WO2018206014A1 - 一种双光路传感器模组 - Google Patents
一种双光路传感器模组 Download PDFInfo
- Publication number
- WO2018206014A1 WO2018206014A1 PCT/CN2018/090089 CN2018090089W WO2018206014A1 WO 2018206014 A1 WO2018206014 A1 WO 2018206014A1 CN 2018090089 W CN2018090089 W CN 2018090089W WO 2018206014 A1 WO2018206014 A1 WO 2018206014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- light
- optical path
- shielding portion
- sensor module
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 230000009977 dual effect Effects 0.000 title claims abstract description 11
- 230000005693 optoelectronics Effects 0.000 claims description 4
- 239000013013 elastic material Substances 0.000 claims description 3
- 238000013186 photoplethysmography Methods 0.000 abstract description 2
- 210000001519 tissue Anatomy 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 210000004207 dermis Anatomy 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 210000002615 epidermis Anatomy 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 206010033675 panniculitis Diseases 0.000 description 3
- 210000004304 subcutaneous tissue Anatomy 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000002106 pulse oximetry Methods 0.000 description 2
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001736 capillary Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/18—Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
- A61B2562/185—Optical shielding, e.g. baffles
Definitions
- the invention discloses a dual optical path sensor module, which relates to the field of photoelectric physiological signal acquisition, and can be applied to various places requiring long-term blood oxygen saturation and heart rate monitoring.
- the human body pulse wave contains rich physiological information, which can provide a basis for assessing the individual's physical state by collecting and analyzing the pulse wave.
- the premise is that the pulse wave signal can be obtained stably and reliably.
- pulse oximetry reflects the amount of oxygen in the blood. Like the pulse rate, it is a basic human physiological parameter and plays an important role in clinical diagnostic analysis.
- the non-invasive monitoring method of blood oxygen saturation is generally based on photoplethysmography, and at least two different wavelengths of light source are required for excitation.
- CN201585990 and CN102961144 and other domestic research attempts to detect blood oxygen saturation on the finger and design it.
- the principle adopted is basically based on transmissive oxygen saturation detection, which is easy to be disturbed by motion. Achieve accurate physiological parameter over-limit alarm prompts and local real-time feedback.
- CN204520642U two photoreceivers are used to reduce the influence of dark current, but the signal quality caused by shifting cannot be avoided.
- the present invention designs a dual optical path sensor module that includes an optoelectronic receiver and two pairs of symmetric light sources to improve signal quality stability.
- Human tissue is a high scatterer, and the incident light travels in a "banana-shaped" path within a uniform medium. Photons are partially absorbed by tissues in human tissues, and are also scattered by tissues and spread in tissues. Assuming that the human tissue is homogeneous and homogeneous, it can usually be divided into the following four parts: arteries, capillaries, veins, and blood-free parts such as bones and fats. Blood in arteries and capillaries is different from blood in tissues. Optical properties. When the heart contracts, the absorption and scattering coefficients in the arterial vessels and capillaries increase, resulting in a decrease in the luminous flux density received by the photoreceiver tube.
- the intensity of light received at the receiving tube by the diffuse reflection of the tissue received at the receiving tube can be expressed by:
- ⁇ c , ⁇ 1 , ⁇ 2 , ⁇ 3 are the scale coefficients obtained by unfolding the first-order Taylor of Lambert Beer's law, and ⁇ l ed (t) and ⁇ l bv (t) are caused by motion.
- the optical path changes. It can be seen from the equation that body motion causes a change in the optical path, thereby causing a change in the light intensity of the receiving tube.
- the motion causes ⁇ 1 ⁇ c b (t) to be Discrete.
- the change in the optical path is mainly caused by the change in the distance between the light-emitting tube and the receiving tube and the deformation of the tissue.
- the invention provides a dual optical path sensor module, which is suitable for collecting human physiological signals based on photoelectric volume pulse wave tracing.
- the module comprises a base and an optoelectronic receiver and two light source modules mounted on the base, the two light source modules are symmetrically disposed on two sides of the photoreceiver, each light source module comprising at least two wavelengths a light source, the base is further provided with a light shielding portion, and the light shielding portion surrounds the photoelectric receiver, and an opening is formed at a top end of the light shielding portion, so that the light emitted by the light source is diffused and reflected by the human body tissue, The photoreceiver receives.
- the light source with a short wavelength in each light source module is closer to the photoelectric receiver.
- the light shielding portion is made of an elastic material.
- the dual optical path sensor module designed by the invention can acquire physiological signals more stably.
- the module can monitor pulse oximetry and heart rate for a long time, has strong anti-interference ability, and has broad application prospects.
- Figure 1 is a top plan view of an embodiment in accordance with the present invention.
- FIG. 2 is a front elevational view of an embodiment in accordance with the present invention.
- Figure 3 is a schematic view of the optical path of the skin surface of an embodiment of the module.
- a dual optical path sensor module including an optoelectronic receiver 4 and two pairs of light source modules 1 and 2, light source modules 1 and 2, and photoelectric receiving There is a light blocking portion 3 between the devices 4.
- the light source modules 1 and 2 include at least two wavelengths of light sources, respectively a light source 1 and a light source 2, and the light source can be expanded as needed.
- the wavelength of the light source 1 in the light source modules 1 and 2 is smaller than the wavelength of the light source 2, and the light source 1 is closer to the photoreceiver tube.
- the light source with a short wavelength is closer to the photoreceiver.
- the light source modules 1 and 2 are located on both sides of the photoreceiver 4 and are spatially symmetric. The light sources of different wavelengths are diffusely reflected by the tissue and reach the photoreceiver 4.
- the light shielding portion 3 surrounding the photoreceiver 4, and an opening at the top end of the light shielding portion 3, the light emitted from the light source modules 1 and 2 cannot directly enter the photoreceiver 4.
- the design can effectively avoid the interference introduced by the light leakage problem, and the light shielding portion 3 makes the light emitted by the two pairs of light source modules 1 and 2 need to be diffusely reflected before reaching the photoelectric receiver 4.
- Figure 3 shows a schematic representation of the optical path of the skin surface of an embodiment of the module.
- the light emitted by the light source 1 and the light source 2 has the properties of reflection, projection and refraction.
- the light source 1 generates an effective optical path with the optical path 1 as an example, and the light source 2 generates an effective optical path.
- the optical path 2 is taken as an example, and the photon passes through the epidermis and the dermis.
- the diffuse reflection of the subcutaneous tissue reaches the photoreceiver 4.
- the photon cannot directly penetrate the light shielding portion 3 and directly reaches the photoreceiver 4.
- the light shielding portion 3 can be made of an elastic material in consideration of the use of the module for placement on a human body.
- the object and the effect achieved by the present invention are expressed by the formula (1-1).
- the dual-light path sensor module designed by the present invention the light source modules 1 and 2 are located on both sides of the photoelectric receiving tube 4, symmetrically distributed, and the wavelength of the light source 1 is smaller than the light source. 2 wavelength 2.
- the interference caused by the shift can be suppressed to some extent by the optical path.
- the light shielding portion 3 is not limited to the one shown in the drawings. In order to effectively avoid the interference introduced by the light leakage problem, any structure that can block the light of the light source directly to the photoreceiver tube is possible.
- the distance between the light source 1 and the light source 2 from the photoreceiving tube 4 can theoretically be described by the following method.
- the human skin tissue is approximated as a semi-infinite medium.
- the diffuse reflected light detected far from the incident point d is analyzed, and the xz coordinate system is established.
- the incident point is taken as the origin, and the incident point and the detection point are connected to the x-axis, and the light is vertical.
- the incident direction is the z-axis.
- the coordinates of the incident point are (0,0,0), and the coordinates of the receiving point are (d,0,0).
- the LED light-emitting tube is located at the coordinates of the incident point, and the intended receiving point is located at the exiting light.
- the coordinates are (d, 0, 0).
- the z-axis coordinate value is defined as the function z 0 (x) of x:
- ⁇ a is the absorption coefficient of the medium and ⁇ s is the reduced scattering coefficient of the medium. It can be seen from the formula (1-3) that there is a certain relationship between the value of the radial distance and the penetration depth of the skin.
- Human skin tissue has obvious layered structure and is divided into three layers from the top to the bottom: the epidermis layer, the dermis layer and the subcutaneous tissue layer. Because of the thicker dermis layer in the skin tissue, it penetrates the dermis layer into the subcutaneous tissue. The near-infrared light attenuation is large, and the diffuse reflected light energy that can be returned can be neglected.
- the probability density function of steady-state light transmission is ⁇ ( ⁇ , z)
- the thickness of the epidermis layer and the dermis layer are dep 1 , dep 2 , respectively.
- the ratio of the corresponding layers can be obtained as follows:
- the average value of d can be calculated from (1-6):
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physiology (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明公开了一种双光路传感器模组,用于基于光电容积脉搏波描记法采集人体生理信号,该模组包含底座以及安装在所述底座上的光电接收器和两个光源模块,所述两个光源模块对称设置在所述光电接收器的两侧,每个光源模块中包含至少两个波长的光源,所述底座上还设置有遮光部,并且所述遮光部包围所述光电接收器,在所述遮光部的顶端有开口,使得所述光源发出的光经过人体组织漫反射后,被所述光电接收器接收。
Description
本发明公开了一种双光路传感器模组,涉及光电生理信号采集领域,可应用于需要长期进行血氧饱和度和心率监测等多种场所。
人体脉搏波中包含丰富的生理信息,可以通过对脉搏波的采集、分析为评估个人身体状态提供依据,其前提是能够稳定、可靠地获取到脉搏波信号。例如,脉搏血氧饱和度反映了血液中氧气的含量,和脉率一样,都是基本的人体生理参数,在临床诊断分析中具有重要的作用。血氧饱和度的无创监测方法一般基于光电容积脉搏波描记法,至少需要2种不同波长的光源进行激励。
目前,市面上普通的监测装置负荷较重,佩戴舒适度差,难以满足长时间连续脉搏波血氧饱和度和心率监测的要求。CN201585990和CN102961144等国内的研究尝试在手指上检测血氧饱和度并进行了设计,目前市面上也有相关概念的产品,采用的原理基本是基于透射式血氧饱和度检测,容易受运动干扰,难以实现精确的生理参数超限报警提示以及本地实时反馈。CN204520642U中,使用两个光电接收管以减少暗电流的影响,然而却无法避免由移位造成的信号质量不稳定。
为了解决上述问题,设计一种双光路传感器模组,能够稳定获取生理信号是十分有必要的。
发明内容
针对现有技术上存在的不足,本发明设计一种双光路传感器模组,该模组包含一个光电接收器和两对对称光源,可提高信号质量的稳定性。
人体组织是高散射体,入射光在均匀介质内以“香蕉形”路径行走。光子在人体组织内一部分被组织吸收,同时也有被组织散射以及在组织中扩散。假设人体组织是均匀同质的,通常可以分为以下四个部分:动脉,毛细血管,静脉以及骨骼和脂肪等不含血液的部分,在动脉及毛细血管中的血液与组织中的血液有不同的光学特性。当心脏收缩时,动脉血管及毛细血管中的吸收及散射系数增加,导致了光电接收管接收 到的光通量密度降低。
从朗伯比尔定律出发,接收管处接收到的经由组织漫反射产生在接收管处接收到的光强可以由下式表示:
在式(1-1)中,β
c,β
1,β
2,β
3是将朗伯比尔定律一阶泰勒展开得到的比例系数,Δl
ed(t)和Δl
bv(t)是运动导致的光程改变。从该式中可以看出,身体运动导致光程的改变,从而使接收管光强的发生变化。此外,运动使得β
1Δc
b(t)被
离散。在这种情况下,光程的改变主要由发光管与接收管之间的距离变化以及组织形变产生。
本发明设计的一种双光路传感器模组,适用于基于光电容积脉搏波描记法采集人体生理信号。该模组包含底座以及安装在所述底座上的光电接收器和两个光源模块,所述两个光源模块对称设置在所述光电接收器的两侧,每个光源模块中包含至少两个波长的光源,所述底座上还设置有遮光部,并且所述遮光部包围所述光电接收器,在所述遮光部的顶端有开口,使得所述光源发出的光经过人体组织漫反射后,被所述光电接收器接收。
其中,每个光源模块中的波长短的光源更靠近所述光电接收器。
进一步的,遮光部由弹性材料制成。
本发明设计的双光路传感器模组能够更稳定地获取生理信号。该模组可以长时间连续脉搏波血氧饱和度、心率监测,具有较强的抗干扰能力,应用前景广阔。
图1为根据本发明的一个实施例的顶视图。
图2为根据本发明的一个实施例的前视图。
图3为该模组一个实施案例在皮肤表面的光路示意图。
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结 合附图及具体实施方式,进一步阐述本发明。
参照图1,根据本发明的一个实施例采用以下技术方案:一种双光路传感器模组,该模组包含一个光电接收器4和两对光源模块1和2,光源模块1和2和光电接收器4之间有遮光部3。所述的光源模块1和2至少包含两种波长的光源,分别为光源1和光源2,可根据需要,扩展光源。光源模块1和2中的光源1的波长小于光源2的波长,光源1距离光电接收管更近。扩展光源时,波长短的光源距离光电接收器更近。光源模块1和2位于光电接收器4的两侧,空间上对称,不同波长的光源经过组织漫反射后,到达光电接收器4。
图2显示了根据本发明的一个实施案例的前视图,遮光部3包围光电接收器4,在遮光部3的顶端有开口,光源模块1和2发出的光线无法直接进入光电接收器4。该设计可以有效避免漏光问题引入的干扰,遮光部3使两对光源模块1和2发出的光需要经过漫反射后才能到达光电接收器4。
图3显示了该模组一个实施案例在皮肤表面的光路示意图。光源1和光源2发出的光具有反射、投射和折射的性质,在本模组中,光源1产生有效光路以光路1为示例,光源2产生有效光路以光路2为示例,光子经由表皮、真皮和皮下组织漫反射后到达光电接收器4。光子无法直接穿透遮光部3直接到达光电接收器4。考虑到该模组放置在人体上使用,因此遮光部3可以由弹性材料制成。
本发明的达成的目的与功效由公式(1-1)表述,本发明设计的一种双光路传感器模组,光源模块1和2位于光电接收管4两侧,对称分布,光源1波长小于光源2的波长2。移位产生的干扰在一定程度上可以通过光路进行抑制。光源模块1和2与光电接收管4之间有遮光部3,可有效避免漏光问题引入的干扰。遮光部3不限于附图中所示,为了有效避免漏光问题引入的干扰,只要是能够遮挡光源直射到光电接收管的光线的结构都是可以的。
光源1和光源2距离光电接收管4的距离理论上可以通过以下方法介绍。将人体皮肤组织近似为半无限介质,对于距离入射点d远处检测到的漫反射光进行分析,建立xz坐标系,以入射点为原点,入射点与检测点连线为x轴,光垂直入射方向为z轴。入射点的坐标为(0,0,0),接收点的坐标为(d,0,0),在本文的研究中,LED发光管位于入射点坐标处,拟放置的接收点位于出射光处,坐标为(d,0,0)。根据曲线的定义,将z轴坐标值定义为x的函数z
0(x):
其中,μ
a为介质的吸收系数,μ
s为介质的约化散射系数。从式(1-3)中可以看出,径向距离的取值与皮肤穿透深度之间存在一定的关系。人体皮肤组织具有明显的分层结构的特性,从表到里分为三层:表皮层,真皮层和皮下组织层,由于在皮肤组织中,真皮层较厚,穿透真皮层进入皮下组织的近红外光衰减较大,能够返回的漫反射光能量可以近似忽略,假设稳态光传输的概率密度函数为ρ(ρ,z),表皮层,真皮层的厚度分别为dep
1,dep
2,可以得到对应各层的比例为:
假设光在各层介质中漫反射概率平均分布,d的平均值可以由(1-6)计算:
根据式(1-6)可以对径向距离的值有一个理论预判。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (3)
- 一种双光路传感器模组,用于基于光电容积脉搏波描记法采集人体生理信号,其特征在于,该模组包含底座以及安装在所述底座上的光电接收器和两个光源模块,所述两个光源模块对称设置在所述光电接收器的两侧,每个光源模块中包含至少两个波长的光源,所述底座上还设置有遮光部,并且所述遮光部包围所述光电接收器,在所述遮光部的顶端有开口,使得所述光源发出的光经过人体组织漫反射后,被所述光电接收器接收。
- 根据权利要求1所述的双光路传感器模组,其特征在于,每个光源模块中的波长短的光源更靠近所述光电接收器。
- 根据权利要求1所述的双光路传感器模组,其特征在于所述遮光部由弹性材料制成。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18798595.7A EP3808258A4 (en) | 2017-05-12 | 2018-06-06 | DUAL OPTICAL POSITION SENSOR MODULE |
US16/612,208 US20200085316A1 (en) | 2017-05-12 | 2018-06-06 | Dual Optical Path Sensor Module |
SG11201906110WA SG11201906110WA (en) | 2017-05-12 | 2018-06-06 | A dual optical path sensor module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710335747.6A CN108852309A (zh) | 2017-05-12 | 2017-05-12 | 一种双光路传感器模组 |
CN201710335747.6 | 2017-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018206014A1 true WO2018206014A1 (zh) | 2018-11-15 |
Family
ID=64105696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/090089 WO2018206014A1 (zh) | 2017-05-12 | 2018-06-06 | 一种双光路传感器模组 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200085316A1 (zh) |
EP (1) | EP3808258A4 (zh) |
CN (1) | CN108852309A (zh) |
SG (2) | SG10202112629YA (zh) |
WO (1) | WO2018206014A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110367946B (zh) * | 2019-08-28 | 2024-08-27 | 杭州兆观传感科技有限公司 | 一种可控阵列反射式光电传感器模组 |
US12048536B2 (en) * | 2021-07-12 | 2024-07-30 | Pixart Imaging Inc. | Optical data sensing device of biological information measuring device which can improve motion artifact issue |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201585990U (zh) | 2010-01-05 | 2010-09-22 | 秦皇岛市康泰医学系统有限公司 | 一种戒指形状数字式脉搏血氧仪 |
CN102961144A (zh) | 2011-08-16 | 2013-03-13 | 北京超思电子技术股份有限公司 | 脉搏血氧测量仪 |
CN204520642U (zh) | 2014-12-12 | 2015-08-05 | 江苏大学 | 一种双光路脉搏传感器 |
JP2016002167A (ja) * | 2014-06-16 | 2016-01-12 | ジーニアルライト株式会社 | 手首装着型パルスオキシメータ |
US20160220133A1 (en) * | 2015-02-04 | 2016-08-04 | Seiko Epson Corporation | Biological information measuring apparatus |
CN106308753A (zh) * | 2016-08-31 | 2017-01-11 | 马东阁 | 一种oled光检测设备 |
JP2017006183A (ja) * | 2015-06-17 | 2017-01-12 | パナソニックIpマネジメント株式会社 | 生体情報計測センサおよび生体情報計測用便座 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10607507B2 (en) * | 2015-11-24 | 2020-03-31 | Medibotics | Arcuate wearable device with a circumferential or annular array of spectroscopic sensors for measuring hydration level |
US9044149B2 (en) * | 2012-06-22 | 2015-06-02 | Fitbit, Inc. | Heart rate data collection |
JP6308294B2 (ja) * | 2014-04-14 | 2018-04-11 | 株式会社村田製作所 | 脈波伝播時間計測装置および生体状態推定装置 |
CN104173035A (zh) * | 2014-07-22 | 2014-12-03 | 北京工业大学 | 一种便携袖带式健康监测装置及其使用方法 |
CN207679431U (zh) * | 2017-05-12 | 2018-08-03 | 杭州兆观传感科技有限公司 | 一种双光路传感器模组 |
-
2017
- 2017-05-12 CN CN201710335747.6A patent/CN108852309A/zh active Pending
-
2018
- 2018-06-06 EP EP18798595.7A patent/EP3808258A4/en not_active Withdrawn
- 2018-06-06 WO PCT/CN2018/090089 patent/WO2018206014A1/zh unknown
- 2018-06-06 SG SG10202112629YA patent/SG10202112629YA/en unknown
- 2018-06-06 SG SG11201906110WA patent/SG11201906110WA/en unknown
- 2018-06-06 US US16/612,208 patent/US20200085316A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201585990U (zh) | 2010-01-05 | 2010-09-22 | 秦皇岛市康泰医学系统有限公司 | 一种戒指形状数字式脉搏血氧仪 |
CN102961144A (zh) | 2011-08-16 | 2013-03-13 | 北京超思电子技术股份有限公司 | 脉搏血氧测量仪 |
JP2016002167A (ja) * | 2014-06-16 | 2016-01-12 | ジーニアルライト株式会社 | 手首装着型パルスオキシメータ |
CN204520642U (zh) | 2014-12-12 | 2015-08-05 | 江苏大学 | 一种双光路脉搏传感器 |
US20160220133A1 (en) * | 2015-02-04 | 2016-08-04 | Seiko Epson Corporation | Biological information measuring apparatus |
JP2017006183A (ja) * | 2015-06-17 | 2017-01-12 | パナソニックIpマネジメント株式会社 | 生体情報計測センサおよび生体情報計測用便座 |
CN106308753A (zh) * | 2016-08-31 | 2017-01-11 | 马东阁 | 一种oled光检测设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3808258A4 |
Also Published As
Publication number | Publication date |
---|---|
CN108852309A (zh) | 2018-11-23 |
SG11201906110WA (en) | 2019-08-27 |
EP3808258A1 (en) | 2021-04-21 |
US20200085316A1 (en) | 2020-03-19 |
EP3808258A4 (en) | 2022-01-26 |
SG10202112629YA (en) | 2021-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220225886A1 (en) | Optical vital signs sensor | |
RU2653799C2 (ru) | Устройство и способ для извлечения физиологической информации | |
US11690513B2 (en) | Methods and system for multi-channel bio-optical sensing | |
KR102282822B1 (ko) | 휴대용 펄스 측정 디바이스 | |
EP3380002B1 (en) | Wearable device and system for acquiring physiological information of a subject | |
EP3946028B1 (en) | Ppg sensor having a high signal to noise ratio | |
CN109561843A (zh) | 用于监测对象的外围动脉灌注的设备、系统和方法 | |
CN103957793A (zh) | 测量装置、测量方法、程序和记录介质 | |
CN110367946B (zh) | 一种可控阵列反射式光电传感器模组 | |
CN110141197A (zh) | 带有显示屏的电子设备 | |
Yamakoshi et al. | Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose | |
Matsumura et al. | RGB and near-infrared light reflectance/transmittance photoplethysmography for measuring heart rate during motion | |
WO2018206014A1 (zh) | 一种双光路传感器模组 | |
JP2008099890A (ja) | 生体情報測定装置 | |
Mehrabi et al. | Design of a new reflectance pulse oximeter by obtaining the optimal source-detector space | |
US11259721B2 (en) | Method and device for detecting concentration of total hemoglobin in blood | |
CN204394527U (zh) | 脑血氧饱和度无创监测仪 | |
TWI409050B (zh) | Pulse sensing device | |
CN211484538U (zh) | 一种可控阵列反射式光电传感器模组 | |
CN207679431U (zh) | 一种双光路传感器模组 | |
EP3534775B1 (en) | Device for physiological parameter detection | |
TWI762167B (zh) | 用於計算血氧濃度的計算血氧濃度方法、電腦程式產品及電子裝置 | |
Chung et al. | Signal-enhancement reflective pulse oximeter with Fresnel lens | |
Matsushita et al. | Fundamental study of reflection pulse oximetry | |
Misran et al. | Optical Ray Tracing Simulation by Using Monte Carlo Method for Reflectance-based Photoplethysmography Sensor in Human Skin and Fingertip Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798595 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018798595 Country of ref document: EP Effective date: 20191212 |