WO2018198706A1 - Resin composition for thermally expandable fire resistant sheet, thermally expandable fire resistant sheet using same, and method for manufacturing same - Google Patents

Resin composition for thermally expandable fire resistant sheet, thermally expandable fire resistant sheet using same, and method for manufacturing same Download PDF

Info

Publication number
WO2018198706A1
WO2018198706A1 PCT/JP2018/014554 JP2018014554W WO2018198706A1 WO 2018198706 A1 WO2018198706 A1 WO 2018198706A1 JP 2018014554 W JP2018014554 W JP 2018014554W WO 2018198706 A1 WO2018198706 A1 WO 2018198706A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
heat
expandable fireproof
resin
thermally expandable
Prior art date
Application number
PCT/JP2018/014554
Other languages
French (fr)
Japanese (ja)
Inventor
顕士 坂本
ティン 田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019515198A priority Critical patent/JPWO2018198706A1/en
Publication of WO2018198706A1 publication Critical patent/WO2018198706A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • C09K21/04Inorganic materials containing phosphorus

Definitions

  • the present disclosure generally relates to a resin composition for a heat-expandable refractory sheet, a heat-expandable refractory sheet using the same, and a manufacturing method thereof, and more specifically, a heat-expandable refractory sheet used for forming a heat-expandable refractory resin layer.
  • the present invention relates to a resin composition for heat, a thermally expandable fireproof sheet using the same, and a method for producing the same.
  • Construction sites such as beams, columns, floors, walls, roofs, and stairs that require fireproof structures in buildings are mainly made of metal such as H steel and steel, or concrete.
  • steel columns and beams have been covered with a fireproof coating material for the purpose of improving fireproof performance.
  • a fireproof covering material spray rock wool is widely used, and the on-site wet spray method is the mainstream as its construction method.
  • on-site spraying of wet rock wool has problems in terms of hygiene and process because dust is generated during work and curing after spraying is necessary.
  • inorganic plate-shaped building materials with fire resistance performance mainly made of calcium silicate board or gypsum board
  • these inorganic plate-like building materials are fragile and heavy, so that they can be broken and cracked during transportation, and it is necessary to secure a place on the construction site. There was a problem.
  • Patent Document 1 discloses (1) a polyhydric alcohol, (2) a nitrogen-containing foaming agent, (3) a synthetic resin, (4) a flame retardant foaming agent, and (5) a foaming composition mainly composed of titanium dioxide.
  • Fire resistant paints have been proposed.
  • This foamable fire-resistant paint is such that (1) the polyhydric alcohol is arbitrarily selected from pentaerythritol, dipentaerythritol, tripentaerythritol and polypentaerythritol, and (4) the flame retardant foaming agent is phosphoric acid Ammonium and / or ammonium polyphosphate.
  • this foamable fireproof paint it is said that an excellent fireproof performance that can withstand a fireproof test of 45 minutes or more can be obtained by application of 2 mm thickness.
  • Patent Document 2 proposes an aqueous foam fire-resistant paint containing (A) a binder, (B) a carbonizing agent, (C) a flame retardant, and (D) a filler.
  • This water-based foam fire-resistant paint comprises: (A) a binder comprising (a-1) an isocyanate compound, (a-2) a compound having an active hydrogen group, (a-3) an acid, and (a-4) a chain extender. And an aqueous resin having an acid value in the range of 3 KOHmg / g or more and 100 KOHmg / g or less.
  • This water-based foam fireproof paint is said to be excellent in both storage stability and fireproof performance.
  • the foamable refractory paint of Patent Document 1 needs to be diluted with water prior to the application work to adjust the viscosity, and further applied to the substrate in order to cure the coating film by dilution with water. He needed to be cured for 21 days. Therefore, there is a problem that it takes too much time to cure the foamed fire-resistant paint film. Moreover, although it is excellent in fire resistance, examination about storage stability and coating workability
  • the water-based foam fire-resistant paint of Patent Document 2 includes (A) one of essential constituents obtained by reacting at least four types of compounds as a binder, and in order to cure the coating film, 7 days after application to the material was required. Further, with this water-based foam fire-resistant paint, fire resistance and storage stability are good, but examination of coating workability is not always sufficient.
  • the fire-resistant paint has a large influence on the fire-resistant performance due to the difference in the film thickness of the coating film.
  • the film thickness control of the coating film to be formed was a big problem on site construction.
  • fireproof paint or fireproof resin composition is applied to the target substrate in advance in the factory, or a fireproof sheet formed from the fireproof resin composition is prepared in advance. It has been proposed to attach to the surface of the construction site on site. Refractory sheets are easily used according to the shape of the construction site, and are widely used because they are lightweight and stretchable. Above all, in the heat-expandable fireproof sheet in which the heat-expandable fireproof resin is applied to the surface of the substrate, the heat-expandable fire-resistant resin layer burns and expands by heating, and the combustion residue forms a fireproof foam layer. It is preferably used because it can exhibit excellent fire resistance and heat insulation.
  • An object of the present disclosure is to provide a resin composition for a heat-expandable fire-resistant sheet having excellent fire resistance and having good storage stability and coating workability, a heat-expandable fire-resistant sheet using the same, and a method for producing the same It is to be.
  • a resin composition for a heat-expandable fireproof sheet includes a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foaming agent (C), and the plasticizer (B ) In which the powdery thermoplastic resin (A) and the nitrogen-containing foaming agent (C) are dispersed.
  • the thermally expandable fireproof sheet of one aspect according to the present disclosure includes a thermally expandable fireproof resin layer obtained by curing the plastisol of the resin composition for a thermally expandable fireproof sheet on one surface of a base material.
  • the resin composition for a thermally expandable fireproof sheet is applied to one surface of the substrate, and then cured by heating and cooling, The thermally expandable fireproof resin layer is formed.
  • the heat-expandable fireproof sheet resin composition of the present embodiment contains a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foaming agent (C), and the powder in the plasticizer (B).
  • the resin composition for a thermally expandable fireproof sheet of the present embodiment preferably further contains a phosphorus-based flame retardant (D) in addition to the components (A) to (C).
  • the resin composition for a heat-expandable fireproof sheet of the present embodiment further contains a carbonizing agent (E) in addition to the components (A) to (D).
  • the resin composition for a heat-expandable fireproof sheet of this embodiment further contains titanium dioxide (F) in addition to the components (A) to (E).
  • the powdery thermoplastic resin (A) in the resin composition for a heat-expandable fireproof sheet even when stored for a long time, It is difficult to separate from the plasticizer (B). Therefore, it becomes possible to provide a resin composition for a heat-expandable fireproof sheet that is excellent in storage stability and coating workability.
  • the powdery thermoplastic resin (A) is one of the main components of the resin composition for a thermally expandable fireproof sheet.
  • the powdery thermoplastic resin (A) is not particularly limited as long as it is a thermoplastic resin usually used for fireproof paints, but is preferably a polyvinyl chloride resin or an acrylic resin.
  • examples of the polyvinyl chloride resin include a homopolymer of vinyl chloride or vinylidene chloride, or a copolymer, that is, a copolymer of vinyl chloride and vinylidene chloride and other vinyl monomers. These can be used individually by 1 type or in combination of 2 or more types.
  • vinyl monomers copolymerized with vinyl chloride and vinylidene chloride include vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate, and vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether. Illustrated. Examples thereof include maleic acid esters such as diethyl maleate, fumaric acid esters such as dibutyl fumarate, and acrylic or methacrylic acid alkyl esters such as methyl acrylate, ethyl acrylate and 2-ethylhexyl acrylate. .
  • hydroxyalkyl esters of acrylic acid or methacrylic acid such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate are exemplified.
  • acrylic acid such as N-methylolacrylamide, N-methylolmethacrylamide, N-hydroxyethylacrylamide and N-dihydroxyethylmethacrylamide, hydroxyalkylamides of methacrylic acid, acrylonitrile and the like.
  • vinyl monomers can be used singly or in appropriate combination of two or more.
  • the polyvinyl chloride resin has an average molecular weight in the range of 500 or more and 2500 or less, preferably in the range of 650 or more and 1500 or less, from the viewpoint of exerting desired fire resistance. When the average molecular weight of the polyvinyl chloride resin is within the above range, the fire resistance is good.
  • the average molecular weight is measured by gel permeation chromatography (GPC) and is expressed in terms of standard polystyrene.
  • the acrylic resin examples include particles made of a polymer or copolymer of a monomer such as an alkyl ester of acrylic acid or methacrylic acid.
  • examples of these monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the particles having the core / shell structure are preferably used from the viewpoint of storage stability and coating workability. Moreover, it is used suitably also from the point of low temperature short-time curability.
  • the powdery thermoplastic resin (A) is dispersed in the plasticizer (B) in the form of a fine powder having a small average particle diameter when dispersed in the plasticizer (B) described later to form a plastisol.
  • the average particle diameter of the powdery thermoplastic resin (A) at this time is usually in the range of 0.1 ⁇ m to 100 ⁇ m, preferably in the range of 1 ⁇ m to 50 ⁇ m. If the average particle size of the powdered thermoplastic resin (A) is within the above range, the powdered thermoplastic resin (A) is uniformly dispersed in the resin composition for a thermally expandable fireproof sheet, And a smooth coating film can be formed on the surface of a base material and a construction site.
  • the average particle size of the powdered thermoplastic resin (A) is measured by a laser diffraction / scattering method.
  • the blending ratio of the powdery thermoplastic resin (A) is preferably in the range of 15 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending ratio is within the above range, the storage stability and the coating workability are good.
  • Plasticizer (B) is one of the main ingredients of the resin composition for a heat-expandable fireproof sheet, and is a component used for dissolving and dispersing the powdered thermoplastic resin (A).
  • the plasticizer (B) improves the application workability of the resin composition for a heat-expandable fireproof sheet, and is formed by curing the resin composition for a heat-expandable fireproof sheet. Can be softened to contribute to the formation of a fireproof foam layer during heating.
  • the plasticizer (B) is not particularly limited as long as it is usually used for fireproof paints, but any plasticizer generally used for forming plastisols can be used.
  • plasticizers such as dibutyl phthalate (DBP), dihexyl phthalate (DHP), di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate (DnOP) and diisooctyl phthalate (DIOP) Is exemplified.
  • Examples include didecyl phthalate (DDP), dinonyl phthalate (DNP), diisononyl phthalate (DINP), dimethyl phthalate (DMP), diethyl phthalate (DEP), and bis-2-ethylhexyl phthalate (DEHP). Further examples include diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), C6-C10 mixed higher alcohol phthalate, butyl benzyl phthalate (BBP), and octyl benzyl phthalate. Moreover, nonyl benzyl phthalate, dimethyl cyclohexyl phthalate (DMCHP), etc. are illustrated.
  • DDP didecyl phthalate
  • DNP dinonyl phthalate
  • DINP diisononyl phthalate
  • DMP dimethyl phthalate
  • DEP diethyl phthalate
  • DEHP bis-2-ethyl
  • linear dibasic acid esters such as dioctyl adipate (DOA), dioctyl azelate (DOZ), and dioctyl sebacate (DOS) are exemplified.
  • phosphate ester plastics such as tricresyl phosphate (TCP), trioctyl phosphate (TOF), trixylenyl phosphate (TXP), monooctyl diphenyl phosphate and monobutyl-dixylenyl phosphate (BZX) Agents are exemplified.
  • benzoate plasticizers such as tri- (2-ethylhexyl) trimellitate (TOTM), tri-n-octyl trimellitate, triisodecyl trimellitate and triisooctyl trimellitate are exemplified.
  • esters such as butyl phthalbutyl glycolate (BPBG), tributyl citrate ester, trioctyl acetyl citrate ester, trimet acid ester, citrate ester, sebacic acid ester and azelaic acid ester are exemplified.
  • esters such as tri- or tetraethylene glycol ester of maleic acid ester C6 to C10 fatty acid, alkylsulfonic acid ester and methylacetylricinoleate are exemplified.
  • epoxidized vegetable oils such as those obtained by epoxidizing double bonds of unsaturated fatty acid glycerides such as soybean oil with hydrogen peroxide or peracetic acid (ESBO), and epoxy compounds such as butyl or octyl alkyl oleates Is exemplified.
  • a viscous low-polymerization degree polyester plasticizer for example, adipic acid polyester having a mean molecular weight in the range of 500 to 8000, in which propylene glycol ester units of a dibasic acid such as adipic acid are linearly linked.
  • phthalic acid polyester These can be used individually by 1 type or in combination of 2 or more types.
  • the phthalate ester can uniformly disperse the powdered thermoplastic resin (A) and form a stable plastisol. From the viewpoint of fire resistance, coating workability, and storage stability, it is preferable to use diisononyl phthalate (DINP) and diundecyl phthalate (DUP) among phthalates.
  • DINP diisononyl phthalate
  • DUP diundecyl phthalate
  • the blending ratio of the plasticizer (B) is preferably within the range of 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet.
  • the blending ratio is within the above range, the storage stability is improved, and the ejection property during the coating operation by spray coating or the like becomes good. Therefore, a resin composition for a heat-expandable fireproof sheet excellent in application workability can be obtained.
  • the mixture ratio of a plasticizer (B) exceeds 40 mass parts, the mixture ratio of the powdery thermoplastic resin (A) in the resin composition for heat-expandable fireproof sheets will fall relatively, and is required. It is difficult to ensure a sufficient coating thickness. Furthermore, there is a possibility that the coating workability is lowered, for example, the viscosity of the paint is lowered and a paint flow occurs during the coating work.
  • Nitrogen-containing foaming agent (C) Nitrogen-containing foaming agent (C) generates flammable gases such as nitrogen and ammonia by decomposition by heating, and carbonizes plastisol and carbonizer (E) described later when carbonized when exposed to heat such as fire. It plays the role of expanding and foaming to form a fireproof foam layer. Further, it is used for the purpose of imparting toughness to the heat-expandable fireproof sheet and exhibiting followability to construction sites such as wall base materials.
  • the nitrogen-containing foaming agent (C) examples include melamine, melamine derivatives, dicyandiamide, azodicarbonamide, urea and guanidine.
  • the nitrogen-containing foaming agent (C) is preferably melamine or dicyandiamide, and more preferably melamine. These can be used alone or in combination of two or more.
  • the blending ratio of the nitrogen-containing foaming agent (C) is preferably in the range of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet.
  • the blending ratio is less than 5 parts by mass, it is difficult to form a sufficient fire-resistant foamed layer when exposed to heat such as fire, and the toughness of the molded sheet may be significantly impaired.
  • the blending ratio of the nitrogen-containing foaming agent (C) is more than 25 parts by mass, when exposed to heat such as a fire, the shape maintenance property of the combustion residue in the fireproof foam layer is impaired, and the fire resistance may be lowered. There is. Moreover, there exists a possibility that the storage stability of the resin composition for heat-expandable fireproof sheets may also be impaired.
  • Phosphorus flame retardant (D) The phosphorus-based flame retardant (D) acts as a catalyst when dehydrating the carbonizer (E) described later by heating and forming a thin film called char. Moreover, when a phosphorus flame retardant (D) is heated at a high temperature of 600 ° C. or higher, it reacts with titanium dioxide (F) described later to form titanium pyrophosphate. Titanium pyrophosphate remains in the fireproof foam layer as an ashing component, thereby improving the shape maintenance of the fireproof foam layer.
  • Examples of the phosphorus flame retardant (D) include phosphoric esters such as red phosphorus, triphenyl phosphate and tricresyl phosphate, and metal phosphates such as sodium phosphate and magnesium phosphate. .
  • Examples thereof include ammonium phosphate, salts or amides of phosphoric acid with an organic base such as melamine, and ammonium polyphosphates such as ammonium polyphosphate and melamine-modified ammonium polyphosphate.
  • ammonium polyphosphates such as ammonium polyphosphate and ammonium melamine-modified polyphosphate are preferred from the viewpoints of forming a fireproof foam layer and maintaining shape and long-term durability. These can be used alone or in combination of two or more.
  • ammonium polyphosphates When ammonium polyphosphates reach the decomposition temperature by heating, phosphoric acid and condensed phosphoric acid are generated by deamination such as deammonia. These phosphoric acid and condensed phosphoric acid act as a dehydration catalyst for organic matter, and carbonize the organic matter, resulting in char formation.
  • ammonia gas, nitrogen gas, and the like generated at that time act as a foaming agent to expand the entire resin composition for a thermally expandable refractory sheet and to suppress combustion by relatively reducing the oxygen concentration. be able to.
  • ammonium polyphosphates decompose when heated at a high temperature of 600 ° C. or more and react with titanium dioxide (F) described later to form titanium pyrophosphate. Titanium pyrophosphate remains in the fireproof foam layer as an ashing component, thereby improving the shape maintenance of the fireproof foam layer.
  • the blending ratio of the phosphorus-based flame retardant (D) is preferably in the range of 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet.
  • the blending ratio is less than 20 parts by mass, it becomes difficult to effectively carbonize and foam the thermally expandable resin composition for a refractory sheet, and it is also difficult to ensure the shape retention of the combustion residue in the refractory foam layer. Become.
  • the blending ratio is more than 50 parts by mass, there is a possibility that the coating workability is lowered.
  • Carbonizer (E) The carbonizing agent (E) is dehydrated and carbonized by the phosphorus compound contained in the phosphorus-based flame retardant (D) to form a fireproof foam layer.
  • a carbonizing temperature of 180 ° C. or higher, preferably 220 ° C. or higher can be suitably used.
  • a carbonizing agent (E) include polyhydric alcohols such as monopentaerythritol, dipentaerythritol and tripentaerythritol, polysaccharides such as starch and cellulose, and oligosaccharides such as glucose and fructose. Is done.
  • monopentaerythritol, dipentaerythritol, and tripentaerythritol are particularly preferably used from the viewpoint of foaming characteristics. These can be used alone or in combination of two or more.
  • the blending ratio of the carbonizing agent (E) is preferably in the range of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. If the blending ratio is less than 5 parts by mass, the formation of the fireproof foam layer becomes insufficient, and it becomes difficult to ensure the shape retention of the combustion residue. When the blending ratio is more than 25 parts by weight, the storage stability of the heat-expandable resin composition for a fireproof sheet may be impaired.
  • Titanium dioxide (F) When titanium dioxide (F) is heated at a high temperature of 600 ° C. or higher, it reacts with the phosphorus-based flame retardant (D) to form titanium pyrophosphate, and remains as an ashing component in the fireproof foam layer.
  • the shape maintenance property of a fireproof foaming layer can be improved.
  • Titanium dioxide (F) may be either anatase type or rutile type, and is not particularly limited.
  • the blending ratio of titanium dioxide (F) is preferably in the range of 5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet.
  • the blending amount is less than 5 parts by mass, the amount of titanium pyrophosphate remaining in the refractory foam layer as an ashing component when heated at a high temperature of 600 ° C. or more is reduced, and the shape of the combustion residue in the high temperature range is maintained. May become insufficient and fire resistance may be reduced.
  • the blending ratio is more than 30 parts by weight, the expansion ratio of the fireproof foam layer is lowered, and the fire resistance may be impaired.
  • operativity of the resin composition for heat-expandable fireproof sheets may also fall.
  • a tackifier, an inorganic filler, an antioxidant, a lubricant, and the like are added to the resin composition for a heat-expandable fireproof sheet as necessary, as long as the effects of the present embodiment are not impaired. Can do.
  • the tackifier is not particularly limited, and examples thereof include rosin resins, rosin derivatives, dammars, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, and cyclopentadiene resins.
  • aromatic petroleum resins phenol resins, alkylphenol-acetylene resins, styrene resins, xylene resins, coumarone-indene resins, vinyltoluene- ⁇ -methylstyrene copolymers and the like are exemplified.
  • inorganic fillers include inorganic salts such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, kaolin, clay, bentonite and talc, and oxidized inorganic substances such as glass flakes and wastonite.
  • inorganic fibers such as rock wool, glass fiber, carbon fiber, ceramic fiber, alumina fiber and silica fiber, and fine inorganic substances such as carbon and fumed silica.
  • antioxidants examples include an antioxidant containing a phenol compound, an antioxidant containing a sulfur atom, and an antioxidant containing a phosphite compound.
  • Examples of the lubricant include waxes such as polyethylene, paraffin and montanic acid, waxes such as tall oil, sub-oil, beeswax, carnauba wax and lanolin, ester waxes, and stearic acid, palmitic acid and ricinoleic acid.
  • Examples include organic acids.
  • Examples thereof include organic alcohols such as stearyl alcohol and amide compounds such as dimethylbisamide.
  • Each of the above components (A) to (C), the components (D) to (F), and other components are uniformly mixed by a conventionally known method, so that the resin for the thermally expandable fireproof sheet of the present embodiment is used. A composition is obtained.
  • the heat-expandable refractory sheet includes a heat-expandable refractory resin layer obtained by curing the plastisol of the resin composition for a heat-expandable refractory sheet on one surface of the substrate.
  • the substrate is preferably paper or non-woven fabric.
  • the base material itself is a flame retardant material
  • glass fiber chop strands, glass fiber sheets, glass paper, and the like are preferably used.
  • the basis weight is, for example, in the range of 10 g / m 2 or more and 100 g / m 2 or less, and preferably in the range of 30 g / m 2 or more and 60 g / m 2 or less.
  • the method for producing a heat-expandable fireproof sheet is obtained by applying the plastisol of the resin composition for a heat-expandable fireproof sheet to one surface of the base material, and then heating and cooling the plastisol to cure the heat-expandable material. A refractory resin layer is formed.
  • the coating method of the resin composition for a heat-expandable fireproof sheet is not particularly limited, a conventionally known coating method can be applied. Examples include air spray method, dipping method, curtain coater method, method using brush, method using dispenser, potting method, screen printing, transfer molding and injection molding.
  • the resin composition for a heat-expandable fireproof sheet is in a plastisol state, the resin composition for a heat-expandable fireproof sheet in the resin composition for a heat-expandable fireproof sheet is plasticized even when stored for a long time.
  • the agent (B) is difficult to separate and is uniformly dispersed. Therefore, even if any of the application methods as described above is applied, it is excellent in application workability and can be applied uniformly to the substrate.
  • the plastisol When curing the plastisol of the resin composition for a heat-expandable fireproof sheet, the plastisol must be once gelled by heating and then cooled.
  • the heating condition include heating at a temperature in the range of 70 ° C. to 180 ° C. for 30 seconds to 30 minutes. Such heating can be appropriately performed using, for example, a hot plate or a heat dryer.
  • the thermally expandable fireproof sheet has at least one layer selected from the group consisting of an inorganic layer, an organic layer, and a metal layer on the other surface of the substrate.
  • the inorganic layer, the organic layer, and the metal layer can be laminated with the base material in advance, and then the thermally expandable fireproof sheet resin composition can be applied to one surface of the base material. Moreover, after apply
  • the order in which the inorganic layer, the organic layer, and the metal layer are laminated and the thickness of each layer are not limited, and can be appropriately selected according to the construction site and purpose of the building.
  • inorganic fibers such as rock wool, glass wool, ceramic wool, and glass fiber sheet can be used.
  • a glass fiber sheet it is preferable to use glass paper, and the weight per unit area is, for example, in the range of 10 g / m 2 or more and 100 g / m 2 or less, and preferably 30 g / m 2 or more. It is exemplified that it is within the range of 60 g / m 2 or less.
  • the strength of the thermally expandable refractory sheet itself is improved.
  • the fixing strength when the sheet is fixed using a fixing tool such as a tucker is also improved.
  • the expandable refractory sheet is fixed using a fixing tool such as a tucker, it can expand and foam by the flame, and the fall-off prevention property of the formed refractory foam layer can be improved.
  • organic layer examples include polyolefin resins such as polyethylene resin and polypropylene resin, polystyrene resins, and ether resins such as polyester resins, polyurethane resins and polyamide resins. Further, unsaturated ester resins, copolymer resins such as ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer and styrene-butadiene copolymer are exemplified.
  • the shape of such an organic layer is not particularly limited, and examples thereof include shapes such as films and nonwoven fabrics.
  • the metal layer examples include iron, steel, stainless steel, galvanized steel, aluminum zinc alloy plated steel, and aluminum.
  • a shape of such a metal layer For example, shapes, such as a metal plate and metal foil, can be illustrated. Among these, aluminum foil can be suitably used from the viewpoint of handleability.
  • These inorganic layers, organic layers, and metal layers may be supplied and laminated in a batch manner to the base material, or may be supplied continuously.
  • the inorganic layer, the organic layer and the metal layer with the base material and the resin composition for a heat-expandable refractory sheet there is a particular limitation as long as it is a normal method and conditions for molding a resin molded body Not.
  • the plastisol of the resin composition for a heat-expandable fireproof sheet is cured, it is exemplified that it is stacked on top or bottom and simultaneously heated and pressurized.
  • the thickness of the thermally expandable fireproof resin layer in the thermally expandable fireproof sheet after curing is not particularly limited, but can be appropriately changed according to the type of the substrate, for example, 0.1 mm or more and 5.0 mm or less. Is preferably within the range of 0.3 mm to 3.0 mm.
  • a wall base material is preferable, and the wall base material is particularly limited as long as it has a certain strength as a face material itself. It will never be done. Examples include slate plates, ceramic plates, ALC, concrete plates, various cement plates, calcium silicate plates, hydrous inorganic material-containing boards, gypsum boards, and wood chip cement boards. In addition, wood boards such as plywood, OSB, particle board, CLT, and laminated wood are exemplified.
  • the heat-expandable fireproof sheet is used by being fixed to the wall base material with a fixture.
  • the fixing tool include a tapping screw and a tucker.
  • a fireproof board such as a calcium silicate plate and a gypsum board to the surface of the thermally expandable fireproof sheet fixed to the wall base material.
  • the resin composition for a thermally expandable fireproof sheet includes a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foam. It is a plastisol which contains the agent (C) and in which the powdery thermoplastic resin (A) and the nitrogen-containing foaming agent (C) are dispersed in the plasticizer (B).
  • thermoforming a heat-expandable resin composition for a fire-resistant sheet having excellent fire resistance and having good storage stability and coating workability.
  • the resin composition for a thermally expandable fireproof sheet according to the second aspect of the present disclosure further contains a phosphorus-based flame retardant (D) in the first aspect.
  • the second aspect it can act as a catalyst when a thin film called char is formed by heating.
  • the resin composition for a thermally expandable fireproof sheet according to the third aspect of the present disclosure further contains a carbonizing agent (E) in the first or second aspect.
  • dehydration and carbonization can be performed to form a fireproof foam layer.
  • the resin composition for a thermally expandable fireproof sheet according to the fourth aspect of the present disclosure further contains titanium dioxide (F) in any one of the first to third aspects.
  • the shape maintenance property of a fireproof foaming layer can be improved.
  • the powdery thermoplastic resin (A) is a polyvinyl chloride resin or an acrylic resin. is there.
  • fire resistance can be improved.
  • the nitrogen-containing foaming agent (C) is melamine.
  • the sixth aspect it is possible to improve the generation efficiency of nonflammable gas, the followability to the construction site, and the fire resistance.
  • the heat-expandable fireproof sheet according to the seventh aspect of the present disclosure includes a heat-expandable fireproof resin layer obtained by curing a plastisol of the resin composition for a heat-expandable fireproof sheet according to any one of the first to sixth aspects.
  • the heat-expandable refractory resin layer when heated, is foamed to form a refractory foamed layer, thereby exhibiting fire resistance.
  • the base material is paper or non-woven fabric.
  • the eighth aspect it is easy to form into a sheet shape and easy to attach to the surface of the construction site of the building.
  • At least one layer selected from the group consisting of an inorganic layer, an organic layer, and a metal layer is provided on the other surface of the base material.
  • the resin composition for a thermally expandable fireproof sheet according to any one of the first to sixth aspects is applied to one surface of a substrate. Then, it is cured by heating and cooling to form a thermally expandable refractory resin layer.
  • Example 1 As powdered thermoplastic resin (A), 25 parts by mass of acrylic resin (LP-3106, manufactured by Mitsubishi Chemical Corporation) and as plasticizer (B), 25 parts by mass of diisononyl phthalate (DINP, manufactured by Shin Nippon Rika Co., Ltd.) As nitrogen blowing agent (C), 12 parts by mass of melamine (manufactured by Nissan Chemical Industries), as phosphorus-based flame retardant (D), 33 parts by mass of ammonium polyphosphate (AP422, manufactured by Clariant Japan), as carbonizer (E) , 13 parts by mass of pentaerythritol (dipentalit, manufactured by Koei Chemical Co., Ltd.), titanium dioxide (F) as TR92 (average particle size 0.24 ⁇ m, manufactured by Huntsman) 14 parts by mass, 0.5 parts by mass of antifoaming agent, A dispersant was blended at a ratio of 2.5 parts by mass, and this was uniformly mixed to obtain a resin composition for a thermally expandable fireproof sheet in a
  • the obtained resin composition for a heat-expandable fireproof sheet was applied to a glass paper (manufactured by Oji F-Tech Co., Ltd.) having a basis weight of 50 g / m 2 with a brush so as to have a predetermined film thickness. It was cured by heating for 5 minutes with the set hot press machine to obtain a thermally expandable fireproof sheet.
  • the thickness of the thermally expandable fireproof resin layer in the thermally expandable fireproof sheet after curing was 1.0 mm.
  • a thermally expandable refractory sheet is placed so that the glass paper side surface of the thermally expandable refractory sheet is in contact with the calcium silicate plate surface. Fixed with. Furthermore, a stud is installed so that a 20 mm gap is formed between the surface of the thermally expandable refractory sheet fixed to the calcium silicate plate surface and the surface material, and a 12 mm thick calcium silicate plate is attached as the surface material.
  • a test body was prepared.
  • Example 2 Tested in the same manner as in Example 1 except that 25 parts by mass of polyvinyl chloride resin (PSL-675, average molecular weight 900, manufactured by Kaneka Corporation) was used as the powdery thermoplastic resin (A) instead of acrylic resin. The body was made.
  • PSL-675 polyvinyl chloride resin
  • A powdery thermoplastic resin
  • Example 3 As a powdered thermoplastic resin (A), 25 parts by mass of a polyvinyl chloride resin is used instead of an acrylic resin, and as a plasticizer (B), 25 parts by mass of diundecyl phthalate (DUP, Shin Nippon Rika Co., Ltd.) instead of DINP A test specimen was prepared in the same manner as in Example 1 except that was used.
  • a powdered thermoplastic resin 25 parts by mass of a polyvinyl chloride resin is used instead of an acrylic resin, and as a plasticizer (B), 25 parts by mass of diundecyl phthalate (DUP, Shin Nippon Rika Co., Ltd.) instead of DINP
  • DUP diundecyl phthalate
  • Example 4 The powdered thermoplastic resin (A) is changed to 18 parts by mass, DUP is used as a plasticizer (B) in place of 10 parts by mass, and the nitrogen-containing foaming agent (C) is changed to 14 parts by mass. Other than using 28 parts by mass of ammonium polyphosphate and 6 parts by mass of aluminum phosphite (APA-100, manufactured by Taihei Chemical Industrial Co., Ltd.) as the flame retardant (D), and changing the carbonizer (E) to 17 parts by mass Were prepared in the same manner as in Example 1.
  • Example 5 As a powdered thermoplastic resin (A), 20 parts by mass of an acrylic resin and 10 parts by mass of a polyvinyl chloride resin are used in combination. As a plasticizer (B), 40 parts by mass of DUP is used instead of DINP, and a phosphorus flame retardant (D ) was changed to 30 parts by mass, and titanium dioxide (F) was changed to 12 parts by mass.
  • A powdered thermoplastic resin
  • B plasticizer
  • D phosphorus flame retardant
  • F titanium dioxide
  • Example 6 A test specimen was prepared in the same manner as in Example 1 except that 8 parts by mass of melamine and 4 parts by mass of dicyandiamide (DICY7, manufactured by Mitsubishi Chemical Corporation) were used in combination as the nitrogen-containing foaming agent (C).
  • Example 1 A test specimen was prepared in the same manner as in Example 1 except that 12 parts by mass of P-5 (manufactured by Otsuka Chemical Co., Ltd.) was used as the inorganic foaming agent instead of the nitrogen-containing foaming agent (C).
  • P-5 manufactured by Otsuka Chemical Co., Ltd.
  • test specimens of Examples 1 to 6 and Comparative Example 1 were evaluated for fire resistance, storage stability, and coating workability, respectively.
  • the criteria for evaluation are as follows.
  • ⁇ Fire resistance> In accordance with the standard heating curve of JIS A1304, one surface of the test body was heated in an electric furnace, and the temperature of the surface opposite to the heating surface after 1 hour of the test was measured with a thermocouple. The evaluation criteria are shown below.
  • the temperature of the surface opposite to the heating surface of the specimen is within a range of 162 ° C. or less from the initial heating to 1 hour later.
  • the temperature of the surface opposite to the heating surface of the specimen is over 162 ° C. from the beginning of heating.
  • the resin composition for a heat-expandable fireproof sheet is not solidified, and the rate of increase in viscosity is less than 50%.
  • the viscosity increase rate is 50% or more.
  • the resin composition for a heat-expandable fireproof sheet is uniformly and sufficiently applied to paper.
  • the resin composition for a heat-expandable fireproof sheet is discharged in a dusty manner on paper and is not evenly and sufficiently applied.
  • Example 1-6 As shown in Table 1, it was confirmed that the specimens of Example 1-6 were good in any of fire resistance, storage stability and coating workability.
  • Comparative Example 1 in which an inorganic foaming agent was blended instead of the nitrogen-containing foaming agent (C), the storage stability and coating workability were good, but the fire resistance evaluation was not good, and the examples It was confirmed to be inferior.

Abstract

Provided is a plastisol which comprises a thermoplastic resin powder (A), a plasticizing agent (B), and a nitrogen-containing foaming agent (C), wherein the thermoplastic resin powder (A) and the nitrogen-containing foaming agent (C) are dispersed in the plasticizing agent (B).

Description

熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法Resin composition for heat-expandable fireproof sheet, heat-expandable fireproof sheet using the same, and method for producing the same
 本開示は、一般に熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法に関し、より詳細には熱膨張性耐火樹脂層の形成に用いられる熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法に関する。 The present disclosure generally relates to a resin composition for a heat-expandable refractory sheet, a heat-expandable refractory sheet using the same, and a manufacturing method thereof, and more specifically, a heat-expandable refractory sheet used for forming a heat-expandable refractory resin layer. The present invention relates to a resin composition for heat, a thermally expandable fireproof sheet using the same, and a method for producing the same.
 建築物において耐火構造が必要とされる梁、柱、床、壁、屋根及び階段等の施工部位は、主にH鋼及び鉄骨等の金属又はコンクリートで形成されている。従来、これらの施工部位において、耐火性能を高める目的で、鉄骨柱及び梁を耐火被覆材で被覆することが行われてきた。このような耐火被覆材としては、吹付けロックウールが広く用いられており、その施工方法としては、現場での湿式吹付け工法が主流である。しかしながら、湿式のロックウールの現場吹付けは、作業時における粉塵が発生すること、及び、吹付け後の養生が必要であることから衛生面及び工程面に課題があった。 Construction sites such as beams, columns, floors, walls, roofs, and stairs that require fireproof structures in buildings are mainly made of metal such as H steel and steel, or concrete. Conventionally, in these construction sites, steel columns and beams have been covered with a fireproof coating material for the purpose of improving fireproof performance. As such a fireproof covering material, spray rock wool is widely used, and the on-site wet spray method is the mainstream as its construction method. However, on-site spraying of wet rock wool has problems in terms of hygiene and process because dust is generated during work and curing after spraying is necessary.
 一方、建築物の屋内の壁及び天井等の施工部位では、耐火性能を高めるためにけい酸カルシウム板又は石膏ボード等を主原料とした耐火性能を有する無機系の板状建材が使用される場合もある。ただ、これらの無機系の板状建材は脆く、重量物であるため、運搬時に割れ及びヒビといった破損が生じたり、施工現場での置き場所を確保する必要があるなど、可搬性及び施工性に課題があった。 On the other hand, in construction sites such as indoor walls and ceilings of buildings, inorganic plate-shaped building materials with fire resistance performance, mainly made of calcium silicate board or gypsum board, are used to enhance fire resistance performance. There is also. However, these inorganic plate-like building materials are fragile and heavy, so that they can be broken and cracked during transportation, and it is necessary to secure a place on the construction site. There was a problem.
 このような課題を解決する手段として、これまでに様々な耐火塗料が提案されている。 Various fireproof paints have been proposed as means for solving such problems.
 例えば、特許文献1には、(1)多価アルコール、(2)含窒素発泡剤、(3)合成樹脂、(4)難燃性発泡剤及び(5)二酸化チタンを主成分とする発泡性耐火塗料が提案されている。この発泡性耐火塗料は、(1)多価アルコールが、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール及びポリペンタエリスリトールから任意に選択されるものであり、(4)難燃性発泡剤がリン酸アンモニウム及び/又はポリリン酸アンモニウムである。この発泡性耐火塗料では、2mm厚の塗布により45分間以上の耐火試験に耐えうる優れた耐火性能が得られるとされている。 For example, Patent Document 1 discloses (1) a polyhydric alcohol, (2) a nitrogen-containing foaming agent, (3) a synthetic resin, (4) a flame retardant foaming agent, and (5) a foaming composition mainly composed of titanium dioxide. Fire resistant paints have been proposed. This foamable fire-resistant paint is such that (1) the polyhydric alcohol is arbitrarily selected from pentaerythritol, dipentaerythritol, tripentaerythritol and polypentaerythritol, and (4) the flame retardant foaming agent is phosphoric acid Ammonium and / or ammonium polyphosphate. In this foamable fireproof paint, it is said that an excellent fireproof performance that can withstand a fireproof test of 45 minutes or more can be obtained by application of 2 mm thickness.
 また、特許文献2には、(A)結合材、(B)炭化剤、(C)難燃剤及び(D)充填材を含む水性発泡性耐火塗料が提案されている。この水性発泡性耐火塗料は、(A)結合材が、(a-1)イソシアネート化合物、(a-2)活性水素基を有する化合物、(a-3)酸及び(a-4)鎖延長剤を反応させて得られ、酸価が3KOHmg/g以上100KOHmg/g以下の範囲内である水性樹脂を含有している。この水性発泡性耐火塗料では、貯蔵安定性と耐火性能との両方に優れているとされている。 Further, Patent Document 2 proposes an aqueous foam fire-resistant paint containing (A) a binder, (B) a carbonizing agent, (C) a flame retardant, and (D) a filler. This water-based foam fire-resistant paint comprises: (A) a binder comprising (a-1) an isocyanate compound, (a-2) a compound having an active hydrogen group, (a-3) an acid, and (a-4) a chain extender. And an aqueous resin having an acid value in the range of 3 KOHmg / g or more and 100 KOHmg / g or less. This water-based foam fireproof paint is said to be excellent in both storage stability and fireproof performance.
 しかしながら、特許文献1の発泡性耐火塗料は、塗布作業に先立って水で希釈して粘度調整する必要があり、しかも水で希釈したことにより、塗膜を硬化させるために、基材に塗布した後21日間養生する必要があった。そのため、発泡性耐火塗料の塗膜を硬化させるまでにあまりに時間がかかるという問題があった。また、耐火性には優れているが、貯蔵安定性及び塗布作業性についての検討が必ずしも十分ではなかった。 However, the foamable refractory paint of Patent Document 1 needs to be diluted with water prior to the application work to adjust the viscosity, and further applied to the substrate in order to cure the coating film by dilution with water. He needed to be cured for 21 days. Therefore, there is a problem that it takes too much time to cure the foamed fire-resistant paint film. Moreover, although it is excellent in fire resistance, examination about storage stability and coating workability | operativity was not necessarily enough.
 また、特許文献2の水性発泡性耐火塗料は、(A)結合材として少なくとも4種の化合物を反応させたものを必須の構成成分の一つとしており、しかも塗膜を硬化させるために、基材に塗布した後7日間の養生が必要であった。また、この水性発泡性耐火塗料では、耐火性と貯蔵安定性とは良好であるが、塗布作業性についての検討が必ずしも十分ではなかった。 In addition, the water-based foam fire-resistant paint of Patent Document 2 includes (A) one of essential constituents obtained by reacting at least four types of compounds as a binder, and in order to cure the coating film, 7 days after application to the material was required. Further, with this water-based foam fire-resistant paint, fire resistance and storage stability are good, but examination of coating workability is not always sufficient.
 上記のとおり、耐火塗料は、塗膜の膜厚の違いが耐火性能に大きく影響することが知られており、施工部位及び基材に均一に塗付すること、すなわち耐火塗料の塗布作業性と形成される塗膜の膜厚管理とが、現場施工上の大きな課題であった。 As described above, it is known that the fire-resistant paint has a large influence on the fire-resistant performance due to the difference in the film thickness of the coating film. The film thickness control of the coating film to be formed was a big problem on site construction.
 そこで、これまでに、現場施工ではなく、事前に工場内で耐火塗料あるいは耐火樹脂組成物を対象基材に塗布したり、耐火樹脂組成物をシート状に成形した耐火シートをあらかじめ作製し、施工現場にて施工部位の表面に取り付けることが提案されている。耐火シートは、施工部位の形状に合わせて加工することが容易であり、しかも軽量で伸縮性を有していることから、現在では広く用いられている。中でも、熱膨張性耐火樹脂が基材の表面に塗布されてなる熱膨張性耐火シートでは、熱膨張性耐火樹脂層が加熱により燃焼、膨張して生じる燃焼残渣が耐火発泡層を形成することで、優れた耐火性及び断熱性を発現することができるため、好適に用いられている。 So far, instead of on-site construction, fireproof paint or fireproof resin composition is applied to the target substrate in advance in the factory, or a fireproof sheet formed from the fireproof resin composition is prepared in advance. It has been proposed to attach to the surface of the construction site on site. Refractory sheets are easily used according to the shape of the construction site, and are widely used because they are lightweight and stretchable. Above all, in the heat-expandable fireproof sheet in which the heat-expandable fireproof resin is applied to the surface of the substrate, the heat-expandable fire-resistant resin layer burns and expands by heating, and the combustion residue forms a fireproof foam layer. It is preferably used because it can exhibit excellent fire resistance and heat insulation.
特開2001-40290号公報JP 2001-40290 A 特開2008-144130号公報JP 2008-144130 A
 本開示の目的は、優れた耐火性を有し、しかも貯蔵安定性及び塗布作業性が良好な熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法を提供することである。 An object of the present disclosure is to provide a resin composition for a heat-expandable fire-resistant sheet having excellent fire resistance and having good storage stability and coating workability, a heat-expandable fire-resistant sheet using the same, and a method for producing the same It is to be.
 本開示に係る一態様の熱膨張性耐火シート用樹脂組成物は、粉末状の熱可塑性樹脂(A)、可塑剤(B)及び含窒素発泡剤(C)を含有し、前記可塑剤(B)中に前記粉末状の熱可塑性樹脂(A)及び前記含窒素発泡剤(C)が分散しているプラスチゾルである。 A resin composition for a heat-expandable fireproof sheet according to an aspect of the present disclosure includes a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foaming agent (C), and the plasticizer (B ) In which the powdery thermoplastic resin (A) and the nitrogen-containing foaming agent (C) are dispersed.
 本開示に係る一態様の熱膨張性耐火シートは、基材の一方の面に、前記熱膨張性耐火シート用樹脂組成物のプラスチゾルが硬化した熱膨張性耐火樹脂層を備える。 The thermally expandable fireproof sheet of one aspect according to the present disclosure includes a thermally expandable fireproof resin layer obtained by curing the plastisol of the resin composition for a thermally expandable fireproof sheet on one surface of a base material.
 本開示に係る一態様の熱膨張性耐火シートの製造方法は、前記熱膨張性耐火シート用樹脂組成物を、前記基材の一方の面に塗布した後、加熱及び冷却して硬化させて、前記熱膨張性耐火樹脂層を形成する。 In the method for producing a thermally expandable fireproof sheet according to an aspect of the present disclosure, the resin composition for a thermally expandable fireproof sheet is applied to one surface of the substrate, and then cured by heating and cooling, The thermally expandable fireproof resin layer is formed.
 本実施形態の熱膨張性耐火シート用樹脂組成物は、粉末状の熱可塑性樹脂(A)、可塑剤(B)及び含窒素発泡剤(C)を含有し、可塑剤(B)中に粉末状の熱可塑性樹脂(A)及び含窒素発泡剤(C)が分散しているプラスチゾルである。 The heat-expandable fireproof sheet resin composition of the present embodiment contains a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foaming agent (C), and the powder in the plasticizer (B). A plastisol in which a thermoplastic resin (A) and a nitrogen-containing foaming agent (C) are dispersed.
 本実施形態の熱膨張性耐火シート用樹脂組成物では、上記の各成分(A)~(C)に加えて、リン系難燃剤(D)を更に含有することが好ましい。 The resin composition for a thermally expandable fireproof sheet of the present embodiment preferably further contains a phosphorus-based flame retardant (D) in addition to the components (A) to (C).
 また、本実施形態の熱膨張性耐火シート用樹脂組成物では、上記の各成分(A)~(D)に加えて、炭化剤(E)を更に含有することが好ましい。 In addition, it is preferable that the resin composition for a heat-expandable fireproof sheet of the present embodiment further contains a carbonizing agent (E) in addition to the components (A) to (D).
 さらに本実施形態の熱膨張性耐火シート用樹脂組成物では、上記の各成分(A)~(E)に加えて、二酸化チタン(F)を更に含有することが好ましい。 Furthermore, it is preferable that the resin composition for a heat-expandable fireproof sheet of this embodiment further contains titanium dioxide (F) in addition to the components (A) to (E).
 このような熱膨張性耐火シート用樹脂組成物では、プラスチゾルを用いることにより、熱膨張性耐火シート用樹脂組成物を調製する際の混練が容易又は不要となるので、調製時における含窒素発泡剤(C)の発泡によるロスを抑制することができる。そのため、熱膨張性耐火シート用樹脂組成物を基材及び施工部位に塗布し、加熱した際に、熱膨張性耐火樹脂層を発泡させて耐火発泡層を形成することにより所期の耐火性を発揮させることができる。さらに、この熱膨張性耐火シート用樹脂組成物では、プラスチゾルを用いることにより、長期貯蔵した場合であっても、熱膨張性耐火シート用樹脂組成物中において粉末状の熱可塑性樹脂(A)と可塑剤(B)とが分離しにくい。そのため、貯蔵安定性及び塗布作業性に優れた熱膨張性耐火シート用樹脂組成物を提供することが可能となる。 In such a resin composition for a heat-expandable fireproof sheet, by using plastisol, kneading at the time of preparing a resin composition for a heat-expandable fireproof sheet becomes easy or unnecessary. Loss due to foaming of (C) can be suppressed. Therefore, when the resin composition for a heat-expandable fireproof sheet is applied to the base material and the construction site and heated, the heat-expandable fireproof resin layer is foamed to form the fireproof foam layer, thereby achieving the desired fire resistance. It can be demonstrated. Further, in the resin composition for a heat-expandable fireproof sheet, by using a plastisol, the powdery thermoplastic resin (A) in the resin composition for a heat-expandable fireproof sheet, even when stored for a long time, It is difficult to separate from the plasticizer (B). Therefore, it becomes possible to provide a resin composition for a heat-expandable fireproof sheet that is excellent in storage stability and coating workability.
 以下に、熱膨張性耐火シート用樹脂組成物の各成分について、具体的に説明する。 Hereinafter, each component of the resin composition for a heat-expandable fireproof sheet will be specifically described.
 1.粉末状の熱可塑性樹脂(A)
 粉末状の熱可塑性樹脂(A)は、熱膨張性耐火シート用樹脂組成物の主剤の一つである。粉末状の熱可塑性樹脂(A)としては、耐火塗料に通常用いられる熱可塑性樹脂であれば特に制限されることはないが、ポリ塩化ビニル樹脂又はアクリル樹脂であることが好ましい。これらの粉末状の熱可塑性樹脂(A)の製造については、プラスチゾルとして使用可能なものであれば、特に制限されることはなく、従来公知のものを使用することができる。
1. Powdered thermoplastic resin (A)
The powdery thermoplastic resin (A) is one of the main components of the resin composition for a thermally expandable fireproof sheet. The powdery thermoplastic resin (A) is not particularly limited as long as it is a thermoplastic resin usually used for fireproof paints, but is preferably a polyvinyl chloride resin or an acrylic resin. About manufacture of these powdery thermoplastic resins (A), if it can be used as a plastisol, it will not restrict | limit in particular, A conventionally well-known thing can be used.
 例えば、ポリ塩化ビニル樹脂としては、塩化ビニル若しくは塩化ビニリデンの単独重合体、又は、共重合体、すなわち、塩化ビニル及び塩化ビニリデンと他のビニル系単量体との共重合体が例示される。これらは1種単独又は2種以上を適宜組み合わせて使用することができる。 For example, examples of the polyvinyl chloride resin include a homopolymer of vinyl chloride or vinylidene chloride, or a copolymer, that is, a copolymer of vinyl chloride and vinylidene chloride and other vinyl monomers. These can be used individually by 1 type or in combination of 2 or more types.
 塩化ビニル及び塩化ビニリデンと共重合させるビニル系単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル及びステアリン酸ビニル等のビニルエステル類、並びに、ビニルメチルエーテル及びビニルイソブチルエーテル等のビニルエーテル類等が例示される。また、ジエチルマレエート等のマレイン酸エステル類、ジブチルフマレート等のフマル酸エステル類、並びに、メチルアクリレート、エチルアクリレート及び2-エチルヘキシルアクリレート等のアクリル酸又はメタクリル酸のアルキルエステル類等が例示される。さらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート及びヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸のヒドロキシアルキルエステル類等が例示される。また、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N-ヒドロキシエチルアクリルアミド及びN-ジヒドロキシエチルメタクリルアミド等のアクリル酸又はメタクリル酸のヒドロキシアルキルアミド類、アクリロニトリル等が例示される。このようなビニル系単量体は、1種単独又は2種以上を適宜組み合わせて使用することができる。 Examples of vinyl monomers copolymerized with vinyl chloride and vinylidene chloride include vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate, and vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether. Illustrated. Examples thereof include maleic acid esters such as diethyl maleate, fumaric acid esters such as dibutyl fumarate, and acrylic or methacrylic acid alkyl esters such as methyl acrylate, ethyl acrylate and 2-ethylhexyl acrylate. . Further, hydroxyalkyl esters of acrylic acid or methacrylic acid such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate are exemplified. Examples also include acrylic acid such as N-methylolacrylamide, N-methylolmethacrylamide, N-hydroxyethylacrylamide and N-dihydroxyethylmethacrylamide, hydroxyalkylamides of methacrylic acid, acrylonitrile and the like. Such vinyl monomers can be used singly or in appropriate combination of two or more.
 ポリ塩化ビニル樹脂は、所望の耐火性を発揮させる観点から、平均分子量が500以上2500以下の範囲内であって、好ましくは、650以上1500以下の範囲内であることが例示される。ポリ塩化ビニル樹脂の平均分子量が上記の範囲内であれば、耐火性が良好となる。なお、平均分子量はゲル浸透クロマトグラフィー(GPC)により測定され、標準ポリスチレン換算で表される。 The polyvinyl chloride resin has an average molecular weight in the range of 500 or more and 2500 or less, preferably in the range of 650 or more and 1500 or less, from the viewpoint of exerting desired fire resistance. When the average molecular weight of the polyvinyl chloride resin is within the above range, the fire resistance is good. The average molecular weight is measured by gel permeation chromatography (GPC) and is expressed in terms of standard polystyrene.
 アクリル樹脂としては、例えば、アクリル酸又はメタクリル酸のアルキルエステル等のモノマーの重合体及び共重合体からなる粒子が例示される。これらのモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート及びイソブチル(メタ)アクリレート等が例示される。また、アクリル樹脂コアとこれを被覆するアクリル樹脂シェルとからなるコア/シェル構造を有する粒子を用いてもよい。このコア/シェル構造を有する粒子は、貯蔵安定性及び塗布作業性の点から好適に用いられる。また、低温短時間硬化性の点からも好適に用いられる。 Examples of the acrylic resin include particles made of a polymer or copolymer of a monomer such as an alkyl ester of acrylic acid or methacrylic acid. Examples of these monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. Moreover, you may use the particle | grains which have a core / shell structure which consists of an acrylic resin core and the acrylic resin shell which coat | covers this. The particles having the core / shell structure are preferably used from the viewpoint of storage stability and coating workability. Moreover, it is used suitably also from the point of low temperature short-time curability.
 粉末状の熱可塑性樹脂(A)は、後述の可塑剤(B)に分散させてプラスチゾルとする際に、平均粒子径の小さな微細粉末状の状態で可塑剤(B)中に分散する。このときの粉末状の熱可塑性樹脂(A)の平均粒子径は、通常0.1μm以上100μm以下の範囲内であり、好ましくは1μm以上50μm以下の範囲内が例示される。粉末状の熱可塑性樹脂(A)の平均粒子径が、上記の範囲内であれば、熱膨張性耐火シート用樹脂組成物中において、粉末状の熱可塑性樹脂(A)が均一に分散し、しかも基材及び施工部位の表面に平滑な塗膜を形成することができる。なお、粉末状の熱可塑性樹脂(A)の平均粒子径は、レーザー回折・散乱法により測定される。 The powdery thermoplastic resin (A) is dispersed in the plasticizer (B) in the form of a fine powder having a small average particle diameter when dispersed in the plasticizer (B) described later to form a plastisol. The average particle diameter of the powdery thermoplastic resin (A) at this time is usually in the range of 0.1 μm to 100 μm, preferably in the range of 1 μm to 50 μm. If the average particle size of the powdered thermoplastic resin (A) is within the above range, the powdered thermoplastic resin (A) is uniformly dispersed in the resin composition for a thermally expandable fireproof sheet, And a smooth coating film can be formed on the surface of a base material and a construction site. The average particle size of the powdered thermoplastic resin (A) is measured by a laser diffraction / scattering method.
 粉末状の熱可塑性樹脂(A)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、15質量部以上40質量部以下の範囲内であることが好ましい。配合割合が上記の範囲内であれば、貯蔵安定性及び塗布作業性が良好となる。 The blending ratio of the powdery thermoplastic resin (A) is preferably in the range of 15 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending ratio is within the above range, the storage stability and the coating workability are good.
 2.可塑剤(B)
 可塑剤(B)は、熱膨張性耐火シート用樹脂組成物の主剤の一つであり、粉末状の熱可塑性樹脂(A)を溶解分散するために用いられる成分である。また、可塑剤(B)は、熱膨張性耐火シート用樹脂組成物の塗布作業性を向上させ、しかも熱膨張性耐火シート用樹脂組成物が硬化することにより形成される熱膨張性耐火樹脂層を軟化させて、加熱時の耐火発泡層の形成に寄与することができる。
2. Plasticizer (B)
The plasticizer (B) is one of the main ingredients of the resin composition for a heat-expandable fireproof sheet, and is a component used for dissolving and dispersing the powdered thermoplastic resin (A). The plasticizer (B) improves the application workability of the resin composition for a heat-expandable fireproof sheet, and is formed by curing the resin composition for a heat-expandable fireproof sheet. Can be softened to contribute to the formation of a fireproof foam layer during heating.
 可塑剤(B)としては、耐火塗料に通常用いられるものであれば特に制限されることはないが、プラスチゾルを形成するために一般に使用されている任意のものを使用することができる。例えば、ジブチルフタレート(DBP)、ジヘキシルフタレート(DHP)、ジ-2-エチルヘキシルフタレート(DOP)、ジ-n-オクチルフタレート(DnOP)及びジイソオクチルフタレート(DIOP)等のフタル酸エステル系の可塑剤が例示される。また、ジデシルフタレート(DDP)、ジノニルフタレート(DNP)、ジイソノニルフタレート(DINP)、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)及びビス-2-エチルヘキシルフタレート(DEHP)等が例示される。さらに、ジイソデシルフタレート(DIDP)、フタル酸ジウンデシル(DUP)、C6~C10混合高級アルコールフタレート、ブチルベンジルフタレート(BBP)及びオクチルベンジルフタレート等が例示される。また、ノニルベンジルフタレート及びジメチルシクロヘキシルフタレート(DMCHP)等が例示される。また、ジオクチルアジペート(DOA)、ジオクチルアゼレート(DOZ)及びジオクチルセバケート(DOS)等の直鎖二塩基酸エステル類等が例示される。さらに、トリクレジルホスフェート(TCP)、トリオクチルホスフェート(TOF)、トリキシレニルホスフェート(TXP)、モノオクチルジフェニルホスフェート及びモノブチル-ジキシレニルホスフェート(B-Z-X)等のリン酸エステル系可塑剤が例示される。また、トリ-(2-エチルヘキシル)トリメリテート(TOTM)、トリ-n-オクチルトリメリテート、トリイソデシルトリメリテート及びトリイソオクチルトリメリテート等の安息香酸エステル系可塑剤が例示される。さらに、ブチルフタルブチルグリコレート(BPBG)、トリブチル・クエン酸エステル、トリオクチル・アセチルクエン酸エステル、トリメット酸エステル、クエン酸エステル、セバシン酸エステル及びアゼライン酸エステル等のエステル類が例示される。さらに、マレイン酸エステルC6~C10脂肪酸のトリ又はテトラエチレングリコールエステル、アルキルスルホン酸エステル及びメチルアセチルリシノレート等のエステル類が例示される。また、大豆油等の不飽和脂肪酸グリセライドの二重結合を過酸化水素又は過酢酸でエポキシ化したもの(ESBO)、及び、ブチル又はオクチルのアルキルオレイン酸エステル等のエポキシ化合物等のエポキシ化植物油等が例示される。さらに、アジピン酸のような二塩基酸のプロピレングリコールエステル単位を直鎖状に連結した平均分子量500以上8000以下の範囲内の程度の粘稠な低重合度ポリエステル系可塑剤(例えば、アジピン酸ポリエステル及びフタル酸系ポリエステル)等が例示される。これらは1種単独又は2種以上を適宜組み合わせて使用することができる。中でも、フタル酸エステルは、粉末状の熱可塑性樹脂(A)を均一に分散し、安定なプラスチゾルを形成することができる。また、耐火性、塗布作業性及び貯蔵安定性の観点から、フタル酸エステルの中でもフタル酸ジイソノニル(DINP)及びフタル酸ジウンデシル(DUP)の使用が好ましい。 The plasticizer (B) is not particularly limited as long as it is usually used for fireproof paints, but any plasticizer generally used for forming plastisols can be used. For example, phthalate ester plasticizers such as dibutyl phthalate (DBP), dihexyl phthalate (DHP), di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate (DnOP) and diisooctyl phthalate (DIOP) Is exemplified. Examples include didecyl phthalate (DDP), dinonyl phthalate (DNP), diisononyl phthalate (DINP), dimethyl phthalate (DMP), diethyl phthalate (DEP), and bis-2-ethylhexyl phthalate (DEHP). Further examples include diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), C6-C10 mixed higher alcohol phthalate, butyl benzyl phthalate (BBP), and octyl benzyl phthalate. Moreover, nonyl benzyl phthalate, dimethyl cyclohexyl phthalate (DMCHP), etc. are illustrated. Further, linear dibasic acid esters such as dioctyl adipate (DOA), dioctyl azelate (DOZ), and dioctyl sebacate (DOS) are exemplified. Further, phosphate ester plastics such as tricresyl phosphate (TCP), trioctyl phosphate (TOF), trixylenyl phosphate (TXP), monooctyl diphenyl phosphate and monobutyl-dixylenyl phosphate (BZX) Agents are exemplified. Moreover, benzoate plasticizers such as tri- (2-ethylhexyl) trimellitate (TOTM), tri-n-octyl trimellitate, triisodecyl trimellitate and triisooctyl trimellitate are exemplified. Furthermore, esters such as butyl phthalbutyl glycolate (BPBG), tributyl citrate ester, trioctyl acetyl citrate ester, trimet acid ester, citrate ester, sebacic acid ester and azelaic acid ester are exemplified. Furthermore, esters such as tri- or tetraethylene glycol ester of maleic acid ester C6 to C10 fatty acid, alkylsulfonic acid ester and methylacetylricinoleate are exemplified. Also, epoxidized vegetable oils such as those obtained by epoxidizing double bonds of unsaturated fatty acid glycerides such as soybean oil with hydrogen peroxide or peracetic acid (ESBO), and epoxy compounds such as butyl or octyl alkyl oleates Is exemplified. Furthermore, a viscous low-polymerization degree polyester plasticizer (for example, adipic acid polyester) having a mean molecular weight in the range of 500 to 8000, in which propylene glycol ester units of a dibasic acid such as adipic acid are linearly linked. And phthalic acid polyester). These can be used individually by 1 type or in combination of 2 or more types. Among these, the phthalate ester can uniformly disperse the powdered thermoplastic resin (A) and form a stable plastisol. From the viewpoint of fire resistance, coating workability, and storage stability, it is preferable to use diisononyl phthalate (DINP) and diundecyl phthalate (DUP) among phthalates.
 可塑剤(B)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、10質量部以上40質量部以下の範囲内であることが好ましい。配合割合が上記の範囲内であれば、貯蔵安定性が向上し、しかもスプレー塗布等による塗布作業時の吐出性が良好となる。そのため、塗布作業性の優れた熱膨張性耐火シート用樹脂組成物が得られる。なお、可塑剤(B)の配合割合が、40質量部を上回ると、熱膨張性耐火シート用樹脂組成物中における粉末状の熱可塑性樹脂(A)の配合割合が相対的に低下し、必要な塗膜厚を確保することが困難になる。さらには、塗料粘性が低下し、塗布作業時の塗料流れが生じるなど、塗布作業性が低下する可能性がある。 The blending ratio of the plasticizer (B) is preferably within the range of 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending ratio is within the above range, the storage stability is improved, and the ejection property during the coating operation by spray coating or the like becomes good. Therefore, a resin composition for a heat-expandable fireproof sheet excellent in application workability can be obtained. In addition, when the mixture ratio of a plasticizer (B) exceeds 40 mass parts, the mixture ratio of the powdery thermoplastic resin (A) in the resin composition for heat-expandable fireproof sheets will fall relatively, and is required. It is difficult to ensure a sufficient coating thickness. Furthermore, there is a possibility that the coating workability is lowered, for example, the viscosity of the paint is lowered and a paint flow occurs during the coating work.
 3.含窒素発泡剤(C)
 含窒素発泡剤(C)は、加熱による分解により、窒素及びアンモニア等の不燃性ガスを発生させ、火災等の熱にさらされた際に炭化していくプラスチゾル及び後述の炭化剤(E)を膨張、発泡させ、耐火発泡層を形成する役割を果たす。また、熱膨張性耐火シートに靭性を付与し、壁下地材等の施工部位への追随性を発揮させることを目的として用いられる。
3. Nitrogen-containing foaming agent (C)
Nitrogen-containing foaming agent (C) generates flammable gases such as nitrogen and ammonia by decomposition by heating, and carbonizes plastisol and carbonizer (E) described later when carbonized when exposed to heat such as fire. It plays the role of expanding and foaming to form a fireproof foam layer. Further, it is used for the purpose of imparting toughness to the heat-expandable fireproof sheet and exhibiting followability to construction sites such as wall base materials.
 含窒素発泡剤(C)としては、例えば、メラミン、メラミン誘導体、ジシアンジアミド、アゾジカルボンアミド、尿素及びグアニジン等が例示される。中でも、不燃性ガスの発生効率、施工部位への追随性及び耐火性の観点から、含窒素発泡剤(C)がメラミン又はジシアンジアミドであることが好ましく、メラミンであることがより好ましい。これらは1種単独又は2種以上を併用することができる。 Examples of the nitrogen-containing foaming agent (C) include melamine, melamine derivatives, dicyandiamide, azodicarbonamide, urea and guanidine. Among these, from the viewpoint of generation efficiency of nonflammable gas, followability to construction sites, and fire resistance, the nitrogen-containing foaming agent (C) is preferably melamine or dicyandiamide, and more preferably melamine. These can be used alone or in combination of two or more.
 含窒素発泡剤(C)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、5質量部以上25質量部以下の範囲内であることが好ましい。配合割合が5質量部未満の場合、火災等の熱にさらされた際、十分な耐火発泡層を形成することが難しく、しかも成形後のシートの靭性が著しく損なわれてしまうおそれがある。一方、含窒素発泡剤(C)の配合割合が25質量部超の場合、火災等の熱にさらされた際、耐火発泡層における燃焼残渣の形状維持性が損なわれ、耐火性が低下するおそれがある。また、熱膨張性耐火シート用樹脂組成物の貯蔵安定性も損なわれるおそれがある。 The blending ratio of the nitrogen-containing foaming agent (C) is preferably in the range of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending ratio is less than 5 parts by mass, it is difficult to form a sufficient fire-resistant foamed layer when exposed to heat such as fire, and the toughness of the molded sheet may be significantly impaired. On the other hand, when the blending ratio of the nitrogen-containing foaming agent (C) is more than 25 parts by mass, when exposed to heat such as a fire, the shape maintenance property of the combustion residue in the fireproof foam layer is impaired, and the fire resistance may be lowered. There is. Moreover, there exists a possibility that the storage stability of the resin composition for heat-expandable fireproof sheets may also be impaired.
 4.リン系難燃剤(D)
 リン系難燃剤(D)は、加熱により後述の炭化剤(E)の脱水及びチャーと呼ばれる薄膜の形成時の触媒として作用する。また、リン系難燃剤(D)は、600℃以上の高温で加熱された際に、後述の二酸化チタン(F)と反応し、ピロリン酸チタニウムを形成する。ピロリン酸チタニウムは、灰化成分として耐火発泡層に残存することで、耐火発泡層の形状維持性を向上させることができる。
4). Phosphorus flame retardant (D)
The phosphorus-based flame retardant (D) acts as a catalyst when dehydrating the carbonizer (E) described later by heating and forming a thin film called char. Moreover, when a phosphorus flame retardant (D) is heated at a high temperature of 600 ° C. or higher, it reacts with titanium dioxide (F) described later to form titanium pyrophosphate. Titanium pyrophosphate remains in the fireproof foam layer as an ashing component, thereby improving the shape maintenance of the fireproof foam layer.
 リン系難燃剤(D)としては、例えば、赤リン、トリフェニルホスフェート及びトリクレジルホスフェート等のリン酸エステル類、並びに、リン酸ナトリウム及びリン酸マグネシウム等のリン酸金属塩等が例示される。また、リン酸アンモニウム、リン酸のメラミン等の有機塩基との塩類又はアミド、並びに、ポリリン酸アンモニウム及びメラミン変性ポリリン酸アンモニウム等のポリリン酸アンモニウム類等が例示される。中でも、耐火発泡層の形成及び形状維持性、長期耐久性の観点から、ポリリン酸アンモニウム及びメラミン変性ポリリン酸アンモニウム等のポリリン酸アンモニウム類が好ましい。これらは1種単独又は2種以上を併用することができる。 Examples of the phosphorus flame retardant (D) include phosphoric esters such as red phosphorus, triphenyl phosphate and tricresyl phosphate, and metal phosphates such as sodium phosphate and magnesium phosphate. . Examples thereof include ammonium phosphate, salts or amides of phosphoric acid with an organic base such as melamine, and ammonium polyphosphates such as ammonium polyphosphate and melamine-modified ammonium polyphosphate. Of these, ammonium polyphosphates such as ammonium polyphosphate and ammonium melamine-modified polyphosphate are preferred from the viewpoints of forming a fireproof foam layer and maintaining shape and long-term durability. These can be used alone or in combination of two or more.
 ポリリン酸アンモニウム類は、加熱により分解温度に達すると、脱アンモニア等の脱アミンによりリン酸及び縮合リン酸を生じる。これらのリン酸及び縮合リン酸が、有機物の脱水触媒として作用し、有機物を炭化させる結果、チャー形成につながる。また、その際に発生するアンモニアガス及び窒素ガス等は、発泡剤として作用し、熱膨張性耐火シート用樹脂組成物全体を膨張させるとともに、酸素濃度を相対的に減少させることにより、燃焼を抑えることができる。さらにポリリン酸アンモニウム類は、600℃以上の高温で加熱された際に分解して、後述の二酸化チタン(F)と反応し、ピロリン酸チタニウムを形成する。ピロリン酸チタニウムは、灰化成分として耐火発泡層に残存することで、耐火発泡層の形状維持性を向上させることができる。 When ammonium polyphosphates reach the decomposition temperature by heating, phosphoric acid and condensed phosphoric acid are generated by deamination such as deammonia. These phosphoric acid and condensed phosphoric acid act as a dehydration catalyst for organic matter, and carbonize the organic matter, resulting in char formation. In addition, ammonia gas, nitrogen gas, and the like generated at that time act as a foaming agent to expand the entire resin composition for a thermally expandable refractory sheet and to suppress combustion by relatively reducing the oxygen concentration. be able to. Furthermore, ammonium polyphosphates decompose when heated at a high temperature of 600 ° C. or more and react with titanium dioxide (F) described later to form titanium pyrophosphate. Titanium pyrophosphate remains in the fireproof foam layer as an ashing component, thereby improving the shape maintenance of the fireproof foam layer.
 リン系難燃剤(D)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、20質量部以上50質量部以下の範囲内であることが好ましい。配合割合が20質量部未満の場合、熱膨張性耐火シート用樹脂組成物を効果的に炭化、発泡させることが難しくなり、さらには耐火発泡層における燃焼残渣の形状保持性を確保することも難しくなる。一方、配合割合が50質量部超の場合、塗布作業性の低下を招くおそれがある。 The blending ratio of the phosphorus-based flame retardant (D) is preferably in the range of 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending ratio is less than 20 parts by mass, it becomes difficult to effectively carbonize and foam the thermally expandable resin composition for a refractory sheet, and it is also difficult to ensure the shape retention of the combustion residue in the refractory foam layer. Become. On the other hand, when the blending ratio is more than 50 parts by mass, there is a possibility that the coating workability is lowered.
 5.炭化剤(E)
 炭化剤(E)は、リン系難燃剤(D)に含有されるリン化合物により脱水炭化され、耐火発泡層を形成する。
5). Carbonizer (E)
The carbonizing agent (E) is dehydrated and carbonized by the phosphorus compound contained in the phosphorus-based flame retardant (D) to form a fireproof foam layer.
 炭化剤(E)としては、加熱により炭化する温度が180℃以上、好ましくは220℃以上のものが好適に使用できる。このような炭化剤(E)としては、例えば、モノペンタエリスリトール、ジペンタエリスリトール及びトリペンタエリスリトール等の多価アルコール、デンプン及びセルロース等の多糖類、並びに、グルコース及びフルクトース等の少糖類等が例示される。中でも、発泡特性の観点から、モノペンタエリスリトール、ジペンタエリスリトール及びトリペンタエリスリトールを用いるのが特に好ましい。これらは、1種単独又は2種以上を併用することができる。 As the carbonizing agent (E), a carbonizing temperature of 180 ° C. or higher, preferably 220 ° C. or higher can be suitably used. Examples of such a carbonizing agent (E) include polyhydric alcohols such as monopentaerythritol, dipentaerythritol and tripentaerythritol, polysaccharides such as starch and cellulose, and oligosaccharides such as glucose and fructose. Is done. Among these, monopentaerythritol, dipentaerythritol, and tripentaerythritol are particularly preferably used from the viewpoint of foaming characteristics. These can be used alone or in combination of two or more.
 炭化剤(E)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、5質量部以上25質量部以下の範囲内であることが好ましい。配合割合が5質量部未満の場合、耐火発泡層の形成が不十分となり、燃焼残渣の形状保持性を確保することが難しくなる。配合割合が25重量部超の場合、熱膨張性耐火シート用樹脂組成物の貯蔵安定性が損なわれてしまうおそれがある。 The blending ratio of the carbonizing agent (E) is preferably in the range of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. If the blending ratio is less than 5 parts by mass, the formation of the fireproof foam layer becomes insufficient, and it becomes difficult to ensure the shape retention of the combustion residue. When the blending ratio is more than 25 parts by weight, the storage stability of the heat-expandable resin composition for a fireproof sheet may be impaired.
 6.二酸化チタン(F)
 二酸化チタン(F)は、600℃以上の高温で加熱された際に、リン系難燃剤(D)と反応し、ピロリン酸チタニウムを形成し、灰化成分として耐火発泡層に残存することで、耐火発泡層の形状維持性を向上させることができる。
6). Titanium dioxide (F)
When titanium dioxide (F) is heated at a high temperature of 600 ° C. or higher, it reacts with the phosphorus-based flame retardant (D) to form titanium pyrophosphate, and remains as an ashing component in the fireproof foam layer. The shape maintenance property of a fireproof foaming layer can be improved.
 二酸化チタン(F)としては、アナターゼ型又はルチル型のいずれであってもよく、特に制限されない。二酸化チタン(F)の平均粒径としては、例えば、0.01μm以上200μm以下の範囲内が好ましく、より好ましくは0.1μm以上100μm以下の範囲内であることが例示される。 Titanium dioxide (F) may be either anatase type or rutile type, and is not particularly limited. As an average particle diameter of titanium dioxide (F), it exists in the range of 0.01 micrometer or more and 200 micrometers or less, for example, More preferably, it exists in the range of 0.1 micrometer or more and 100 micrometers or less.
 二酸化チタン(F)の配合割合は、熱膨張性耐火シート用樹脂組成物の固形分100質量部に対して、5質量部以上30質量部以下の範囲内であることが好ましい。配合量が5質量部未満の場合、600℃以上の高温で加熱された際に、灰化成分として耐火発泡層に残存するピロリン酸チタニウム量が減少し、高温域での燃焼残渣の形状維持性が不十分となり、耐火性が低下するおそれがある。一方、配合割合が30重量部超の場合、耐火発泡層の発泡倍率の低下が起こり、耐火性が損なわれるおそれがある。また、熱膨張性耐火シート用樹脂組成物の貯蔵安定性及び塗布作業性についても低下するおそれがある。 The blending ratio of titanium dioxide (F) is preferably in the range of 5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the solid content of the resin composition for a thermally expandable fireproof sheet. When the blending amount is less than 5 parts by mass, the amount of titanium pyrophosphate remaining in the refractory foam layer as an ashing component when heated at a high temperature of 600 ° C. or more is reduced, and the shape of the combustion residue in the high temperature range is maintained. May become insufficient and fire resistance may be reduced. On the other hand, when the blending ratio is more than 30 parts by weight, the expansion ratio of the fireproof foam layer is lowered, and the fire resistance may be impaired. Moreover, there exists a possibility that the storage stability and coating workability | operativity of the resin composition for heat-expandable fireproof sheets may also fall.
 熱膨張性耐火シート用樹脂組成物には、その他の成分として、本実施形態の効果を損なわない範囲で必要に応じて、粘着付与剤、無機充填剤、酸化防止剤及び滑剤等を添加することができる。 As the other components, a tackifier, an inorganic filler, an antioxidant, a lubricant, and the like are added to the resin composition for a heat-expandable fireproof sheet as necessary, as long as the effects of the present embodiment are not impaired. Can do.
 粘着付与剤としては、特に制限されないが、例えば、ロジン樹脂、ロジン誘導体、ダンマル、ポリテルペン樹脂、テルペン変性体、脂肪族系炭化水素樹脂及びシクロペンタジエン樹脂等が例示される。また、芳香族系石油樹脂、フェノール樹脂、アルキルフェノール-アセチレン樹脂、スチレン樹脂、キシレン樹脂、クマロン-インデン樹脂及びビニルトルエン-αメチルスチレン共重合体等が例示される。 The tackifier is not particularly limited, and examples thereof include rosin resins, rosin derivatives, dammars, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, and cyclopentadiene resins. Moreover, aromatic petroleum resins, phenol resins, alkylphenol-acetylene resins, styrene resins, xylene resins, coumarone-indene resins, vinyltoluene-α-methylstyrene copolymers and the like are exemplified.
 無機充填材としては、例えば、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、カオリン、クレー、ベントナイト及びタルク等の無機塩類、並びに、ガラスフレーク及びワストナイト等の酸化無機物等が例示される。また、ロックウール、ガラス繊維、炭素繊維、セラミック繊維、アルミナ繊維及びシリカ繊維等の無機繊維類、並びに、カーボン及びヒュームドシリカ等の微粒無機物等が例示される。 Examples of inorganic fillers include inorganic salts such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, kaolin, clay, bentonite and talc, and oxidized inorganic substances such as glass flakes and wastonite. Examples thereof include inorganic fibers such as rock wool, glass fiber, carbon fiber, ceramic fiber, alumina fiber and silica fiber, and fine inorganic substances such as carbon and fumed silica.
 酸化防止剤としては、例えば、フェノール化合物を含む抗酸化剤、硫黄原子を含む抗酸化剤、及び、ホスファイト化合物を含む抗酸化剤等が例示される。 Examples of the antioxidant include an antioxidant containing a phenol compound, an antioxidant containing a sulfur atom, and an antioxidant containing a phosphite compound.
 滑剤としては、例えば、ポリエチレン、パラフィン及びモンタン酸等のワックス類、トール油、サブ油、蜜ロウ、カルナウバロウ及びラノリン等のロウ類、エステルワックス類、並びに、ステアリン酸、パルミチン酸及びリシノール酸等の有機酸類等が例示される。また、ステアリルアルコール等の有機アルコール類、及び、ジメチルビスアミド等のアミド系化合物等が例示される。 Examples of the lubricant include waxes such as polyethylene, paraffin and montanic acid, waxes such as tall oil, sub-oil, beeswax, carnauba wax and lanolin, ester waxes, and stearic acid, palmitic acid and ricinoleic acid. Examples include organic acids. Examples thereof include organic alcohols such as stearyl alcohol and amide compounds such as dimethylbisamide.
 上記の各成分(A)~(C)及び各成分(D)~(F)、並びに、その他の成分を従来公知の方法により均一に混合することで本実施形態の熱膨張性耐火シート用樹脂組成物が得られる。 Each of the above components (A) to (C), the components (D) to (F), and other components are uniformly mixed by a conventionally known method, so that the resin for the thermally expandable fireproof sheet of the present embodiment is used. A composition is obtained.
 次に、本実施形態の熱膨張性耐火シート用樹脂組成物を用いた熱膨張性耐火シート及びその製造方法について説明する。 Next, a heat-expandable fireproof sheet using the resin composition for a heat-expandable fireproof sheet of the present embodiment and a manufacturing method thereof will be described.
 熱膨張性耐火シートは、基材の一方の面に、上記の熱膨張性耐火シート用樹脂組成物のプラスチゾルが硬化した熱膨張性耐火樹脂層を備える。 The heat-expandable refractory sheet includes a heat-expandable refractory resin layer obtained by curing the plastisol of the resin composition for a heat-expandable refractory sheet on one surface of the substrate.
 この熱膨張性耐火シートでは、基材が紙又は不織布であることが好ましい。中でも、基材自体が難燃性材料であることから、ガラス繊維のチョップストランド、ガラス繊維シート及びガラスペーパー等が好適に用いられる。その目付け量としては、例えば、10g/m以上100g/m以下の範囲内であることが例示され、好ましくは、30g/m以上60g/m以下の範囲内であることが例示される。 In this heat-expandable fireproof sheet, the substrate is preferably paper or non-woven fabric. Among these, since the base material itself is a flame retardant material, glass fiber chop strands, glass fiber sheets, glass paper, and the like are preferably used. The basis weight is, for example, in the range of 10 g / m 2 or more and 100 g / m 2 or less, and preferably in the range of 30 g / m 2 or more and 60 g / m 2 or less. The
 熱膨張性耐火シートの製造方法は、上記の熱膨張性耐火シート用樹脂組成物のプラスチゾルを、基材の一方の面に塗布した後、加熱及び冷却してプラスチゾルを硬化させて、熱膨張性耐火樹脂層を形成することを特徴とする。 The method for producing a heat-expandable fireproof sheet is obtained by applying the plastisol of the resin composition for a heat-expandable fireproof sheet to one surface of the base material, and then heating and cooling the plastisol to cure the heat-expandable material. A refractory resin layer is formed.
 熱膨張性耐火シート用樹脂組成物の塗布方法は、特に制限されないが、従来公知の塗布方法を適用することができる。例えば、エアスプレー法、ディッピング法、カーテンコーター法、刷毛を使用する方法、ディスペンサーを使用する方法、ポッティング法、スクリーン印刷、トランスファー成形及びインジェクション成形等の方法が例示される。 Although the coating method of the resin composition for a heat-expandable fireproof sheet is not particularly limited, a conventionally known coating method can be applied. Examples include air spray method, dipping method, curtain coater method, method using brush, method using dispenser, potting method, screen printing, transfer molding and injection molding.
 熱膨張性耐火シート用樹脂組成物は、プラスチゾルの状態であるため、長期貯蔵した場合であっても、熱膨張性耐火シート用樹脂組成物中において、粉末状の熱可塑性樹脂(A)と可塑剤(B)とが分離しにくく、均一に分散している。そのため、上記のとおりの塗布方法のいずれを適用した場合であっても、塗布作業性に優れ、基材に均一に塗布することができる。 Since the resin composition for a heat-expandable fireproof sheet is in a plastisol state, the resin composition for a heat-expandable fireproof sheet in the resin composition for a heat-expandable fireproof sheet is plasticized even when stored for a long time. The agent (B) is difficult to separate and is uniformly dispersed. Therefore, even if any of the application methods as described above is applied, it is excellent in application workability and can be applied uniformly to the substrate.
 熱膨張性耐火シート用樹脂組成物のプラスチゾルを硬化させる際には、加熱によりプラスチゾルを一旦ゲル化した後、冷却する必要がある。加熱条件としては、例えば、70℃以上180℃以下の範囲内の温度で30秒以上30分以下の範囲内で加熱することが例示される。このような加熱は、例えば、熱板又は加熱乾燥機等により適宜行うことができる。 When curing the plastisol of the resin composition for a heat-expandable fireproof sheet, the plastisol must be once gelled by heating and then cooled. Examples of the heating condition include heating at a temperature in the range of 70 ° C. to 180 ° C. for 30 seconds to 30 minutes. Such heating can be appropriately performed using, for example, a hot plate or a heat dryer.
 熱膨張性耐火シートでは、基材の他方の面に、無機層、有機層及び金属層からなる群より選択される少なくとも一層を有することが好ましい。 It is preferable that the thermally expandable fireproof sheet has at least one layer selected from the group consisting of an inorganic layer, an organic layer, and a metal layer on the other surface of the substrate.
 無機層、有機層及び金属層は、あらかじめ、基材と積層しておき、その後、基材の一方の面に熱膨張性耐火シート用樹脂組成物を塗布することができる。また、熱膨張性耐火シート用樹脂組成物を基材の一方の面に塗布した後、基材の他方の面に、無機層、有機層及び金属層を積層することもできる。 The inorganic layer, the organic layer, and the metal layer can be laminated with the base material in advance, and then the thermally expandable fireproof sheet resin composition can be applied to one surface of the base material. Moreover, after apply | coating the resin composition for heat-expandable fireproof sheets to the one surface of a base material, an inorganic layer, an organic layer, and a metal layer can also be laminated | stacked on the other surface of a base material.
 無機層、有機層及び金属層を積層する順序及び各層の厚み等に限定はなく、建築物の施工部位及び目的等に応じて適宜選択することができる。 The order in which the inorganic layer, the organic layer, and the metal layer are laminated and the thickness of each layer are not limited, and can be appropriately selected according to the construction site and purpose of the building.
 本実施形態では、無機層としては、例えば、ロックウール、グラスウール、セラミックウール及びガラス繊維シート等の無機繊維を使用することができる。中でも、ガラス繊維シートを用いることが好ましい。ガラス繊維シートとしては、ガラスペーパーを用いることが好ましく、その目付け量としては、例えば、10g/m以上100g/m以下の範囲内であることが例示され、好ましくは、30g/m以上60g/m以下の範囲内であることが例示される。 In the present embodiment, as the inorganic layer, for example, inorganic fibers such as rock wool, glass wool, ceramic wool, and glass fiber sheet can be used. Among these, it is preferable to use a glass fiber sheet. As the glass fiber sheet, it is preferable to use glass paper, and the weight per unit area is, for example, in the range of 10 g / m 2 or more and 100 g / m 2 or less, and preferably 30 g / m 2 or more. It is exemplified that it is within the range of 60 g / m 2 or less.
 基材の他方の面に無機層としてガラス繊維シートの層を備えることにより、熱膨張性耐火シート自体の強度が向上するため、施工部位の壁下地材に対し、大面積を有する熱膨張性耐火シートをタッカー等の固定具を用いて固定する際の固定強度も向上する。また、膨張性耐火シートをタッカー等の固定具を用いて固定した際、火炎により膨張、発泡し、形成された耐火発泡層の脱落防止性を向上させることができる。 By providing a glass fiber sheet layer as an inorganic layer on the other side of the substrate, the strength of the thermally expandable refractory sheet itself is improved. The fixing strength when the sheet is fixed using a fixing tool such as a tucker is also improved. Further, when the expandable refractory sheet is fixed using a fixing tool such as a tucker, it can expand and foam by the flame, and the fall-off prevention property of the formed refractory foam layer can be improved.
 有機層としては、例えば、ポリエチレン樹脂及びポリプロピレン樹脂等のポリオレフィン樹脂類、ポリスチレン樹脂、並びに、ポリエステル樹脂類、ポリウレタン樹脂及びポリアミド樹脂類等のエーテル系樹脂類が例示される。また、不飽和エステル樹脂類、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体及びスチレン-ブタジエン共重合体等の共重合樹脂類等が例示される。 Examples of the organic layer include polyolefin resins such as polyethylene resin and polypropylene resin, polystyrene resins, and ether resins such as polyester resins, polyurethane resins and polyamide resins. Further, unsaturated ester resins, copolymer resins such as ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer and styrene-butadiene copolymer are exemplified.
 このような有機層の形状としては、特に制限されることはなく、例えば、フィルム及び不織布等の形状を例示することができる。 The shape of such an organic layer is not particularly limited, and examples thereof include shapes such as films and nonwoven fabrics.
 金属層としては、例えば、鉄、鋼、ステンレス、亜鉛メッキ鋼、アルミ亜鉛合金メッキ鋼及びアルミニウム等が例示される。このような金属層の形状としては、特に制限されることはなく、例えば、金属板及び金属箔等の形状を例示することができる。中でも、取り扱い性の面からアルミニウム箔を好適に用いることができる。 Examples of the metal layer include iron, steel, stainless steel, galvanized steel, aluminum zinc alloy plated steel, and aluminum. There is no restriction | limiting in particular as a shape of such a metal layer, For example, shapes, such as a metal plate and metal foil, can be illustrated. Among these, aluminum foil can be suitably used from the viewpoint of handleability.
 これらの無機層、有機層及び金属層は、基材に対し、バッチ式で供給、積層してもよいし、連続供給してもよい。 These inorganic layers, organic layers, and metal layers may be supplied and laminated in a batch manner to the base material, or may be supplied continuously.
 無機層、有機層及び金属層を、基材及び熱膨張性耐火シート用樹脂組成物と積層して一体化する方法としては、樹脂成形体を成形する通常の方法、条件であれば、特に制限されない。例えば、熱膨張性耐火シート用樹脂組成物のプラスチゾルを硬化させる際に上又は下に重ね、同時に加熱加圧することが例示される。 As a method of laminating and integrating the inorganic layer, the organic layer and the metal layer with the base material and the resin composition for a heat-expandable refractory sheet, there is a particular limitation as long as it is a normal method and conditions for molding a resin molded body Not. For example, when the plastisol of the resin composition for a heat-expandable fireproof sheet is cured, it is exemplified that it is stacked on top or bottom and simultaneously heated and pressurized.
 硬化後の熱膨張性耐火シートにおける熱膨張性耐火樹脂層の厚みは、特に制限されないが、基材の種類に応じて適宜変更することが可能であり、例えば、0.1mm以上5.0mm以下の範囲内であれば好ましく、0.3mm以上3.0mm以下の範囲内がより好ましい。 The thickness of the thermally expandable fireproof resin layer in the thermally expandable fireproof sheet after curing is not particularly limited, but can be appropriately changed according to the type of the substrate, for example, 0.1 mm or more and 5.0 mm or less. Is preferably within the range of 0.3 mm to 3.0 mm.
 このようにして得られる熱膨張性耐火シートが施工される施工部位としては、壁下地材が好ましく、壁下地材としては、それ自身が面材として一定の強度を備えるものであれば、特に制限されることはない。例えば、スレート板、セラミック板、ALC、コンクリート板、各種セメント板、けい酸カルシウム板、含水無機物含有ボード、石膏ボード及び木片セメント板等が例示される。また、合板、OSB、パーティクルボード、CLT及び集成材等の木質板等が例示される。 As a construction site where the thermally expandable fireproof sheet obtained in this way is constructed, a wall base material is preferable, and the wall base material is particularly limited as long as it has a certain strength as a face material itself. It will never be done. Examples include slate plates, ceramic plates, ALC, concrete plates, various cement plates, calcium silicate plates, hydrous inorganic material-containing boards, gypsum boards, and wood chip cement boards. In addition, wood boards such as plywood, OSB, particle board, CLT, and laminated wood are exemplified.
 熱膨張性耐火シートの使用方法としては、熱膨張性耐火シートが、壁下地材に、固定具により固定されて用いられることが好ましい。固定具としては、例えば、タッピンネジ及びタッカー等が例示される。また、必要に応じて、粘着剤及び接着剤等を用いてもよい。また、壁下地材に固定された熱膨張性耐火シートの表面に、さらに、けい酸カルシウム板及び石膏ボード等の耐火ボード等を取り付けることも可能である。 As a method of using the heat-expandable fireproof sheet, it is preferable that the heat-expandable fireproof sheet is used by being fixed to the wall base material with a fixture. Examples of the fixing tool include a tapping screw and a tucker. Moreover, you may use an adhesive, an adhesive agent, etc. as needed. It is also possible to attach a fireproof board such as a calcium silicate plate and a gypsum board to the surface of the thermally expandable fireproof sheet fixed to the wall base material.
 以上述べた実施形態から明らかなように、本開示に係る第1の態様の熱膨張性耐火シート用樹脂組成物は、粉末状の熱可塑性樹脂(A)、可塑剤(B)、含窒素発泡剤(C)を含有し、可塑剤(B)中に粉末状の熱可塑性樹脂(A)及び含窒素発泡剤(C)が分散しているプラスチゾルである。 As is apparent from the above-described embodiment, the resin composition for a thermally expandable fireproof sheet according to the first aspect of the present disclosure includes a powdery thermoplastic resin (A), a plasticizer (B), and a nitrogen-containing foam. It is a plastisol which contains the agent (C) and in which the powdery thermoplastic resin (A) and the nitrogen-containing foaming agent (C) are dispersed in the plasticizer (B).
 第1の態様によれば、優れた耐火性を有し、しかも貯蔵安定性及び塗布作業性が良好な熱膨張性耐火シート用樹脂組成物を提供することができる。 According to the first aspect, it is possible to provide a heat-expandable resin composition for a fire-resistant sheet having excellent fire resistance and having good storage stability and coating workability.
 本開示に係る第2の態様の熱膨張性耐火シート用樹脂組成物では、第1の態様において、リン系難燃剤(D)を更に含有する。 The resin composition for a thermally expandable fireproof sheet according to the second aspect of the present disclosure further contains a phosphorus-based flame retardant (D) in the first aspect.
 第2の態様によれば、加熱によりチャーと呼ばれる薄膜の形成時の触媒として作用し得る。 According to the second aspect, it can act as a catalyst when a thin film called char is formed by heating.
 本開示に係る第3の態様の熱膨張性耐火シート用樹脂組成物では、第1又は2の態様において、炭化剤(E)を更に含有する。 The resin composition for a thermally expandable fireproof sheet according to the third aspect of the present disclosure further contains a carbonizing agent (E) in the first or second aspect.
 第3の態様によれば、脱水炭化されて、耐火発泡層を形成し得る。 According to the third aspect, dehydration and carbonization can be performed to form a fireproof foam layer.
 本開示に係る第4の態様の熱膨張性耐火シート用樹脂組成物では、第1~3のいずれかの態様において、二酸化チタン(F)を更に含有する。 The resin composition for a thermally expandable fireproof sheet according to the fourth aspect of the present disclosure further contains titanium dioxide (F) in any one of the first to third aspects.
 第4の態様によれば、耐火発泡層の形状維持性を向上させることができる。 According to the 4th aspect, the shape maintenance property of a fireproof foaming layer can be improved.
 本開示に係る第5の態様の熱膨張性耐火シート用樹脂組成物では、第1~4のいずれかの態様において、粉末状の熱可塑性樹脂(A)が、ポリ塩化ビニル樹脂又はアクリル樹脂である。 In the resin composition for a heat-expandable fireproof sheet according to the fifth aspect of the present disclosure, in any one of the first to fourth aspects, the powdery thermoplastic resin (A) is a polyvinyl chloride resin or an acrylic resin. is there.
 第5の態様によれば、耐火性を向上させ得る。 According to the fifth aspect, fire resistance can be improved.
 本開示に係る第6の態様の熱膨張性耐火シート用樹脂組成物では、第1~5のいずれかの態様において、含窒素発泡剤(C)がメラミンである。 In the resin composition for a thermally expandable fireproof sheet according to the sixth aspect of the present disclosure, in any one of the first to fifth aspects, the nitrogen-containing foaming agent (C) is melamine.
 第6の態様によれば、不燃性ガスの発生効率、施工部位への追随性、耐火性を向上させ得る。 According to the sixth aspect, it is possible to improve the generation efficiency of nonflammable gas, the followability to the construction site, and the fire resistance.
 本開示に係る第7の態様の熱膨張性耐火シートは、第1~6のいずれかの態様の熱膨張性耐火シート用樹脂組成物のプラスチゾルが硬化した熱膨張性耐火樹脂層を備える。 The heat-expandable fireproof sheet according to the seventh aspect of the present disclosure includes a heat-expandable fireproof resin layer obtained by curing a plastisol of the resin composition for a heat-expandable fireproof sheet according to any one of the first to sixth aspects.
 第7の態様によれば、加熱された際に、熱膨張性耐火樹脂層が発泡して、耐火発泡層を形成することにより、耐火性を発揮させ得る。 According to the seventh aspect, when heated, the heat-expandable refractory resin layer is foamed to form a refractory foamed layer, thereby exhibiting fire resistance.
 本開示に係る第8の態様の熱膨張性耐火シートでは、第7の態様において、基材が紙又は不織布である。 In the heat-expandable fireproof sheet according to the eighth aspect of the present disclosure, in the seventh aspect, the base material is paper or non-woven fabric.
 第8の態様によれば、シート状に成形しやすく、建築物の施工部位の表面に取り付けやすい。 According to the eighth aspect, it is easy to form into a sheet shape and easy to attach to the surface of the construction site of the building.
 本開示に係る第9の態様の熱膨張性耐火シートでは、第7又は8の態様において、基材の他方の面に、無機層、有機層及び金属層からなる群より選択される少なくとも一層を有する。 In the thermally expandable fireproof sheet according to the ninth aspect of the present disclosure, in the seventh or eighth aspect, at least one layer selected from the group consisting of an inorganic layer, an organic layer, and a metal layer is provided on the other surface of the base material. Have.
 第9の態様によれば、建築物の施工部位及び目的等に適応しやすい。 According to the ninth aspect, it is easy to adapt to the construction site and purpose of the building.
 本開示に係る第10の態様の熱膨張性耐火シートの製造方法は、第1~6のいずれかの態様の熱膨張性耐火シート用樹脂組成物を、基材の一方の面に塗布した後、加熱及び冷却して硬化させて、熱膨張性耐火樹脂層を形成する。 In the method for producing a thermally expandable fireproof sheet according to the tenth aspect of the present disclosure, the resin composition for a thermally expandable fireproof sheet according to any one of the first to sixth aspects is applied to one surface of a substrate. Then, it is cured by heating and cooling to form a thermally expandable refractory resin layer.
 第10の態様によれば、プラスチゾルを硬化させやすい。 According to the tenth aspect, it is easy to cure the plastisol.
 以下に実施例を掲げて本開示を更に詳しく説明するが、本開示は、実施例に限定されない。 Hereinafter, the present disclosure will be described in more detail with reference to examples, but the present disclosure is not limited to the examples.
 (実施例1)
 粉末状の熱可塑性樹脂(A)として、アクリル樹脂(LP-3106、三菱化学社製)25質量部、可塑剤(B)として、ジイソノニルフタレート(DINP、新日本理化社製)25質量部、含窒素発泡剤(C)として、メラミン(日産化学工業社製)12質量部、リン系難燃剤(D)として、ポリリン酸アンモニウム(AP422、クラリアントジャパン社製)33質量部、炭化剤(E)として、ペンタエリスリトール(ジペンタリット、広栄化学工業社製)13質量部、二酸化チタン(F)として、TR92(平均粒径0.24μm、ハンツマン社製)14質量部、消泡剤を0.5質量部、分散剤を2.5質量部の割合で配合し、これを均一に混合し、プラスチゾル状態の熱膨張性耐火シート用樹脂組成物を得た。
Example 1
As powdered thermoplastic resin (A), 25 parts by mass of acrylic resin (LP-3106, manufactured by Mitsubishi Chemical Corporation) and as plasticizer (B), 25 parts by mass of diisononyl phthalate (DINP, manufactured by Shin Nippon Rika Co., Ltd.) As nitrogen blowing agent (C), 12 parts by mass of melamine (manufactured by Nissan Chemical Industries), as phosphorus-based flame retardant (D), 33 parts by mass of ammonium polyphosphate (AP422, manufactured by Clariant Japan), as carbonizer (E) , 13 parts by mass of pentaerythritol (dipentalit, manufactured by Koei Chemical Co., Ltd.), titanium dioxide (F) as TR92 (average particle size 0.24 μm, manufactured by Huntsman) 14 parts by mass, 0.5 parts by mass of antifoaming agent, A dispersant was blended at a ratio of 2.5 parts by mass, and this was uniformly mixed to obtain a resin composition for a thermally expandable fireproof sheet in a plastisol state.
 次に、得られた熱膨張性耐火シート用樹脂組成物を目付50g/mのガラスペーパー(王子エフテック社製)に、所定の膜厚となるように刷毛で塗布し、これを100℃に設定した加熱プレス機で5分間加熱して硬化させ、熱膨張性耐火シートを得た。硬化後の熱膨張性耐火シートにおける熱膨張性耐火樹脂層の厚みは1.0mmであった。 Next, the obtained resin composition for a heat-expandable fireproof sheet was applied to a glass paper (manufactured by Oji F-Tech Co., Ltd.) having a basis weight of 50 g / m 2 with a brush so as to have a predetermined film thickness. It was cured by heating for 5 minutes with the set hot press machine to obtain a thermally expandable fireproof sheet. The thickness of the thermally expandable fireproof resin layer in the thermally expandable fireproof sheet after curing was 1.0 mm.
 壁下地材として、厚さ10mmのけい酸カルシウム板2枚重ねた上に、熱膨張性耐火シートのガラスペーパー側の面がけい酸カルシウム板面に当接するよう熱膨張性耐火シートを置き、タッカーで固定した。さらに、けい酸カルシウム板面に固定された熱膨張性耐火シートの表面と表面材との間に20mmの空隙ができるように間柱を設置し、表面材として厚さ12mmのけい酸カルシウム板を取り付け、試験体を作製した。 As a wall base material, on top of two 10 mm thick calcium silicate plates, a thermally expandable refractory sheet is placed so that the glass paper side surface of the thermally expandable refractory sheet is in contact with the calcium silicate plate surface. Fixed with. Furthermore, a stud is installed so that a 20 mm gap is formed between the surface of the thermally expandable refractory sheet fixed to the calcium silicate plate surface and the surface material, and a 12 mm thick calcium silicate plate is attached as the surface material. A test body was prepared.
 (実施例2)
 粉末状の熱可塑性樹脂(A)としてアクリル樹脂の代わりにポリ塩化ビニル樹脂(PSL-675、平均分子量900、カネカ社製)25質量部を用いたこと以外は、実施例1と同様にして試験体を作製した。
(Example 2)
Tested in the same manner as in Example 1 except that 25 parts by mass of polyvinyl chloride resin (PSL-675, average molecular weight 900, manufactured by Kaneka Corporation) was used as the powdery thermoplastic resin (A) instead of acrylic resin. The body was made.
 (実施例3)
 粉末状の熱可塑性樹脂(A)としてアクリル樹脂の代わりにポリ塩化ビニル樹脂25質量部を用い、可塑剤(B)としてDINPの代わりにフタル酸ジウンデシル(DUP、新日本理化社製)25質量部を用いたこと以外は、実施例1と同様にして試験体を作製した。
(Example 3)
As a powdered thermoplastic resin (A), 25 parts by mass of a polyvinyl chloride resin is used instead of an acrylic resin, and as a plasticizer (B), 25 parts by mass of diundecyl phthalate (DUP, Shin Nippon Rika Co., Ltd.) instead of DINP A test specimen was prepared in the same manner as in Example 1 except that was used.
 (実施例4)
 粉末状の熱可塑性樹脂(A)を18質量部に変更し、可塑剤(B)としてDINPの代わりにDUP10質量部を用い、含窒素発泡剤(C)を14質量部に変更し、リン系難燃剤(D)としてポリリン酸アンモニウム28質量部及び亜リン酸アルミニウム(APA-100、太平化学産業社製)6質量部とを併用し、炭化剤(E)を17質量部に変更したこと以外は、実施例1と同様にして試験体を作製した。
Example 4
The powdered thermoplastic resin (A) is changed to 18 parts by mass, DUP is used as a plasticizer (B) in place of 10 parts by mass, and the nitrogen-containing foaming agent (C) is changed to 14 parts by mass. Other than using 28 parts by mass of ammonium polyphosphate and 6 parts by mass of aluminum phosphite (APA-100, manufactured by Taihei Chemical Industrial Co., Ltd.) as the flame retardant (D), and changing the carbonizer (E) to 17 parts by mass Were prepared in the same manner as in Example 1.
 (実施例5)
 粉末状の熱可塑性樹脂(A)としてアクリル樹脂20質量部及びポリ塩化ビニル樹脂10質量部とを併用し、可塑剤(B)としてDINPの代わりにDUP40質量部を用い、リン系難燃剤(D)を30質量部、二酸化チタン(F)を12質量部に変更したこと以外は、実施例1と同様にして試験体を作製した。
(Example 5)
As a powdered thermoplastic resin (A), 20 parts by mass of an acrylic resin and 10 parts by mass of a polyvinyl chloride resin are used in combination. As a plasticizer (B), 40 parts by mass of DUP is used instead of DINP, and a phosphorus flame retardant (D ) Was changed to 30 parts by mass, and titanium dioxide (F) was changed to 12 parts by mass.
 (実施例6)
 含窒素発泡剤(C)としてメラミン8質量部及びジシアンジアミド(DICY7、三菱化学社製)4質量部とを併用したこと以外は、実施例1と同様にして試験体を作製した。
(Example 6)
A test specimen was prepared in the same manner as in Example 1 except that 8 parts by mass of melamine and 4 parts by mass of dicyandiamide (DICY7, manufactured by Mitsubishi Chemical Corporation) were used in combination as the nitrogen-containing foaming agent (C).
 (比較例1)
 含窒素発泡剤(C)の代わりに無機系発泡剤としてP-5(大塚化学社製)12質量部を用いたこと以外は、実施例1と同様にして試験体を作製した。
(Comparative Example 1)
A test specimen was prepared in the same manner as in Example 1 except that 12 parts by mass of P-5 (manufactured by Otsuka Chemical Co., Ltd.) was used as the inorganic foaming agent instead of the nitrogen-containing foaming agent (C).
 実施例1~6及び比較例1の試験体について、それぞれ、耐火性、貯蔵安定性、塗布作業性を評価した。評価の基準は下記のとおりである。 The test specimens of Examples 1 to 6 and Comparative Example 1 were evaluated for fire resistance, storage stability, and coating workability, respectively. The criteria for evaluation are as follows.
 <耐火性>
 JIS A1304の標準加熱曲線に準拠して、電気炉にて試験体の一面を加熱し、試験1時間後の加熱面とは反対側の表面の温度を熱電対により測定した。以下に評価基準を示す。
<Fire resistance>
In accordance with the standard heating curve of JIS A1304, one surface of the test body was heated in an electric furnace, and the temperature of the surface opposite to the heating surface after 1 hour of the test was measured with a thermocouple. The evaluation criteria are shown below.
 good:試験体の加熱面とは反対側の表面の温度が、加熱初期から1時間後まで162℃以下の範囲内である。 Good: The temperature of the surface opposite to the heating surface of the specimen is within a range of 162 ° C. or less from the initial heating to 1 hour later.
 not good:試験体の加熱面とは反対側の表面の温度が、加熱初期から162℃超である。 Not good: The temperature of the surface opposite to the heating surface of the specimen is over 162 ° C. from the beginning of heating.
 <貯蔵安定性>
 得られた熱膨張性耐火シート用樹脂組成物について、BL型粘度計で液温20℃の粘度を測定した後、蓋付きガラス瓶に注入して密封し、35℃で24時間貯蔵した。貯蔵後の樹脂組成物についてBL型粘度計で液温20℃の粘度を測定し、貯蔵前の樹脂組成物の粘度に対する粘度増加率を算出した。以下に評価基準を示す。
<Storage stability>
About the obtained resin composition for heat-expandable fireproof sheets, the viscosity at a liquid temperature of 20 ° C. was measured with a BL type viscometer, then poured into a glass bottle with a lid, sealed, and stored at 35 ° C. for 24 hours. About the resin composition after storage, the viscosity at a liquid temperature of 20 ° C. was measured with a BL type viscometer, and the rate of increase in viscosity with respect to the viscosity of the resin composition before storage was calculated. The evaluation criteria are shown below.
 good:熱膨張性耐火シート用樹脂組成物が固化しておらず、粘度増加率が50%未満である。 Good: The resin composition for a heat-expandable fireproof sheet is not solidified, and the rate of increase in viscosity is less than 50%.
 fear:熱膨張性耐火シート用樹脂組成物が固化していないが、粘度増加率が50%以上である。 Fear: Although the resin composition for a heat-expandable fireproof sheet is not solidified, the viscosity increase rate is 50% or more.
 not good:熱膨張性耐火シート用樹脂組成物が固化した。 Not good: The resin composition for heat-expandable fireproof sheets was solidified.
 <塗布作業性>
 基材としての紙に、スプレーガン(W-101、アネスト岩田製)を用い、スプレーガンの吐出口から紙までの距離が10cm、吐出圧0.3MPaの条件で、熱膨張性耐火シート用樹脂組成物を塗布した。以下に評価基準を示す。
<Coating workability>
Using a spray gun (W-101, manufactured by Anest Iwata) as the base material, the distance from the spray gun outlet to the paper is 10 cm, and the discharge pressure is 0.3 MPa. The composition was applied. The evaluation criteria are shown below.
 good:熱膨張性耐火シート用樹脂組成物が紙に均一かつ十分に塗布されている。 Good: The resin composition for a heat-expandable fireproof sheet is uniformly and sufficiently applied to paper.
 not good:熱膨張性耐火シート用樹脂組成物が紙にダスト状に吐出されており、均一かつ十分に塗布されていない。 Not good: The resin composition for a heat-expandable fireproof sheet is discharged in a dusty manner on paper and is not evenly and sufficiently applied.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実施例1-6の試験体においては、耐火性、貯蔵安定性及び塗布作業性のいずれの点においても良好であることが確認された。 As shown in Table 1, it was confirmed that the specimens of Example 1-6 were good in any of fire resistance, storage stability and coating workability.
 一方、含窒素発泡剤(C)の代わりに無機系発泡剤を配合した比較例1では、貯蔵安定性及び塗布作業性は良好であるが、耐火性の評価がnot goodに該当し、実施例に劣ることが確認された。 On the other hand, in Comparative Example 1 in which an inorganic foaming agent was blended instead of the nitrogen-containing foaming agent (C), the storage stability and coating workability were good, but the fire resistance evaluation was not good, and the examples It was confirmed to be inferior.

Claims (10)

  1.  粉末状の熱可塑性樹脂(A)、可塑剤(B)及び含窒素発泡剤(C)を含有し、前記可塑剤(B)中に前記粉末状の熱可塑性樹脂(A)及び前記含窒素発泡剤(C)が分散しているプラスチゾルである、
     熱膨張性耐火シート用樹脂組成物。
    A powdery thermoplastic resin (A), a plasticizer (B) and a nitrogen-containing foaming agent (C) are contained, and the powdery thermoplastic resin (A) and the nitrogen-containing foaming are contained in the plasticizer (B). A plastisol in which the agent (C) is dispersed,
    A resin composition for a heat-expandable fireproof sheet.
  2.  リン系難燃剤(D)を更に含有する、
     請求項1に記載の熱膨張性耐火シート用樹脂組成物。
    Further containing a phosphorus-based flame retardant (D),
    The resin composition for heat-expandable fireproof sheets according to claim 1.
  3.  炭化剤(E)を更に含有する、
     請求項1又は2に記載の熱膨張性耐火シート用樹脂組成物。
    Further containing a carbonizing agent (E),
    The resin composition for heat-expandable fireproof sheets according to claim 1 or 2.
  4.  二酸化チタン(F)を更に含有する、
     請求項1から3のいずれか一項に記載の熱膨張性耐火シート用樹脂組成物。
    Further containing titanium dioxide (F),
    The resin composition for heat-expandable fireproof sheets according to any one of claims 1 to 3.
  5.  前記粉末状の熱可塑性樹脂(A)が、ポリ塩化ビニル樹脂又はアクリル樹脂である、
     請求項1から4のいずれか一項に記載の熱膨張性耐火シート用樹脂組成物。
    The powdery thermoplastic resin (A) is a polyvinyl chloride resin or an acrylic resin.
    The resin composition for thermally expansible fireproof sheets as described in any one of Claim 1 to 4.
  6.  前記含窒素発泡剤(C)がメラミンである、
     請求項1から5のいずれか一項に記載の熱膨張性耐火シート用樹脂組成物。
    The nitrogen-containing blowing agent (C) is melamine,
    The resin composition for a heat-expandable fireproof sheet according to any one of claims 1 to 5.
  7.  基材の一方の面に、請求項1から6のいずれか一項に記載の熱膨張性耐火シート用樹脂組成物のプラスチゾルが硬化した熱膨張性耐火樹脂層を備える、
     熱膨張性耐火シート。
    A heat-expandable fire-resistant resin layer obtained by curing the plastisol of the resin composition for a heat-expandable fire-resistant sheet according to any one of claims 1 to 6 is provided on one surface of the substrate.
    Thermally expandable fireproof sheet.
  8.  前記基材が紙又は不織布である、
     請求項7に記載の熱膨張性耐火シート。
    The substrate is paper or nonwoven;
    The thermally expandable refractory sheet according to claim 7.
  9.  前記基材の他方の面に、無機層、有機層及び金属層からなる群より選択される少なくとも一層を有する、
     請求項7又は8に記載の熱膨張性耐火シート。
    On the other surface of the substrate, it has at least one layer selected from the group consisting of an inorganic layer, an organic layer, and a metal layer.
    The thermally expandable fireproof sheet according to claim 7 or 8.
  10.  請求項1から6のいずれか一項に記載の熱膨張性耐火シート用樹脂組成物を、基材の一方の面に塗布した後、加熱及び冷却して硬化させて、前記熱膨張性耐火樹脂層を形成する、
     熱膨張性耐火シートの製造方法。
    After applying the resin composition for a heat-expandable fireproof sheet according to any one of claims 1 to 6 to one surface of a substrate, the heat-expandable fireproof resin is cured by heating and cooling. Forming a layer,
    A method for producing a thermally expandable fireproof sheet.
PCT/JP2018/014554 2017-04-24 2018-04-05 Resin composition for thermally expandable fire resistant sheet, thermally expandable fire resistant sheet using same, and method for manufacturing same WO2018198706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515198A JPWO2018198706A1 (en) 2017-04-24 2018-04-05 Resin composition for heat-expandable fireproof sheet, heat-expandable fireproof sheet using the same, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085527 2017-04-24
JP2017-085527 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018198706A1 true WO2018198706A1 (en) 2018-11-01

Family

ID=63919818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014554 WO2018198706A1 (en) 2017-04-24 2018-04-05 Resin composition for thermally expandable fire resistant sheet, thermally expandable fire resistant sheet using same, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2018198706A1 (en)
WO (1) WO2018198706A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024903A (en) * 2019-07-31 2021-02-22 古河電気工業株式会社 Fire-resistant resin molded article
WO2021106313A1 (en) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 Thermal expansion fire-proof sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630889A (en) * 1979-08-21 1981-03-28 Taisei Corp Transfer sheet and manufacturing method for decorative laminate utilizing the same
JPH04247938A (en) * 1991-01-24 1992-09-03 Ig Tech Res Inc Fireproof panel
JPH05220879A (en) * 1991-09-13 1993-08-31 Dainippon Ink & Chem Inc Fire-resistant material and production thereof
JPH10131341A (en) * 1996-05-23 1998-05-19 Dr Wolman Gmbh Fire resistant rear side air permeable coated board
JP2000160727A (en) * 1998-12-01 2000-06-13 Sk Kaken Co Ltd Fire resistant heat insulating construction method
JP2000202846A (en) * 1999-01-18 2000-07-25 Sk Kaken Co Ltd Manufacture of foamed refractory sheet
JP2004092256A (en) * 2002-09-02 2004-03-25 Kajima Corp Fire-resistant structure
WO2016182059A1 (en) * 2015-05-14 2016-11-17 積水化学工業株式会社 Fire-resistant resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791353B1 (en) * 1999-03-23 2001-05-25 Chavanoz Ind FLAME RETARDANT PLASTIC COMPOSITION, WIRE AND TEXTILE STRUCTURE COATED WITH THE SAME
US20140073539A1 (en) * 2012-09-07 2014-03-13 Mitsui Chemicals, Inc. Aqueous dispersion and additives for fracturing work

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630889A (en) * 1979-08-21 1981-03-28 Taisei Corp Transfer sheet and manufacturing method for decorative laminate utilizing the same
JPH04247938A (en) * 1991-01-24 1992-09-03 Ig Tech Res Inc Fireproof panel
JPH05220879A (en) * 1991-09-13 1993-08-31 Dainippon Ink & Chem Inc Fire-resistant material and production thereof
JPH10131341A (en) * 1996-05-23 1998-05-19 Dr Wolman Gmbh Fire resistant rear side air permeable coated board
JP2000160727A (en) * 1998-12-01 2000-06-13 Sk Kaken Co Ltd Fire resistant heat insulating construction method
JP2000202846A (en) * 1999-01-18 2000-07-25 Sk Kaken Co Ltd Manufacture of foamed refractory sheet
JP2004092256A (en) * 2002-09-02 2004-03-25 Kajima Corp Fire-resistant structure
WO2016182059A1 (en) * 2015-05-14 2016-11-17 積水化学工業株式会社 Fire-resistant resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024903A (en) * 2019-07-31 2021-02-22 古河電気工業株式会社 Fire-resistant resin molded article
JP7382756B2 (en) 2019-07-31 2023-11-17 古河電気工業株式会社 Fire-resistant hard vinyl chloride resin molding
WO2021106313A1 (en) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 Thermal expansion fire-proof sheet
JPWO2021106313A1 (en) * 2019-11-29 2021-06-03
JP7190683B2 (en) 2019-11-29 2022-12-16 パナソニックIpマネジメント株式会社 thermally expandable fireproof sheet

Also Published As

Publication number Publication date
JPWO2018198706A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
EP3406439B1 (en) Refractory multilayer sheet
JP2018162397A (en) Resin composition for thermally-expandable refractory sheets, and thermally-expandable refractory sheet prepared therewith
WO2018198706A1 (en) Resin composition for thermally expandable fire resistant sheet, thermally expandable fire resistant sheet using same, and method for manufacturing same
JP2021165391A (en) Fire-resistant resin composition
JP5984342B2 (en) Coating material
KR20140033451A (en) Covering material
JP6527571B2 (en) Thermally expandable fireproof sheet
JP2022164720A (en) Fire-resistant resin composition, and thermally expandable sheet
EP3072861B1 (en) Phosphate-based ceramic coatings comprising aerogel particles
JP2004315812A (en) Intumescent fire-resistant coating
JP7108924B2 (en) Thermally expandable fireproof resin composition, thermally expandable fireproof sheet, and method for applying thermally expandable fireproof sheet
WO2010033766A2 (en) Fire resistant paint and article
JP7372734B2 (en) thermal expandable sheet
KR20140035949A (en) Laminate
PL182483B1 (en) Aqueous dispersion adhesive
JP6876965B2 (en) Thermally expandable fireproof sheet
JP2017128051A (en) Fireproof multilayer sheet
JP2019163459A (en) Thermally expandable sheet and method for producing thermally expandable sheet
KR101729384B1 (en) Flame Retardant Composition and Molded Article Comprising The Same
JP6178675B2 (en) Adhesive, laminated sheet and laminated structure
WO2021049152A1 (en) Thermoexpandable fireproof resin composition and thermoexpandable fireproof sheet
JP7026523B2 (en) Dressing
KR0182661B1 (en) Aqueous intumescent coating composition and the fire-proofing protection agent
JP2021031605A (en) Thermally-expandable refractory material
JP7444825B2 (en) Thermally expandable fireproof composition, thermally expandable fireproof sheet and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790355

Country of ref document: EP

Kind code of ref document: A1