WO2018220115A1 - Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic - Google Patents
Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic Download PDFInfo
- Publication number
- WO2018220115A1 WO2018220115A1 PCT/EP2018/064346 EP2018064346W WO2018220115A1 WO 2018220115 A1 WO2018220115 A1 WO 2018220115A1 EP 2018064346 W EP2018064346 W EP 2018064346W WO 2018220115 A1 WO2018220115 A1 WO 2018220115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrochemical system
- real
- specific
- specific points
- time
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 8
- 239000000446 fuel Substances 0.000 claims description 18
- 238000002405 diagnostic procedure Methods 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 230000001131 transforming effect Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000013598 vector Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012883 sequential measurement Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a method for diagnosing in real time the operating state of an electrochemical system. It also relates to a diagnostic system implementing this method, and an electrochemical system, including a fuel cell, incorporating this diagnostic system.
- EP 2778700 A2 discloses equipment for predicting the state of a battery pack, using discrete wavelet transformations.
- Barking discloses a method of diagnosing polymeric fuel cell cells, employing battery voltage measurements, and wavelet packet transformation.
- the aim of the present invention is to propose a new method for detecting defects in an electrochemical system, in particular a fuel cell, which makes it possible to know the state of this system in operation and without an intrusive and / or complex or expensive sensor, with superior performance, in terms of quality and reliability of fault detection, to those usually observed in current diagnostic processes.
- This objective is achieved with a method for diagnosing in real time the operating state of an electrochemical system comprising a stack of cells, this method comprising steps for making voltage measurements of said cells, characterized in that it comprises outraged :
- the cell voltage measurement steps can be performed periodically.
- the specific waveforms extracted from the off-line and / or real-time voltage measurements are subjected to a mathematical transformation - called "Shapelet Transform" - to create specific points. from specific waveforms. These specific points can be identified in a two-dimensional space (2D) and then classified in a three-dimensional space (3D).
- the diagnostic method according to the invention may further advantageously comprise an initial constitution of a database by learning on known operating states of the electrochemical system, which are tested offline.
- the known operating states that are tested offline include all or some of the following states: Normal operation, Low hydrogen pressure,
- a system for diagnosing the real-time operating state of an electrochemical system comprising a stack of cells, implementing the diagnostic method according to the invention, this system of diagnosis comprising means for measuring the voltages at the terminals of said cells, characterized in that it further comprises:
- the diagnostic system according to the invention may furthermore advantageously comprise means for transforming the specific waveforms extracted from the voltage measurements performed offline and / or in real time, so as to create specific points.
- This diagnostic system may further comprise means for identifying the specific points in a two-dimensional space (2D) and means for classifying said specific points thus identified in a three-dimensional space (3D), as well as a database by learning on known operating states of the electrochemical system.
- an electrochemical system incorporating a diagnostic system according to the invention.
- This electrochemical system may in particular comprise a fuel cell.
- FIG. 2 schematically illustrates an implementation of a microcontroller for analog measurements
- FIG. 3 represents a voltage measuring device implemented in an exemplary embodiment of a fault detection system according to the invention
- FIG. 4 represents specific waveforms (or "shapelets") produced in the diagnostic detection method according to the invention.
- FIG. 5 illustrates a classification of the specific waveforms with the SSM-SVM method
- FIG. 6 schematically illustrates an exemplary embodiment of the diagnostic method according to the invention. Detailed embodiments
- variants of the invention comprising only a selection of characteristics described or illustrated subsequently isolated from the other characteristics described or illustrated (even if this selection is isolated within a phase comprising these other characteristics), if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
- This selection comprises at least one preferably functional characteristic without structural details, and / or with only a part of the structural details if this part alone is sufficient to confer a technical advantage or to differentiate the invention from the state of the art. earlier.
- a device 10 for measuring the voltages across the various cells of an electrochemical system 1 such as a battery, a supercapacitor or a fuel cell will be described.
- the different voltages Vcell 1,..., K + 1 are measured then processed by programmable components of the DSP (for "Digital Signal Processor") type or microcontroller 20, 70 and the data are transmitted by a CAN 6 communication bus.
- DSP Digital Signal Processor
- the measuring device 10 is in modular form.
- Each electrically isolated module 2, 7 is responsible for measuring the voltages Vcell_l, Vcell_2, Vcell_3; Vcel l_k, Vcel l_k + 1 of a number of cells in the order defined by the series connection thereof. It is therefore possible to connect as many modules 2, 7 as necessary to meet the needs of the user, the limit being fixed by the voltage isolation level of the electronic components (about 1000V in the most critical case).
- Each measurement module 2, 7 comprises an electronic circuit based around a microcontroller 20, 70, its reference potential (ground) corresponding to the lowest potential of the packet of elements (Vref_l, Vref_2). These modules 2, 7 are fed via an isolated DC / DC converter 3, 8 connected to the general power supply of the device 10. The various data resulting from the measurements are transmitted by via a communication bus. For this, isolated CAN drivers 5, 9 allow links between the microcontrollers 20, 70 and the CAN bus 6 of the measuring device 10.
- the measurement modules 2, 7 are duplicated as many times as necessary to measure the different voltages across all the elements of the electrochemical system 1 studied.
- the reference potential of the analog measurements of the microcontroller 30 is connected to the lowest voltage of all the elements concerned n, n + 1, n + 2.
- the various voltage measurements Vn, Vn + 1, Vn + 2 are connected to the analog inputs AN_1, AN_2, AN_3 of the microcontroller 30 in the order established by the potentials: from the lowest to the highest.
- the voltage across an element is then determined by the difference of two consecutive measured voltages.
- the analog inputs of the microcontroller 30 can be connected directly to the elements to be measured.
- an adaptation circuit makes it possible to adjust the voltage in a range compatible with that of the microcontroller.
- Analog measurements can be performed simultaneously (synchronous measurements) or sequentially (asynchronous measurements).
- the measuring device 100 is used for measuring the voltages of the cells of a fuel cell 30.
- the voltage of the cells can reach approximately 1.43V when they are activated. but the useful measuring range is between 0 and IV.
- the measurement device 100 comprises a microcontroller 50 comprising 11 analog inputs and a single integrated analog / digital converter. The principle of sequential measurements for the different analog channels is then used. The overall conversion time for the 11 channels remains less than 2ms (150ps per channel, or 1.6 ms).
- the different voltages of the cells of the fuel cell 40 are connected to the analog inputs, directly for the four first channels (voltages lower than 4V) and via an adaptation circuit for channels AN_4 to AN_10.
- the power supply of the measuring device 100 is made from a source of voltage of 5V continuous (+ 5v_l).
- a DC / DC converter 51 provides a voltage of 5V (+ 5V_2) isolated for the supply of all the electronics.
- the circuit used provides an insulation voltage of 1000V.
- the entire measuring device 100 is thus isolated with a reference potential Vref_l.
- a CAN driver circuit 53 isolates the microcontroller 50 ensuring an isolation voltage of 2500V.
- the diagnostic method according to the invention is built around a learning based on measured and known data. It is here implemented for the purpose of detecting defects of a fuel cell system (PAC) PEMFC type (for "Polymer Electrolyte Membrane Fuel Cell”). It is understood that the diagnostic method according to the invention can be implemented without limitation in other types of fuel cells.
- PAC fuel cell system
- PEMFC Polymer Electrolyte Membrane Fuel Cell
- This diagnostic method implements a device for measuring the individual voltage of the unit cells of the PAC as previously described.
- the diagnostic method according to the invention makes use of a time series analysis tool, hereinafter referred to as "transforming shapelet”. , which performs a characterization of specific waveforms extracted from the voltage measurements across the cells of the electrochemical system.
- the diagnostic method comprises a process 6A for real-time processing of voltage measurements performed on the cells of the stack, and a 6B process. offline processing of voltage measurements performed on the same cells but in known operating states including malfunction states.
- the time analysis tool is used to extract specific waveforms or "shapelets" 40 ( Figure 4) from the data of a database 61 ( Figure 6) used for real-time diagnostics.
- the time analysis tool is used in a window 41 whose duration is known and previously defined according to the defects considered.
- an SSM-SVM classification tool is applied in the dimensional space considered (function of the number of defects).
- the cell voltages of the fuel cell system are inherently inhomogeneous because of their physical states within a stack (or "stack"), such as temperature, gas distribution, relative humidity, the distribution of the catalyst on the activation layer, and the temporal correlation between the measured samples must be considered.
- the cell voltages sampled in a time interval (window 41) are considered as variables for the diagnostic method according to the invention.
- This acquisition window is mathematically defined as follows: where vj is the vector sampled at the index i and composed of all the voltages of a number n cell cells.
- This vector L is the width of the window
- Each observation T is a dynamic time series that can be represented mathematically in the form of a matrix, whose dimension is defined firstly by the number of cells and secondly by the duration of the observation l w and whose number of points is defined by the sampling period (or acquisition frequency) of the measuring device.
- a training database 71 is constituted from N off-line measurements obtained by means of the measuring device described above. It is listed by classes denoted ⁇ , ⁇ , ⁇ 2, ..., ⁇ C which correspond to the various defects.
- the index class 0 is defined as the normal operating state (without faults).
- the class space on the set of observations Tj is known beforehand, ie gj
- the number of observations 78 which constitute the database 71 in all of these classes are respectively No, Ni, ..., Nc and satisfy the equation
- the candidates are selected taking into account the observation time l w .
- the candidates are selected taking into account the observation time l w .
- SCj j represents the second candidate of the matrix Tj.
- Tj the space in which it is located is also gj.
- the number of candidates generated from the learning base 71 is therefore (l w - ls + 1) N.
- the times ls and lw are defined beforehand for each class. This definition is made empirically during the constitution of the learning database.
- the first is to calculate the distance between a candidate SCij and the observation Tk, which is equal to the minimum value between the candidate SCij and the set of candidates generated by this observation Tk as follows:
- This calculation also makes it possible to know the dimension of the characterization domain that will be used to initialize the SSM-SVM classification tool 63 with reference to FIG.
- the method used hereinafter is known as the "kernel trick".
- the vectors are projected in a multidimensional space via the function ⁇ .
- the sphere is calculated as follows:
- the function used here is the Gaussian nucleus, that is:
- the SSM-SVM classification therefore amounts to solving the following optimization problem
- the radius of the sphere can be calculated according to the conditions of
- one operates on a number of classes greater than 2 and in a space of dimensions greater than 2.
- This algorithm makes it possible to break down the quadratic problem into a sum of linear problems that are treated one by one.
- Each Lagrange multiplier is calculated individually and the vector vectors describing the spheres encompassing the classes are updated at each iteration.
- the SSM-SVM method that has just been described thus makes it possible to classify specific waveforms, with reference to FIG. 5. Moreover, the combination of specific waveforms (or "shapelets") and the SSM-SVM classification allows performance in terms of error rates higher than those usually observed with current diagnostic methods.
- SSM-SVM method makes it possible to obtain at the same time classification results 77 of the specific waveforms 75 coming from off-line observations in a learning mode, and classification results 66 of the forms Specific waveforms 65 from real-time voltage measurements.
- the classification results resulting from the SSM-SVM learning mode 76 are exploited in the SSM-SVM processing 63 specific points resulting from the transformation 62 of the specific waveforms resulting from the real-time measurements.
- Real-time data is acquired in a sliding acquisition window. Once the array is stored, the minimum distances are then calculated via the waveform transformation 62.
- the specific waveform When the specific waveform is characterized and graphically represented by a specific point 65, it is then analyzed by the SSM-SVM algorithm 63 which will assign a class according to its position in the volumes defined by the spheres, such as Figure 5. Each class is associated with an operating state (Normal or describing a known defect).
- Diagnostic rules 67 are then applied to the classification results 66 so as to generate diagnostic results 68 which will make it possible to make a diagnosis of operation 69 (normal or default, type of fault, etc.) which will be communicated to the management. electrochemical system and possibly the user or maintenance personnel of this system. These operations are repeated in loop with each new acquisition (window) and each time the system is started.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Fuzzy Systems (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Fuel Cell (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL271060A IL271060B2 (en) | 2017-06-02 | 2018-05-31 | A method and system for diagnosing the operating state of an electrochemical system in real time and an electrochemical system incorporating this diagnostic system |
SG11201911468RA SG11201911468RA (en) | 2017-06-02 | 2018-05-31 | Method and system for diagnosing the operating state of an electrochemical system in real-time, and electrochemical system incorporating this diagnostic system |
KR1020197038560A KR102564407B1 (ko) | 2017-06-02 | 2018-05-31 | 전기화학 시스템의 동작 상태를 실시간으로 진단하기 위한 방법 및 시스템, 및 이 진단 시스템을 포함하는 전기화학 시스템 |
CA3066012A CA3066012A1 (fr) | 2017-06-02 | 2018-05-31 | Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic |
US16/618,466 US11493560B2 (en) | 2017-06-02 | 2018-05-31 | Method and system for diagnosing the operating state of an electrochemical system in real-time, and electrochemical system incorporating this diagnostic system |
CN201880048467.XA CN111373586B (zh) | 2017-06-02 | 2018-05-31 | 用于实时诊断电化学系统的运行状态的方法和系统、以及并入该诊断系统的电化学系统 |
JP2020516953A JP7221947B2 (ja) | 2017-06-02 | 2018-05-31 | 電気化学システムの動作状態をリアルタイムで診断するための方法及び装置 |
EP18730667.5A EP3631885A1 (fr) | 2017-06-02 | 2018-05-31 | Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1754949A FR3067124B1 (fr) | 2017-06-02 | 2017-06-02 | Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic |
FR1754949 | 2017-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018220115A1 true WO2018220115A1 (fr) | 2018-12-06 |
Family
ID=59409541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/064346 WO2018220115A1 (fr) | 2017-06-02 | 2018-05-31 | Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic |
Country Status (10)
Country | Link |
---|---|
US (1) | US11493560B2 (fr) |
EP (1) | EP3631885A1 (fr) |
JP (1) | JP7221947B2 (fr) |
KR (1) | KR102564407B1 (fr) |
CN (1) | CN111373586B (fr) |
CA (1) | CA3066012A1 (fr) |
FR (1) | FR3067124B1 (fr) |
IL (1) | IL271060B2 (fr) |
SG (1) | SG11201911468RA (fr) |
WO (1) | WO2018220115A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153866A1 (fr) * | 2019-01-24 | 2020-07-30 | Siemens Aktiengesellschaft | Procédé et système de surveillance d'un état de batterie à l'aide d'une batterie jumelle |
FR3131089A1 (fr) * | 2021-12-22 | 2023-06-23 | Commissariat à l'énergie atomique et aux énergies alternatives | Système de stockage d’énergie |
EP4202458A4 (fr) * | 2021-01-08 | 2024-04-03 | LG Energy Solution, Ltd. | Dispositif de diagnostic de batterie, système de batterie et procédé de diagnostic de batterie |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113013514B (zh) * | 2021-02-25 | 2022-08-05 | 吉林大学 | 一种车载锂离子动力电池的热失控气敏报警装置及其检测方法 |
CN116819347A (zh) * | 2023-08-30 | 2023-09-29 | 北京理工大学 | 基于短时间放电数据的电池容量估计方法、系统及介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027342A2 (fr) * | 2000-09-29 | 2002-04-04 | Hydrogenics Corporation | Mesure de l'impedance de piles a combustible |
EP2778700A2 (fr) | 2013-03-12 | 2014-09-17 | Samsung SDI Co., Ltd. | Appareil de prédiction d'état d'une batterie utilisant des transformées d'ondelettes discrètes |
WO2015101570A1 (fr) * | 2014-01-03 | 2015-07-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede, dispositif et systeme d'estimation de l'etat de sante d'une batterie d'un vehicule electrique ou hybride en condition d'utilisation, et procede de construction d'un modele pour une telle estimation |
GB2527584A (en) * | 2014-06-26 | 2015-12-30 | Univ Cape Town | Apparatus and method for determining the condition of an electricity-producing cell |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072302A (en) * | 1998-08-26 | 2000-06-06 | Northrop Grumman Corporation | Integrated control system and method for controlling mode, synchronization, power factor, and utility outage ride-through for micropower generation systems |
CN1842718A (zh) * | 2003-07-09 | 2006-10-04 | 优质动力公司 | 用于对选定的电池单元组进行监控和充电的装置 |
JP5141937B2 (ja) * | 2005-01-26 | 2013-02-13 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池の状態診断方法 |
FR2947357B1 (fr) * | 2009-06-25 | 2016-01-22 | Electricite De France | Detection de defaut dans un dispositif electrochimique |
US9366732B2 (en) * | 2009-09-04 | 2016-06-14 | Board Of Regents, The University Of Texas System | Estimation of state-of-health in batteries |
EP2770336A2 (fr) * | 2013-02-21 | 2014-08-27 | Samsung SDI Co., Ltd. | Appareil de détection de défauts dans un système de batterie |
US20150046060A1 (en) * | 2013-08-12 | 2015-02-12 | Mitsubishi Electric Research Laboratories, Inc. | Method and System for Adjusting Vehicle Settings |
US20160093921A1 (en) * | 2014-09-25 | 2016-03-31 | Apple Inc. | Cell voltage sensing for rechargeable battery packs |
US10324137B2 (en) * | 2015-02-24 | 2019-06-18 | Quanta Computer Inc. | Intelligent method for calibrating battery capacity |
US10023112B2 (en) * | 2015-04-23 | 2018-07-17 | Ford Global Technologies, Llc | Battery joint monitoring method and assembly |
US10284191B2 (en) * | 2015-07-31 | 2019-05-07 | Texas Instruments Incorporated | Protective circuit enabling different bias levels responsive to event faults |
KR102574257B1 (ko) * | 2015-10-30 | 2023-09-01 | 삼성전자주식회사 | Soh 추정 장치 및 방법과, soh 추정 모델 생성 장치 및 방법 |
WO2017201125A1 (fr) * | 2016-05-18 | 2017-11-23 | The Regents Of The University Of California | Systèmes et procédés de commande de stockage d'énergie de batterie |
-
2017
- 2017-06-02 FR FR1754949A patent/FR3067124B1/fr active Active
-
2018
- 2018-05-31 WO PCT/EP2018/064346 patent/WO2018220115A1/fr unknown
- 2018-05-31 KR KR1020197038560A patent/KR102564407B1/ko active IP Right Grant
- 2018-05-31 JP JP2020516953A patent/JP7221947B2/ja active Active
- 2018-05-31 IL IL271060A patent/IL271060B2/en unknown
- 2018-05-31 EP EP18730667.5A patent/EP3631885A1/fr active Pending
- 2018-05-31 CA CA3066012A patent/CA3066012A1/fr active Pending
- 2018-05-31 CN CN201880048467.XA patent/CN111373586B/zh active Active
- 2018-05-31 SG SG11201911468RA patent/SG11201911468RA/en unknown
- 2018-05-31 US US16/618,466 patent/US11493560B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027342A2 (fr) * | 2000-09-29 | 2002-04-04 | Hydrogenics Corporation | Mesure de l'impedance de piles a combustible |
EP2778700A2 (fr) | 2013-03-12 | 2014-09-17 | Samsung SDI Co., Ltd. | Appareil de prédiction d'état d'une batterie utilisant des transformées d'ondelettes discrètes |
WO2015101570A1 (fr) * | 2014-01-03 | 2015-07-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede, dispositif et systeme d'estimation de l'etat de sante d'une batterie d'un vehicule electrique ou hybride en condition d'utilisation, et procede de construction d'un modele pour une telle estimation |
GB2527584A (en) * | 2014-06-26 | 2015-12-30 | Univ Cape Town | Apparatus and method for determining the condition of an electricity-producing cell |
Non-Patent Citations (2)
Title |
---|
NADIA YOUSFI STEINER ET AL.: "International Journal of Hydrogen Energy", vol. 36, 11 October 2010, ELSEVIER SCIENCE PUBLISHERS, article "Non intrusive diagnosis of polymer electrolyte fuel cells by wavelet packet transform", pages: 740 - 746 |
NADIA YOUSFI STEINER ET AL: "Non intrusive diagnosis of polymer electrolyte fuel cells by wavelet packet transform", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 36, no. 1, 11 October 2010 (2010-10-11), pages 740 - 746, XP028131002, ISSN: 0360-3199, [retrieved on 20101019], DOI: 10.1016/J.IJHYDENE.2010.10.033 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153866A1 (fr) * | 2019-01-24 | 2020-07-30 | Siemens Aktiengesellschaft | Procédé et système de surveillance d'un état de batterie à l'aide d'une batterie jumelle |
CN113574402A (zh) * | 2019-01-24 | 2021-10-29 | 西门子股份公司 | 使用电池孪生体来监测电池状态的方法和系统 |
US11999261B2 (en) | 2019-01-24 | 2024-06-04 | Siemens Aktiengesellschaft | Method and system for monitoring a battery state utilizing a battery twin |
EP4202458A4 (fr) * | 2021-01-08 | 2024-04-03 | LG Energy Solution, Ltd. | Dispositif de diagnostic de batterie, système de batterie et procédé de diagnostic de batterie |
FR3131089A1 (fr) * | 2021-12-22 | 2023-06-23 | Commissariat à l'énergie atomique et aux énergies alternatives | Système de stockage d’énergie |
EP4203234A1 (fr) * | 2021-12-22 | 2023-06-28 | Commissariat à l'énergie atomique et aux énergies alternatives | Système de stockage d énergie |
Also Published As
Publication number | Publication date |
---|---|
JP2020522116A (ja) | 2020-07-27 |
US11493560B2 (en) | 2022-11-08 |
SG11201911468RA (en) | 2020-01-30 |
FR3067124B1 (fr) | 2019-07-05 |
FR3067124A1 (fr) | 2018-12-07 |
IL271060B2 (en) | 2024-03-01 |
CN111373586A (zh) | 2020-07-03 |
CA3066012A1 (fr) | 2018-12-06 |
CN111373586B (zh) | 2023-05-26 |
KR20200026213A (ko) | 2020-03-10 |
EP3631885A1 (fr) | 2020-04-08 |
JP7221947B2 (ja) | 2023-02-14 |
IL271060A (en) | 2020-01-30 |
KR102564407B1 (ko) | 2023-08-04 |
IL271060B1 (en) | 2023-11-01 |
US20210141024A1 (en) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3067124B1 (fr) | Procede et systeme pour diagnostiquer en temps reel l'etat de fonctionnement d'un systeme electrochimique, et systeme electrochimique integrant ce systeme de diagnostic | |
EP2446370B1 (fr) | Détection de défaut dans un dispositif électrochimique | |
EP2888599B1 (fr) | Procédé d'estimation du vieillissement d'une batterie | |
EP2575205B1 (fr) | Procédé et système de diagnostic de l'état interne d'une batterie par émission acoustique | |
EP2434304B1 (fr) | Système et procédé de diagnostic in situ de batteries par spectroscopie d'impédance électrochimique | |
EP2410346B1 (fr) | Procédé de détermination d'un paramètre d'au moins un accumulateur d'une batterie | |
EP2362234B1 (fr) | Procédé non intrusif de détermination de l'impédance électrique d'une batterie | |
WO2015101570A1 (fr) | Procede, dispositif et systeme d'estimation de l'etat de sante d'une batterie d'un vehicule electrique ou hybride en condition d'utilisation, et procede de construction d'un modele pour une telle estimation | |
WO2014096702A1 (fr) | Localisation d'un ou plusieurs defauts dans un ensemble electrochimique. | |
EP3016277B1 (fr) | Procédé de diagnostic d'un système photovoltaïque | |
EP3682368B1 (fr) | Méthode de détermination du régime de fonctionnement d'un système, méthode de configuration d'un classifieur servant a identifier un tel régime, et dispositif de détermination d'un tel régime | |
EP0494012B1 (fr) | Procédé et appareil pour la vérification de l'état d'isolement électrique d'un ouvrage électriquement conducteur | |
EP4386403A1 (fr) | Procede et dispositif de determination d'un profil de sollicitation representatif de l'usage futur d'une batterie pour une application donnee | |
Pahon et al. | Relative wavelet energy as a diagnosis tool for PEM fuel cells | |
FR3067501B1 (fr) | Procede de traitement de la courbe de charge | |
FR2888331A1 (fr) | Procede de controle de l'etat d'une pile a combustible | |
WO2023117739A1 (fr) | Procede et dispositif de suivi de point de puissance maximale et de surveillance de degradation d'un module photovoltaique | |
EP4454122A1 (fr) | Procede et dispositif de suivi de point de puissance maximale et de surveillance de degradation d'un module photovoltaique | |
EP2319117A1 (fr) | Methode et dispositif pour representer numeriquement une tension | |
FR2932015A1 (fr) | Dispositif et procede de controle de l'humidification de piles a combustibles dans un systeme comportant plusieurs piles a combustible. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18730667 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3066012 Country of ref document: CA Ref document number: 2020516953 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197038560 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018730667 Country of ref document: EP Effective date: 20200102 |