WO2018196515A1 - 复合材料进气道及其制备方法和飞行器 - Google Patents

复合材料进气道及其制备方法和飞行器 Download PDF

Info

Publication number
WO2018196515A1
WO2018196515A1 PCT/CN2018/079811 CN2018079811W WO2018196515A1 WO 2018196515 A1 WO2018196515 A1 WO 2018196515A1 CN 2018079811 W CN2018079811 W CN 2018079811W WO 2018196515 A1 WO2018196515 A1 WO 2018196515A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
composite material
layer
mold
preparation
Prior art date
Application number
PCT/CN2018/079811
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
王晨玥
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2018196515A1 publication Critical patent/WO2018196515A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Definitions

  • the present invention relates to the field of space technology, and more particularly to a composite material intake port, a method of manufacturing the same, and an aircraft.
  • Conventional aircraft such as the air intake of an airship, are made of a metallic material.
  • the existing intake port can maintain a certain structural strength, its mass is large, which increases the overall quality of the aircraft, and is not conducive to the improvement of the endurance of the aircraft. Moreover, due to the difficulty of processing, the processing quality is difficult to ensure, which greatly increases the manufacturing cost. On the other hand, the weathering performance of the inlet made of metal is not good, and it is difficult to adapt to the complex and variable altitude environment in which the aircraft operates.
  • a composite material inlet manufacturing method comprising the steps of:
  • the mold is opened, and the prepared composite inlet body is taken out.
  • the method further comprises the following steps:
  • step a Before the step a), firstly, a plurality of layers of degumming agents are brushed on the inner surface of the mold, and the layers of the debonding agent are respectively dried for a predetermined period of time after the brushing.
  • the drying time of the inner layer of the debonding agent is greater than 20 minutes, and the drying time of the outermost layer of the debonding agent is greater than 40 minutes.
  • a release cloth layer is laid on the release agent
  • the release cloth layer is formed by butting a plurality of release cloths, and the butt joint gap is less than or equal to 1 mm, and the area of the release cloth of each block is greater than or equal to 10 cm 2 .
  • the first prepreg is applied to the surface of the mold to form a first prepreg, which is an epoxy/double horse/cyanate quartz or glass fiber prepreg.
  • a second prepreg is applied on the surface of the first prepreg layer to form a second prepreg, which is an epoxy/double horse/cyanate carbon fiber prepreg .
  • the curing process of the prepreg layer comprises:
  • the prepreg layer is cured by placing the mold as a whole in an autoclave.
  • the curing treatment has a curing pressure of 0.6 to 0.7 MPa, a curing temperature of 100 to 220 ° C, and a time of 2 to 9 hours.
  • the step further comprises:
  • the surface of the prepared composite inlet body is ground to obtain the inlet.
  • the sandpaper used to polish the composite inlet body is 180-240 mesh sandpaper.
  • a composite material inlet which is produced using the composite inlet port preparation method.
  • the preparation method has simple production process and high production efficiency.
  • the composite material inlet prepared by the preparation method can be applied to an aircraft such as an airship, and has the advantages of light weight, low processing difficulty, strong weather resistance, etc., while maintaining structural strength and meeting normal use requirements, and can be improved.
  • the endurance of the aircraft is the most important to be applied to an aircraft such as an airship.
  • FIG. 1 shows a flow chart of a method of preparing a composite inlet port in accordance with a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a prepreg laid on a surface of a mold according to a method for preparing a composite material inlet according to a first embodiment of the present invention.
  • Figure 3 is a flow chart showing the step S2) of the composite material intake port preparation method according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing a method of preparing a composite inlet port in accordance with a second embodiment of the present invention.
  • Fig. 5 is a view showing the structure of a prepreg laid on a surface of a mold according to a method for preparing a composite material inlet according to a second embodiment of the present invention.
  • Figure 6 is a flow chart showing the step S2) of the composite material intake port preparation method according to the second embodiment of the present invention.
  • a mold 1 a release agent layer 2, a release cloth layer 3, a first prepreg layer 41, and a second prepreg layer 42.
  • the invention provides a composite material inlet manufacturing method, and the composite material inlet prepared by the preparation method can be used as an air inlet on an aircraft such as an airship.
  • a method for preparing a composite inlet port includes the following steps:
  • the surface of the mold 1 is treated to enhance the late demolding effect.
  • the release agent when applying the release agent, it is necessary to ensure that the surface temperature of the mold 1 is greater than a certain temperature value, and ⁇ 15 ° C is required here.
  • To apply the release agent make sure that the surface of the tool is clean and dry.
  • the release agent is taken up with a dust-free cloth and uniformly coated on the surface of the mold 1. In order to keep the coating from leaking, a certain coating thickness is not guaranteed, and it is necessary to apply a plurality of passes, and it is optional to apply 2-3 times to form the release agent layer 2.
  • Each layer of release agent is evenly applied, for example, cross-coating in multiple directions to ensure uniform coating. If excessive release agent is applied, it should be wiped off from the mold 1 with a clean cloth.
  • the inner layer release agent is dried for at least 20 minutes after being applied; after the last layer, that is, the outermost release agent is applied, it needs to be dried in the air for at least 40 minutes.
  • the release agent ensure that the site is well ventilated, painted and recorded.
  • a release cloth layer 3 is laid on the release agent, wherein the release cloth layer 3 is formed by butting a plurality of release cloths, and the butt joint gap is less than or equal to 1 mm.
  • the area of each of the release sheets is 10 cm 2 or more.
  • the tooling line of the composite inlet to be prepared is determined on the mold 1.
  • the first prepreg is laid on the surface of the mold 1, and the first prepreg layer 41 is formed.
  • the first prepreg needs to be laid on the outer surface of the mold 1. As shown in FIG. 3, in this step, the following steps are further included:
  • the first prepreg raw material is taken out, it is thawed in a clean room, and is kept in a sealed state during the thawing process to prevent it from coming into contact with the outside before use, causing a chemical reaction or falling into dust. Take care when handling, and avoid bumping the material.
  • the temperature of the clean room is controlled at 18 ° C to 24 ° C.
  • the temperature of the material reaches the clean room temperature, it can be determined by hand without touching the temperature difference between the environment and the outer film of the sealed bag. It can be used when no condensed water is produced.
  • the thawing time is ⁇ 8 h at 20 °C ⁇ 5 °C, and the thawing time is ⁇ 2 hours for the prepreg that has been cut.
  • the digital model of the product is developed using a design software surface and cut into corresponding shapes to facilitate layup and formation of a cylindrical structure of the composite inlet.
  • the cut first prepreg is applied to the mold 1 to form a first prepreg layer 41.
  • the first prepreg is an epoxy/double horse/cyanate quartz or glass fiber prepreg.
  • the prepreg layer is encapsulated in a vacuum bag (not shown) and vacuumed to compact the prepreg layer. Then, remove the vacuum bag.
  • the first prepreg layer 41 is subjected to a curing treatment by placing the mold 1 as a whole in an autoclave.
  • the curing treatment has a curing pressure of 0.6-0.7 MPa, a curing temperature of 100-220 ° C, and a time of 2-9 hours.
  • the mold 1 is opened to remove the prepared composite material inlet body body, and the surface of the embryo body has a rubber thorn, etc., so that the performance is uneven and smooth, and subsequent processing is required.
  • the outer surface of the prepared composite inlet body is polished and repaired with 180-240 mesh sandpaper to make the surface smooth, thereby obtaining the composite inlet of the composite.
  • a method for preparing a composite inlet port includes the following steps:
  • the surface of the mold 1 is treated to enhance the late demolding effect.
  • the release agent when applying the release agent, it is necessary to ensure that the surface temperature of the mold 1 is greater than a certain temperature value, and ⁇ 15 ° C is required here.
  • To apply the release agent make sure that the surface of the tool is clean and dry.
  • the release agent is taken up with a dust-free cloth and uniformly coated on the surface of the mold 1. In order to keep the coating from leaking, a certain coating thickness is not guaranteed, and it is necessary to apply a plurality of passes, and it is optional to apply 2-3 times to form the release agent layer 2.
  • Each layer of release agent is evenly applied, for example, cross-coating in multiple directions to ensure uniform coating. If excessive release agent is applied, it should be wiped off from the mold 1 with a clean cloth.
  • the inner layer release agent is dried for at least 20 minutes after being applied; after the last layer, that is, the outermost release agent is applied, it needs to be dried in the air for at least 40 minutes.
  • the release agent ensure that the site is well ventilated, painted and recorded.
  • a release cloth layer 3 is laid on the release agent, wherein the release cloth layer 3 is formed by butting a plurality of release cloths, and the butt joint gap is less than or equal to 1 mm.
  • the area of each of the release sheets is 10 cm 2 or more.
  • the tooling line of the composite inlet to be prepared is determined on the mold 1.
  • the first prepreg and the second prepreg are sequentially laid on the surface of the mold 1 to form a stacked first prepreg layer 41 and a second prepreg layer 42.
  • two layers of prepreg are sequentially laid on the outer surface of the mold 1 to form two prepreg layers, namely a first prepreg layer 41 and a second prepreg layer 42.
  • the following steps are further included: (modified FIG. 6 according to the following content)
  • the raw materials of the first prepreg and the second prepreg are taken out, they are thawed in a clean room, and are kept in a sealed state during the thawing process to prevent contact with the outside before use, and a chemical reaction or fall occurs. dust. Take care when handling, and avoid bumping the material.
  • the temperature of the clean room is controlled at 18 ° C to 24 ° C.
  • the temperature of the material reaches the clean room temperature, it can be determined by hand without touching the temperature difference between the environment and the outer film of the sealed bag. It can be used when no condensed water is produced.
  • the thawing time is ⁇ 8 h at 20 °C ⁇ 5 °C, and the thawing time is ⁇ 2 hours for the prepreg that has been cut.
  • the digital model of the product is developed using a design software surface and cut into corresponding shapes to facilitate layup and formation of a cylindrical structure of the composite inlet.
  • the cut first prepreg and the second prepreg are sequentially laid on the mold 1 to form a first prepreg layer 41 and a second prepreg layer 42 which are stacked.
  • the first layer of prepreg is epoxy/double horse/cyanate quartz or glass fiber prepreg
  • the second layer of prepreg is epoxy/double horse/cyanate carbon fiber prepreg material.
  • the layer prepreg is packaged with a vacuum bag (not shown) and vacuumed to perform the first layer of prepreg. Compaction.
  • the vacuum bag is removed, a second layer of prepreg is laid on the first layer of prepreg, and the second layer of prepreg is packaged by a vacuum bag (not shown) and vacuumed.
  • the second layer of prepreg is compacted and the vacuum bag is then removed.
  • the mold 1 is entirely placed in an autoclave to cure the two prepreg layers.
  • the curing treatment has a curing pressure of 0.6-0.7 MPa, a curing temperature of 100-220 ° C, and a time of 2-9 hours.
  • the mold 1 is opened to remove the prepared composite material inlet body body, and the surface of the embryo body has a rubber thorn, etc., so that the performance is uneven and smooth, and subsequent processing is required.
  • the outer surface of the prepared composite inlet body is polished and repaired with 180-240 mesh sandpaper to make the surface smooth, thereby obtaining the composite inlet of the composite.
  • the present invention also provides an aircraft wherein the intake passage of the aircraft is made using the composite intake port preparation method described above.
  • the composite material inlet channel and the preparation method thereof have the advantages of simple manufacturing process and high production efficiency. Moreover, the composite material inlet prepared by the preparation method can be applied to an aircraft such as an airship, and has the advantages of light weight, low processing difficulty, strong weather resistance, etc., while maintaining structural strength and meeting normal use requirements. Improve the endurance of the aircraft.

Abstract

一种复合材料进气道及其制备方法和飞行器,该制备方法包括如下步骤:a)、在模具(1)表面铺贴至少一层预浸料,形成至少一个预浸料层;b)、将预浸料层进行固化处理;c)、进行开模,脱出制备的复合材料进气道坯体。该制备方法,制作工艺简单,制作效率高。通过该制备方法制备的复合材料进气道可应用于例如飞艇等飞行器上,在保持结构强度,满足正常使用要求的情况下,具有质量轻,加工难度低,耐候性强等优点,可以提高飞行器的续航能力。

Description

复合材料进气道及其制备方法和飞行器 技术领域
本发明涉及空间技术领域,更具体地,涉及一种复合材料进气道及其制备方法和飞行器。
背景技术
传统的飞行器,例如飞艇的进气道用金属材料制备。
技术问题
现有的这种进气道,虽然能保持一定的结构强度,但是其质量大,增加了飞行器的整体质量,不利于飞行器的续航能力的提升。并且,由于加工难度大,加工质量难以保证,大大增加了制造成本。另一方面,金属制成的进气道的耐候性能不佳,难以适应飞行器运行的复杂多变的高空环境。
技术解决方案
有鉴于此,本发明的目的在于提供一种复合材料进气道及其制备方法,以解决现有技术中存在的问题。
根据本发明的第一方面,提供一种复合材料进气道制备方法,包括如下步骤:
a)、在模具表面铺贴至少一层预浸料,形成至少一个预浸料层;
b)、将所述预浸料层进行固化处理。
c)、进行开模,脱出制备的复合材料进气道坯体。
优选地,还包括如下步骤:
在所述步骤a)之前,首先在所述模具的内表面上刷涂多层脱胶剂,各层所述脱胶剂在刷涂后分别进行预设时长的干燥。
优选地,内层所述脱胶剂的干燥时间大于20分钟,最外层所述脱胶剂的干燥时间大于40分钟。
优选地,所述脱模剂干燥后,在所述脱模剂上铺贴脱模布层,
其中,所述脱模布层的由多块脱模布对接而成,并且对接缝隙小于等于1mm,各块所述脱模布的面积大于等于10cm^2。
优选地,在模具表面铺贴第一预浸料,形成第一预浸料层,所述第一预浸料为环氧/双马/氰酸酯石英或玻纤预浸料。
优选地,在第一预浸料层的表面铺贴第二预浸料,形成第二预浸料层,所述第二层预浸料为环氧/双马/氰酸酯碳纤预浸料。
优选地,所述将所述预浸料层固化处理包括:
将所述模具整体放入热压罐中对预浸料层进行固化处理。
优选地,所述固化处理的固化压力为0.6-0.7MPa,固化温度为100-220℃,时间为2-9小时。
优选地,所述步骤还包括:
在所述步骤c)之后,将制备的复合材料进气道坯体表面进行打磨,制得所述进气道。
优选地,打磨所述复合材料进气道坯体所用砂纸为180-240目砂纸。
根据本发明的第二方面,提供一种复合材料进气道,其采用所述的复合材料进气道制备方法制成。
有益效果
该制备方法,制作工艺简单,制作效率高。通过该制备方法制备的复合材料进气道可应用于例如飞艇等飞行器上,在保持结构强度,满足正常使用要求的情况下,具有质量轻,加工难度低,耐候性强等优点,可以在提高飞行器的续航能力。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚。
图1示出了根据本发明第一实施例的复合材料进气道制备方法的流程图。
图2示出了根据本发明第一实施例的复合材料进气道制备方法的预浸料铺贴于模具表面的结构示意图。
图3示出了根据本发明第一实施例的复合材料进气道制备方法的步骤S2)的流程图。
图4示出了根据本发明第二实施例的复合材料进气道制备方法的流程图。
图5示出了根据本发明第二实施例的复合材料进气道制备方法的预浸料铺贴于模具表面的结构示意图。
图6示出了根据本发明第二实施例的复合材料进气道制备方法的步骤S2)的流程图。
图中:模具1、脱模剂层2、脱模布层3、第一预浸料层41、第二预浸料层42。
本发明的实施方式
以下将参照附图更详细地描述本发明的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
本发明提供一种复合材料进气道制备方法,采用该制备方法制备的复合材料进气道可用于作为,例如飞艇等飞行器上的进气道。
第一实施例:
该实施例中,仅在模具1表面铺贴一层预浸料,即第一预浸料,形成第一预浸料层41。如图1-2所示,根据本发明实施例的复合材料进气道制备方法包括如下步骤:
S1)、对模具1表面进行处理,以增强后期脱模效果。
该步骤中,涂刷脱模剂时,需确保模具1表面温度大于一定的温度值,这里要求≥15℃。涂刷脱模剂,需确认工装表面清洁干燥。用无尘布蘸取脱模剂,在模具1表面进行均匀涂刷。为了保持不漏涂,不保证一定的涂敷厚度,需进行多遍涂刷,可选为涂刷2-3遍,形成脱模剂层2。每层脱模剂涂刷均匀,例如在多个方向进行交叉涂刷,确保涂刷均匀,若有脱模剂施加过量,需用干净布从模具1上擦去。其中,内层脱模剂,涂刷完毕至少干燥20min;施加完最后一层,即最外层的脱模剂后,需在空气中干燥至少40min。涂刷脱模剂时,需保证现场通风良好,涂刷完毕并记录。所述脱模剂干燥后,在所述脱模剂上铺贴脱模布层3,其中,所述脱模布层3的由多块脱模布对接而成,并且对接缝隙小于等于1mm,各块所述脱模布的面积大于等于10cm^2。在模具1上确定待制备复合材料进气道的工装线。
S2)、在模具1表面铺贴第一预浸料,形成第一预浸料层41。
该实施例中,需在模具1外表面表面上铺贴第一预浸料。如图3所示,该步骤中,又包括如下步骤:
S21)、将待铺贴的所述第一预浸料原材料分别进行解冻;
具体地,第一预浸料原材料取出后,放在洁净间内解冻,在解冻过程中需保持密封状态,防止其在使用前与外界接触,发生化学反应或者落入灰尘。搬运时注意轻拿轻放,避免磕碰材料。
解冻过程中,洁净间温度控制在18℃-24℃,当材料温度达到洁净间温度,具体可用用手摸上去没有和环境明显的温度差的方法来判定,并且在密封袋外膜擦干后无冷凝水产生时方能使用。对于解冻时间,在20℃±5℃情况下,解冻时间≥8h,而对于已经裁切完毕的预浸料解冻时间≥2小时。
S22)、将解冻的所述第一预浸料原材料按需要分别进行裁切;
具体地,按照产品的数字模型利用设计软件曲面展开,并裁切成对应的形状,以便于铺贴并形成复合材料进气道的圆筒形结构。
S23)、将裁切后的第一预浸料铺贴于所述模具1上,形成第一预浸料层41。
具体地,所述第一预浸料为环氧/双马/氰酸酯石英或玻纤预浸料。完成预浸料层的铺贴后,将预浸料层用真空袋(图中未示)封装,并进行抽真空处理,以对预浸料层进行压实。然后,拆去真空袋。
S3)、将所述第一预浸料层41进行固化处理。
具体地,将所述模具1整体放入热压罐中对第一预浸料层41进行固化处理。所述固化处理的固化压力为0.6-0.7MPa,固化温度为100-220℃,时间为2-9小时。
S4)、进行开模,脱出制备的复合材料进气道坯体。
将模具1进行开模,脱出制备的复合材料进气道胚体,该胚体表面具有胶刺等,使得表现不平整光滑,需要进行后续处理。
S5)、将制备的复合材料进气道坯体表面进行打磨,制得所述进气道。
在该步骤中,选用180-240目砂纸对制备的复合材料进气道坯体的外表面进行打磨、修行,使其表面光滑,从而得到复合要求的复合材料进气道。
该实施例中,在模具1表面依次铺贴两层预浸料,形成第一预浸料层41和第二预浸料层42。如图4-5所示,根据本发明实施例的复合材料进气道制备方法包括如下步骤:
S1)、对模具1表面进行处理,以增强后期脱模效果。
该步骤中,涂刷脱模剂时,需确保模具1表面温度大于一定的温度值,这里要求≥15℃。涂刷脱模剂,需确认工装表面清洁干燥。用无尘布蘸取脱模剂,在模具1表面进行均匀涂刷。为了保持不漏涂,不保证一定的涂敷厚度,需进行多遍涂刷,可选为涂刷2-3遍,形成脱模剂层2。每层脱模剂涂刷均匀,例如在多个方向进行交叉涂刷,确保涂刷均匀,若有脱模剂施加过量,需用干净布从模具1上擦去。其中,内层脱模剂,涂刷完毕至少干燥20min;施加完最后一层,即最外层的脱模剂后,需在空气中干燥至少40min。涂刷脱模剂时,需保证现场通风良好,涂刷完毕并记录。所述脱模剂干燥后,在所述脱模剂上铺贴脱模布层3,其中,所述脱模布层3的由多块脱模布对接而成,并且对接缝隙小于等于1mm,各块所述脱模布的面积大于等于10cm^2。在模具1上确定待制备复合材料进气道的工装线。
S2)、在模具1表面铺贴依次铺贴第一预浸料和第二预浸料,形成叠置的第一预浸料层41和第二预浸料层42。
该实施例中,需在模具1外表面表面上依次铺贴两层预浸料,形成两个预浸料层,即第一预浸料层41和第二预浸料层42。如图6所示,该步骤中,又包括如下步骤:(根据以下内容修改下图6)
S21)、将待铺贴的所述第一预浸料和第二预浸料原材料分别进行解冻;
具体地,第一预浸料和第二预浸料的原材料取出后,放在洁净间内解冻,在解冻过程中需保持密封状态,防止其在使用前与外界接触,发生化学反应或者落入灰尘。搬运时注意轻拿轻放,避免磕碰材料。
解冻过程中,洁净间温度控制在18℃-24℃,当材料温度达到洁净间温度,具体可用用手摸上去没有和环境明显的温度差的方法来判定,并且在密封袋外膜擦干后无冷凝水产生时方能使用。对于解冻时间,在20℃±5℃情况下,解冻时间≥8h,而对于已经裁切完毕的预浸料解冻时间≥2小时。
S22)、将解冻的所述第一预浸料和第二预浸料原材料按需要分别进行裁切;
具体地,按照产品的数字模型利用设计软件曲面展开,并裁切成对应的形状,以便于铺贴并形成复合材料进气道的圆筒形结构。
S23)、将裁切后的第一预浸料和第二预浸料依次铺贴于所述模具1上,形成层叠设置的第一预浸料层41和第二预浸料层42。
具体地,所述第一层预浸料为环氧/双马/氰酸酯石英或玻纤预浸料,所述第二层预浸料为环氧/双马/氰酸酯碳纤预浸料。将第一预浸料铺贴于阴模1的内表面上后,对该层预浸料用真空袋(图中未示)封装,并进行抽真空处理,以对第一层预浸料进行压实。然后,拆去真空袋,在第一层预浸料上铺贴第二层预浸料,并在第二层预浸料用真空袋(图中未示)封装,并进行抽真空处理,以对第二层预浸料进行压实,随后拆去真空袋。
S3)、将所述预浸料层进行固化处理。
具体地,将所述模具1整体放入热压罐中对两个预浸料层进行固化处理。所述固化处理的固化压力为0.6-0.7MPa,固化温度为100-220℃,时间为2-9小时。
S4)、进行开模,脱出制备的复合材料进气道坯体。
将模具1进行开模,脱出制备的复合材料进气道胚体,该胚体表面具有胶刺等,使得表现不平整光滑,需要进行后续处理。
S5)、将制备的复合材料进气道坯体表面进行打磨,制得所述进气道。
在该步骤中,选用180-240目砂纸对制备的复合材料进气道坯体的外表面进行打磨、修行,使其表面光滑,从而得到复合要求的复合材料进气道。
本发明还提供一种飞行器,其中,所述飞行器的进气道采用上述复合材料进气道制备方法制成。
本发明提供的复合材料进气道及其制备方法,制作工艺简单,制作效率高。而且通过该制备方法制备的复合材料进气道可应用于例如飞艇等飞行器上,在保持结构强度,满足正常使用要求的情况下,具有质量轻,加工难度低,耐候性强等优点,可以在提高飞行器的续航能力。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (12)

  1. 一种复合材料进气道制备方法,其特征在于,所述方法包括如下步骤:
    a)、在模具表面铺贴至少一层预浸料,形成至少一个预浸料层;
    b)、将所述预浸料层进行固化处理;
    c)、进行开模,脱出制备的复合材料进气道坯体。
  2. 根据权利要求1所述的复合材料进气道制备方法,其特征在于,
    所述方法还包括如下步骤:
    在所述步骤a)之前,首先在所述模具的内表面上刷涂多层脱胶剂,各层所述脱胶剂在刷涂后分别进行预设时长的干燥。
  3. 根据权利要求2所述的复合材料进气道制备方法,其特征在于,内层所述脱胶剂的干燥时间大于20分钟,最外层所述脱胶剂的干燥时间大于40分钟。
  4. 根据权利要求2所述的复合材料进气道制备方法,其特征在于,
    所述脱模剂干燥后,在所述脱模剂上铺贴脱模布层,
    其中,所述脱模布层的由多块脱模布对接而成,并且对接缝隙小于等于1mm,各块所述脱模布的面积大于等于
    Figure dest_path_image001
  5. 根据权利要求1所述的复合材料进气道制备方法,其特征在于,在模具表面铺贴第一预浸料,形成第一预浸料层,所述第一预浸料为环氧/双马/氰酸酯石英或玻纤预浸料。
  6. 根据权利要求5所述的复合材料进气道制备方法,其特征在于,在第一预浸料层的表面铺贴第二预浸料,形成第二预浸料层,所述第二层预浸料为环氧/双马/氰酸酯碳纤预浸料。
  7. 根据权利要求1所述的复合材料进气道制备方法,其特征在于,所述将所述预浸料层固化处理包括:
    将所述模具整体放入热压罐中对预浸料层进行固化处理。
  8. 根据权利要求7所述的复合材料进气道制备方法,其特征在于,所述固化处理的固化压力为0.6-0.7MPa,固化温度为100-220℃,时间为2-9小时。
  9. 根据权利要求1所述的复合材料进气道制备方法,其特征在于,
    所述方法还包括如下步骤:
    在所述步骤c)之后,将制备的复合材料进气道坯体表面进行打磨,制得所述进气道。
  10. 根据权利要求9所述的复合材料进气道制备方法,其特征在于,
    打磨所述复合材料进气道坯体所用砂纸为180-240目砂纸。
  11. 一种复合材料进气道,其特征在于,其采用如权利要求1-10任一项所述的复合材料进气道制备制备方法制成。
  12. 一种飞行器,其特征在于,所述飞行器的进气道采用如权利要求1-10任一项所述的复合材料进气道制备方法制成。
     
PCT/CN2018/079811 2017-04-28 2018-03-21 复合材料进气道及其制备方法和飞行器 WO2018196515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710297113.6 2017-04-28
CN201710297113.6A CN108790210A (zh) 2017-04-28 2017-04-28 复合材料进气道及其制备方法和飞行器

Publications (1)

Publication Number Publication Date
WO2018196515A1 true WO2018196515A1 (zh) 2018-11-01

Family

ID=63920140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079811 WO2018196515A1 (zh) 2017-04-28 2018-03-21 复合材料进气道及其制备方法和飞行器

Country Status (2)

Country Link
CN (1) CN108790210A (zh)
WO (1) WO2018196515A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910637A (zh) * 2021-10-11 2022-01-11 航天特种材料及工艺技术研究所 一种复合材料复杂异形进气道成型方法
CN113942251A (zh) * 2021-10-19 2022-01-18 航天特种材料及工艺技术研究所 一种复杂结构异形筒形件吸波胶膜成形工艺方法
CN115071163A (zh) * 2022-06-22 2022-09-20 沈阳飞机工业(集团)有限公司 多隔框碳纤维复合材料s型进气道整体共固化成型工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427793B (zh) * 2021-05-24 2022-08-05 航天特种材料及工艺技术研究所 高强度耐高温复合材料进气道及其成型方法
CN113290771A (zh) * 2021-07-27 2021-08-24 宁波曙翔新材料股份有限公司 一种利用硅胶芯层模具制造进气道的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407174A (zh) * 2013-07-30 2013-11-27 北京航空航天大学 一种纤维增强树脂基复合材料豆荚型管件的整体成型方法
CN104070687A (zh) * 2014-06-06 2014-10-01 中航复合材料有限责任公司 一种气囊加压辅助树脂膜转移成型复合材料管型件的方法
CN104589670A (zh) * 2014-12-02 2015-05-06 航天海鹰(镇江)特种材料有限公司 一种复合材料空腔结构气囊成型的气体通道设计方法
CN106393743A (zh) * 2016-11-30 2017-02-15 江西洪都航空工业集团有限责任公司 一种复合材料进气道成型模具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225623A (zh) * 2011-04-12 2011-10-26 江西洪都航空工业集团有限责任公司 S弯玻璃钢进气道的成型方法
CN104691765A (zh) * 2013-12-09 2015-06-10 成都飞机工业(集团)有限责任公司 复合材料整体进气道

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407174A (zh) * 2013-07-30 2013-11-27 北京航空航天大学 一种纤维增强树脂基复合材料豆荚型管件的整体成型方法
CN104070687A (zh) * 2014-06-06 2014-10-01 中航复合材料有限责任公司 一种气囊加压辅助树脂膜转移成型复合材料管型件的方法
CN104589670A (zh) * 2014-12-02 2015-05-06 航天海鹰(镇江)特种材料有限公司 一种复合材料空腔结构气囊成型的气体通道设计方法
CN106393743A (zh) * 2016-11-30 2017-02-15 江西洪都航空工业集团有限责任公司 一种复合材料进气道成型模具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910637A (zh) * 2021-10-11 2022-01-11 航天特种材料及工艺技术研究所 一种复合材料复杂异形进气道成型方法
CN113910637B (zh) * 2021-10-11 2023-04-11 航天特种材料及工艺技术研究所 一种复合材料复杂异形进气道成型方法
CN113942251A (zh) * 2021-10-19 2022-01-18 航天特种材料及工艺技术研究所 一种复杂结构异形筒形件吸波胶膜成形工艺方法
CN113942251B (zh) * 2021-10-19 2023-04-25 航天特种材料及工艺技术研究所 一种复杂结构异形筒形件吸波胶膜成形工艺方法
CN115071163A (zh) * 2022-06-22 2022-09-20 沈阳飞机工业(集团)有限公司 多隔框碳纤维复合材料s型进气道整体共固化成型工艺
CN115071163B (zh) * 2022-06-22 2024-03-08 沈阳飞机工业(集团)有限公司 多隔框碳纤维复合材料s型进气道整体共固化成型工艺

Also Published As

Publication number Publication date
CN108790210A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018196515A1 (zh) 复合材料进气道及其制备方法和飞行器
WO2018196514A1 (zh) 复合材料进气道制备方法及复合材料进气道
CN108071897B (zh) 一种防隔热复合材料的制备方法
US7479201B1 (en) Method for fabricating rib-stiffened composite structures
CN110815875B (zh) 一种复合材料蜂窝夹层结构零件的成型方法
CN105328921B (zh) 一种玻璃钢、碳纤维复合材料的修复方法
CN109334164A (zh) 一种碳纤维金属层板曲面件的固化/成形/热处理一体化制备方法
CN102529181B (zh) 以聚四氟乙烯为内衬层的硅橡胶复合胶管及制造工艺
US20110281114A1 (en) Method of Making A Composite Sandwich Structure and Sandwich Structure Made Thereby
CN106273536A (zh) 碳纤维/环氧树脂复合材料的微波固化成形方法及其层合板
CN111745999A (zh) 一种带r角复合材料件的外观加工方法
CN112743874A (zh) 一种复合材料蜂窝夹层件胶膜的铺放方法
CN109774190A (zh) 一种碳纤维复合材料多通接头的制造方法
CN102632623B (zh) 一种硅橡胶袋闭模工艺制备碳纤维复合材料的方法
CN109130247B (zh) 航空复材c型盒体零件成型方法
CN112373051B (zh) 一种用于隔热层的型面匹配敷设方法
CN104494165A (zh) 一种用于辅助赛艇成型的半软模及赛艇一次成型工艺
JPH01267010A (ja) 熱可塑性積層体を製造する方法
WO2018196516A1 (zh) 吸波结构件及其制作方法
CN105140326A (zh) 一种具有光伏组件的结构件及其制备方法
CN110978560A (zh) 一种泡沫夹层结构壁板及其成型方法
CN109203577B (zh) 一种贮存箱外边框预制体的制作工艺
CN111284038A (zh) 一种无人机用带筋复合材料件的液态成型方法
CN100544947C (zh) 预硫化橡胶衬里及其制造方法
CN114103158A (zh) 固体火箭发动机异型复合裙的成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790299

Country of ref document: EP

Kind code of ref document: A1