WO2018219062A1 - 一种采煤机绝对位姿检测方法 - Google Patents

一种采煤机绝对位姿检测方法 Download PDF

Info

Publication number
WO2018219062A1
WO2018219062A1 PCT/CN2018/083775 CN2018083775W WO2018219062A1 WO 2018219062 A1 WO2018219062 A1 WO 2018219062A1 CN 2018083775 W CN2018083775 W CN 2018083775W WO 2018219062 A1 WO2018219062 A1 WO 2018219062A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
embedded controller
shearer
emitting device
pose
Prior art date
Application number
PCT/CN2018/083775
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
刘送永
程诚
吴洪状
江红祥
李伟
沈刚
唐玮
刘后广
杨建华
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018219062A1 publication Critical patent/WO2018219062A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/06Equipment for positioning the whole machine in relation to its sub-structure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Definitions

  • the invention relates to a method for detecting a position of a coal mining machine, in particular to a method for detecting an absolute position of a drum type coal mining machine in a mining working face, which belongs to the technical field of automatic mining equipment.
  • China is a major mining and consumption country for coal mines, and coal mining machines are the main equipment for coal mining.
  • the traditional mining face is mainly operated manually. It is not only labor-intensive, low-efficiency, but also has a very poor working environment and a high degree of danger. Therefore, it is an irresistible trend to develop automated and intelligent mining equipment.
  • the first problem to be solved is the positioning and positioning problem of the mining equipment.
  • the coal mining machine positioning methods mainly include gear counting method, infrared beam shooting method, inertial navigation, etc.
  • the present invention provides a method for detecting an absolute attitude of a shearer, which can accurately detect a six-degree-of-freedom pose parameter of a shearer in an absolute coordinate system of a mine. Good performance and high reliability can provide conditions for the construction of unmanned mining face.
  • An absolute attitude detecting method for a shearer which detects an absolute position of a shearer in a three-machine supporting mining equipment mainly composed of a shearer, a scraper and a hydraulic support when the working face is recovered;
  • the method uses the strapdown inertial navigation module to carry out the position estimation of the dead reckoning position, and the laser pose detection is carried out by the laser emitting device, the laser receiving device and the intelligent total station, and then the two poses are detected by the optimal estimation algorithm such as Kalman filtering.
  • the asynchronous fusion is performed to obtain an accurate position of the shearer.
  • the laser emitting device comprises a vehicle body, a stepping motor, a traveling mechanism, a crank rocker mechanism, a steering gear, a laser transmitter and an embedded controller I
  • the stepping motor is an explosion-proof stepping motor
  • the laser is emitted.
  • the device is an explosion-proof fan laser transmitter; the stepping motor, the traveling mechanism and the crank rocker mechanism are mounted on the vehicle body, and the crank rocker mechanism is driven by the stepping motor, and the steering gear and the laser transmitter are mounted on the shaker.
  • the laser transmitter drives the laser transmitter to scan in the range of ⁇ 45°;
  • the embedded controller I is fixed on the vehicle body after the explosion-proof treatment, and the embedded controller I provides control to the stepping motor and the steering gear. Commanding and solving the three-dimensional coordinates of the laser emitter in the coordinate system of the laser emitting device and the normal vector of the sector laser emitted.
  • the laser receiving device includes three laser receivers and an embedded controller II.
  • the three laser receivers are not collinearly fixed on the shearer, and all three laser receivers are capable of receiving the laser transmitter.
  • the emitted fan laser, embedded controller II is fixed on the shearer after flameproof treatment, and the embedded controller II is simultaneously connected with the laser receiver and the embedded controller I, combined with the receiving signal of each laser receiver,
  • the three-dimensional coordinates of the laser emitter in the coordinate system of the laser emitting device and the normal vector of the fan laser emitted by the laser emitter are used to calculate the coordinates of each laser receiver in the coordinate system of the laser emitting device, and then the laser emission of the shearer is calculated.
  • the intelligent total station and the laser emitting device are disposed in the same lane, and the embedded controller III is fixed on the intelligent total station after being flameproofed, and the embedded controller III is simultaneously embedded with the intelligent total station and embedded.
  • the controller I is connected in communication, and the positioning prism is set at a reasonable position on the laser emitting device (4), and the position and posture parameters of the laser emitting device in the absolute coordinate system of the mine are detected by the intelligent total station, and the coordinates of the laser launching device are combined with the shearer.
  • the pose parameters in the system and the pose parameters of the laser launcher in the mine absolute coordinate system obtain the pose parameters of the shearer in the mine absolute coordinate system, and the result is used as the laser pose detection result.
  • the strapdown inertial navigation module is fixed on the shearer after being flameproofed, and the embedded controller II is simultaneously connected with the strapdown inertial navigation module, and the navigation of the strapdown inertial navigation module is performed by the embedded controller II.
  • the information is solved and the six-degree-of-freedom pose parameters of the shearer in the mine absolute coordinate system are obtained. The result is taken as the result of the strapdown inertial attitude pose detection.
  • the communication mode between the embedded controller I, the embedded controller II, and the embedded controller III is ultra-wideband wireless communication, and the embedded controller I and the embedded controller II are clock synchronized.
  • the direction of movement of the shearer on the scraper is axial, and the direction of pushing and pushing of the hydraulic support is radial.
  • the method specifically includes the following steps:
  • the laser emitting device is moved to be aligned with the mining area and fixed to ensure that the laser emitted by the laser emitter can be scanned into the shearer, and the strapdown inertial navigation module on the shearer is real-time.
  • the embedded controller II solves the pose parameters of the shearer in the mine absolute coordinate system;
  • the embedded controller I sends a signal to the embedded controller III, and then the embedded controller III controls the intelligent total station to work, and the laser transmitting device acquired by the intelligent total station is obtained.
  • the pose parameter in the mine absolute coordinate system is sent to the embedded controller I;
  • the embedded controller I controls the stepper motor and the steering gear to operate, so that the laser emitter emits different angles of the rotary sector laser at at least three different positions, and the normal of the fan laser in the coordinate system of the laser emitting device is real-time.
  • the coordinates of the laser emitter in the coordinate system of the laser emitting device can be solved in real time; the laser signal received by each of the three laser receivers will be corresponding to the laser receiver ID number and receiving time by the embedded controller II.
  • the embedded controller I combines the received signal of each laser receiver, the three-dimensional coordinates of the laser emitter in the coordinate system of the laser emitting device and the normal vector of the sector laser emitted by the laser emitting device
  • the pose parameters in the absolute coordinate system of the mine are used to calculate the pose parameters of the shearer in the mine absolute coordinate system as the laser pose detection result;
  • the embedded controller II performs data processing and asynchronous fusion according to the results of the strapdown inertial attitude detection and the laser pose detection, and obtains the absolute position of the shearer, and sends the absolute pose to the person.
  • the machine interface is remotely monitored and sent to the mining equipment controller for automatic control of the shearer;
  • the absolute attitude detection method of the shearer compares the absolute attitude parameters of the six degrees of freedom of the shearer by using the integrated navigation method based on strapdown inertial navigation and laser scanning positioning compared with the prior art.
  • Stradown inertial navigation has the advantages of simple solution, good real-time and no need for external reference, but its solution method determines the cumulative error of strapdown inertial pose detection;
  • laser scanning positioning method requires external reference, real-time Not good, but its high precision, no cumulative error, the integration of internal positioning mode and external positioning mode, the advantages of the two positioning methods, suitable for the harsh environment of the mining face, the system uses ultra-wideband wireless Communication, high reliability.
  • the invention has the advantages of high detection precision, good real-time performance, high reliability, and low cost.
  • FIG. 1 is a schematic view showing a working surface of an absolute position detecting method of a shearer according to the present invention
  • FIG. 2 is a schematic view of a laser emitting device of the present invention
  • FIG. 3 is a block diagram of the system of the present invention.
  • a method for detecting the absolute position of the shearer is used in the three-machine supporting mining equipment mainly composed of the shearer 1, the scraper 2 and the hydraulic support 3 when the working face is recovered.
  • the absolute position of the shearer 1 is detected; the method performs the dead reckoning pose detection by the strapdown inertial navigation module, and the laser pose detection is performed by the laser emitting device 4, the laser receiving device and the intelligent total station 5, and then The two pose detection results are asynchronously fused by the optimal estimation algorithm to obtain the exact position of the shearer 1.
  • the laser emitting device 4 includes a vehicle body, a stepping motor 4-5, a traveling mechanism 4-1, a crank rocker mechanism 4-2, a steering gear 4-3, a laser transmitter 4-4, and an embedded controller I.
  • the stepping motor is an explosion-proof stepping motor
  • the laser emitter 4-4 is an explosion-proof fan laser transmitter
  • the stepping motor 4-5, the traveling mechanism 4-1 and the crank rocker mechanism 4-2 are installed in On the vehicle body, the crank rocker mechanism 4-2 is driven by the stepping motor 4-5, the steering gear 4-3 and the laser transmitter 4-4 are mounted on the top end of the rocker, and the laser transmitter is driven by the steering gear 4-3.
  • embedded controller I is fixed on the vehicle body after flameproof treatment, and embedded controller I provides control commands to stepping motor 4-5 and steering gear 4-3.
  • the three-dimensional coordinates of the laser emitter 4-4 in the coordinate system of the laser emitting device and the normal vector of the emitted laser light are calculated.
  • the laser receiving device comprises three laser receivers and an embedded controller II, three laser receivers are not collinearly fixed on the shearer 1, and three laser receivers are capable of receiving the laser emitters 4- 4 the fan laser emitted, the embedded controller II is fixed on the shearer 1 after the explosion-proof treatment, and the embedded controller II is simultaneously connected with the laser receiver and the embedded controller I, and each laser receiver is combined.
  • the received signal, the three-dimensional coordinates of the laser emitter 4-4 in the coordinate system of the laser emitting device and the normal vector of the emitted sector laser calculate the coordinates of each laser receiver in the coordinate system of the laser emitting device, and then solve the solution
  • the six-degree-of-freedom pose parameter of the shearer 1 in the laser launcher coordinate system is calculated.
  • the intelligent total station 5 and the laser emitting device 4 are disposed in the same lane, and the embedded controller III is fixed on the intelligent total station 5 after being flameproofed, and the embedded controller III is simultaneously combined with the intelligent total station 5
  • the embedded controller I is connected in communication, and the positioning prism is set at a reasonable position on the laser emitting device 4, and the position and posture parameters of the laser emitting device 4 in the absolute coordinate system of the mine are detected by the intelligent total station 5, and the laser is launched in combination with the shearer 1
  • the pose parameter in the device coordinate system and the pose parameter of the laser emitting device 4 in the mine absolute coordinate system obtain the pose parameter of the shearer 1 in the mine absolute coordinate system, and the result is used as the laser pose detection result.
  • the strapdown inertial navigation module is fixed on the shearer 1 after being flameproofed, and the embedded controller II is simultaneously connected with the strapdown inertial navigation module, and the navigation information of the strapdown inertial navigation module is embedded through the embedded controller II.
  • the solution is calculated to obtain the six-degree-of-freedom pose parameter of the shearer 1 in the mine absolute coordinate system, and the result is taken as the result of the strapdown inertial attitude pose detection.
  • the communication mode between the embedded controller I, the embedded controller II and the embedded controller III is ultra-wideband wireless communication, and the embedded controller I and the embedded controller II clock are synchronized.
  • the direction of movement of the shearer 1 on the scraper 2 is the axial direction, and the direction of the push and slide of the hydraulic support 3 is radial.
  • the method specifically includes the following steps:
  • the laser emitting device 4 is moved to be aligned with the mining area and fixed to ensure that the laser beam emitted by the laser emitter 4-4 can be scanned to the shearer 1 while the shearer 1 is
  • the Strapdown Inertial Navigation Module works in real time, and the embedded controller II solves the pose parameters of the shearer 1 in the mine absolute coordinate system;
  • the embedded controller I sends a signal to the embedded controller III, and then the embedded controller III controls the intelligent total station 5 to work, and acquires the intelligent total station 5
  • the positional parameter of the laser emitting device 4 in the mine absolute coordinate system is sent to the embedded controller I;
  • the embedded controller I controls the stepping motor 4-5 and the steering gear 4-3 to operate, so that the laser emitter 4-4 emits a different angle of the rotary sector laser at least at three different positions, and the sector laser is in the laser
  • the normal vector in the coordinate system of the transmitting device can be solved in real time, and the coordinates of the laser emitter 4-4 in the coordinate system of the laser emitting device can be solved in real time; the laser signals received by each of the three laser receivers are controlled by the embedded control.
  • the device II sends the corresponding laser receiver ID number and the receiving time to the embedded controller I, and the embedded controller I combines the receiving signal of each laser receiver with the laser emitter 4-4 in the laser emitting device coordinate system.
  • the embedded controller II performs data processing and asynchronous fusion according to the laser pose detection result of the strapdown inertial attitude detection result, and obtains the absolute position of the shearer 1, and sends the absolute pose to the person.
  • the machine interface is remotely monitored and sent to the mining equipment controller for automatic control of the shearer 1;

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Automation & Control Theory (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Guiding Agricultural Machines (AREA)
PCT/CN2018/083775 2017-05-31 2018-04-19 一种采煤机绝对位姿检测方法 WO2018219062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710396723.1 2017-05-31
CN201710396723.1A CN107238385B (zh) 2017-05-31 2017-05-31 一种采煤机绝对位姿检测系统及方法

Publications (1)

Publication Number Publication Date
WO2018219062A1 true WO2018219062A1 (zh) 2018-12-06

Family

ID=59984747

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/083775 WO2018219062A1 (zh) 2017-05-31 2018-04-19 一种采煤机绝对位姿检测方法
PCT/CN2018/096457 WO2018219361A1 (zh) 2017-05-31 2018-07-20 一种采煤机绝对位姿检测方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096457 WO2018219361A1 (zh) 2017-05-31 2018-07-20 一种采煤机绝对位姿检测方法

Country Status (5)

Country Link
CN (1) CN107238385B (ru)
AU (1) AU2018278618B2 (ru)
GB (1) GB2572698B (ru)
RU (1) RU2711418C1 (ru)
WO (2) WO2018219062A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045387A (zh) * 2019-04-23 2019-07-23 中国矿业大学 一种支撑掩护式液压支架姿态智能监测系统及其测量方法
CN112229394A (zh) * 2020-10-14 2021-01-15 中国矿业大学 基于红外运动捕捉的煤矿井下移动设备定位定姿系统
CN113065572A (zh) * 2019-12-31 2021-07-02 北京凌宇智控科技有限公司 多传感器融合的数据处理方法、定位装置及虚拟现实设备
CN114485616A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于全站仪的矿井下自动定位方法及系统
CN114485614A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法
CN115371597A (zh) * 2022-09-13 2022-11-22 山东科技大学 一种工作面液压支架底座位置精度校核方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238385B (zh) * 2017-05-31 2019-07-12 中国矿业大学 一种采煤机绝对位姿检测系统及方法
CN108036784A (zh) * 2017-11-10 2018-05-15 云保(佛山)智控科技有限公司 一种室内定位方法、导航方法及系统
CN108981685B (zh) * 2018-08-03 2022-04-01 山西焦煤集团岚县正利煤业有限公司 一种综采工作面采煤机定位装置及其定位方法
CN109469484B (zh) * 2018-11-05 2020-01-31 郑州煤机液压电控有限公司 基于上位机规划的自动化采煤方法
CN109931958B (zh) * 2019-03-27 2020-12-08 中国矿业大学 一种基于uwb采煤机工作面端头校准装置及方法
CN109903383B (zh) * 2019-04-11 2020-11-10 中国矿业大学 一种采煤机在工作面煤层三维模型中精确定位方法
CN110540031B (zh) * 2019-09-10 2024-06-21 山西中科智能控制技术研究院有限公司 刮板输送机中部槽的姿态检测装置
CN110847905A (zh) * 2019-12-10 2020-02-28 中国矿业大学(北京) 采煤机自主导航系统及方法
CN111412911A (zh) * 2020-04-07 2020-07-14 中国煤炭科工集团太原研究院有限公司 一种煤矿井下连续采煤机器人多传感器组合导航系统
CN111427062B (zh) * 2020-04-23 2022-11-29 南京大学 一种基于激光雷达的液压支架对齐方法
CN112378399B (zh) * 2020-07-16 2023-02-28 西安科技大学 基于捷联惯导和数字全站仪的煤矿巷道掘进机器人精确定位定向方法
CN111997679B (zh) * 2020-09-09 2022-08-30 重庆工程职业技术学院 一种综采工作面端头推移状态监测装置
CN114662259B (zh) * 2020-12-07 2024-06-18 北斗天地股份有限公司 一种基于高精度惯导的采煤机三维定位方法及系统
CN112814676A (zh) * 2020-12-31 2021-05-18 重庆大学 基于综采工作面煤层三维模型构建的割煤轨迹动态修正方法
CN113323698B (zh) * 2021-05-31 2023-11-03 国能神东煤炭集团有限责任公司 综采工作面推进距离计算方法、存储介质及电子设备
CN113534227B (zh) * 2021-07-26 2022-07-01 中国电子科技集团公司第五十四研究所 一种适用于复杂非合作场景的多传感器融合绝对定位方法
CN115798183A (zh) * 2022-11-03 2023-03-14 山东能源集团有限公司 基于5g的煤矿井下惯导控制方法、系统、设备及存储介质
CN118310543B (zh) * 2024-06-11 2024-08-27 山东瑞迈凯机电股份有限公司 一种矿用列车的低延迟导航定位方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052181A (en) * 1998-07-01 2000-04-18 Trimble Navigation Limited Multiple simultaneous laser-reference control system for construction equipment
US6421627B1 (en) * 1997-11-28 2002-07-16 Spectra Precision Ab Device and method for determining the position of a working part
CN101201631A (zh) * 2006-11-08 2008-06-18 卡特彼勒群伯控制技术有限公司 用于辅助惯性导航系统的系统和方法
CN102570287A (zh) * 2010-12-17 2012-07-11 中国矿业大学(北京) 一种扇形激光束发射装置
CN103410512A (zh) * 2013-08-15 2013-11-27 中国矿业大学 融合地质环境信息的采煤机绝对定位装置与方法
CN104296733A (zh) * 2014-09-15 2015-01-21 三一重型装备有限公司 掘进机激光定位装置及掘进机
CN104295297A (zh) * 2014-09-16 2015-01-21 三一重型装备有限公司 一种掘进机截割头定位系统及方法和掘进机
CN104729501A (zh) * 2015-03-19 2015-06-24 中国矿业大学(北京) 基于旋转扇面激光的悬臂式掘进机位姿测量方法
CN105352504A (zh) * 2015-12-01 2016-02-24 中国矿业大学 一种惯性导航与激光扫描融合的采煤机定位装置及方法
CN107014379A (zh) * 2017-05-25 2017-08-04 中国矿业大学 一种掘进机绝对空间位姿检测装置与方法
CN107238385A (zh) * 2017-05-31 2017-10-10 中国矿业大学 一种采煤机绝对位姿检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035951A (en) * 1997-04-16 2000-03-14 Digital Control Incorporated System for tracking and/or guiding an underground boring tool
US9002565B2 (en) * 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US8345926B2 (en) * 2008-08-22 2013-01-01 Caterpillar Trimble Control Technologies Llc Three dimensional scanning arrangement including dynamic updating
US20110213529A1 (en) * 2010-02-26 2011-09-01 Caterpillar Inc. System and method for determing a position on an implement relative to a reference position on a machine
CN104748679A (zh) * 2015-03-19 2015-07-01 中国矿业大学(北京) 一种基于旋转扇面激光测角的空间点三维坐标测量方法
CN104729538B (zh) * 2015-04-03 2017-05-10 中国矿业大学 基于激光扫描的采煤机定位定姿系统的校准方法及装置
CN105737825B (zh) * 2016-02-19 2018-06-01 北京航天控制仪器研究所 一种掘进机截割头位置测量系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421627B1 (en) * 1997-11-28 2002-07-16 Spectra Precision Ab Device and method for determining the position of a working part
US6052181A (en) * 1998-07-01 2000-04-18 Trimble Navigation Limited Multiple simultaneous laser-reference control system for construction equipment
CN101201631A (zh) * 2006-11-08 2008-06-18 卡特彼勒群伯控制技术有限公司 用于辅助惯性导航系统的系统和方法
CN102570287A (zh) * 2010-12-17 2012-07-11 中国矿业大学(北京) 一种扇形激光束发射装置
CN103410512A (zh) * 2013-08-15 2013-11-27 中国矿业大学 融合地质环境信息的采煤机绝对定位装置与方法
CN104296733A (zh) * 2014-09-15 2015-01-21 三一重型装备有限公司 掘进机激光定位装置及掘进机
CN104295297A (zh) * 2014-09-16 2015-01-21 三一重型装备有限公司 一种掘进机截割头定位系统及方法和掘进机
CN104729501A (zh) * 2015-03-19 2015-06-24 中国矿业大学(北京) 基于旋转扇面激光的悬臂式掘进机位姿测量方法
CN105352504A (zh) * 2015-12-01 2016-02-24 中国矿业大学 一种惯性导航与激光扫描融合的采煤机定位装置及方法
CN107014379A (zh) * 2017-05-25 2017-08-04 中国矿业大学 一种掘进机绝对空间位姿检测装置与方法
CN107238385A (zh) * 2017-05-31 2017-10-10 中国矿业大学 一种采煤机绝对位姿检测方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045387A (zh) * 2019-04-23 2019-07-23 中国矿业大学 一种支撑掩护式液压支架姿态智能监测系统及其测量方法
CN110045387B (zh) * 2019-04-23 2023-05-16 中国矿业大学 一种支撑掩护式液压支架姿态智能监测系统及其测量方法
CN113065572A (zh) * 2019-12-31 2021-07-02 北京凌宇智控科技有限公司 多传感器融合的数据处理方法、定位装置及虚拟现实设备
CN113065572B (zh) * 2019-12-31 2023-09-08 北京凌宇智控科技有限公司 多传感器融合的数据处理方法、定位装置及虚拟现实设备
CN112229394A (zh) * 2020-10-14 2021-01-15 中国矿业大学 基于红外运动捕捉的煤矿井下移动设备定位定姿系统
CN112229394B (zh) * 2020-10-14 2024-04-16 中国矿业大学 基于红外运动捕捉的煤矿井下移动设备定位定姿系统
CN114485616A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于全站仪的矿井下自动定位方法及系统
CN114485614A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法
CN114485614B (zh) * 2022-01-05 2023-10-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法
CN114485616B (zh) * 2022-01-05 2023-10-17 中国煤炭科工集团太原研究院有限公司 基于全站仪的矿井下自动定位方法及系统
CN115371597A (zh) * 2022-09-13 2022-11-22 山东科技大学 一种工作面液压支架底座位置精度校核方法
CN115371597B (zh) * 2022-09-13 2023-08-04 山东科技大学 一种工作面液压支架底座位置精度校核方法

Also Published As

Publication number Publication date
AU2018278618B2 (en) 2020-07-23
AU2018278618A1 (en) 2019-05-16
CN107238385B (zh) 2019-07-12
GB2572698A (en) 2019-10-09
CN107238385A (zh) 2017-10-10
WO2018219361A1 (zh) 2018-12-06
RU2711418C1 (ru) 2020-01-17
GB2572698B (en) 2020-02-26
GB201905663D0 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2018219062A1 (zh) 一种采煤机绝对位姿检测方法
WO2018214988A1 (zh) 一种掘进机绝对空间位姿检测装置与方法
US9020666B2 (en) Taking-off and landing target instrument and automatic taking-off and landing system
JP6083520B2 (ja) ロボット誘導方法と装置
CN104536008B (zh) 一种凿岩台车炮孔激光测距定位方法
CN107990876A (zh) 基于无人飞行器的地下矿山采空区快速扫描装置及方法
CN102878976A (zh) 掘进机位姿检测系统和掘进机
CN103760517B (zh) 地下扫描卫星高精度跟踪定位方法及装置
CN103477185A (zh) 用于确定对象表面的3d坐标的测量系统
JP6464453B2 (ja) 通信回復装置と方法
CN113335557B (zh) 一种飞机机身表面装配质量数字化检测方法及系统
CN107560544A (zh) 一种用于机器人制孔定位和法向测量装置及方法
CN104407622A (zh) 机器人跟踪方法和系统
CN110233664A (zh) 一种无线光通信的跟瞄控制系统及跟瞄控制方法
CN104793637A (zh) 一种移动设备的实时跟踪系统及跟踪方法
CN104729538A (zh) 基于激光扫描的采煤机定位定姿系统的校准方法及装置
CN112780275A (zh) 掘进机工作系统及方法
CN207649541U (zh) 一种用于机器人制孔定位和法向测量装置
WO2017000784A1 (zh) 一种移动控制装置及移动控制方法
CN107037807B (zh) 自移动机器人位姿校准系统和方法
WO2020130921A1 (en) Method and device for determining the position of a mining and/or construction machine
CN204189024U (zh) 一种信号采集机器人
Baatar et al. Precise indoor localization of multiple mobile robots with adaptive sensor fusion using odometry and vision data
CN204479086U (zh) 基于激光扫描的采煤机定位定姿系统的校准装置
CN110096065A (zh) 一种四旋翼无人机姿态控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809297

Country of ref document: EP

Kind code of ref document: A1