WO2018207718A1 - 転炉の操業方法 - Google Patents

転炉の操業方法 Download PDF

Info

Publication number
WO2018207718A1
WO2018207718A1 PCT/JP2018/017585 JP2018017585W WO2018207718A1 WO 2018207718 A1 WO2018207718 A1 WO 2018207718A1 JP 2018017585 W JP2018017585 W JP 2018017585W WO 2018207718 A1 WO2018207718 A1 WO 2018207718A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
lance
converter
oxygen gas
furnace
Prior art date
Application number
PCT/JP2018/017585
Other languages
English (en)
French (fr)
Inventor
勝太 天野
幸雄 ▲高▼橋
菊池 直樹
三木 祐司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019517603A priority Critical patent/JP6604460B2/ja
Priority to KR1020197032902A priority patent/KR102254941B1/ko
Priority to US16/611,674 priority patent/US11124849B2/en
Priority to EP18798026.3A priority patent/EP3575419B1/en
Priority to CN201880030354.7A priority patent/CN110612356B/zh
Priority to RU2019135765A priority patent/RU2733858C1/ru
Priority to BR112019023181-1A priority patent/BR112019023181B1/pt
Publication of WO2018207718A1 publication Critical patent/WO2018207718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace

Definitions

  • the present invention relates to a converter operating method in which oxygen gas is sprayed onto molten iron from a plurality of Laval nozzles provided on an upper blowing lance, and molten steel is melted from the molten iron while suppressing the ejection of molten iron to the outside of the converter.
  • molten iron is hot metal or molten steel, and when both can be clearly distinguished, they are described as “hot metal” or “molten steel”.
  • an operation with an increased oxygen gas supply amount per unit time (also referred to as “acid feed rate”) is adopted from the viewpoint of improving the productivity of the converter.
  • oxygen gas supply amount per unit time also referred to as “acid feed rate”
  • the supply amount of oxygen gas per unit time is increased, the iron content scattered outside the furnace as dust or the like and the iron content adhering to and deposited near the furnace wall and furnace opening increase. These iron losses will eventually be recovered and reused as an iron source.
  • this amount increases, the cost for dust recovery and removal of iron adhering to the vicinity of the furnace port will increase, and the converter This is one of the important issues to be solved.
  • Dust is generated by bubble bursts (such as spattering (metal scattering) or spattering of granular iron as bubbles boil off).
  • Dust is generated by fume (evaporation of iron atoms).
  • the decarburization reaction rate of the blown oxygen from the blown lance is the oxygen supply rate-determined until the carbon concentration in the molten iron reaches the critical carbon concentration, and the carbon concentration in the molten iron is lower than the critical carbon concentration. It is known to be movement (diffusion) rate limiting.
  • the decarburization rate based on the continuous analysis of exhaust gas is not constant but varies even during the oxygen supply rate-limiting period.
  • large bubbles are generated from the bath surface when the decarburization rate fluctuates during this oxygen supply rate-limiting period. It is thought that this occurs due to the expansion of the reaction area due to the shift from the reaction to the in-bath reaction.
  • Non-Patent Document 2 as the area of the fire spot, as shown in (4) below, taking into account the effect of the drop occurring in the geometric depression in addition to the surface area A p bath surface on equivalent define the interfacial area a *, as shown in (5) below, is a specific oxygenation F g decarboxylation oxygen efficiency with increasing the top-blown oxygen flow rate F O2 and corresponding boundary area a * It is described that it decreases.
  • the d c throat diameter of the Laval nozzle, I momentum of the top-blown oxygen jet, kappa correction coefficient momentum I, sigma is the surface tension of the molten iron.
  • the molten iron in the reaction vessel fluctuates with the supply of gas for refining and stirring that is blown up or bottom and the generation of CO gas based on the decarburization reaction.
  • the oscillation amplitude is maximized at the time of so-called resonance when the oscillation frequency matches the natural frequency determined by the shape of the reaction vessel.
  • Such a phenomenon is called “sloshing”.
  • sloshing occurs, the amount of iron deposited and deposited near the top blowing lance, furnace wall, and furnace furnace increases.
  • Non-Patent Document 3 describes sloshing. According to this, the natural frequency f calc of the cylindrical container can be obtained analytically, and from the cylindrical container inner diameter D and the bath depth H, the following ( It is described that it can be calculated by equation (6).
  • g is a gravitational acceleration
  • Non-patent document 4 which actually measured the vibration of the converter during decarburization refining, describes that the frequency of molten iron swinging in a commercial scale converter is about 0.3 to 0.4 Hz. This measured value almost coincides with the natural frequency of the converter calculated from the equation (6).
  • the sloshing phenomenon can occur even in a commercial scale converter.
  • slopping slag jetting
  • the amount of iron deposited and deposited near the top blowing lance, the furnace wall, and the vicinity of the furnace port increases.
  • Patent Document 1 in the converter operation in which the oxygen gas supply amount per unit time is increased, for the purpose of suppressing the occurrence of spitting and slopping, the oxygen gas supply amount into the converter, from the converter
  • the residual oxygen concentration in the furnace is calculated based on the exhaust gas flow rate, the exhaust gas composition, the hot metal component, and the amount of auxiliary raw material used, and the oxygen gas supply amount, lance height, and bottom blowing gas flow rate are calculated according to the calculated residual oxygen concentration in the furnace.
  • a refining method is described in which at least one of them is adjusted to suppress the occurrence of spitting and slopping.
  • the present invention has been made in view of the above circumstances, and its object is to suppress the fluctuation of molten iron when performing decarburization and refining of molten iron by blowing up oxygen gas from an upper blowing lance, and Another object of the present invention is to provide a converter operation method capable of suppressing bubble burst and spitting associated with bubble burst and suppressing a decrease in iron yield.
  • the oxygen gas flow rate F and below (2) storing oxygen index S in the furnace determined from the formula (F) is, to satisfy the following equation (3), oxygen-flow-rate Q g and lance from the upper lance
  • n is the number ( ⁇ ) of Laval nozzles installed at the lower end of the upper blowing lance
  • d c is the throat diameter of the Laval nozzle (mm)
  • Q g is the acid feed rate (Nm 3 / s) from the top blowing lance
  • P 0 is the supply pressure (Pa) of the oxygen gas to the Laval nozzle
  • v gc is the flow velocity of the oxygen gas at the collision surface of the molten iron bath surface calculated from the lance height LH (m)
  • r is a radius (mm) of a recess formed by the collision of the oxygen gas with the molten iron bath surface; L is the depth (mm) of the recess.
  • is a constant ((m 2 ⁇ s) / Nm 3 )
  • F 0 is a constant (Nm 3 / (m 2 ⁇ s))
  • ⁇ t is the data collection time interval (s).
  • According to the present invention is a function of the oxygen-flow-rate Q g and the lance height LH from the top lance, and controls the within a predetermined range (2) storing oxygen index S which is defined by the formula (F)
  • oxygen index S which is defined by the formula (F)
  • FIG. 1 is a graph showing the relationship between the average decarbonation efficiency ⁇ and the oxygen gas flow rate F per unit area of the fire point calculated from the equation (1).
  • FIG. 2 is a graph showing a relationship between the furnace falling metal index W and the maximum value S (F) max of the oxygen accumulation index S (F) calculated from the equation (2).
  • FIG. 3 is a graph showing the relationship between the maximum acceleration a max of the furnace vibration and the maximum value S (F) max of the oxygen accumulation index S (F) calculated from the equation (2).
  • the inventors of the present invention have used a converter having a capacity of 300 tons capable of blowing an oxygen gas from the top blowing lance and simultaneously blowing a stirring gas from the bottom blowing tuyeres at the bottom of the furnace.
  • the effect of the lance height LH of the top blow lance on the amount of metal deposit on the furnace wall and top blow lance when degassing and refining the hot metal by blowing up oxygen gas (industrial pure oxygen gas) was confirmed.
  • Argon gas was used as the bottom blowing stirring gas.
  • the “lance height LH” is the distance (m) from the tip of the top blowing lance to the hot metal bath surface when the hot metal in the converter is stationary.
  • top blowing lances A, B, and C three types were used, and the acid feed rate (oxygen supply flow rate) from the top blowing lance was 750 to 1000 Nm 3 / min.
  • the lance height LH was changed in the range of 2.2 to 2.8 m, and the bullion attached to the converter furnace mouth and hood during the blowing was collected after the blowing and weighed. The influence of the lance height LH and blowing conditions on the amount of adhered metal was confirmed.
  • an accelerometer was attached to the tilt axis of the converter, and the acceleration in the tilt axis direction during blowing was measured.
  • the obtained acceleration signal was captured and recorded in an analysis device, and fast Fourier transform processing was performed to analyze the frequency of the furnace vibration.
  • the oxygen gas flow rate F (Nm 3 / (m 2 ⁇ s)) per unit point of fire point is expressed by the following equation (1).
  • the oxygen gas flow rate F per unit area of the hot spot is the decarburization of the oxygen gas that collides per unit area of each hot spot at a plurality of hot spots that become collision sites with the oxygen gas blown over the hot metal bath surface in the furnace. The average flow rate during the refining period.
  • n is the number ( ⁇ ) of Laval nozzles installed at the lower end of the upper blowing lance.
  • d c is the throat diameter of the Laval nozzle (mm).
  • Q g is an acid feed rate (Nm 3 / s) from the top blowing lance.
  • P 0 is the supply pressure (Pa) of oxygen gas to the Laval nozzle of the top blowing lance.
  • v gc is the flow velocity of the oxygen gas on the collision surface of the hot metal bath surface calculated from the lance height LH, and is the flow velocity (m / s) of the oxygen gas on the central axis of the Laval nozzle.
  • r is the radius (mm) of the recess formed by the collision of oxygen gas with the hot metal bath surface.
  • L is the depth (mm) of the recess.
  • the discharge flow velocity v g0 (m / s) of the gas injected from the Laval nozzle is expressed by the following equation (7).
  • g is a gravitational acceleration (m / s 2 ).
  • p c is the pressure (static pressure) (Pa) in the throat of Laval nozzle.
  • p e is the pressure (static pressure) (Pa) at the nozzle outlet of the Laval nozzle.
  • v c is the specific volume in the throat of Laval nozzle (m 3 / kg).
  • v e is the specific volume of the Laval nozzle outlet (m 3 / kg).
  • K is an isentropic expansion coefficient.
  • the flow velocity v gc of the oxygen gas on the central axis of the Laval nozzle after being injected from the Laval nozzle is obtained as a function of the distance from the nozzle to the bath surface.
  • the flow velocity v gc of oxygen gas is expressed by the following equation (8).
  • ⁇ and ⁇ are constants. Therefore, if v g0 , LH, and x c are known, the flow velocity v gc of the oxygen gas can be calculated using the following equation (8).
  • the depth L (mm) of the depression formed on the iron bath collision surface of the jet is expressed by the following equation (9).
  • is a dimensionless constant and is a value in the range of 0.5 to 1.0.
  • the depth L of the dent is calculated with ⁇ as 1.0.
  • the radius r (mm) of the dent formed on the iron bath collision surface of the jet is expressed by the following equation (10).
  • ⁇ s is the jet spreading angle (°).
  • FIG. 1 shows the average decarbonation efficiency ⁇ (%) during decarburization during the decarburization until the carbon concentration during blowing is 3% by mass to 1% by mass, and the fire calculated from the equation (1). It is a graph which shows the relationship with the oxygen gas flow rate F per point unit area (Nm ⁇ 3 > / (m ⁇ 2 > * s)).
  • the average decarbonation efficiency ⁇ uses exhaust gas flow rate Q offgas (Nm 3 / s), CO concentration in exhaust gas (C CO ; volume%), and CO 2 concentration in exhaust gas (C CO2 ; volume%).
  • the following equation (11) was defined.
  • the average decarbonation efficiency ⁇ decreases as the oxygen gas flow rate F per unit area of the fire point increases.
  • the oxygen accumulation in the furnace increases as the oxygen gas flow rate F per unit area of the hot spot increases.
  • FIG. 2 is a graph showing the relationship between the furnace falling metal index W and the maximum value S (F) max of the oxygen accumulation index S (F) in the furnace during blowing.
  • the oxygen accumulation index S (F) in the furnace was defined by the following equation (2).
  • F in the equation (2) is an oxygen gas flow rate F per unit area of the fire point calculated by the equation (1).
  • is a constant ((m 2 ⁇ s) / Nm 3 ).
  • F 0 is a constant (Nm 3 / (m 2 ⁇ s)).
  • the constant ⁇ is set to 0.07 (m 2 ⁇ s) / Nm 3
  • the constant F 0 is set to 0.60 Nm 3 / (m 2 ⁇ s).
  • the constant ⁇ is a value of 0.05 to 0.10 (m 2 ⁇ s) / Nm 3 corresponding to the bottom blowing gas flow rate per unit molten steel mass.
  • ⁇ t is a data collection time interval (sec), and is 1 sec in this embodiment, for example.
  • the oxygen accumulation index S (F) is calculated by calculating (1 / F 0 ⁇ 1 / F) every 1 sec and integrating this about 1200 times. It is calculated by multiplying ⁇ by ⁇ .
  • the furnace falling metal index W was defined by the following equation (12).
  • the “average furnace downfall metal mass” shown in the denominator on the right side of the equation (12) is the average value of the amount of metal falling after the completion of blowing in the multiple charge test.
  • the furnace falling metal index W increases rapidly when the maximum value S (F) max of the oxygen accumulation index S (F) in the furnace exceeds 40.
  • FIG. 3 shows the maximum acceleration a max of 0.35 Hz, which is the natural frequency calculated from the equation (6), and the maximum oxygen accumulation index S (F) in the furnace, among the vibrations of the furnace body during blowing. It is a graph which shows the relationship with value S (F) max .
  • the maximum acceleration a max increases with increasing maximum S (F) max of the oxygen storage indication S in the furnace during blowing (F), the maximum value S (F) max
  • the maximum value S (F) max When the value exceeds 40, the amount of increase in the maximum acceleration a max increases. In other words, it has been found that when the maximum value S (F) max exceeds 40, the hot metal fluctuation may increase.
  • the oxygen gas flow rate F per unit area of the hot spot showed a negative correlation with the average decarbonation efficiency ⁇ regardless of the difference in the laval nozzle of the top blowing lance, and the furnace during the blowing
  • the maximum value S (F) max of the oxygen storage index S (F) in the inside is positively correlated with the furnace fall metal index W and the furnace vibration acceleration a max, and the maximum value S (F) max is 40.
  • both the furnace bottom falling metal index W and the furnace vibration acceleration a max increased rapidly.
  • the maximum value of the oxygen accumulation index S (F) in the furnace is used to suppress the fluctuation of the molten iron, reduce the amount of metal that adheres to the converter furnace mouth and hood, and prevent the iron yield from decreasing. It was found that it is important to control S (F) max to 40 or less, that is, to satisfy the following expression (3). S (F) ⁇ 40 (3)
  • the constant ⁇ changes although it is minute, depending on the operating condition of the furnace body.
  • the actual value of the accumulated oxygen index S (F) calculated by the above equation (2), the amount of oxygen gas supplied from the top blowing lance, and the amount of auxiliary material charged into the furnace Input oxygen amount that is the sum of oxygen amounts, and output oxygen amount that is the sum of CO gas, CO 2 gas, oxygen gas, oxygen content consumed in the desiliconization reaction and present in the furnace as SiO 2 in the converter exhaust gas It is preferable to monitor the amount of unknown oxygen, which is the difference between, and determine the constant ⁇ based on the actual value of the accumulated oxygen index S (F) and the amount of unknown oxygen.
  • the present invention is based on the results of the above studies, and using an upper blowing lance with a Laval nozzle installed at the lower end, oxygen gas is blown from the Laval nozzle to the molten iron bath surface in the converter to desorb the molten iron in the converter.
  • a refining method for a converter that performs oxidative refining, such as charcoal refining, and an accumulated oxygen index S in the furnace determined from the oxygen gas flow rate F per unit area of the fire point determined by the above equation (1) and the equation (2) (F) to adjust one or both of the oxygen-flow-rate Q g and the lance height LH from the top lance so as to satisfy the above equation (3).
  • the top blowing lance used in this example has four Laval nozzles having the same shape as the injection nozzles at the tip, and the Laval nozzles are equidistantly spaced concentrically with respect to the axis of the top blowing lance body.
  • an angle formed by the axis of the upper blowing lance body and the central axis of the nozzle (hereinafter referred to as “nozzle tilt angle”) is 17 °.
  • Throat diameter d c of the Laval nozzle is 76.0 mm
  • an outlet diameter d e is 87.0Mm.
  • iron scrap was charged into the top-bottom blowing converter, and hot metal at 1260 to 1280 ° C. was then charged into the top-bottom blowing converter.
  • hot metal at 1260 to 1280 ° C. was then charged into the top-bottom blowing converter.
  • argon gas or nitrogen gas was blown into the hot metal as a stirring gas from the bottom blowing tuyere.
  • decarburization refining was performed until the carbon concentration in the molten steel reached 0.05 mass%.
  • the amount of iron scrap charged was adjusted so that the molten steel temperature at the end of refining was 1650 ° C. Table 3 shows the composition and temperature of the hot metal used.
  • Table 4 shows the acid feed rate from the top blowing lance and the lance height LH. As shown in Table 4, the acid feed rate from the top blowing lance and the lance height LH were set separately in sections 1, 2, and 3 according to the carbon concentration in the hot metal.
  • the oxygen feed rate from the top blowing lance and the lance height LH are set so that the oxygen gas flow velocity v gc at the collision surface of the hot metal bath surface is in the range of about 120 to 240 m / s in the sections 1, 2, and 3.
  • the setting was changed according to the difference of the nozzle of the blowing lance.
  • the bottom blowing gas flow rate was constant in all tests.
  • Table 5 shows the oxygen flow rate F per unit area calculated from the equation (1), the maximum value S (F) max of the oxygen accumulation index S (F) in the furnace calculated from the equation (2), and The operation results are shown for each test.
  • the blowing time was almost the same in the inventive example and the comparative example, but the in-furnace falling metal index W at the end of the blowing in the inventive examples 1 to 4 was the comparative example 1. It was a value significantly smaller than the furnace fallen metal index W at the end of -5 blowing. From this result, it was confirmed that by setting the oxygen accumulation index S (F) to 40 or less, the adhesion of the metal can be suppressed, and thereby the converter operation capable of suppressing the decrease in the iron yield can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

上吹きランスから酸素ガスを上吹きして溶鉄の脱炭精錬を実施するにあたり、溶鉄の揺動を抑制し、且つ、バブルバースト及びバブルバーストに伴うスピッティングを抑制する。 下端にラバールノズルが設置された上吹きランスを用い、ラバールノズルから転炉内の溶銑浴面に酸素ガスを吹き付けて転炉内の溶鉄を脱炭する転炉の精錬方法であって蓄積酸素指標S(F)が40以下となるように、上吹きランスからの送酸速度及びランス高さLHのいずれか一方または双方を調整する。

Description

転炉の操業方法
 本発明は、上吹きランスに設けられた複数のラバールノズルから酸素ガスを溶鉄に吹き付け、転炉外へ溶鉄の噴出を抑制しつつ溶鉄から溶鋼を溶製する転炉の操業方法に関する。ここで、「溶鉄」とは、溶銑または溶鋼であり、両者を明確に区別できる場合は、「溶銑」または「溶鋼」と記載する。
 転炉での脱炭精錬において、転炉の生産性向上の観点から、単位時間当たりの酸素ガス供給量(「送酸速度」ともいう)を多くした操業が採用される。しかしながら、単位時間当たりの酸素ガス供給量を多くすると、ダストなどとして炉外に飛散する鉄分及び炉壁や炉口付近に付着して堆積する鉄分が増加する。これらの鉄分損失は最終的には回収され、再度鉄源として利用されることになるが、この量が多くなると、ダスト回収及び炉口付近に付着した鉄分の除去に要するコストの増加や転炉の稼働率の低下を招くので、解決すべき重要な課題の一つとなっている。
 そのため、転炉での脱炭精錬におけるダストの発生及び抑制に関して、従来から多くの検討及び研究がなされてきた。その結果、ダストの発生メカニズムについては、下記に示す2つのメカニズムに大別され、吹錬の進行に伴って各発生メカニズムによるダストの発生量及びダストの発生割合が変化することが知られている。
[1]バブルバースト(スピッティング(地金飛散)または気泡の湯面離脱に伴い粒鉄が飛散するなど)によってダストが発生する。
[2]ヒューム(鉄原子の蒸発)によってダストが発生する。
 一方、上吹きランスからの上吹き酸素による脱炭反応速度は、溶鉄中の炭素濃度が臨界炭素濃度に至るまでの期間では酸素供給律速であり、臨界炭素濃度以下の炭素濃度では溶鉄中炭素の移動(拡散)律速であることが知られている。但し、非特許文献1によれば、酸素供給律速期間であっても排ガスの連続分析に基づく脱炭速度は一定ではなく、変動することが記載されている。小型溶解炉を用いた脱炭精錬の浴面を直接観察した結果、この酸素供給律速期間において脱炭速度が変動すると浴面から大気泡が発生することから、脱炭速度の変動は、表面反応から浴内反応への移行による反応面積の拡大によって発生していると考えられている。
 上吹き酸素による脱炭反応は、主に酸素噴流と溶鉄との衝突界面、いわゆる「火点」と呼ばれる「くぼみ」で進行することが知られている。非特許文献2には、火点の面積として、下記の(4)式に示すように、幾何学的なくぼみの表面積Aに加えて浴面上に発生する液滴の影響を考慮した相当界面積Aを定義し、下記の(5)式に示すように、上吹き酸素流量FO2と相当界面積Aとの比である酸素負荷Fの増加に伴って脱炭酸素効率が低下することが記載されている。
Figure JPOXMLDOC01-appb-M000002
 
 (4)式において、dはラバールノズルのスロート径、Iは上吹き酸素噴流の運動量、κは運動量Iの補正係数、σは溶鉄の表面張力である。
 ところで、転炉などの精錬反応容器において、上吹きまたは底吹きされる精錬用及び撹拌用のガス供給と、脱炭反応に基づくCOガスの発生とに伴って、反応容器内の溶鉄は揺動する。揺動の振動数と反応容器の形状で決まる固有振動数とが一致する、いわゆる共振時には揺動の振幅が最大化する。このような現象は「スロッシング」と呼ばれる。スロッシングが発生すると、上吹きランス、炉壁、更には炉口付近に付着・堆積する鉄分が増加する。
 非特許文献3には、スロッシングについて記載されており、これによれば、円筒容器の固有振動数fcalcは、解析的に求めることができ、円筒容器内径Dと浴深Hとから下記の(6)式で算出できることが記載されている。ここで、(6)式において、gは重力加速度で、kは定数(=1.84)である。
Figure JPOXMLDOC01-appb-M000003
 
 脱炭精錬中の転炉の振動を実測した非特許文献4には、商業規模の転炉における溶鉄の揺動による振動数は0.3~0.4Hz程度であることが記載されている。この測定値は、(6)式から算出される転炉の固有振動数とほぼ一致する。
 したがって、商業規模の転炉においてもスロッシング現象は起こり得ることがわかる。スロッシング現象が起こると、スロッピング(スラグ噴出)が起こり易くなるので、上吹きランス、炉壁、更には炉口付近に付着・堆積する鉄分が増加する。
 特許文献1には、単位時間当たりの酸素ガス供給量を高めた転炉操業において、スピッティングやスロッピングの発生を抑制することを目的として、転炉内への酸素ガス供給量、転炉からの排ガス流量、排ガス組成、溶銑成分及び副原料使用量に基づいて炉内残留酸素濃度を算出し、算出した炉内残留酸素濃度に応じて、酸素ガス供給量、ランス高さ、底吹きガス流量のうちの少なくともいずれか1つを調整し、スピッティング及びスロッピングの発生を抑制する精錬方法が記載されている。
特開2013-108153号公報
生産研究、vol.22(1970)No.11.p.488 鉄と鋼、vol.57(1971)No.12.p.1764 生産研究、vol.26(1974)No.3.p.119 川崎製鉄技報、vol.19(1987)No.1.p.1
 しかしながら、特許文献1の精錬方法では、スロッピング(スラグ噴出)の兆候をモニターし、その後アクションを行っているので、スロッピングは検知できるものの、バブルバースト及びバブルバーストに伴うスピッティング(地金飛散)については抑制できない。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、上吹きランスから酸素ガスを上吹きして溶鉄の脱炭精錬を実施するにあたり、溶鉄の揺動を抑制し、且つ、バブルバースト及びバブルバーストに伴うスピッティングを抑制し、鉄歩留りの低下を抑制できる転炉操業方法を提供することである。
 このような課題を解決する本発明の特徴は、以下の通りである。
[1]下端にラバールノズルが設置された上吹きランスを用い、前記ラバールノズルから転炉内の溶鉄浴面に酸素ガスを吹き付けて転炉内の溶鉄を脱炭する転炉の精錬方法であって、
 下記(1)式で定まる火点単位面積当たりの酸素ガス流量F(Nm/(m×s))と、
 前記酸素ガス流量Fと下記(2)式とから定まる炉内の蓄積酸素指標S(F)が、下記の(3)式を満たすように、前記上吹きランスからの送酸速度Q及びランス高さLHのいずれか一方または双方を調整する、転炉の操業方法。
Figure JPOXMLDOC01-appb-M000004
 
 ここで、(1)式において、
 nは、前記上吹きランスの下端に設置されたラバールノズルの個数(-)であり、
 dは、前記ラバールノズルのスロート径(mm)であり、
 Qは、前記上吹きランスからの送酸速度(Nm/s)であり、
 Pは、前記ラバールノズルへの前記酸素ガスの供給圧力(Pa)であり、
 vgcは、前記ランス高さLH(m)から算出される溶鉄浴面の衝突面における前記酸素ガスの流速であって、前記ラバールノズルの中心軸上の前記酸素ガスの流速(m/s)であり、
 rは、前記溶鉄浴面への前記酸素ガスの衝突によって形成されるくぼみの半径(mm)であり、
 Lは、前記くぼみの深さ(mm)である。
 (2)式において、
 αは、定数((m×s)/Nm)であり、
 Fは、定数(Nm/(m×s))であり、
 Δtは、データ収集時間間隔(s)である。
[2]前記(2)式によって算出される蓄積酸素指標S(F)の実績値、及び、上吹きランスからの酸素ガス供給量及び炉内に投入した副原料中の酸素量の合計である入力酸素量と、転炉排ガスに存在するCOガス、COガス、酸素ガス及び脱珪反応に消費されSiOとして炉内に存在する酸素量の和である出力酸素量と、の差である不明酸素量を吹錬中に監視し、前記定数αを決定する、[1]に記載の転炉の操業方法。
 本発明によれば、上吹きランスからの送酸速度Q及びランス高さLHの関数である、(2)式で定義される蓄積酸素指標S(F)を所定の範囲内に制御するので、転炉内の溶鉄の揺動を抑制することが可能となるのみならず、上吹きランス、転炉炉壁、転炉の炉口付近に付着・堆積する鉄分を軽減することができる。
図1は、平均脱炭酸素効率ηと、(1)式から計算される火点単位面積当たりの酸素ガス流量Fとの関係を示すグラフである。 図2は、炉下落下地金指数Wと、(2)式から計算される酸素蓄積指標S(F)の最大値S(F)maxとの関係を示すグラフである。 図3は、炉体振動の最大加速度amaxと、(2)式から計算される酸素蓄積指標S(F)の最大値S(F)maxとの関係を示すグラフである。
 以下、発明の実施形態を通じて本発明を説明する。まず、本発明に至った経緯について説明する。
 本発明者らは、上吹きランスから酸素ガスを吹き付けると同時に炉底部の底吹き羽口から撹拌用ガスを吹き込むことの可能な容量300トン規模の転炉を用いて、転炉内の溶銑に酸素ガス(工業用純酸素ガス)を上吹きして溶銑の脱炭精錬を行う際の炉壁や上吹きランスへの地金付着量に及ぼす上吹きランスのランス高さLHの影響を確認した。底吹きの撹拌用ガスとしてはアルゴンガスを使用した。「ランス高さLH」とは、上吹きランスの先端から、転炉内の溶銑が静止状態であるときの溶銑浴面までの距離(m)である。
 実験では、表1に示すように、3種類の上吹きランス(上吹きランスA、B、C)を使用し、上吹きランスからの送酸速度(酸素供給流量)を750~1000Nm/min、ランス高さLHを2.2~2.8mの範囲で変更し、吹錬中に転炉炉口及びフードに付着した地金が炉下に落下したものを吹錬後に回収して秤量し、付着地金量に及ぼすランス高さLH及び吹錬条件の影響を確認した。
Figure JPOXMLDOC01-appb-T000005
 
 試験では、転炉の傾動軸に加速度計を装着し、吹錬中の傾動軸方向の加速度を計測した。得られた加速度信号は解析装置に取り込んで記録するとともに高速フーリエ変換処理を行い、炉体振動の周波数解析を行った。
 試験では、溶銑中の炭素濃度が4.0質量%の時点から上吹きランスからの酸素ガスの供給を開始し、溶鋼中の炭素濃度が0.05質量%となった時点で酸素ガスの供給を終了した。
 酸素ガスを上吹きして行う溶銑の脱炭精錬において、火点単位面積当たりの酸素ガス流量F(Nm/(m×s))は、下記の(1)式で表される。火点単位面積当たりの酸素ガス流量Fは、炉内の溶銑浴面の上吹き酸素ガスとの衝突部位となる複数の火点において、各火点の単位面積当たりに衝突する酸素ガスの脱炭精錬期間における平均流量である。
Figure JPOXMLDOC01-appb-M000006
 
 (1)式において、nは上吹きランスの下端に設置されたラバールノズルの個数(-)である。dはラバールノズルのスロート径(mm)である。Qは上吹きランスからの送酸速度(Nm/s)である。Pは上吹きランスのラバールノズルへの酸素ガスの供給圧力(Pa)である。vgcはランス高さLHから算出される酸素ガスの溶銑浴面の衝突面における流速であって、ラバールノズルの中心軸上の酸素ガスの流速(m/s)である。rは溶銑浴面への酸素ガスの衝突によって形成されるくぼみの半径(mm)である。Lは前記くぼみの深さ(mm)である。
 酸素ガスの流速vgc(m/s)、くぼみの半径r(mm)及びくぼみの深さL(mm)の算出方法について説明する。
 ラバールノズル内のガス流動を断熱変化と仮定すると、ラバールノズルから噴射される気体の吐出流速vg0(m/s)は下記の(7)式で表される。(7)式において、gは、重力加速度(m/s)である。pはラバールノズルのスロートにおける圧力(静圧)(Pa)である。pはラバールノズルのノズル出口における圧力(静圧)(Pa)である。vはラバールノズルのスロートにおける比容積(m/kg)である。vはラバールノズル出口における比容積(m/kg)である。Kは等エントロピー膨張係数である。
Figure JPOXMLDOC01-appb-M000007
 
 一方、ラバールノズルから噴射された後のラバールノズルの中心軸上の酸素ガスの流速vgcは、ノズルから浴面までの距離の関数として求められることがわかっている。このため、ラバールノズルの出口直下に形成されるポテンシャルコアと呼ばれる領域長さx(m)を考慮すると、酸素ガスの流速vgcは、下記の(8)式で表される。(8)式において、β及びγは定数である。したがって、vg0、LH、xがわかっていれば下記の(8)式を用いて酸素ガスの流速vgcを算出できる。
Figure JPOXMLDOC01-appb-M000008
 
 噴流の鉄浴衝突面に形成されるくぼみの深さL(mm)は、下記の(9)式で表される。ここで、(9)式において、εは無次元の定数であり、0.5~1.0の範囲内の値である。本実施形態ではεを1.0としてくぼみの深さLを算出している。
Figure JPOXMLDOC01-appb-M000009
 
 噴流の鉄浴衝突面に形成されるくぼみの半径r(mm)は、下記の(10)式で表される。(10)式において、θは噴流の拡がり角度(°)である。
Figure JPOXMLDOC01-appb-M000010
 
 図1は、吹錬中の炭素濃度が3質量%から1質量%になるまで脱炭する間の吹錬中の平均脱炭酸素効率η(%)と、(1)式から計算される火点単位面積当たりの酸素ガス流量F(Nm/(m×s))との関係を示すグラフである。平均脱炭酸素効率ηは、排ガス流量Qoffgas(Nm/s)と、排ガス中のCO濃度(CCO;体積%)と、排ガス中のCO濃度(CCO2;体積%)とを用いて下記の(11)式で定義した。
Figure JPOXMLDOC01-appb-M000011
 
 図1から明らかなように、平均脱炭酸素効率ηは火点単位面積当たりの酸素ガス流量Fの増加に伴って低下する。換言すれば、火点単位面積当たりの酸素ガス流量Fが増加するほど炉内の酸素蓄積は多くなる。
 図2は、炉下落下地金指数Wと吹錬中の炉内の酸素蓄積指標S(F)の最大値S(F)maxとの関係を示すグラフである。ここで、炉内の酸素蓄積指標S(F)は、下記の(2)式で定義した。(2)式のFは、(1)式で算出される火点単位面積当たりの酸素ガス流量Fである。αは定数((m×s)/Nm)である。Fは定数(Nm/(m×s))である。本実施形態では、定数αを0.07(m×s)/Nm、定数Fを0.60Nm/(m×s)とした。定数αは単位溶鋼質量当たりの底吹きガス流量に対応して0.05~0.10(m×s)/Nmの値である。Δtはデータ収集時間間隔(sec)であり、本実施形態では、例えば、1secである。Δtが1secであって、吹練時間が20分である場合、酸素蓄積指標S(F)は、1secごとに(1/F-1/F)を算出し、これを1200回程積算した値にαを乗ずることで算出される。
Figure JPOXMLDOC01-appb-M000012
 
 炉下落下地金指数Wは下記の(12)式で定義した。(12)式の右辺の分母に示す「平均炉下落下地金質量」は、複数チャージの試験における吹錬終了後の地金落下量の平均値である。
Figure JPOXMLDOC01-appb-M000013
 
 図2から明らかなように、炉下落下地金指数Wは、炉内の酸素蓄積指標S(F)の最大値S(F)maxが40を超えると急増する。
 図3は、吹錬中の炉体振動の内で、(6)式から計算される固有振動数である0.35Hzの最大加速度amaxと、炉内の酸素蓄積指標S(F)の最大値S(F)maxとの関係を示すグラフである。
 図3から明らかなように、最大加速度amaxは、吹錬中の炉内の酸素蓄積指標S(F)の最大値S(F)maxの増加とともに増加し、この最大値S(F)maxが40を超えると最大加速度amaxの増加量が大きくなった。換言すれば、最大値S(F)maxが40を超えると、溶銑の揺動が大きくなる可能性のあることがわかった。
 ここで注目すべきは、上吹きランスのラバールノズルの違いによらず、火点単位面積当たりの酸素ガス流量Fが平均脱炭酸素効率ηと負の相関を示したこと、及び吹錬中の炉内の酸素蓄積指標S(F)の最大値S(F)maxが炉下落下地金指数W及び炉体振動加速度amaxと正相関を示し最大値S(F)maxが40となる点を境に炉下落下地金指数W及び炉体振動加速度amaxの双方が急増したことである。
 即ち、溶鉄の揺動を抑制し、且つ、転炉炉口やフードに付着する地金を低減し、鉄歩留りの低下を防止するには、炉内の酸素蓄積指標S(F)の最大値S(F)maxを40以下に制御する、すなわち、下記(3)式を満たすことが重要であることがわかった。
 S(F)≦40・・・(3)
また、定数αは炉体の操業状況などで微小ではあるが変化する。このため、実施の際には、上記(2)式によって算出される蓄積酸素指標S(F)の実績値、及び、上吹きランスからの酸素ガス供給量及び炉内に投入した副原料中の酸素量の合計である入力酸素量と、転炉排ガス中のCOガス、COガス、酸素ガス、脱珪反応に消費されSiOとして炉内に存在する酸素量の和である出力酸素量と、の差である不明酸素量を吹錬中に監視し、蓄積酸素指標S(F)の実績値及び不明酸素量に基づいて定数αを決定することが好ましい。
 本発明は、上記検討結果に基づくものであり、下端にラバールノズルが設置された上吹きランスを用い、ラバールノズルから転炉内の溶鉄浴面に酸素ガスを吹き付けて転炉内の溶鉄に対して脱炭精錬などの酸化精錬を施す転炉の精錬方法であって、上記の(1)式で定まる火点単位面積当たりの酸素ガス流量Fと(2)式とから定まる炉内の蓄積酸素指標S(F)が上記の(3)式を満たすように上吹きランスからの送酸速度Q及びランス高さLHのいずれか一方または双方を調整する。
 蓄積酸素指標S(F)が(3)式を満たすように上吹きランスからの送酸速度Q及びランス高さLHのいずれか一方または双方を調整することで、溶鉄浴面に対する酸素の過剰供給が抑制され、溶鉄浴内で炭素と酸素が反応することで発生するCO気泡が過大になることが抑制される。これにより、バブルバースト及びバブルバーストに伴うスピッティングを抑制できる。
 さらに、図3に示したように、蓄積酸素指標S(F)が(3)式を満たすように上吹きランスからの送酸速度Q及びランス高さLHのいずれか一方または双方を調整することで、溶鉄の搖動が大きくなることを抑制できる。
 このように、本実施形態に係る転炉の操業方法を実施することで溶鉄の揺動を抑制し、且つ、バブルバースト及びバブルバーストに伴うスピッティングを抑制できる。これにより、炉外への鉄分の逸散が減少し、地金の回収と再利用に要する費用が削減されるのみならず、転炉炉口などに付着、堆積した地金の除去に伴う転炉の稼動率低下を抑制できる。
 次に、本発明の実施例を説明する。上吹きランスから酸素ガスを吹き付けるとともに、炉底部の底吹き羽口から撹拌用ガスを吹き込むことができる容量300トン規模の転炉(以下、「上底吹き転炉」と記載する)を用いて脱炭吹錬を行った。炉外への鉄分の逸散の評価として、(12)式で定義した炉下落下地金指数Wを用いた。
 本実施例で使用した上吹きランスは、噴射ノズルとして同一形状の4個のラバールノズルを先端部に有しており、前記ラバールノズルを上吹きランス本体の軸心に対して同心円上に等間隔で、且つ、上吹きランス本体の軸心とノズルの中心軸とのなす角度(以下、「ノズル傾角」と記載する)を17°として配置したものである。ラバールノズルのスロート径dは76.0mmであり、出口径dは87.0mmである。
 同様に、5個のラバールノズルを有し、ノズル傾角が15°であり、スロート径dが65.0mmであり、出口径dが78.0mmである上吹きランスと、5個のラバールノズルを有し、ノズル傾角が15°であり、スロート径dが65.0mmであり、出口径dが75.3mmである上吹きランスと、5個のラバールノズルを有し、ノズル傾角が15°であり、スロート径dが57.0mmであり、出口径dが67.2mmである上吹きランスとを使用した。表2に各試験で使用した上吹きランスの仕様を示す。
Figure JPOXMLDOC01-appb-T000014
 
 転炉の操業方法は、鉄スクラップを上底吹き転炉に装入した後、1260~1280℃の溶銑を上底吹き転炉に装入した。次いで、上吹きランスから平均で2.0Nm/(hr×t)の酸素ガスを溶銑浴面に向けて吹き付けながら、底吹き羽口からアルゴンガスまたは窒素ガスを撹拌用ガスとして溶銑中に吹き込み、溶鋼中の炭素濃度が0.05質量%となるまで脱炭精錬を行った。鉄スクラップの装入量は、精錬終了時の溶鋼温度が1650℃となるように調節した。使用した溶銑の組成及び温度を表3に示す。
Figure JPOXMLDOC01-appb-T000015
 
 表4に、上吹きランスからの送酸速度及びランス高さLHを示す。表4に示すように、上吹きランスからの送酸速度及びランス高さLHを、溶銑中の炭素濃度に応じて区間1、2、3に区別して設定した。
Figure JPOXMLDOC01-appb-T000016
 
 上吹きランスからの送酸速度及びランス高さLHは、溶銑浴面の衝突面における酸素ガスの流速vgcが区間1、2、3でおよそ120~240m/sの範囲となるように、上吹きランスのノズルの違いに応じて設定を変更した。底吹きガス流量は全ての試験で一定とした。
 表5に、(1)式から計算される火点単位面積当たりの酸素流量F及び(2)式から計算される炉内の酸素蓄積指標S(F)の最大値S(F)max、並びに、操業結果を各試験別に示す。
Figure JPOXMLDOC01-appb-T000017
 
 表5から明らかなように、本発明例と比較例とで吹錬時間はほぼ同等であったが、本発明例1~4の吹錬終了時の炉下落下地金指数Wは、比較例1~5の吹錬終了時の炉下落下地金指数Wよりも著しく小さい値であった。この結果から、酸素蓄積指標S(F)を40以下にすることで、地金付着を抑制でき、これにより鉄歩留りの低下を抑制できる転炉操業が実施できることが確認された。

Claims (2)

  1.  下端にラバールノズルが設置された上吹きランスを用い、前記ラバールノズルから転炉内の溶鉄浴面に酸素ガスを吹き付けて転炉内の溶鉄を脱炭する転炉の精錬方法であって、
     下記(1)式で定まる火点単位面積当たりの酸素ガス流量F(Nm/(m×s))と、前記酸素ガス流量Fと下記(2)式とから定まる炉内の蓄積酸素指標S(F)が、下記の(3)式を満たすように、前記上吹きランスからの送酸速度Q及びランス高さLHのいずれか一方または双方を調整する、転炉の操業方法。
    Figure JPOXMLDOC01-appb-M000001
     
     (1)式において、
     nは、前記上吹きランスの下端に設置されたラバールノズルの個数(-)であり、
     dは、前記ラバールノズルのスロート径(mm)であり、
     Qは、前記上吹きランスからの送酸速度(Nm/s)であり、
     Pは、前記ラバールノズルへの前記酸素ガスの供給圧力(Pa)であり、
     vgcは、前記ランス高さLH(m)から算出される溶鉄浴面の衝突面における前記酸素ガスの流速であって、前記ラバールノズルの中心軸上の前記酸素ガスの流速(m/s)であり、
     rは、前記溶鉄浴面への前記酸素ガスの衝突によって形成されるくぼみの半径(mm)であり、
     Lは、前記くぼみの深さ(mm)である。
     (2)式において、
     αは、定数((m×s)/Nm)であり、
     Fは、定数(Nm/(m×s))であり、
     Δtは、データ収集時間間隔(s)である。
  2.  前記(2)式によって算出される蓄積酸素指標S(F)の実績値、及び、上吹きランスからの酸素ガス供給量及び炉内に投入した副原料中の酸素量の合計である入力酸素量と、転炉排ガスに存在するCOガス、COガス、酸素ガス及び脱珪反応に消費されSiOとして炉内に存在する酸素量の和である出力酸素量と、の差である不明酸素量を吹錬中に監視し、前記定数αを決定する、請求項1に記載の転炉の操業方法。
PCT/JP2018/017585 2017-05-08 2018-05-07 転炉の操業方法 WO2018207718A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019517603A JP6604460B2 (ja) 2017-05-08 2018-05-07 転炉の操業方法
KR1020197032902A KR102254941B1 (ko) 2017-05-08 2018-05-07 전로의 조업 방법
US16/611,674 US11124849B2 (en) 2017-05-08 2018-05-07 Method for operating converter
EP18798026.3A EP3575419B1 (en) 2017-05-08 2018-05-07 Method for operating the top blowing lance of a converter
CN201880030354.7A CN110612356B (zh) 2017-05-08 2018-05-07 转炉的操作方法
RU2019135765A RU2733858C1 (ru) 2017-05-08 2018-05-07 Способ управления конвертером
BR112019023181-1A BR112019023181B1 (pt) 2017-05-08 2018-05-07 Método para operar um conversor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092258 2017-05-08
JP2017092258 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018207718A1 true WO2018207718A1 (ja) 2018-11-15

Family

ID=64104678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017585 WO2018207718A1 (ja) 2017-05-08 2018-05-07 転炉の操業方法

Country Status (9)

Country Link
US (1) US11124849B2 (ja)
EP (1) EP3575419B1 (ja)
JP (1) JP6604460B2 (ja)
KR (1) KR102254941B1 (ja)
CN (1) CN110612356B (ja)
BR (1) BR112019023181B1 (ja)
RU (1) RU2733858C1 (ja)
TW (1) TWI681060B (ja)
WO (1) WO2018207718A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926138B (zh) * 2020-08-13 2022-04-12 北京首钢自动化信息技术有限公司 一种氧枪高度的控制方法及装置
JP7211553B1 (ja) * 2021-03-17 2023-01-24 Jfeスチール株式会社 転炉の操業方法および溶鋼の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303114A (ja) * 1999-04-15 2000-10-31 Sumitomo Metal Ind Ltd 溶融金属の精錬方法
JP2013108153A (ja) 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp 転炉の精錬方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU767214A1 (ru) * 1977-08-05 1980-09-30 За витель , «Шёвд I Устройство дл прогнозировани выбросов металла и шлака из конвертера
JPS5948926B2 (ja) * 1979-02-24 1984-11-29 川崎製鉄株式会社 溶湯容器の造滓制御法
SU1046290A1 (ru) * 1982-03-23 1983-10-07 Сибирский ордена Трудового Красного Знамени металлургический институт им.Серго Орджоникидзе Система управлени конверторной плавкой
US4749171A (en) * 1984-09-06 1988-06-07 Nippon Steel Corporation Method and apparatus for measuring slag-foam conditions within a converter
SU1470774A1 (ru) * 1987-08-11 1989-04-07 Карагандинский металлургический комбинат Способ управлени конвертерным процессом
SU1539211A1 (ru) * 1988-05-30 1990-01-30 Киевский институт автоматики им.ХХУ съезда КПСС Устройство управлени конверторной плавкой
JP2957469B2 (ja) * 1996-04-12 1999-10-04 日本電気移動通信株式会社 携帯型無線電話機
JP2000119725A (ja) 1998-10-07 2000-04-25 Nippon Steel Corp 高生産性転炉製鋼方法
JP3580177B2 (ja) * 1999-04-23 2004-10-20 住友金属工業株式会社 含Cr溶鋼の脱炭精錬方法
JP3825733B2 (ja) * 2002-09-25 2006-09-27 新日本製鐵株式会社 溶銑の精錬方法
CN101638707B (zh) 2009-08-21 2011-07-20 武汉钢铁(集团)公司 转炉炼钢双向供钢供氧方法
JP2011084789A (ja) * 2009-10-16 2011-04-28 Sumitomo Metal Ind Ltd 転炉吹錬方法
CN102399933B (zh) 2010-09-07 2013-12-11 鞍钢股份有限公司 一种转炉吹炼低碳钢氧枪自动控制方法
EP2752497B1 (en) 2011-10-17 2018-08-22 JFE Steel Corporation Powder injection lance and method of refining molten iron using said powder injection lance
CN102732668B (zh) 2012-07-05 2014-02-12 北京科技大学 一种预热氧气提高射流速度的吹氧炼钢方法
CN105793444B (zh) 2013-11-28 2018-06-26 杰富意钢铁株式会社 转炉操作监视方法及转炉操作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303114A (ja) * 1999-04-15 2000-10-31 Sumitomo Metal Ind Ltd 溶融金属の精錬方法
JP2013108153A (ja) 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp 転炉の精錬方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAWASAKI STEEL TECHNICAL REPORT, vol. 19, no. 1, 1987, pages 1
See also references of EP3575419A4
SEISAN KENKYU (PRODUCTION RESEARCH, vol. 22, no. 11, 1970, pages 488
SEISAN KENKYU (PRODUCTION RESEARCH, vol. 26, no. 3, 1974, pages 119
TETSU-TO-HAGANE (IRON AND STEEL, vol. 57, no. 12, 1971, pages 1,764

Also Published As

Publication number Publication date
RU2733858C1 (ru) 2020-10-07
KR20190137862A (ko) 2019-12-11
EP3575419A1 (en) 2019-12-04
CN110612356B (zh) 2021-06-29
US11124849B2 (en) 2021-09-21
EP3575419B1 (en) 2021-09-29
TWI681060B (zh) 2020-01-01
BR112019023181B1 (pt) 2023-03-28
TW201843307A (zh) 2018-12-16
JP6604460B2 (ja) 2019-11-13
JPWO2018207718A1 (ja) 2019-11-07
CN110612356A (zh) 2019-12-24
BR112019023181A2 (pt) 2020-05-19
US20200157645A1 (en) 2020-05-21
KR102254941B1 (ko) 2021-05-21
EP3575419A4 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6604460B2 (ja) 転炉の操業方法
JP6421732B2 (ja) 転炉の操業方法
TWI572719B (zh) 轉爐操作方法
JP6421731B2 (ja) 転炉の操業方法
JP6954262B2 (ja) 転炉の操業方法
JP5915568B2 (ja) 転炉型精錬炉における溶銑の精錬方法
JP2014037599A (ja) 溶銑の精錬方法
JP2010031338A (ja) 転炉の操業方法
JP2011084789A (ja) 転炉吹錬方法
JP2011179041A (ja) 転炉内地金の除去方法
JP5929632B2 (ja) 転炉精錬方法
JP6658365B2 (ja) 溶銑の精錬方法
JPH0849008A (ja) 転炉でのスロッピング予知方法及びその防止方法
JP2012082492A (ja) 転炉精錬方法
JP4761937B2 (ja) 転炉の吹錬方法
TWI700373B (zh) 轉爐吹煉方法
JP2019218580A (ja) 溶鋼の脱燐処理方法
JP2018024911A (ja) 溶銑予備処理における鍋内付着地金溶解方法
JP2012082491A (ja) 転炉精錬方法
JP2022006385A (ja) 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
JP2022164219A (ja) 転炉における精錬方法
JP2010189668A (ja) 転炉の操業方法
JP2019135319A (ja) 転炉吹錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517603

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018798026

Country of ref document: EP

Effective date: 20190829

ENP Entry into the national phase

Ref document number: 20197032902

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023181

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019023181

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191104