板6に設けられる場合、第1の撚り方法では、2枚の回転板6が同期して揺動回転することになる。第1の撚り方法は、光ファイバユニット10と内側介在物40Aを一緒に撚るため、「共撚り」と呼ばれることがある。
 図5Bは、第1の撚り方法でSZ状に撚られた光ファイバユニット10及び内側介在物40Aの説明図(概念図)である。図5Bは、撚り方法を説明するための概念図であり、図の縮尺は正確ではない(例えば、図中の撚りピッチは3m以下であるのに対し、光ファイバ1の直径は約0.25mmである)。
 第1の撚り方法(共撚り)の場合、光ファイバユニット10と内側介在物40Aが一緒にSZ状に撚られた状態になる。このため、光ファイバユニット10と内側介在物40Aの撚りピッチ(回転方向の反転位置の長手方向の間隔)は実質的に同じになり、回転方向の反転位置も実質的に同じになる。言い換えると、光ファイバユニット10と内側介在物40Aの撚りの位相が実質的に一致する。また、撚り角度も実質的に同じになる。このため、内側介在物40Aは、第1の撚り方法(共撚り)の場合、光ファイバ1の間に挟まれるように配置されることになる。
 上記の第1の撚り方法によれば、簡易な方法で、光ファイバ1と内側介在物40AとをSZ状に撚ることができる。一方、第1の撚り方法の場合、光ファイバ1と内側介在物40Aとが撚り合わされるため、内側介在物40Aが光ファイバ1に強く拘束されることになる。この結果、外被60の押出し成形時の熱によって内側介在物40Aが収縮したときに、光ファイバ1が内側介在物40Aから力を受け易く、光ファイバ1の伝送損失が増加する可能性がある。このため、内側介在物40Aと光ファイバ1との拘束は弱い方が望ましい。そこで、以下に説明する撚り方法(第2~第4の撚り方法)では、光ファイバ1と内側介在物40Aとを撚り合わせずに、それぞれをSZ状に撚っている。
 <第2の撚り方法>
 図6Aは、光ファイバユニット10と内側介在物40Aの第2の撚り方法の説明図である。
 コア集合機71は、揺動回転(SZ方向に回転)する2枚の回転板7A、7Bを有する。2枚の回転板7A、7Bには、光ファイバユニット10(光ファイバテープ)を撚るためのユニット用回転板7Aと、内側介在物40Aを撚るための介在用回転板7Bと、が含まれる。ユニット用回転板7Aおよび介在用回転板7Bは、円形の板状に形成さている。
 ユニット用回転板7Aには、光ファイバユニット10を挿通させるための複数のユニット用穴7aが形成されている。介在用回転板7Bには、内側介在物40Aを挿通させるための介在用穴7bと、ユニット用回転板7Aが撚り合わせた光ファイバユニット10を通過させるための通過穴7cと、を有する。通過穴7cは、介在用回転板7Bの中央部に形成されている。介在用穴7bは、通過穴7cの外側に位置している。
 第2の撚り方法では、2枚の回転板7A、7Bの揺動周期や揺動角度を別々に設定可能である。
 第2の撚り方法では、ユニット用回転板7Aが揺動回転することによって、光ファイバユニット10がSZ状に撚られることになる。それぞれの光ファイバ1の断面は円形状であるため、複数の光ファイバ1を束ねて構成された光ファイバユニット10の外周には光ファイバ1の外形による凹凸が形成されることになる。言い換えると、撚り合わされた光ファイバユニット10(光ファイバ1の束)の外周には、光ファイバ1に沿って、溝(光ファイバユニット10の外周で隣接する光ファイバ1の隙間によって形成された凹状のすじ)が形成されることになる。本実施形態では、複数の光ファイバ1がSZ状に撚られているため、光ファイバユニット10の外周に形成される溝もSZ状に形成されることになる。つまり、光ファイバ1の束の外周には、隣り合う光ファイバ1同士の間の溝がSZ状に形成される。
 また、第2の撚り方法では、ユニット用回転板7Aの下流側において、介在用回転板7Bが揺動回転することによって、内側介在物40Aが、SZ状に撚られた光ファイバユニット10の外周でSZ状に撚られて配置される。第2の撚り方法では、内側介在物40AのSZ状の撚りは、光ファイバユニット10のSZ状の撚りに対して、特に制約無く、任意に設定可能である。
 図6Bは、第2の撚り方法でSZ状に撚られた光ファイバユニット10及び内側介在物40Aの説明図(概念図)である。
 第2の撚り方法の場合、光ファイバユニット10と内側介在物40Aの撚りピッチや回転方向の反転位置を異ならせることが可能である。また、光ファイバユニット10と内側介在物40Aの撚り角度も異ならせることが可能である。つまり、第2の撚り方法によれば、内側介在物40Aの撚りピッチや撚り角度などを光ファイバユニット10の撚りに対して独立して任意に設定できる。
 第2の撚り方法の場合、内側介在物40Aは、撚り合わされた光ファイバユニット10(光ファイバ1の束)の外周に形成されたSZ状の溝を横切るように配置される。なお、光ファイバユニット10と内側介在物40Aの撚りピッチ、回転方向の反転位置、及び撚り角度のうちの少なくとも1つが異なっていれば、SZ状の上記溝を横切るように内側介在物40Aを配置することができる。上記溝を横切るように内側介在物40Aを配置することによって、図5Bのように内側介在物40Aが特定の光ファイバ1の間に挟まれた場合と比べて、光ファイバ1同士の隙間での走水を抑制することができる。光ファイバユニット10のSZ状の撚りに対する内側介在物40Aの撚りの位相が180度ずれていれば、より多くの溝を横切るように内側介在物40Aを配置できるため、光ファイバ1の隙間での走水を更に抑制することができる。
 ところで、上記の第1、第2の撚り方法の場合、内側介在物40AをSZ状に撚るために、介在用穴6b、7bを有する回転板6、7Bを揺動させるので、コア集合機71が大型化してしまう。そこで、以下に説明する撚り方法(第3、第4の撚り方法)では、回転板によって内側介在物40Aを大きく移動させずに、内側介在物40AをSZ状に撚っている。
 <第3の撚り方法>
 図7Aは、光ファイバユニット10と内側介在物40Aの第3の撚り方法の説明図である。
 コア集合機71は、光ファイバユニット10(光ファイバテープ)を撚るために揺動回転(SZ方向に回転)するユニット用回転板7Aを有する。第3の撚り方法では、第1の撚り方法及び第2の撚り方法とは異なり、内側介在物40Aを撚るための回転板が設けられていないため、コア集合機71の構成を簡易にできる。
 第3の撚り方法では、ユニット用回転板7Aが揺動回転することによって、光ファイバユニット10がSZ状に撚られることになる。それぞれの光ファイバ1の断面は円形状であるため、複数の光ファイバ1を束ねて構成された光ファイバユニット10の外周には光ファイバ1の外形による凹凸が形成されることになる。言い換えると、撚り合わされた光ファイバユニット10(光ファイバ1の束)の外周には、光ファイバ1に沿って、先述の溝が形成されることになる。また、本実施形態では、複数の光ファイバ1がSZ状に撚られているため、上記溝もSZ状に形成されることになる。
 また、第3の撚り方法では、ユニット用回転板7Aの下流側において、内側介在物40Aを、SZ状に撚られた光ファイバユニット10に縦添えする。これにより、長手方向に沿って光ファイバユニット10の外周に内側介在物40Aが添い合わせられる。内側介在物40Aが光ファイバユニット10に所定の圧力で添い合わせられると、内側介在物40Aは、上記した溝の内側に誘導される。この結果、内側介在物40AがSZ状の溝に誘導されて周方向に変位し、内側介在物40Aが光ファイバユニット10の外周上でSZ状に撚られた状態になる(図7B参照)。
 溝の内側に誘導された内側介在物40Aが、光ファイバユニット10の外周に添い合わせられている間に、その溝から外れなければ、内側介在物40Aの撚り角度は、光ファイバユニット10の撚り角度と同じになる。但し、通常、内側介在物40Aは光ファイバ1よりも太く、内側介在物40Aは前記溝の幅や深さよりも太い。このため、溝に誘導された内側介在物40Aは、光ファイバユニット10の外周に添い合わせられている間に、一旦誘導された溝から外れる場合がある。このような場合には、内側介在物40Aの撚り角度は、光ファイバユニット10の撚り角度よりも小さくなる。つまり、第3の撚り方法では、内側介在物40Aの撚り角度は、光ファイバユニット10の撚り角度以下になる。また、内側介在物40Aが一旦誘導された溝から外れた場合には、内側介在物40Aの撚りピッチや回転方向の反転位置が、光ファイバユニット10の撚りピッチや回転方向の反転位置とずれることもある。
 図7Bは、第3の撚り方法でSZ状に撚られた光ファイバユニット10及び内側介在物40Aの説明図(概念図)である。
 第3の撚り方法の場合、内側介在物40Aの撚り角度は、光ファイバユニット10の撚り角度よりも小さくなる。また、内側介在物40Aのバックテンションを調整することによって、光ファイバユニット10のSZ状の撚りに対する内側介在物40Aの撚りの位相を変更させることも可能である。第3の撚り方法においても、光ファイバユニット10と内側介在物40Aの撚りピッチ、回転方向の反転位置、及び撚り角度のうちの少なくとも1つを異ならせることができる。したがって、光ファイバユニット10(光ファイバ1の束)の外周に形成されたSZ状の溝を横切るように内側介在物40Aを配置することができる。
 <第4の撚り方法>
 図8は、光ファイバユニット10と内側介在物40Aの第4の撚り方法の説明図(概念図)である。
 第4の撚り方法では、図8の(a)に示すように、内側介在物40Aを、SZ状に撚られた光ファイバユニット10に縦添えさせる。第4の撚り方法では、第3の撚り方法とほぼ同様に、SZ状に撚られた光ファイバユニット10の外周で長手方向に沿って内側介在物40Aを添い合わせる。このため、コア集合機71は内側介在物40Aを撚るための回転板を備えていなくても良い。
 次に、第4の撚り方法では、SZ状に撚られた光ファイバユニット10に内側介在物40Aを縦添えした後、光ファイバユニット10の撚り角度が小さくなるように撚りを戻す(撚り角度を緩める)。このとき、図8の(b)に示すように、光ファイバユニット10の外周で光ファイバユニット10に添い合わせられていた内側介在物40Aが、光ファイバユニット10の撚りの戻りに引きずられる。この結果、光ファイバユニット10のSZ撚り方向とは逆方向に、内側介在物40AがSZ状に撚られることになる。
 第4の撚り方法の場合、光ファイバユニット10と内側介在物40Aの撚りピッチは実質的に同じであり、回転方向の反転位置も実質的に同じであるが、反転位置における回転方向が逆転している。言い換えると、光ファイバユニット10のSZ状の撚りに対する内側介在物40Aの撚りの位相は、180度ずれている。このため、第4の撚り方法の場合、より多くの前記溝を横切るように内側介在物40Aを配置できるため、光ファイバ1の隙間での走水を更に抑制することができる。
 以上説明したように、本実施形態の光ファイバケーブル100は、複数の光ファイバ1と内側介在物40Aとを押え巻き2で包んで形成されたコア3と、コア3の外側に配置された外側介在物40Bと、コア3および外側介在物40Bを被覆する外被60と、を備える。このように、押さえ巻き2の内側および外側の両方に介在物を配置することで、コア3の内外における走水を防止することができる。また、外側介在物40Bは、押さえ巻き2の外側に位置しているため、光ファイバ1の撚りの影響などを受けにくく、位置が安定しやすい。したがって、安定した防水性能を有する光ファイバケーブル100を提供することができる。
 また、外側介在物40Bおよび内側介在物40Aは吸水性を有している。これにより、コア3の内外における走水をより確実に防止することができる。
 また、長手方向に沿ってコア3内における位置が変化するように内側介在物40Aが配置されている。これにより、コア3内における内側介在物40Aの位置が変化しない場合と比較して、コア3内における防水性能の偏りを抑えることができる。
 また、外側介在物40Bがコア3に縦添えされている。これにより、外被60を押出し成形しやすくなり、より安定して光ファイバケーブル100を製造することが可能となる。
 また、内側介在物40Aのコア3内における位置が長手方向で変化し、かつ、外側介在物40Bがコア3に縦添えされている。この構成により、内側介在物40Aおよび外側介在物40Bの相対的な位置が、光ファイバケーブル100の長手方向に沿って変化する。したがって、内側介在物40Aおよび外側介在物40Bが光ファイバケーブル100内に偏って配置されることが抑えられ、防水性能が局所的に低下することが抑えられる。
 また、複数の光ファイバ1をSZ状に撚り合わると、複数の光ファイバ1の束の外周には、隣り合う光ファイバ1同士の間の溝がSZ状に形成される。この溝を横切るように、第2~第4の撚り方法によって内側介在物40Aを配置してもよい。この構成により、溝を伝うようにして水が移動する走水現象を抑制し、防水性能をより確実に高めることができる。
 なおこの効果は、複数の光ファイバ1を一方向に(螺旋状に)撚り合わせた場合にも得ることができる。すなわち、撚り合わされた複数の光ファイバ1の束の外周に形成された、隣り合う光ファイバ1同士の溝を横切るように内側介在物40Aを配置することで、光ファイバ1の撚り状態に関わらず防水性能を高めることができる。
 また、押え巻き2は、その両縁が重なる重複領域2aを有するように巻かれており、外側介在物40Bは、重複領域2aに隣接しない位置に配置されている。この構成により、外側介在物40Bが重複領域2aから押さえ巻き2の内側へと入り込んでしまうことが抑制できる。
 また、本実施形態の光ファイバケーブルの製造方法は、複数の光ファイバ1および内側介在物40Aを押え巻きで包んでコア3を形成する工程と、コア3の外側に外側介在物40Bを添えた状態で、コア3および外側介在物40Bを被覆する外被60を形成する工程と、を有する。この製造方法により、内側介在物40Aおよび外側介在物40Bを備えた、安定した防水性能を有する光ファイバケーブル100を製造することができる。
 ===第2実施形態===
 図9は、第2実施形態の光ファイバケーブル100の横断面図である。第1実施形態と同様の部材については、同じ符号を付けて、説明を省略することがある。
 本実施形態では、横断面視において、コア3を有する本体部は長方形状(矩形状)に形成され、支持線50を有する支持線部は円形状に形成されている。
 以下の説明では、図9に示すように各方向を定義する。長手方向(X方向)は、光ファイバケーブル100の延在する方向である。長辺方向(幅方向またはY方向)は、一対の抗張力体20の並ぶ方向である。短辺方向(厚さ方向またはZ方向)は、一対のセパレータ30の並ぶ方向であり、長手方向及び長辺方向の双方と直交する。なお、長辺方向は、光ファイバケーブル100(本体部)の横断面における長辺に沿った方向である。短辺方向は、光ファイバケーブル100(本体部)の横断面における短辺に沿った方向である。
 光ファイバケーブル100は、第1実施形態と同様に、光ファイバユニット10を有するコア3と、一対の抗張力体20と、外被60とを備えている。さらに第2実施形態の光ファイバケーブル100は、一対のセパレータ30を備えている。また、第2実施形態においても、光ファイバケーブル100は、内側介在物40Aと、外側介在物40Bとを有する。
 前述の第1実施形態では、光ファイバユニット10は、複数枚の間欠連結型の光ファイバテープ(間欠固定テープ心線)で構成されていた。これに対し、第2実施形態の光ファイバユニット10は、1枚の間欠連結型の光ファイバテープで構成されている。なお、光ファイバユニット10の構成は適宜変更可能である。例えば光ファイバユニット10は、複数の光ファイバテープで構成されても良く、複数の単心光ファイバ1を束ねて構成されていても良い。
 第2実施形態では、通常であれば24心となる光ファイバケーブルの代わりに、12心の光ファイバケーブル100を構成している。このように、コア3に含まれる光ファイバ1の心数が少ない場合に、内側介在物40Aは、第1被覆部60A内の収容空間の体積を確保する役割を有している。第2実施形態においても、内側介在物40Aは、吸水性ヤーンである。これにより、コア3の内側(押え巻き2の内側)における走水を抑制することができる。
 セパレータ30は、外被60の分離作業を容易にするための部材である。セパレータ30は、テープ状(扁平状・帯状)の部材であり、長手方向に沿うようにコア3(押え巻き2)と外被60との間に配置されている。セパレータ30の厚さは、例えば0.2mm程度である。セパレータ30は、外被60に対して融着も接着もされておらず、外被60から容易に剥離する材料で形成されている。テープ状のセパレータ30は、テープ面が幅方向に平行になるように配置されている。一対のセパレータ30は、厚さ方向に並んで配置されている。一対のセパレータ30の間には、コア3が配置されている。また、本実施形態では、一対のセパレータ30の間には、外側介在物40Bが配置されている。なお、第1実施形態のように、セパレータ30を設けない構成を採用してもよい。
 第2実施形態の外被60は、コア3、一対の抗張力体20、一対のセパレータ30、外側介在物40B、支持線50などの周囲を一括被覆している。第1被覆部60Aは、コア3、一対の抗張力体20、一対のセパレータ30及び外側介在物40Bの周囲を一括被覆している。第1被覆部60Aは、横断面において、外形が略矩形状に形成されている。第1被覆部60Aの外面には複数のノッチ60Nが形成されている。ここでは、ノッチ60Nは、上下面にそれぞれ一対設けられているが、上下面に1つずつ形成されていても良い。また、第1実施形態のようにノッチ60Nが無くても良い。外被60を押出し成形する際の設定温度は、セパレータ30や押え巻き2の融点よりも低くすることが望ましい。
 第2実施形態においても、第1実施形態と同様に、外側介在物40Bは、コア3の外側に縦添えされており、内側介在物40Aは、コア3の内側でSZ状に撚られて配置されている。これにより、第1実施形態と同様に、コア3に対する内側介在物40Aの位置(光ファイバケーブル100の横断面における位置)が長手方向に沿って変化する。したがって、内側介在物40A及び外側介在物40Bが光ファイバケーブル100の内部で偏って配置されることを抑制でき、防水特性の局所的な低下を抑制できる。また、仮に内側介在物40Aが収縮しても、光ファイバユニット10が内側介在物40Aに巻き締められずに済むため、光ファイバ1の伝送損失の増大を抑制できる。
 また、第2実施形態においても、第1実施形態と同様に、外側介在物40Bは、押え巻き2の重複領域2aに隣接しないように配置されている。これにより、外側介在物40Bが重複領域2aから押え巻き2の内側に入り込むことを抑制できる。
 更に、第2実施形態では、外側介在物40Bは、押え巻き2の重複領域2aに隣接しないように配置されつつ、重複領域2aの外側になっている押え巻き2の縁の方に寄るように配置されている。例えば、図9に示す断面では、重複領域2aの外側(図中の下側)になっている押え巻き2の縁の方に寄るように、外側介在物40Bが重複領域2aから見て図中の左側(支持線50の側)に寄って配置されている。これにより、外側介在物40Bが重複領域2aから押え巻き2の内側に入り込むことを更に抑制できる。
 <光ファイバケーブル100の製造方法>
 図10は、第2実施形態の光ファイバケーブル100の製造装置70の説明図である。第2実施形態においても、製造装置70は、各部材の供給源と、コア集合機71と、押出機72と、冷却機73と、ドラム74とを有する。コア集合機71は、内側介在物40Aをコア3の内側でSZ状に撚って配置する。なお、コア集合機71が内側介在物40AをSZ状に撚る方法は、前述の第1~第4の撚り方法でも良いし、他の方法でも良い。押出機72には、第1実施形態と同様にコア3と、一対の抗張力体20と、外側介在物40Bと、支持線50とが供給されるとともに、第2実施形態では一対のセパレータ30も供給される。押出機72のダイス穴(不図示)に各部材を挿通しながら、ダイス穴から溶融樹脂を押し出すことによって、図9に示すように、各部材を外被60で一括被覆した光ファイバケーブル100が製造される。
 ===第3実施形態===
 以下、本実施形態に係る光ファイバケーブルの構成を、図11~図13を参照しながら説明する。
 図11に示すように、光ファイバケーブル100は、光ファイバユニット10を有するコア3と、外側介在物40Bと、一対の抗張力体20と、一対のセパレータ30と、支持線50と、外被60と、を備えている。
 ここで、本実施形態ではXYZ直交座標系を設定して各構成の位置関係を説明する。X方向は、光ファイバケーブル100の延在する方向である。Y方向は、一対の抗張力体20が互いに向かい合う方向である。Z方向は、X方向およびY方向の双方向に直交する方向である。以下、X方向を長手方向といい、Y方向を幅といい、Z方向を厚さ方向という。また、長手方向に直交する断面を横断面という。
 図12に示すように、本実施形態の光ファイバユニット10はいわゆる間欠固定テープ心線であり、複数の光ファイバ1同士を連結部11で間欠的に連結して形成されている。より詳しくは、複数の光ファイバ1が並列されるとともに、隣り合う光ファイバ1同士が、連結部11で連結されている。連結部11は、長手方向に一定間隔をおいて配置されている。隣り合う光ファイバ1同士を連結する連結部11の位置に対して、隣り合う光ファイバ1同士の隣で隣り合う光ファイバ1同士を連結する連結部11は、長手方向にずれた位置に配置されている。このように、連結部11は、長手方向及び長手方向に直交する幅方向の双方向に対して、千鳥状に配置されている。
 連結部11は、例えばUV硬化型樹脂等により形成されており、互いに隣り合う光ファイバ1に接着されて、これらの光ファイバ1同士を連結している。連結部11によって互いに連結された光ファイバ1は、例えば、手指で光ファイバユニット10の幅方向に互いに離間させるように引っ張ることで、手指の力で連結部11を光ファイバ1から剥離させて、連結状態を解除することができる。
 なお、光ファイバユニット10の構成は間欠固定テープ心線に限らず、例えば複数の光ファイバ1が結束材などで束ねられた構成であってもよい。
 光ファイバ1としては、光ファイバ素線または光ファイバ心線などを用いることができる。光ファイバ1の裸線を被覆するプライマリ層またはセカンダリ層は、UV硬化型樹脂により形成されることが好ましい。なお、光ファイバ1の識別のため、セカンダリ層自体が着色されていたり、セカンダリ層の外周にさらに着色層が設けられたりしてもよい。あるいは、光ファイバ1の外周に、識別用のマーキングが施されていてもよい。
 図11に示すように、コア3は、光ファイバユニット10および内側介在物40Aが、押さえ巻き2によって包まれることで形成されている。内側介在物40Aは、押さえ巻き2の内側に配置されている。
 押さえ巻き2としては、プラスチック製のテープ部材などを用いることができる。押さえ巻き2の材質としては、例えばポリエチレンテレフタラート(PET)を用いることができる。
 内側介在物40Aとしては、繊度を自由に変更できるヤーンを用いることが望ましい。内側介在物40Aを形成する材質としては、例えばポリプロピレン(PP)やポリエステル(PEs)などを用いることができる。本実施形態では、内側介在物40Aとして、PP製ヤーンを用いている。なお、内側介在物40Aの材質はPP製ヤーンに限られず、その一部または全部を吸水ヤーンなどに置き換えても良い。
 本実施形態では、光ファイバユニット10および内側介在物40Aが、SZ状に撚り合わされた状態で、押さえ巻き2によって包まれている。これにより、光ファイバ1に張力や側圧が作用するのを抑えつつ、中間後分岐作業などを容易にすることができる。
 なお、光ファイバユニット10および内側介在物40Aは、螺旋状に撚り合されていてもよい。
 外側介在物40Bは、押さえ巻き2と外被60との間の隙間、すなわちコア3の外側に配置されている。外側介在物40Bは、内側介在物40Aと同様に、PP製ヤーンなどを用いて形成することができる。このように、コア3の内側および外側に、内側介在物40Aおよび外側介在物40Bをそれぞれ配置することで、コア3の内側および外側の両方における走水を防止することができる。なお、内側介在物40Aは、コア3に含まれる光ファイバ1の心数が少ない場合に、後述する収容空間の体積を確保する役割も果たしている。すなわち、外被60を押出し成形する際に内側介在物40Aが外被60となる樹脂の圧力に抗することで、収容空間が過剰に狭くなってしまうことを抑止できる。なお、収容空間を適切に形成するため、収容空間の断面積の上下限値を設けて、収容空間の断面積が上下限値の範囲内となるように内側介在物40Aの量を調整してもよい。
 一対の抗張力体20は、コア3および外側介在物40Bを幅方向に挟むように配置されている。抗張力体20としては、鋼線、金属繊維、アラミド繊維、ガラス繊維、炭素繊維、FRP(繊維強化プラスチック)などを用いることができる。抗張力体20は、光ファイバ1に対して長手方向に作用する張力に抗して、光ファイバ1にこの張力が作用するのを抑える役割を果たす。
 一対のセパレータ30は、コア3および外側介在物40Bを厚さ方向に挟むように配置されている。各セパレータ30は、横断面視において幅方向に延びる板状に形成されており、互いに略平行に配置されている。一対のセパレータ30同士の間には、外被60が、幅方向の両側から部分的に入り込んでいる。一対のセパレータ30と、この一対のセパレータ間に入り込んだ外被60と、によって、横断面視において略矩形状の収容空間が形成されている。この略矩形の収容空間内に、コア3および外側介在物40Bが配置されている。
 セパレータ30の材質としては、ポリプロピレン、ポリアミド、ポリイミド等のシート材を用いることができる。セパレータ30は、外被60を押出し成形する際にこの外被60と融着してしまうのを防止するため、外被60の融点より高い融点を有する材質により形成されることが好ましい。
 支持線50は、鋼線などにより形成されている。支持線50の外径は、抗張力体20の外径よりも大きい。支持線50および一対の抗張力体20は、幅方向に並べて配置されている。支持線50は、光ファイバケーブル100の架空のための吊り線として用いられる。なお、光ファイバケーブル100は、支持線50を備えていなくてもよい。
 外被60は、第1被覆部60A、第2被覆部60B、および第1被覆部60Aと第2被覆部60Bとを互いに接続する接続部60Cを有している。
 第1被覆部60Aは、コア3、外側介在物40B、一対のセパレータ30、および一対の抗張力体20を一体に被覆している。第2被覆部60Bは、支持線50を被覆している。
 第1被覆部60Aは、横断面視で略矩形状に形成されている。第1被覆部60Aのうち、セパレータ30を被覆する部分には、ノッチ60Nが形成されている。ノッチ60Nは、横断面視でV字状に形成されており、セパレータ30に向かうに従って漸次幅が小さくなっている。ノッチ60Nは、第1被覆部60Aの上端面および下端面にそれぞれ一対形成されている。
 光ファイバケーブル100からコア3を取り出す場合は、各ノッチ60Nに切り込み刃などを当接させて、セパレータ30を覆っている第1被覆部60Aを切り裂く。これにより、第1被覆部60Aを分割して、容易にコア3を取り出すことができる。
 外被60の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)などのポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)などを用いることができる。外被60は、押出し成形などにより形成することができる。この場合であっても、光ファイバユニット10が押さえ巻き2で包まれているため、高温となって流動する外被60が光ファイバ1同士の間の隙間に入り込むことが抑えられる。なお、外被60を押出し成形する際の設定温度は、セパレータ30および押さえ巻き2と外被60とが融着しないように、セパレータ30若しくは押さえ巻き2の融点よりも低くすることが望ましい。
 以下、具体的な実施例を用いて、上記実施形態を説明する。なお、以下の実施例は本発明を限定するものではない。
(実施例1)
 本実施例の光ファイバケーブル100は、光ファイバユニット10として4心の間欠固定テープ心線を用い、この間欠固定テープ心線を6つ、押さえ巻き2で包んだ構成とした。内側介在物40Aとして、1670dtexのPEs製の吸水ヤーンを1本用いた。外側介在物40Bとして、1670dtexのPEs製の吸水ヤーンを1本用いた。押さえ巻き2として、厚さが0.25mmのPET製のテープ材を用いた。第1被覆部60Aの、厚さ方向の厚みは約3.5mmであり、幅方向の幅は約5.5mmである。一対のセパレータ30と、これらセパレータ30間に入り込んだ外被60と、によって形成された収容空間内における、光ファイバ1の実装密度は、8.5~10.9本/mmの範囲内となった。なお、光ファイバの実装密度は、以下の数式(1)によって定義される数値である。数式(1)において、dは光ファイバの実装密度、Nは光ファイバの心数、Sは収容空間の断面積、Pは収容空間内に収容された各部材(内側介在物40A、外側介在物40B、押さえ巻き2)の断面積の和である。
d=N÷(S-P) …(1)
 ここで、光ファイバ1の実装密度dを所定の範囲とすることで、以下の利点が得られる。すなわち、光ファイバ1の実装密度dが小さすぎると、収容空間内で光ファイバ1が移動してしまう可能性が大きくなる。また、防水試験時の走水長が長くなり、防水試験に不合格となってしまう可能性が大きくなる。一方で、光ファイバ1の実装密度dが大きすぎると、伝送損失が大きくなってしまう可能性がある。
 なお、上記した実装密度dの数値範囲は、例えば内側介在物40Aおよび外側介在物40Bの量を固定した場合に、光ファイバケーブル100を所望の性能とするための指標として好適である。ただし、上記した実装密度dは、本発明を限定するものではなく、光ファイバケーブル100の種類、形状、用途などに応じて、実装密度d以外の指標によって光ファイバケーブル100を規定してもよい。
 上記条件のもと、光ファイバユニット10および内側介在物40AをSZ撚りしつつこれらを押さえ巻き2で包んでコア3を形成した。また、コア3を形成しながら、外側介在物40Bなどをコア3に縦添えして、各部材の周囲に第1被覆部60Aを押出し成形した。ここで、外側介在物40Bを第1被覆部60Aで被覆する際の、外側介在物40Bの張力を変更して複数の光ファイバケーブル100を作成したところ、余長率は99.85%~100.2%の範囲となった。余長率とは、長手方向における、外被60の長さに対する無張力状態の外側介在物40Bの長さの比率をいう。無張力状態の外側介在物40Bの長さは、外被60から外側介在物40Bを取り出して測定した。
 上記のように、余長率の異なる複数の光ファイバケーブル100について、伝送損失および防水性能を確認した結果を、下記表1に示す。本実施例では、波長1550nmでの伝送損失をOTDR(Optical Time Domain Reflectometer)によって測定した。なお、下記表1には、各光ファイバケーブル100に含まれる24本の光ファイバ1の伝送損失の最大値を記載している。
 また、防水試験は、IEC 60794-1-22 F5Bに従い、水道水を用いて、水頭長1m、24時間の条件で実行した。この結果、走水長が3m以下の場合を合格、走水長が3mを超えた場合を不合格とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、余長率が99.95%以上の範囲内(実施例1)では、伝送損失が0.25dB/km以下かつ走水長が3m以下となり、良好な結果が得られた。
 これに対して、余長率が99.85%の場合(比較例1)では、伝送損失が0.28dB/kmであり、実施例1と比較して伝送損失が大きく、不合格となった。これは、比較例1は実施例1よりも外側介在物40Bに作用させる張力が大きいことに起因していると考えられる。
 すなわち、外側介在物40Bの張力が大きいと、この外側介在物40Bがコア3に強く押し付けられることで光ファイバ1に側圧が作用し、伝送損失が増大してしまうと考えられる。また、外側介在物40Bの張力が大きいと、第1被覆部60Aを押出し成形する際に、第1被覆部60Aとなる樹脂材料の流れが変化し、第1被覆部60A内におけるコア3の収容空間が小さくなってしまうことも考えられる。このようにコア3の収容空間が小さくなると、光ファイバ1に側圧が作用して、伝送損失が増大すると考えられる。
 以上のことから、外側介在物40Bの張力を適正な範囲内として伝送損失の増大を抑えるために、外側介在物40Bの余長率を99.95%以上とすることが好ましい。
 なお、余長率が100.3%以上の場合には、第1被覆部60Aで外側介在物40Bを被覆する際に、外側介在物40Bに作用させる張力が低すぎるために、安定して光ファイバケーブル100を製造することが難しかった。
 従って、光ファイバケーブル100を安定して製造する観点から、余長率は100.2%以下とすることがより好ましい。
(比較例2)
 次に、図13に示すような比較例2の光ファイバケーブル100Aを製造して性能を確認した。比較例2の光ファイバケーブル100Aは、内側介在物40Aを有しておらず、実施例1における内側介在物40Aと外側介在物40Bとを合わせた量の介在物を、外側介在物40Cとして配置した。つまり、比較例2の光ファイバケーブル100Aは、実施例1の内側介在物40Aをコア3の外側に配置した点を除き、実施例1の光ファイバケーブル100と同様の構成である。
 表1に示すように、比較例2の光ファイバケーブル100Aでは、走水長が3mを超え、防水試験の結果が不合格となった。これは、押さえ巻き2の内側に介在物が存在していないために、コア3内での走水を抑制することができなかったためである。このことから、実施例1における内側介在物40Aが、光ファイバケーブル100の防水性能を向上させていることが判る。
 また、図13に示すように、比較例2の光ファイバケーブル100Aでは、外側介在物40Cによって、押さえ巻き2がコア3の内側に向けて大きく窪んでいる。このようにコア3が大きく変形させられると、コア3の内側で光ファイバユニット10を撚り合わせる際に、光ファイバユニット10が押さえ巻き2の窪んだ部分に引っかかってしまい、適切に撚り合わされない場合がある。特に光ファイバユニット10と内側介在物40AとをSZ撚りする場合には、この撚り合わせがコア3の変形によって阻害されやすい。
 これに対して、図11に示す実施例1の光ファイバケーブル100では、介在物40A、40Bがコア3の内側と外側の両方に分けて配置されていることで、コア3の変形が低減されている。従って、光ファイバユニット10が適切に撚り合わされないなどの、不都合の発生を抑えることができる。
 以上説明したように、本実施形態の光ファイバケーブル100によれば、コア3の内側および外側の両方に介在物40A、40Bが配置されていることで、コア3の内側および外側の両方における走水を防止し、防水性能を確保することができる。
 さらに、例えばコア3の外側にのみ介在物を配置する場合と比較して、介在物をコア3の内側と外側の両方に分けて配置することで、外側の介在物がコア3を押し付けることによるコア3の変形を低減することができる。
 また、外側介在物40Bの余長率を99.95%以上とすることで、光ファイバ1の伝送損失を小さく抑えることができる。
 さらに、外側介在物40Bの余長率を100.2%以下とすることで、光ファイバケーブル100をより安定して製造することが可能となる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施例1では、光ファイバユニット10として4心の間欠固定テープ心線を用い、コア3に含まれる合計心数を24心としたが、光ファイバユニット10の心数およびコア3に含まれる合計心数は適宜変更可能である。例えば実施例1の条件において、コア3の合計心数を変更すると、前記実装密度は、8心の場合に6.5~13.5本/mmとなり、12心の場合は6.8~10.6本/mmとなった。また、第1被覆部60Aの寸法を実施例1よりも大きくして、48心のコア3を用いたところ、前記実装密度は、7.5~9.0本/mmとなった。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1…光ファイバ 2…押さえ巻き 2a…重複領域 3…コア 10…光ファイバユニット(間欠固定テープ心線) 20…抗張力体 30…セパレータ 40A…内側介在物 40B…外側介在物 50…支持線 60…外被 100…光ファイバケーブル

Claims (9)

  1.  複数の光ファイバと内側介在物とを押え巻きで包んで形成されたコアと、
     前記コアの外側に配置された外側介在物と、
     前記コアおよび外側介在物を被覆する外被と、を備える光ファイバケーブル。
  2.  前記外側介在物および前記内側介在物は吸水性を有する、請求項1に記載の光ファイバケーブル。
  3.  前記内側介在物は、前記光ファイバケーブルの長手方向に沿って、前記コア内における位置が変化するように配置されている、請求項1または2に記載の光ファイバケーブル。
  4.  前記外側介在物は前記コアに縦添えされている、請求項1から3のいずれか1項に記載の光ファイバケーブル。
  5.  前記複数の光ファイバは撚り合わされ、
     前記複数の光ファイバの束の外周には、隣り合う光ファイバ同士の間の溝が形成され、
     前記内側介在物は、前記溝を横切るように配置されている、請求項1から4のいずれか1項に記載の光ファイバケーブル。
  6.  前記押え巻きは、その両縁が重なる重複領域を有するように巻かれており、
     前記外側介在物は、前記重複領域に隣接しない位置に配置されている、請求項1から5のいずれか1項に記載の光ファイバケーブル。
  7.  前記外被が横断面視で矩形状に形成されている、請求項1から6のいずれか1項に記載の光ファイバケーブル。
  8.  前記コアを挟んで配置された一対のセパレータをさらに備え、
     各セパレータは、前記コアと前記外被との間に位置している、請求項7に記載の光ファイバケーブル。
  9.  複数の光ファイバおよび内側介在物を押え巻きで包んでコアを形成する工程と、
     前記コアの外側に外側介在物を添えた状態で、前記コアおよび前記外側介在物を被覆する外被を形成する工程と、を有する、光ファイバケーブルの製造方法。
PCT/JP2018/017936 2017-06-02 2018-05-09 光ファイバケーブル及び光ファイバケーブルの製造方法 WO2018221142A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3061885A CA3061885C (en) 2017-06-02 2018-05-09 Optical fiber cable and method of manufacturing optical fiber cable
US16/610,018 US11048054B2 (en) 2017-06-02 2018-05-09 Optical fiber cable and method of manufacturing optical fiber cable
KR1020197033675A KR102328960B1 (ko) 2017-06-02 2018-05-09 광섬유 케이블 및 광섬유 케이블의 제조 방법
EP21215417.3A EP3988979B1 (en) 2017-06-02 2018-05-09 Optical fiber cable
EP21215426.4A EP3988981B1 (en) 2017-06-02 2018-05-09 Optical fiber cable
EP21215422.3A EP3988980B1 (en) 2017-06-02 2018-05-09 Optical fiber cable
AU2018277435A AU2018277435B2 (en) 2017-06-02 2018-05-09 Optical fiber cable and method of manufacturing optical fiber cable
EP18809868.5A EP3633432B1 (en) 2017-06-02 2018-05-09 Optical fiber cable and method for manufacturing optical fiber cable
CN201880034975.2A CN110662993B (zh) 2017-06-02 2018-05-09 光纤线缆和制造光纤线缆的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-109872 2017-06-02
JP2017109872A JP6302120B1 (ja) 2017-06-02 2017-06-02 光ファイバケーブル
JP2018039696A JP7025958B2 (ja) 2018-03-06 2018-03-06 光ファイバケーブル及び光ファイバケーブルの製造方法
JP2018-039696 2018-03-06

Publications (1)

Publication Number Publication Date
WO2018221142A1 true WO2018221142A1 (ja) 2018-12-06

Family

ID=64455362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017936 WO2018221142A1 (ja) 2017-06-02 2018-05-09 光ファイバケーブル及び光ファイバケーブルの製造方法

Country Status (8)

Country Link
US (1) US11048054B2 (ja)
EP (4) EP3633432B1 (ja)
KR (1) KR102328960B1 (ja)
CN (1) CN110662993B (ja)
AU (1) AU2018277435B2 (ja)
CA (2) CA3223249A1 (ja)
HU (3) HUE058111T2 (ja)
WO (1) WO2018221142A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204685A (ja) * 2019-06-17 2020-12-24 古河電気工業株式会社 光ファイバケーブル
WO2021157334A1 (ja) * 2020-02-07 2021-08-12 株式会社フジクラ 光ファイバケーブルおよび光ファイバケーブルの製造方法
WO2022092251A1 (ja) * 2020-10-30 2022-05-05 住友電気工業株式会社 光ファイバケーブルおよび光ファイバユニット
TWI764004B (zh) * 2019-06-13 2022-05-11 中華電信股份有限公司 高強度耐彎曲細徑光纜
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル
US11921341B2 (en) 2020-09-02 2024-03-05 Fujikura Ltd. Optical cable and optical cable manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230266556A1 (en) * 2020-07-01 2023-08-24 Fujikura Ltd. Optical fiber unit and optical fiber unit manufacturing method
CN116430532B (zh) * 2023-05-19 2024-03-15 宏安集团有限公司 一种防止内部光纤损坏的蝶形光缆

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350806A (ja) * 1986-08-21 1988-03-03 Nippon Telegr & Teleph Corp <Ntt> 防水形光フアイバケ−ブルおよびその製造方法
JPH05203852A (ja) * 1992-01-24 1993-08-13 Showa Electric Wire & Cable Co Ltd 防水型光ファイバケーブル
JPH10153714A (ja) * 1996-11-25 1998-06-09 Sumitomo Electric Ind Ltd 光ファイバケ−ブル
JP2000171672A (ja) * 1998-12-03 2000-06-23 Hitachi Cable Ltd 光ファイバケーブル
JP2013088746A (ja) * 2011-10-21 2013-05-13 Fujikura Ltd 光ファイバケーブル
JP2014137480A (ja) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd 光ファイバケーブル
JP2014139609A (ja) 2013-01-21 2014-07-31 Fujikura Ltd 光ファイバケーブル
JP2014219494A (ja) 2013-05-07 2014-11-20 株式会社フジクラ 光ファイバケーブル
JP2015031810A (ja) * 2013-08-02 2015-02-16 株式会社フジクラ 光ファイバケーブル
US20150049996A1 (en) * 2012-03-02 2015-02-19 ORS Fitel, LLC Aerial optical fiber cables
JP2017109872A (ja) 2015-12-15 2017-06-22 株式会社Screenホールディングス 搬送装置及びそれを備えた印刷装置
JP2018039696A (ja) 2016-09-07 2018-03-15 日本製紙株式会社 無機炭酸塩の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134512A (ja) * 1984-07-26 1986-02-18 Furukawa Electric Co Ltd:The 防水型ケ−ブル
US4844575A (en) 1987-04-10 1989-07-04 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber cable
JPH02165111A (ja) * 1988-12-20 1990-06-26 Showa Electric Wire & Cable Co Ltd 防水型光ファイバーコード
US5029974A (en) * 1990-01-22 1991-07-09 Alcatel Na Cable Systems, Inc. Unitube optical fiber cable
JPH08146259A (ja) 1994-11-15 1996-06-07 Sumitomo Electric Ind Ltd プラスチック光ファイバコードの製造方法
US5621841A (en) * 1995-09-20 1997-04-15 Siecor Corporation Optical fiber cable containing ribbons in stranded tubes
JPH09120009A (ja) 1995-10-26 1997-05-06 Furukawa Electric Co Ltd:The 通信ケーブルの引っ張り端部
US5630003A (en) 1995-11-30 1997-05-13 Lucent Technologies Inc. Loose tube fiber optic cable
JPH10170780A (ja) 1996-12-06 1998-06-26 Sumitomo Electric Ind Ltd ケーブル
JP3523996B2 (ja) 1997-12-24 2004-04-26 住友電気工業株式会社 光ファイバケーブル
US6574400B1 (en) * 1998-03-26 2003-06-03 Corning Cable Systems Llc Fiber optic cable with water blocking features
US6256439B1 (en) * 1998-10-21 2001-07-03 Lucent Technologies Inc. Lubricant for central core fiber optic cable having stranded ribbons
US6249629B1 (en) 1998-12-10 2001-06-19 Siecor Operations, Llc Robust fiber optic cables
US6658185B2 (en) 1999-08-23 2003-12-02 Pirelli Cavi E Sistemi S.P.A. Optical fiber cable with components having improved compatibility with waterblocking filling compositions
US6278826B1 (en) 1999-09-15 2001-08-21 Lucent Technologies Inc. Cables with water-blocking and flame-retarding foam
US6563991B1 (en) * 2000-06-13 2003-05-13 Alcatel Optical fiber cable for easy access to ripcords and having ripcord reliability
US6671441B1 (en) * 2000-08-22 2003-12-30 Fitel Usa Corp. Optical cabling apparatus having improved dry filling compound and method for making
JP2002072032A (ja) 2000-08-28 2002-03-12 Sumitomo Electric Ind Ltd 光ケーブル
JPWO2003085436A1 (ja) 2002-04-08 2005-08-11 株式会社フジクラ 光ファイバケーブルおよびその製造方法
DE60332260D1 (de) * 2002-11-06 2010-06-02 Sumitomo Electric Industries Faseroptisches band und faseroptisches kabel damit
US6931184B2 (en) 2003-05-30 2005-08-16 Corning Cable Systems Llc Dry tube fiber optic assemblies, cables, and manufacturing methods therefor
US20070297730A1 (en) 2006-06-21 2007-12-27 Bringuier Anne G Optical fiber assemblies having one or more water-swellable members
JP2008191209A (ja) 2007-02-01 2008-08-21 Toyokuni Electric Cable Co Ltd ルース型光ファイバコード
US7590322B2 (en) 2007-03-09 2009-09-15 Superior Essex Communications Lp Fiber optic cable with enhanced saltwater performance
WO2009034666A1 (en) * 2007-09-12 2009-03-19 Fujikura Ltd. Water absorptive optical fiber and method for manufacturing the same
US9360646B2 (en) 2013-08-15 2016-06-07 Corning Optical Communications LLC Fiber optic ribbon cable
JP2015099314A (ja) 2013-11-20 2015-05-28 株式会社フジクラ スロット型光ファイバケーブル
CN203720422U (zh) 2014-03-09 2014-07-16 北京亨通斯博通讯科技有限公司 一种路面微槽光缆
JP2015225168A (ja) * 2014-05-27 2015-12-14 住友電気工業株式会社 光ケーブル
US20160169711A1 (en) * 2014-10-02 2016-06-16 Ofs Fitel, Llc Fiber optic sensor cable and fiber optic sensing system
JP6515751B2 (ja) 2015-09-04 2019-05-22 住友電気工業株式会社 光ファイバケーブル
CN105353485A (zh) * 2015-12-16 2016-02-24 南京华信藤仓光通信有限公司 防水光纤及其制备方法
CN205899095U (zh) 2016-07-08 2017-01-18 江苏盈科通信科技有限公司 通信用室外光缆

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350806A (ja) * 1986-08-21 1988-03-03 Nippon Telegr & Teleph Corp <Ntt> 防水形光フアイバケ−ブルおよびその製造方法
JPH05203852A (ja) * 1992-01-24 1993-08-13 Showa Electric Wire & Cable Co Ltd 防水型光ファイバケーブル
JPH10153714A (ja) * 1996-11-25 1998-06-09 Sumitomo Electric Ind Ltd 光ファイバケ−ブル
JP2000171672A (ja) * 1998-12-03 2000-06-23 Hitachi Cable Ltd 光ファイバケーブル
JP2013088746A (ja) * 2011-10-21 2013-05-13 Fujikura Ltd 光ファイバケーブル
US20150049996A1 (en) * 2012-03-02 2015-02-19 ORS Fitel, LLC Aerial optical fiber cables
JP2014137480A (ja) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd 光ファイバケーブル
JP2014139609A (ja) 2013-01-21 2014-07-31 Fujikura Ltd 光ファイバケーブル
JP2014219494A (ja) 2013-05-07 2014-11-20 株式会社フジクラ 光ファイバケーブル
JP2015031810A (ja) * 2013-08-02 2015-02-16 株式会社フジクラ 光ファイバケーブル
JP2017109872A (ja) 2015-12-15 2017-06-22 株式会社Screenホールディングス 搬送装置及びそれを備えた印刷装置
JP2018039696A (ja) 2016-09-07 2018-03-15 日本製紙株式会社 無機炭酸塩の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764004B (zh) * 2019-06-13 2022-05-11 中華電信股份有限公司 高強度耐彎曲細徑光纜
JP2020204685A (ja) * 2019-06-17 2020-12-24 古河電気工業株式会社 光ファイバケーブル
JP7269108B2 (ja) 2019-06-17 2023-05-08 古河電気工業株式会社 光ファイバケーブル
WO2021157334A1 (ja) * 2020-02-07 2021-08-12 株式会社フジクラ 光ファイバケーブルおよび光ファイバケーブルの製造方法
JPWO2021157334A1 (ja) * 2020-02-07 2021-08-12
JP7387770B2 (ja) 2020-02-07 2023-11-28 株式会社フジクラ 光ファイバケーブル
US11921341B2 (en) 2020-09-02 2024-03-05 Fujikura Ltd. Optical cable and optical cable manufacturing method
WO2022092251A1 (ja) * 2020-10-30 2022-05-05 住友電気工業株式会社 光ファイバケーブルおよび光ファイバユニット
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル

Also Published As

Publication number Publication date
EP3988980A1 (en) 2022-04-27
CA3223249A1 (en) 2019-10-29
HUE062324T2 (hu) 2023-10-28
AU2018277435B2 (en) 2021-04-01
HUE058111T2 (hu) 2022-07-28
EP3633432A4 (en) 2020-05-20
HUE062998T2 (hu) 2023-12-28
EP3988980B1 (en) 2023-06-14
US20200073068A1 (en) 2020-03-05
EP3633432A1 (en) 2020-04-08
KR20190135531A (ko) 2019-12-06
EP3988979A1 (en) 2022-04-27
EP3633432B1 (en) 2022-02-09
US11048054B2 (en) 2021-06-29
AU2018277435A1 (en) 2019-11-14
CA3061885C (en) 2024-01-30
CA3061885A1 (en) 2019-10-29
EP3988981B1 (en) 2023-09-13
CN110662993B (zh) 2021-01-08
EP3988981A1 (en) 2022-04-27
EP3988979B1 (en) 2024-09-04
KR102328960B1 (ko) 2021-11-18
CN110662993A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2018221142A1 (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
AU2014385023B2 (en) Optical cable
JP4902580B2 (ja) 光ファイバケーブル及びその製造方法
WO2018092880A1 (ja) 光ファイバケーブルおよび光ファイバケーブルの製造方法
US11513302B2 (en) Optical fiber cable and cable core production method
KR102631179B1 (ko) 광섬유 케이블의 제조 방법 및 광섬유 케이블의 제조 장치
EP4361692A1 (en) Optical fiber cable and manufacturing method for optical fiber cable
JP6302120B1 (ja) 光ファイバケーブル
JP2020042175A (ja) 光ファイバケーブル
JP6967472B2 (ja) 光ファイバケーブル
JP2019152825A (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
JP2014228821A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018277435

Country of ref document: AU

Date of ref document: 20180509

Kind code of ref document: A

Ref document number: 20197033675

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809868

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809868

Country of ref document: EP

Effective date: 20200102