WO2018207278A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2018207278A1
WO2018207278A1 PCT/JP2017/017653 JP2017017653W WO2018207278A1 WO 2018207278 A1 WO2018207278 A1 WO 2018207278A1 JP 2017017653 W JP2017017653 W JP 2017017653W WO 2018207278 A1 WO2018207278 A1 WO 2018207278A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pump
temperature
fan
refrigerant
Prior art date
Application number
PCT/JP2017/017653
Other languages
French (fr)
Japanese (ja)
Inventor
和希 外川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019516788A priority Critical patent/JP6732117B2/en
Priority to PCT/JP2017/017653 priority patent/WO2018207278A1/en
Publication of WO2018207278A1 publication Critical patent/WO2018207278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat

Definitions

  • the present invention relates to a heat pump device using underground heat.
  • a method using geothermal heat is known as a method for cooling control electronic components for controlling the output of a compressor in a heat pump system using geothermal heat (for example, Patent Document 1).
  • This heat pump system includes a heat collecting circuit that collects underground heat, a heat pump circuit that is arranged in parallel with the heat collecting circuit, and an air conditioning circuit that is arranged in parallel with the heat pump circuit and performs indoor air conditioning.
  • the heat collecting circuit includes a first heat exchanger that performs heat exchange with the heat pump refrigerant.
  • the heat pump circuit includes a compressor that compresses the heat pump refrigerant, a first heat exchanger that exchanges heat with the underground heat refrigerant, a second heat exchanger that exchanges heat with the air conditioning refrigerant, and a second heat exchange. And an expansion valve provided between the compressor and the first heat exchanger, and a control electronic component for controlling the compressor.
  • the output of the compressor is controlled by inverter control, and the control electronic component at that time is accompanied by heat generation, so it is necessary to cool the control electronic component.
  • the control electronic component is joined to a heat collecting circuit located on the upstream side of the first heat exchanger via a heat sink, and is cooled by the heat of the underground heat refrigerant flowing through the heat collecting pipe penetrating through the fin of the heat sink.
  • the heat collecting tube in the heat pump system described in Patent Document 1 may have a dew point temperature lower than the temperature inside the apparatus.
  • dew condensation water is generated, and the generated dew condensation water may be constantly generated during operation. For this reason, there has been a problem that the generated condensed water may fall on the part or flow out of the device, leading to failure of the device and complaints.
  • This invention is made in view of the subject in the said prior art, Comprising: It aims at providing the heat pump apparatus which can suppress generation
  • the heat pump device of the present invention includes a heat collection circuit in which a ground heat refrigerant circulates in the heat collection pipe, a heat pump circuit in which a heat pump refrigerant circulates in the heat pump pipe, the ground heat refrigerant, and the heat pump refrigerant.
  • a heat pump device including a heat exchanger for exchanging heat with the heat collecting circuit, wherein the heat collecting circuit is configured with a part of the heat collecting pipe embedded in the ground,
  • the heat pump circuit includes an underground heat exchanger for collecting heat, the heat pump circuit is connected to the heat pump pipe, and includes a compressor for compressing the refrigerant for the heat pump, and an electronic component for controlling the compressor.
  • a control box having the heat collecting pipe joined to the rear surface thereof, and a fan for blowing an airflow to the rear surface of the control box.
  • the heat collecting pipe is joined to the back surface of the control box, and the air current of the fan is blown to the back surface of the control box, thereby cooling the control electronic components and generating dew condensation water. Can be suppressed.
  • FIG. It is the schematic which shows an example of a structure of the heat pump apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows an example of a structure of the control apparatus of FIG. It is the schematic for demonstrating the relationship between the control box of FIG. 1, and piping. It is the schematic for demonstrating the installation position of the fan with respect to the control box of FIG. 3 is a flowchart illustrating an example of a flow of fan rotation speed control processing in the heat pump device according to the first embodiment.
  • FIG. It is the schematic which shows an example of a structure of the heat pump apparatus which concerns on Embodiment 2.
  • FIG. It is the schematic which shows the mode of the back surface of the control box of FIG.
  • FIG. 6 is a flowchart illustrating an example of a flow of fan rotation speed control processing in the heat pump device according to the second embodiment.
  • Embodiment 1 FIG. Hereinafter, the heat pump apparatus according to Embodiment 1 of the present invention will be described.
  • the heat pump device according to Embodiment 1 collects ground heat and performs air conditioning and hot water supply using the collected ground heat.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the heat pump device 100 according to the first embodiment.
  • the heat pump device 100 includes a heat collection circuit 1, a heat pump circuit 2, an air conditioning circuit 3, a hot water supply circuit 4, and a control device 7.
  • the heat collecting circuit 1 includes a first heat exchanger 5, a ground heat exchanger 11, a first circulation pump 12, a first temperature thermistor 13 as a first temperature sensor, and a second temperature thermistor 14 as a second temperature sensor.
  • the ground heat exchanger 11 is used to collect the ground heat.
  • the first heat exchanger 5, the underground heat exchanger 11, and the first circulation pump 12 are annularly connected by the heat collecting pipe 10, and the inside of the heat collecting pipe 10 is a refrigerant for underground heat. Circulates.
  • the underground heat exchanger 11 is configured, for example, such that a part of the heat collecting pipe 10 is formed in a U shape and is embedded vertically or horizontally in the ground.
  • the underground heat exchanger 11 collects underground heat by circulating an underground heat refrigerant inside.
  • the first circulation pump 12 is driven by a motor (not shown) and circulates the underground heat refrigerant.
  • the first heat exchanger 5 performs heat exchange between the underground heat refrigerant flowing through the heat collecting circuit 1 and the heat pump refrigerant flowing through the heat pump circuit 2 described later.
  • the first heat exchanger 5 heats or cools the heat pump refrigerant with the heat of the underground heat refrigerant.
  • the first temperature thermistor 13 is installed in the vicinity of the heat collecting pipe 10 and measures the temperature of the underground heat refrigerant flowing through the heat collecting pipe 10.
  • the second temperature thermistor 14 is installed inside the heat pump apparatus 100 and measures the temperature inside the heat pump apparatus 100.
  • the second temperature thermistor 14 may be installed at any position as long as the temperature in the heat pump apparatus 100 can be measured, but is preferably installed in the vicinity of the control box 23 of the heat pump circuit 2 described later.
  • the heat pump circuit 2 includes a compressor 21, a decompression device 22, a first heat exchanger 5, a second heat exchanger 6, a control box 23, and a fan 24.
  • the first heat exchanger 5, the compressor 21, the second heat exchanger 6, and the decompression device 22 are connected in a ring shape by the heat pump pipe 20, and the heat pump refrigerant circulates inside the heat pump pipe 20. .
  • the compressor 21 sucks the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 21 includes, for example, an inverter compressor that controls a capacity that is a refrigerant delivery amount per hour by arbitrarily changing a drive frequency.
  • the decompression device 22 decompresses and expands the refrigerant.
  • the decompression device 22 is configured by a valve capable of controlling the opening, such as an electronic expansion valve.
  • the second heat exchanger 6 exchanges heat between the heat pump refrigerant flowing through the heat pump circuit 2 and a heat medium flowing through the air conditioning circuit 3 described later.
  • the second heat exchanger 6 heats or cools the heat medium with the heat of the heat pump refrigerant.
  • the control box 23 is equipped with control electronic components for controlling the compressor 21 and is connected to the control device 7 described later.
  • the back surface of the control box 23 is joined to the upstream side of the first heat exchanger 5 in the heat collecting pipe 10 of the heat collecting circuit 1. Details of the structure of the control box 23 will be described later.
  • the fan 24 is driven by a motor (not shown) and is installed so as to blow an airflow on the back surface of the control box 23.
  • the air conditioning circuit 3 includes a second heat exchanger 6, a flow path switching valve 31, a radiator 32, and a second circulation pump 33.
  • the second heat exchanger 6, the flow path switching valve 31, the radiator 32, and the second circulation pump 33 are annularly connected by the air conditioning pipe 30, and water circulates inside the air conditioning pipe 30.
  • the flow path switching valve 31 is, for example, an electromagnetic three-way valve, and has one inflow port and two outflow ports. The flow path switching valve 31 switches the flow path when the outlet is selected to supply the heat medium flowing into the inflow port to either the radiator 32 of the air conditioning circuit 3 or the hot water supply circuit 4.
  • the heat radiator 32 is mainly installed in the air-conditioning target space, and radiates the heat of the heat medium to perform air conditioning of the air-conditioning target space.
  • the second circulation pump 33 is driven by a motor (not shown) to circulate the heat medium.
  • the hot water supply circuit 4 includes a hot water supply tank 41, a third circulation pump 42, and a third heat exchanger 43.
  • a hot water supply pipe 40 a In the hot water supply circuit 4, one outlet of the flow path switching valve 31 in the air conditioning circuit 3 and the air conditioning pipe 30 through which the heat medium flowing out from the radiator 32 flows are connected by a hot water supply pipe 40 a through a third heat exchanger 43.
  • the hot water supply tank 41, the 3rd circulation pump 42, and the 3rd heat exchanger 43 are connected cyclically
  • the hot water supply tank 41 is supplied with water heated by a third heat exchanger 43 described later, and stores this water.
  • the third circulation pump 42 is driven by a motor (not shown) to circulate water.
  • the hot water supply tank 41 is supplied with tap water or the like from the outside through a water supply pipe (not shown), and flows the supplied tap water or the like out to supply it to the third circulation pump 42.
  • the heated water stored in the hot water supply tank 41 is discharged to the outside through a hot water pipe (not shown) and used as hot water for a shower or the like.
  • the third heat exchanger 43 performs heat exchange between the heat medium flowing through the hot water supply circuit 4 via the air conditioning circuit 3 and the water flowing out of the hot water supply tank 41.
  • the second heat exchanger 6 heats water with the heat of the heat medium.
  • the control device 7 controls the overall operation of the heat pump device 100 based on various information received from each part of the heat pump device 100, for example.
  • the control device 7 controls the compressor frequency of the compressor 21 and the switching of the flow path of the flow path switching valve 31 based on information from various sensors (not shown) provided in the heat pump apparatus 100.
  • the control device 7 controls the rotation speed of the fan 24 based on the temperatures measured by the first temperature thermistor 13 and the second temperature thermistor 14. Details of such control of the fan 24 will be described later.
  • Such a control device 7 includes, for example, software executed on a computing device such as a microcomputer or a CPU (Central Processing Unit), and hardware such as a circuit device that realizes various functions.
  • a computing device such as a microcomputer or a CPU (Central Processing Unit)
  • hardware such as a circuit device that realizes various functions.
  • FIG. 2 is a block diagram showing an example of the configuration of the control device 7 of FIG.
  • the control device 7 includes a pump state determination unit 71, a temperature difference calculation unit 72, a fan rotation number determination unit 73, a storage unit 74, and a fan control unit 75.
  • the control device 7 includes a pump state determination unit 71, a temperature difference calculation unit 72, a fan rotation number determination unit 73, a storage unit 74, and a fan control unit 75.
  • FIG. 2 only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
  • the pump state determination unit 71 receives drive information related to the first circulation pump 12.
  • the drive information for example, information obtained from a motor (not shown) that drives the first circulation pump 12 can be used.
  • the pump state determination unit 71 determines whether or not the first circulation pump 12 is driven based on the input drive information, and supplies information indicating the obtained determination result to the fan rotation number determination unit 73. .
  • the temperature difference calculation unit 72 receives data indicating the temperature of the underground heat refrigerant by the first temperature thermistor 13 and data indicating the temperature in the heat pump device 100 by the second temperature thermistor 14. The temperature difference calculation unit 72 calculates a temperature difference based on the two input measurement data, and supplies information indicating the obtained temperature difference to the fan rotation speed determination unit 73.
  • the fan rotation speed determination unit 73 receives information indicating the determination result obtained by the pump state determination unit 71 and information indicating the temperature difference calculated by the temperature difference calculation unit 72.
  • the fan rotation speed determination unit 73 determines the rotation speed of the fan 24 by referring to a rotation speed table stored in advance in the storage unit 74 described later based on the two pieces of input information. Then, the fan rotation speed determination unit 73 supplies information indicating the determined rotation speed of the fan 24 to the fan control unit 75.
  • the storage unit 74 stores programs and data necessary for control performed by the control device 7 in advance.
  • the storage unit 74 stores in advance a rotation speed table used by the fan rotation speed determination unit 73.
  • the rotation speed table is a table in which the temperature difference calculated by the temperature difference calculation unit 72 is associated with the rotation speed of the fan 24. Specifically, the calculated temperature difference is divided into a plurality of stages, and the rotation speed of the fan 24 is associated with each divided stage.
  • the temperature difference is associated with the rotation speed so that the rotation speed of the fan 24 increases as the temperature difference increases. This is because as the temperature difference is larger, the temperature measured by the first temperature thermistor 13 is lower than the dew point temperature, and there is a high possibility that the environment is likely to condense, and it is necessary to increase the air volume to the heat collecting pipe 10. It is.
  • the information indicating the rotation speed of the fan 24 is input to the fan control unit 75.
  • the fan control unit 75 generates a control signal for controlling the rotational speed of the fan 24 based on the input information indicating the rotational speed of the fan 24 and supplies the control signal to the fan 24.
  • FIG. 3 is a schematic diagram for explaining the relationship between the control box 23 and the heat collecting pipe 10 in FIG. 1.
  • the back surface of the control box 23 is joined to the heat collecting pipe 10 on the upstream side of the first heat exchanger 5 in the heat collecting circuit 1.
  • the heat collecting pipe 10 joined to the control box 23 communicates a pair of header pipes 10a provided in parallel with each other and the header pipes 10a. And a plurality of branch pipes 10b.
  • the portion of the heat collecting pipe 10 to be joined to the back surface of the control box 23 is formed by a pair of header pipes 10a and a plurality of branch pipes 10b, so that the heat collecting pipe 10 is joined as it is.
  • the contact area between the back surface of the control box 23 and the heat collecting pipe 10 can be increased. Therefore, the cooling effect on the control box 23 by the underground heat refrigerant flowing through the heat collecting pipe 10 can be increased.
  • the heat collecting pipe 10 in this way, for example, in order to increase the contact area, one heat collecting pipe 10 is formed to meander and is compared with the case where it is joined to the back surface of the control box 23. Thus, the flow path can be shortened. Therefore, the pressure loss due to the heat collecting pipe 10 can be reduced.
  • the control box 23 can be cooled by circulating the underground heat refrigerant through the heat collecting pipe 10.
  • the underground heat refrigerant absorbs heat, whereby the underground heat refrigerant can be heated. Therefore, the efficiency by the 1st heat exchanger 5 located in the downstream rather than the position where the control box 23 was installed can be improved.
  • FIG. 4 is a schematic diagram for explaining the installation position of the fan 24 with respect to the control box 23 of FIG. As shown in FIG. 4, the fan 24 is installed so that airflow can be blown to the back surface of the control box 23.
  • the fan 24 is further provided close to the pair of header pipes 10a and the plurality of branch pipes 10b. Thereby, an airflow can be sprayed with respect to the header pipe 10a and the branch pipe 10b, and the dew condensation water which generate
  • Condensed water is moisture in the air that has been cooled to the dew point temperature or lower. Therefore, by blowing an air current, the atmosphere can be replaced before moisture in the atmosphere is precipitated, and as a result, the generation of condensed water can be suppressed.
  • the fan 24 may be installed at any position as long as it can blow airflow over the entire back surface of the control box 23.
  • the fan 24 is preferably small if it has an ability to suppress dew condensation from the viewpoint of power consumption.
  • the shape of the heat collecting pipe 10 joined to the back surface of the control box 23 is not limited to this example, and may be any shape as long as it can be cooled.
  • the ground heat refrigerant obtained by collecting the ground heat is heat-exchanged with the heat pump refrigerant in the first heat exchanger 5 to heat and evaporate the heat pump refrigerant.
  • the underground heat refrigerant circulates again in the heat collection pipe 10 and collects the underground heat in the underground heat exchanger 11.
  • the heat pump refrigerant is compressed by the compressor 21 and discharged.
  • the heat pump refrigerant discharged from the compressor 21 flows into the second heat exchanger 6.
  • the heat pump refrigerant flowing into the second heat exchanger 6 heats the heat medium by exchanging heat with the heat medium in the air conditioning circuit 3 and condensing while radiating heat, and flows out from the second heat exchanger 6.
  • the heat pump refrigerant that has flowed out of the second heat exchanger 6 is depressurized and expanded by the decompression device 22, and flows out from the decompression device 22.
  • the heat pump refrigerant flowing out from the decompression device 22 flows into the first heat exchanger 5.
  • the heat pump refrigerant that has flowed into the first heat exchanger 5 exchanges heat with the underground heat refrigerant, absorbs heat and evaporates, and flows out of the first heat exchanger 5.
  • the heat pump refrigerant flowing out of the first heat exchanger 5 is sucked into the compressor 21.
  • the heat pump refrigerant repeats the circulation described above.
  • the heat medium flowing through the air conditioning pipe 30 and heated by the second heat exchanger 6 flows into the radiator 32 through the flow path switching valve 31.
  • the heat medium flowing into the radiator 32 radiates heat to the air in the air-conditioning target space and flows out of the radiator 32. Thereby, air conditioning of the air-conditioning target space is performed.
  • the heat medium flowing out from the radiator 32 flows into the second heat exchanger 6 through the second circulation pump 33.
  • the heat medium flowing through the air conditioning pipe 30 repeats the circulation described above.
  • the heat medium heated by the second heat exchanger 6 flows into the hot water supply circuit 4 through the flow path switching valve 31.
  • the heat medium flowing into the hot water supply circuit 4 flows through the hot water supply pipe 40 a and flows into the third heat exchanger 43.
  • the heat medium flowing into the third heat exchanger 43 exchanges heat with water circulating through the hot water supply pipe 40 b to dissipate heat and flows out from the third heat exchanger 43.
  • the heat medium flowing out from the third heat exchanger 43 flows out from the hot water supply circuit 4 and flows into the air conditioning circuit 3, and merges with the heat medium flowing through the air conditioning pipe 30 of the air conditioning circuit 3.
  • the water in the hot water supply tank 41 flows out of the hot water supply tank 41 and flows into the third heat exchanger 43 through the third circulation pump 42.
  • the water flowing into the third heat exchanger 43 exchanges heat with the heat medium flowing through the hot water supply pipe 40 a to absorb heat, and flows out from the third heat exchanger 43.
  • the water that has flowed out of the third heat exchanger 43 flows into the hot water supply tank 41 and repeats the circulation described above.
  • FIG. 5 is a flowchart showing an example of the flow of the rotational speed control process of the fan 24 in the heat pump apparatus 100 according to the first embodiment. Note that the process shown in FIG. 5 is repeated cyclically at a preset time.
  • step S1 the pump state determination unit 71 of the control device 7 determines whether or not the first circulation pump 12 is in operation based on drive information input from a motor that drives the first circulation pump 12. To do.
  • step S1 When it is determined that the first circulation pump 12 is not in operation, that is, is stopped (step S1; NO), the fan rotation speed determination unit 73 sets the rotation speed of the fan 24 to “0” in order to stop the fan 24. To decide. In step S ⁇ b> 6, the fan control unit 75 drives, i.e. stops, the fan 24 at the determined rotation speed “0”.
  • step S1 when it is determined that the first circulation pump 12 is in operation (step S1; YES), the process proceeds to step S2.
  • step S ⁇ b> 2 the second temperature thermistor 14 measures the temperature in the heat pump device 100.
  • step S ⁇ b> 3 the first temperature thermistor 13 measures the temperature of the underground heat refrigerant flowing in the heat collecting pipe 10 of the heat collecting circuit 1.
  • step S2 and step S3 is not necessarily performed in the order described.
  • the order of the processes of step S2 and step S3 may be switched, and the processes of step S2 and step S3 may be performed in parallel.
  • step S4 the temperature difference calculation unit 72 calculates the temperature difference between the in-device temperature measured in step S2 and the underground heat refrigerant temperature measured in step S3.
  • the fan rotational speed determination unit 73 refers to the rotational speed table stored in the storage unit 74 and determines the rotational speed of the fan 24 based on the calculated temperature difference.
  • step S5 the fan control unit 75 drives the fan 24 at the determined rotation speed.
  • the heat pump device 100 includes the heat collecting circuit 1 in which the underground heat refrigerant circulates in the heat collecting pipe 10 and the heat pump circuit in which the heat pump refrigerant circulates in the heat pump pipe 20. 2 and a first heat exchanger 5 that performs heat exchange between the underground heat refrigerant and the heat pump refrigerant.
  • the heat collecting circuit 1 has a ground heat exchanger 11 that heats the ground heat, which is configured with a part of the heat collecting pipe 10 buried in the ground. .
  • the heat pump circuit 2 is connected to the heat pump pipe 20 and includes a compressor 21 that compresses the heat pump refrigerant, and an electronic component for controlling the compressor 21, and a control in which the heat collecting pipe 10 is joined to the back surface.
  • a box 23 and a fan 24 that blows airflow against the back of the control box 23 are provided.
  • the fan is based on the temperature difference between the temperature of the underground heat refrigerant measured by the first temperature thermistor 13 and the temperature in the heat pump device 100 measured by the second temperature thermistor 14.
  • the rotational speed of 24 is controlled.
  • Embodiment 2 a heat pump device according to Embodiment 2 of the present invention will be described.
  • the heat pump device according to the second embodiment is different from the above-described first embodiment in that it includes a humidity sensor installed in the heat pump device 100 and a third temperature thermistor installed in the vicinity of the back surface of the control box 23. To do.
  • FIG. 6 is a schematic diagram illustrating an example of the configuration of the heat pump apparatus 100 according to the second embodiment.
  • FIG. 7 is a schematic view showing the back surface of the control box 23 of FIG.
  • the heat pump device 100 according to the second embodiment is provided with a humidity sensor 15 in addition to the configuration of the heat pump device 100 according to the first embodiment.
  • a third temperature thermistor 16 as a third temperature sensor is provided in the vicinity of the back surface of the control box 23.
  • the same reference numerals are given to portions common to the first embodiment, and detailed description thereof is omitted.
  • the humidity sensor 15 is installed inside the heat pump apparatus 100 and measures the relative humidity in the heat pump apparatus 100.
  • the humidity sensor 15 may be installed at any position as long as the relative humidity in the heat pump apparatus 100 can be measured, but is preferably installed in the vicinity of the control box 23.
  • the third temperature thermistor 16 is installed in the vicinity of the back surface of the control box 23 and measures the atmospheric temperature. Although the third temperature thermistor 16 is installed in the vicinity of the back surface of the control box 23, it is preferable that the third temperature thermistor 16 is installed so as not to be affected by heat generated by the substrate or the like mounted on the control box 23.
  • FIG. 8 is a block diagram showing an example of the configuration of the control device 7 of FIG. As shown in FIG. 8, the control device 7 includes a pump state determination unit 71, a dew point temperature calculation unit 76, a fan rotation speed determination unit 73, and a fan control unit 75. In FIG. 8, only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
  • the dew point temperature calculation unit 76 includes data indicating the temperature of the refrigerant for geothermal heat by the first temperature thermistor 13, data indicating the temperature in the heat pump device 100 by the second temperature thermistor 14, and the heat pump device 100 by the humidity sensor 15. The data indicating the relative humidity of is input. The dew point temperature calculation unit 76 calculates the dew point temperature based on the three input measurement data, and supplies information indicating the obtained dew point temperature to the fan rotation number determination unit 73.
  • the fan rotational speed determination unit 73 includes information indicating the determination result obtained by the pump state determination unit 71, information indicating the dew point temperature calculated by the dew point temperature calculation unit 76, and the atmosphere measured by the third temperature thermistor 16. Data indicating temperature is input.
  • the fan rotation speed determination unit 73 determines the amount of change in the rotation speed of the fan 24 based on the input information. Then, the fan rotation speed determination unit 73 supplies information indicating the determined change amount of the rotation speed of the fan 24 to the fan control unit 75.
  • FIG. 9 is a flowchart showing an example of the flow of the rotational speed control process of the fan 24 in the heat pump apparatus 100 according to the second embodiment. It is assumed that the process shown in FIG. 9 is cyclically repeated every preset time.
  • step S ⁇ b> 11 the pump state determination unit 71 of the control device 7 determines whether or not the first circulation pump 12 is in operation based on drive information input from a motor that drives the first circulation pump 12. To do.
  • step S11 When it is determined that the first circulation pump 12 is stopped (step S11; NO), the fan rotation speed determination unit 73 determines the rotation speed of the fan 24 to “0” in order to stop the fan 24. In step S ⁇ b> 22, the fan control unit 75 stops the fan 24.
  • step S11 when it is determined that the first circulation pump 12 is in operation (step S11; YES), the process proceeds to step S12.
  • step S ⁇ b> 12 the second temperature thermistor 14 measures the temperature inside the heat pump apparatus 100.
  • step S ⁇ b> 13 the first temperature thermistor 13 measures the temperature of the underground heat refrigerant flowing in the heat collecting pipe 10 of the heat collecting circuit 1.
  • step S ⁇ b> 14 the humidity sensor 15 measures the relative humidity in the heat pump device 100.
  • step S12 to step S14 is not necessarily performed in the order described.
  • the order of the processes of step S2 and step S3 may be switched, and the processes of step S2 and step S3 may be performed in parallel.
  • the dew point temperature calculation unit 76 calculates the dew point temperature Tb based on the temperature and humidity data measured in steps S12 to S14.
  • the dew point temperature Tb can be calculated based on the equations (1) to (3).
  • the value “X” in the equation (1) is the relative humidity [%] in the heat pump apparatus 100 measured by the humidity sensor 15.
  • the value “T 1 ” is the temperature [° C.] in the heat pump apparatus 100 measured by the second temperature thermistor 14.
  • the calculation of the dew point temperature Tb using the equations (1) to (3) described above is applied when the relative humidity X [%] is “10 ⁇ X ⁇ 90”.
  • the dew point temperature Tb is calculated based on the equations (1) to (3) on the assumption that the relative humidity X is the value “10”.
  • the dew point temperature Tb is the temperature T 1 in the heat pump device 100.
  • step S16 the third temperature thermistor 16 measures the atmospheric temperature Ta.
  • step S17 the fan rotation speed determination unit 73 determines the amount of change in the rotation speed of the fan 24 based on the dew point temperature Tb calculated in step S15 and the atmospheric temperature Ta measured in step S16.
  • the fan rotational speed determination unit 73 maintains the rotational speed of the fan 24 at the current rotational speed in step S18. To decide. When the relationship between the atmospheric temperature Ta and the dew point temperature Tb is “atmospheric temperature Ta> dew point temperature Tb”, the fan rotational speed determination unit 73 determines to increase the rotational speed of the fan 24 in step S19. . Further, when the relationship between the atmospheric temperature Ta and the dew point temperature Tb is “atmospheric temperature Ta ⁇ dew point temperature Tb”, the fan rotational speed determination unit 73 determines to decrease the rotational speed of the fan 24 in step S20. . In step S ⁇ b> 21, the fan control unit 75 supplies a control signal indicating the determined amount of change in the rotational speed to the fan 24 to drive the fan 24.
  • the rotational speed of the fan 24 may be changed stepwise, for example, and the target rotational speed is determined based on the surrounding environment and the calculated dew point temperature so that the rotational speed is immediately determined. Also good.
  • the heat pump device 100 according to the second embodiment includes the humidity sensor 15 and the third temperature thermistor 16 in addition to the configuration of the heat pump device 100 according to the first embodiment described above.
  • the rotation speed of the fan 24 is controlled based on the relationship between atmospheric temperature and dew condensation temperature, generation

Abstract

This heat pump device is provided with: a heat collection circuit in which an underground heat refrigerant is circulated inside heat collection piping; a heat pump circuit in which a heat pump refrigerant is circulated inside heat pump piping; and a heat exchanger that performs heat exchange between the underground heat refrigerant and the heat pump refrigerant, wherein the heat collection circuit has an underground heat exchanger which is formed by burying a portion of the heat collection piping under the ground and collects underground heat. The heat pump circuit has: a compressor which is connected to the heat pump piping and compresses the heat pump refrigerant; a control box in which electronic components for controlling the compressor are mounted, and which has a rear surface to which the heat collection piping is joined; and a fan which blows a flow of air onto the rear surface of the control box.

Description

ヒートポンプ装置Heat pump equipment
 本発明は、地中熱を利用したヒートポンプ装置に関するものである。 The present invention relates to a heat pump device using underground heat.
 従来、地中熱を利用したヒートポンプシステムにおける圧縮機の出力を制御するための制御用電子部品を冷却する方法として、地中熱を利用したものが知られている(例えば、特許文献1)。このヒートポンプシステムは、地中熱を回収する採熱回路と、採熱回路に並設されるヒートポンプ回路と、ヒートポンプ回路に並設され室内の空調を行う空調回路とで構成されている。 Conventionally, a method using geothermal heat is known as a method for cooling control electronic components for controlling the output of a compressor in a heat pump system using geothermal heat (for example, Patent Document 1). This heat pump system includes a heat collecting circuit that collects underground heat, a heat pump circuit that is arranged in parallel with the heat collecting circuit, and an air conditioning circuit that is arranged in parallel with the heat pump circuit and performs indoor air conditioning.
 採熱回路は、ヒートポンプ用冷媒と熱交換を行う第1熱交換器を備えている。ヒートポンプ回路は、ヒートポンプ用冷媒を圧縮する圧縮機と、地中熱用冷媒と熱交換を行う第1熱交換器と、空調用冷媒と熱交換を行う第2熱交換器と、第2熱交換器と第1熱交換器との間に設けられた膨張弁と、圧縮機を制御する制御用電子部品とを備えている。 The heat collecting circuit includes a first heat exchanger that performs heat exchange with the heat pump refrigerant. The heat pump circuit includes a compressor that compresses the heat pump refrigerant, a first heat exchanger that exchanges heat with the underground heat refrigerant, a second heat exchanger that exchanges heat with the air conditioning refrigerant, and a second heat exchange. And an expansion valve provided between the compressor and the first heat exchanger, and a control electronic component for controlling the compressor.
 このようなヒートポンプシステムでは、運転時、圧縮機の出力がインバータ制御によって制御されており、その際の制御用電子部品が発熱を伴うため、制御用電子部品を冷却する必要がある。制御用電子部品は、第1熱交換器の上流側に位置する採熱回路にヒートシンクを介して接合され、ヒートシンクのフィンを貫通する採熱管を流れる地中熱用冷媒の熱によって冷却される。 In such a heat pump system, during operation, the output of the compressor is controlled by inverter control, and the control electronic component at that time is accompanied by heat generation, so it is necessary to cool the control electronic component. The control electronic component is joined to a heat collecting circuit located on the upstream side of the first heat exchanger via a heat sink, and is cooled by the heat of the underground heat refrigerant flowing through the heat collecting pipe penetrating through the fin of the heat sink.
特開2005-30708号公報JP 2005-30708 A
 しかしながら、特許文献1に記載のヒートポンプシステムにおける採熱管は、装置内の温度と比較して低い露点温度以下となる場合がある。このような場合には、結露水が発生し、さらに、発生した結露水は、運転中に常時発生する虞がある。そのため、発生した結露水が部品上に落下したり、装置外に流出したりすることにより、装置の故障およびクレームにつながる虞があるという課題があった。 However, the heat collecting tube in the heat pump system described in Patent Document 1 may have a dew point temperature lower than the temperature inside the apparatus. In such a case, dew condensation water is generated, and the generated dew condensation water may be constantly generated during operation. For this reason, there has been a problem that the generated condensed water may fall on the part or flow out of the device, leading to failure of the device and complaints.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、制御用電子部品を冷却しながら、結露水の発生を抑制することができるヒートポンプ装置を提供することを目的とする。 This invention is made in view of the subject in the said prior art, Comprising: It aims at providing the heat pump apparatus which can suppress generation | occurrence | production of dew condensation water, cooling the electronic component for control.
 本発明のヒートポンプ装置は、採熱配管内を地中熱用冷媒が循環する採熱回路と、ヒートポンプ配管内をヒートポンプ用冷媒が循環するヒートポンプ回路と、前記地中熱用冷媒と前記ヒートポンプ用冷媒との間で熱交換を行う熱交換器とを含んで構成されるヒートポンプ装置であって、前記採熱回路は、前記採熱配管の一部が地中に埋設されて構成された、地中熱を採熱する地中熱交換器を有し、前記ヒートポンプ回路は、前記ヒートポンプ配管に接続され、前記ヒートポンプ用冷媒を圧縮する圧縮機と、前記圧縮機を制御するための電子部品を搭載し、背面に前記採熱配管が接合されたコントロールボックスと、前記コントロールボックスの背面に対して気流を吹き付けるファンとを有するものである。 The heat pump device of the present invention includes a heat collection circuit in which a ground heat refrigerant circulates in the heat collection pipe, a heat pump circuit in which a heat pump refrigerant circulates in the heat pump pipe, the ground heat refrigerant, and the heat pump refrigerant. A heat pump device including a heat exchanger for exchanging heat with the heat collecting circuit, wherein the heat collecting circuit is configured with a part of the heat collecting pipe embedded in the ground, The heat pump circuit includes an underground heat exchanger for collecting heat, the heat pump circuit is connected to the heat pump pipe, and includes a compressor for compressing the refrigerant for the heat pump, and an electronic component for controlling the compressor. And a control box having the heat collecting pipe joined to the rear surface thereof, and a fan for blowing an airflow to the rear surface of the control box.
 以上のように、本発明によれば、コントロールボックスの背面に採熱配管を接合するとともに、コントロールボックスの背面にファンの気流を吹き付けることにより、制御用電子部品を冷却しながら、結露水の発生を抑制することができる。 As described above, according to the present invention, the heat collecting pipe is joined to the back surface of the control box, and the air current of the fan is blown to the back surface of the control box, thereby cooling the control electronic components and generating dew condensation water. Can be suppressed.
実施の形態1に係るヒートポンプ装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the heat pump apparatus which concerns on Embodiment 1. FIG. 図1の制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control apparatus of FIG. 図1のコントロールボックスと配管との関係について説明するための概略図である。It is the schematic for demonstrating the relationship between the control box of FIG. 1, and piping. 図1のコントロールボックスに対するファンの設置位置について説明するための概略図である。It is the schematic for demonstrating the installation position of the fan with respect to the control box of FIG. 実施の形態1に係るヒートポンプ装置におけるファンの回転数制御処理の流れの一例を示すフローチャートである。3 is a flowchart illustrating an example of a flow of fan rotation speed control processing in the heat pump device according to the first embodiment. 実施の形態2に係るヒートポンプ装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the heat pump apparatus which concerns on Embodiment 2. FIG. 図6のコントロールボックスの背面の様子を示す概略図である。It is the schematic which shows the mode of the back surface of the control box of FIG. 図6の制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control apparatus of FIG. 実施の形態2に係るヒートポンプ装置におけるファンの回転数制御処理の流れの一例を示すフローチャートである。6 is a flowchart illustrating an example of a flow of fan rotation speed control processing in the heat pump device according to the second embodiment.
実施の形態1.
 以下、本発明の実施の形態1に係るヒートポンプ装置について説明する。本実施の形態1に係るヒートポンプ装置は、地中熱を採熱し、採熱した地中熱を利用して、空調および給湯を行うものである。
Embodiment 1 FIG.
Hereinafter, the heat pump apparatus according to Embodiment 1 of the present invention will be described. The heat pump device according to Embodiment 1 collects ground heat and performs air conditioning and hot water supply using the collected ground heat.
[ヒートポンプ装置の回路構成]
 図1は、本実施の形態1に係るヒートポンプ装置100の構成の一例を示す概略図である。図1に示すように、ヒートポンプ装置100は、採熱回路1、ヒートポンプ回路2、空調回路3、給湯回路4、および制御装置7で構成されている。
[Circuit configuration of heat pump device]
FIG. 1 is a schematic diagram illustrating an example of the configuration of the heat pump device 100 according to the first embodiment. As shown in FIG. 1, the heat pump device 100 includes a heat collection circuit 1, a heat pump circuit 2, an air conditioning circuit 3, a hot water supply circuit 4, and a control device 7.
(採熱回路)
 採熱回路1は、第1熱交換器5、地中熱交換器11、第1循環ポンプ12、第1温度センサとしての第1温度サーミスタ13、および第2温度センサとしての第2温度サーミスタ14を備え、地中熱交換器11を利用して地中熱を採熱する。採熱回路1において、第1熱交換器5、地中熱交換器11、および第1循環ポンプ12は、採熱配管10により環状に接続され、採熱配管10の内部を地中熱用冷媒が循環する。
(Heat collection circuit)
The heat collecting circuit 1 includes a first heat exchanger 5, a ground heat exchanger 11, a first circulation pump 12, a first temperature thermistor 13 as a first temperature sensor, and a second temperature thermistor 14 as a second temperature sensor. The ground heat exchanger 11 is used to collect the ground heat. In the heat collecting circuit 1, the first heat exchanger 5, the underground heat exchanger 11, and the first circulation pump 12 are annularly connected by the heat collecting pipe 10, and the inside of the heat collecting pipe 10 is a refrigerant for underground heat. Circulates.
 地中熱交換器11は、例えば、採熱配管10の一部がU字状に形成され、地中に垂直または水平に埋設されることで構成されている。地中熱交換器11は、内部を地中熱用冷媒が循環することにより、地中熱を採熱する。第1循環ポンプ12は、図示しないモータによって駆動され、地中熱用冷媒を循環させる。 The underground heat exchanger 11 is configured, for example, such that a part of the heat collecting pipe 10 is formed in a U shape and is embedded vertically or horizontally in the ground. The underground heat exchanger 11 collects underground heat by circulating an underground heat refrigerant inside. The first circulation pump 12 is driven by a motor (not shown) and circulates the underground heat refrigerant.
 第1熱交換器5は、採熱回路1を流れる地中熱用冷媒と、後述するヒートポンプ回路2を流れるヒートポンプ用冷媒との間で熱交換を行う。第1熱交換器5は、地中熱用冷媒の熱によってヒートポンプ用冷媒を加熱または冷却する。 The first heat exchanger 5 performs heat exchange between the underground heat refrigerant flowing through the heat collecting circuit 1 and the heat pump refrigerant flowing through the heat pump circuit 2 described later. The first heat exchanger 5 heats or cools the heat pump refrigerant with the heat of the underground heat refrigerant.
 第1温度サーミスタ13は、採熱配管10の近傍に設置され、採熱配管10を流れる地中熱用冷媒の温度を測定する。第2温度サーミスタ14は、ヒートポンプ装置100の内部に設置され、ヒートポンプ装置100内の温度を測定する。なお、第2温度サーミスタ14は、ヒートポンプ装置100内の温度を測定できれば、どの位置に設置してもよいが、後述するヒートポンプ回路2のコントロールボックス23の近傍に設置すると好ましい。 The first temperature thermistor 13 is installed in the vicinity of the heat collecting pipe 10 and measures the temperature of the underground heat refrigerant flowing through the heat collecting pipe 10. The second temperature thermistor 14 is installed inside the heat pump apparatus 100 and measures the temperature inside the heat pump apparatus 100. The second temperature thermistor 14 may be installed at any position as long as the temperature in the heat pump apparatus 100 can be measured, but is preferably installed in the vicinity of the control box 23 of the heat pump circuit 2 described later.
(ヒートポンプ回路)
 ヒートポンプ回路2は、圧縮機21、減圧装置22、第1熱交換器5、第2熱交換器6、コントロールボックス23、およびファン24を備えている。ヒートポンプ回路2において、第1熱交換器5、圧縮機21、第2熱交換器6、および減圧装置22は、ヒートポンプ配管20により環状に接続され、ヒートポンプ配管20の内部をヒートポンプ用冷媒が循環する。
(Heat pump circuit)
The heat pump circuit 2 includes a compressor 21, a decompression device 22, a first heat exchanger 5, a second heat exchanger 6, a control box 23, and a fan 24. In the heat pump circuit 2, the first heat exchanger 5, the compressor 21, the second heat exchanger 6, and the decompression device 22 are connected in a ring shape by the heat pump pipe 20, and the heat pump refrigerant circulates inside the heat pump pipe 20. .
 圧縮機21は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機21は、例えば、駆動周波数を任意に変化させることにより、時間あたりの冷媒送出量である容量を制御するインバータ圧縮機等からなる。減圧装置22は、冷媒を減圧して膨張させる。減圧装置22は、例えば、電子式膨張弁などの開度の制御を行うことができる弁で構成されている。 The compressor 21 sucks the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges it in a high-temperature and high-pressure state. The compressor 21 includes, for example, an inverter compressor that controls a capacity that is a refrigerant delivery amount per hour by arbitrarily changing a drive frequency. The decompression device 22 decompresses and expands the refrigerant. The decompression device 22 is configured by a valve capable of controlling the opening, such as an electronic expansion valve.
 第2熱交換器6は、ヒートポンプ回路2を流れるヒートポンプ用冷媒と、後述する空調回路3を流れる熱媒体との間で熱交換を行う。第2熱交換器6は、ヒートポンプ用冷媒の熱によって熱媒体を加熱または冷却する。 The second heat exchanger 6 exchanges heat between the heat pump refrigerant flowing through the heat pump circuit 2 and a heat medium flowing through the air conditioning circuit 3 described later. The second heat exchanger 6 heats or cools the heat medium with the heat of the heat pump refrigerant.
 コントロールボックス23は、圧縮機21の制御を行うための制御用電子部品が搭載されており、後述する制御装置7に接続されている。コントロールボックス23は、採熱回路1の採熱配管10における第1熱交換器5の上流側に、背面が接合されている。なお、コントロールボックス23の構造の詳細については、後述する。ファン24は、図示しないモータによって駆動され、コントロールボックス23の背面に気流を吹き付けるように設置されている。 The control box 23 is equipped with control electronic components for controlling the compressor 21 and is connected to the control device 7 described later. The back surface of the control box 23 is joined to the upstream side of the first heat exchanger 5 in the heat collecting pipe 10 of the heat collecting circuit 1. Details of the structure of the control box 23 will be described later. The fan 24 is driven by a motor (not shown) and is installed so as to blow an airflow on the back surface of the control box 23.
(空調回路)
 空調回路3は、第2熱交換器6、流路切替弁31、放熱器32、および第2循環ポンプ33を備えている。空調回路3において、第2熱交換器6、流路切替弁31、放熱器32、および第2循環ポンプ33は、空調配管30により環状に接続され、空調配管30の内部を水が循環する。
(Air conditioning circuit)
The air conditioning circuit 3 includes a second heat exchanger 6, a flow path switching valve 31, a radiator 32, and a second circulation pump 33. In the air conditioning circuit 3, the second heat exchanger 6, the flow path switching valve 31, the radiator 32, and the second circulation pump 33 are annularly connected by the air conditioning pipe 30, and water circulates inside the air conditioning pipe 30.
 流路切替弁31は、例えば電磁式の三方弁であり、1つの流入口と、2つの流出口とを有している。流路切替弁31は、流入口に流入する熱媒体を、空調回路3の放熱器32および給湯回路4のいずれか一方へ供給するために流出口が選択されることにより、流路を切り替える。 The flow path switching valve 31 is, for example, an electromagnetic three-way valve, and has one inflow port and two outflow ports. The flow path switching valve 31 switches the flow path when the outlet is selected to supply the heat medium flowing into the inflow port to either the radiator 32 of the air conditioning circuit 3 or the hot water supply circuit 4.
 放熱器32は、主に空調対象空間に設置され、熱媒体の熱を放熱することにより、空調対象空間の空気調和を行う。第2循環ポンプ33は、図示しないモータによって駆動され、熱媒体を循環させる。 The heat radiator 32 is mainly installed in the air-conditioning target space, and radiates the heat of the heat medium to perform air conditioning of the air-conditioning target space. The second circulation pump 33 is driven by a motor (not shown) to circulate the heat medium.
(給湯回路)
 給湯回路4は、給湯タンク41、第3循環ポンプ42、および第3熱交換器43を備えている。給湯回路4において、空調回路3における流路切替弁31の一方の流出口と、放熱器32から流出する熱媒体が流れる空調配管30とが第3熱交換器43を介して給湯配管40aで接続されている。また、給湯タンク41、第3循環ポンプ42および第3熱交換器43が給湯配管40bにより環状に接続されている。
(Hot water supply circuit)
The hot water supply circuit 4 includes a hot water supply tank 41, a third circulation pump 42, and a third heat exchanger 43. In the hot water supply circuit 4, one outlet of the flow path switching valve 31 in the air conditioning circuit 3 and the air conditioning pipe 30 through which the heat medium flowing out from the radiator 32 flows are connected by a hot water supply pipe 40 a through a third heat exchanger 43. Has been. Moreover, the hot water supply tank 41, the 3rd circulation pump 42, and the 3rd heat exchanger 43 are connected cyclically | annularly by the hot water supply piping 40b.
 給湯タンク41は、後述する第3熱交換器43で加熱された水が供給され、この水を蓄える。第3循環ポンプ42は、図示しないモータによって駆動され、水を循環させる。 The hot water supply tank 41 is supplied with water heated by a third heat exchanger 43 described later, and stores this water. The third circulation pump 42 is driven by a motor (not shown) to circulate water.
 また、給湯タンク41は、図示しない給水配管を介して外部から水道水等が供給され、供給された水道水等を流出させて第3循環ポンプ42に供給する。給湯タンク41に蓄えられた、加熱された水は、図示しない温水配管を介して外部に放出され、シャワー等の温水として利用される。 The hot water supply tank 41 is supplied with tap water or the like from the outside through a water supply pipe (not shown), and flows the supplied tap water or the like out to supply it to the third circulation pump 42. The heated water stored in the hot water supply tank 41 is discharged to the outside through a hot water pipe (not shown) and used as hot water for a shower or the like.
 第3熱交換器43は、空調回路3を介して給湯回路4を流れる熱媒体と、給湯タンク41から流出する水との間で熱交換を行う。第2熱交換器6は、熱媒体の熱によって水を加熱する。 The third heat exchanger 43 performs heat exchange between the heat medium flowing through the hot water supply circuit 4 via the air conditioning circuit 3 and the water flowing out of the hot water supply tank 41. The second heat exchanger 6 heats water with the heat of the heat medium.
(制御装置)
 制御装置7は、例えば、ヒートポンプ装置100の各部から受け取る各種情報に基づき、ヒートポンプ装置100全体の動作を制御する。例えば、制御装置7は、ヒートポンプ装置100に設けられた図示しない各種センサからの情報に基づき、圧縮機21の圧縮機周波数、流路切替弁31の流路の切替などを制御する。また、本実施の形態1において、制御装置7は、第1温度サーミスタ13および第2温度サーミスタ14で測定した温度に基づき、ファン24の回転数を制御する。このようなファン24の制御の詳細については、後述する。
(Control device)
The control device 7 controls the overall operation of the heat pump device 100 based on various information received from each part of the heat pump device 100, for example. For example, the control device 7 controls the compressor frequency of the compressor 21 and the switching of the flow path of the flow path switching valve 31 based on information from various sensors (not shown) provided in the heat pump apparatus 100. In the first embodiment, the control device 7 controls the rotation speed of the fan 24 based on the temperatures measured by the first temperature thermistor 13 and the second temperature thermistor 14. Details of such control of the fan 24 will be described later.
 このような制御装置7は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成されている。 Such a control device 7 includes, for example, software executed on a computing device such as a microcomputer or a CPU (Central Processing Unit), and hardware such as a circuit device that realizes various functions.
 図2は、図1の制御装置7の構成の一例を示すブロック図である。図2に示すように、制御装置7は、ポンプ状態判断部71、温度差算出部72、ファン回転数決定部73、記憶部74、およびファン制御部75を備えている。なお、図2では、本発明の特徴に関連する部分についての機能ブロックのみを図示し、それ以外の部分については、図示および説明を省略する。 FIG. 2 is a block diagram showing an example of the configuration of the control device 7 of FIG. As shown in FIG. 2, the control device 7 includes a pump state determination unit 71, a temperature difference calculation unit 72, a fan rotation number determination unit 73, a storage unit 74, and a fan control unit 75. In FIG. 2, only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
 ポンプ状態判断部71は、第1循環ポンプ12に関する駆動情報が入力される。駆動情報は、例えば、第1循環ポンプ12を駆動する図示しないモータから得られる情報を用いることができる。ポンプ状態判断部71は、入力された駆動情報に基づき、第1循環ポンプ12が駆動しているか否かを判断し、得られた判断結果を示す情報を、ファン回転数決定部73に供給する。 The pump state determination unit 71 receives drive information related to the first circulation pump 12. As the drive information, for example, information obtained from a motor (not shown) that drives the first circulation pump 12 can be used. The pump state determination unit 71 determines whether or not the first circulation pump 12 is driven based on the input drive information, and supplies information indicating the obtained determination result to the fan rotation number determination unit 73. .
 温度差算出部72は、第1温度サーミスタ13による地中熱用冷媒の温度を示すデータと、第2温度サーミスタ14によるヒートポンプ装置100内の温度を示すデータとが入力される。温度差算出部72は、入力された2つの測定データに基づき温度差を算出し、得られた温度差を示す情報を、ファン回転数決定部73に供給する。 The temperature difference calculation unit 72 receives data indicating the temperature of the underground heat refrigerant by the first temperature thermistor 13 and data indicating the temperature in the heat pump device 100 by the second temperature thermistor 14. The temperature difference calculation unit 72 calculates a temperature difference based on the two input measurement data, and supplies information indicating the obtained temperature difference to the fan rotation speed determination unit 73.
 ファン回転数決定部73は、ポンプ状態判断部71で得られた判断結果を示す情報と、温度差算出部72で算出された温度差を示す情報とが入力される。ファン回転数決定部73は、入力された2つの情報に基づき、後述する記憶部74に予め記憶された回転数テーブルを参照し、ファン24の回転数を決定する。そして、ファン回転数決定部73は、決定したファン24の回転数を示す情報をファン制御部75に供給する。 The fan rotation speed determination unit 73 receives information indicating the determination result obtained by the pump state determination unit 71 and information indicating the temperature difference calculated by the temperature difference calculation unit 72. The fan rotation speed determination unit 73 determines the rotation speed of the fan 24 by referring to a rotation speed table stored in advance in the storage unit 74 described later based on the two pieces of input information. Then, the fan rotation speed determination unit 73 supplies information indicating the determined rotation speed of the fan 24 to the fan control unit 75.
 記憶部74は、制御装置7で行われる制御に必要なプログラムおよびデータ等が予め記憶されている。例えば、記憶部74には、ファン回転数決定部73で用いられる回転数テーブルが予め記憶されている。 The storage unit 74 stores programs and data necessary for control performed by the control device 7 in advance. For example, the storage unit 74 stores in advance a rotation speed table used by the fan rotation speed determination unit 73.
 回転数テーブルは、温度差算出部72で算出された温度差とファン24の回転数とが対応付けられているものである。具体的には、算出された温度差を複数の段階に分割し、分割された段階毎にファン24の回転数が対応付けられている。 The rotation speed table is a table in which the temperature difference calculated by the temperature difference calculation unit 72 is associated with the rotation speed of the fan 24. Specifically, the calculated temperature difference is divided into a plurality of stages, and the rotation speed of the fan 24 is associated with each divided stage.
 このとき、温度差が大きいほどファン24の回転数が大きくなるように、温度差と回転数とを対応付ける。これは、温度差が大きいほど、第1温度サーミスタ13で測定される温度が露点温度以下であり、結露しやすい環境である可能性が高く、採熱配管10に対する風量を多くする必要があるためである。 At this time, the temperature difference is associated with the rotation speed so that the rotation speed of the fan 24 increases as the temperature difference increases. This is because as the temperature difference is larger, the temperature measured by the first temperature thermistor 13 is lower than the dew point temperature, and there is a high possibility that the environment is likely to condense, and it is necessary to increase the air volume to the heat collecting pipe 10. It is.
 ファン制御部75は、ファン24の回転数を示す情報が入力される。ファン制御部75は、入力されたファン24の回転数を示す情報に基づき、ファン24の回転数を制御する制御信号を生成し、ファン24に供給する。 The information indicating the rotation speed of the fan 24 is input to the fan control unit 75. The fan control unit 75 generates a control signal for controlling the rotational speed of the fan 24 based on the input information indicating the rotational speed of the fan 24 and supplies the control signal to the fan 24.
[コントロールボックスに対する配管の接合構造およびファンの設置位置]
 次に、コントロールボックス23に対する採熱回路1の採熱配管10の接合構造、およびファン24の設置位置について説明する。図3は、図1のコントロールボックス23と採熱配管10との関係について説明するための概略図である。
[Piping connection structure to the control box and fan installation position]
Next, the joining structure of the heat collecting pipe 10 of the heat collecting circuit 1 to the control box 23 and the installation position of the fan 24 will be described. FIG. 3 is a schematic diagram for explaining the relationship between the control box 23 and the heat collecting pipe 10 in FIG. 1.
 上述したように、コントロールボックス23の背面は、採熱回路1における第1熱交換器5の上流側の採熱配管10に接合されている。図3に示すように、採熱回路1における採熱配管10のうち、コントロールボックス23に接合される採熱配管10は、平行に設けられた一対のヘッダ管10aと、ヘッダ管10a同士を連通する複数の枝管10bとで形成されている。 As described above, the back surface of the control box 23 is joined to the heat collecting pipe 10 on the upstream side of the first heat exchanger 5 in the heat collecting circuit 1. As shown in FIG. 3, among the heat collecting pipes 10 in the heat collecting circuit 1, the heat collecting pipe 10 joined to the control box 23 communicates a pair of header pipes 10a provided in parallel with each other and the header pipes 10a. And a plurality of branch pipes 10b.
 このように、コントロールボックス23の背面に接合される部分の採熱配管10を、一対のヘッダ管10aおよび複数の枝管10bで形成することにより、採熱配管10をそのまま接合する場合と比較して、コントロールボックス23の背面と採熱配管10との接触面積を大きくすることができる。そのため、採熱配管10を流れる地中熱用冷媒によるコントロールボックス23に対する冷却効果を大きくすることができる。 In this way, the portion of the heat collecting pipe 10 to be joined to the back surface of the control box 23 is formed by a pair of header pipes 10a and a plurality of branch pipes 10b, so that the heat collecting pipe 10 is joined as it is. Thus, the contact area between the back surface of the control box 23 and the heat collecting pipe 10 can be increased. Therefore, the cooling effect on the control box 23 by the underground heat refrigerant flowing through the heat collecting pipe 10 can be increased.
 また、このように採熱配管10を形成することにより、例えば、接触面積を大きくするために1本の採熱配管10を蛇行させるように形成し、コントロールボックス23の背面に接合した場合と比較して、流路を短くすることができる。そのため、採熱配管10による圧力損失を低減することができる。 Further, by forming the heat collecting pipe 10 in this way, for example, in order to increase the contact area, one heat collecting pipe 10 is formed to meander and is compared with the case where it is joined to the back surface of the control box 23. Thus, the flow path can be shortened. Therefore, the pressure loss due to the heat collecting pipe 10 can be reduced.
 このように、ヒートポンプ装置100の運転時には、採熱配管10を地中熱用冷媒が循環することにより、コントロールボックス23を冷却することができる。また、これに加えて、コントロールボックス23を冷却した際に、地中熱用冷媒が吸熱することで、地中熱用冷媒を加熱できる。そのため、コントロールボックス23が設置された位置よりも下流側に位置する第1熱交換器5による効率を向上させることができる。 Thus, during operation of the heat pump device 100, the control box 23 can be cooled by circulating the underground heat refrigerant through the heat collecting pipe 10. In addition to this, when the control box 23 is cooled, the underground heat refrigerant absorbs heat, whereby the underground heat refrigerant can be heated. Therefore, the efficiency by the 1st heat exchanger 5 located in the downstream rather than the position where the control box 23 was installed can be improved.
 図4は、図1のコントロールボックス23に対するファン24の設置位置について説明するための概略図である。図4に示すように、ファン24は、コントロールボックス23の背面に気流を吹き付けることができるように設置されている。 FIG. 4 is a schematic diagram for explaining the installation position of the fan 24 with respect to the control box 23 of FIG. As shown in FIG. 4, the fan 24 is installed so that airflow can be blown to the back surface of the control box 23.
 ファン24は、さらに、一対のヘッダ管10aおよび複数の枝管10bに近接して設けられている。これにより、ヘッダ管10aおよび枝管10bに対して気流を吹き付けることができ、ヘッダ管10aおよび枝管10bから発生する結露水を抑制することができる。 The fan 24 is further provided close to the pair of header pipes 10a and the plurality of branch pipes 10b. Thereby, an airflow can be sprayed with respect to the header pipe 10a and the branch pipe 10b, and the dew condensation water which generate | occur | produces from the header pipe 10a and the branch pipe 10b can be suppressed.
 結露水は、露点温度以下まで冷却された大気中の水分である。そのため、気流を吹き付けることで、大気中の水分が析出する前に大気を入れ替えることができ、その結果、結露水の発生を抑制することができる。 Condensed water is moisture in the air that has been cooled to the dew point temperature or lower. Therefore, by blowing an air current, the atmosphere can be replaced before moisture in the atmosphere is precipitated, and as a result, the generation of condensed water can be suppressed.
 また、コントロールボックス23の背面、一対のヘッダ管10a、および複数の枝管10bに気流を同時に吹き付けることで、採熱配管10の結露を低減するとともに、強制対流によるコントロールボックス23の背面、すなわち内部に搭載された制御用電子部品に対する冷却効果も期待できる。 Further, by simultaneously blowing airflow to the back surface of the control box 23, the pair of header pipes 10a, and the plurality of branch pipes 10b, the condensation of the heat collecting pipe 10 is reduced and the back surface of the control box 23 by forced convection, A cooling effect can be expected for the control electronic components mounted on the PC.
 なお、ファン24は、コントロールボックス23の背面全体に気流を吹き付けることができれば、どのような位置に設置されてもよい。また、ファン24は、消費電力の観点から、結露を抑制できる能力を有していれば、小型である方が好ましい。さらに、コントロールボックス23の背面に接合される採熱配管10の形状は、この例に限られず、冷却が可能である形状であれば、どのような形状でもよい。 Note that the fan 24 may be installed at any position as long as it can blow airflow over the entire back surface of the control box 23. In addition, the fan 24 is preferably small if it has an ability to suppress dew condensation from the viewpoint of power consumption. Furthermore, the shape of the heat collecting pipe 10 joined to the back surface of the control box 23 is not limited to this example, and may be any shape as long as it can be cooled.
[ヒートポンプ装置の動作]
 次に、上記構成を有するヒートポンプ装置100の動作について、図1を参照しながら説明する。まず、採熱回路1において、第1循環ポンプ12が運転すると、採熱配管10内の地中熱用冷媒が循環する。そして、地中熱用冷媒は、地中熱交換器11において地中熱を採熱する。
[Operation of heat pump device]
Next, operation | movement of the heat pump apparatus 100 which has the said structure is demonstrated, referring FIG. First, in the heat collecting circuit 1, when the first circulation pump 12 is operated, the underground heat refrigerant in the heat collecting pipe 10 circulates. The geothermal refrigerant collects geothermal heat in the geothermal heat exchanger 11.
 地中熱を採熱した地中熱用冷媒は、第1熱交換器5において、ヒートポンプ用冷媒と熱交換を行い、ヒートポンプ用冷媒を加熱して蒸発させる。地中熱用冷媒は、採熱配管10内を再度循環し、地中熱交換器11において地中熱を採熱する。 The ground heat refrigerant obtained by collecting the ground heat is heat-exchanged with the heat pump refrigerant in the first heat exchanger 5 to heat and evaporate the heat pump refrigerant. The underground heat refrigerant circulates again in the heat collection pipe 10 and collects the underground heat in the underground heat exchanger 11.
 次に、ヒートポンプ回路2において、ヒートポンプ用冷媒は、圧縮機21によって圧縮されて吐出される。圧縮機21から吐出されたヒートポンプ用冷媒は、第2熱交換器6に流入する。第2熱交換器6に流入したヒートポンプ用冷媒は、空調回路3の熱媒体と熱交換して放熱しながら凝縮することにより熱媒体を加熱し、第2熱交換器6から流出する。 Next, in the heat pump circuit 2, the heat pump refrigerant is compressed by the compressor 21 and discharged. The heat pump refrigerant discharged from the compressor 21 flows into the second heat exchanger 6. The heat pump refrigerant flowing into the second heat exchanger 6 heats the heat medium by exchanging heat with the heat medium in the air conditioning circuit 3 and condensing while radiating heat, and flows out from the second heat exchanger 6.
 第2熱交換器6から流出したヒートポンプ用冷媒は、減圧装置22によって減圧および膨張され、減圧装置22から流出する。減圧装置22から流出したヒートポンプ用冷媒は、第1熱交換器5に流入する。 The heat pump refrigerant that has flowed out of the second heat exchanger 6 is depressurized and expanded by the decompression device 22, and flows out from the decompression device 22. The heat pump refrigerant flowing out from the decompression device 22 flows into the first heat exchanger 5.
 第1熱交換器5に流入したヒートポンプ用冷媒は、地中熱用冷媒と熱交換して吸熱および蒸発し、第1熱交換器5から流出する。第1熱交換器5から流出したヒートポンプ用冷媒は、圧縮機21へ吸入される。そして、以下、ヒートポンプ用冷媒は、上述した循環を繰り返す。 The heat pump refrigerant that has flowed into the first heat exchanger 5 exchanges heat with the underground heat refrigerant, absorbs heat and evaporates, and flows out of the first heat exchanger 5. The heat pump refrigerant flowing out of the first heat exchanger 5 is sucked into the compressor 21. In the following, the heat pump refrigerant repeats the circulation described above.
 次に、空調回路3において、空調配管30を流れ、第2熱交換器6によって加熱された熱媒体は、流路切替弁31を介して放熱器32に流入する。放熱器32に流入した熱媒体は、空調対象空間内の空気に放熱し、放熱器32から流出する。これにより、空調対象空間の空気調和が行われる。放熱器32から流出した熱媒体は、第2循環ポンプ33を介して第2熱交換器6に流入する。以下、空調配管30を流れる熱媒体は、上述した循環を繰り返す。 Next, in the air conditioning circuit 3, the heat medium flowing through the air conditioning pipe 30 and heated by the second heat exchanger 6 flows into the radiator 32 through the flow path switching valve 31. The heat medium flowing into the radiator 32 radiates heat to the air in the air-conditioning target space and flows out of the radiator 32. Thereby, air conditioning of the air-conditioning target space is performed. The heat medium flowing out from the radiator 32 flows into the second heat exchanger 6 through the second circulation pump 33. Hereinafter, the heat medium flowing through the air conditioning pipe 30 repeats the circulation described above.
 また、空調回路3において、第2熱交換器6によって加熱された熱媒体は、流路切替弁31を介して給湯回路4に流入する。給湯回路4に流入した熱媒体は、給湯配管40aを流れ、第3熱交換器43に流入する。第3熱交換器43に流入した熱媒体は、給湯配管40bを循環する水と熱交換して放熱し、第3熱交換器43から流出する。第3熱交換器43から流出した熱媒体は、給湯回路4から流出して空調回路3に流入し、空調回路3の空調配管30を流れる熱媒体と合流する。 In the air conditioning circuit 3, the heat medium heated by the second heat exchanger 6 flows into the hot water supply circuit 4 through the flow path switching valve 31. The heat medium flowing into the hot water supply circuit 4 flows through the hot water supply pipe 40 a and flows into the third heat exchanger 43. The heat medium flowing into the third heat exchanger 43 exchanges heat with water circulating through the hot water supply pipe 40 b to dissipate heat and flows out from the third heat exchanger 43. The heat medium flowing out from the third heat exchanger 43 flows out from the hot water supply circuit 4 and flows into the air conditioning circuit 3, and merges with the heat medium flowing through the air conditioning pipe 30 of the air conditioning circuit 3.
 一方、給湯タンク41内の水は、給湯タンク41から流出し、第3循環ポンプ42を介して第3熱交換器43に流入する。第3熱交換器43に流入した水は、給湯配管40aを流れる熱媒体と熱交換して吸熱し、第3熱交換器43から流出する。第3熱交換器43から流出した水は、給湯タンク41に流入し、以下、上述した循環を繰り返す。 On the other hand, the water in the hot water supply tank 41 flows out of the hot water supply tank 41 and flows into the third heat exchanger 43 through the third circulation pump 42. The water flowing into the third heat exchanger 43 exchanges heat with the heat medium flowing through the hot water supply pipe 40 a to absorb heat, and flows out from the third heat exchanger 43. The water that has flowed out of the third heat exchanger 43 flows into the hot water supply tank 41 and repeats the circulation described above.
[ファンの制御]
 次に、本実施の形態1に係るヒートポンプ装置100におけるファン24の回転数を制御する処理について説明する。本実施の形態1では、ヒートポンプ装置100が動作することによって装置内の温度が上昇した場合に、採熱回路1の採熱配管10が結露しないように、ファン24の回転数を制御する。
[Fan control]
Next, a process for controlling the rotation speed of the fan 24 in the heat pump apparatus 100 according to the first embodiment will be described. In the first embodiment, when the temperature in the apparatus rises due to the operation of the heat pump apparatus 100, the rotation speed of the fan 24 is controlled so that the heat collecting pipe 10 of the heat collecting circuit 1 does not condense.
 図5は、本実施の形態1に係るヒートポンプ装置100におけるファン24の回転数制御処理の流れの一例を示すフローチャートである。なお、図5に示す処理は、予め設定された時間毎に巡回的に繰り返されるものとする。 FIG. 5 is a flowchart showing an example of the flow of the rotational speed control process of the fan 24 in the heat pump apparatus 100 according to the first embodiment. Note that the process shown in FIG. 5 is repeated cyclically at a preset time.
 まず、ステップS1において、制御装置7のポンプ状態判断部71は、第1循環ポンプ12を駆動するモータから入力される駆動情報に基づき、第1循環ポンプ12が運転中であるか否かを判断する。 First, in step S1, the pump state determination unit 71 of the control device 7 determines whether or not the first circulation pump 12 is in operation based on drive information input from a motor that drives the first circulation pump 12. To do.
 第1循環ポンプ12が運転中でない、すなわち停止中であると判断した場合(ステップS1;NO)、ファン回転数決定部73は、ファン24を停止するためにファン24の回転数を「0」に決定する。そして、ステップS6において、ファン制御部75は、決定された回転数「0」でファン24を駆動、すなわち停止させる。 When it is determined that the first circulation pump 12 is not in operation, that is, is stopped (step S1; NO), the fan rotation speed determination unit 73 sets the rotation speed of the fan 24 to “0” in order to stop the fan 24. To decide. In step S <b> 6, the fan control unit 75 drives, i.e. stops, the fan 24 at the determined rotation speed “0”.
 一方、第1循環ポンプ12が運転中であると判断した場合(ステップS1;YES)には、処理がステップS2に移行する。ステップS2において、第2温度サーミスタ14は、ヒートポンプ装置100内の温度を測定する。また、ステップS3において、第1温度サーミスタ13は、採熱回路1の採熱配管10内を流れる地中熱用冷媒の温度を測定する。 On the other hand, when it is determined that the first circulation pump 12 is in operation (step S1; YES), the process proceeds to step S2. In step S <b> 2, the second temperature thermistor 14 measures the temperature in the heat pump device 100. In step S <b> 3, the first temperature thermistor 13 measures the temperature of the underground heat refrigerant flowing in the heat collecting pipe 10 of the heat collecting circuit 1.
 なお、ステップS2およびステップS3の処理は、必ずしも説明した順序で行われる必要はない。例えば、ステップS2およびステップS3の処理の順序を入れ替えてもよいし、ステップS2およびステップS3の処理が並列的に行われてもよい。 Note that the processing of step S2 and step S3 is not necessarily performed in the order described. For example, the order of the processes of step S2 and step S3 may be switched, and the processes of step S2 and step S3 may be performed in parallel.
 次に、ステップS4において、温度差算出部72は、ステップS2で測定された装置内温度と、ステップS3で測定された地中熱用冷媒温度との温度差を算出する。ファン回転数決定部73は、算出された温度差に基づき、記憶部74に記憶された回転数テーブルを参照し、ファン24の回転数を決定する。そして、ステップS5において、ファン制御部75は、決定された回転数でファン24を駆動する。 Next, in step S4, the temperature difference calculation unit 72 calculates the temperature difference between the in-device temperature measured in step S2 and the underground heat refrigerant temperature measured in step S3. The fan rotational speed determination unit 73 refers to the rotational speed table stored in the storage unit 74 and determines the rotational speed of the fan 24 based on the calculated temperature difference. In step S5, the fan control unit 75 drives the fan 24 at the determined rotation speed.
 以上のように、本実施の形態1に係るヒートポンプ装置100は、採熱配管10内を地中熱用冷媒が循環する採熱回路1と、ヒートポンプ配管20内をヒートポンプ用冷媒が循環するヒートポンプ回路2と、地中熱用冷媒とヒートポンプ用冷媒との間で熱交換を行う第1熱交換器5とを含んで構成されている。このようなヒートポンプ装置100において、採熱回路1は、採熱配管10の一部が地中に埋設されて構成された、地中熱を採熱する地中熱交換器11を有している。また、ヒートポンプ回路2は、ヒートポンプ配管20に接続され、ヒートポンプ用冷媒を圧縮する圧縮機21と、圧縮機21を制御するための電子部品を搭載し、背面に採熱配管10が接合されたコントロールボックス23と、コントロールボックス23の背面に対して気流を吹き付けるファン24とを有している。 As described above, the heat pump device 100 according to the first embodiment includes the heat collecting circuit 1 in which the underground heat refrigerant circulates in the heat collecting pipe 10 and the heat pump circuit in which the heat pump refrigerant circulates in the heat pump pipe 20. 2 and a first heat exchanger 5 that performs heat exchange between the underground heat refrigerant and the heat pump refrigerant. In such a heat pump device 100, the heat collecting circuit 1 has a ground heat exchanger 11 that heats the ground heat, which is configured with a part of the heat collecting pipe 10 buried in the ground. . In addition, the heat pump circuit 2 is connected to the heat pump pipe 20 and includes a compressor 21 that compresses the heat pump refrigerant, and an electronic component for controlling the compressor 21, and a control in which the heat collecting pipe 10 is joined to the back surface. A box 23 and a fan 24 that blows airflow against the back of the control box 23 are provided.
 このように、採熱配管10が接合されたコントロールボックス23の背面に対して、ファン24によって気流を吹き付けることにより、コントロールボックス23の制御用電子部品を冷却しながら、採熱配管10における結露水の発生を抑制することができる。 In this manner, the air flow is blown by the fan 24 against the back surface of the control box 23 to which the heat collecting pipe 10 is joined, so that the condensed water in the heat collecting pipe 10 is cooled while cooling the control electronic components of the control box 23. Can be suppressed.
 また、本実施の形態1では、第1温度サーミスタ13によって測定された地中熱用冷媒の温度と、第2温度サーミスタ14によって測定されたヒートポンプ装置100内の温度との温度差に基づき、ファン24の回転数を制御する。これにより、ヒートポンプ装置100の温度状態に応じて、より適切に結露水の発生を抑制することができる。 In the first embodiment, the fan is based on the temperature difference between the temperature of the underground heat refrigerant measured by the first temperature thermistor 13 and the temperature in the heat pump device 100 measured by the second temperature thermistor 14. The rotational speed of 24 is controlled. Thereby, according to the temperature state of the heat pump apparatus 100, generation | occurrence | production of condensed water can be suppressed more appropriately.
実施の形態2.
 次に、本発明の実施の形態2に係るヒートポンプ装置について説明する。本実施の形態2に係るヒートポンプ装置は、ヒートポンプ装置100内に設置された湿度センサと、コントロールボックス23の背面近傍に設置された第3温度サーミスタを備える点で、上述した実施の形態1と相違する。
Embodiment 2. FIG.
Next, a heat pump device according to Embodiment 2 of the present invention will be described. The heat pump device according to the second embodiment is different from the above-described first embodiment in that it includes a humidity sensor installed in the heat pump device 100 and a third temperature thermistor installed in the vicinity of the back surface of the control box 23. To do.
[ヒートポンプ装置の回路構成]
 図6は、本実施の形態2に係るヒートポンプ装置100の構成の一例を示す概略図である。図7は、図6のコントロールボックス23の背面の様子を示す概略図である。図6に示すように、本実施の形態2に係るヒートポンプ装置100は、実施の形態1に係るヒートポンプ装置100の構成に加えて、湿度センサ15が設けられている。また、図7に示すように、コントロールボックス23の背面近傍には、第3温度センサとしての第3温度サーミスタ16が設けられている。なお、以下の説明において、実施の形態1と共通する部分には、同一の符号を付し、詳細な説明を省略する。
[Circuit configuration of heat pump device]
FIG. 6 is a schematic diagram illustrating an example of the configuration of the heat pump apparatus 100 according to the second embodiment. FIG. 7 is a schematic view showing the back surface of the control box 23 of FIG. As shown in FIG. 6, the heat pump device 100 according to the second embodiment is provided with a humidity sensor 15 in addition to the configuration of the heat pump device 100 according to the first embodiment. As shown in FIG. 7, a third temperature thermistor 16 as a third temperature sensor is provided in the vicinity of the back surface of the control box 23. In the following description, the same reference numerals are given to portions common to the first embodiment, and detailed description thereof is omitted.
 湿度センサ15は、ヒートポンプ装置100の内部に設置され、ヒートポンプ装置100内の相対湿度を測定する。なお、湿度センサ15は、ヒートポンプ装置100内の相対湿度を測定できれば、どの位置に設置してもよいが、コントロールボックス23の近傍に設置すると好ましい。 The humidity sensor 15 is installed inside the heat pump apparatus 100 and measures the relative humidity in the heat pump apparatus 100. The humidity sensor 15 may be installed at any position as long as the relative humidity in the heat pump apparatus 100 can be measured, but is preferably installed in the vicinity of the control box 23.
 第3温度サーミスタ16は、コントロールボックス23の背面近傍に設置され、大気温度を測定する。なお、第3温度サーミスタ16は、コントロールボックス23の背面近傍に設置されるものの、コントロールボックス23に搭載された基板等による発熱の影響を受けないように設置することが好ましい。 The third temperature thermistor 16 is installed in the vicinity of the back surface of the control box 23 and measures the atmospheric temperature. Although the third temperature thermistor 16 is installed in the vicinity of the back surface of the control box 23, it is preferable that the third temperature thermistor 16 is installed so as not to be affected by heat generated by the substrate or the like mounted on the control box 23.
(制御装置)
 図8は、図6の制御装置7の構成の一例を示すブロック図である。図8に示すように、制御装置7は、ポンプ状態判断部71、露点温度算出部76、ファン回転数決定部73、およびファン制御部75を備えている。なお、図8では、本発明の特徴に関連する部分についての機能ブロックのみを図示し、それ以外の部分については、図示および説明を省略する。
(Control device)
FIG. 8 is a block diagram showing an example of the configuration of the control device 7 of FIG. As shown in FIG. 8, the control device 7 includes a pump state determination unit 71, a dew point temperature calculation unit 76, a fan rotation speed determination unit 73, and a fan control unit 75. In FIG. 8, only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
 露点温度算出部76は、第1温度サーミスタ13による地中熱用冷媒の温度を示すデータと、第2温度サーミスタ14によるヒートポンプ装置100内の温度を示すデータと、湿度センサ15によるヒートポンプ装置100内の相対湿度を示すデータとが入力される。露点温度算出部76は、入力された3つの測定データに基づき露点温度を算出し、得られた露点温度を示す情報を、ファン回転数決定部73に供給する。 The dew point temperature calculation unit 76 includes data indicating the temperature of the refrigerant for geothermal heat by the first temperature thermistor 13, data indicating the temperature in the heat pump device 100 by the second temperature thermistor 14, and the heat pump device 100 by the humidity sensor 15. The data indicating the relative humidity of is input. The dew point temperature calculation unit 76 calculates the dew point temperature based on the three input measurement data, and supplies information indicating the obtained dew point temperature to the fan rotation number determination unit 73.
 ファン回転数決定部73は、ポンプ状態判断部71で得られた判断結果を示す情報と、露点温度算出部76で算出された露点温度を示す情報と、第3温度サーミスタ16で測定された大気温度を示すデータとが入力される。
 ファン回転数決定部73は、入力されたこれらの情報に基づき、ファン24の回転数の変化量を決定する。そして、ファン回転数決定部73は、決定したファン24の回転数の変化量を示す情報を、ファン制御部75に供給する。
The fan rotational speed determination unit 73 includes information indicating the determination result obtained by the pump state determination unit 71, information indicating the dew point temperature calculated by the dew point temperature calculation unit 76, and the atmosphere measured by the third temperature thermistor 16. Data indicating temperature is input.
The fan rotation speed determination unit 73 determines the amount of change in the rotation speed of the fan 24 based on the input information. Then, the fan rotation speed determination unit 73 supplies information indicating the determined change amount of the rotation speed of the fan 24 to the fan control unit 75.
[ファンの制御]
 次に、本実施の形態2に係るヒートポンプ装置100におけるファン24の回転数を制御する処理について説明する。
 図9は、本実施の形態2に係るヒートポンプ装置100におけるファン24の回転数制御処理の流れの一例を示すフローチャートである。なお、図9に示す処理は、予め設定された時間毎に巡回的に繰り返されるものとする。
[Fan control]
Next, processing for controlling the rotation speed of the fan 24 in the heat pump apparatus 100 according to the second embodiment will be described.
FIG. 9 is a flowchart showing an example of the flow of the rotational speed control process of the fan 24 in the heat pump apparatus 100 according to the second embodiment. It is assumed that the process shown in FIG. 9 is cyclically repeated every preset time.
 まず、ステップS11において、制御装置7のポンプ状態判断部71は、第1循環ポンプ12を駆動するモータから入力される駆動情報に基づき、第1循環ポンプ12が運転中であるか否かを判断する。 First, in step S <b> 11, the pump state determination unit 71 of the control device 7 determines whether or not the first circulation pump 12 is in operation based on drive information input from a motor that drives the first circulation pump 12. To do.
 第1循環ポンプ12が停止中であると判断した場合(ステップS11;NO)、ファン回転数決定部73は、ファン24を停止するためにファン24の回転数を「0」に決定する。そして、ステップS22において、ファン制御部75は、ファン24を停止させる。 When it is determined that the first circulation pump 12 is stopped (step S11; NO), the fan rotation speed determination unit 73 determines the rotation speed of the fan 24 to “0” in order to stop the fan 24. In step S <b> 22, the fan control unit 75 stops the fan 24.
 一方、第1循環ポンプ12が運転中であると判断した場合(ステップS11;YES)には、処理がステップS12に移行する。ステップS12において、第2温度サーミスタ14は、ヒートポンプ装置100内の温度を測定する。また、ステップS13において、第1温度サーミスタ13は、採熱回路1の採熱配管10内を流れる地中熱用冷媒の温度を測定する。さらに、ステップS14において、湿度センサ15は、ヒートポンプ装置100内の相対湿度を測定する。 On the other hand, when it is determined that the first circulation pump 12 is in operation (step S11; YES), the process proceeds to step S12. In step S <b> 12, the second temperature thermistor 14 measures the temperature inside the heat pump apparatus 100. In step S <b> 13, the first temperature thermistor 13 measures the temperature of the underground heat refrigerant flowing in the heat collecting pipe 10 of the heat collecting circuit 1. Furthermore, in step S <b> 14, the humidity sensor 15 measures the relative humidity in the heat pump device 100.
 なお、ステップS12~ステップS14の処理は、必ずしも説明した順序で行われる必要はない。例えば、ステップS2およびステップS3の処理の順序を入れ替えてもよいし、ステップS2およびステップS3の処理が並列的に行われてもよい。 Note that the processing from step S12 to step S14 is not necessarily performed in the order described. For example, the order of the processes of step S2 and step S3 may be switched, and the processes of step S2 and step S3 may be performed in parallel.
 次に、ステップS15において、露点温度算出部76は、ステップS12~ステップS14で測定された温度および湿度のデータに基づき、露点温度Tbを算出する。露点温度Tbは、式(1)~式(3)に基づき算出することができる。式(1)における値「X」は、湿度センサ15によって測定されたヒートポンプ装置100内の相対湿度[%]である。また、値「T」は、第2温度サーミスタ14によって測定されたヒートポンプ装置100内の温度[℃]である。
   Tb=A×ln(X/10)+B  ・・・(1)
   A=0.13×T+11.1   ・・・(2)
   B=0.7×T-25      ・・・(3)
Next, in step S15, the dew point temperature calculation unit 76 calculates the dew point temperature Tb based on the temperature and humidity data measured in steps S12 to S14. The dew point temperature Tb can be calculated based on the equations (1) to (3). The value “X” in the equation (1) is the relative humidity [%] in the heat pump apparatus 100 measured by the humidity sensor 15. The value “T 1 ” is the temperature [° C.] in the heat pump apparatus 100 measured by the second temperature thermistor 14.
Tb = A × ln (X / 10) + B (1)
A = 0.13 × T 1 +11.1 (2)
B = 0.7 × T 1 −25 (3)
 なお、上述した式(1)~式(3)を用いた露点温度Tbの算出は、相対湿度X[%]が「10≦X≦90」である場合に適用される。相対湿度X[%]が「X<10」である場合、露点温度Tbは、相対湿度Xが値「10」であるものとして、式(1)~式(3)に基づき算出される。また、相対湿度X[%]が「90<X」である場合、露点温度Tbは、ヒートポンプ装置100内の温度Tとする。 The calculation of the dew point temperature Tb using the equations (1) to (3) described above is applied when the relative humidity X [%] is “10 ≦ X ≦ 90”. When the relative humidity X [%] is “X <10”, the dew point temperature Tb is calculated based on the equations (1) to (3) on the assumption that the relative humidity X is the value “10”. Further, when the relative humidity X [%] is “90 <X”, the dew point temperature Tb is the temperature T 1 in the heat pump device 100.
 ステップS16において、第3温度サーミスタ16は、大気温度Taを測定する。ステップS17において、ファン回転数決定部73は、ステップS15で算出された露点温度Tbと、ステップS16で測定された大気温度Taとに基づき、ファン24の回転数の変化量を決定する。 In step S16, the third temperature thermistor 16 measures the atmospheric temperature Ta. In step S17, the fan rotation speed determination unit 73 determines the amount of change in the rotation speed of the fan 24 based on the dew point temperature Tb calculated in step S15 and the atmospheric temperature Ta measured in step S16.
 大気温度Taと露点温度Tbとの関係が「大気温度Ta=露点温度Tb」である場合、ファン回転数決定部73は、ステップS18において、ファン24の回転数を現在の回転数で維持することを決定する。また、大気温度Taと露点温度Tbとの関係が「大気温度Ta>露点温度Tb」である場合、ファン回転数決定部73は、ステップS19において、ファン24の回転数を上昇させることを決定する。さらに、大気温度Taと露点温度Tbとの関係が「大気温度Ta<露点温度Tb」である場合、ファン回転数決定部73は、ステップS20において、ファン24の回転数を低下させることを決定する。そして、ステップS21において、ファン制御部75は、決定された回転数の変化量を示す制御信号をファン24に供給し、ファン24を駆動する。 When the relationship between the atmospheric temperature Ta and the dew point temperature Tb is “atmospheric temperature Ta = dew point temperature Tb”, the fan rotational speed determination unit 73 maintains the rotational speed of the fan 24 at the current rotational speed in step S18. To decide. When the relationship between the atmospheric temperature Ta and the dew point temperature Tb is “atmospheric temperature Ta> dew point temperature Tb”, the fan rotational speed determination unit 73 determines to increase the rotational speed of the fan 24 in step S19. . Further, when the relationship between the atmospheric temperature Ta and the dew point temperature Tb is “atmospheric temperature Ta <dew point temperature Tb”, the fan rotational speed determination unit 73 determines to decrease the rotational speed of the fan 24 in step S20. . In step S <b> 21, the fan control unit 75 supplies a control signal indicating the determined amount of change in the rotational speed to the fan 24 to drive the fan 24.
 なお、ファン24の回転数は、例えば、段階的に変化させてもよいし、周囲の環境および算出した露点温度に基づいて目標回転数を決定し、即座に決定した回転数となるようにしてもよい。 The rotational speed of the fan 24 may be changed stepwise, for example, and the target rotational speed is determined based on the surrounding environment and the calculated dew point temperature so that the rotational speed is immediately determined. Also good.
 以上のように、本実施の形態2に係るヒートポンプ装置100は、上述した実施の形態1に係るヒートポンプ装置100の構成に加えて、湿度センサ15および第3温度サーミスタ16を設けている。これにより、大気温度と結露温度との関係に基づいてファン24の回転数を制御するため、より適切に結露水の発生を抑制することができる。 As described above, the heat pump device 100 according to the second embodiment includes the humidity sensor 15 and the third temperature thermistor 16 in addition to the configuration of the heat pump device 100 according to the first embodiment described above. Thereby, since the rotation speed of the fan 24 is controlled based on the relationship between atmospheric temperature and dew condensation temperature, generation | occurrence | production of dew condensation water can be suppressed more appropriately.
 1 採熱回路、2 ヒートポンプ回路、3 空調回路、4 給湯回路、5 第1熱交換器、6 第2熱交換器、7 制御装置、10 採熱配管、10a ヘッダ管、10b 枝管、11 地中熱交換器、12 第1循環ポンプ、13 第1温度サーミスタ、14 第2温度サーミスタ、15 湿度センサ、16 第3温度サーミスタ、20 ヒートポンプ配管、21 圧縮機、22 減圧装置、23 コントロールボックス、24 ファン、30 空調配管、31 流路切替弁、32 放熱器、33 第2循環ポンプ、40a、40b 給湯配管、41 給湯タンク、42 第3循環ポンプ、43 第3熱交換器、71 ポンプ状態判断部、72 温度差算出部、73 ファン回転数決定部、74 記憶部、75 ファン制御部、76 露点温度算出部、100 ヒートポンプ装置。 1 heat collection circuit, 2 heat pump circuit, 3 air conditioning circuit, 4 hot water supply circuit, 5 first heat exchanger, 6 second heat exchanger, 7 control device, 10 heat collection pipe, 10a header pipe, 10b branch pipe, 11 ground Medium heat exchanger, 12 1st circulation pump, 13 1st temperature thermistor, 14 2nd temperature thermistor, 15 humidity sensor, 16 3rd temperature thermistor, 20 heat pump piping, 21 compressor, 22 decompression device, 23 control box, 24 Fan, 30 air conditioning piping, 31 flow path switching valve, 32 radiator, 33 second circulation pump, 40a, 40b hot water supply piping, 41 hot water supply tank, 42 third circulation pump, 43 third heat exchanger, 71 pump state determination unit 72, temperature difference calculation unit, 73 fan speed determination unit, 74 storage unit, 75 fan control unit, 76 dew Temperature calculation unit, 100 a heat pump apparatus.

Claims (7)

  1.  採熱配管内を地中熱用冷媒が循環する採熱回路と、ヒートポンプ配管内をヒートポンプ用冷媒が循環するヒートポンプ回路と、前記地中熱用冷媒と前記ヒートポンプ用冷媒との間で熱交換を行う熱交換器とを含んで構成されるヒートポンプ装置であって、
     前記採熱回路は、前記採熱配管の一部が地中に埋設されて構成された、地中熱を採熱する地中熱交換器を有し、
     前記ヒートポンプ回路は、
     前記ヒートポンプ配管に接続され、前記ヒートポンプ用冷媒を圧縮する圧縮機と、
     前記圧縮機を制御するための電子部品を搭載し、背面に前記採熱配管が接合されたコントロールボックスと、
     前記コントロールボックスの背面に対して気流を吹き付けるファンと
    を有する
    ヒートポンプ装置。
    Heat exchanging between the heat collecting circuit in which the underground heat refrigerant circulates in the heat collecting pipe, the heat pump circuit in which the heat pump refrigerant circulates in the heat pump pipe, and the underground heat refrigerant and the heat pump refrigerant. A heat pump device configured to include a heat exchanger to perform,
    The heat collecting circuit has a geothermal heat exchanger configured to collect underground heat, wherein a part of the heat collecting pipe is embedded in the ground.
    The heat pump circuit is
    A compressor connected to the heat pump piping and compressing the heat pump refrigerant;
    Electronic box for controlling the compressor is mounted, and a control box in which the heat collecting pipe is joined to the back surface,
    A heat pump device having a fan for blowing airflow to the back of the control box.
  2.  前記ファンの回転数を制御する制御装置をさらに備え、
     前記採熱回路は、
     前記採熱配管の近傍に設けられ、前記採熱配管内を流れる前記地中熱用冷媒の温度を測定する第1温度センサと、
     前記ヒートポンプ装置内の温度を測定する第2温度センサと
    をさらに有し、
     前記制御装置は、前記地中熱用冷媒の温度と、前記ヒートポンプ装置内の温度とに基づき、前記ファンの回転数を制御する
    請求項1に記載のヒートポンプ装置。
    A control device for controlling the rotational speed of the fan;
    The heat collecting circuit is:
    A first temperature sensor provided in the vicinity of the heat collecting pipe and measuring a temperature of the underground heat refrigerant flowing in the heat collecting pipe;
    A second temperature sensor for measuring the temperature in the heat pump device,
    The heat pump device according to claim 1, wherein the control device controls the number of rotations of the fan based on a temperature of the underground heat refrigerant and a temperature in the heat pump device.
  3.  前記制御装置は、前記地中熱用冷媒の温度と、前記ヒートポンプ装置内の温度との温度差に基づき、温度差が大きいほど前記回転数を大きくするように、前記ファンの回転数を制御する
    請求項2に記載のヒートポンプ装置。
    The control device controls the number of rotations of the fan based on a temperature difference between the temperature of the geothermal refrigerant and the temperature in the heat pump device so that the number of rotations increases as the temperature difference increases. The heat pump apparatus according to claim 2.
  4.  前記採熱回路は、前記ヒートポンプ装置内の相対湿度を測定する湿度センサをさらに有し、
     前記ヒートポンプ回路は、大気温度を測定する第3温度センサをさらに有し、
     前記制御装置は、
     前記地中熱用冷媒の温度、前記ヒートポンプ装置内の温度、および前記相対湿度から得られる露点温度と、前記大気温度との関係に基づき、前記ファンの回転数を制御する
    請求項2に記載のヒートポンプ装置。
    The heat collection circuit further includes a humidity sensor that measures relative humidity in the heat pump device,
    The heat pump circuit further includes a third temperature sensor for measuring the atmospheric temperature,
    The control device includes:
    The rotation speed of the fan according to claim 2, wherein the number of revolutions of the fan is controlled based on a relationship between a temperature of the ground heat refrigerant, a temperature in the heat pump device, a dew point temperature obtained from the relative humidity, and the atmospheric temperature. Heat pump device.
  5.  前記制御装置は、
     前記大気温度と前記露点温度とが等しい場合に、前記ファンの回転数を維持し、
     前記大気温度が前記露点温度よりも大きい場合に、前記ファンの回転数を上昇させ、
     前記大気温度が前記露点温度よりも小さい場合に、前記ファンの回転数を低下させる
    請求項4に記載のヒートポンプ装置。
    The control device includes:
    When the atmospheric temperature and the dew point temperature are equal, the rotational speed of the fan is maintained,
    If the atmospheric temperature is greater than the dew point temperature, increase the rotational speed of the fan,
    The heat pump device according to claim 4, wherein when the atmospheric temperature is lower than the dew point temperature, the rotational speed of the fan is decreased.
  6.  前記コントロールボックスは、前記熱交換器の上流側の前記採熱配管が背面に接合されている
    請求項1~5のいずれか一項に記載のヒートポンプ装置。
    The heat pump device according to any one of claims 1 to 5, wherein the control box has the heat collecting pipe on the upstream side of the heat exchanger joined to a back surface.
  7.  前記コントロールボックスに接合される前記採熱配管は、一対の平行なヘッダ管と、一対の前記ヘッダ管を連通する複数の枝管とで形成されている
    請求項1~6のいずれか一項に記載のヒートポンプ装置。
    The heat collection pipe joined to the control box is formed by a pair of parallel header pipes and a plurality of branch pipes communicating the pair of header pipes. The heat pump apparatus as described.
PCT/JP2017/017653 2017-05-10 2017-05-10 Heat pump device WO2018207278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019516788A JP6732117B2 (en) 2017-05-10 2017-05-10 Heat pump device
PCT/JP2017/017653 WO2018207278A1 (en) 2017-05-10 2017-05-10 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017653 WO2018207278A1 (en) 2017-05-10 2017-05-10 Heat pump device

Publications (1)

Publication Number Publication Date
WO2018207278A1 true WO2018207278A1 (en) 2018-11-15

Family

ID=64105292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017653 WO2018207278A1 (en) 2017-05-10 2017-05-10 Heat pump device

Country Status (2)

Country Link
JP (1) JP6732117B2 (en)
WO (1) WO2018207278A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030708A (en) * 2003-07-08 2005-02-03 Sunpot Co Ltd Cooling structure for semiconductor for controlling geothermal heat pump
JP2010014340A (en) * 2008-07-03 2010-01-21 Daikin Ind Ltd Refrigerating apparatus
JP2010144976A (en) * 2008-12-17 2010-07-01 Mitsubishi Electric Corp Air-conditioning combined hot water supplying device
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030708A (en) * 2003-07-08 2005-02-03 Sunpot Co Ltd Cooling structure for semiconductor for controlling geothermal heat pump
JP2010014340A (en) * 2008-07-03 2010-01-21 Daikin Ind Ltd Refrigerating apparatus
JP2010144976A (en) * 2008-12-17 2010-07-01 Mitsubishi Electric Corp Air-conditioning combined hot water supplying device
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device

Also Published As

Publication number Publication date
JPWO2018207278A1 (en) 2019-12-26
JP6732117B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US8549874B2 (en) Refrigeration system
JP4712910B1 (en) Precision air conditioner
JP4173880B2 (en) Dehumidification control method for air conditioning system
KR100781267B1 (en) Air conditioning system
JP2015068610A (en) Air conditioner
JP2015087042A (en) Air conditioning system
JP6950191B2 (en) Air conditioner
KR20180085958A (en) Vehicle thermal management system
WO2018164253A1 (en) Air-conditioning device
JPWO2017094118A1 (en) Waste heat recovery system
JPWO2016189626A1 (en) Air conditioner and indoor unit
JP2014095504A (en) Air conditioner
JP2008281218A (en) Air conditioning system and control method for it
EP2116788A2 (en) Method for using outdoor air to cool room devices
KR101702008B1 (en) Combine air conditioning system for communication equipment
JP2010007939A (en) Condenser and compressed air dehumidifier equipped with the same
WO2018207278A1 (en) Heat pump device
JP6310077B2 (en) Heat source system
KR100812777B1 (en) Heat pump system
JP6737774B2 (en) Phase change cooling device and control method thereof
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
JP2010210222A (en) Air conditioner and its control method
JP2006046838A (en) Inverter type air conditioner and control method thereof
JP7038836B2 (en) Cold water supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909053

Country of ref document: EP

Kind code of ref document: A1