WO2018217780A1 - Sinusoidal phase modulation of mode-lock lasers - Google Patents

Sinusoidal phase modulation of mode-lock lasers Download PDF

Info

Publication number
WO2018217780A1
WO2018217780A1 PCT/US2018/033929 US2018033929W WO2018217780A1 WO 2018217780 A1 WO2018217780 A1 WO 2018217780A1 US 2018033929 W US2018033929 W US 2018033929W WO 2018217780 A1 WO2018217780 A1 WO 2018217780A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
locked laser
eom
waveform
drive
Prior art date
Application number
PCT/US2018/033929
Other languages
French (fr)
Inventor
Jeffrey S. Brooker
William Radtke
Hongzhou Ma
Eric LIESER
Original Assignee
Thorlabs, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorlabs, Inc. filed Critical Thorlabs, Inc.
Priority to CN201880044933.7A priority Critical patent/CN110832714B/en
Priority to EP18805511.5A priority patent/EP3631918A4/en
Publication of WO2018217780A1 publication Critical patent/WO2018217780A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10053Phase control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/92Generating pulses having essentially a finite slope or stepped portions having a waveform comprising a portion of a sinusoid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking

Definitions

  • the invention generally relates to laser modulation techniques. More particularly, the invention relates to a modulation of a mode-lock laser using an electro- optic modulator (EOM) driven with a frequency and phase coherent AC waveform.
  • EOM electro- optic modulator
  • Mode-locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10 ⁇ 12 s) or femtoseconds (10 ⁇ 15 s).
  • the basis of the technique is to induce a fixed-phase relationship between the longitudinal modes of the laser's resonant cavity.
  • the laser is then said to be "phase- locked” or 'mode-locked.” Interference between these modes causes the laser light to be produced as a train of pulses. Depending on the properties of the laser, these pulses may be of extremely brief duration, as short as a few femtoseconds.
  • the train of pulses is commonly in the 50-100MHz repetition rate range.
  • EOM Electro-Optic Modulator
  • Electro-optic modulator is an optical device in which a signal- controlled element exhibiting the electro-optic effect is used to modulate a beam of light.
  • the modulation may be imposed on the phase, frequency, amplitude, or polarization of the beam.
  • EOM The simplest kind of EOM consists of a crystal, such as lithium niobate, whose refractive index is a function of the strength of the local electric field. That means that if a lithium niobate crystal is exposed to an electric field, light will travel more slowly through it. But the phase of the light leaving the crystal is directly proportional to the length of time it takes for the light to pass through the crystal. Therefore, the phase of the laser light exiting an EOM can be controlled by changing the electric field applied to the crystal.
  • amplitude modulation can be achieved.
  • the configuration is usually with two orthogonally aligned crystals. This helps reduce thermal drift.
  • Fig. 1 shows an example setup of the EOM amplitude modulator.
  • the electro-optic amplitude modulator may be a Pockels cell type modulator consisting of two matched lithium niobate crystals 110, 120 packaged in a compact housing with an RF input connector. Applying an electric field to the crystal induces a change in the indices of refraction (both ordinary and extraordinary) giving rise to an electric field dependent birefringence which leads to a change in the polarization state of the optical beam.
  • the Electro-optic crystal acts as a variable waveplate with retardance linearly dependent on the applied electric field. By placing a linear polarizer 140 at the exit, the beam intensity through the polarizer varies sinusoidally with linear change in applied voltage.
  • Electro-optic phase modulators provide a variable phase shift on a linearly polarized input beam.
  • the input beam is linearly polarized along the vertical direction which is the Z-axis of the crystal by a linear polarizer 130.
  • a voltage at the RF input 150 is applied across the Z-axis electrodes 160 inducing a change in the crystal's extraordinary index of refraction thereby causing a phase shift in the optical signal.
  • Fig. 2 shows a schematic diagram of a linear amplifier.
  • FIG. 3 shows a schematic diagram of a push-pull amplifier.
  • Modulating the amplitude of a mode-locked laser with an AC waveform is commonly done. It is usually accomplished by adding circuitry to create a resonant tank between the EOM crystal (purely capacitive element) and other passive components. This resonant system can then be controlled by a relatively low power AC signal generator. Phase locking this system to the train of pulses from the mode-locked laser allows the overlay of a signal on the output intensity of the train of pulses. As shown in Fig. 4, an AC waveform 410 is applied to the output pulses 420 of a mode-locked laser, resulting in a modulated amplitude output 430.
  • An embodiment of the present invention is an extension of the AC modulation scheme already commonly in use.
  • power RF techniques it is possible to modulate the phase or amplitude of the EOM drive very rapidly.
  • Simulations suggest that there are multiple possible methods of using an AC EOM drive signal to perform amplitude modulation of the laser intensity in less than one laser pulse over the full range of the EOM contrast ratio. This allows pulse-by-pulse control of the laser power. Many applications requiring pulsed laser modulation would benefit from an increase in the speed of modulation over the current state of the art.
  • One embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to a repetition rate of the mode-locked laser.
  • EOM electro-optic modulator
  • Another embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent pulsed waveform at a frequency equal to a repetition rate of the mode-locked laser.
  • EOM electro-optic modulator
  • Another embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to half of a repetition rate of the mode-locked laser.
  • EOM electro-optic modulator
  • Figure 1 shows a schematic diagram of an EOM Amplitude Modulator.
  • Figure 2 shows a schematic diagram of a linear amplifier.
  • Figure 3 shows a schematic diagram of a push-pull amplifier.
  • Figure 4 illustrates an amplitude modulation with an AC waveform.
  • Figure 5 shows an EOM amplitude modulation assembly according to an embodiment.
  • Figure 6 illustrates the test results of the EOM amplitude modulation assembly according to an embodiment.
  • Fig. 7 shows a waveform where a phase shift of 90° is used to shift the drive waveform relative to the laser pulse according to an embodiment.
  • Fig. 8 is a schematic circuit diagram of the series of connected pulse generating stages according to an embodiment.
  • Fig. 9 shows the waveforms with various DC bias according to an embodiment.
  • Fig. 10 shows the waveforms with and without phase shift according to an embodiment.
  • Fig. 5 shows a setup of the modulator according to an embodiment. Similar to the setup of Fig. 1, the EOM 510 is placed between two polarizers 530, 540. A custom circuit 560 is used to lock to the laser and create a phase locked signal, with the ability to step phase shift that signal, to a RF power amplifier 570 which drives a transformer 580 providing the AC voltage to the EOM. A DC input (offset) 590 is used to adjust the location of the AC signal within the range of the EOM. The AC signal used for this setup is well below the required amplitude for full contrast laser modulation.
  • the waveform 610 shows the pulses from the pickoff before the EOM amplitude modulation assembly.
  • Waveform 620 is the drive waveform, generated by the custom phase sync circuit, sent to the power amplifier. Note the 180 degree phase change halfway through the data set.
  • the waveform 630 is the output detector indicating laser intensity.
  • a sinusoidal waveform which is representative of the EOM modulation waveform, is expressed as:
  • V P is the amplitude, or "Peak Amplitude" of the waveform
  • f is frequency in Hz
  • is the phase in radians.
  • V RMS V P / [2 (Root Mean Square Amplitude)
  • Vpeak-Peak 2V P (Peak-to-
  • a periodic impulse train which is representative of pulsed lasers, is expressed as:
  • the phase of the EOM drive sinusoid is relative to this and is defined by ⁇ .
  • the drive voltage is thus the sinusoid equation evaluated at those instants in time, and now looks like a discrete- time sampled signal:
  • Fig. 7 shows a waveform where a phase shift of 90° is used to shift the drive waveform relative to the laser pulse, and thus change the voltage on the EOM at the instant the pulse arrives such that the voltage on the EOM changes from Vp to 0.
  • a discrete number of pulse amplitudes are generated by a series of connected pulse generating stages.
  • Fig. 8 is a schematic circuit diagram of the series of connected pulse generating stages according to an embodiment.
  • VDC BIAS DC bias
  • Fig. 9 shows the waveforms with: (1) no DC bias 910, (2) +DC bias 920 and (3) -DC bias 930 is applied.
  • Fig. 10 shows the cases where (1) no DC bias is applied 1010 and (2) no DC bias is applied with +90 degrees phase shift 1020.
  • a DC bias is applied such that the waveform is centered with symmetrical positive and negative voltages having substantially equal EOM optical phase shift.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode-locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to a repetition rate of the mode-locked laser, a phase-coherent pulsed waveform at a frequency equal to the repetition rate of the mode-locked laser, or a phase-coherent sinusoidal waveform at a frequency equal to half of the repetition rate of the mode-locked laser.

Description

SINUSOIDAL PHASE MODULATION OF MODE-LOCK LASERS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/510,072 filed on May 23, 2017. The contents of U.S. Provisional Patent Application 62/510,072 are hereby incorporated by reference.
FIELD OF THE INVENTION
[0002] The invention generally relates to laser modulation techniques. More particularly, the invention relates to a modulation of a mode-lock laser using an electro- optic modulator (EOM) driven with a frequency and phase coherent AC waveform.
BACKGROUND
[0003] Mode-Locked Laser
[0004] Mode-locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10~12 s) or femtoseconds (10~15 s).
[0005] The basis of the technique is to induce a fixed-phase relationship between the longitudinal modes of the laser's resonant cavity. The laser is then said to be "phase- locked" or 'mode-locked." Interference between these modes causes the laser light to be produced as a train of pulses. Depending on the properties of the laser, these pulses may be of extremely brief duration, as short as a few femtoseconds. The train of pulses is commonly in the 50-100MHz repetition rate range.
[0006] Electro-Optic Modulator (EOM)
[0007] Electro-optic modulator (EOM) is an optical device in which a signal- controlled element exhibiting the electro-optic effect is used to modulate a beam of light. The modulation may be imposed on the phase, frequency, amplitude, or polarization of the beam.
[0008] The simplest kind of EOM consists of a crystal, such as lithium niobate, whose refractive index is a function of the strength of the local electric field. That means that if a lithium niobate crystal is exposed to an electric field, light will travel more slowly through it. But the phase of the light leaving the crystal is directly proportional to the length of time it takes for the light to pass through the crystal. Therefore, the phase of the laser light exiting an EOM can be controlled by changing the electric field applied to the crystal.
[0009] Combining this phase change with polarizers before and after the crystal, amplitude modulation can be achieved. When using an EOM as an amplitude modulator, the configuration is usually with two orthogonally aligned crystals. This helps reduce thermal drift. Fig. 1 shows an example setup of the EOM amplitude modulator.
[0010] The electro-optic amplitude modulator may be a Pockels cell type modulator consisting of two matched lithium niobate crystals 110, 120 packaged in a compact housing with an RF input connector. Applying an electric field to the crystal induces a change in the indices of refraction (both ordinary and extraordinary) giving rise to an electric field dependent birefringence which leads to a change in the polarization state of the optical beam. The Electro-optic crystal acts as a variable waveplate with retardance linearly dependent on the applied electric field. By placing a linear polarizer 140 at the exit, the beam intensity through the polarizer varies sinusoidally with linear change in applied voltage.
[0011] Electro-optic phase modulators provide a variable phase shift on a linearly polarized input beam. In one embodiment, the input beam is linearly polarized along the vertical direction which is the Z-axis of the crystal by a linear polarizer 130. A voltage at the RF input 150 is applied across the Z-axis electrodes 160 inducing a change in the crystal's extraordinary index of refraction thereby causing a phase shift in the optical signal.
[0012] DC Modulation [0013] Two methods of DC control for amplitude modulation of mode-locked lasers are currently commonly used.
[0014] Existing techniques have achieved -DC - lMHz modulation control using a high voltage/high power DC coupled linear amplifier. This method allows control to any output intensity level over the course of 10 to 100 laser pulses. Fig. 2 shows a schematic diagram of a linear amplifier.
[0015] Several other EOM drive manufacturers use a push-pull arrangement to switch between two slowly varying DC levels. This method allows for switching between two output intensity levels over the course of 2 to 3 laser pulses. Changing those DC levels takes about 1,000 to 10,000 laser pulses. This approach is very effective in edge blanking of an image or other applications where an on-off feature is needed. Fig. 3 shows a schematic diagram of a push-pull amplifier.
[0016] AC Modulation
[0017] Modulating the amplitude of a mode-locked laser with an AC waveform is commonly done. It is usually accomplished by adding circuitry to create a resonant tank between the EOM crystal (purely capacitive element) and other passive components. This resonant system can then be controlled by a relatively low power AC signal generator. Phase locking this system to the train of pulses from the mode-locked laser allows the overlay of a signal on the output intensity of the train of pulses. As shown in Fig. 4, an AC waveform 410 is applied to the output pulses 420 of a mode-locked laser, resulting in a modulated amplitude output 430.
[0018] The modulation techniques discussed above have the drawback that it takes many pulses to change the output amplitude from one value to another desired value. However, there is a need to increase the speed of modulation. In particular, a pulse-by-pulse control of the laser power would provide improvements of and open up many new uses of mode-locked lasers. SUMMARY
[0019] An embodiment of the present invention is an extension of the AC modulation scheme already commonly in use. By using power RF techniques it is possible to modulate the phase or amplitude of the EOM drive very rapidly. Simulations suggest that there are multiple possible methods of using an AC EOM drive signal to perform amplitude modulation of the laser intensity in less than one laser pulse over the full range of the EOM contrast ratio. This allows pulse-by-pulse control of the laser power. Many applications requiring pulsed laser modulation would benefit from an increase in the speed of modulation over the current state of the art.
[0020] One embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to a repetition rate of the mode-locked laser.
[0021] Another embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent pulsed waveform at a frequency equal to a repetition rate of the mode-locked laser.
[0022] Another embodiment of the invention provides a mode-locked laser comprising circuitry configured to drive an electro-optic modulator (EOM) in the mode- locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to half of a repetition rate of the mode-locked laser.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] Figure 1 shows a schematic diagram of an EOM Amplitude Modulator.
[0024] Figure 2 shows a schematic diagram of a linear amplifier.
[0025] Figure 3 shows a schematic diagram of a push-pull amplifier.
[0026] Figure 4 illustrates an amplitude modulation with an AC waveform. [0027] Figure 5 shows an EOM amplitude modulation assembly according to an embodiment.
[0028] Figure 6 illustrates the test results of the EOM amplitude modulation assembly according to an embodiment.
[0029] Fig. 7 shows a waveform where a phase shift of 90° is used to shift the drive waveform relative to the laser pulse according to an embodiment.
[0030] Fig. 8 is a schematic circuit diagram of the series of connected pulse generating stages according to an embodiment.
[0031] Fig. 9 shows the waveforms with various DC bias according to an embodiment.
[0032] Fig. 10 shows the waveforms with and without phase shift according to an embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0033] The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as "lower," "upper," "horizontal," "vertical," "above," "below," "up," "down," "top" and "bottom" as well as derivative thereof (e.g., "horizontally," "downwardly," "upwardly," etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as "attached," "affixed," "connected," "coupled," "interconnected," and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
[0034] This disclosure describes the best mode or modes of practicing the invention as presently contemplated. This description is not intended to be understood in a limiting sense, but provides an example of the invention presented solely for illustrative purposes by reference to the accompanying drawings to advise one of ordinary skill in the art of the advantages and construction of the invention. In the various views of the drawings, like reference characters designate like or similar parts.
[0035] Fig. 5 shows a setup of the modulator according to an embodiment. Similar to the setup of Fig. 1, the EOM 510 is placed between two polarizers 530, 540. A custom circuit 560 is used to lock to the laser and create a phase locked signal, with the ability to step phase shift that signal, to a RF power amplifier 570 which drives a transformer 580 providing the AC voltage to the EOM. A DC input (offset) 590 is used to adjust the location of the AC signal within the range of the EOM. The AC signal used for this setup is well below the required amplitude for full contrast laser modulation.
[0036] Tests were performed using the setup shown in Fig. 5, and the results are shown in Fig. 6. The waveform 610 shows the pulses from the pickoff before the EOM amplitude modulation assembly. Waveform 620 is the drive waveform, generated by the custom phase sync circuit, sent to the power amplifier. Note the 180 degree phase change halfway through the data set. The waveform 630 is the output detector indicating laser intensity.
[0037] This shows that using this method, laser intensity of a mode-locked laser can be modulated to arbitrary levels within 2-3 laser pulses on an 80 MHz repetition rate laser. This superior modulation speed is not achieved by any of the existing techniques. [0038] In one embodiment, a sinusoidal waveform, which is representative of the EOM modulation waveform, is expressed as:
vs .t) = VP sin(27i ft + φ),
where VP is the amplitude, or "Peak Amplitude" of the waveform, f is frequency in Hz, and φ is the phase in radians. Note that there are other representations of amplitude, for example, VRMS = VP/ [2 (Root Mean Square Amplitude) or Vpeak-Peak = 2VP (Peak-to-
Peak Amplitude).
[0039] A periodic impulse train, which is representative of pulsed lasers, is expressed as:
Pit) = ^ δ(ί - ηΓ,)
n=-∞
where Ts is the period of the pulses. This means that laser pulses occur at t = 0, t = Ts, t = 2TS, etc. Now the phase of the EOM drive sinusoid is relative to this and is defined by φ. The voltage on the EOM is relevant only at the instant in time when the laser pulse is present in the EOM material (crystal). That means the voltage on the sinusoidal waveform is relevant only at time t = 0, t = Ts, t = 2TS, ... , etc. The drive voltage is thus the sinusoid equation evaluated at those instants in time, and now looks like a discrete- time sampled signal:
vs(nTs) = VP sin(27i fnTs + φ), n = 0, 1, 2, ...
[0040] When the sinusoid waveform is frequency locked to the laser, we have /= \ITS = repetition rate of the mode-locked laser. This is the key innovation concept from which the present invention is derived. In some embodiments, this concept may be extended to a drive waveform having a phase-coherent pulsed waveform at a frequency equal to the repetition rate of the mode-locked laser, as well as to drive waveform having a phase-coherent sinusoidal waveform at a frequency equal to l/(2Ts), etc. [0041] Fig. 7 shows a waveform where a phase shift of 90° is used to shift the drive waveform relative to the laser pulse, and thus change the voltage on the EOM at the instant the pulse arrives such that the voltage on the EOM changes from Vp to 0.
[0042] Note that shifting the phase another 90° (for a total of 180°) will change the voltage to -Vp, doubling the voltage range available to drive the EOM.
[0043] In one embodiment, a discrete number of pulse amplitudes are generated by a series of connected pulse generating stages. Fig. 8 is a schematic circuit diagram of the series of connected pulse generating stages according to an embodiment.
[0044] When a DC bias (VDC BIAS) is applied, the drive waveform is expressed as:
vs(nTs) = VP sin(27T fnTs + φ) + VDC BIAS, n = 0, 1, 2, ...
[0045] Fig. 9 shows the waveforms with: (1) no DC bias 910, (2) +DC bias 920 and (3) -DC bias 930 is applied. Fig. 10 shows the cases where (1) no DC bias is applied 1010 and (2) no DC bias is applied with +90 degrees phase shift 1020.
[0046] In one embodiment, a DC bias is applied such that the waveform is centered with symmetrical positive and negative voltages having substantially equal EOM optical phase shift.
[0047] While the present invention has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the invention. Furthermore, the foregoing describes the invention in terms of embodiments foreseen by the inventor for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto.

Claims

CLAIMS What is claimed is:
1. A mode-locked laser comprising circuitry (560) configured to drive an electro- optic modulator (EOM) (510) in the mode-locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to a repetition rate of the mode-locked laser.
2. The mode-locked laser of claim 1, wherein the sinusoidal waveform is phase modulated over a 90 degree range having amplitude range of V peak.
3. The mode-locked laser of claim 1, wherein the sinusoidal waveform is phase modulated over a 180 degree range having an amplitude range of V peak-to-peak.
4. The mode-locked laser of claim 2, wherein a DC bias (590) is applied to the sinusoidal waveform.
5. The mode-locked laser of claim 3, wherein a DC bias (590) is applied to the sinusoidal waveform.
6. The mode-locked laser of claim 1, wherein the EOM (510) is configured to generate an amplitude modulated output.
7. The mode-locked laser of claim 6, wherein a DC bias (590) is applied to the sinusoidal waveform.
8. The mode-locked laser of claim 1, the EOM (510) is configured to operate with narrowband or wideband modulation.
9. The mode-locked laser of claim 1, wherein the EOM (510) comprises a Pockels cell.
10. A mode-locked laser comprising circuitry (560) configured to drive an electro- optic modulator (EOM) (510) in the mode-locked laser with a drive waveform, the drive waveform being a phase-coherent pulsed waveform at a frequency equal to a repetition rate of the mode-locked laser.
11. The mode-locked laser of claim 10, wherein a discrete number of pulse amplitudes are generated by a series of connected pulse generating stages.
12. The mode-locked laser of claim 10, wherein the circuitry is configured to drive the EOM (510) with the drive waveform having continuously variable pulse amplitudes.
13. The mode-locked laser of claim 11, wherein each of the series of connected pulse generating stages has continuously variable pulse amplitudes.
14. The mode-locked laser of claim 10, wherein the EOM (510) comprises a Pockels cell.
15. A mode-locked laser comprising circuitry (560) configured to drive an electro- optic modulator (EOM) (510) in the mode-locked laser with a drive waveform, the drive waveform being a phase-coherent sinusoidal waveform at a frequency equal to half of a repetition rate of the mode-locked laser.
16. The mode-locked laser of claim 1, wherein a DC bias (590) is applied such that the waveform is centered with symmetrical positive and negative voltages having substantially equal EOM optical phase shift.
17. The mode-locked laser of claim 15, the EOM (510) is configured to generate a phase modulated output.
18. The mode-locked laser of claim 15, the EOM (510) s configured to generate an amplitude modulated output.
19. The mode-locked laser of claim 15, wherein the EOM (510) comprises a Pockels cell.
PCT/US2018/033929 2017-05-23 2018-05-22 Sinusoidal phase modulation of mode-lock lasers WO2018217780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880044933.7A CN110832714B (en) 2017-05-23 2018-05-22 Sinusoidal phase modulation for mode-locked lasers
EP18805511.5A EP3631918A4 (en) 2017-05-23 2018-05-22 Sinusoidal phase modulation of mode-lock lasers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762510072P 2017-05-23 2017-05-23
US62/510,072 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018217780A1 true WO2018217780A1 (en) 2018-11-29

Family

ID=64397064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/033929 WO2018217780A1 (en) 2017-05-23 2018-05-22 Sinusoidal phase modulation of mode-lock lasers

Country Status (4)

Country Link
US (1) US10615564B2 (en)
EP (1) EP3631918A4 (en)
CN (1) CN110832714B (en)
WO (1) WO2018217780A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070020B2 (en) 2017-05-23 2021-07-20 Thorlabs, Inc. Sinusoidal phase modulation of mode-locked lasers
EP3918400A4 (en) * 2019-02-01 2022-11-30 Thorlabs, Inc. High dynamic range imaging
WO2021054970A1 (en) * 2019-09-20 2021-03-25 Thorlabs, Inc. Sinusoidal phase modulation of mode-locked lasers
CN113206430A (en) * 2021-03-30 2021-08-03 华南师范大学 Phase shifter, mode-locked laser and control method of mode-locked laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210912A1 (en) 2002-05-13 2003-11-13 Juerg Leuthold Delay interferometer optical pulse generator
US20060039419A1 (en) 2004-08-16 2006-02-23 Tan Deshi Method and apparatus for laser trimming of resistors using ultrafast laser pulse from ultrafast laser oscillator operating in picosecond and femtosecond pulse widths
US20080018977A1 (en) 2005-12-22 2008-01-24 Bme Messgeraete Entwicklung Kg Controlling pockels cells
WO2015189779A2 (en) 2014-06-10 2015-12-17 National Centre For Biological Sciences Mode locked laser (mll) for generating a wavelength stabilized depletion pulse and method thereof
US20160226215A1 (en) 2015-01-29 2016-08-04 University Of Kent Akinetic swept laser apparatus and method for fast sweeping of the same
US20160359290A1 (en) * 2014-02-18 2016-12-08 Nikon Corporation Pulsed light generating method, pulse laser apparatus, exposure apparatus having pulse laser apparatus, and inspection apparatus having pulse laser apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613028A (en) * 1969-10-21 1971-10-12 Bell Telephone Labor Inc Mode-locked laser
JPS4881554A (en) * 1972-02-01 1973-10-31
JPH01259266A (en) * 1988-04-08 1989-10-16 Hamamatsu Photonics Kk Voltage measuring instrument
DE19819473C2 (en) 1998-04-30 2000-02-10 Richard Wallenstein Device for generating coherent radiation
GB2365140B (en) 2000-07-22 2002-08-07 Marconi Caswell Ltd Optical pulse train generator
US7428253B2 (en) * 2006-09-29 2008-09-23 Pyrophotonics Lasers Inc. Method and system for a pulsed laser source emitting shaped optical waveforms
CA2743648C (en) 2008-11-21 2014-11-04 Institut National D'optique Spectrally tailored pulsed fiber laser oscillator
US9158177B2 (en) 2010-11-24 2015-10-13 Fianium Ltd. Optical systems
US9837784B2 (en) * 2015-12-28 2017-12-05 Nlight, Inc. Fully controllable burst shaping individual pulses from picosecond fiber lasers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210912A1 (en) 2002-05-13 2003-11-13 Juerg Leuthold Delay interferometer optical pulse generator
US20060039419A1 (en) 2004-08-16 2006-02-23 Tan Deshi Method and apparatus for laser trimming of resistors using ultrafast laser pulse from ultrafast laser oscillator operating in picosecond and femtosecond pulse widths
US20080018977A1 (en) 2005-12-22 2008-01-24 Bme Messgeraete Entwicklung Kg Controlling pockels cells
US20160359290A1 (en) * 2014-02-18 2016-12-08 Nikon Corporation Pulsed light generating method, pulse laser apparatus, exposure apparatus having pulse laser apparatus, and inspection apparatus having pulse laser apparatus
WO2015189779A2 (en) 2014-06-10 2015-12-17 National Centre For Biological Sciences Mode locked laser (mll) for generating a wavelength stabilized depletion pulse and method thereof
US20160226215A1 (en) 2015-01-29 2016-08-04 University Of Kent Akinetic swept laser apparatus and method for fast sweeping of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DALLAS J.L.: "Nd:YLF Laser for Airborne/Spaceborne Laser Ranging", EIGHTH INTERNATIONAL WORKSHOP ON LASER RANGING INSTRUMENTATION; ANNAPOLIS, MD USA; MAY 18-22, 1992, June 1993 (1993-06-01), pages 3-1 - 3-6, XP009517863 *
FUJIWARA M. ET AL.: "Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation", ELECTRONICS LETTERS, vol. 37, no. 15, 19 July 2001 (2001-07-19), pages 967 - 968, XP055553443 *
See also references of EP3631918A4

Also Published As

Publication number Publication date
US10615564B2 (en) 2020-04-07
CN110832714A (en) 2020-02-21
US20180342847A1 (en) 2018-11-29
EP3631918A4 (en) 2021-07-14
EP3631918A1 (en) 2020-04-08
CN110832714B (en) 2021-08-03

Similar Documents

Publication Publication Date Title
US10615564B2 (en) Sinusoidal phase modulation of mode-locked lasers
US11070020B2 (en) Sinusoidal phase modulation of mode-locked lasers
EP0694182B1 (en) Bias control and method for electro-optic modulators
US9306368B2 (en) Laser apparatus using cavity dumping and active mode locking
KR950701672A (en) LIQUID CRYSTALLINE LIGHT MODULATING DEVICE & MATERIAL
CN101656537A (en) Method and device for preparing multi-pulse interference Ramsey-CPT stripe
JPWO2008029455A1 (en) High speed multiplied signal generation method and apparatus
EP3815200B1 (en) Sinusoidal phase modulation of mode-locked lasers
Zavadilová et al. Subharmonic synchronously intracavity pumped picosecond optical parametric oscillator for intracavity phase interferometry
Wang et al. Complete characterization of an optical pulse based on temporal interferometry using an unbalanced temporal pulse shaping system
Kamiya et al. High voltage measuring apparatus based on Kerr effect in gas
JP2014191220A (en) Pulse light source and pulse light generation method
Bui et al. Improving opto-electronic oscillator stability by controlling the electro-optic modulator
JP4732156B2 (en) Polarization direction conversion apparatus and polarization direction conversion method
JP2022042129A (en) Optical pulse generator and optical pulse generation method
Beresnev et al. Dual frequency nematic liquid crystal spatial light modulator with modulation depth 0-2pi and operation rate in hundreds Hz region
Park et al. Synchronized generation of reconfigurable microwave sinusoidal wave packets from a free-running pulsed laser
Fontaine et al. Sinusoidal phase modulation as a gate for FROG
Schlaak Optical PCM clock regenerator with integrated optical directional coupler
Bui et al. Time evolution of an electro-optic modulator by detection of its nonlinear behavior
Rustige et al. Side-effect free carrier-envelope frequency stabilization utilizing the Doppler effect
JP2021110823A (en) Light pulse train generator and light pulse train generation method
SU682858A1 (en) Light modulator
Johnson et al. Picosecond optical switching using RF nonlinear transmission lines
von der Weid et al. Optical sampling with fast electro-optic modulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018805511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018805511

Country of ref document: EP

Effective date: 20200102