WO2018219205A1 - Sensor light and control method thereof - Google Patents

Sensor light and control method thereof Download PDF

Info

Publication number
WO2018219205A1
WO2018219205A1 PCT/CN2018/088206 CN2018088206W WO2018219205A1 WO 2018219205 A1 WO2018219205 A1 WO 2018219205A1 CN 2018088206 W CN2018088206 W CN 2018088206W WO 2018219205 A1 WO2018219205 A1 WO 2018219205A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
light
control
power
Prior art date
Application number
PCT/CN2018/088206
Other languages
French (fr)
Inventor
Yehua Wan
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2018219205A1 publication Critical patent/WO2018219205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/14Controlling the light source in response to determined parameters by determining electrical parameters of the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/12Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by detecting audible sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to the field of illumination technologies and, more particularly, relates to sensor light and a related control method.
  • Lighting is to provide various light sources to illuminate work and living areas or individual objects.
  • a sensor-type light may be used as a lighting device, such as a security light.
  • the sensor light may only provide lighting when a human body is active in a corresponding area.
  • those security lights are normally powered by an external power supply. Once the external power supply is interrupted or an emergency occurs, the security lights cannot be guaranteed to work normally.
  • the senor security light of the present disclosure can still supply power and ensure a normal operation of the sensor light in emergency situations.
  • the sensor light may include a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit.
  • the first power supply circuit may be configured to provide an external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit.
  • the sensing circuit may be configured to detect that a first trigger event occurs in a region, generate and send a first trigger signal to the control circuit.
  • the control circuit may be configured to receive the first trigger signal, send a second trigger signal to the driver circuit, and send a third trigger signal to the second power supply circuit when the first power supply circuit stops supplying power.
  • the driver circuit may be configured to receive the second trigger signal and drive the light-emitting circuit to emit light.
  • the second power supply circuit may be configured to receive and store the power supplied by the first power supply circuit, receive the third trigger signal and use the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  • the sensor light may include a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit.
  • the method may include: detecting, by the sensing circuit, that a first trigger event occurs in a region, and generating and sending, by the sending circuit, a first trigger signal to the control circuit.
  • the method may further include: sending, by the control circuit, a second trigger signal to the driver circuit in response to the first trigger signal, and driving, by the driver circuit, the light-emitting circuit to emit light in response to the second trigger signal.
  • the method may include: providing, by the first power supply circuit, the external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit, and receiving and storing, by the second power supply circuit, power supplied by the first power supply circuit.
  • the method may include: sending, by the control circuit, a third trigger signal to the second power supply circuit, and using, by the second power supply circuit, the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  • the power supplied by the first power supply circuit may be received and stored by the second power supply circuit.
  • the third trigger signal may be also received by the second power supply circuit.
  • the stored electricity energy may be supplied to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  • the first power supply circuit supplies external power to the second power supply circuit, the sensing circuit, the control circuit, and the light-emitting circuit, in a power outage, a failure, or an emergency, the power supply to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit can still be achieved.
  • FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic circuit diagram of a first sensor light according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic circuit diagram of a second sensor light according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic circuit diagram of a third sensor light according to some embodiments of the present disclosure.
  • the terms “first” , “second” , “third” , “fourth” , etc. are used to distinguish similar objects but unnecessarily used to identify a specific order or sequence. It should be understood that the data used in this manner are interchangeable whenever appropriate so that the embodiments of the present disclosure described can be, for example, realized in an order other than the specific orders illustrated or described herein.
  • the terms “include” , “have” , and any of their variations are intended to cover nonexclusive inclusions, for example, including processes, methods, systems, products, or apparatuses of a series of steps or units. They are unnecessarily limited to those steps or units that are clearly listed but may include those that are not clearly listed or that are inherent to the processes, methods, systems, products, or apparatuses.
  • FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure.
  • the sensor light may include a first power supply circuit 1, a second power supply circuit 2, a driver circuit 3, a light-emitting circuit 4, a control circuit 5, and a sensing circuit 6.
  • the first power supply circuit 1 may be configured to provide external power to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, or the light-emitting circuit 4.
  • the sensing circuit 6 may be configured to detect that a first trigger event occurs in a region, and in response to the first trigger event, generate and send a first trigger signal to the control circuit 5.
  • the first trigger event may include any event that occurs in the region. For example, it may include that a living body with body temperature, such as human body or an animal body, enters the region. It may also include that a movement event that exceeds a preset speed threshold is found. And the first trigger signal may include any signal that can be recognized by the control circuit 5 to sense the first trigger event.
  • the control circuit 5 may be configured to receive the first trigger signal and send a second trigger signal to the driver circuit 3.
  • the second trigger signal may include any signal that enables the driver circuit 3 to drive light emission in response to receiving the second trigger signal.
  • the control circuit 5 may be configured to send the second trigger signal in response to receiving the first trigger signal from the sensing circuit 6.
  • the control circuit 5 is configured to send the second trigger signal based on a preset configuration (e.g., a time schedule to turn on/off or brighten/dim the emitted light) , and/or based on a control information sent from an external control device.
  • the control circuit 5 may be configured to send a third trigger signal to the second power supply circuit 2 when the first power supply circuit 1 is not supplying power.
  • “when the first power supply circuit 1 is not supplying the power” it can be understood as that an external power U0 transmitted through the first power supply circuit 1 is not providing the power supply (to the sensor light) , or can also be understood as that the first power supply circuit 1 controls to not provide the power supply (e.g., by switching off connection to the external power U0) .
  • the control circuit 5 is configured to detect an event that the first power supply circuit 1 stops supplying power, and send the third trigger signal in response to the detected event.
  • the third trigger signal may include any signal that can trigger the second power supply circuit 2 to provide power supply to at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4.
  • the driver circuit 3 may be configured to receive the second trigger signal and drive the light-emitting circuit 4 to emit light.
  • the second power supply circuit 2 may be configured to receive and store the power supplied by the first power supply circuit 1, receive the third trigger signal, and use the stored power to supply at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4.
  • FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic circuit diagram of a first sensor light according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic circuit diagram of a second sensor light according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic circuit diagram of a third sensor light according to some embodiments of the present disclosure.
  • the first power supply circuit 1 may further include a rectification circuit U1.
  • the rectification circuit U1 may be configured to rectify the external power (e.g., U0) and supply power to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, or the light-emitting circuit 4.
  • the rectified power may be respectively supplied to the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, and the light-emitting circuit 4.
  • the first power supply circuit 1 may further include a first power switch S1.
  • the first power switch S1 may be configured to control the power supply to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, driver circuit 3, or the light-emitting circuit 4.
  • a power storage device U4 may be powered by a charging circuit U3 in the second power supply circuit 2, the charging circuit U3 being powered by the first power supply circuit 1.
  • a voltage-current conversion circuit U2 in the driver circuit 3 may be powered (e.g., by the first power supply circuit 1) to supply the power to a Light-Emitting Diode (LED) light-emitting circuit U8 in the light-emitting circuit 4.
  • a radio frequency (RF) transceiver and control circuit U5 in the control circuit 5 may be also powered, as well as a sensing and detecting circuit U6 in the sensing detection circuit 6.
  • the first power supply circuit 1 may be configured to convert Alternating Current (AC) power into Direct Current (DC) power by using the rectification circuit U1 after the power from the external power U0 passes through the first power switch S1. That is, the DC power supply and control of the power supply are realized by the rectification circuit U1 and the first power switch S1.
  • AC Alternating Current
  • DC Direct Current
  • the first power supply circuit 1 may further include a first capacitor C1 and a first inductor L1.
  • the first capacitor C1 may be connected in parallel with the external power U0.
  • a first end of the first inductor L1 may be connected to a first end of the first capacitor C1 and a first end of the external power U0 through the first power switch S1, respectively.
  • a second end of the first inductor L1 may be connected to a first input end of the rectification circuit U1, and a second input end of the rectification circuit U1 may be connected to a second end of the first capacitor C1 and a second end of the external power U0, respectively.
  • the first power supply circuit 1 may further include a second capacitor C2, and both ends of the second capacitor C2 may be connected with two output ends of the rectification circuit U1 in parallel.
  • the first capacitor C1 and the second capacitor C2 can reduce voltage fluctuation of the circuits, thereby protecting components in the circuits.
  • the second power supply module 2 may include the power storage device U4, the charging circuit U3, and a second power switch Q1.
  • the charging circuit U3 may be configured to transmit the power supplied by the first power supply circuit 1 to the power storage device U4.
  • the charging circuit U3 may be configured as a charging controller of the power storage device U4.
  • the second power switch Q1 may be configured to receive the third trigger signal and control the power storage device U4 to supply the power to at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4.
  • a control terminal (e.g., gate) of the second power switch Q1 may be connected to the control circuit 5.
  • a source terminal of the second power switch Q1 may be connected to the power storage device U4, and a drain terminal of the second power switch Q1 may be connected to at least one of the control circuit 5, the sensing circuit 6, the light-emitting circuit 4, or the driver circuit 3.
  • the drain of the second power switch Q1 may be connected to the control circuit 5 and the sensing circuit 6, respectively.
  • the charging circuit U3 may be configured to charge the power storage device U4.
  • the power storage device U4 may be configured to power the RF transceiver and control circuit U5 and the sensing and detecting circuit U6 during a power failure of the external power.
  • the power supplied by the first power supply circuit 1 may be received and stored by the second power supply circuit 2 for power storage.
  • the third trigger signal may be received by the second power supply circuit 2 (e.g., from the control circuit 5 when the external power is unavailable) .
  • the stored power may be supplied to at least one of the control circuit 5, the sensing circuit 6, or the light-emitting circuit 4.
  • the first power supply module 1 may provide the external power U0 to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5 or the light-emitting circuit 4.
  • the power supply to at least one of the control circuit 5, the sensing circuit 6, and the light-emitting circuit 4 may still be achieved by the second power supply circuit 2.
  • the configuration therefore ensures a normal operation of the sensor light even in emergency situations.
  • the driver circuit 3 may include the voltage-current conversion circuit U2.
  • the voltage-current conversion circuit U2 may be configured to receive the second trigger signal and enter an operating mode in response to the second trigger signal, and in the operating mode, based on supplied voltage, output current to enable the light-emitting circuit 4 to emit light.
  • the voltage-current conversion circuit U2 may be a voltage-controlled current source. Through the voltage-current conversion circuit U2, the converted current may be equivalent to a constant current source with adjustable output, and the outputted current can be kept stable, and does not change along with load variation.
  • the driver circuit 3 may further include a DC buck circuit.
  • the DC buck circuit may be configured to receive the second trigger signal and enter an operating mode in response to the second trigger signal, and in the operating mode, dropped voltage may be supplied to the light-emitting circuit 4 to enable the light-emitting circuit 4 to emit light.
  • the DC buck circuit may share certain components with the voltage-current conversion circuit U2.
  • the DC buck circuit may include a controller, a switching device (e.g., Q2) , a first diode D1, a second inductor L2, and a third capacitor C3.
  • the controller and the switching device may be arranged inside the voltage-current conversion circuit U2 such that the DC buck circuit receive the second trigger signal simultaneously with the voltage-current conversion circuit U2 and enter the operating mode in response to the second trigger signal.
  • a control terminal (e.g., gate) of the switching device may be connected to the controller, and a drain terminal of the switching device may be connected to a first end of the first diode D1 and a first end of the second inductor L2, respectively.
  • a source terminal of the switching device may be connected to a low potential, such as being grounded, through the first resistor R1.
  • a second end of the first diode D1 may be connected to the first output end of the first power supply circuit, such as the first output end of the rectification circuit U1.
  • the second end of the first diode D1 may also be connected to a first end of the light-emitting circuit 4 and a first end of the third capacitor C3.
  • a second end of the second inductor L2 may be connected to a second end of the third capacitor C3 and a second end of the light-emitting circuit 4, respectively.
  • the third capacitor C3 may be also connected to both ends of the light-emitting circuit 4 in parallel.
  • the voltage-current conversion circuit U2 may convert the voltage into low-voltage DC current through the second inductor L2 and the first diode D1 and supply the low-voltage DC current to the LED light-emitting circuit U8.
  • the light-emitting circuit 4 may include the Light-Emitting Diode (LED) light-emitting circuit U8.
  • the LED light-emitting circuit U8 may include a plurality of LEDs connected in series. Based on the above embodiments, the LED light-emitting circuit U8 can emit light to provide lighting for its surrounding space.
  • LED Light-Emitting Diode
  • the control circuit 5 may be further configured to obtain or generate a first feedback information, and send, through a communication circuit, the first feedback information to an external control device.
  • the first feedback information may be generated according the firs trigger signal.
  • the first feedback information may include: a working status of the sensor light (e.g., on/off status, brightness, color, etc. ) , a notice to be presented by the external device that the first trigger event is detected, and/or detailed information about the first trigger event, such as an image/video/audio corresponding to the detected activity.
  • control circuit 6 may be configured to generate the first feedback information according to a query from an external device received through the communication circuit, where the query may request for a current working status of the sensor light, most recent first trigger event and related detailed information, historic working status, historic first trigger events, etc.
  • the control circuit 6 may obtain the requested information to be used as the first feedback information.
  • the control circuit 5 may be further configured to receive, through the communication circuit, a first control information sent by the external control device and control, according to the first control information, an operating mode of at least one of the driver circuit 3, the second power supply circuit 2, or the sensing circuit 6.
  • the first control information may be obtained through the external control device according to the first feedback information.
  • the control circuit 5 may include the RF transceiver and control circuit U5, and the RF transceiver and control circuit U5 may be configured to realize the above process.
  • the communication circuit can be understood as a unit that realizes external communication, and the communication method adopted is not limited to any specific manner.
  • the communication circuit may use radio frequency (RF) communication to achieve near-field control.
  • the control circuit 5 may include a first antenna A1 to realize the RF communication through the first antenna A1.
  • control circuit 5 may be further configured to receive, through the communication circuit, a second control information sent by the external device and control an operating mode of at least one of the driver circuit, the second power supply circuit, or the sensing circuit according to the second control information.
  • control circuit 5 may include the RF transceiver and control circuit U5, and the RF transceiver and control circuit U5 may be configured to realize the above process.
  • controlling the operating mode of the driver circuit 3 includes controlling the driver circuit 3 to adjust brightness, color, saturation, and/or other characteristics of the light emitted by the light-emitting circuit 4.
  • Controlling the operating mode of the second power supply circuit 2 may include: charging configurations, such as setting start or stop states, controlling charging time, charged capacity, and/or charging current, etc.
  • the second power supply circuit 2 may also be equipped with indicators for showing, e.g., charged capacity (such as percentage or full charged) and/or life of the power storage device U4.
  • Controlling the operating mode of the sensing circuit 6 may include controlling the state of the sensor 7 (such as on or off mode) , sensing operation type (such as which sensor to use when multiple sensors are applied) , sensitivity or threshold for detecting trigger event, a sensing range, selectivity, resolutions, and so on. Further, the first control information and/or the second control information may be generated by the external device automatically based on a predetermined configuration (e.g., adjust the sensor light to a first brightness level in response to the first trigger event) , or based on a user input.
  • a predetermined configuration e.g., adjust the sensor light to a first brightness level in response to the first trigger event
  • the RF transceiver and control circuit U5 can be understood as being used to receive external signals and transmit RF signals and control an operating mode of related circuits.
  • a direct control from the outside can also be achieved through the communication circuit.
  • the direct control may include controlling an operating mode of the driver circuit 3, and controlling the second power supply circuit 2, for example, the control of the second power switch Q1 in the second power supply circuit 2. In this manner, such configuration enriches a control method and improves a control diversity of the sensor light.
  • control circuit 5 and the RF transceiver and control circuit U5 in the control circuit 5 may be internally provided with a power storage device to ensure power supply for the control circuit 5.
  • the sensing circuit 6 may include a sensor U7 and the sensing and detecting circuit U6.
  • the sensor U7 may be configured to send the sensing signal to the sensing and detecting circuit U6 when detecting that the first trigger event occurs in the region.
  • the sensor U7 may include a microwave sensor U71, an infrared sensor U72, and an acoustic sensor U73. In other embodiments, a combination of at least two of the microwave sensor U71, the infrared sensor U72, and the acoustic sensor U73 may also be used.
  • the sensing and detecting circuit U6 may be configured to obtain and send the first trigger signal to the control circuit 5 according to the sensing signal.
  • the sensing signal can be understood as a signal generated by the sensor U7 detecting that the first trigger event occurs in the region.
  • the first trigger signal may be the signal processed and generated according to the sensing signal. Processing the first trigger signal may include transforming the sensing signal to a signal recognizable for the control circuit 5.
  • an automatic feedback to the first trigger event may be implemented so as to trigger the control circuit 5 to perform a control.
  • the security light technology uses a camera to sense human activities and detect human motion information.
  • the techniques cause high costs and high requirements for image storage, and they are equipped with no emergency function.
  • the embodiments of the present disclosure employ sound, infrared, and/or thermoelectric infrared sensors to sense human activities, or use microwave sensors to detect human movement information by the Doppler effect.
  • the related costs are low, the storage requirements are not high, and the system can continue to run during power outages.
  • the power supply provided by the first power supply circuit 1 may be transmitted to the control circuit 5 through the third resistor R3 and the fourth resistor R4 in series, for example, transmitted to the RF transceiver and control circuit U5 in the control circuit 5.
  • the sensor light may further include a fourth capacitor C4, a Zener diode Z1, and a second resistor R2.
  • the fourth capacitor C4 may be connected to two ends of the Zener diode Z1 in parallel. And a first end of the fourth capacitor C4 may be connected to the control circuit 5 and the second power supply circuit 2, respectively.
  • the first end of the fourth capacitor C4 may be connected to the RF transceiver control circuit U5 in the control circuit 5 and a drain of the second power switch Q1 in the second power supply circuit 2, respectively.
  • a second end of the fourth capacitor C4 and a first end of the Zener diode Z1 may be connected to the ground.
  • the power is supplied to the RF transceiver and control circuit U5 and the sensing and detecting circuit U6 through the fourth capacitor C4, the Zener diode Z1, and the second resistor R2.
  • the operations of the sensor light can be understood as follows.
  • the first power switch S1 is closed (i.e. the first power supply circuit 1 is in an on-state) and the system is powered, and if the light is in a sensing mode, the sensor U7 may detect whether there is any activity of humans or objects in a surrounding environment. If so, a signal (e.g., the first trigger signal) sent by the sensor U7 may be processed by the sensing and detecting circuit U6 and sent to the RF transceiver and control circuit U5.
  • the RF transceiver and control circuit U5 may send a signal (e.g., first feedback information) to the external control device.
  • a RF receiving circuit of the RF transceiver and control circuit U5 may receive a control information of the external control device to control an operating mode of the related circuits, for example, the voltage-current conversion circuit U2 and the sensing and detecting circuit U6.
  • the RF transceiver and control circuit U5 may be configured to block receiving the first triggering signal from the sensing and detecting circuit U6.
  • the sensor U7 may be turned off completely in response to the light being not in a sensing mode so that no signal is sent to the RF transceiver and control circuit U5.
  • the control circuit U5 may transmit a signal to the driver circuit 3, so the light may be controlled under a normal state, in which the state (on or off) of the light-emitting circuit 4 is determined by the state of the first power switch S1.
  • the RF transceiver and control circuit U5 can control the on/off state and other characteristics of the light emitted by the LED light-emitting circuit based on control signal received from a user terminal.
  • the RF transceiver and control circuit U5 may detect that the external power supply is unavailable, and in response, turn on the second power switch Q1 (e.g., by sending out the third trigger signal) .
  • the RF transceiver and control circuit U5 and the sensing and detecting circuit U6 may be charged by the power storage device U4 instead.
  • the sensor U7 may detect whether there is any activity of humans or objects around. If so, the signal sent by the sensor U7 may be processed by the sensing and detecting circuit U6 and sent to a control circuit of the RF transceiver and control circuit U5.
  • the RF transceiver circuit in the RF transceiver and control circuit U5 may send a signal to the external control device.
  • the power supplied by the first power supply circuit may be received and stored by the second power supply circuit. It can realize the storage of the electrical energy.
  • the third trigger signal may be also received by the second power supply circuit.
  • the stored electricity energy may be supplied to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  • the first power supply circuit supplies external power to the second power supply circuit, the sensing circuit, the control circuit, and the light-emitting circuit, in a power outage, a failure, or an emergency
  • the power supply to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit can still be achieved. It can ensure a normal operation of the sensor light in emergency situations.
  • the sensor light may include a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit.
  • the method may include: detecting, by the sensing circuit, that a first trigger event occurs in a region, and generating and sending, by the sending circuit, a first trigger signal to the control circuit.
  • the method may further include: sending, by the control circuit, a second trigger signal to the driver circuit in response to the first trigger signal, and driving, by the driver circuit, the light-emitting circuit to emit light in response to the second trigger signal.
  • the method may include: providing, by the first power supply circuit, the external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit, and receiving and storing, by the second power supply circuit, power supplied by the first power supply circuit.
  • the method may include: sending, by the control circuit, a third trigger signal to the second power supply circuit, and using, by the second power supply circuit, the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  • the above-mentioned programs may be stored in a computer readable storage medium.
  • steps including the foregoing method are performed.
  • the foregoing storage medium may include various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A sensor light is provided. The sensor light includes a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit. The sensing circuit is configured to detect that a first trigger event occurs in a region and send a first trigger signal to the control circuit. The control circuit is configured to receive the first trigger signal, send a second trigger signal to the driver circuit, and send a third trigger signal to the second power supply circuit when the first power supply circuit is not supplying power. The driver circuit is configured to receive the second trigger signal and drive the light-emitting circuit to emit light. The second power supply circuit is configured to receive the third trigger signal and provide stored power to the sensor light when power is down.

Description

SENSOR LIGHT AND CONTROL METHOD THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the priority of Chinese Patent Application No. 201710401328.8, entitled "Sensor security light " , filed on May 31, 2017, the entire contents of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to the field of illumination technologies and, more particularly, relates to sensor light and a related control method.
BACKGROUND
Lighting is to provide various light sources to illuminate work and living areas or individual objects. In consideration of energy saving, a sensor-type light may be used as a lighting device, such as a security light. The sensor light may only provide lighting when a human body is active in a corresponding area.
In related arts, those security lights are normally powered by an external power supply. Once the external power supply is interrupted or an emergency occurs, the security lights cannot be guaranteed to work normally.
BRIEF SUMMARY OF THE DISCLOSURE
One aspect of the present disclosure provides a sensor light. The sensor light can realize storage of electrical energy. In a power outage, a failure, or an emergency, the senor security light of the present disclosure can still supply power and ensure a normal operation of the sensor light in emergency situations.
The sensor light may include a sensing circuit, a control circuit, a driver  circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit. The first power supply circuit may be configured to provide an external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit. The sensing circuit may be configured to detect that a first trigger event occurs in a region, generate and send a first trigger signal to the control circuit. The control circuit may be configured to receive the first trigger signal, send a second trigger signal to the driver circuit, and send a third trigger signal to the second power supply circuit when the first power supply circuit stops supplying power. The driver circuit may be configured to receive the second trigger signal and drive the light-emitting circuit to emit light. And the second power supply circuit may be configured to receive and store the power supplied by the first power supply circuit, receive the third trigger signal and use the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
Another aspect of the present disclosure may provide a method for controlling the sensor light. The sensor light may include a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit. The method may include: detecting, by the sensing circuit, that a first trigger event occurs in a region, and generating and sending, by the sending circuit, a first trigger signal to the control circuit. The method may further include: sending, by the control circuit, a second trigger signal to the driver circuit in response to the first trigger signal, and driving, by the driver circuit, the light-emitting circuit to emit light in response to the second trigger signal. When an external power is available, the method may include: providing, by the first power supply circuit, the external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit, and receiving and storing, by the second power supply circuit, power supplied by the first power supply circuit. When the first power supply circuit stops supplying power, the method may include: sending, by the control circuit, a third trigger signal to the second power supply circuit, and using, by the second power supply circuit, the stored power to  supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
With the embodiments of the present disclosure, the power supplied by the first power supply circuit may be received and stored by the second power supply circuit. The third trigger signal may be also received by the second power supply circuit. The stored electricity energy may be supplied to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit. In this manner, in addition that the first power supply circuit supplies external power to the second power supply circuit, the sensing circuit, the control circuit, and the light-emitting circuit, in a power outage, a failure, or an emergency, the power supply to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit can still be achieved.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure, the accompanying drawings illustrated the embodiments of the present disclosure are briefly introduced in the following. Obviously, the drawings in the description are merely some embodiments of the present disclosure, and for those skilled in the art, under the premise of not having creative efforts, other drawings may also be obtained on the basis of the accompanying drawings and in view of the present disclosure.
As such, the following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure.
FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure.
FIG. 2 is a schematic circuit diagram of a first sensor light according to some embodiments of the present disclosure.
FIG. 3 is a schematic circuit diagram of a second sensor light according to some embodiments of the present disclosure.
FIG. 4 is a schematic circuit diagram of a third sensor light according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The technical solutions in the embodiments of the present disclosure will be described in a clear and complete manner with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are only a part of all the embodiments of the present disclosure, but not all of them. Based on the embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without creative efforts should be deemed under the protection scope of the present disclosure.
In the description, the claims, and the accompanying drawings of the present disclosure, the terms "first" , "second" , "third" , "fourth" , etc. (if any) are used to distinguish similar objects but unnecessarily used to identify a specific order or sequence. It should be understood that the data used in this manner are interchangeable whenever appropriate so that the embodiments of the present disclosure described can be, for example, realized in an order other than the specific orders illustrated or described herein. In addition, the terms "include" , "have" , and any of their variations are intended to cover nonexclusive inclusions, for example, including processes, methods, systems, products, or apparatuses of a series of steps or units. They are unnecessarily limited to those steps or units that are clearly listed but may include those that are not clearly listed or that are inherent to the processes, methods, systems, products, or apparatuses.
The technical solutions of the present disclosure will be described in detail  with specific embodiments below. Some of the following embodiments may be combined with each other, and the same or similar concepts or steps may be omitted.
FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure. With reference to FIG. 1, one aspect of the present disclosure provides a sensor light. The sensor light may include a first power supply circuit 1, a second power supply circuit 2, a driver circuit 3, a light-emitting circuit 4, a control circuit 5, and a sensing circuit 6.
The first power supply circuit 1 may be configured to provide external power to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, or the light-emitting circuit 4. The sensing circuit 6 may be configured to detect that a first trigger event occurs in a region, and in response to the first trigger event, generate and send a first trigger signal to the control circuit 5.
The first trigger event may include any event that occurs in the region. For example, it may include that a living body with body temperature, such as human body or an animal body, enters the region. It may also include that a movement event that exceeds a preset speed threshold is found. And the first trigger signal may include any signal that can be recognized by the control circuit 5 to sense the first trigger event.
The control circuit 5 may be configured to receive the first trigger signal and send a second trigger signal to the driver circuit 3. The second trigger signal may include any signal that enables the driver circuit 3 to drive light emission in response to receiving the second trigger signal. In one embodiment, the control circuit 5 may be configured to send the second trigger signal in response to receiving the first trigger signal from the sensing circuit 6. In another embodiment, the control circuit 5 is configured to send the second trigger signal based on a preset configuration (e.g., a time schedule to turn on/off or brighten/dim the emitted light) , and/or based on a control information sent from an external control device.
The control circuit 5 may be configured to send a third trigger signal to the second power supply circuit 2 when the first power supply circuit 1 is not supplying  power. Regarding “when the first power supply circuit 1 is not supplying the power” , it can be understood as that an external power U0 transmitted through the first power supply circuit 1 is not providing the power supply (to the sensor light) , or can also be understood as that the first power supply circuit 1 controls to not provide the power supply (e.g., by switching off connection to the external power U0) . In some embodiments, the control circuit 5 is configured to detect an event that the first power supply circuit 1 stops supplying power, and send the third trigger signal in response to the detected event. The third trigger signal may include any signal that can trigger the second power supply circuit 2 to provide power supply to at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4.
The driver circuit 3 may be configured to receive the second trigger signal and drive the light-emitting circuit 4 to emit light.
The second power supply circuit 2 may be configured to receive and store the power supplied by the first power supply circuit 1, receive the third trigger signal, and use the stored power to supply at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4.
FIG. 1 is a schematic block diagram of a sensor light according to some embodiments of the present disclosure. FIG. 2 is a schematic circuit diagram of a first sensor light according to some embodiments of the present disclosure. FIG. 3 is a schematic circuit diagram of a second sensor light according to some embodiments of the present disclosure. And FIG. 4 is a schematic circuit diagram of a third sensor light according to some embodiments of the present disclosure.
With reference to FIG. 1 to FIG. 4, in some embodiments, the first power supply circuit 1 may further include a rectification circuit U1.
The rectification circuit U1 may be configured to rectify the external power (e.g., U0) and supply power to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, or the light-emitting circuit 4. In some embodiments, the rectified power may be respectively supplied to the second power supply circuit 2, the sensing circuit 6, the control circuit 5, the driver circuit 3, and the light-emitting circuit 4.
In some embodiments, the first power supply circuit 1 may further include a first power switch S1. The first power switch S1 may be configured to control the power supply to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5, driver circuit 3, or the light-emitting circuit 4. In some embodiments, when the first power switch S1 is switched on to connect the first power supply circuit 1 with the external power U0, a power storage device U4 may be powered by a charging circuit U3 in the second power supply circuit 2, the charging circuit U3 being powered by the first power supply circuit 1. A voltage-current conversion circuit U2 in the driver circuit 3 may be powered (e.g., by the first power supply circuit 1) to supply the power to a Light-Emitting Diode (LED) light-emitting circuit U8 in the light-emitting circuit 4. A radio frequency (RF) transceiver and control circuit U5 in the control circuit 5 may be also powered, as well as a sensing and detecting circuit U6 in the sensing detection circuit 6.
The first power supply circuit 1 may be configured to convert Alternating Current (AC) power into Direct Current (DC) power by using the rectification circuit U1 after the power from the external power U0 passes through the first power switch S1. That is, the DC power supply and control of the power supply are realized by the rectification circuit U1 and the first power switch S1.
In some embodiments, as shown in FIG. 2, the first power supply circuit 1 may further include a first capacitor C1 and a first inductor L1. The first capacitor C1 may be connected in parallel with the external power U0. A first end of the first inductor L1 may be connected to a first end of the first capacitor C1 and a first end of the external power U0 through the first power switch S1, respectively. A second end of the first inductor L1 may be connected to a first input end of the rectification circuit U1, and a second input end of the rectification circuit U1 may be connected to a second end of the first capacitor C1 and a second end of the external power U0, respectively. In some embodiments, the first power supply circuit 1 may further include a second capacitor C2, and both ends of the second capacitor C2 may be connected with two output ends of the rectification circuit U1 in parallel. The first capacitor C1 and the second capacitor C2 can reduce voltage fluctuation of the  circuits, thereby protecting components in the circuits.
With reference to FIG. 1 to FIG. 4, in some embodiments, the second power supply module 2 may include the power storage device U4, the charging circuit U3, and a second power switch Q1.
The charging circuit U3 may be configured to transmit the power supplied by the first power supply circuit 1 to the power storage device U4. In other words, the charging circuit U3 may be configured as a charging controller of the power storage device U4.
The second power switch Q1 may be configured to receive the third trigger signal and control the power storage device U4 to supply the power to at least one of the control circuit 5, the sensing circuit 6, the driver circuit 3, or the light-emitting circuit 4. In some embodiments, a control terminal (e.g., gate) of the second power switch Q1 may be connected to the control circuit 5. A source terminal of the second power switch Q1 may be connected to the power storage device U4, and a drain terminal of the second power switch Q1 may be connected to at least one of the control circuit 5, the sensing circuit 6, the light-emitting circuit 4, or the driver circuit 3. For instance, the drain of the second power switch Q1 may be connected to the control circuit 5 and the sensing circuit 6, respectively. In one example, the charging circuit U3 may be configured to charge the power storage device U4. The power storage device U4 may be configured to power the RF transceiver and control circuit U5 and the sensing and detecting circuit U6 during a power failure of the external power.
In some embodiments, the power supplied by the first power supply circuit 1 may be received and stored by the second power supply circuit 2 for power storage. The third trigger signal may be received by the second power supply circuit 2 (e.g., from the control circuit 5 when the external power is unavailable) . In response to the third trigger signal, the stored power may be supplied to at least one of the control circuit 5, the sensing circuit 6, or the light-emitting circuit 4. In normal conditions, the first power supply module 1 may provide the external power U0 to at least one of the second power supply circuit 2, the sensing circuit 6, the control circuit 5 or the  light-emitting circuit 4. As such, when the external power U0 is powered off or an emergency occurs, the power supply to at least one of the control circuit 5, the sensing circuit 6, and the light-emitting circuit 4 may still be achieved by the second power supply circuit 2. The configuration therefore ensures a normal operation of the sensor light even in emergency situations.
In some embodiments, with reference to FIG. 1 to FIG. 4, the driver circuit 3 may include the voltage-current conversion circuit U2.
The voltage-current conversion circuit U2 may be configured to receive the second trigger signal and enter an operating mode in response to the second trigger signal, and in the operating mode, based on supplied voltage, output current to enable the light-emitting circuit 4 to emit light. The voltage-current conversion circuit U2 may be a voltage-controlled current source. Through the voltage-current conversion circuit U2, the converted current may be equivalent to a constant current source with adjustable output, and the outputted current can be kept stable, and does not change along with load variation.
In some embodiments, the driver circuit 3 may further include a DC buck circuit. The DC buck circuit may be configured to receive the second trigger signal and enter an operating mode in response to the second trigger signal, and in the operating mode, dropped voltage may be supplied to the light-emitting circuit 4 to enable the light-emitting circuit 4 to emit light. The DC buck circuit may share certain components with the voltage-current conversion circuit U2. In some embodiments, the DC buck circuit may include a controller, a switching device (e.g., Q2) , a first diode D1, a second inductor L2, and a third capacitor C3. The controller and the switching device may be arranged inside the voltage-current conversion circuit U2 such that the DC buck circuit receive the second trigger signal simultaneously with the voltage-current conversion circuit U2 and enter the operating mode in response to the second trigger signal. A control terminal (e.g., gate) of the switching device may be connected to the controller, and a drain terminal of the switching device may be connected to a first end of the first diode D1 and a first end of the second inductor L2, respectively. And a source terminal of the switching device may be connected to a low  potential, such as being grounded, through the first resistor R1. A second end of the first diode D1 may be connected to the first output end of the first power supply circuit, such as the first output end of the rectification circuit U1. The second end of the first diode D1 may also be connected to a first end of the light-emitting circuit 4 and a first end of the third capacitor C3. A second end of the second inductor L2 may be connected to a second end of the third capacitor C3 and a second end of the light-emitting circuit 4, respectively. The third capacitor C3 may be also connected to both ends of the light-emitting circuit 4 in parallel. The above configuration can achieve a DC voltage drop and have a higher efficiency.
The voltage-current conversion circuit U2 may convert the voltage into low-voltage DC current through the second inductor L2 and the first diode D1 and supply the low-voltage DC current to the LED light-emitting circuit U8.
With reference to FIG. 1 to FIG. 4, in some embodiments, the light-emitting circuit 4 may include the Light-Emitting Diode (LED) light-emitting circuit U8. The LED light-emitting circuit U8 may include a plurality of LEDs connected in series. Based on the above embodiments, the LED light-emitting circuit U8 can emit light to provide lighting for its surrounding space.
In some embodiments, referring to FIG. 1 to FIG. 4, the control circuit 5 may be further configured to obtain or generate a first feedback information, and send, through a communication circuit, the first feedback information to an external control device. In one example, the first feedback information may be generated according the firs trigger signal. The first feedback information may include: a working status of the sensor light (e.g., on/off status, brightness, color, etc. ) , a notice to be presented by the external device that the first trigger event is detected, and/or detailed information about the first trigger event, such as an image/video/audio corresponding to the detected activity. In another example, the control circuit 6 may be configured to generate the first feedback information according to a query from an external device received through the communication circuit, where the query may request for a current working status of the sensor light, most recent first trigger event and related detailed information, historic working status, historic first trigger events, etc. The  control circuit 6 may obtain the requested information to be used as the first feedback information.
The control circuit 5 may be further configured to receive, through the communication circuit, a first control information sent by the external control device and control, according to the first control information, an operating mode of at least one of the driver circuit 3, the second power supply circuit 2, or the sensing circuit 6. The first control information may be obtained through the external control device according to the first feedback information. In one embodiment, the control circuit 5 may include the RF transceiver and control circuit U5, and the RF transceiver and control circuit U5 may be configured to realize the above process.
In some embodiments, the communication circuit can be understood as a unit that realizes external communication, and the communication method adopted is not limited to any specific manner. For example, the communication circuit may use radio frequency (RF) communication to achieve near-field control. The control circuit 5 may include a first antenna A1 to realize the RF communication through the first antenna A1.
In some embodiments, the control circuit 5 may be further configured to receive, through the communication circuit, a second control information sent by the external device and control an operating mode of at least one of the driver circuit, the second power supply circuit, or the sensing circuit according to the second control information. In one embodiment, the control circuit 5 may include the RF transceiver and control circuit U5, and the RF transceiver and control circuit U5 may be configured to realize the above process.
In some embodiments, controlling the operating mode of the driver circuit 3 includes controlling the driver circuit 3 to adjust brightness, color, saturation, and/or other characteristics of the light emitted by the light-emitting circuit 4. Controlling the operating mode of the second power supply circuit 2 may include: charging configurations, such as setting start or stop states, controlling charging time, charged capacity, and/or charging current, etc. In some embodiments, the second power supply circuit 2 may also be equipped with indicators for showing, e.g., charged capacity  (such as percentage or full charged) and/or life of the power storage device U4. Controlling the operating mode of the sensing circuit 6 may include controlling the state of the sensor 7 (such as on or off mode) , sensing operation type (such as which sensor to use when multiple sensors are applied) , sensitivity or threshold for detecting trigger event, a sensing range, selectivity, resolutions, and so on. Further, the first control information and/or the second control information may be generated by the external device automatically based on a predetermined configuration (e.g., adjust the sensor light to a first brightness level in response to the first trigger event) , or based on a user input.
The RF transceiver and control circuit U5 can be understood as being used to receive external signals and transmit RF signals and control an operating mode of related circuits.
It can be seen that, in addition to automatic control by the sensing circuit 6, in the above embodiments, a direct control from the outside (e.g., external device such as a remote control or a mobile phone) can also be achieved through the communication circuit. The direct control may include controlling an operating mode of the driver circuit 3, and controlling the second power supply circuit 2, for example, the control of the second power switch Q1 in the second power supply circuit 2. In this manner, such configuration enriches a control method and improves a control diversity of the sensor light.
In addition, the control circuit 5 and the RF transceiver and control circuit U5 in the control circuit 5 may be internally provided with a power storage device to ensure power supply for the control circuit 5.
In some embodiments, with reference to FIG. 1 to FIG. 4. the sensing circuit 6 may include a sensor U7 and the sensing and detecting circuit U6.
The sensor U7 may be configured to send the sensing signal to the sensing and detecting circuit U6 when detecting that the first trigger event occurs in the region. With reference to FIG. 2 to FIG. 4, respectively, in some embodiments, the sensor U7 may include a microwave sensor U71, an infrared sensor U72, and an acoustic sensor U73. In other embodiments, a combination of at least two of the microwave sensor  U71, the infrared sensor U72, and the acoustic sensor U73 may also be used.
The sensing and detecting circuit U6 may be configured to obtain and send the first trigger signal to the control circuit 5 according to the sensing signal.
The sensing signal can be understood as a signal generated by the sensor U7 detecting that the first trigger event occurs in the region. The first trigger signal may be the signal processed and generated according to the sensing signal. Processing the first trigger signal may include transforming the sensing signal to a signal recognizable for the control circuit 5. Through the above embodiments, an automatic feedback to the first trigger event may be implemented so as to trigger the control circuit 5 to perform a control.
In the existing related technologies, the security light technology uses a camera to sense human activities and detect human motion information. The techniques cause high costs and high requirements for image storage, and they are equipped with no emergency function. The embodiments of the present disclosure, however, employ sound, infrared, and/or thermoelectric infrared sensors to sense human activities, or use microwave sensors to detect human movement information by the Doppler effect. The related costs are low, the storage requirements are not high, and the system can continue to run during power outages.
In some embodiments, the power supply provided by the first power supply circuit 1 may be transmitted to the control circuit 5 through the third resistor R3 and the fourth resistor R4 in series, for example, transmitted to the RF transceiver and control circuit U5 in the control circuit 5.
Referring to FIG. 2 to FIG. 4, in some embodiments, the sensor light may further include a fourth capacitor C4, a Zener diode Z1, and a second resistor R2. The fourth capacitor C4 may be connected to two ends of the Zener diode Z1 in parallel. And a first end of the fourth capacitor C4 may be connected to the control circuit 5 and the second power supply circuit 2, respectively. For example, the first end of the fourth capacitor C4 may be connected to the RF transceiver control circuit U5 in the control circuit 5 and a drain of the second power switch Q1 in the second power supply circuit 2, respectively. A second end of the fourth capacitor C4 and a first end  of the Zener diode Z1 may be connected to the ground. The power is supplied to the RF transceiver and control circuit U5 and the sensing and detecting circuit U6 through the fourth capacitor C4, the Zener diode Z1, and the second resistor R2.
In view of the above embodiments, the operations of the sensor light can be understood as follows. When the first power switch S1 is closed (i.e. the first power supply circuit 1 is in an on-state) and the system is powered, and if the light is in a sensing mode, the sensor U7 may detect whether there is any activity of humans or objects in a surrounding environment. If so, a signal (e.g., the first trigger signal) sent by the sensor U7 may be processed by the sensing and detecting circuit U6 and sent to the RF transceiver and control circuit U5. The RF transceiver and control circuit U5 may send a signal (e.g., first feedback information) to the external control device. Further, a RF receiving circuit of the RF transceiver and control circuit U5 may receive a control information of the external control device to control an operating mode of the related circuits, for example, the voltage-current conversion circuit U2 and the sensing and detecting circuit U6.
If the light is not in a sensing mode, the RF transceiver and control circuit U5 may be configured to block receiving the first triggering signal from the sensing and detecting circuit U6. In other embodiments, the sensor U7 may be turned off completely in response to the light being not in a sensing mode so that no signal is sent to the RF transceiver and control circuit U5. In that case, the control circuit U5 may transmit a signal to the driver circuit 3, so the light may be controlled under a normal state, in which the state (on or off) of the light-emitting circuit 4 is determined by the state of the first power switch S1. In another embodiment, if the light is not in a sensing state, the RF transceiver and control circuit U5 can control the on/off state and other characteristics of the light emitted by the LED light-emitting circuit based on control signal received from a user terminal.
When the first power switch S1 is opened (turned off) or the power is cut off, the RF transceiver and control circuit U5 may detect that the external power supply is unavailable, and in response, turn on the second power switch Q1 (e.g., by sending out the third trigger signal) . The RF transceiver and control circuit U5 and the  sensing and detecting circuit U6 may be charged by the power storage device U4 instead. And if the sensor light is in a sensing mode, the sensor U7 may detect whether there is any activity of humans or objects around. If so, the signal sent by the sensor U7 may be processed by the sensing and detecting circuit U6 and sent to a control circuit of the RF transceiver and control circuit U5. The RF transceiver circuit in the RF transceiver and control circuit U5 may send a signal to the external control device.
In the sensor light provided by the present disclosure, the power supplied by the first power supply circuit may be received and stored by the second power supply circuit. It can realize the storage of the electrical energy. The third trigger signal may be also received by the second power supply circuit. The stored electricity energy may be supplied to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit. In this manner, in addition that the first power supply circuit supplies external power to the second power supply circuit, the sensing circuit, the control circuit, and the light-emitting circuit, in a power outage, a failure, or an emergency, the power supply to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit can still be achieved. It can ensure a normal operation of the sensor light in emergency situations.
Another aspect of the present disclosure provides a method for controlling the sensor light. The sensor light may include a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit. The method may include: detecting, by the sensing circuit, that a first trigger event occurs in a region, and generating and sending, by the sending circuit, a first trigger signal to the control circuit. The method may further include: sending, by the control circuit, a second trigger signal to the driver circuit in response to the first trigger signal, and driving, by the driver circuit, the light-emitting circuit to emit light in response to the second trigger signal. When an external power is available, the method may include: providing, by the first power supply circuit, the external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit, and receiving and storing, by  the second power supply circuit, power supplied by the first power supply circuit. When the first power supply circuit stops supplying power, the method may include: sending, by the control circuit, a third trigger signal to the second power supply circuit, and using, by the second power supply circuit, the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
Persons of ordinary skills in the art can understand that all or part of the steps for implementing the above embodiments can be accomplished by hardware related to instruction programs. The above-mentioned programs may be stored in a computer readable storage medium. When the program is executed, steps including the foregoing method are performed. The foregoing storage medium may include various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.
It should be also noted that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than limiting the same. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that it is still possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all of the technical features. And these modifications or replacements do not deviate the essence or the range of the corresponding technical solutions of the embodiments of the present disclosure.
Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure provided herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the claims.

Claims (20)

  1. A sensor light, comprising a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit, wherein:
    the first power supply circuit is configured to provide an external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit,
    the sensing circuit is configured to detect that a first trigger event occurs in a region, generate and send a first trigger signal to the control circuit,
    the control circuit is configured to receive the first trigger signal, send a second trigger signal to the driver circuit, and send a third trigger signal to the second power supply circuit when the first power supply circuit stops supplying power,
    the driver circuit is configured to receive the second trigger signal and drive the light-emitting circuit to emit light, and
    the second power supply circuit is configured to receive and store the power supplied by the first power supply circuit, receive the third trigger signal and use the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  2. The sensor light of claim 1, wherein:
    the second power supply circuit includes a power storage device, a charging circuit, and a second power switch,
    the charging circuit is configured to transmit the power supplied by the first power supply circuit to the power storage device, and
    the second power switch is configured to receive the third trigger signal and control the power storage device to supply the power to at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
  3. The sensor light of claim 1, wherein:
    the sensing circuit includes a sensor and a sensing and detecting circuit,
    the sensor is configured to detect that the first trigger event occurs in the region, generate and send a sensing signal, and
    the sensing and detecting circuit is configured to obtain and send the first trigger signal to the control circuit according to the sensing signal.
  4. The sensor light of claim 3, wherein the sensor includes at least one of a microwave sensor, an infrared sensor, or an acoustic sensor.
  5. The sensor light of claim 1, wherein:
    the driver circuit includes a voltage-current conversion circuit, and
    the voltage-current conversion circuit is configured to receive the second trigger signal and enter an operating mode, and in the operating mode, current is outputted based on supplied voltage to enable the light-emitting circuit to emit light.
  6. The sensor light of claim 1, wherein:
    the driver circuit includes a Direct Current (DC) buck circuit, and
    the DC buck circuit is configured to receive the second trigger signal and enter an operating mode, and in the operating mode, dropped voltage is supplied to the light-emitting circuit to enable the light-emitting circuit to emit light.
  7. The sensor light of claim 1, wherein the control circuit is further configured to:
    obtain a first feedback information according to the first trigger signal, and send, through a communication circuit, the first feedback information to an external control device, and
    receive, through the communication circuit, a first control information sent by the external control device and control, according to the first control information, at least one of the driver circuit, the second power supply circuit, or the sensing circuit,  the first control information being obtained through the external control device according to the first feedback information.
  8. The sensor light of claim 1, wherein the control circuit is configured to receive, through a communication circuit, a second control information sent by an external control circuit and control at least one of the driver circuit, the second power supply circuit, or the sensing module according to the second control information.
  9. The sensor light of claim 1, wherein:
    the first power supply circuit includes a rectification circuit, and
    the rectification circuit is configured to rectify the external power and supply rectified power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit.
  10. The sensor light of claim 1, wherein:
    the first power supply circuit includes a first power switch, and
    the first power switch is configured to control power supply to at least one of the second power supply circuit, the sensing circuit, the control circuit, driver circuit, or the light-emitting circuit.
  11. The sensor light of claim 9, wherein:
    the first power supply circuit includes a first capacitor and a first inductor,
    the first capacitor is connected in parallel with an external power supply, and
    a first end of the first inductor is connected to a first end of the first capacitor and a first end of the external power supply through a first power switch, respectively, a second end of the first inductor is connected to a first input end of the rectification circuit, and a second input end of the rectification circuit is connected to a second end of the first capacitor and a second end of the external power supply, respectively.
  12. The sensor light of claim 11, wherein:
    the first power supply circuit further includes a second capacitor, and
    both ends of the second capacitor is connected to two output ends of the rectification circuit in parallel.
  13. The sensor light of claim 2, wherein: a control terminal of the second power switch is connected to the control circuit, a source terminal of the second power switch is connected to the power storage device, and a drain terminal of the second power switch is connected to at least one of the control circuit, the sensing circuit, the light-emitting circuit, or the driver circuit.
  14. The sensor light of claim 6, wherein:
    the DC buck circuit includes a controller, a switching device, a first diode, a second inductor, and a third capacitor,
    the controller and the switching device are arranged inside the voltage-current conversion circuit so as to receive the second trigger signal and enter an operating mode,
    a control terminal of the switching device is connected to the controller, a drain terminal of the switching device is connected to a first end of the first diode and a first end of the second inductor, respectively, and a source terminal of the switching device is connected to a low potential through a first resistor,
    a second end of the first diode is connected to a first output end of the first power supply circuit, a first end of the light-emitting circuit and a first end of the third capacitor, respectively,
    a second end of the second inductor is connected to a second end of the third capacitor and a second end of the light-emitting circuit, respectively, and
    the third capacitor is connected to both ends of the light-emitting circuit in parallel.
  15. The sensor light of claim 1, wherein the light-emitting circuit includes a plurality of Light-Emitting Diodes (LEDs) connected in series.
  16. The sensor light of claim 7, wherein the control circuit includes a Radio Frequency (RF) transceiver and control circuit configured to:
    receive the first feedback information according to the first trigger signal and send the first feedback information to the external control device, and
    receive the first control information and control, according to the first control information, an operating mode of at least one of the driver circuit, the second power supply circuit, or the sensing circuit.
  17. The sensor light of claim 16, wherein the control circuit includes an antenna to perform an RF communication with the communication circuit.
  18. The sensor light of claim 1, wherein the control circuit includes a power storage device to ensure power supply for the control circuit.
  19. The sensor light of claim 1, further including a fourth capacitor, a Zener diode, and a second resistor, wherein:
    the fourth capacitor is connected to two ends of the Zener diode in parallel, and
    a first end of the fourth capacitor is connected to the control circuit and the second power supply circuit, respectively, and a second end of the fourth capacitor is connected to a low potential.
  20. A method for controlling a sensor light that includes a sensing circuit, a control circuit, a driver circuit, a light-emitting circuit, a first power supply circuit, and a second power supply circuit, the method comprising:
    detecting, by the sensing circuit, that a first trigger event occurs in a region,
    generating and sending, by the sensing circuit, a first trigger signal to the control circuit,
    in response to the first trigger signal, sending, by the control circuit, a second trigger signal to the driver circuit,
    in response to the second trigger signal, driving, by the driver circuit, the light-emitting circuit to emit light,
    when an external power is available,
    providing, by the first power supply circuit, the external power to at least one of the second power supply circuit, the sensing circuit, the control circuit, the driver circuit, or the light-emitting circuit, and
    receiving and storing, by the second power supply circuit, power supplied by the first power supply circuit,
    when the first power supply circuit stops supplying power,
    sending, by the control circuit, a third trigger signal to the second power supply circuit, and
    in response to the third trigger signal, using, by the second power supply circuit, the stored power to supply at least one of the control circuit, the sensing circuit, the driver circuit, or the light-emitting circuit.
PCT/CN2018/088206 2017-05-31 2018-05-24 Sensor light and control method thereof WO2018219205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710401328.8 2017-05-31
CN201710401328.8A CN107148133B (en) 2017-05-31 2017-05-31 Induction type security protection lamp

Publications (1)

Publication Number Publication Date
WO2018219205A1 true WO2018219205A1 (en) 2018-12-06

Family

ID=59780848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088206 WO2018219205A1 (en) 2017-05-31 2018-05-24 Sensor light and control method thereof

Country Status (2)

Country Link
CN (1) CN107148133B (en)
WO (1) WO2018219205A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148133B (en) * 2017-05-31 2023-12-12 浙江生辉照明有限公司 Induction type security protection lamp
CN108419333A (en) * 2018-03-19 2018-08-17 浙江生辉照明有限公司 Induction type security light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204425704U (en) * 2014-11-13 2015-06-24 西安重装渭南光电科技有限公司 A kind of LED emergency light
CN204652735U (en) * 2015-04-29 2015-09-16 珠海西默电气科技有限公司 A kind of multifunctional fire-fighting emergency lighting device
CN204993990U (en) * 2015-08-27 2016-01-20 惠阳帝宇工业有限公司 Light circuit with microwave vehicle actuated control and emergency lighting
JP2016164892A (en) * 2016-06-06 2016-09-08 かがつう株式会社 Emergency lighting equipment
CN205726613U (en) * 2016-06-23 2016-11-23 文德勤 A kind of Multi-functional road lamp control system
CN107148133A (en) * 2017-05-31 2017-09-08 浙江生辉照明有限公司 Induction type security light
CN207022265U (en) * 2017-05-31 2018-02-16 浙江生辉照明有限公司 Induction type security light

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090184831A1 (en) * 2006-09-20 2009-07-23 Tsung-Jung Huang Controlling device of a multifunctional lamp
CN201087779Y (en) * 2007-05-31 2008-07-16 合肥三川自控工程有限责任公司 Multifunctional LED lighting lamp
CN102264168B (en) * 2010-05-25 2015-01-07 合肥三川自控工程有限责任公司 Induction lighting lamp and induction lighting system
JP5832333B2 (en) * 2011-02-22 2015-12-16 野口 宏和 Fluorescent lamp type LED lighting device
JP2013026203A (en) * 2011-07-19 2013-02-04 Labros Inc Emergency led lighting apparatus
CN103002618B (en) * 2011-09-09 2015-11-25 东莞巨扬电器有限公司 LED light device
CN102769962B (en) * 2011-11-16 2015-07-08 惠州茂硕能源科技有限公司 Wireless communication network based intelligent high-power LED driving power source system
JP5722810B2 (en) * 2012-02-01 2015-05-27 セルフ株式会社 Street lighting fixtures
JP5951279B2 (en) * 2012-02-24 2016-07-13 かがつう株式会社 Emergency lighting equipment
CN202835138U (en) * 2012-04-20 2013-03-27 东莞巨扬电器有限公司 Lighting device and lighting cluster
TWM439302U (en) * 2012-05-04 2012-10-11 Just Power Integrated Technology Inc (3) has electrical detection device
DE102012214832A1 (en) * 2012-08-21 2014-02-27 Tridonic Uk Ltd. Emergency lighting device with potential separation between light source and energy storage
CN202868547U (en) * 2012-09-29 2013-04-10 东莞巨扬电器有限公司 Lighting device
CN203504278U (en) * 2013-08-28 2014-03-26 广州凯明照明器具有限公司 Solar power supply device and solar illumination equipment
CN104684156A (en) * 2013-11-28 2015-06-03 深圳市海洋王照明工程有限公司 Emergency illumination lamp control circuit and lamp
CN203761632U (en) * 2013-12-30 2014-08-06 四川新力光源股份有限公司 Security and protection LED lamp
CN103925480A (en) * 2014-05-08 2014-07-16 浙江中博光电科技有限公司 Portable LED emergency lamp and control method thereof
CN204014171U (en) * 2014-05-30 2014-12-10 惠州安天下救援设备有限公司 A kind of emergency lighting device with security protection camera function
JP2015232990A (en) * 2014-06-10 2015-12-24 スリーイーサイエンス株式会社 Led lighting device for power failure lighting
CN105246187B (en) * 2014-07-11 2018-01-19 上海东软载波微电子有限公司 Emergency-lighting system
CN104270868A (en) * 2014-10-21 2015-01-07 重庆瑞升康博电气有限公司 Intelligent illumination control device
CN104378883B (en) * 2014-11-13 2017-01-18 西安重装渭南光电科技有限公司 LED emergency lamp and control method thereof and LED lamp emergency power supply module
CN204335092U (en) * 2015-01-09 2015-05-13 福建泉州杰克照明科技有限公司 A kind of Multifunctional LED lamp
CN104696825A (en) * 2015-03-20 2015-06-10 句容市万福达工艺品厂 Alarm illumination lamp applied to mine safety
CN105591448B (en) * 2016-01-07 2019-05-24 明华电子科技(惠州)有限公司 A kind of emergency light Lighting control detection system
CN205793570U (en) * 2016-06-23 2016-12-07 文德勤 Smart city Lighting Control Assembly
JP3209183U (en) * 2016-12-02 2017-03-09 廈門普為光電科技有限公司Xiamen PVTECH Co., Ltd. Light emitting diode emergency light
CN208273296U (en) * 2018-03-19 2018-12-21 浙江生辉照明有限公司 Induction type security light

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204425704U (en) * 2014-11-13 2015-06-24 西安重装渭南光电科技有限公司 A kind of LED emergency light
CN204652735U (en) * 2015-04-29 2015-09-16 珠海西默电气科技有限公司 A kind of multifunctional fire-fighting emergency lighting device
CN204993990U (en) * 2015-08-27 2016-01-20 惠阳帝宇工业有限公司 Light circuit with microwave vehicle actuated control and emergency lighting
JP2016164892A (en) * 2016-06-06 2016-09-08 かがつう株式会社 Emergency lighting equipment
CN205726613U (en) * 2016-06-23 2016-11-23 文德勤 A kind of Multi-functional road lamp control system
CN107148133A (en) * 2017-05-31 2017-09-08 浙江生辉照明有限公司 Induction type security light
CN207022265U (en) * 2017-05-31 2018-02-16 浙江生辉照明有限公司 Induction type security light

Also Published As

Publication number Publication date
CN107148133B (en) 2023-12-12
CN107148133A (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US10485077B2 (en) Method and apparatus for controlling light levels to save energy
US9866760B2 (en) Multi-mode LED illumination system
KR102063502B1 (en) The power supply device for LED and the light device having the same
US20110074225A1 (en) Reduced power consumption sensor device and illumination system comprising such a sensor device
US20190334740A1 (en) Energy harvesting from fire panel
US20170374715A1 (en) Automatic sensing system and automatic sensing control method for led lighting
WO2018219205A1 (en) Sensor light and control method thereof
KR101360685B1 (en) Illumination system reduced standby power
KR101306021B1 (en) Driving device for led lighting operatable using low voltage battery in case of emergency
KR101237034B1 (en) power supply apparatus of LED
US8624526B2 (en) Sensing device for LED lighting equipment
KR20120126909A (en) power supply control apparatus for lighting
US20140151558A1 (en) Occupancy sensor
CN211352500U (en) Intelligent bedside lamp control device
US10527242B1 (en) Battery backup for lighting system
CN208273296U (en) Induction type security light
CN207022265U (en) Induction type security light
US9093858B2 (en) Illumination system and illumination driving method
WO2019029707A1 (en) Motion sensor light bulb
KR20140005787U (en) Auto switching light apparatus
KR101938821B1 (en) AC and DC light source control apparatus with emergency battery function when power failure, and remote monitoring system for AC and DC light source control apparatus
CN112672470A (en) Intelligent lamp control method, computer device and computer readable storage medium
CN110798942A (en) Induction lamp control equipment and system thereof
JP2022523778A (en) An electronic device for adaptively controlling a lamp
KR102620166B1 (en) Energy-saving led lightingg using commercial power and digital addresable lighting interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810280

Country of ref document: EP

Kind code of ref document: A1