WO2018198163A1 - Peripheral-state prediction method and peripheral-state prediction device - Google Patents

Peripheral-state prediction method and peripheral-state prediction device Download PDF

Info

Publication number
WO2018198163A1
WO2018198163A1 PCT/JP2017/016185 JP2017016185W WO2018198163A1 WO 2018198163 A1 WO2018198163 A1 WO 2018198163A1 JP 2017016185 W JP2017016185 W JP 2017016185W WO 2018198163 A1 WO2018198163 A1 WO 2018198163A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
behavior
prediction
vehicles
likelihood
Prior art date
Application number
PCT/JP2017/016185
Other languages
French (fr)
Japanese (ja)
Inventor
芳 方
卓也 南里
翔一 武井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/016185 priority Critical patent/WO2018198163A1/en
Publication of WO2018198163A1 publication Critical patent/WO2018198163A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • Patent Document 1 a technique for calculating a vehicle trajectory of another vehicle around the host vehicle and reflecting it in the driving support control of the host vehicle having a driving support function is known (Patent Document 1).
  • the invention described in Patent Document 1 detects vehicle trajectories of a plurality of other vehicles around the host vehicle at a place where the vehicle cannot travel as a surrounding situation (for example, a construction site), and calculates a representative trajectory from the detected vehicle trajectories. The own vehicle is controlled based on the representative trajectory.
  • Patent Document 1 does not consider anything about predicting the road surface condition as the surrounding state of the host vehicle, and it is difficult to predict the road surface condition.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a surrounding situation prediction method and a surrounding situation prediction apparatus capable of predicting a road surface situation as a surrounding situation of the host vehicle. .
  • FIG. 1 is a configuration diagram of an ambient situation prediction apparatus according to this embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the prediction intention based on the road structure according to this embodiment of the present invention.
  • FIG. 3A is a diagram for explaining an example when there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention.
  • FIG. 3B is a diagram for explaining an example when there is a difference between the actual behavior and the prediction intention according to the embodiment of the present invention.
  • FIG. 4A is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention.
  • FIG. 1 is a configuration diagram of an ambient situation prediction apparatus according to this embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the prediction intention based on the road structure according to this embodiment of the present invention.
  • FIG. 3A is a diagram for explaining an example when there is a difference between the actual behavior and the prediction intention according to this embodiment of the
  • FIG. 4B is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention.
  • FIG. 5A is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention.
  • FIG. 5B is a diagram for explaining another example in the case where there is a difference between the actual behavior and the prediction intention according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of similarity in behavior of other vehicles according to the present embodiment of the present invention.
  • FIG. 7 is a table for explaining an example of similarity in behavior of other vehicles according to the present embodiment of the present invention.
  • FIG. 8 is a diagram illustrating another example of the similarity in behavior of other vehicles according to the present embodiment of the present invention.
  • FIG. 9 is a diagram illustrating another example of the similarity in behavior of other vehicles according to the present embodiment of the invention.
  • FIG. 10 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 11 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 12 is a diagram illustrating another example of similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 13 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 10 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 11 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention.
  • FIG. 12 is a
  • FIG. 14 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment.
  • FIG. 15 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment.
  • FIG. 16 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment.
  • FIG. 17 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment.
  • FIG. 18 is a diagram for explaining an operation example at the intersection of the surrounding state prediction apparatus according to the present embodiment.
  • FIG. 19 is a flowchart for explaining an operation example at the intersection of the surrounding state prediction apparatus according to the present embodiment.
  • FIG. 20 is a diagram for explaining another operation example of the ambient situation prediction apparatus according to the present embodiment.
  • FIG. 21 is a diagram for explaining another operation example of the ambient situation prediction apparatus according to the present embodiment.
  • the ambient situation prediction method mainly detects the behaviors of a plurality of other vehicles around the host vehicle, predicts the surrounding conditions of the host vehicle based on the behaviors of the other vehicles, and It is used for a driving support device that supports driving of a vehicle.
  • the surrounding situation prediction device includes an object detection device 1, a vehicle position estimation device 2, a map acquisition device 3, and a controller 100.
  • a surrounding situation prediction apparatus is an apparatus mainly used for an automatic driving vehicle having an automatic driving function.
  • the object detection device 1 includes a plurality of different types of object detection sensors that detect objects around the host vehicle such as a laser radar, a millimeter wave radar, and a camera mounted on the host vehicle.
  • the object detection device 1 detects an object around the host vehicle using a plurality of object detection sensors.
  • the object detection device 1 detects other vehicles, motorcycles, bicycles, moving objects including pedestrians, and stationary objects including parked vehicles. For example, the object detection device 1 detects the position, posture (yaw angle), size, speed, acceleration, jerk, deceleration, and yaw rate of a moving object and a stationary object with respect to the host vehicle.
  • the own vehicle position estimation device 2 includes a position detection sensor that measures the absolute position of the own vehicle such as GPS (Global Positioning System) and odometry mounted on the own vehicle.
  • the own vehicle position estimation device 2 uses the position detection sensor to measure the absolute position of the own vehicle, that is, the position, posture, and speed of the own vehicle with respect to a predetermined reference point.
  • the map acquisition device 3 acquires map information indicating the structure of the road on which the host vehicle is traveling.
  • the map information acquired by the map acquisition device 3 includes road structure information such as absolute lane positions, lane connection relationships, and relative position relationships.
  • the map acquisition device 3 may own a map database storing map information, or may acquire map information from an external map data server by cloud computing.
  • the map acquisition apparatus 3 may acquire map information using vehicle-to-vehicle communication and road-to-vehicle communication.
  • the controller 100 predicts the road surface situation as the surrounding situation of the own vehicle based on the detection result by the object detection device 1 and the own vehicle position estimation device 2 and the acquisition information by the map acquisition device 3.
  • the controller 100 is a general-purpose microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit.
  • a computer program for causing the microcomputer to function as an ambient condition predicting device is installed.
  • the microcomputer functions as a plurality of information processing circuits included in the ambient situation prediction apparatus.
  • a plurality of information processing circuits included in the ambient situation prediction device is realized by software.
  • dedicated hardware for executing each information processing shown below is prepared and information processing is performed. It is also possible to construct a circuit.
  • a plurality of information processing circuits may be configured by individual hardware.
  • the controller 100 includes a detection integration unit 4, an object tracking unit 5, an in-map position calculation unit 6, a behavior prediction unit 10, an automatic route generation unit 21, and a vehicle control unit 22 as a plurality of information processing circuits.
  • the behavior prediction unit 10 includes a lane determination unit 11, an intention prediction unit 12, a track prediction unit 13, a likelihood calculation unit 14, a behavior storage unit 15, a behavior comparison unit 16, and a road surface condition prediction unit 17. And a behavior prediction correction unit 18.
  • the detection integration unit 4 integrates a plurality of detection results obtained from each of the plurality of object detection sensors provided in the object detection device 1, and outputs one detection result for each object. Specifically, the most rational behavior of the object with the smallest error is calculated from the behavior of the object obtained from each of the object detection sensors in consideration of error characteristics of each object detection sensor. Specifically, by using a known sensor fusion technique, the detection results obtained by a plurality of types of sensors are comprehensively evaluated to obtain a more accurate detection result.
  • the object tracking unit 5 tracks the object detected by the detection integration unit 4. Specifically, the object tracking unit 5 verifies (associates) the identity of objects between different times from the behaviors of the objects output at different times, and tracks the objects based on the associations. To do. Note that the behavior of an object output at a different time is stored in a memory in the controller 100 and used for trajectory prediction described later.
  • the in-map position calculation unit 6 estimates the position and orientation of the host vehicle on the map from the absolute position of the host vehicle obtained by the host vehicle position estimation device 2 and the map data acquired by the map acquisition device 3.
  • the lane determination unit 11 identifies the host vehicle and the traveling lane of the object on the map using the object information acquired from the object tracking unit 5 and the self-position estimated by the in-map position calculation unit 6.
  • the intention prediction unit 12 predicts all candidate lanes on which an object may travel based on information on the traveling lane acquired from the lane determination unit 11 and the road structure. For example, when the travel lane in which the object is traveling is a one-lane road, there is one candidate lane that the object may travel. On the other hand, when the traveling lane in which the object is traveling is a two-lane road, there are two candidate lanes on which the object is going to travel: a lane that travels straight through the traveling lane and a lane that is adjacent to the traveling lane. The intention prediction unit 12 outputs the predicted candidate lane to the track prediction unit 13.
  • the track prediction unit 13 uses the candidate lane predicted by the intention prediction unit 12 to predict the traveling track when the object has advanced to the candidate lane.
  • the trajectory prediction unit 13 outputs the predicted traveling trajectory to the likelihood calculation unit 14.
  • the lane predicted by the intention prediction unit 12 and the track predicted by the track prediction unit 13 may be referred to as a prediction intention below.
  • the likelihood calculation unit 14 calculates the possibility (probability) that the object travels along the travel track using the travel track predicted by the track prediction unit 13. In the present embodiment, the possibility that an object will travel on the predicted travel path is called likelihood.
  • the likelihood may be expressed by a number, or may be expressed using a relative expression such as high or low.
  • the likelihood calculating unit 14 also calculates the amount of change in likelihood during a predetermined time.
  • the behavior storage unit 15 stores the behavior of the object on the map using the behavior of the object obtained by the detection integration unit 4.
  • the behavior comparison unit 16 determines whether or not the object has moved as predicted using the behavior of the object stored in the behavior storage unit 15 and the likelihood calculated by the likelihood calculation unit 14.
  • the road surface state prediction unit 17 predicts the road surface state around the vehicle based on the result determined by the behavior comparison unit 16.
  • the behavior prediction correction unit 18 corrects the behavior prediction (likelihood) of the object following the rear based on the road surface state predicted by the road surface state prediction unit 17.
  • the road surface condition prediction unit 17 can predict the road surface condition in advance, the own vehicle can suppress sudden changes in the behavior of the vehicle such as sudden braking and sudden steering. In addition to suppressing the uncomfortable feeling given to passengers or passengers of other vehicles, it contributes to smooth traffic flow.
  • the traveling scene shown in FIG. 2 is a scene in which the host vehicle M0 is traveling behind the other vehicle M1 approaching the intersection.
  • the intention prediction unit 12 predicts all candidate lanes that the other vehicle M1 may travel.
  • FIG. 2 there are four possible lanes in which the other vehicle M1 may travel: straight ahead, change to the left lane, turn right at the intersection, and turn left at the intersection.
  • the track prediction unit 13 uses the candidate lane predicted in this way to predict the travel tracks 30 to 33 when the other vehicle M1 travels to the candidate lane.
  • the traveling track 30 is a traveling track on which the other vehicle M1 goes straight.
  • the travel track 31 is a travel track in which the other vehicle M1 changes lanes to the left lane.
  • the traveling track 32 is a traveling track in which the other vehicle M1 turns right at the intersection.
  • the travel track 33 is a travel track in which the other vehicle M1 turns left at the intersection.
  • the likelihood calculation unit 14 calculates the likelihood that the other vehicle M1 travels along the travel tracks 30 to 33 using the travel tracks 30 to 33 predicted by the track prediction unit 13. As shown in FIG. 2, the likelihood that the other vehicle M1 travels along the travel track 30 is 0.8. Further, the likelihood that the other vehicle M1 travels along the travel track 31 is 0.5. Further, the likelihood that the other vehicle M1 travels along the travel track 32 is 0.3. Further, the likelihood that the other vehicle M1 travels along the travel track 33 is 0.3. Likelihood means that the greater the value, the higher the likelihood. Therefore, in FIG. 2, the likelihood calculation unit 14 determines that the other vehicle M1 is most likely to go straight as it is.
  • the likelihood calculating unit 14 calculates the likelihood based on the vehicle speed of the other vehicle M1, the position with respect to the center line, the yaw angle, the blinker blinking, and the road structure. Further, the likelihood calculating unit 14 may calculate the likelihood in consideration of the behavior of other vehicles other than the other vehicle M1, the presence or absence of pedestrians, and the like.
  • the behavior comparison unit 16 determines that there is a difference between the actual behavior of the other vehicle M1 and the prediction intention.
  • the difference between the actual behavior and the prediction intention means a case where an actual other vehicle travels along a travel path having a low likelihood.
  • the other vehicle M2 will be described as a vehicle that travels behind the other vehicle M1.
  • the other vehicle M3 will be described as a vehicle that travels behind the other vehicle M2.
  • the other vehicle M9 will be described as a vehicle that travels in front of the host vehicle M0.
  • the difference between the actual behavior and the prediction intention is described as a case where an actual other vehicle travels along a travel path having a low likelihood, but is not limited thereto.
  • the trajectory prediction unit 13 predicts that the pedestrian 40 moves along the trajectory 41.
  • the behavior comparison unit 16 determines that there is a difference between the actual behavior and the prediction intention. That is, even when there is a difference between the actual behavior and the predicted trajectory, it can be expressed that there is a difference between the actual behavior and the prediction intention.
  • 4A and 4B have described the trajectory of the pedestrian 40, the same applies to the trajectory of the vehicle. That is, when there is a difference between the traveling track and the actual traveling track of the vehicle predicted by the track predicting unit 13, the behavior comparing unit 16 determines that there is a difference between the actual behavior and the prediction intention.
  • the likelihood calculating unit 14 predicts that the other vehicle M2 travels at the same speed as the other vehicle M1.
  • the bump 50 is installed on the road, but it is assumed that the host vehicle M0 has not detected the bump 50.
  • the bump 50 is a deceleration zone.
  • FIG. 5B when the other vehicle M2 decelerates to pass through the bump 50, the actual speed of the other vehicle M2 and the predicted speed are different. Thus, even when there is a difference between the actual speed and the predicted speed, it can be expressed that there is a difference between the actual behavior and the prediction intention.
  • the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the travel track 30 as 0.8, and the other vehicle M1 travels along the travel track 31.
  • the likelihood of traveling is calculated as 0.2.
  • the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 30 as 0.8, and the likelihood that the other vehicle M2 travels along the travel track 31 is 0.2. calculate.
  • the road surface condition prediction unit 17 determines that there is a possibility that there is a fallen object 60 in front of the other vehicle M3. Note that at the time T + 2, the road surface condition prediction unit 17 determines that the possibility is, for example, 40%. Based on this possibility, as shown in FIGS.
  • the behavior prediction correction unit 18 determines that the other vehicle M3 travels along the travel track 30 and the other vehicle M3 travels along the travel track 31. Correct the likelihood of traveling. The reason is that, when there is a falling object 60, the other vehicle M3 also travels avoiding the falling object 60, so that the possibility of traveling along the traveling track 31 increases. Specifically, the behavior prediction correction unit 18 adds ⁇ L1 to the likelihood that the other vehicle M3 travels along the travel track 31 as shown in FIG. ⁇ L1 is, for example, 0.3. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.8 to 0.5, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.2 to 0.5.
  • the road surface condition prediction unit 17 determines that there is a high possibility that there is a fallen object 60 in front of the other vehicle M4. For example, at time T + 3, the road surface condition prediction unit 17 determines that the possibility is 80%. This is because three units have taken a behavior showing similarity. As described above, the road surface condition prediction unit 17 increases the possibility (likelihood) of the fallen object 60 as the number of other vehicles exhibiting the predetermined similarity increases. Based on this possibility, as shown in FIGS.
  • the behavior prediction correction unit 18 determines that the other vehicle M4 travels along the travel track 30 and the other vehicle M3 travels along the travel track 31. Correct the likelihood of traveling.
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.5 to 0.1, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.5 to 0.9.
  • the behavior comparison unit 16 detects the similarity of the behaviors of the plurality of other vehicles M1 to M3 (in the example shown in FIG. 6), and the road surface condition prediction unit 17 determines the similarity based on this similarity.
  • the road surface condition (presence or absence of the fallen object 60) can be predicted as the surrounding condition of the host vehicle M0.
  • the automatic route generation unit 21 can generate a route in consideration of the road surface condition, and the vehicle control unit 22 can perform driving support suitable for the road surface condition.
  • the behavior prediction correction unit 18 corrects the behavior of the other vehicle based on the road surface state predicted by the road surface state prediction unit 17, and the road surface state prediction unit 17 based on the similarity of the behavior of the other vehicle after the correction. To predict the road surface condition. And the behavior prediction correction part 18 and the road surface condition prediction part 17 repeat this. Thereby, the road surface condition prediction unit 17 can accurately estimate the road surface condition.
  • the object detection device 1 detects the speeds of the other vehicles M1 to M4.
  • the likelihood calculating unit 14 predicts that the other vehicles M1 to M4 pass at the speed detected by the object detection device 1.
  • the speed detected by the object detection device 1 at time T1 is called, for example, a first speed.
  • the behavior prediction correction unit 18 predicts that the other vehicle M2 passes at the first speed.
  • the road surface condition prediction unit 17 determines that there is a possibility that there is a bump 50 in front of the other vehicle M3. Note that at the time T + 2, the road surface condition prediction unit 17 determines that the possibility is, for example, 40%. Based on this possibility, the behavior prediction correction unit 18 corrects the speed at which the other vehicle M3 passes to a speed lower than the first speed. The reason is that when there is the bump 50, the possibility that the other vehicle M3 decelerates becomes high.
  • the road surface condition prediction unit 17 determines that there is a high possibility that there is a bump 50 in front of the other vehicle M4. For example, at time T + 3, the road surface condition prediction unit 17 determines that the possibility is 80%. As described above, the road surface condition prediction unit 17 determines whether or not the bump 50 is present as the road surface condition around the host vehicle M0 even when it is difficult to confirm the road surface condition based on the similarity of deceleration of the other vehicles M1 to M3. Can be predicted.
  • the road surface condition estimation part 17 may predict a road surface condition based on the similarity of acceleration of other vehicles.
  • the road surface state prediction unit 17 can predict the road surface state even when it is difficult to confirm the road surface state.
  • the driving scenes at time T, time T + 1, and time T + 2 are the same as those in FIG.
  • the behavior comparison unit 16 compares the vehicle type of the other vehicle M3 with the vehicle types of the other vehicle M1 and the other vehicle M2.
  • the other vehicle M3 is a high truck with a chassis different from that of the other vehicle M1 and the other vehicle M2, the other vehicle M3 may be able to pass without avoiding the falling object 60.
  • the road surface condition prediction unit 17 determines that the possibility that there is a falling object 60 in front of the other vehicle M4 is 60%.
  • the behavior prediction correction unit 18 adds ⁇ L2 to the likelihood that the other vehicle M4 travels along the travel track 31 as shown in FIG. ⁇ L2 is a value smaller than ⁇ L1, for example, 0.2.
  • the reason why the behavior prediction correction unit 18 adds ⁇ L2 smaller than ⁇ L1 is that the possibility of the falling object 60 is high, but it is necessary to consider the case where there is no falling object 60.
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M4 travels along the travel track 30 from 0.5 to 0.3, and the likelihood that the other vehicle M4 travels along the travel track 31 is Correct from 0.5 to 0.7.
  • the road surface condition prediction unit 17 determines that there is a high possibility that there is a fallen object 60 in front of the other vehicle M5. For example, at the time T + 4, the road surface condition prediction unit 17 determines the possibility as 80%.
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M5 travels along the travel track 30 from 0.3 to 0.1, and sets the likelihood that the other vehicle M5 travels along the travel track 31, Correct from 0.7 to 0.9.
  • the road surface condition prediction unit 17 determines the fallen object 60 as the road surface condition around the host vehicle even when it is difficult to confirm the road surface condition based on the similarity of the traveling tracks of the plurality of other vehicles M1, M2, and M4. Presence or absence can be predicted.
  • the behavior prediction correction unit 18 calculates ⁇ L1 from the likelihood of the fourth vehicle. May be subtracted. This is because in the example shown in FIG. 11, the third vehicle and the fourth vehicle continue to go straight, and the possibility of falling objects in front of the fifth vehicle is reduced.
  • FIG. 12 As shown in FIG. 12, at time T, a pedestrian 40 is near the other vehicle M1. However, since there is a distance between the pedestrian 40 and the other vehicle M1, the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 30 as 0.8. The likelihood that M1 travels along the travel track 31 is calculated as 0.2.
  • the likelihood calculating unit 14 calculates the likelihood of traveling along the traveling track 30 as 0.8, and the other vehicle M1 is traveling.
  • the likelihood of traveling along 31 is calculated as 0.2.
  • the road surface condition prediction unit 17 determines that there is a possibility that there is a puddle 70 near the other vehicle M3.
  • the road surface condition prediction unit 17 determines the possibility as 40%, for example.
  • the behavior prediction correction part 18 adds (DELTA) L1 with respect to the likelihood that the other vehicle M3 drive
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.8 to 0.5, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.2 to 0.5.
  • the behavior comparison unit 16 determines whether or not the other vehicles M1 to M3 are decelerated when passing, and whether or not the pedestrian 40 is near the other vehicles M1 to M3. As shown in FIG. 13, when passing, the other vehicles M1 and M2 are not decelerated, and the other vehicle M3 is not decelerated. In addition, there was a pedestrian 40 near the other vehicles M1 and M2, but there was no pedestrian 40 near the other vehicle M3. Therefore, the reason why the other vehicles M1 and M2 have changed lanes is considered to avoid the pedestrian 40.
  • the behavior prediction correction unit 18 subtracts ⁇ L3 from the likelihood that the other vehicle M4 travels along the travel track 31.
  • ⁇ L3 is a value smaller than ⁇ L1, for example, 0.1.
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M4 travels along the travel track 30 from 0.5 to 0.6, and sets the likelihood that the other vehicle M4 travels along the travel track 31, Correct from 0.5 to 0.4.
  • the road surface condition prediction unit 17 determines that there is a high possibility that there is a puddle 70 near the other vehicle M5. For example, at the time T + 4, the road surface condition prediction unit 17 determines the possibility as 80%. Moreover, since the pedestrian 40 exists near the other vehicle M5 at time T + 4, the lane may be changed in order to avoid the pedestrian 40 as in the case of the other vehicle M1 and the other vehicle M2.
  • the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M5 travels along the travel track 30 from 0.6 to 0.2, and the likelihood that the other vehicle M5 travels along the travel track 31. Is corrected from 0.4 to 0.8.
  • the road surface condition prediction unit 17 automatically determines whether the road surface condition is difficult to check based on the similarity of the traveling tracks of the other vehicles M1 and M2 and the similarity of the traveling tracks and decelerations of the other vehicles M3 and M4.
  • the presence or absence of the puddle 70 can be predicted as the road surface condition around the vehicle.
  • step S101 the object detection apparatus 1 detects an object (for example, another vehicle) around the host vehicle using a plurality of object detection sensors.
  • the process proceeds to step S102, and the detection integration unit 4 integrates a plurality of detection results obtained from each of the plurality of object detection sensors, and outputs one detection result for each other vehicle.
  • the object tracking unit 5 tracks each other vehicle detected and integrated.
  • step S103 the own vehicle position estimation device 2 measures the absolute position of the own vehicle using the position detection sensor.
  • step S104 the map acquisition device 3 acquires map information indicating the structure of the road on which the host vehicle travels.
  • step S105 the in-map position calculation unit 6 estimates the position and orientation of the host vehicle on the map from the absolute position of the host vehicle measured in step S103 and the map data acquired in step S104. .
  • step S106 the behavior prediction unit 10 predicts the behavior of the other vehicle. Details of the behavior prediction unit 10 will be described with reference to FIG.
  • step S107 the road surface condition prediction unit 17 predicts the road surface condition around the host vehicle. Details of the road surface condition prediction unit 17 will be described with reference to FIG.
  • step S108 the automatic route generation unit 21 regenerates the route to the destination input in advance by the occupant based on the road surface conditions around the vehicle.
  • step S109 the vehicle control unit 22 proceeds to the route regenerated by the automatic route generation unit 21, so that various actuators (steering actuator, accelerator pedal actuator, brake actuator, etc.) of the host vehicle are used while using information from various sensors. To control automatic operation.
  • step S110 the surroundings state prediction device determines whether or not the ignition switch is off. If the ignition switch is on (No in step S110), the process returns to step S101. When the ignition switch is off (Yes in step S110), the surrounding state prediction device ends a series of processes.
  • step S201 the lane determination unit 11 determines the travel lane of the other vehicle on the map using the other vehicle information acquired from the object tracking unit 5.
  • step S202 the lane determination unit 11 determines whether there are lanes on the left and right of the other vehicle. If there are lanes on the left and right of the other vehicle (Yes in step S202), the process proceeds to step S202. On the other hand, when there are no lanes on the left and right of the other vehicle (No in step S202), the process proceeds to step S208.
  • step S203 the intention prediction unit 12 predicts an intention that the other vehicle may change lanes as one of the prediction intentions of the other vehicle.
  • the intention prediction unit 12 predicts a lane adjacent to the travel lane as a candidate lane on which another vehicle may travel.
  • the track prediction unit 13 generates a track when another vehicle changes lanes based on the intention generated by the intention prediction unit 12.
  • the map acquisition device 3 extracts lane information ahead of the other vehicle.
  • the process proceeds to step S207.
  • the plurality of lanes in front of the other vehicle means a plurality of lanes that intersect the lane in which the other vehicle is currently traveling.
  • step S207 the object tracking unit 5 calculates the angle between the lane in which the other vehicle has traveled a certain distance before and the lane in which the other vehicle is currently traveling. If the lane in which the other vehicle was traveling a certain distance before and the lane in which the other vehicle is currently traveling are the same, the angle is almost 0 degrees. If the lane in which the other vehicle was traveling a certain distance before and the lane in which the other vehicle is currently traveling are different, the angle changes according to the certain distance. When the fixed distance is large, the angle is small, and when the constant distance is small, the angle is large. On the other hand, when there are not a plurality of lanes ahead (No in step S206), the process proceeds to step S208.
  • step S207 If the angle calculated in step S207 is larger than the threshold (Yes in step S209), the process proceeds to step S211.
  • the case where the angle calculated in step S207 is larger than the threshold value is a case where the above-described constant distance is small. That is, not much time has passed since the other vehicle changed lanes, and there is a lane that intersects the lane in which the other vehicle is currently traveling in front of the other vehicle. Therefore, the other vehicle may turn right or left. Therefore, in step S211 and step S212, the intention prediction unit 12 predicts an intention that the other vehicle may turn right or left as one of the prediction intentions of the other vehicle. In other words, the intention prediction unit 12 predicts a lane that turns right or left as a candidate lane on which another vehicle may travel.
  • step S208 the intention prediction unit 12 predicts an intention that the other vehicle may go straight as one of the prediction intentions of the other vehicle.
  • the intention prediction unit 12 predicts a lane that travels straight on the traveling lane as a candidate lane on which another vehicle may travel.
  • the object tracking unit 5 calculates an offset amount.
  • the offset amount is a shift in the position of the other vehicle with respect to the center of the traveling lane.
  • the process proceeds to step S214, and the trajectory prediction unit 13 uses the candidate lane predicted by the intention prediction unit 12 to generate a travel trajectory when another vehicle travels to the candidate lane.
  • the process proceeds to step S215, and the likelihood calculating unit 14 calculates the likelihood that the other vehicle travels on the traveling track predicted in step S214.
  • step S ⁇ b> 301 shown in FIG. 16 the object tracking unit 5 acquires the actual behavior of the other vehicle and outputs the acquired behavior of the other vehicle to the behavior storage unit 15.
  • the behavior comparison unit 16 compares the actual behavior of the other vehicle stored in the behavior storage unit 15 with the behavior of the other vehicle predicted by the likelihood calculation unit 14.
  • the process proceeds to step S302, and when the other vehicle behaves with a low likelihood (Yes in step S302), the process proceeds to step S401.
  • the behavior with the lowest likelihood may be a behavior with the lowest likelihood among the likelihoods calculated by the likelihood calculating unit 14 or a behavior lower than a predetermined likelihood.
  • the behavior with the low likelihood may be a behavior other than the highest likelihood among the likelihoods calculated by the likelihood calculating unit 14.
  • the process proceeds to step S303.
  • step S303 when the difference between the predicted trajectory and the actual trajectory is large (Yes in step S303), the process proceeds to step S401.
  • step S304 when the difference between the predicted trajectory and the actual trajectory is small (No in step S303), the process proceeds to step S304. If the difference between the predicted speed and the actual speed is large in step S304 (Yes in step S304), the process proceeds to step S401.
  • the difference between the predicted speed and the actual speed is small (No in step S304)
  • the road surface condition prediction process ends.
  • step S401 shown in FIG. 17 the behavior comparison unit 16 determines whether there are two other vehicles that behave the same. If there are two other vehicles that behave the same (Yes in step S401), the process proceeds to step S402. On the other hand, if there is no other vehicle that behaves the same (No in step S401), the process waits.
  • step S402 the behavior prediction correction unit 18 corrects the prediction result of the behavior of the third other vehicle.
  • step S403 the behavior comparison unit 16 determines whether the third other vehicle has the same behavior as the previous two other vehicles.
  • the process proceeds to step S404, and the behavior prediction correction unit 18 determines the behavior of the fourth other vehicle. Correct the prediction results.
  • the process proceeds to step S405, and the behavior comparison unit 16 determines that the third other vehicle Compare the car model of this car with the car model of the other two other cars. If the vehicle type of the third other vehicle is different from the vehicle type of the previous two other vehicles (Yes in step S405), the process proceeds to step S406, and the behavior comparison unit 16 determines the vehicle type of the fourth other vehicle. Compare the models of the other three other vehicles. The process proceeds to step S407, and the behavior prediction correction unit 18 corrects the prediction result of the behavior of the fourth other vehicle based on the result of step S406.
  • step S408 the behavior comparison unit 16 compares the vehicle type of the fifth other vehicle with the vehicle type of the previous four other vehicles.
  • the process proceeds to step S409, and the behavior prediction correction unit 18 corrects the prediction result of the behavior of the fifth other vehicle based on the result of step S408. Thereafter, the process proceeds to step S415.
  • the process proceeds to step S410, and the behavior comparison unit 16 has passed the previous two vehicles. It is determined whether or not there was a pedestrian.
  • the behavior comparison part 16 should just refer the detection result of the object detection apparatus 1 about the presence or absence of a pedestrian.
  • step S410 If there are pedestrians on the sidewalk when the previous two vehicles pass (Yes in step S410), the process proceeds to step S411, and the behavior comparison unit 16 leaves the pedestrian when the third other vehicle passes. It is determined whether it has been. If the pedestrian is away when the third other vehicle passes (Yes in step S411), the process proceeds to step S412 and the behavior comparison unit 16 determines whether or not the third other vehicle has decelerated. Determine. When the third other vehicle decelerates (Yes in step S412), the process proceeds to step S413, and the behavior comparison unit 16 determines whether it is raining.
  • step S413 the process proceeds to step S414, and the behavior prediction correction unit 18 corrects the behavior prediction result of the third and subsequent vehicles according to the presence or absence of a pedestrian. Thereafter, the process proceeds to step S415.
  • step S415 the road surface state prediction unit 17 predicts the road surface state based on the similarity in behavior of other vehicles.
  • the rightmost lane is a right turn lane.
  • the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 30 as 0.6.
  • the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 31 as 0.2, and the likelihood that the other vehicle M1 travels along the traveling track 32 is 0. Calculate as 2.
  • the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 30 as 0.6. In addition, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M2 travels along the travel track 32 is 0. Calculate as 2.
  • the behavior prediction correction unit 18 does not correct the likelihood of the other vehicle M3.
  • the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M3 travels along the travel track 30 as 0.6. Further, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M3 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M3 travels along the travel track 32 is 0. Calculate as 2.
  • the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M4 travels along the travel track 30 as 0.6. Further, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M4 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M4 travels along the travel track 32 is 0. Calculate as 2.
  • the behavior prediction correction unit 18 may not correct the likelihood in the rear vehicle according to the similarity between the structure of the intersection (the presence or absence of a right turn dedicated lane) and the behavior of the other vehicle. On the other hand, the behavior prediction correction unit 18 may correct the likelihood in the rear vehicle according to the similarity between the structure of the intersection and the behavior of the other vehicle. This point will be described with reference to the flowchart of FIG.
  • step S501 the in-map position calculation unit 6 determines whether or not the self position is near an intersection. Specifically, the in-map position calculation unit 6 determines that the self position is near the intersection when the distance from the self position to the intersection is within a predetermined distance.
  • the predetermined distance is not particularly limited, but is, for example, 50 m. If the self-position is near the intersection (Yes in step S501), the process proceeds to step S502, and the map position calculation unit 6 refers to the map information acquired by the map acquisition device 3, and makes a right or left turn at the intersection. Determine if there is a dedicated lane.
  • step S503 If there is a right turn or left turn dedicated lane (Yes in step S502), the process proceeds to step S503, and the behavior comparison unit 16 determines whether the other vehicle has changed its lane to the right turn or left turn dedicated lane.
  • the process proceeds to step S505, and the behavior prediction correction unit 18 does not correct the prediction result in the rear vehicle. This is because other vehicles turn right or left without returning to the original lane.
  • the process proceeds to step S506, and the behavior comparison unit 16 determines whether the other vehicle has exited the right lane or left turn lane. Determine.
  • step S507 the behavior comparison unit 16 determines whether or not the other vehicle travels straight.
  • step S505 If the other vehicle goes straight ahead (Yes in step S507), the process proceeds to step S505. If there is no right turn or left turn dedicated lane (No in step S502), the process proceeds to step S504, and the behavior comparison unit 16 determines whether the other vehicle has turned right or left immediately after the lane change. When the other vehicle turns right or left immediately after the lane change (Yes in step S504), the process proceeds to step S505. If the other vehicle does not turn right or left immediately after changing lanes (No in step S504), or if the other vehicle does not exit the right or left turn lane (No in step S506), or the other vehicle is going straight ahead If not (No in step S507), the process proceeds to step S508.
  • step S508 the behavior comparison unit 16 determines whether the other vehicle has returned to the original lane after the lane change.
  • the process proceeds to step S509, and the road surface state prediction unit 17 predicts the road surface state based on the similarity of the behavior of the other vehicle,
  • the behavior prediction correction unit 18 corrects the prediction result in the rear vehicle. If the position is not near the intersection (No in step S501), or if the other vehicle does not return to the original lane after changing the lane (No in step S508), the process returns to step S501.
  • the surrounding situation prediction device detects a plurality of other vehicles around the host vehicle and detects the similarity in behavior of the plurality of other vehicles. Then, the surrounding situation prediction apparatus predicts the road surface situation as the surrounding situation of the host vehicle based on the similarity. Thereby, the surroundings state prediction device predicts the road surface state (presence / absence of fallen object 60, presence / absence of bump 50, presence / absence of puddle 70, presence / absence of construction site, etc.) as the surrounding state of the vehicle even when it is difficult to check the road surface state can do. In addition, the surrounding situation prediction apparatus can generate a route in consideration of the road surface condition, and can perform driving support suitable for the road surface condition.
  • the surrounding situation prediction device detects acceleration / deceleration of a plurality of other vehicles as the behavior of the plurality of other vehicles.
  • the surrounding situation prediction device predicts the road surface situation as the surrounding situation of the host vehicle based on the acceleration / deceleration similarity.
  • the surrounding situation prediction apparatus can predict the presence or absence of the bump 50 as the surrounding road surface condition of the host vehicle even when it is difficult to check the road surface condition by using the similarity of deceleration of the other vehicle.
  • the surrounding situation prediction apparatus may predict a road surface situation based on the similarity of acceleration of other vehicles.
  • the surrounding situation prediction device can predict the road condition even when it is difficult to confirm the road condition.
  • the surrounding situation prediction device detects the traveling locus of a plurality of other vehicles as the behavior of the plurality of other vehicles.
  • the surrounding situation prediction apparatus predicts the road surface situation as the surrounding situation of the host vehicle based on the similarity of the traveling tracks.
  • the surroundings state prediction device can predict the presence or absence of the fallen object 60 as the surrounding road surface situation of the host vehicle even when it is difficult to check the road surface state by using the similarity of the traveling tracks.
  • the surrounding situation prediction device calculates the likelihood of the road surface condition based on the similarity of the behavior of a plurality of other vehicles. For example, as shown in FIG. 6, in the surrounding situation prediction apparatus, when two other vehicles, that is, the other vehicle M1 and the other vehicle M2, behave similarly, there is a fallen object 60 in front of the other vehicle M3. The probability is calculated as 40%. Thereby, the surroundings state prediction apparatus can perform driving support more suitable for road surface conditions.
  • the likelihood may be an evaluation that it is simply possible, or may be a specific numerical value.
  • the ambient condition prediction apparatus increases the likelihood as the number of other vehicles exhibiting a predetermined similarity increases. For example, as shown in FIG. 6, when the three other vehicles, that is, the other vehicle M1, the other vehicle M2, and the other vehicle M3, behave in a similar manner, the surroundings state prediction device is placed in front of the other vehicle M4. The possibility that there is a fallen object 60 is calculated as 80%. As described above, the surrounding state predicting apparatus increases the likelihood as the number of other vehicles exhibiting the predetermined similarity increases. Thereby, the surrounding condition prediction apparatus can perform driving support suitable for the road surface condition, and can suppress a sense of discomfort given to the occupant.
  • the ambient situation prediction device detects the vehicle type of another vehicle that shows a predetermined similarity, and calculates the likelihood based on the vehicle type of the other vehicle. As described above, by using the vehicle type of the other vehicle exhibiting the predetermined similarity, the surrounding situation prediction apparatus can calculate a more accurate likelihood.
  • the surrounding situation prediction device detects a road structure around the other vehicle showing a predetermined similarity, and calculates a likelihood based on the road structure. As described above, by using the road structure around the other vehicle showing the predetermined similarity, the surrounding situation prediction apparatus can calculate a more accurate likelihood.
  • the road surface condition prediction unit 17 can predict that there is a fallen object in the right lane based on the similarity in behavior of the other vehicles M1 to M3.
  • the vehicle control unit 22 can change the lane while avoiding a place where a fallen object is predicted.
  • the road surface condition prediction unit 17 predicts that, for example, construction is being performed in the right lane and the right lane is impassable based on the similarity in behavior of the other vehicles M1 to M3. Since the own vehicle M0 cannot change the lane to the right lane, the automatic route generation unit 21 regenerates the route to the destination. Thereby, the vehicle control part 22 can drive the own vehicle smoothly to the destination.
  • the host vehicle is an automatically driven vehicle
  • the host vehicle may be a manually driven vehicle.
  • a speaker, a display, and a controller for controlling these user interfaces are used to guide the steering, accelerator, and brake operations to the driver using voice or images. It only has to have.

Abstract

This peripheral-state prediction method is for a travel assistance device that detects the behavior of a plurality of other vehicles in the periphery of the host vehicle, predicts the peripheral state of the host vehicle on the basis of the behavior of the plurality of other vehicles, and assists the travelling of the host vehicle on the basis of the prediction results. The peripheral-state prediction method detects the similarity of the behavior of the plurality of other vehicles, and on the basis of such similarity, predicts the state of the road surface, as the peripheral state of the host vehicle.

Description

周囲状況予測方法及び周囲状況予測装置Ambient situation prediction method and ambient situation prediction apparatus
 本発明は、周囲状況予測方法及び周囲状況予測装置に関する。 The present invention relates to a surrounding situation prediction method and a surrounding situation prediction apparatus.
 従来より、自車両の周囲の他車両の車両軌跡を算出して、走行支援機能を有する自車両の走行支援制御に反映する技術が知られている(特許文献1)。特許文献1に記載された発明は、周囲状況として車両が走行できない場所(例えば工事現場)において、自車周囲における複数の他車両の車両軌跡を検出し、検出した車両軌跡より代表軌跡を算出し、代表軌跡に基づいて自車両を制御する。 2. Description of the Related Art Conventionally, a technique for calculating a vehicle trajectory of another vehicle around the host vehicle and reflecting it in the driving support control of the host vehicle having a driving support function is known (Patent Document 1). The invention described in Patent Document 1 detects vehicle trajectories of a plurality of other vehicles around the host vehicle at a place where the vehicle cannot travel as a surrounding situation (for example, a construction site), and calculates a representative trajectory from the detected vehicle trajectories. The own vehicle is controlled based on the representative trajectory.
米国特許第8825265号明細書U.S. Pat. No. 8,825,265
 しかしながら、特許文献1に記載された発明は、自車両の周囲状況として路面の状況を予測することについて何ら検討しておらず、路面の状況を予測することは困難である。 However, the invention described in Patent Document 1 does not consider anything about predicting the road surface condition as the surrounding state of the host vehicle, and it is difficult to predict the road surface condition.
 本発明は、上記問題に鑑みて成されたものであり、その目的は、自車両の周囲状況として路面の状況を予測することができる周囲状況予測方法及び周囲状況予測装置を提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a surrounding situation prediction method and a surrounding situation prediction apparatus capable of predicting a road surface situation as a surrounding situation of the host vehicle. .
 本発明の一態様に係る周囲状況予測方法は、複数の他車両の挙動の類似性を検出し、この類似性に基づいて自車両の周囲状況として路面の状況を予測する。 The surrounding situation prediction method according to an aspect of the present invention detects the similarity of the behavior of a plurality of other vehicles, and predicts the road surface situation as the surrounding situation of the host vehicle based on the similarity.
 本発明によれば、自車両の周囲状況として路面の状況を予測することができる。 According to the present invention, the road surface condition can be predicted as the surrounding condition of the host vehicle.
図1は、本発明の本実施形態に係る周囲状況予測装置の構成図である。FIG. 1 is a configuration diagram of an ambient situation prediction apparatus according to this embodiment of the present invention. 図2は、本発明の本実施形態に係る道路構造に基づく予測意図について説明する図である。FIG. 2 is a diagram for explaining the prediction intention based on the road structure according to this embodiment of the present invention. 図3Aは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の一例について説明する図である。FIG. 3A is a diagram for explaining an example when there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention. 図3Bは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の一例について説明する図である。FIG. 3B is a diagram for explaining an example when there is a difference between the actual behavior and the prediction intention according to the embodiment of the present invention. 図4Aは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の他の例について説明する図である。FIG. 4A is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention. 図4Bは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の他の例について説明する図である。FIG. 4B is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention. 図5Aは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の他の例について説明する図である。FIG. 5A is a diagram illustrating another example in the case where there is a difference between the actual behavior and the prediction intention according to this embodiment of the present invention. 図5Bは、本発明の本実施形態に係る実際の挙動と予測意図に差がある場合の他の例について説明する図である。FIG. 5B is a diagram for explaining another example in the case where there is a difference between the actual behavior and the prediction intention according to the embodiment of the present invention. 図6は、本発明の本実施形態に係る他車両の挙動の類似性の一例について説明する図である。FIG. 6 is a diagram illustrating an example of similarity in behavior of other vehicles according to the present embodiment of the present invention. 図7は、本発明の本実施形態に係る他車両の挙動の類似性の一例について説明する表である。FIG. 7 is a table for explaining an example of similarity in behavior of other vehicles according to the present embodiment of the present invention. 図8は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する図である。FIG. 8 is a diagram illustrating another example of the similarity in behavior of other vehicles according to the present embodiment of the present invention. 図9は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する図である。FIG. 9 is a diagram illustrating another example of the similarity in behavior of other vehicles according to the present embodiment of the invention. 図10は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する表である。FIG. 10 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention. 図11は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する表である。FIG. 11 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention. 図12は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する図である。FIG. 12 is a diagram illustrating another example of similarity in behavior of other vehicles according to this embodiment of the present invention. 図13は、本発明の本実施形態に係る他車両の挙動の類似性の他の例について説明する表である。FIG. 13 is a table for explaining another example of the similarity in behavior of other vehicles according to this embodiment of the present invention. 図14は、本実施形態に係る周囲状況予測装置の一動作例を説明するフローチャートである。FIG. 14 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment. 図15は、本実施形態に係る周囲状況予測装置の一動作例を説明するフローチャートである。FIG. 15 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment. 図16は、本実施形態に係る周囲状況予測装置の一動作例を説明するフローチャートである。FIG. 16 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment. 図17は、本実施形態に係る周囲状況予測装置の一動作例を説明するフローチャートである。FIG. 17 is a flowchart for explaining an operation example of the ambient situation prediction apparatus according to the present embodiment. 図18は、本実施形態に係る周囲状況予測装置の、交差点における一動作例を説明する図である。FIG. 18 is a diagram for explaining an operation example at the intersection of the surrounding state prediction apparatus according to the present embodiment. 図19は、本実施形態に係る周囲状況予測装置の、交差点における一動作例を説明するフローチャートである。FIG. 19 is a flowchart for explaining an operation example at the intersection of the surrounding state prediction apparatus according to the present embodiment. 図20は、本実施形態に係る周囲状況予測装置の他の動作例を説明する図である。FIG. 20 is a diagram for explaining another operation example of the ambient situation prediction apparatus according to the present embodiment. 図21は、本実施形態に係る周囲状況予測装置の他の動作例を説明する図である。FIG. 21 is a diagram for explaining another operation example of the ambient situation prediction apparatus according to the present embodiment.
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。本発明に係る周囲状況予測方法は、主に自車両周囲の複数の他車両の挙動を検出し、複数の他車両の挙動に基づいて自車両の周囲状況を予測し、予測結果に基づいて自車両の走行を支援する走行支援装置に用いられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof is omitted. The ambient situation prediction method according to the present invention mainly detects the behaviors of a plurality of other vehicles around the host vehicle, predicts the surrounding conditions of the host vehicle based on the behaviors of the other vehicles, and It is used for a driving support device that supports driving of a vehicle.
 図1を参照して、本実施形態に係る周囲状況予測装置の構成を説明する。周囲状況予測装置は、物体検出装置1と、自車位置推定装置2と、地図取得装置3と、コントローラ100とを備える。周囲状況予測装置は、主に自動運転機能を備える自動運転車両に用いられる装置である。 Referring to FIG. 1, the configuration of the ambient situation prediction apparatus according to the present embodiment will be described. The surrounding situation prediction device includes an object detection device 1, a vehicle position estimation device 2, a map acquisition device 3, and a controller 100. A surrounding situation prediction apparatus is an apparatus mainly used for an automatic driving vehicle having an automatic driving function.
 物体検出装置1は、自車両に搭載された、レーザレーダやミリ波レーダ、カメラなど、自車両の周囲の物体を検出する、複数の異なる種類の物体検出センサを備える。物体検出装置1は、複数の物体検出センサを用いて、自車両の周囲における物体を検出する。物体検出装置1は、他車両、バイク、自転車、歩行者を含む移動物体、及び駐車車両を含む静止物体を検出する。例えば、物体検出装置1は、移動物体及び静止物体の自車両に対する位置、姿勢(ヨー角)、大きさ、速度、加速度、ジャーク、減速度、ヨーレートを検出する。 The object detection device 1 includes a plurality of different types of object detection sensors that detect objects around the host vehicle such as a laser radar, a millimeter wave radar, and a camera mounted on the host vehicle. The object detection device 1 detects an object around the host vehicle using a plurality of object detection sensors. The object detection device 1 detects other vehicles, motorcycles, bicycles, moving objects including pedestrians, and stationary objects including parked vehicles. For example, the object detection device 1 detects the position, posture (yaw angle), size, speed, acceleration, jerk, deceleration, and yaw rate of a moving object and a stationary object with respect to the host vehicle.
 自車位置推定装置2は、自車両に搭載された、GPS(グローバル・ポジショニング・システム)やオドメトリなど自車両の絶対位置を計測する位置検出センサを備える。自車位置推定装置2は、位置検出センサを用いて、自車両の絶対位置、すなわち、所定の基準点に対する自車両の位置、姿勢及び速度を計測する。 The own vehicle position estimation device 2 includes a position detection sensor that measures the absolute position of the own vehicle such as GPS (Global Positioning System) and odometry mounted on the own vehicle. The own vehicle position estimation device 2 uses the position detection sensor to measure the absolute position of the own vehicle, that is, the position, posture, and speed of the own vehicle with respect to a predetermined reference point.
 地図取得装置3は、自車両が走行する道路の構造を示す地図情報を取得する。地図取得装置3が取得する地図情報には、車線の絶対位置や車線の接続関係、相対位置関係などの道路構造の情報が含まれる。地図取得装置3は、地図情報を格納した地図データベースを所有してもよいし、クラウドコンピューティングにより地図情報を外部の地図データサーバから取得してもよい。また、地図取得装置3は、車車間通信、路車間通信を用いて地図情報を取得してもよい。 The map acquisition device 3 acquires map information indicating the structure of the road on which the host vehicle is traveling. The map information acquired by the map acquisition device 3 includes road structure information such as absolute lane positions, lane connection relationships, and relative position relationships. The map acquisition device 3 may own a map database storing map information, or may acquire map information from an external map data server by cloud computing. Moreover, the map acquisition apparatus 3 may acquire map information using vehicle-to-vehicle communication and road-to-vehicle communication.
 コントローラ100は、物体検出装置1及び自車位置推定装置2による検出結果及び地図取得装置3による取得情報に基づいて、自車両の周囲状況として路面の状況を予測する。コントローラ100は、CPU(中央処理装置)、メモリ、及び入出力部を備える汎用のマイクロコンピュータである。マイクロコンピュータには、周囲状況予測装置として機能させるためのコンピュータプログラムがインストールされている。コンピュータプログラムを実行することにより、マイクロコンピュータは、周囲状況予測装置が備える複数の情報処理回路として機能する。なお、ここでは、ソフトウェアによって周囲状況予測装置が備える複数の情報処理回路を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、情報処理回路を構成することも可能である。また、複数の情報処理回路を個別のハードウェアにより構成してもよい。 The controller 100 predicts the road surface situation as the surrounding situation of the own vehicle based on the detection result by the object detection device 1 and the own vehicle position estimation device 2 and the acquisition information by the map acquisition device 3. The controller 100 is a general-purpose microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit. A computer program for causing the microcomputer to function as an ambient condition predicting device is installed. By executing the computer program, the microcomputer functions as a plurality of information processing circuits included in the ambient situation prediction apparatus. Here, an example is shown in which a plurality of information processing circuits included in the ambient situation prediction device is realized by software. Of course, dedicated hardware for executing each information processing shown below is prepared and information processing is performed. It is also possible to construct a circuit. A plurality of information processing circuits may be configured by individual hardware.
 コントローラ100は、複数の情報処理回路として、検出統合部4と、物体追跡部5と、地図内位置演算部6と、挙動予測部10と、自動経路生成部21と、車両制御部22を備える。更に、挙動予測部10は、車線判定部11と、意図予測部12と、軌道予測部13と、尤度計算部14と、挙動記憶部15と、挙動比較部16と、路面状況予測部17と、挙動予測修正部18とを備える。 The controller 100 includes a detection integration unit 4, an object tracking unit 5, an in-map position calculation unit 6, a behavior prediction unit 10, an automatic route generation unit 21, and a vehicle control unit 22 as a plurality of information processing circuits. . Further, the behavior prediction unit 10 includes a lane determination unit 11, an intention prediction unit 12, a track prediction unit 13, a likelihood calculation unit 14, a behavior storage unit 15, a behavior comparison unit 16, and a road surface condition prediction unit 17. And a behavior prediction correction unit 18.
 検出統合部4は、物体検出装置1が備える複数の物体検出センサの各々から得られた複数の検出結果を統合して、各物体に対して一つの検出結果を出力する。具体的には、物体検出センサの各々から得られた物体の挙動から、各物体検出センサの誤差特性などを考慮した上で最も誤差が少なくなる最も合理的な物体の挙動を算出する。具体的には、既知のセンサ・フュージョン技術を用いることにより、複数種類のセンサで取得した検出結果を総合的に評価して、より正確な検出結果を得る。 The detection integration unit 4 integrates a plurality of detection results obtained from each of the plurality of object detection sensors provided in the object detection device 1, and outputs one detection result for each object. Specifically, the most rational behavior of the object with the smallest error is calculated from the behavior of the object obtained from each of the object detection sensors in consideration of error characteristics of each object detection sensor. Specifically, by using a known sensor fusion technique, the detection results obtained by a plurality of types of sensors are comprehensively evaluated to obtain a more accurate detection result.
 物体追跡部5は、検出統合部4によって検出された物体を追跡する。具体的に、物体追跡部5は、異なる時刻に出力された物体の挙動から、異なる時刻間における物体の同一性の検証(対応付け)を行い、かつ、その対応付けを基に、物体を追跡する。なお、異なる時刻に出力された物体の挙動は、コントローラ100内のメモリに記憶され、後述する軌道予測の際に用いられる。 The object tracking unit 5 tracks the object detected by the detection integration unit 4. Specifically, the object tracking unit 5 verifies (associates) the identity of objects between different times from the behaviors of the objects output at different times, and tracks the objects based on the associations. To do. Note that the behavior of an object output at a different time is stored in a memory in the controller 100 and used for trajectory prediction described later.
 地図内位置演算部6は、自車位置推定装置2により得られた自車両の絶対位置、及び地図取得装置3により取得された地図データから、地図上における自車両の位置及び姿勢を推定する。 The in-map position calculation unit 6 estimates the position and orientation of the host vehicle on the map from the absolute position of the host vehicle obtained by the host vehicle position estimation device 2 and the map data acquired by the map acquisition device 3.
 車線判定部11は、物体追跡部5から取得した物体情報や、地図内位置演算部6によって推定された自己位置を用いて、地図上における自車両及び物体の走行車線を特定する。 The lane determination unit 11 identifies the host vehicle and the traveling lane of the object on the map using the object information acquired from the object tracking unit 5 and the self-position estimated by the in-map position calculation unit 6.
 意図予測部12は、車線判定部11から取得した走行車線に関する情報や道路構造に基づいて、物体が進む可能性があるすべての候補車線を予測する。例えば、物体が走行している走行車線が1車線道路の場合、物体が進む可能性がある候補車線は1つとなる。一方、物体が走行している走行車線が2車線道路の場合、物体が進もうとする候補車線は、そのまま走行車線を直進する車線と、走行車線に隣接する車線の2つがある。意図予測部12は、予測した候補車線を軌道予測部13に出力する。 The intention prediction unit 12 predicts all candidate lanes on which an object may travel based on information on the traveling lane acquired from the lane determination unit 11 and the road structure. For example, when the travel lane in which the object is traveling is a one-lane road, there is one candidate lane that the object may travel. On the other hand, when the traveling lane in which the object is traveling is a two-lane road, there are two candidate lanes on which the object is going to travel: a lane that travels straight through the traveling lane and a lane that is adjacent to the traveling lane. The intention prediction unit 12 outputs the predicted candidate lane to the track prediction unit 13.
 軌道予測部13は、意図予測部12が予測した候補車線を用いて、物体がその候補車線に進んだ場合の走行軌道を予測する。軌道予測部13は、予測した走行軌道を尤度計算部14に出力する。なお、意図予測部12によって予測された車線や、軌道予測部13によって予測された軌道を、以下では予測意図という場合がある。 The track prediction unit 13 uses the candidate lane predicted by the intention prediction unit 12 to predict the traveling track when the object has advanced to the candidate lane. The trajectory prediction unit 13 outputs the predicted traveling trajectory to the likelihood calculation unit 14. The lane predicted by the intention prediction unit 12 and the track predicted by the track prediction unit 13 may be referred to as a prediction intention below.
 尤度計算部14は、軌道予測部13が予測した走行軌道を用いて、物体がその走行軌道に沿って走行する可能性(確率)を算出する。本実施形態では、物体が、予測された走行軌道に進む可能性を尤度とよぶ。また、尤度は、数字で表されてもよく、高い低いといった相対的な表現を用いて表されてもよい。尤度計算部14は、所定時間における尤度の変化量も算出する。 The likelihood calculation unit 14 calculates the possibility (probability) that the object travels along the travel track using the travel track predicted by the track prediction unit 13. In the present embodiment, the possibility that an object will travel on the predicted travel path is called likelihood. The likelihood may be expressed by a number, or may be expressed using a relative expression such as high or low. The likelihood calculating unit 14 also calculates the amount of change in likelihood during a predetermined time.
 挙動記憶部15は、検出統合部4により得られた物体の挙動を用いて、地図上における物体の挙動を記憶する。挙動比較部16は、挙動記憶部15に記憶されている物体の挙動と、尤度計算部14によって計算された尤度とを用いて、物体が予測通りに動いたか否かを判定する。 The behavior storage unit 15 stores the behavior of the object on the map using the behavior of the object obtained by the detection integration unit 4. The behavior comparison unit 16 determines whether or not the object has moved as predicted using the behavior of the object stored in the behavior storage unit 15 and the likelihood calculated by the likelihood calculation unit 14.
 路面状況予測部17は、挙動比較部16によって判定された結果に基づいて、自車周囲の路面の状況を予測する。挙動予測修正部18は、路面状況予測部17によって予測された路面の状況に基づいて、後方に続く物体の挙動予測(尤度)を修正する。 The road surface state prediction unit 17 predicts the road surface state around the vehicle based on the result determined by the behavior comparison unit 16. The behavior prediction correction unit 18 corrects the behavior prediction (likelihood) of the object following the rear based on the road surface state predicted by the road surface state prediction unit 17.
 自動経路生成部21は、予め乗員によって入力された目的地までの経路を生成する。また、自動経路生成部21は、自車周囲の路面の状況に基づいて経路を再生成することができる。車両制御部22は、自動経路生成部21によって生成された経路に進むため、各種センサの情報を使用しながら自車両の各種アクチュエータ(ステアリングアクチュエータ、アクセルペダルアクチュエータ、ブレーキアクチュエータなど)を制御して自動運転制御や運転支援制御(例えば、自動ブレーキ)を実行する。具体的には、車両制御部22は、予測した路面の状況に応じて自車両を制御するもので、例えば、スピードバンプの手前で減速する、路面の障害物を避ける、路肩に寄せる、対向車がいる場合に路面の凹凸を通過する順番、など乗員に与える違和感を抑制した制御を実行することができるようになる。また、路面状況予測部17では事前に路面の状況を予測することができるため、自車両は、急制動、急操舵など急な車両の挙動変化を抑制することができるようになり、自車両の乗員または他車両の乗員に与える違和感を抑制することに加え、交通流を円滑にすることに貢献する。 The automatic route generation unit 21 generates a route to a destination input in advance by a passenger. Moreover, the automatic route generation unit 21 can regenerate the route based on the condition of the road surface around the host vehicle. Since the vehicle control unit 22 proceeds to the route generated by the automatic route generation unit 21, the vehicle control unit 22 automatically controls various actuators (steering actuator, accelerator pedal actuator, brake actuator, etc.) of the own vehicle while using information from various sensors. Driving control and driving support control (for example, automatic braking) are executed. Specifically, the vehicle control unit 22 controls the host vehicle in accordance with the predicted road surface condition. For example, the vehicle control unit 22 decelerates before the speed bump, avoids an obstacle on the road surface, approaches the road shoulder, and an oncoming vehicle. It is possible to execute control that suppresses the uncomfortable feeling given to the occupant, such as the order of passing through the unevenness of the road surface when there is a road. Further, since the road surface condition prediction unit 17 can predict the road surface condition in advance, the own vehicle can suppress sudden changes in the behavior of the vehicle such as sudden braking and sudden steering. In addition to suppressing the uncomfortable feeling given to passengers or passengers of other vehicles, it contributes to smooth traffic flow.
 次に図2を参照して、道路構造に基づく予測意図について説明する。
 図2に示す走行シーンは、交差点に接近する他車両M1の左後方に自車両M0が走行しているシーンである。このような走行シーンにおいて、意図予測部12は、他車両M1が進む可能性があるすべての候補車線を予測する。図2に示すように、他車両M1が進む可能性がある候補車線として、そのまま直進する、左側車線に車線変更する、交差点で右折する、交差点で左折する、の4通りが考えられる。軌道予測部13は、このように予測された候補車線を用いて他車両M1がその候補車線に進んだ場合の走行軌道30~33を予測する。走行軌道30は、他車両M1がそのまま直進する走行軌道である。走行軌道31は、他車両M1が左側車線に車線変更する走行軌道である。走行軌道32は、他車両M1が交差点で右折する走行軌道である。走行軌道33は、他車両M1が交差点で左折する走行軌道である。
Next, the prediction intention based on the road structure will be described with reference to FIG.
The traveling scene shown in FIG. 2 is a scene in which the host vehicle M0 is traveling behind the other vehicle M1 approaching the intersection. In such a traveling scene, the intention prediction unit 12 predicts all candidate lanes that the other vehicle M1 may travel. As shown in FIG. 2, there are four possible lanes in which the other vehicle M1 may travel: straight ahead, change to the left lane, turn right at the intersection, and turn left at the intersection. The track prediction unit 13 uses the candidate lane predicted in this way to predict the travel tracks 30 to 33 when the other vehicle M1 travels to the candidate lane. The traveling track 30 is a traveling track on which the other vehicle M1 goes straight. The travel track 31 is a travel track in which the other vehicle M1 changes lanes to the left lane. The traveling track 32 is a traveling track in which the other vehicle M1 turns right at the intersection. The travel track 33 is a travel track in which the other vehicle M1 turns left at the intersection.
 尤度計算部14は、軌道予測部13が予測した走行軌道30~33を用いて、他車両M1が走行軌道30~33に沿って走行する尤度を算出する。図2に示すように、他車両M1が走行軌道30に沿って走行する尤度は、0.8である。また、他車両M1が走行軌道31に沿って走行する尤度は、0.5である。また、他車両M1が走行軌道32に沿って走行する尤度は、0.3である。また、他車両M1が走行軌道33に沿って走行する尤度は、0.3である。尤度は、値が大きいほど可能性が高いことを意味する。したがって、図2において、尤度計算部14は、他車両M1はそのまま直進する可能性がもっとも高いと判断する。なお、尤度計算部14は、他車両M1の車速、中心線に対する位置、ヨー角、ウィンカーの点滅の有無や道路構造に基づいて尤度を計算する。さらに、尤度計算部14は、他車両M1以外の他車両の挙動や歩行者の有無などを考慮して尤度を計算してもよい。 The likelihood calculation unit 14 calculates the likelihood that the other vehicle M1 travels along the travel tracks 30 to 33 using the travel tracks 30 to 33 predicted by the track prediction unit 13. As shown in FIG. 2, the likelihood that the other vehicle M1 travels along the travel track 30 is 0.8. Further, the likelihood that the other vehicle M1 travels along the travel track 31 is 0.5. Further, the likelihood that the other vehicle M1 travels along the travel track 32 is 0.3. Further, the likelihood that the other vehicle M1 travels along the travel track 33 is 0.3. Likelihood means that the greater the value, the higher the likelihood. Therefore, in FIG. 2, the likelihood calculation unit 14 determines that the other vehicle M1 is most likely to go straight as it is. The likelihood calculating unit 14 calculates the likelihood based on the vehicle speed of the other vehicle M1, the position with respect to the center line, the yaw angle, the blinker blinking, and the road structure. Further, the likelihood calculating unit 14 may calculate the likelihood in consideration of the behavior of other vehicles other than the other vehicle M1, the presence or absence of pedestrians, and the like.
 次に、図3~図5を参照して、実際の挙動と予測意図に差がある場合について説明する。図3Aに示すように、尤度計算部14は、他車両M1が走行軌道30に沿って走行する尤度は、0.8と計算し、他車両M1が走行軌道31に沿って走行する尤度は、0.2と計算する。他車両M1が走行軌道31に沿って走行する尤度が低い理由は、左側車線に他車両M9が存在しており、図3Aに示す他車両M1の位置から左側車線に車線変更する場合は、急な車線変更となるからである。なお、図3Aに示す走行軌道30は、他車両M1がそのまま直進する走行軌道である。また、図3Aに示す走行軌道31は、左側車線に車線変更する走行軌道である。 Next, the case where there is a difference between the actual behavior and the prediction intention will be described with reference to FIGS. As illustrated in FIG. 3A, the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 30 as 0.8, and the likelihood that the other vehicle M1 travels along the traveling track 31 is as follows. The degree is calculated as 0.2. The reason why the other vehicle M1 travels along the running track 31 is low is that the other vehicle M9 exists in the left lane, and when the lane change from the position of the other vehicle M1 shown in FIG. This is because it is a sudden lane change. Note that the traveling track 30 shown in FIG. 3A is a traveling track on which the other vehicle M1 travels straight. A traveling track 31 shown in FIG. 3A is a traveling track for changing the lane to the left lane.
 ここで、図3Bに示すように、他車両M1が左側車線に車線変更した場合、挙動比較部16は、実際の他車両M1の挙動と予測意図に差があると判定する。本実施形態において、実際の挙動と予測意図に差があるというのは、実際の他車両が尤度の低い走行軌道に沿って走行した場合をいう。なお、以下の図面において、特に断らない限り、他車両M2は、他車両M1の後方を走行する車両として説明する。また、他車両M3は、他車両M2の後方を走行する車両として説明する。また、他車両M9は、自車両M0の前方を走行する車両として説明する。なお、実際の挙動と予測意図に差があるというのは、実際の他車両が尤度の低い走行軌道に沿って走行した場合をいうと説明したが、これに限られない。例えば、図4Aに示すように、歩行者40が車道を横切る場合、軌道予測部13は、軌道41に沿って歩行者40が移動すると予測する。図4Bに示すように、実際は歩行者40が軌道42に沿って移動した場合、挙動比較部16は、実際の挙動と予測意図に差があると判定する。つまり、実際の挙動と、予測軌道とに差がある場合も実際の挙動と予測意図に差があると表現できる。なお、図4A及び図4Bでは歩行者40の軌道について説明したが、車両の軌道についても同様である。つまり、軌道予測部13によって予測されて走行軌道と実際の車両の走行軌道に差がある場合、挙動比較部16は、実際の挙動と予測意図に差があると判定する。 Here, as shown in FIG. 3B, when the other vehicle M1 changes the lane to the left lane, the behavior comparison unit 16 determines that there is a difference between the actual behavior of the other vehicle M1 and the prediction intention. In the present embodiment, the difference between the actual behavior and the prediction intention means a case where an actual other vehicle travels along a travel path having a low likelihood. In the following drawings, unless otherwise specified, the other vehicle M2 will be described as a vehicle that travels behind the other vehicle M1. The other vehicle M3 will be described as a vehicle that travels behind the other vehicle M2. The other vehicle M9 will be described as a vehicle that travels in front of the host vehicle M0. The difference between the actual behavior and the prediction intention is described as a case where an actual other vehicle travels along a travel path having a low likelihood, but is not limited thereto. For example, as shown in FIG. 4A, when the pedestrian 40 crosses the roadway, the trajectory prediction unit 13 predicts that the pedestrian 40 moves along the trajectory 41. As shown in FIG. 4B, when the pedestrian 40 actually moves along the track 42, the behavior comparison unit 16 determines that there is a difference between the actual behavior and the prediction intention. That is, even when there is a difference between the actual behavior and the predicted trajectory, it can be expressed that there is a difference between the actual behavior and the prediction intention. 4A and 4B have described the trajectory of the pedestrian 40, the same applies to the trajectory of the vehicle. That is, when there is a difference between the traveling track and the actual traveling track of the vehicle predicted by the track predicting unit 13, the behavior comparing unit 16 determines that there is a difference between the actual behavior and the prediction intention.
 また、図5Aに示すように、他車両M1~M3が、自車両M0と対面して走行する場合、尤度計算部14は、他車両M2は他車両M1と同程度の速度で走行すると予測する。なお、図5Aでは、道路上にバンプ50が設置されているが、自車両M0は、バンプ50を検出していないものとして説明する。バンプ50は、減速帯である。図5Bに示すように、他車両M2がバンプ50を通過するために減速した場合、実際の他車両M2の速度と、予測した速度は異なることになる。このように、実際の速度と、予測速度とに差がある場合も実際の挙動と予測意図に差があると表現できる。 Further, as shown in FIG. 5A, when other vehicles M1 to M3 travel facing the host vehicle M0, the likelihood calculating unit 14 predicts that the other vehicle M2 travels at the same speed as the other vehicle M1. To do. In FIG. 5A, the bump 50 is installed on the road, but it is assumed that the host vehicle M0 has not detected the bump 50. The bump 50 is a deceleration zone. As shown in FIG. 5B, when the other vehicle M2 decelerates to pass through the bump 50, the actual speed of the other vehicle M2 and the predicted speed are different. Thus, even when there is a difference between the actual speed and the predicted speed, it can be expressed that there is a difference between the actual behavior and the prediction intention.
 次に、図6~7を参照して、複数の他車両の挙動の類似性について説明する。図6に示すように、時刻Tにおいて、尤度計算部14は、他車両M1が走行軌道30に沿って走行する尤度は、0.8と計算し、他車両M1が走行軌道31に沿って走行する尤度は、0.2と計算する。 Next, the similarity in behavior of a plurality of other vehicles will be described with reference to FIGS. As shown in FIG. 6, at time T, the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the travel track 30 as 0.8, and the other vehicle M1 travels along the travel track 31. The likelihood of traveling is calculated as 0.2.
 時刻が進み、時刻T+1において、他車両M1が走行軌道31に沿って車線変更した場合、実際の他車両M1の挙動と予測意図に差があるが、挙動予測修正部18は、他車両M2の尤度を修正しない。挙動予測修正部18は、他車両M2が走行軌道30に沿って走行する尤度は、0.8と計算し、他車両M2が走行軌道31に沿って走行する尤度は、0.2と計算する。 When the time advances and the other vehicle M1 changes lanes along the travel track 31 at time T + 1, there is a difference between the actual behavior of the other vehicle M1 and the prediction intention, but the behavior prediction correction unit 18 Do not correct likelihood. The behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 30 as 0.8, and the likelihood that the other vehicle M2 travels along the travel track 31 is 0.2. calculate.
 時刻が進み、時刻T+2において、他車両M2が走行軌道31に沿って車線変更した場合、他車両M1及び他車両M2の2台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。類似性を示す挙動とは他車両M1及び他車両M2の走行軌跡を意味する。このような場合、路面状況予測部17は、他車両M3の前方に落下物60がある可能性があると判断する。なお、時刻T+2の時点では、路面状況予測部17は、その可能性を例えば40%と判断する。そして、この可能性に基づいて、図6~7に示すように、挙動予測修正部18は、他車両M3が走行軌道30に沿って走行する尤度、及び他車両M3が走行軌道31に沿って走行する尤度を修正する。理由は、落下物60がある場合、他車両M3も落下物60を避けて走行するため、走行軌道31に沿って走行する可能性が高くなるからである。具体的に、挙動予測修正部18は、図7に示すように、他車両M3が走行軌道31に沿って走行する尤度に対してΔL1を加算する。ΔL1は、例えば0.3である。挙動予測修正部18は、他車両M3が走行軌道30に沿って走行する尤度を、0.8から0.5に修正し、他車両M3が走行軌道31に沿って走行する尤度を、0.2から0.5に修正する。 When the time advances and the other vehicle M2 changes lanes along the travel track 31 at time T + 2, the two other vehicles, the other vehicle M1 and the other vehicle M2, are different from the predicted intention and exhibit behavior similar to each other. It will be done. The behavior indicating similarity means the traveling locus of the other vehicle M1 and the other vehicle M2. In such a case, the road surface condition prediction unit 17 determines that there is a possibility that there is a fallen object 60 in front of the other vehicle M3. Note that at the time T + 2, the road surface condition prediction unit 17 determines that the possibility is, for example, 40%. Based on this possibility, as shown in FIGS. 6 to 7, the behavior prediction correction unit 18 determines that the other vehicle M3 travels along the travel track 30 and the other vehicle M3 travels along the travel track 31. Correct the likelihood of traveling. The reason is that, when there is a falling object 60, the other vehicle M3 also travels avoiding the falling object 60, so that the possibility of traveling along the traveling track 31 increases. Specifically, the behavior prediction correction unit 18 adds ΔL1 to the likelihood that the other vehicle M3 travels along the travel track 31 as shown in FIG. ΔL1 is, for example, 0.3. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.8 to 0.5, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.2 to 0.5.
 時刻が進み、時刻T+3において、他車両M3が走行軌道31に沿って車線変更した場合、他車両M1、他車両M2、及び他車両M3の3台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。このような場合、路面状況予測部17は、他車両M4の前方に落下物60がある可能性が高くなったと判断する。例えば、時刻T+3の時点では、路面状況予測部17は、その可能性を80%と判断する。3台続けて類似性を示す挙動をとったからである。このように路面状況予測部17は、所定の類似性を示す他車両の台数が多いほど、落下物60の可能性(尤度)を高くする。そして、この可能性に基づいて、図6~7に示すように、挙動予測修正部18は、他車両M4が走行軌道30に沿って走行する尤度、及び他車両M3が走行軌道31に沿って走行する尤度を修正する。挙動予測修正部18は、他車両M3が走行軌道30に沿って走行する尤度を、0.5から0.1に修正し、他車両M3が走行軌道31に沿って走行する尤度を、0.5から0.9に修正する。このように、挙動比較部16は、複数の他車両M1~M3の挙動の類似性(図6に示す例では走行軌跡)を検出し、路面状況予測部17は、この類似性に基づいて、路面状況の確認が難しい場合でも自車両M0の周囲状況として路面の状況(落下物60の有無)を予測することができる。これにより、自動経路生成部21は、路面状況を考慮した経路を生成することができ、車両制御部22は、路面状況に適した走行支援を行うことができる。また、挙動予測修正部18は、路面状況予測部17が予測した路面状況に基づいて、他車両の挙動を修正し、路面状況予測部17は、修正後の他車両の挙動の類似性に基づいて路面状況を予測する。そして、挙動予測修正部18及び路面状況予測部17は、これを繰り返す。これにより、路面状況予測部17は、路面状況を精度よく推定することができる。 When the time advances and the other vehicle M3 changes lanes along the travel track 31 at time T + 3, the other vehicles M1, the other vehicle M2, and the other vehicle M3 are different from the prediction intention and similar. It is a behavior that shows sex. In such a case, the road surface condition prediction unit 17 determines that there is a high possibility that there is a fallen object 60 in front of the other vehicle M4. For example, at time T + 3, the road surface condition prediction unit 17 determines that the possibility is 80%. This is because three units have taken a behavior showing similarity. As described above, the road surface condition prediction unit 17 increases the possibility (likelihood) of the fallen object 60 as the number of other vehicles exhibiting the predetermined similarity increases. Based on this possibility, as shown in FIGS. 6 to 7, the behavior prediction correction unit 18 determines that the other vehicle M4 travels along the travel track 30 and the other vehicle M3 travels along the travel track 31. Correct the likelihood of traveling. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.5 to 0.1, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.5 to 0.9. In this way, the behavior comparison unit 16 detects the similarity of the behaviors of the plurality of other vehicles M1 to M3 (in the example shown in FIG. 6), and the road surface condition prediction unit 17 determines the similarity based on this similarity. Even when it is difficult to check the road surface condition, the road surface condition (presence or absence of the fallen object 60) can be predicted as the surrounding condition of the host vehicle M0. Thereby, the automatic route generation unit 21 can generate a route in consideration of the road surface condition, and the vehicle control unit 22 can perform driving support suitable for the road surface condition. In addition, the behavior prediction correction unit 18 corrects the behavior of the other vehicle based on the road surface state predicted by the road surface state prediction unit 17, and the road surface state prediction unit 17 based on the similarity of the behavior of the other vehicle after the correction. To predict the road surface condition. And the behavior prediction correction part 18 and the road surface condition prediction part 17 repeat this. Thereby, the road surface condition prediction unit 17 can accurately estimate the road surface condition.
 次に、図8を参照して、挙動の類似性の他の例について説明する。図8に示すように、時刻T1において、物体検出装置1は、他車両M1~M4の速度を検出する。尤度計算部14は、他車両M1~M4は、物体検出装置1によって検出された速度で通過すると予測する。時刻T1において、物体検出装置1によって検出された速度を、例えば第1速度とよぶ。 Next, another example of behavioral similarity will be described with reference to FIG. As shown in FIG. 8, at time T1, the object detection device 1 detects the speeds of the other vehicles M1 to M4. The likelihood calculating unit 14 predicts that the other vehicles M1 to M4 pass at the speed detected by the object detection device 1. The speed detected by the object detection device 1 at time T1 is called, for example, a first speed.
 時刻が進み、時刻T+1において、他車両M1が第1速度より低い速度で通過した場合、実際の他車両M1の挙動と予測意図に差があるが、挙動予測修正部18は、他車両M2の速度を修正しない。挙動予測修正部18は、他車両M2は、第1速度で通過すると予測する。 When the time advances and the other vehicle M1 passes at a speed lower than the first speed at the time T + 1, there is a difference between the actual behavior of the other vehicle M1 and the prediction intention. Do not modify speed. The behavior prediction correction unit 18 predicts that the other vehicle M2 passes at the first speed.
 時刻が進み、時刻T+2において、他車両M2が第1速度より低い速度で通過した場合、他車両M1及び他車両M2の2台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。類似性を示す挙動とは他車両M1及び他車両M2の減速を意味する。このような場合、路面状況予測部17は、他車両M3の前方にバンプ50がある可能性があると判断する。なお、時刻T+2の時点では、路面状況予測部17は、その可能性を例えば40%と判断する。そして、この可能性に基づいて、挙動予測修正部18は、他車両M3が通過する速度を第1速度より低い速度に修正する。理由は、バンプ50がある場合、他車両M3が減速する可能性が高くなるからである。 When the time advances and the other vehicle M2 passes at a speed lower than the first speed at time T + 2, the two other vehicles, the other vehicle M1 and the other vehicle M2, behave differently from the prediction intention and exhibit similarities. It will be done. The behavior indicating similarity means deceleration of the other vehicle M1 and the other vehicle M2. In such a case, the road surface condition prediction unit 17 determines that there is a possibility that there is a bump 50 in front of the other vehicle M3. Note that at the time T + 2, the road surface condition prediction unit 17 determines that the possibility is, for example, 40%. Based on this possibility, the behavior prediction correction unit 18 corrects the speed at which the other vehicle M3 passes to a speed lower than the first speed. The reason is that when there is the bump 50, the possibility that the other vehicle M3 decelerates becomes high.
 時刻が進み、時刻T+3において、他車両M3が第1速度より低い速度で通過した場合、他車両M1、他車両M2、及び他車両M3の3台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。このような場合、路面状況予測部17は、他車両M4の前方にバンプ50がある可能性が高くなったと判断する。例えば、時刻T+3の時点では、路面状況予測部17は、その可能性を80%と判断する。このように、路面状況予測部17は、複数の他車両M1~M3の減速の類似性に基づいて、路面状況の確認が難しい場合でも自車両M0の周囲の路面状況として、バンプ50の有無を予測することができる。 When the time advances and the other vehicle M3 passes at a speed lower than the first speed at time T + 3, the other vehicles M1, the other vehicle M2, and the other vehicle M3 are different from and similar to the prediction intention. It is a behavior that shows sex. In such a case, the road surface condition prediction unit 17 determines that there is a high possibility that there is a bump 50 in front of the other vehicle M4. For example, at time T + 3, the road surface condition prediction unit 17 determines that the possibility is 80%. As described above, the road surface condition prediction unit 17 determines whether or not the bump 50 is present as the road surface condition around the host vehicle M0 even when it is difficult to confirm the road surface condition based on the similarity of deceleration of the other vehicles M1 to M3. Can be predicted.
 なお、図8では他車両の減速の類似性について説明したが、路面状況予測部17は、他車両の加速の類似性に基づいて路面状況を予測してもよい。このように他車両の縦挙動の類似性を用いることにより、路面状況予測部17は、路面状況の確認が難しい場合でも路面状況を予測することができる。 In addition, although the similarity of deceleration of other vehicles was demonstrated in FIG. 8, the road surface condition estimation part 17 may predict a road surface condition based on the similarity of acceleration of other vehicles. Thus, by using the similarity of the vertical behavior of other vehicles, the road surface state prediction unit 17 can predict the road surface state even when it is difficult to confirm the road surface state.
 次に、図9~10を参照して、挙動の類似性の他の例について説明する。なお、図9において、時刻T、時刻T+1、及び時刻T+2の走行シーンについては図6と同じであるため説明を省略する。図9に示すように、時刻T+3において、他車両M3が走行軌道30に沿って直進した場合、他車両M3は、他車両M1及び他車両M2とは異なる挙動をしたことになる。このような場合、挙動比較部16は、他車両M3の車種と、他車両M1及び他車両M2の車種とを比較する。他車両M3が、他車両M1及び他車両M2とは異なるシャーシの高いトラックの場合、他車両M3は、落下物60を避けることなく通過できる場合がある。このような場合、路面状況予測部17は、他車両M4の前方に落下物60がある可能性を60%と判断する。挙動予測修正部18は、図10に示すように、他車両M4が走行軌道31に沿って走行する尤度に対してΔL2を加算する。ΔL2は、ΔL1より小さい値であり、例えば0.2である。挙動予測修正部18がΔL1より小さいΔL2を加算する理由は、落下物60の可能性は高いが、落下物60がない場合も考慮する必要があるからである。挙動予測修正部18は、他車両M4が走行軌道30に沿って走行する尤度を、0.5から0.3に修正し、他車両M4が走行軌道31に沿って走行する尤度を、0.5から0.7に修正する。 Next, another example of behavioral similarity will be described with reference to FIGS. In FIG. 9, the driving scenes at time T, time T + 1, and time T + 2 are the same as those in FIG. As shown in FIG. 9, when the other vehicle M3 travels straight along the traveling track 30 at time T + 3, the other vehicle M3 behaves differently from the other vehicle M1 and the other vehicle M2. In such a case, the behavior comparison unit 16 compares the vehicle type of the other vehicle M3 with the vehicle types of the other vehicle M1 and the other vehicle M2. When the other vehicle M3 is a high truck with a chassis different from that of the other vehicle M1 and the other vehicle M2, the other vehicle M3 may be able to pass without avoiding the falling object 60. In such a case, the road surface condition prediction unit 17 determines that the possibility that there is a falling object 60 in front of the other vehicle M4 is 60%. The behavior prediction correction unit 18 adds ΔL2 to the likelihood that the other vehicle M4 travels along the travel track 31 as shown in FIG. ΔL2 is a value smaller than ΔL1, for example, 0.2. The reason why the behavior prediction correction unit 18 adds ΔL2 smaller than ΔL1 is that the possibility of the falling object 60 is high, but it is necessary to consider the case where there is no falling object 60. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M4 travels along the travel track 30 from 0.5 to 0.3, and the likelihood that the other vehicle M4 travels along the travel track 31 is Correct from 0.5 to 0.7.
 時刻が進み、時刻T+4において、他車両M4が走行軌道31に沿って車線変更した場合、他車両M1、他車両M2、及び他車両M4の3台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。このような場合、路面状況予測部17は、他車両M5の前方に落下物60がある可能性が高くなったと判断する。例えば、時刻T+4の時点では、路面状況予測部17は、その可能性を80%と判断する。挙動予測修正部18は、他車両M5が走行軌道30に沿って走行する尤度を、0.3から0.1に修正し、他車両M5が走行軌道31に沿って走行する尤度を、0.7から0.9に修正する。このように、路面状況予測部17は、複数の他車両M1,M2,M4の走行軌跡の類似性に基づいて、路面状況の確認が難しい場合でも自車周囲の路面状況として、落下物60の有無を予測することができる。 When the time advances and the other vehicle M4 changes lanes along the travel track 31 at time T + 4, the other vehicles M1, the other vehicle M2, and the other vehicle M4 are different from the prediction intention and similar. It is a behavior that shows sex. In such a case, the road surface condition prediction unit 17 determines that there is a high possibility that there is a fallen object 60 in front of the other vehicle M5. For example, at the time T + 4, the road surface condition prediction unit 17 determines the possibility as 80%. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M5 travels along the travel track 30 from 0.3 to 0.1, and sets the likelihood that the other vehicle M5 travels along the travel track 31, Correct from 0.7 to 0.9. As described above, the road surface condition prediction unit 17 determines the fallen object 60 as the road surface condition around the host vehicle even when it is difficult to confirm the road surface condition based on the similarity of the traveling tracks of the plurality of other vehicles M1, M2, and M4. Presence or absence can be predicted.
 なお、図11に示すように、3台目と4台目の車種(例えば、シャーシの高いトラック)が同じであった場合、挙動予測修正部18は、4台目の車両の尤度からΔL1を減算してもよい。図11に示す例では3台目と4台目が続けて直進したことになり、5台目の車両の前方に落下物がある可能性が低くなったからである。 As shown in FIG. 11, when the third vehicle model and the fourth vehicle model (for example, a truck with a high chassis) are the same, the behavior prediction correction unit 18 calculates ΔL1 from the likelihood of the fourth vehicle. May be subtracted. This is because in the example shown in FIG. 11, the third vehicle and the fourth vehicle continue to go straight, and the possibility of falling objects in front of the fifth vehicle is reduced.
 次に、図12~13を参照して、挙動の類似性の他の例について説明する。図12に示すように、時刻Tにおいて、他車両M1の近くに歩行者40がいる。しかし、歩行者40と他車両M1との間に距離があるため、尤度計算部14は、他車両M1が走行軌道30に沿って走行する尤度は、0.8と計算し、他車両M1が走行軌道31に沿って走行する尤度は、0.2と計算する。 Next, another example of behavioral similarity will be described with reference to FIGS. As shown in FIG. 12, at time T, a pedestrian 40 is near the other vehicle M1. However, since there is a distance between the pedestrian 40 and the other vehicle M1, the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 30 as 0.8. The likelihood that M1 travels along the travel track 31 is calculated as 0.2.
 時刻が進み、時刻T+1において、他車両M1が走行軌道31に沿って車線変更した場合、実際の他車両M1の挙動と予測意図に差があり、他車両M2の近くに歩行者40がいる。しかし、歩行者40と他車両M2との間に距離があるため、尤度計算部14は、走行軌道30に沿って走行する尤度は、0.8と計算し、他車両M1が走行軌道31に沿って走行する尤度は、0.2と計算する。 When the time advances and the other vehicle M1 changes lanes along the travel track 31 at time T + 1, there is a difference between the actual behavior of the other vehicle M1 and the prediction intention, and the pedestrian 40 is near the other vehicle M2. However, since there is a distance between the pedestrian 40 and the other vehicle M2, the likelihood calculating unit 14 calculates the likelihood of traveling along the traveling track 30 as 0.8, and the other vehicle M1 is traveling. The likelihood of traveling along 31 is calculated as 0.2.
 時刻が進み、時刻T+2において、他車両M2が走行軌道31に沿って車線変更した場合、他車両M1及び他車両M2の2台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。このような場合、路面状況予測部17は、他車両M3の近くに水たまり70がある可能性があると判断する。時刻T+2の時点では、路面状況予測部17は、その可能性を例えば40%と判断する。そして、挙動予測修正部18は、図13に示すように、他車両M3が走行軌道31に沿って走行する尤度に対してΔL1を加算する。挙動予測修正部18は、他車両M3が走行軌道30に沿って走行する尤度を、0.8から0.5に修正し、他車両M3が走行軌道31に沿って走行する尤度を、0.2から0.5に修正する。 When the time advances and the other vehicle M2 changes lanes along the travel track 31 at time T + 2, the two other vehicles, the other vehicle M1 and the other vehicle M2, are different from the predicted intention and exhibit behavior similar to each other. It will be done. In such a case, the road surface condition prediction unit 17 determines that there is a possibility that there is a puddle 70 near the other vehicle M3. At time T + 2, the road surface condition prediction unit 17 determines the possibility as 40%, for example. And the behavior prediction correction part 18 adds (DELTA) L1 with respect to the likelihood that the other vehicle M3 drive | works along the driving track 31, as shown in FIG. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M3 travels along the travel track 30 from 0.8 to 0.5, and the likelihood that the other vehicle M3 travels along the travel track 31 is Correct from 0.2 to 0.5.
 時刻が進み、時刻T+3において、他車両M3が走行軌道30に沿って直進した場合、他車両M3は、他車両M1及び他車両M2とは異なる挙動をしたことになる。このような場合、挙動比較部16は、通過する際に他車両M1~M3が減速したか否か、他車両M1~M3の近くに歩行者40がいたか否かを判断する。図13に示すように、通過する際に他車両M1~M2は減速しておらず、他車両M3は減速していない。また、他車両M1~M2の近くに歩行者40がいたが、他車両M3の近くに歩行者40はいなかった。よって、他車両M1~M2が車線変更した理由は、歩行者40を回避するためと考えられる。一方、他車両M3が減速した理由は、水たまり70を回避するためと考えられる。つまり、他車両M4の近くに水たまり70がある可能性は高いものの、水たまり70がない場合も考慮する必要がある。そこで、挙動予測修正部18は、他車両M4が走行軌道31に沿って走行する尤度に対してΔL3を減算する。ΔL3はΔL1より小さい値であり、例えば0.1である。挙動予測修正部18は、他車両M4が走行軌道30に沿って走行する尤度を、0.5から0.6に修正し、他車両M4が走行軌道31に沿って走行する尤度を、0.5から0.4に修正する。 When the time advances and the other vehicle M3 goes straight along the traveling track 30 at time T + 3, the other vehicle M3 behaves differently from the other vehicle M1 and the other vehicle M2. In such a case, the behavior comparison unit 16 determines whether or not the other vehicles M1 to M3 are decelerated when passing, and whether or not the pedestrian 40 is near the other vehicles M1 to M3. As shown in FIG. 13, when passing, the other vehicles M1 and M2 are not decelerated, and the other vehicle M3 is not decelerated. In addition, there was a pedestrian 40 near the other vehicles M1 and M2, but there was no pedestrian 40 near the other vehicle M3. Therefore, the reason why the other vehicles M1 and M2 have changed lanes is considered to avoid the pedestrian 40. On the other hand, the reason for the deceleration of the other vehicle M3 is considered to avoid the puddle 70. That is, although there is a high possibility that there is a puddle 70 near the other vehicle M4, it is necessary to consider a case where there is no puddle 70. Therefore, the behavior prediction correction unit 18 subtracts ΔL3 from the likelihood that the other vehicle M4 travels along the travel track 31. ΔL3 is a value smaller than ΔL1, for example, 0.1. The behavior prediction correction unit 18 corrects the likelihood that the other vehicle M4 travels along the travel track 30 from 0.5 to 0.6, and sets the likelihood that the other vehicle M4 travels along the travel track 31, Correct from 0.5 to 0.4.
 時刻が進み、時刻T+4において、他車両M4が走行軌道30に沿って直進し、かつ減速した場合、他車両M3、他車両M4の2台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。このような場合、路面状況予測部17は、他車両M5の近くに水たまり70がある可能性が高くなったと判断する。例えば、時刻T+4の時点では、路面状況予測部17は、その可能性を80%と判断する。また、時刻T+4において、他車両M5の近くに歩行者40がいるため、他車両M1及び他車両M2と同様に、歩行者40を回避するため、車線変更する可能性がある。そこで、挙動予測修正部18は、他車両M5が走行軌道30に沿って走行する尤度を、0.6から0.2に修正し、他車両M5が走行軌道31に沿って走行する尤度を、0.4から0.8に修正する。このように、路面状況予測部17は、他車両M1,M2の走行軌跡の類似性、及び他車両M3,M4の走行軌跡及び減速の類似性に基づいて、路面状況の確認が難しい場合でも自車周囲の路面状況として、水たまり70の有無を予測することができる。 When the time advances and, at time T + 4, the other vehicle M4 goes straight along the traveling track 30 and decelerates, the other vehicles M3 and other vehicles M4 are different from the prediction intention and have similarities. That is the behavior that we showed. In such a case, the road surface condition prediction unit 17 determines that there is a high possibility that there is a puddle 70 near the other vehicle M5. For example, at the time T + 4, the road surface condition prediction unit 17 determines the possibility as 80%. Moreover, since the pedestrian 40 exists near the other vehicle M5 at time T + 4, the lane may be changed in order to avoid the pedestrian 40 as in the case of the other vehicle M1 and the other vehicle M2. Therefore, the behavior prediction correction unit 18 corrects the likelihood that the other vehicle M5 travels along the travel track 30 from 0.6 to 0.2, and the likelihood that the other vehicle M5 travels along the travel track 31. Is corrected from 0.4 to 0.8. In this way, the road surface condition prediction unit 17 automatically determines whether the road surface condition is difficult to check based on the similarity of the traveling tracks of the other vehicles M1 and M2 and the similarity of the traveling tracks and decelerations of the other vehicles M3 and M4. The presence or absence of the puddle 70 can be predicted as the road surface condition around the vehicle.
 次に、図14のフローチャートを参照して、周囲状況予測装置の一動作例について説明する。このフローチャートは、例えばイグニッションスイッチがオンされたときに開始する。 Next, an example of operation of the surrounding situation prediction apparatus will be described with reference to the flowchart of FIG. This flowchart is started when, for example, the ignition switch is turned on.
 ステップS101において、物体検出装置1は、複数の物体検出センサを用いて、自車両の周囲における物体(例えば、他車両)を検出する。ステップS102に処理が進み、検出統合部4は、複数の物体検出センサの各々から得られた複数の検出結果を統合して、各他車両に対して一つの検出結果を出力する。そして、物体追跡部5が、検出及び統合された各他車両を追跡する。 In step S101, the object detection apparatus 1 detects an object (for example, another vehicle) around the host vehicle using a plurality of object detection sensors. The process proceeds to step S102, and the detection integration unit 4 integrates a plurality of detection results obtained from each of the plurality of object detection sensors, and outputs one detection result for each other vehicle. Then, the object tracking unit 5 tracks each other vehicle detected and integrated.
 ステップS103に処理が進み、自車位置推定装置2は、位置検出センサを用いて、自車両の絶対位置を計測する。ステップS104に処理が進み、地図取得装置3は、自車両が走行する道路の構造を示す地図情報を取得する。ステップS105に処理が進み、地図内位置演算部6は、ステップS103で計測された自車両の絶対位置、及びステップS104で取得された地図データから、地図上における自車両の位置及び姿勢を推定する。 The process proceeds to step S103, and the own vehicle position estimation device 2 measures the absolute position of the own vehicle using the position detection sensor. In step S104, the map acquisition device 3 acquires map information indicating the structure of the road on which the host vehicle travels. The process proceeds to step S105, and the in-map position calculation unit 6 estimates the position and orientation of the host vehicle on the map from the absolute position of the host vehicle measured in step S103 and the map data acquired in step S104. .
 ステップS106に処理が進み、挙動予測部10は、他車両の挙動を予測する。挙動予測部10に詳細については図15を用いて説明する。ステップS107において、路面状況予測部17は、自車周囲の路面の状況を予測する。路面状況予測部17の詳細については、図16を用いて説明する。ステップS108において、自動経路生成部21は、予め乗員によって入力された目的地までの経路を、自車周囲の路面の状況に基づいて再生成する。ステップS109において、車両制御部22は、自動経路生成部21によって再生成された経路に進むため、各種センサの情報を使用しながら自車両の各種アクチュエータ(ステアリングアクチュエータ、アクセルペダルアクチュエータ、ブレーキアクチュエータなど)を制御して自動運転制御を実行する。 The process proceeds to step S106, and the behavior prediction unit 10 predicts the behavior of the other vehicle. Details of the behavior prediction unit 10 will be described with reference to FIG. In step S107, the road surface condition prediction unit 17 predicts the road surface condition around the host vehicle. Details of the road surface condition prediction unit 17 will be described with reference to FIG. In step S108, the automatic route generation unit 21 regenerates the route to the destination input in advance by the occupant based on the road surface conditions around the vehicle. In step S109, the vehicle control unit 22 proceeds to the route regenerated by the automatic route generation unit 21, so that various actuators (steering actuator, accelerator pedal actuator, brake actuator, etc.) of the host vehicle are used while using information from various sensors. To control automatic operation.
 ステップS110において、周囲状況予測装置は、イグニッションスイッチがオフか否かを判定する。イグニッションスイッチがオンの場合(ステップS110でNo)、ステップS101に処理が戻る。イグニッションスイッチがオフの場合(ステップS110でYes)、周囲状況予測装置は、一連の処理を終了する。 In step S110, the surroundings state prediction device determines whether or not the ignition switch is off. If the ignition switch is on (No in step S110), the process returns to step S101. When the ignition switch is off (Yes in step S110), the surrounding state prediction device ends a series of processes.
 次に、図15に示すフローチャートを参照して、他車両の挙動予測処理について説明する。 Next, the behavior prediction process for other vehicles will be described with reference to the flowchart shown in FIG.
 ステップS201において、車線判定部11は、物体追跡部5から取得した他車両情報を用いて、地図上の他車両の走行車線を判定する。ステップS202において、車線判定部11は、他車両の左右に車線があるか否かを判定する。他車両の左右に車線がある場合(ステップS202でYes)、処理はステップS202に進む。一方、他車両の左右に車線がない場合(ステップS202でNo)、処理はステップS208に進む。ステップS203において、意図予測部12は、他車両の予測意図の一つとして、他車両が車線変更する可能性がある意図を予測する。つまり、意図予測部12は、他車両が進む可能性がある候補車線として、走行車線に隣接する車線を予測する。ステップS204において、軌道予測部13は、意図予測部12が生成した意図に基づいて他車両が車線変更した場合の軌道を生成する。ステップS205において、地図取得装置3は、他車両の前方の車線情報を抽出する。他車両の前方に複数の車線がある場合(ステップS206でYes)、処理がステップS207に進む。ここで、他車両の前方の複数の車線とは、現在他車両が走行している車線に交差する複数の車線をいう。ステップS207において、物体追跡部5は、一定距離前に他車両が走行していた車線と、現在他車両が走行している車線との角度を計算する。一定距離前に他車両が走行していた車線と、現在他車両が走行している車線とが同じであれば、角度は、ほぼ0度となる。一定距離前に他車両が走行していた車線と、現在他車両が走行している車線が異なっていれば、角度は、一定距離に応じて変化する。一定距離が大きい場合は角度が小さくなり、一定距離が小さい場合は角度が大きくなる。一方、前方に複数の車線がない場合(ステップS206でNo)、処理がステップS208に進む。 In step S201, the lane determination unit 11 determines the travel lane of the other vehicle on the map using the other vehicle information acquired from the object tracking unit 5. In step S202, the lane determination unit 11 determines whether there are lanes on the left and right of the other vehicle. If there are lanes on the left and right of the other vehicle (Yes in step S202), the process proceeds to step S202. On the other hand, when there are no lanes on the left and right of the other vehicle (No in step S202), the process proceeds to step S208. In step S203, the intention prediction unit 12 predicts an intention that the other vehicle may change lanes as one of the prediction intentions of the other vehicle. That is, the intention prediction unit 12 predicts a lane adjacent to the travel lane as a candidate lane on which another vehicle may travel. In step S <b> 204, the track prediction unit 13 generates a track when another vehicle changes lanes based on the intention generated by the intention prediction unit 12. In step S205, the map acquisition device 3 extracts lane information ahead of the other vehicle. When there are a plurality of lanes ahead of another vehicle (Yes in step S206), the process proceeds to step S207. Here, the plurality of lanes in front of the other vehicle means a plurality of lanes that intersect the lane in which the other vehicle is currently traveling. In step S207, the object tracking unit 5 calculates the angle between the lane in which the other vehicle has traveled a certain distance before and the lane in which the other vehicle is currently traveling. If the lane in which the other vehicle was traveling a certain distance before and the lane in which the other vehicle is currently traveling are the same, the angle is almost 0 degrees. If the lane in which the other vehicle was traveling a certain distance before and the lane in which the other vehicle is currently traveling are different, the angle changes according to the certain distance. When the fixed distance is large, the angle is small, and when the constant distance is small, the angle is large. On the other hand, when there are not a plurality of lanes ahead (No in step S206), the process proceeds to step S208.
 ステップS207で計算された角度が閾値より大きい場合(ステップS209でYes)、処理はステップS211に進む。ステップS207で計算された角度が閾値より大きい場合というのは、上述した一定距離が小さい場合である。つまり、他車両が車線変更してから時間があまり経過しておらず、かつ、他車両の前方には現在他車両が走行している車線に交差する車線がある。よって、他車両は、右折または左折する可能性がある。そこで、ステップS211及びステップS212において、意図予測部12は、他車両の予測意図の一つとして、他車両が右折または左折する可能性がある意図を予測する。つまり、意図予測部12は、他車両が進む可能性がある候補車線として、右折または左折する車線を予測する。 If the angle calculated in step S207 is larger than the threshold (Yes in step S209), the process proceeds to step S211. The case where the angle calculated in step S207 is larger than the threshold value is a case where the above-described constant distance is small. That is, not much time has passed since the other vehicle changed lanes, and there is a lane that intersects the lane in which the other vehicle is currently traveling in front of the other vehicle. Therefore, the other vehicle may turn right or left. Therefore, in step S211 and step S212, the intention prediction unit 12 predicts an intention that the other vehicle may turn right or left as one of the prediction intentions of the other vehicle. In other words, the intention prediction unit 12 predicts a lane that turns right or left as a candidate lane on which another vehicle may travel.
 ステップS208において、意図予測部12は、他車両の予測意図の一つとして、他車両が直進する可能性がある意図を予測する。つまり、意図予測部12は、他車両が進む可能性がある候補車線として、そのまま走行車線を直進する車線を予測する。ステップS213において、物体追跡部5は、オフセット量を算出する。オフセット量とは、走行車線の中心に対する他車両の位置のずれである。処理がステップS214に進み、軌道予測部13は、意図予測部12が予測した候補車線を用いて、他車両がその候補車線に進んだ場合の走行軌道を生成する。処理がステップS215に進み、尤度計算部14は、ステップS214で予測された走行軌道に他車両が進む尤度を計算する。 In step S208, the intention prediction unit 12 predicts an intention that the other vehicle may go straight as one of the prediction intentions of the other vehicle. In other words, the intention prediction unit 12 predicts a lane that travels straight on the traveling lane as a candidate lane on which another vehicle may travel. In step S213, the object tracking unit 5 calculates an offset amount. The offset amount is a shift in the position of the other vehicle with respect to the center of the traveling lane. The process proceeds to step S214, and the trajectory prediction unit 13 uses the candidate lane predicted by the intention prediction unit 12 to generate a travel trajectory when another vehicle travels to the candidate lane. The process proceeds to step S215, and the likelihood calculating unit 14 calculates the likelihood that the other vehicle travels on the traveling track predicted in step S214.
 次に、図16~17に示すフローチャートを参照して、路面状況の予測処理について説明する。図16に示すステップS301において、物体追跡部5は、他車両の実際の挙動を取得し、取得した他車両の挙動を挙動記憶部15に出力する。挙動比較部16は、挙動記憶部15に記憶されている他車両の実際の挙動と、尤度計算部14によって予測された他車両の挙動とを比較する。処理はステップS302に進み、他車両が尤度の低い挙動をした場合(ステップS302でYes)、処理がステップS401に進む。尤度の低い挙動とは、尤度計算部14によって計算された尤度のうち、もっとも尤度の低い挙動でもよく、所定の尤度より低い挙動でもよい。また、尤度の低い挙動は、尤度計算部14によって計算された尤度のうち、もっとも高い尤度以外の挙動でもよい。一方、他車両が尤度の高い挙動をした場合(ステップS302でNo)、処理がステップS303に進む。ステップS303において、予測軌道と実際の軌道との差が大きい場合(ステップS303でYes)、処理はステップS401に進む。一方、予測軌道と実際の軌道との差が小さい場合(ステップS303でNo)、処理はステップS304に進む。ステップS304において、予測速度と実際の速度の差が大きい場合(ステップS304でYes)、処理がステップS401に進む。一方、予測速度と実際の速度の差が小さい場合(ステップS304でNo)、路面状況の予測処理は終了する。 Next, the road surface condition prediction process will be described with reference to the flowcharts shown in FIGS. In step S <b> 301 shown in FIG. 16, the object tracking unit 5 acquires the actual behavior of the other vehicle and outputs the acquired behavior of the other vehicle to the behavior storage unit 15. The behavior comparison unit 16 compares the actual behavior of the other vehicle stored in the behavior storage unit 15 with the behavior of the other vehicle predicted by the likelihood calculation unit 14. The process proceeds to step S302, and when the other vehicle behaves with a low likelihood (Yes in step S302), the process proceeds to step S401. The behavior with the lowest likelihood may be a behavior with the lowest likelihood among the likelihoods calculated by the likelihood calculating unit 14 or a behavior lower than a predetermined likelihood. Further, the behavior with the low likelihood may be a behavior other than the highest likelihood among the likelihoods calculated by the likelihood calculating unit 14. On the other hand, when another vehicle behaves with a high likelihood (No in step S302), the process proceeds to step S303. In step S303, when the difference between the predicted trajectory and the actual trajectory is large (Yes in step S303), the process proceeds to step S401. On the other hand, when the difference between the predicted trajectory and the actual trajectory is small (No in step S303), the process proceeds to step S304. If the difference between the predicted speed and the actual speed is large in step S304 (Yes in step S304), the process proceeds to step S401. On the other hand, when the difference between the predicted speed and the actual speed is small (No in step S304), the road surface condition prediction process ends.
 図17に示すステップS401において、挙動比較部16は、2台同じ挙動をする他車両があったか否かを判定する。2台同じ挙動をする他車両があった場合(ステップS401でYes)、処理がステップS402に進む。一方、2台同じ挙動をする他車両がなかった場合(ステップS401でNo)、処理は待機する。ステップS402において、挙動予測修正部18は、3台目の他車両の挙動の予測結果を修正する。処理がステップS403に進み、挙動比較部16は、3台目の他車両が前の2台の他車両と同じ挙動をしたか否かを判定する。3台目の他車両が前の2台の他車両と同じ挙動をした場合(ステップS403でYes)、処理はステップS404に進み、挙動予測修正部18は、4台目の他車両の挙動の予測結果を修正する。その後処理はステップS415に進む。一方、3台目の他車両が前の2台の他車両と同じ挙動をしていない場合(ステップS403でNo)、処理がステップS405に進み、挙動比較部16は、3台目の他車両の車種と前の2台の他車両の車種を比較する。3台目の他車両の車種が前の2台の他車両の車種と異なる場合(ステップS405でYes)、処理がステップS406に進み、挙動比較部16は、4台目の他車両の車種と前の3台の他車両の車種を比較する。処理がステップS407に進み、挙動予測修正部18は、ステップS406の結果に基づいて、4台目の他車両の挙動の予測結果を修正する。 In step S401 shown in FIG. 17, the behavior comparison unit 16 determines whether there are two other vehicles that behave the same. If there are two other vehicles that behave the same (Yes in step S401), the process proceeds to step S402. On the other hand, if there is no other vehicle that behaves the same (No in step S401), the process waits. In step S402, the behavior prediction correction unit 18 corrects the prediction result of the behavior of the third other vehicle. The process proceeds to step S403, and the behavior comparison unit 16 determines whether the third other vehicle has the same behavior as the previous two other vehicles. When the third other vehicle behaves the same as the previous two other vehicles (Yes in step S403), the process proceeds to step S404, and the behavior prediction correction unit 18 determines the behavior of the fourth other vehicle. Correct the prediction results. Thereafter, the process proceeds to step S415. On the other hand, if the third other vehicle does not behave the same as the previous two other vehicles (No in step S403), the process proceeds to step S405, and the behavior comparison unit 16 determines that the third other vehicle Compare the car model of this car with the car model of the other two other cars. If the vehicle type of the third other vehicle is different from the vehicle type of the previous two other vehicles (Yes in step S405), the process proceeds to step S406, and the behavior comparison unit 16 determines the vehicle type of the fourth other vehicle. Compare the models of the other three other vehicles. The process proceeds to step S407, and the behavior prediction correction unit 18 corrects the prediction result of the behavior of the fourth other vehicle based on the result of step S406.
 処理がステップS408に進み、挙動比較部16は、5台目の他車両の車種と前の4台の他車両の車種を比較する。処理がステップS409に進み、挙動予測修正部18は、ステップS408の結果に基づいて、5台目の他車両の挙動の予測結果を修正する。その後処理はステップS415に進む。一方、3台目の他車両の車種が前の2台の他車両の車種と同じ場合(ステップS405でNo)、処理がステップS410に進み、挙動比較部16は、前の2台が通過したとき歩行者がいたか否かを判定する。なお、歩行者の有無について、挙動比較部16は物体検出装置1の検出結果を参照すればよい。前の2台が通過したとき歩道に歩行者がいた場合(ステップS410でYes)、処理がステップS411に進み、挙動比較部16は、3台目の他車両が通過する際に歩行者が離れていたか否かを判定する。3台目の他車両が通過する際に歩行者が離れていた場合(ステップS411でYes)、処理がステップS412に進み、挙動比較部16は、3台目の他車両が減速したか否かを判定する。3台目の他車両が減速した場合(ステップS412でYes)、処理がステップS413に進み、挙動比較部16は、雨か否かを判定する。雨の場合(ステップS413でYes)、処理がステップS414に進み、挙動予測修正部18は、3台目以降の他車両の挙動予測結果を歩行者の有無に応じて修正する。その後処理はステップS415に進む。一方、ステップS410~ステップS413でNoの場合、処理はステップS415に進む。ステップS415において、路面状況予測部17は、他車両の挙動の類似性に基づいて路面状況を予測する。 The process proceeds to step S408, and the behavior comparison unit 16 compares the vehicle type of the fifth other vehicle with the vehicle type of the previous four other vehicles. The process proceeds to step S409, and the behavior prediction correction unit 18 corrects the prediction result of the behavior of the fifth other vehicle based on the result of step S408. Thereafter, the process proceeds to step S415. On the other hand, if the vehicle type of the third other vehicle is the same as the vehicle type of the previous two other vehicles (No in step S405), the process proceeds to step S410, and the behavior comparison unit 16 has passed the previous two vehicles. It is determined whether or not there was a pedestrian. In addition, the behavior comparison part 16 should just refer the detection result of the object detection apparatus 1 about the presence or absence of a pedestrian. If there are pedestrians on the sidewalk when the previous two vehicles pass (Yes in step S410), the process proceeds to step S411, and the behavior comparison unit 16 leaves the pedestrian when the third other vehicle passes. It is determined whether it has been. If the pedestrian is away when the third other vehicle passes (Yes in step S411), the process proceeds to step S412 and the behavior comparison unit 16 determines whether or not the third other vehicle has decelerated. Determine. When the third other vehicle decelerates (Yes in step S412), the process proceeds to step S413, and the behavior comparison unit 16 determines whether it is raining. In the case of rain (Yes in step S413), the process proceeds to step S414, and the behavior prediction correction unit 18 corrects the behavior prediction result of the third and subsequent vehicles according to the presence or absence of a pedestrian. Thereafter, the process proceeds to step S415. On the other hand, if No in steps S410 to S413, the process proceeds to step S415. In step S415, the road surface state prediction unit 17 predicts the road surface state based on the similarity in behavior of other vehicles.
 次に、図18を参照して、交差点における路面状況予測について説明する。図18において、もっとも右側の車線は、右折専用レーンである。 Next, the road surface condition prediction at the intersection will be described with reference to FIG. In FIG. 18, the rightmost lane is a right turn lane.
 図18に示すように、時刻Tにおいて、尤度計算部14は、他車両M1が走行軌道30に沿って走行する尤度は、0.6と計算する。また、尤度計算部14は、他車両M1が走行軌道31に沿って走行する尤度は、0.2と計算し、他車両M1が走行軌道32に沿って走行する尤度は、0.2と計算する。 As shown in FIG. 18, at time T, the likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 30 as 0.6. The likelihood calculating unit 14 calculates the likelihood that the other vehicle M1 travels along the traveling track 31 as 0.2, and the likelihood that the other vehicle M1 travels along the traveling track 32 is 0. Calculate as 2.
 時刻が進み、時刻T+1において、他車両M1が走行軌道31に沿って右側車線に車線変更し、そのまま右折した場合、実際の他車両M1の挙動と予測意図に差があるが、挙動予測修正部18は、他車両M2の尤度を修正しない。挙動予測修正部18は、他車両M2が走行軌道30に沿って走行する尤度は、0.6と計算する。また、挙動予測修正部18は、他車両M2が走行軌道31に沿って走行する尤度は、0.2と計算し、他車両M2が走行軌道32に沿って走行する尤度は、0.2と計算する。 When the time advances and the other vehicle M1 changes to the right lane along the traveling track 31 at the time T + 1 and turns right as it is, there is a difference between the actual behavior of the other vehicle M1 and the prediction intention. 18 does not correct the likelihood of the other vehicle M2. The behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 30 as 0.6. In addition, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M2 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M2 travels along the travel track 32 is 0. Calculate as 2.
 時刻が進み、時刻T+2において、他車両M2が走行軌道31に沿って右側車線に車線変更し、そのまま右折した場合、他車両M1及び他車両M2の2台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。ここで、他車両M1及び他車両M2は、右折専用レーンに車線変更し、そのまま右折しているため、挙動予測修正部18は、他車両M3の尤度を修正しない。挙動予測修正部18は、他車両M3が走行軌道30に沿って走行する尤度は、0.6と計算する。また、挙動予測修正部18は、他車両M3が走行軌道31に沿って走行する尤度は、0.2と計算し、他車両M3が走行軌道32に沿って走行する尤度は、0.2と計算する。 At time T + 2, when another vehicle M2 changes lanes to the right lane along the traveling track 31 and turns right, the other vehicles M1 and other vehicles M2 are different from the prediction intention, And it behaved like similarity. Here, since the other vehicle M1 and the other vehicle M2 change lanes to the right turn exclusive lane and turn right as it is, the behavior prediction correction unit 18 does not correct the likelihood of the other vehicle M3. The behavior prediction correction unit 18 calculates the likelihood that the other vehicle M3 travels along the travel track 30 as 0.6. Further, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M3 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M3 travels along the travel track 32 is 0. Calculate as 2.
 時刻が進み、時刻T+3において、他車両M3が走行軌道31に沿って右側車線に車線変更し、そのまま右折した場合、他車両M1、他車両M2、及び他車両M3の3台の他車両が、予測意図と異なり、かつ類似性を示す挙動をしたことになる。ここで、他車両M1~M3は、右折専用レーンに車線変更し、そのまま右折しているため、挙動予測修正部18は、他車両M4の尤度を修正しない。挙動予測修正部18は、他車両M4が走行軌道30に沿って走行する尤度は、0.6と計算する。また、挙動予測修正部18は、他車両M4が走行軌道31に沿って走行する尤度は、0.2と計算し、他車両M4が走行軌道32に沿って走行する尤度は、0.2と計算する。 At time T + 3, when another vehicle M3 changes lanes to the right lane along the traveling track 31 and turns right, the other vehicles M1, other vehicles M2, and other vehicles M3, This is different from the prediction intention and has a behavior that shows similarity. Here, since the other vehicles M1 to M3 change lanes to the right turn exclusive lane and turn right as it is, the behavior prediction correction unit 18 does not correct the likelihood of the other vehicle M4. The behavior prediction correction unit 18 calculates the likelihood that the other vehicle M4 travels along the travel track 30 as 0.6. Further, the behavior prediction correction unit 18 calculates the likelihood that the other vehicle M4 travels along the travel track 31 as 0.2, and the likelihood that the other vehicle M4 travels along the travel track 32 is 0. Calculate as 2.
 このように、挙動予測修正部18は、交差点の構造(右折専用レーンの有無)と他車両の挙動の類似性に応じて、後方車両において尤度を修正しない場合がある。一方、挙動予測修正部18は、交差点の構造と他車両の挙動の類似性に応じて、後方車両において尤度を修正する場合もある。この点について、図19のフローチャートを参照して説明する。 As described above, the behavior prediction correction unit 18 may not correct the likelihood in the rear vehicle according to the similarity between the structure of the intersection (the presence or absence of a right turn dedicated lane) and the behavior of the other vehicle. On the other hand, the behavior prediction correction unit 18 may correct the likelihood in the rear vehicle according to the similarity between the structure of the intersection and the behavior of the other vehicle. This point will be described with reference to the flowchart of FIG.
 図19に示すように、ステップS501において、地図内位置演算部6は、自己位置が交差点付近か否かを判定する。具体的には地図内位置演算部6は、自己位置から交差点までの距離が所定距離内になった場合に、自己位置は交差点付近であると判定する。なお、所定距離は、特に限定されないが例えば50mである。自己位置が交差点付近の場合(ステップS501でYes)、処理がステップS502に進み、地図内位置演算部6は、地図取得装置3によって取得された地図情報を参照して、交差点に右折または左折の専用レーンがあるか否かを判定する。右折または左折の専用レーンがある場合(ステップS502でYes)、処理がステップS503に進み、挙動比較部16は、他車両が右折または左折の専用レーンへ車線変更したか否かを判定する。他車両が右折または左折の専用レーンへ車線変更した場合(ステップS503でYes)、処理がステップS505に進み、挙動予測修正部18は、後方車両において予測結果を修正しない。他車両は元の車線に戻らずそのまま右折または左折するからである。一方、他車両が右折または左折の専用レーンへ車線変更しない場合(ステップS503でNo)、処理がステップS506に進み、挙動比較部16は、他車両が右折または左折の専用レーンから出たか否かを判定する。他車両が右折または左折の専用レーンから出た場合(ステップS506でYes)、処理がステップS507に進み、挙動比較部16は、他車両がそのまま直進したか否かを判定する。 As shown in FIG. 19, in step S501, the in-map position calculation unit 6 determines whether or not the self position is near an intersection. Specifically, the in-map position calculation unit 6 determines that the self position is near the intersection when the distance from the self position to the intersection is within a predetermined distance. The predetermined distance is not particularly limited, but is, for example, 50 m. If the self-position is near the intersection (Yes in step S501), the process proceeds to step S502, and the map position calculation unit 6 refers to the map information acquired by the map acquisition device 3, and makes a right or left turn at the intersection. Determine if there is a dedicated lane. If there is a right turn or left turn dedicated lane (Yes in step S502), the process proceeds to step S503, and the behavior comparison unit 16 determines whether the other vehicle has changed its lane to the right turn or left turn dedicated lane. When the other vehicle changes lanes to the right lane or the left lane (Yes in step S503), the process proceeds to step S505, and the behavior prediction correction unit 18 does not correct the prediction result in the rear vehicle. This is because other vehicles turn right or left without returning to the original lane. On the other hand, when the other vehicle does not change the lane to the right lane or the left lane (No in step S503), the process proceeds to step S506, and the behavior comparison unit 16 determines whether the other vehicle has exited the right lane or left turn lane. Determine. When the other vehicle exits the right turn or left turn exclusive lane (Yes in step S506), the process proceeds to step S507, and the behavior comparison unit 16 determines whether or not the other vehicle travels straight.
 他車両がそのまま直進した場合(ステップS507でYes)、処理がステップS505に進む。右折または左折の専用レーンがない場合(ステップS502でNo)、処理がステップS504に進み、挙動比較部16は、他車両が車線変更後すぐに右折または左折したか否かを判定する。他車両が車線変更後すぐに右折または左折した場合(ステップS504でYes)、処理がステップS505に進む。他車両が車線変更後すぐに右折または左折しない場合(ステップS504でNo)、または他車両が右折または左折の専用レーンから出ていない場合(ステップS506でNo)、または他車両がそのまま直進していない場合(ステップS507でNo)、処理がステップS508に進む。ステップS508において、挙動比較部16は、他車両が車線変更後に元の車線に戻ったか否かを判定する。他車両が車線変更後に元の車線に戻った場合(ステップS508でYes)、処理がステップS509に進み、路面状況予測部17は、他車両の挙動の類似性に基づいて路面状況を予測し、挙動予測修正部18は、後方車両において予測結果を修正する。自己位置が交差点付近でない場合(ステップS501でNo)、または他車両が車線変更後に元の車線に戻らない場合(ステップS508でNo)、処理はステップS501に戻る。 If the other vehicle goes straight ahead (Yes in step S507), the process proceeds to step S505. If there is no right turn or left turn dedicated lane (No in step S502), the process proceeds to step S504, and the behavior comparison unit 16 determines whether the other vehicle has turned right or left immediately after the lane change. When the other vehicle turns right or left immediately after the lane change (Yes in step S504), the process proceeds to step S505. If the other vehicle does not turn right or left immediately after changing lanes (No in step S504), or if the other vehicle does not exit the right or left turn lane (No in step S506), or the other vehicle is going straight ahead If not (No in step S507), the process proceeds to step S508. In step S508, the behavior comparison unit 16 determines whether the other vehicle has returned to the original lane after the lane change. When the other vehicle returns to the original lane after the lane change (Yes in step S508), the process proceeds to step S509, and the road surface state prediction unit 17 predicts the road surface state based on the similarity of the behavior of the other vehicle, The behavior prediction correction unit 18 corrects the prediction result in the rear vehicle. If the position is not near the intersection (No in step S501), or if the other vehicle does not return to the original lane after changing the lane (No in step S508), the process returns to step S501.
 以上説明したように、実施形態に係る周囲状況予測装置によれば、以下の作用効果が得られる。 As described above, according to the surrounding situation prediction apparatus according to the embodiment, the following operational effects can be obtained.
 周囲状況予測装置は、自車周囲の複数の他車両を検出し、複数の他車両の挙動の類似性を検出する。そして、周囲状況予測装置は、類似性に基づいて自車両の周囲状況として路面の状況を予測する。これにより、周囲状況予測装置は、路面状況の確認が難しい場合でも自車両の周囲状況として路面状況(落下物60の有無、バンプ50の有無、水たまり70の有無、工事現場の有無など)を予測することができる。また、周囲状況予測装置は、路面状況を考慮した経路を生成することができ、路面状況に適した走行支援を行うことができる。 The surrounding situation prediction device detects a plurality of other vehicles around the host vehicle and detects the similarity in behavior of the plurality of other vehicles. Then, the surrounding situation prediction apparatus predicts the road surface situation as the surrounding situation of the host vehicle based on the similarity. Thereby, the surroundings state prediction device predicts the road surface state (presence / absence of fallen object 60, presence / absence of bump 50, presence / absence of puddle 70, presence / absence of construction site, etc.) as the surrounding state of the vehicle even when it is difficult to check the road surface state can do. In addition, the surrounding situation prediction apparatus can generate a route in consideration of the road surface condition, and can perform driving support suitable for the road surface condition.
 また、周囲状況予測装置は、複数の他車両の挙動として、複数の他車両の加減速を検出する。周囲状況予測装置は、この加減速の類似性に基づいて、自車両の周囲状況として路面の状況を予測する。道路上にバンプ50がある場合、他車両はバンプ50の手前で減速してバンプ50を通過することが考えられる。周囲状況予測装置は、他車両の減速の類似性を用いることにより、路面状況の確認が難しい場合でも自車両の周囲の路面状況としてバンプ50の有無を予測することができる。なお、周囲状況予測装置は、他車両の加速の類似性に基づいて路面状況を予測してもよい。このように他車両の縦挙動の類似性を用いることにより、周囲状況予測装置は、路面状況の確認が難しい場合でも路面状況を予測することができる。 Also, the surrounding situation prediction device detects acceleration / deceleration of a plurality of other vehicles as the behavior of the plurality of other vehicles. The surrounding situation prediction device predicts the road surface situation as the surrounding situation of the host vehicle based on the acceleration / deceleration similarity. When there is a bump 50 on the road, it can be considered that the other vehicle decelerates before the bump 50 and passes through the bump 50. The surrounding situation prediction apparatus can predict the presence or absence of the bump 50 as the surrounding road surface condition of the host vehicle even when it is difficult to check the road surface condition by using the similarity of deceleration of the other vehicle. Note that the surrounding situation prediction apparatus may predict a road surface situation based on the similarity of acceleration of other vehicles. Thus, by using the similarity of the vertical behavior of other vehicles, the surrounding situation prediction device can predict the road condition even when it is difficult to confirm the road condition.
 また、周囲状況予測装置は、複数の他車両の挙動として、複数の他車両の走行軌跡を検出する。周囲状況予測装置は、この走行軌跡の類似性に基づいて、自車両の周囲状況として路面の状況を予測する。道路上に落下物60がある場合、他車両は落下物60を避けて走行することが考えられる。つまり、落下物60を避けるための走行軌跡は、複数の他車両で類似すると考えられる。周囲状況予測装置は、走行軌跡の類似性を用いることにより、路面状況の確認が難しい場合でも自車両の周囲の路面状況として落下物60の有無を予測することができる。 Also, the surrounding situation prediction device detects the traveling locus of a plurality of other vehicles as the behavior of the plurality of other vehicles. The surrounding situation prediction apparatus predicts the road surface situation as the surrounding situation of the host vehicle based on the similarity of the traveling tracks. When there is a falling object 60 on the road, it can be considered that the other vehicle travels avoiding the falling object 60. That is, it is considered that the traveling locus for avoiding the falling object 60 is similar in a plurality of other vehicles. The surroundings state prediction device can predict the presence or absence of the fallen object 60 as the surrounding road surface situation of the host vehicle even when it is difficult to check the road surface state by using the similarity of the traveling tracks.
 また、周囲状況予測装置は、複数の他車両の挙動の類似性に基づいて、路面の状況の尤度を算出する。例えば、周囲状況予測装置は、図6に示すように、他車両M1及び他車両M2の2台の他車両が、類似性を示す挙動をした場合、他車両M3の前方に落下物60がある可能性を40%と計算する。これにより、周囲状況予測装置は、路面状況により適した走行支援を行うことができる。なお、尤度は、単に可能性あり、といった評価でもよく、具体的な数値でもよい。 Also, the surrounding situation prediction device calculates the likelihood of the road surface condition based on the similarity of the behavior of a plurality of other vehicles. For example, as shown in FIG. 6, in the surrounding situation prediction apparatus, when two other vehicles, that is, the other vehicle M1 and the other vehicle M2, behave similarly, there is a fallen object 60 in front of the other vehicle M3. The probability is calculated as 40%. Thereby, the surroundings state prediction apparatus can perform driving support more suitable for road surface conditions. Note that the likelihood may be an evaluation that it is simply possible, or may be a specific numerical value.
 また、周囲状況予測装置は、所定の類似性を示す他車両の台数が多いほど、尤度を高くする。例えば、周囲状況予測装置は、図6に示すように、他車両M1、他車両M2、及び他車両M3の3台の他車両が、類似性を示す挙動をした場合、他車両M4の前方に落下物60がある可能性を80%と計算する。このように、周囲状況予測装置は、所定の類似性を示す他車両の台数が多いほど尤度を高くする。これにより、周囲状況予測装置は、路面状況に適した走行支援を行うことができ、乗員に与える違和感を抑制することができる。 In addition, the ambient condition prediction apparatus increases the likelihood as the number of other vehicles exhibiting a predetermined similarity increases. For example, as shown in FIG. 6, when the three other vehicles, that is, the other vehicle M1, the other vehicle M2, and the other vehicle M3, behave in a similar manner, the surroundings state prediction device is placed in front of the other vehicle M4. The possibility that there is a fallen object 60 is calculated as 80%. As described above, the surrounding state predicting apparatus increases the likelihood as the number of other vehicles exhibiting the predetermined similarity increases. Thereby, the surrounding condition prediction apparatus can perform driving support suitable for the road surface condition, and can suppress a sense of discomfort given to the occupant.
 また、周囲状況予測装置は、所定の類似性を示す他車両の車種を検出し、他車両の車種に基づいて尤度を算出する。このように所定の類似性を示す他車両の車種を用いることによって、周囲状況予測装置は、より正確な尤度を計算することができる。 Also, the ambient situation prediction device detects the vehicle type of another vehicle that shows a predetermined similarity, and calculates the likelihood based on the vehicle type of the other vehicle. As described above, by using the vehicle type of the other vehicle exhibiting the predetermined similarity, the surrounding situation prediction apparatus can calculate a more accurate likelihood.
 また、周囲状況予測装置は、所定の類似性を示す前記他車両の周囲の道路構造を検出し、道路構造に基づいて尤度を計算する。このように所定の類似性を示す他車両の周囲の道路構造を用いることによって、周囲状況予測装置は、より正確な尤度を計算することができる。 Also, the surrounding situation prediction device detects a road structure around the other vehicle showing a predetermined similarity, and calculates a likelihood based on the road structure. As described above, by using the road structure around the other vehicle showing the predetermined similarity, the surrounding situation prediction apparatus can calculate a more accurate likelihood.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 As described above, the embodiments of the present invention have been described. However, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 例えば、図20に示すように、時刻Tにおいて、他車両M1が左側車線に車線変更したとする。時刻が進み、時刻T+1において、他車両M1が元の車線(右側車線)に戻り、他車両M2が左側車線に車線変更したとする。時刻が進み、時刻T+2において、他車両M2が元の車線(右側車線)に戻り、他車両M3が左側車線に車線変更したとする。このような場合、路面状況予測部17は、他車両M1~M3の挙動の類似性に基づいて、右側車線に落下物があると予測できる。自車両M0が右側車線に車線変更する場合は、車両制御部22は、落下物があると予測される場所を避けて車線変更することができる。 For example, as shown in FIG. 20, it is assumed that another vehicle M1 changes lanes to the left lane at time T. Assume that the time advances, and at time T + 1, the other vehicle M1 returns to the original lane (right lane), and the other vehicle M2 changes to the left lane. Assume that the time advances, and at time T + 2, the other vehicle M2 returns to the original lane (right lane) and the other vehicle M3 changes lanes to the left lane. In such a case, the road surface condition prediction unit 17 can predict that there is a fallen object in the right lane based on the similarity in behavior of the other vehicles M1 to M3. When the host vehicle M0 changes the lane to the right lane, the vehicle control unit 22 can change the lane while avoiding a place where a fallen object is predicted.
 また、図21に示すように、時刻Tにおいて、他車両M1が左側車線に車線変更したとする。時刻が進み、時刻T+1において、他車両M1が元の車線(右側車線)に戻らずそのまま直進し、他車両M2が左側車線に車線変更したとする。時刻が進み、時刻T+2において、他車両M2が元の車線(右側車線)に戻らずそのまま直進し、他車両M3が左側車線に車線変更したとする。このような場合、路面状況予測部17は、他車両M1~M3の挙動の類似性に基づいて、右側車線において例えば工事が行われており、右側車線は通行不可と予測する。自車両M0が右側車線に車線変更できないため、自動経路生成部21は、目的地までの経路を再生成する。これにより車両制御部22は、スムーズに目的地まで自車両を走行させることができる。 Further, as shown in FIG. 21, it is assumed that at time T, the other vehicle M1 changes its lane to the left lane. Assume that the time advances, and at time T + 1, the other vehicle M1 goes straight without returning to the original lane (right lane), and the other vehicle M2 changes to the left lane. Assume that the time advances, and at time T + 2, the other vehicle M2 goes straight without returning to the original lane (right lane), and the other vehicle M3 changes to the left lane. In such a case, the road surface condition prediction unit 17 predicts that, for example, construction is being performed in the right lane and the right lane is impassable based on the similarity in behavior of the other vehicles M1 to M3. Since the own vehicle M0 cannot change the lane to the right lane, the automatic route generation unit 21 regenerates the route to the destination. Thereby, the vehicle control part 22 can drive the own vehicle smoothly to the destination.
 本実施形態では、自車両が自動運転車両である場合を例示したが、自車両が手動運転車両であってもよい。この場合、車両制御部22の代わりに、音声或いは画像などを用いて、ステアリング、アクセル、ブレーキの操作を運転者に対して案内するためのスピーカ、ディスプレイ、及びこれらのユーザインターフェースを制御するコントローラを備えていればよい。 In the present embodiment, the case where the host vehicle is an automatically driven vehicle is illustrated, but the host vehicle may be a manually driven vehicle. In this case, instead of the vehicle control unit 22, a speaker, a display, and a controller for controlling these user interfaces are used to guide the steering, accelerator, and brake operations to the driver using voice or images. It only has to have.
1 物体検出装置
2 自車位置推定装置
3 地図取得装置
4 検出統合部
5 物体追跡部
6 地図内位置演算部
10 挙動予測部
11 車線判定部
12 意図予測部
13 軌道予測部
14 尤度計算部
15 挙動記憶部
16 挙動比較部
17 路面状況予測部
18 挙動予測修正部
21 自動経路生成部
22 車両制御部
DESCRIPTION OF SYMBOLS 1 Object detection apparatus 2 Own vehicle position estimation apparatus 3 Map acquisition apparatus 4 Detection integration part 5 Object tracking part 6 In-map position calculation part 10 Behavior prediction part 11 Lane determination part 12 Intention prediction part 13 Trajectory prediction part 14 Likelihood calculation part 15 Behavior storage unit 16 Behavior comparison unit 17 Road surface condition prediction unit 18 Behavior prediction correction unit 21 Automatic route generation unit 22 Vehicle control unit

Claims (8)

  1.  自車両周囲の複数の他車両の挙動を検出し、前記複数の他車両の挙動に基づいて前記自車両の周囲状況を予測し、予測結果に基づいて自車両の走行を支援する走行支援装置の周囲状況予測方法において、
     前記複数の他車両の挙動の類似性を検出し、
     前記類似性に基づいて、前記自車両の周囲状況として路面の状況を予測する
    ことを特徴とする周囲状況予測方法。
    A driving support device that detects the behavior of a plurality of other vehicles around the host vehicle, predicts a surrounding situation of the host vehicle based on the behavior of the plurality of other vehicles, and supports driving of the host vehicle based on a prediction result. In the ambient situation prediction method,
    Detecting the similarity of the behavior of the other vehicles,
    A surrounding situation prediction method that predicts a road surface situation as a surrounding situation of the host vehicle based on the similarity.
  2.  前記複数の他車両の挙動として、前記複数の他車両の加減速を検出し、
     前記加減速の類似性に基づいて、前記路面の状況を予測する
    ことを特徴とする請求項1に記載の周囲状況予測方法。
    Detecting the acceleration / deceleration of the plurality of other vehicles as the behavior of the plurality of other vehicles;
    The ambient condition prediction method according to claim 1, wherein the road surface condition is predicted based on the acceleration / deceleration similarity.
  3.  前記複数の他車両の挙動として、前記複数の他車両の走行軌跡を検出し、
     前記走行軌跡の類似性に基づいて、前記路面の状況を予測する
    ことを特徴とする請求項1または2に記載の周囲状況予測方法。
    As a behavior of the plurality of other vehicles, a traveling locus of the plurality of other vehicles is detected,
    The surrounding situation prediction method according to claim 1, wherein the road condition is predicted based on the similarity of the travel locus.
  4.  前記複数の他車両の挙動の類似性に基づいて、前記路面の状況の尤度を計算する
    ことを特徴とする請求項1乃至3の何れか1項に記載の周囲状況予測方法。
    The ambient condition prediction method according to any one of claims 1 to 3, wherein likelihood of the road surface condition is calculated based on similarity in behavior of the plurality of other vehicles.
  5.  所定の類似性を示す他車両の台数が多いほど、前記尤度を高くする
    ことを特徴とする請求項4に記載の周囲状況予測方法。
    The ambient condition prediction method according to claim 4, wherein the likelihood is increased as the number of other vehicles exhibiting a predetermined similarity increases.
  6.  所定の類似性を示す前記他車両の車種を検出し、
     前記他車両の車種に基づいて、前記尤度を計算する
    ことを特徴とする請求項4または5に記載の周囲状況予測方法。
    Detecting the vehicle type of the other vehicle exhibiting a predetermined similarity,
    The ambient condition prediction method according to claim 4 or 5, wherein the likelihood is calculated based on a vehicle type of the other vehicle.
  7.  所定の類似性を示す前記他車両の周囲の道路構造を検出し、
     前記道路構造に基づいて、前記尤度を計算する
    ことを特徴とする請求項4乃至6の何れか1項に記載の周囲状況予測方法。
    Detecting a road structure around the other vehicle exhibiting a predetermined similarity,
    7. The ambient condition prediction method according to claim 4, wherein the likelihood is calculated based on the road structure.
  8.  自車両周囲の複数の他車両の挙動を検出するセンサと、
     前記センサによって検出された前記複数の他車両の挙動に基づいて前記自車両の周囲状況を予測し、予測結果に基づいて前記自車両の走行を支援するコントローラと、を備え、
     前記コントローラは、前記複数の他車両の挙動の類似性を検出し、前記類似性に基づいて、前記自車両の周囲状況として路面の状況を予測する
    ことを特徴とする周囲状況予測装置。
    A sensor for detecting the behavior of a plurality of other vehicles around the host vehicle;
    A controller that predicts a surrounding situation of the host vehicle based on behaviors of the plurality of other vehicles detected by the sensor, and that supports driving of the host vehicle based on a prediction result;
    The ambient condition prediction apparatus, wherein the controller detects similarity of behaviors of the plurality of other vehicles, and predicts a road surface condition as a surrounding condition of the host vehicle based on the similarity.
PCT/JP2017/016185 2017-04-24 2017-04-24 Peripheral-state prediction method and peripheral-state prediction device WO2018198163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016185 WO2018198163A1 (en) 2017-04-24 2017-04-24 Peripheral-state prediction method and peripheral-state prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016185 WO2018198163A1 (en) 2017-04-24 2017-04-24 Peripheral-state prediction method and peripheral-state prediction device

Publications (1)

Publication Number Publication Date
WO2018198163A1 true WO2018198163A1 (en) 2018-11-01

Family

ID=63918174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016185 WO2018198163A1 (en) 2017-04-24 2017-04-24 Peripheral-state prediction method and peripheral-state prediction device

Country Status (1)

Country Link
WO (1) WO2018198163A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132146A (en) * 2019-02-19 2020-08-31 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド Real time learning method of automatic drive vehicle travel plan, apparatus, server, system, device, storage medium, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078333A (en) * 2002-08-12 2004-03-11 Nissan Motor Co Ltd Traveling route generation device
JP2005242552A (en) * 2004-02-25 2005-09-08 Denso Corp On-vehicle reception device, on-vehicle transmission device and server
JP2006313519A (en) * 2005-04-04 2006-11-16 Sumitomo Electric Ind Ltd Obstacle detection center device, obstacle detection system, and obstacle detection method
JP2009157419A (en) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Driving support system, on-road communication device and on-vehicle machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078333A (en) * 2002-08-12 2004-03-11 Nissan Motor Co Ltd Traveling route generation device
JP2005242552A (en) * 2004-02-25 2005-09-08 Denso Corp On-vehicle reception device, on-vehicle transmission device and server
JP2006313519A (en) * 2005-04-04 2006-11-16 Sumitomo Electric Ind Ltd Obstacle detection center device, obstacle detection system, and obstacle detection method
JP2009157419A (en) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Driving support system, on-road communication device and on-vehicle machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132146A (en) * 2019-02-19 2020-08-31 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド Real time learning method of automatic drive vehicle travel plan, apparatus, server, system, device, storage medium, and program
US11780463B2 (en) 2019-02-19 2023-10-10 Baidu Online Network Technology (Beijing) Co., Ltd. Method, apparatus and server for real-time learning of travelling strategy of driverless vehicle

Similar Documents

Publication Publication Date Title
US10928820B1 (en) Confidence levels along the same predicted trajectory of an obstacle
US11442450B2 (en) Method for determining passable area in planning a path of autonomous driving vehicles
CN110352450B (en) Driving assistance method and driving assistance device
US11945434B2 (en) Delay decision making for autonomous driving vehicles in response to obstacles based on confidence level and distance
JP6798611B2 (en) Driving support method and driving support device
CN112363492A (en) Computer-implemented method for operating an autonomous vehicle and data processing system
CN110622226A (en) Method and device for predicting operation of travel assistance device
US11740628B2 (en) Scenario based control of autonomous driving vehicle
CN113552870A (en) System and method for adjusting dynamic speed limit based on perception result
JP7182376B2 (en) Driving support method and driving support device
CN111819609B (en) Vehicle behavior prediction method and vehicle behavior prediction device
CN114516329A (en) Vehicle adaptive cruise control system, method, and computer readable medium
CN111830959A (en) Method, system, and machine-readable medium for operating an autonomous vehicle
JPWO2020058740A1 (en) Vehicle behavior prediction method and vehicle behavior prediction device
CN113428173A (en) Static curvature error compensation control logic for autonomous vehicles
CN113060140A (en) Path planning before lane change based on center line displacement
CN113002534A (en) Post-crash loss-reducing brake system
WO2018198163A1 (en) Peripheral-state prediction method and peripheral-state prediction device
WO2018198186A1 (en) Travelling assistance method and travelling assistance device
US11325529B2 (en) Early brake light warning system for autonomous driving vehicle
JP7143893B2 (en) Vehicle behavior prediction method and vehicle behavior prediction device
JP7206048B2 (en) Driving characteristic estimation method and driving characteristic estimation device
US11577644B2 (en) L3-level auto-emergency light system for ego vehicle harsh brake
US11807274B2 (en) L4 auto-emergency light system for future harsh brake
JP7398236B2 (en) Vehicle control method and vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP