WO2018193696A1 - Rustproofing method for metal material - Google Patents

Rustproofing method for metal material Download PDF

Info

Publication number
WO2018193696A1
WO2018193696A1 PCT/JP2018/004949 JP2018004949W WO2018193696A1 WO 2018193696 A1 WO2018193696 A1 WO 2018193696A1 JP 2018004949 W JP2018004949 W JP 2018004949W WO 2018193696 A1 WO2018193696 A1 WO 2018193696A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
chemical conversion
film
coating
treating
Prior art date
Application number
PCT/JP2018/004949
Other languages
French (fr)
Japanese (ja)
Inventor
伸吾 永峯
晃治 北
Original Assignee
奥野製薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥野製薬工業株式会社 filed Critical 奥野製薬工業株式会社
Priority to JP2019513237A priority Critical patent/JP7043083B2/en
Publication of WO2018193696A1 publication Critical patent/WO2018193696A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a method for treating a metal material.
  • chromic acid which is a hexavalent chromium compound, is designated as a specific chemical substance due to its harmfulness, and its use is currently restricted.
  • Patent Document 1 discloses a rust preventive treatment method by forming a siliceous film after chemical conversion treatment with trivalent chromium.
  • An object of the present invention is to provide a method for treating a metal material that can further improve the rust prevention performance of the metal material.
  • the present inventor has carried out a chemical conversion treatment with a treatment liquid containing a zirconium compound and an amphoteric surfactant, or a chemical conversion treatment with a treatment liquid containing a zirconium compound. It was found that the rust prevention performance of the metal material can be further improved by performing a siliceous film formation treatment later without using chromium. As a result of further research based on this knowledge, the present inventor completed the present invention.
  • the present invention includes the following modes as one mode.
  • a method for treating a metal material comprising:
  • Item 2. The treatment method according to Item 1, wherein the amphoteric surfactant is a betaine amphoteric surfactant.
  • Item 3. The treatment method according to Item 1 or 2, wherein the treatment liquid for forming a siliceous film is a treatment liquid containing an alkoxysilane oligomer.
  • Item 4. The treatment method according to Item 3, wherein the treatment liquid for forming a siliceous film further contains ultrafine silica particles.
  • Item 5. The treatment method according to Item 4, wherein the ultrafine silica particles are colloidal silica.
  • Item 6. The processing method according to any one of Items 1 to 5, which is a rust-proofing method for a metal material.
  • Item 7 A chemical conversion solution for metal materials containing a zirconium compound and an amphoteric surfactant.
  • Item 8 A treatment liquid for forming a siliceous film for a zirconium-containing chemical conversion film on a metal material containing an alkoxysilane oligomer.
  • a metal material and a rust preventive film on the surface of the metal material, and the rust preventive film is the following film 1 or 2: (Coating 1) Chemical conversion coating 1 containing zirconium and an amphoteric surfactant, or (Coating 2) Coating 2 comprising the following coatings 2a and 2b; (Coating 2a) Chemical conversion coating 2a containing zirconium, and (Coating 2b) siliceous coating 2b on the chemical conversion coating 2a, A metal material containing a rust preventive film.
  • Step 1 or 2 A step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) a step comprising the following steps 2a and 2b; (Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound, and (Step 2b) a step of treating the chemical conversion-treated metal material obtained in Step 2a with a treatment solution for forming a siliceous film, A method for producing a rust-proof coating-containing metal material.
  • the present invention it is possible to provide a method for treating a metal material, which can further improve the rust prevention performance of the metal material and use less chromium (preferably not using chromium). Moreover, according to this invention, the processing liquid used for this method, and the rust-proof film containing metal material which can be obtained by this processing method can also be provided.
  • step 1 or 2 the following step 1 or 2: (Step 1) a step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) the following step 2a and (Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound; and (Step 2b) a treatment solution for forming a siliceous film from the chemical treatment-treated metal material obtained in Step 2a.
  • a process for treating a metal material which may be referred to as a “treatment method of the present invention” in this specification. This will be described below.
  • the processing object in the metal material chemical conversion treatment process is a metal material.
  • the metal material is not particularly limited as long as at least a part of the surface thereof is a material made of metal.
  • the metal include various metals such as zinc, aluminum, magnesium, cobalt, nickel, iron, copper, tin, gold, and alloys thereof, and preferably zinc. More specifically, as a metal material, an article made only of metal, a composite article in which other articles other than metal (for example, ceramic material, plastics material, etc.) and metal are combined, and has a metal plating film on the surface Examples thereof include plating products (for example, steel plating products having a zinc plating film or a zinc alloy plating film on the surface).
  • the metal constituting the surface of the metal material may be an untreated metal or a metal that has been subjected to a pretreatment such as a degreasing treatment or an acid activation treatment.
  • the chemical conversion liquid contains a zirconium compound.
  • the zirconium compound is not particularly limited as long as it is a compound that can be dissolved in a solvent to supply zirconium ions.
  • Specific examples of the zirconium compound include zirconium fluorides such as ammonium zirconium fluoride (III), sodium zirconium fluoride (III), and potassium zirconium fluoride (III); zirconium chloride (III), zirconium chloride (IV), and the like.
  • a zirconium compound can be used individually by 1 type or in mixture of 2 or more types.
  • the concentration of the zirconium compound in the chemical conversion liquid is not particularly limited.
  • the concentration is preferably 0.1 g / L or more from the viewpoint of forming a uniform chemical conversion film on the surface of the metal material and further enhancing the rust prevention effect. Moreover, it is preferable that this density
  • concentration is 50 g / L or less from a viewpoint of reducing cost more.
  • the concentration is preferably about 0.1 to 50 g / L, more preferably about 0.5 to 35 g / L, still more preferably about 1.0 to 25 g / L, and still more preferably 1 About 5 to 15 g / L, particularly preferably about 2.0 to 10 g / L.
  • the chemical conversion treatment liquid preferably further contains an amphoteric surfactant from the viewpoint that the chemical conversion treatment film can be made stronger and the rust prevention effect can be further improved.
  • amphoteric surfactant is not particularly limited.
  • fatty acid amidopropyl betaine type amphoteric surfactants such as cocamidopropyl betaine and cocamidopropyl hydroxysultain; lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecyl Alkylbetaine-type amphoteric surfactants such as aminomethyldimethylsulfopropylbetaine and octadecylaminomethyldimethylsulfopropylbetaine; alkylimidazole-type amphoteric surfactants such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine Amino acid-type amphoteric surfactants such as sodium lauroyl glutamate, potassium lauroyl glutamate, lauroylmethyl- ⁇ -alanine; lauryldimethylamine N-o Sid,
  • fatty acid amidopropyl betaine-type amphoteric surfactants such as cocamidopropyl betaine and cocamidopropyl hydroxysultain; lauryl dimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropylbetaine, octadecyl Alkylbetaine-type amphoteric surfactants such as aminomethyldimethylsulfopropylbetaine; and the like, more preferably fatty acid amidepropylbetaine-type amphoteric surfactants such as cocamidopropylbetaine and cocamidopropylhydroxysultain. More preferred is cocamidopropyl betaine.
  • Amphoteric surfactants can be used singly or in combination of two or more.
  • the concentration of the amphoteric surfactant in the chemical conversion liquid is not particularly limited.
  • the concentration is preferably 0.01 g / L or more from the viewpoint of forming a uniform chemical conversion film on the surface of the metal material and further enhancing the rust prevention effect. Moreover, it is preferable that this density
  • concentration is 10 g / L or less from a viewpoint of reducing cost more.
  • the concentration is preferably about 0.01 to 10 g / L, more preferably about 0.03 to 10 g / L, and still more preferably about 0.1 to 10 g / L.
  • the solvent for the chemical conversion treatment solution is not particularly limited as long as it is a solvent capable of dissolving the zirconium compound.
  • the solvent is usually water or a solvent containing water as a main component (for example, 80% by mass, preferably 90% by mass, more preferably 95% by mass, and still more preferably 99% by mass with respect to 100% by mass of the solvent). Containing a solvent).
  • the chemical conversion liquid may contain other components.
  • the pH of the chemical conversion treatment liquid is preferably 2.0 or more from the viewpoint of further reducing the dissolution of the metal material to improve the rust prevention effect and the appearance of the treatment.
  • the pH is preferably 8.0 or less from the viewpoint of further improving the bath stability of the chemical conversion treatment liquid and further suppressing the generation of suspension and precipitation and further the decomposition of the bath.
  • the pH is preferably 2.0 to 8.0, more preferably 3.0 to 7.0, and still more preferably 4.0 to 6.0.
  • the treatment mode chemical conversion treatment is performed by treating a metal material with a chemical conversion treatment liquid.
  • the mode of the treatment is not particularly limited as long as the chemical conversion treatment film containing zirconium is formed on the metal on the surface of the metal material.
  • the treatment is performed, for example, by bringing the chemical conversion treatment solution into contact with the metal material surface.
  • the contact is usually performed by applying a chemical conversion solution on the surface of the metal material.
  • a coating method for example, known methods such as dip coating, spray coating, roll coating, spin coating, and bar coating can be employed.
  • the temperature of the chemical conversion treatment solution at the time of contact between the chemical conversion treatment solution and the metal material surface is not particularly limited, but is, for example, 10 to 80 ° C., preferably 20 to 60 ° C., more preferably 25 to 50 ° C., and still more preferably 30. ⁇ 40 ° C.
  • the contact time between the chemical conversion treatment liquid and the metal material surface is not particularly limited, but for example, 10 seconds to 60 minutes, preferably 30 seconds to 30 minutes, more preferably 1 minute to 15 minutes, and further preferably 3 minutes to 10 minutes. It is.
  • a chemical conversion treatment film containing zirconium can be formed directly on the metal material.
  • a siliceous film forming process described later it is possible to form a rust-proof film having high anti-rust properties on the metal material.
  • the chemical conversion treatment liquid contains an amphoteric surfactant
  • a chemical conversion treatment film containing zirconium and the amphoteric surfactant can be formed directly on the metal material by chemical conversion treatment.
  • the chemical conversion film itself can function as a rust preventive film having high rust preventive properties.
  • the film thickness of the chemical conversion film to be formed is preferably about 0.01 to 0.2 ⁇ m, for example.
  • step 2b 2-1. Chemically treated metal material
  • the treatment target of the siliceous film forming treatment is the chemically treated metal material obtained in step 2a.
  • siliceous film forming treatment liquid is not particularly limited as long as it can form a siliceous film on the chemical conversion treatment film containing zirconium in the chemically treated metal material.
  • the processing liquid for forming a siliceous film is typically a processing liquid containing an alkoxysilane oligomer.
  • the alkoxysilane oligomer has, for example, the formula: (R 1 ) m Si (OR 2 ) 4-m (wherein R 1 is a functional group, R 2 is a lower alkyl group, m is an integer of 0 to 3)
  • the alkoxysilane represented by (A) is hydrolyzed and subjected to polycondensation.
  • functional groups include vinyl, 3-glycidoxypropyl, 3-glycidoxypropylmethyl, 2- (3,4-epoxycyclohexyl) ethyl, p-styryl, 3-methacryloxypropyl, 3- Methacryloxypropylmethyl, 3-acryloxypropyl, 3-aminopropyl, N-2- (aminoethyl) -3-aminopropyl, N-2- (aminoethyl) -3-aminopropylmethyl, 3-triethoxysilyl -N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyl, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyl, tris- (trimethoxysilylpropyl) Isocyanurate, 3-ureidopropyl, 3-mercaptopropyl, 3-mercaptopropyl, 3-
  • the lower alkyl group include carbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1-ethylpropyl, isopentyl, neopentyl and the like.
  • Examples thereof include a linear or branched alkyl group having a number of about 1 to 6.
  • alkoxysilane represented by the above chemical formula examples include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , CH 3 Si (OCH 3 ) 3 , CH 3 Si (OC 2 H 5 ) 3 , C 2 H 5 Si (OCH 3 ) 3, C 2 H 5 Si (OC 2 H 5) 4, CHCH 2 Si (OCH 3) 3, CH 2 CHOCH 2 O (CH 2) 3 Si (CH 3 O) 3 , CH 2 C (CH 3 ) COO (CH 2 ) 3 Si (OCH 3 ) 3 , CH 2 CHCOO (CH 2 ) 3 Si (OCH 3 ) 3 , NH 2 (CH 2 ) 3 Si (OCH 3 ) 3 , SH (CH 2 ) 3 Si (CH 3 ) 3 and NCO (CH 2 ) 3 Si (C 2 H 5 O) 3 can be mentioned.
  • the treatment liquid containing the alkoxysilane oligomer contains the above-mentioned condensate of alkoxysilane as an active ingredient.
  • the alkoxysilane condensate may be added to the solution in the form of a condensate in advance, or the alkoxysilane may be added to the alcohol solution alone or together with the low-alkoxysilane condensate to form an acid,
  • a catalyst component which will be described later, such as a base and an organometallic compound may be mixed and subjected to hydrolysis and condensation reaction to form a condensate in the solution.
  • the degree of condensation of the alkoxysilane oligomer is not particularly limited, and after preparing a treatment liquid for forming a siliceous film, hydrolysis and condensation reactions proceed in the solution.
  • the degree of condensation may be such that the smooth application operation is not hindered.
  • an alkoxysilane oligomer having a weight average molecular weight of about 1000 to 10,000 can be used, but is not limited thereto.
  • the concentration of the silica component of the alkoxysilane oligomer in the siliceous film-forming treatment solution is not limited, but is preferably about 0.1 to 50% by weight, more preferably about 5 to 30% by weight. preferable.
  • an organic solvent such as alcohol, glycol, glycol ether, ether, ether alcohol, or ketone as the solvent.
  • the amount of water added is usually about 0.1 to 20% by weight based on the entire treatment liquid for forming a siliceous film.
  • acids As the catalyst, acids, bases, organometallic compounds and the like can be used.
  • examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, formic acid, acetic acid, citric acid, and oxalic acid.
  • Examples of the base include potassium hydroxide, sodium hydroxide, ammonia, monoethylamine, diethylamine, triethylamine and the like.
  • organic metal compound for example, a water-soluble organic metal chelate compound containing titanium, zirconium, aluminum, tin or the like, a metal alkoxide, or the like can be used as a metal component.
  • organic titanium compound include titanium alkoxide compounds such as tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra tertiary butyl titanate, and tetraoctyl titanate; titanium diisopropoxybisacetylacetonate, titanium tetra Titanium chelates such as acetylacetonate, titanium dioctyloxybisethylacetoacetonate, titanium octylene glycolate, titanium diisopropoxybisethylacetylacetonate, titanium lactate, titanium lactate ammonium salt, titanium diisopropoxybistriethanolaminate
  • organic zirconium compound include dipropy
  • zirconium oxide compound examples include zirconium tetraacetylacetonate, zirconium tributoxymonoacetylacetonate, zirconium dibutoxybisethylacetoacetate, zirconium tributoxymonostearate and the like.
  • Aluminum alkoxide compounds such as aluminum butyl acetate, monobutoxy aluminum diisopropylate, aluminum butyrate; ethyl acetoacetate aluminum diisopropylate, aluminum trisethyl acetate, alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bisethylacetoacetate, etc.
  • aluminum chelate compounds That.
  • These catalysts can be used singly or in combination of two or more.
  • the compounding amount of the catalyst is not particularly limited, but is usually about 0.01 to 20% by weight, and about 0.1 to 10% by weight, based on the entire processing solution for forming a siliceous film. It is preferable to do.
  • Silica film forming treatment liquid may further contain ultrafine silica particles as necessary.
  • Silica ultrafine particles act as a film-forming aid, and by adding this, the rust prevention performance can be further improved.
  • colloidal silica is preferably used because of its good dispersibility in the processing solution for forming a siliceous film.
  • Colloidal silica is a dispersion in which silica nanoparticles having a particle diameter of about 100 nm or less or a shape in which spheres are connected to a chain are dispersed in a solvent, and water-based colloidal silica using water and various organic solvents as solvents. Any solvent-based colloidal silica can be used. Some water-based colloidal silicas show an alkaline type and an acidic type, both of which can be used. In particular, the acidic type is preferable for maintaining the stability of the liquid composition.
  • Examples of the solvent for colloidal silica include methanol, isopropanol, dimethylacetamide, ethylene glycol, ethylene glycol mono-n-propyl ether, ethylene glycol monoethyl ether, ethyl acetate, propylene glycol monoethyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone. And toluene.
  • the silica content in the colloidal silica is, for example, about 5 to 40% by weight as the solid content concentration.
  • the blending amount of colloidal silica in the siliceous film-forming treatment liquid is usually preferably about 1 to 50% by weight as the solid content based on the entire siliceous film-forming treatment liquid.
  • the siliceous film-forming treatment liquid may contain other components.
  • the siliceous film forming treatment is performed by treating the chemically treated metal material with a treatment liquid for forming a siliceous film.
  • the mode of treatment is not particularly limited as long as the siliceous film is formed on the chemical conversion film of the chemical conversion-treated metal material.
  • the treatment is performed, for example, by bringing a treatment liquid for forming a siliceous film into contact with a chemical conversion treatment film, and then performing a drying treatment.
  • the contact is usually performed by applying a treatment liquid for forming a siliceous film to the chemical conversion film.
  • a coating method for example, known methods such as dip coating, spray coating, roll coating, spin coating, and bar coating can be employed.
  • the temperature of the siliceous film-forming treatment liquid at the time of contact between the siliceous film-forming treatment liquid and the surface of the metal material is not particularly limited, but is, for example, 10 to 80 ° C., preferably 10 to 30 ° C.
  • the contact time between the chemical conversion solution and the metal material surface is not particularly limited, but is, for example, 1 second to 1 minute, preferably 1 second to 10 seconds.
  • the drying treatment is not particularly limited as long as the solvent can be removed from the siliceous film-forming treatment liquid on the chemical conversion film.
  • the drying temperature is, for example, 20 to 200 ° C., preferably 50 to 200 ° C., more preferably 100 to 180 ° C., and still more preferably 120 to 180 ° C.
  • the drying time is, for example, 30 seconds to 30 minutes, preferably 5 minutes to 30 minutes, more preferably 10 minutes to 20 minutes.
  • a siliceous film can be formed directly on the chemical conversion film by the siliceous film formation treatment.
  • membrane formed on a metal material can function as a rust prevention film
  • the siliceous film is a thin film having good transparency, and can impart good antirust performance without impairing the appearance of the object to be processed.
  • the film thickness of the siliceous film to be formed is preferably about 0.1 to 5 ⁇ m, for example.
  • Examples 1 to 3 A galvanized steel sheet (size: 100 ⁇ 60 ⁇ 0.3 mm) was subjected to an alkaline degreasing treatment, and then immersed in a 0.5% nitric acid aqueous solution for 10 seconds to be subjected to an acid activation treatment, thereby obtaining a metal material as an object to be treated. .
  • test sample in which the chemical conversion film was formed on the surface of the processed material was obtained by immersing the processed material in a chemical conversion solution having the composition shown in Table 1 for 5 minutes at 35 ° C.
  • Examples 4-12 A galvanized steel sheet (size: 100 ⁇ 60 ⁇ 0.3 mm) was subjected to an alkaline degreasing treatment, and then immersed in a 0.5% nitric acid aqueous solution for 10 seconds to be subjected to an acid activation treatment, thereby obtaining a metal material as an object to be treated. .
  • the processed material was immersed in a chemical conversion solution having the composition shown in Table 1 for 5 minutes at 35 ° C. to obtain a chemically treated metal material having a chemical conversion film formed on the surface of the processed material.
  • a treatment liquid for forming a siliceous film was prepared as follows.
  • a mixed solution consisting of 15% by weight of tetramethoxysilane, 15% by weight of 3-mercaptopropylsilane, and 70% by weight of isopropyl alcohol was prepared.
  • 10 parts by weight of water and titanium dioctyloxybisoctylene glycolate are added to 100 parts by weight of the above mixed solution, respectively, and hydrolyzed and polycondensed to obtain an alkoxysilane oligomer having a silica component concentration of about 25% by weight.
  • An alcohol solution was obtained.
  • an isopropyl alcohol dispersion having a colloidal silica concentration of 30% by weight was mixed so as to have a solid content of 5% by weight to obtain a treatment liquid for forming a siliceous film.
  • a test sample in which a siliceous film is formed on a chemical conversion film is obtained by immersing the chemical conversion-treated metal material in a processing solution for forming a siliceous film at 20 ° C. for 5 seconds and then drying at 150 ° C. for 15 minutes. Obtained.
  • the salt spray test JIS Z2371 was performed on the test sample, and the time until the white rust generation area ratio to the sample surface area was 10% was visually determined. The results are shown in Table 1 below.
  • Comparative Example 1 A salt spray test was conducted in the same manner as in Examples 1-12, using the same workpieces (metal materials obtained by acid activation treatment after galvanized steel sheets as alkaline degreasing treatment) as in Examples 1-12. The time until the ratio of the white rust generation area to the sample surface area was 10% was determined. The results are shown in Table 1 below.
  • Comparative Example 2 Test samples were obtained in the same manner as in Examples 4 to 12 except that no chemical conversion treatment was performed. The test sample was subjected to a salt spray test in the same manner as in Examples 1 to 12, and the time until the white rust generation area ratio to the sample surface area reached 10% was determined. The results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide a method for treating metal materials that can further increase the rustproofing properties of metal material. A method for treating metal materials that comprises steps 1 or 2: (Step 1) a step for treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant; or (Step 2) a step comprising steps 2a and 2b: (step 2a) a step for treating the metal material with a chemical conversion treatment solution B containing a zirconium compound, and (step 2b) a step for treating the chemical conversion-treated metal material obtained in step 2a with a siliceous coating-forming treatment solution.

Description

金属材料の防錆処理方法Rust prevention method for metal materials
 本発明は、金属材料の処理方法に関する。 The present invention relates to a method for treating a metal material.
 亜鉛、アルミニウム、マグネシウム、コバルト、ニッケル、鉄、銅、錫、金、これらの合金などの各種の金属材料の防錆処理や変色防止方法として、これまでクロム酸の水溶液を用いた化成処理が施されてきた。しかしながら、6価クロム化合物であるクロム酸は、その有害性により特定化学物質に指定され、現在では、使用が規制されている。 As a method for preventing rust and discoloration of various metal materials such as zinc, aluminum, magnesium, cobalt, nickel, iron, copper, tin, gold, and alloys thereof, chemical conversion treatment using an aqueous solution of chromic acid has been performed. It has been. However, chromic acid, which is a hexavalent chromium compound, is designated as a specific chemical substance due to its harmfulness, and its use is currently restricted.
 近年、クロム酸による化成処理の代替処理として、3価クロムを含む化合物による化成処理が盛んに開発されている。例えば、特許文献1においては、3価クロムによる化成処理後にシリカ質皮膜を形成することによる、防錆処理方法が開示されている。 In recent years, chemical conversion treatment with compounds containing trivalent chromium has been actively developed as an alternative to chemical conversion treatment with chromic acid. For example, Patent Document 1 discloses a rust preventive treatment method by forming a siliceous film after chemical conversion treatment with trivalent chromium.
 ただ、近年、金属材料に対する防錆性能の要求はますます高くなっており、この要求を満たす防錆技術の開発が求められている。 However, in recent years, the demand for rust prevention performance for metal materials has been increasing, and development of rust prevention technology that satisfies this demand has been demanded.
特開2015-134942号公報JP2015-134942A
 本発明は、金属材料の防錆性能をより高めることができる、金属材料の処理方法を提供することを課題とする。 An object of the present invention is to provide a method for treating a metal material that can further improve the rust prevention performance of the metal material.
 本発明者は上記課題に鑑みて鋭意研究を進めた結果、金属材料を、ジルコニウム化合物及び両性界面活性剤を含有する処理液による化成処理することにより、或いはジルコニウム化合物を含有する処理液による化成処理後にシリカ質皮膜形成処理することにより、クロムを使用せずとも、金属材料の防錆性能をより高めることができることを見出した。本発明者は、この知見に基づいてさらに研究を進めた結果、本発明を完成させた。 As a result of carrying out diligent research in view of the above problems, the present inventor has carried out a chemical conversion treatment with a treatment liquid containing a zirconium compound and an amphoteric surfactant, or a chemical conversion treatment with a treatment liquid containing a zirconium compound. It was found that the rust prevention performance of the metal material can be further improved by performing a siliceous film formation treatment later without using chromium. As a result of further research based on this knowledge, the present inventor completed the present invention.
 即ち、本発明は、一態様として下記の態様を包含する。 That is, the present invention includes the following modes as one mode.
 項1. 下記工程1又は2:
(工程1)金属材料をジルコニウム化合物及び両性界面活性剤を含有する化成処理液Aで処理する工程、又は
(工程2)下記工程2a及び2bを含む工程;
 (工程2a)金属材料をジルコニウム化合物を含有する化成処理液Bで処理する工程、及び
 (工程2b)工程2aで得られた化成処理済金属材料をシリカ質皮膜形成用処理液で処理する工程、
を含む、金属材料の処理方法。
Item 1. Step 1 or 2 below:
(Step 1) A step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) a step comprising the following steps 2a and 2b;
(Step 2a) a step of treating the metal material with a chemical conversion treatment solution B containing a zirconium compound, and (step 2b) a step of treating the chemical conversion-treated metal material obtained in step 2a with a treatment solution for forming a siliceous film
A method for treating a metal material, comprising:
 項2. 前記両性界面活性剤がベタイン型両性界面活性剤である、項1に記載の処理方法。 Item 2. Item 2. The treatment method according to Item 1, wherein the amphoteric surfactant is a betaine amphoteric surfactant.
 項3. 前記シリカ質皮膜形成用処理液がアルコキシシランオリゴマーを含有する処理液である、項1又は2に記載の処理方法。 Item 3. Item 3. The treatment method according to Item 1 or 2, wherein the treatment liquid for forming a siliceous film is a treatment liquid containing an alkoxysilane oligomer.
 項4. 前記シリカ質皮膜形成用処理液がさらにシリカ超微粒子を含有する、項3に記載の処理方法。 Item 4. Item 4. The treatment method according to Item 3, wherein the treatment liquid for forming a siliceous film further contains ultrafine silica particles.
 項5. 前記シリカ超微粒子がコロイダルシリカである、項4に記載の処理方法。 Item 5. Item 5. The treatment method according to Item 4, wherein the ultrafine silica particles are colloidal silica.
 項6. 金属材料の防錆処理方法である、項1~5のいずれかに記載の処理方法。 Item 6. Item 6. The processing method according to any one of Items 1 to 5, which is a rust-proofing method for a metal material.
 項7. ジルコニウム化合物及び両性界面活性剤を含有する、金属材料の化成処理液。 Item 7. A chemical conversion solution for metal materials containing a zirconium compound and an amphoteric surfactant.
 項8. アルコキシシランオリゴマーを含有する、金属材料上のジルコニウム含有化成処理皮膜に対するシリカ質皮膜形成用処理液。 Item 8. A treatment liquid for forming a siliceous film for a zirconium-containing chemical conversion film on a metal material containing an alkoxysilane oligomer.
 項9. 金属材料、並びに前記金属材料表面上の防錆皮膜を含み、且つ
前記防錆皮膜が、下記皮膜1又は2:
(皮膜1)ジルコニウム及び両性界面活性剤を含有する化成処理皮膜1、又は
(皮膜2)下記皮膜2a及び2bからなる皮膜2;
 (皮膜2a)ジルコニウムを含有する化成処理皮膜2a、及び
 (皮膜2b)前記化成処理皮膜2a上のシリカ質皮膜2b、
からなる、防錆皮膜含有金属材料。
Item 9. A metal material and a rust preventive film on the surface of the metal material, and the rust preventive film is the following film 1 or 2:
(Coating 1) Chemical conversion coating 1 containing zirconium and an amphoteric surfactant, or (Coating 2) Coating 2 comprising the following coatings 2a and 2b;
(Coating 2a) Chemical conversion coating 2a containing zirconium, and (Coating 2b) siliceous coating 2b on the chemical conversion coating 2a,
A metal material containing a rust preventive film.
 項10. 下記工程1又は2:
(工程1)金属材料をジルコニウム化合物及び両性界面活性剤を含有する化成処理液Aで処理する工程、又は
(工程2)下記工程2a及び2bを含む工程;
 (工程2a)金属材料をジルコニウム化合物を含有する化成処理液Bで処理する工程、及び
 (工程2b)工程2aで得られた化成処理済金属材料をシリカ質皮膜形成用処理液で処理する工程、
を含む、防錆皮膜含有金属材料を製造する方法。
Item 10. Step 1 or 2 below:
(Step 1) A step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) a step comprising the following steps 2a and 2b;
(Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound, and (Step 2b) a step of treating the chemical conversion-treated metal material obtained in Step 2a with a treatment solution for forming a siliceous film,
A method for producing a rust-proof coating-containing metal material.
 本発明によれば、金属材料の防錆性能をより高めることができ、且つクロムの使用量がより少ない(好ましくはクロムを使用しない)、金属材料の処理方法を提供することができる。また、本発明によれば、該方法に用いる処理液、及び該処理方法により得られ得る防錆皮膜含有金属材料を提供することもできる。 According to the present invention, it is possible to provide a method for treating a metal material, which can further improve the rust prevention performance of the metal material and use less chromium (preferably not using chromium). Moreover, according to this invention, the processing liquid used for this method, and the rust-proof film containing metal material which can be obtained by this processing method can also be provided.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 本発明は、その一態様において、下記工程1又は2:(工程1)金属材料をジルコニウム化合物及び両性界面活性剤を含有する化成処理液Aで処理する工程、又は(工程2)下記工程2a及び2bを含む工程; (工程2a)金属材料をジルコニウム化合物を含有する化成処理液Bで処理する工程、及び (工程2b)工程2aで得られた化成処理済金属材料をシリカ質皮膜形成用処理液で処理する工程、を含む、金属材料の処理方法(本明細書において、「本発明の処理方法」と示すこともある。)に関する。以下に、これについて説明する。 In one aspect of the present invention, the following step 1 or 2: (Step 1) a step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) the following step 2a and (Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound; and (Step 2b) a treatment solution for forming a siliceous film from the chemical treatment-treated metal material obtained in Step 2a. A process for treating a metal material, which may be referred to as a “treatment method of the present invention” in this specification. This will be described below.
 1.化成処理工程(工程1又は2a)
 1-1.金属材料
 化成処理工程の処理対象物は金属材料である。金属材料は、その少なくとも一部の表面が金属で構成されている材料である限り特に制限されない。金属としては、例えば、亜鉛、アルミニウム、マグネシウム、コバルト、ニッケル、鉄、銅、錫、金、これらの合金などの各種の金属が挙げられ、好ましくは亜鉛が挙げられる。金属材料として、より具体的には、金属のみからなる物品、金属以外のその他の物品(例えば、セラミックス材料、プラスチックス材料等)と金属とが組み合わされた複合品、表面に金属めっき皮膜を有するめっき処理品(例えば、表面に亜鉛めっき皮膜又は亜鉛合金めっき皮膜を有する鋼のめっき処理品)等が挙げられる。また、金属材料の表面を構成している金属は、未処理の金属であってもよく、脱脂処理や酸活性処理等の前処理が施された金属であってもよい。
1. Chemical conversion treatment step (Step 1 or 2a)
1-1. The processing object in the metal material chemical conversion treatment process is a metal material. The metal material is not particularly limited as long as at least a part of the surface thereof is a material made of metal. Examples of the metal include various metals such as zinc, aluminum, magnesium, cobalt, nickel, iron, copper, tin, gold, and alloys thereof, and preferably zinc. More specifically, as a metal material, an article made only of metal, a composite article in which other articles other than metal (for example, ceramic material, plastics material, etc.) and metal are combined, and has a metal plating film on the surface Examples thereof include plating products (for example, steel plating products having a zinc plating film or a zinc alloy plating film on the surface). In addition, the metal constituting the surface of the metal material may be an untreated metal or a metal that has been subjected to a pretreatment such as a degreasing treatment or an acid activation treatment.
 1-2.化成処理液
 化成処理液は、ジルコニウム化合物を含有する。ジルコニウム化合物は、溶媒に溶解してジルコニウムイオンを供給可能な化合物である限り特に制限されない。ジルコニウム化合物の具体例としては、フッ化ジルコニウムアンモニウム(III)、フッ化ジルコニウムナトリウム(III)、フッ化ジルコニウムカリウム(III)等のジルコニウムフッ化物; 塩化ジルコニウム(III)、塩化ジルコニウム(IV)等のジルコニウム塩化物; 酸化ジルコニウム(IV); タングステン酸ジルコニウム(IV)等が挙げられる。ジルコニウム化合物は、一種単独又は二種以上混合して用いることができる。
1-2. Chemical conversion liquid The chemical conversion liquid contains a zirconium compound. The zirconium compound is not particularly limited as long as it is a compound that can be dissolved in a solvent to supply zirconium ions. Specific examples of the zirconium compound include zirconium fluorides such as ammonium zirconium fluoride (III), sodium zirconium fluoride (III), and potassium zirconium fluoride (III); zirconium chloride (III), zirconium chloride (IV), and the like. Zirconium chloride; zirconium oxide (IV); zirconium tungstate (IV) and the like. A zirconium compound can be used individually by 1 type or in mixture of 2 or more types.
 化成処理液におけるジルコニウム化合物の濃度は、特に制限されない。該濃度は、金属材料表面により均一な化成皮膜を形成して、防錆効果をより高めるという観点からは、0.1g/L以上であることが好ましい。また、該濃度は、コストをより低減するという観点からは、50g/L以下であることが好ましい。該濃度は、好ましくは0.1~50g/L程度であり、より好ましくは0.5~35g/L程度であり、さらに好ましくは1.0~25g/L程度であり、よりさらに好ましくは1.5~15g/L程度であり、特に好ましくは2.0~10g/L程度である。 The concentration of the zirconium compound in the chemical conversion liquid is not particularly limited. The concentration is preferably 0.1 g / L or more from the viewpoint of forming a uniform chemical conversion film on the surface of the metal material and further enhancing the rust prevention effect. Moreover, it is preferable that this density | concentration is 50 g / L or less from a viewpoint of reducing cost more. The concentration is preferably about 0.1 to 50 g / L, more preferably about 0.5 to 35 g / L, still more preferably about 1.0 to 25 g / L, and still more preferably 1 About 5 to 15 g / L, particularly preferably about 2.0 to 10 g / L.
 化成処理液は、化成処理皮膜をより強固なものとすることができ、防錆効果を一層向上させることができるという観点から、更に、両性界面活性剤を含有することが好ましい。 The chemical conversion treatment liquid preferably further contains an amphoteric surfactant from the viewpoint that the chemical conversion treatment film can be made stronger and the rust prevention effect can be further improved.
 両性界面活性剤としては特に限定的ではないが、例えばコカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等の脂肪酸アミドプロピルベタイン型両性界面活性剤; ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン等のアルキルベタイン型両性界面活性剤; 2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等のアルキルイミダゾール型両性界面活性剤; ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム、ラウロイルメチル-β-アラニン等のアミノ酸型両性界面活性剤; ラウリルジメチルアミンN‐オキシド、オレイルジメチルアミンN‐オキシド等のアミンオキシド型両性界面活性剤; 等が挙げられる。これらの中でも、好ましくはコカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等の脂肪酸アミドプロピルベタイン型両性界面活性剤; ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン等のアルキルベタイン型両性界面活性剤; 等が挙げられ、より好ましくはコカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等の脂肪酸アミドプロピルベタイン型両性界面活性剤が挙げられ、さらに好ましくはコカミドプロピルベタインが挙げられる。両性界面活性剤は、一種単独又は二種以上混合して用いることができる。 The amphoteric surfactant is not particularly limited. For example, fatty acid amidopropyl betaine type amphoteric surfactants such as cocamidopropyl betaine and cocamidopropyl hydroxysultain; lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecyl Alkylbetaine-type amphoteric surfactants such as aminomethyldimethylsulfopropylbetaine and octadecylaminomethyldimethylsulfopropylbetaine; alkylimidazole-type amphoteric surfactants such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine Amino acid-type amphoteric surfactants such as sodium lauroyl glutamate, potassium lauroyl glutamate, lauroylmethyl-β-alanine; lauryldimethylamine N-o Sid, amine oxide type amphoteric surfactants such as oleyl dimethyl amine N- oxide; and the like. Among these, preferably fatty acid amidopropyl betaine-type amphoteric surfactants such as cocamidopropyl betaine and cocamidopropyl hydroxysultain; lauryl dimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropylbetaine, octadecyl Alkylbetaine-type amphoteric surfactants such as aminomethyldimethylsulfopropylbetaine; and the like, more preferably fatty acid amidepropylbetaine-type amphoteric surfactants such as cocamidopropylbetaine and cocamidopropylhydroxysultain. More preferred is cocamidopropyl betaine. Amphoteric surfactants can be used singly or in combination of two or more.
 化成処理液における両性界面活性剤の濃度は、特に制限されない。該濃度は、金属材料表面により均一な化成皮膜を形成して、防錆効果をより高めるという観点からは、0.01g/L以上であることが好ましい。また、該濃度は、コストをより低減するという観点からは、10g/L以下であることが好ましい。該濃度は、好ましくは0.01~10g/L程度、より好ましくは0.03~10g/L程度、さらに好ましくは0.1~10g/L程度である。 The concentration of the amphoteric surfactant in the chemical conversion liquid is not particularly limited. The concentration is preferably 0.01 g / L or more from the viewpoint of forming a uniform chemical conversion film on the surface of the metal material and further enhancing the rust prevention effect. Moreover, it is preferable that this density | concentration is 10 g / L or less from a viewpoint of reducing cost more. The concentration is preferably about 0.01 to 10 g / L, more preferably about 0.03 to 10 g / L, and still more preferably about 0.1 to 10 g / L.
 化成処理液の溶媒は、ジルコニウム化合物を溶解可能な溶媒である限り特に制限されない。溶媒は、通常、水、或いは水が主成分である溶媒(溶媒100質量%に対して、例えば80質量%、好ましくは90質量%、より好ましくは95質量%、さらに好ましくは99質量%の水を含有する溶媒)である。 The solvent for the chemical conversion treatment solution is not particularly limited as long as it is a solvent capable of dissolving the zirconium compound. The solvent is usually water or a solvent containing water as a main component (for example, 80% by mass, preferably 90% by mass, more preferably 95% by mass, and still more preferably 99% by mass with respect to 100% by mass of the solvent). Containing a solvent).
 化成処理液には、上記成分以外にも他の成分が含まれていてもよい。 In addition to the above components, the chemical conversion liquid may contain other components.
 化成処理液のpHは、金属材料の溶解をより低減して防錆効果及び処理外観をより良好にするという観点から、2.0以上であることが好ましい。また、該pHは、化成処理液の浴安定性をより高めて、懸濁や沈殿の発生さらには浴分解をより抑制するという観点から、8.0以下であることが好ましい。該pHは、好ましくは2.0~8.0であり、より好ましくは3.0~7.0であり、さらに好ましくは4.0~6.0である。 The pH of the chemical conversion treatment liquid is preferably 2.0 or more from the viewpoint of further reducing the dissolution of the metal material to improve the rust prevention effect and the appearance of the treatment. In addition, the pH is preferably 8.0 or less from the viewpoint of further improving the bath stability of the chemical conversion treatment liquid and further suppressing the generation of suspension and precipitation and further the decomposition of the bath. The pH is preferably 2.0 to 8.0, more preferably 3.0 to 7.0, and still more preferably 4.0 to 6.0.
 1-3.処理態様
 化成処理は、金属材料を化成処理液で処理することにより行われる。処理の態様は、金属材料表面の金属上に、ジルコニウムを含有する化成処理皮膜が形成される態様である限りにおいて、特に制限されない。
1-3. The treatment mode chemical conversion treatment is performed by treating a metal material with a chemical conversion treatment liquid. The mode of the treatment is not particularly limited as long as the chemical conversion treatment film containing zirconium is formed on the metal on the surface of the metal material.
 処理は、例えば化成処理液と金属材料表面とを接触させることによって行われる。該接触は、通常は、化成処理液を金属材料表面に塗布することによって行われる。塗布方法としては、例えばディップコート、スプレーコート、ロールコート、スピンコート、バーコート等の公知の方法を採用することができる。 The treatment is performed, for example, by bringing the chemical conversion treatment solution into contact with the metal material surface. The contact is usually performed by applying a chemical conversion solution on the surface of the metal material. As a coating method, for example, known methods such as dip coating, spray coating, roll coating, spin coating, and bar coating can be employed.
 化成処理液と金属材料表面との接触時の、化成処理液の温度は、特に制限されないが、例えば10~80℃、好ましくは20~60℃、より好ましくは25~50℃、さらに好ましくは30~40℃である。 The temperature of the chemical conversion treatment solution at the time of contact between the chemical conversion treatment solution and the metal material surface is not particularly limited, but is, for example, 10 to 80 ° C., preferably 20 to 60 ° C., more preferably 25 to 50 ° C., and still more preferably 30. ~ 40 ° C.
 化成処理液と金属材料表面との接触時間は、特に制限されないが、例えば10秒間~60分間、好ましくは30秒間~30分間、より好ましくは1分間~15分間、さらに好ましくは3分間~10分間である。 The contact time between the chemical conversion treatment liquid and the metal material surface is not particularly limited, but for example, 10 seconds to 60 minutes, preferably 30 seconds to 30 minutes, more preferably 1 minute to 15 minutes, and further preferably 3 minutes to 10 minutes. It is.
 化成処理により、金属材料上に直接、ジルコニウムを含有する化成処理皮膜を形成することができる。該皮膜が形成されてなる化成処理済金属材料を、後述のシリカ質皮膜形成処理に供することにより、金属材料上に高い防錆性を有する防錆皮膜を形成することができる。 By chemical conversion treatment, a chemical conversion treatment film containing zirconium can be formed directly on the metal material. By subjecting the chemically treated metal material formed with the film to a siliceous film forming process described later, it is possible to form a rust-proof film having high anti-rust properties on the metal material.
 また、化成処理液に両性界面活性剤を含む場合、化成処理により、金属材料上に直接、ジルコニウム及び両性界面活性剤を含有する化成処理皮膜を形成することができる。該化成処理皮膜は、それ自体が、高い防錆性を有する防錆皮膜として機能することができる。 Further, when the chemical conversion treatment liquid contains an amphoteric surfactant, a chemical conversion treatment film containing zirconium and the amphoteric surfactant can be formed directly on the metal material by chemical conversion treatment. The chemical conversion film itself can function as a rust preventive film having high rust preventive properties.
 形成される化成処理皮膜の膜厚については、例えば、0.01~0.2μm程度とすることが好ましい。 The film thickness of the chemical conversion film to be formed is preferably about 0.01 to 0.2 μm, for example.
 2.シリカ質皮膜形成処理(工程2b)
 2-1.化成処理済金属材料
 シリカ質皮膜形成処理の処理対象物は、工程2aで得られた化成処理済金属材料である。
2. Silica film formation treatment (step 2b)
2-1. Chemically treated metal material The treatment target of the siliceous film forming treatment is the chemically treated metal material obtained in step 2a.
 2-2.シリカ質皮膜形成用処理液
 シリカ質皮膜形成用処理液は、化成処理済金属材料におけるジルコニウムを含有する化成処理皮膜上にシリカ質皮膜を形成できるものである限り、特に制限されない。シリカ質皮膜形成用処理液は、代表的にはアルコキシシランオリゴマーを含有する処理液である。
2-2. Silica film forming treatment liquid The siliceous film forming treatment liquid is not particularly limited as long as it can form a siliceous film on the chemical conversion treatment film containing zirconium in the chemically treated metal material. The processing liquid for forming a siliceous film is typically a processing liquid containing an alkoxysilane oligomer.
 アルコシキシランオリゴマーは、例えば、式:(RSi(OR4―m(式中、Rは官能基、Rは低級アルキル基である。mは0~3の整数である)で表されるアルコキシシランを加水分解し、縮重合させたものである。上記化学式において、官能基としては、ビニル、3-グリシドキシプロピル、3-グリシドキシプロピルメチル、2-(3、4-エポキシシクロヘキシル)エチル、p-スチリル、3-メタクリロキシプロピル、3-メタクリロキシプロピルメチル、3-アクリロキシプロピル、3-アミノプロピル、N-2-(アミノエチル)-3-アミノプロピル、N-2-(アミノエチル)-3-アミノプロピルメチル、3-トリエトキシシリル―N-(1、3-ジメチルーブチリデン)プロピルアミン、N―フェニル―3-アミノプロピル、N-(ビニルベンジル)-2-アミノエチル―3-アミノプロピル、トリス―(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピル、3-メルカプトプロピル、3-メルカプトプロピルメチル、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピル、3―プロピルコハク酸無水物等を例示できる。 The alkoxysilane oligomer has, for example, the formula: (R 1 ) m Si (OR 2 ) 4-m (wherein R 1 is a functional group, R 2 is a lower alkyl group, m is an integer of 0 to 3) The alkoxysilane represented by (A) is hydrolyzed and subjected to polycondensation. In the above chemical formula, functional groups include vinyl, 3-glycidoxypropyl, 3-glycidoxypropylmethyl, 2- (3,4-epoxycyclohexyl) ethyl, p-styryl, 3-methacryloxypropyl, 3- Methacryloxypropylmethyl, 3-acryloxypropyl, 3-aminopropyl, N-2- (aminoethyl) -3-aminopropyl, N-2- (aminoethyl) -3-aminopropylmethyl, 3-triethoxysilyl -N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyl, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyl, tris- (trimethoxysilylpropyl) Isocyanurate, 3-ureidopropyl, 3-mercaptopropyl, 3-mercaptopropylme Le, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanate propyl, 3-propyl succinic anhydride and the like.
 低級アルキル基としては、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、sec-ブチル、n-ペンチル、1-エチルプロピル、イソペンチル、ネオペンチル等の炭素数1~6程度の直鎖状又は分岐鎖状のアルキル基を挙げることができる。 Specific examples of the lower alkyl group include carbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1-ethylpropyl, isopentyl, neopentyl and the like. Examples thereof include a linear or branched alkyl group having a number of about 1 to 6.
 上記化学式で表されるアルコキシシランの具体例としては、Si(OCH、Si(OC、CHSi(OCH、CHSi(OC、CSi(OCH、CSi(OC、CHCHSi(OCH、CHCHOCHO(CHSi(CHO)、CHC(CH)COO(CHSi(OCH、CHCHCOO(CHSi(OCH、NH(CHSi(OCH、SH(CHSi(CH、NCO(CHSi(CO)を挙げることができる。 Specific examples of the alkoxysilane represented by the above chemical formula include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , CH 3 Si (OCH 3 ) 3 , CH 3 Si (OC 2 H 5 ) 3 , C 2 H 5 Si (OCH 3 ) 3, C 2 H 5 Si (OC 2 H 5) 4, CHCH 2 Si (OCH 3) 3, CH 2 CHOCH 2 O (CH 2) 3 Si (CH 3 O) 3 , CH 2 C (CH 3 ) COO (CH 2 ) 3 Si (OCH 3 ) 3 , CH 2 CHCOO (CH 2 ) 3 Si (OCH 3 ) 3 , NH 2 (CH 2 ) 3 Si (OCH 3 ) 3 , SH (CH 2 ) 3 Si (CH 3 ) 3 and NCO (CH 2 ) 3 Si (C 2 H 5 O) 3 can be mentioned.
 アルコキシシランオリゴマーを含有する処理液は、上記したアルコシキシランの縮合物を有効成分として含むものである。 The treatment liquid containing the alkoxysilane oligomer contains the above-mentioned condensate of alkoxysilane as an active ingredient.
 アルコシキシランの縮合物は、予め縮合物となったものを溶液中に添加してもよく、或いは、アルコシキシランを単独又はアルコシキシランの低縮合物と共にアルコール溶液中に添加し、酸、塩基、有機金属化合物等の後述する触媒成分を混合して加水分解、縮合反応を行って、溶液中において、縮合物としてもよい。 The alkoxysilane condensate may be added to the solution in the form of a condensate in advance, or the alkoxysilane may be added to the alcohol solution alone or together with the low-alkoxysilane condensate to form an acid, A catalyst component, which will be described later, such as a base and an organometallic compound may be mixed and subjected to hydrolysis and condensation reaction to form a condensate in the solution.
 アルコキシシランオリゴマーの縮合度については、特に限定的ではなく、シリカ質皮膜を形成するための処理液を調製した後、溶液中で加水分解、縮合反応が進行するので、被処理物に塗布する際に、円滑な塗布作業を阻害しない程度の縮合度であればよい。例えば、アルコキシシランオリゴマーの重量平均分子量として、1000~10000程度のものを用いることができるが、これに限定されるものではない。 The degree of condensation of the alkoxysilane oligomer is not particularly limited, and after preparing a treatment liquid for forming a siliceous film, hydrolysis and condensation reactions proceed in the solution. In addition, the degree of condensation may be such that the smooth application operation is not hindered. For example, an alkoxysilane oligomer having a weight average molecular weight of about 1000 to 10,000 can be used, but is not limited thereto.
 シリカ質皮膜形成用処理液におけるアルコキシシランオリゴマーのシリカ成分の濃度については、限定的ではないが、0.1~50重量%程度とすることが好ましく、5~30重量%程度とすることがより好ましい。 The concentration of the silica component of the alkoxysilane oligomer in the siliceous film-forming treatment solution is not limited, but is preferably about 0.1 to 50% by weight, more preferably about 5 to 30% by weight. preferable.
 アルコキシシランオリゴマーを含有するシリカ質皮膜形成用処理液では、溶媒としては、アルコール系、グリコール系、グリコールエーテル系、エーテル系、エーテルアルコール系、ケトン系などの有機溶剤を用いることが好ましい。 In the processing solution for forming a siliceous film containing an alkoxysilane oligomer, it is preferable to use an organic solvent such as alcohol, glycol, glycol ether, ether, ether alcohol, or ketone as the solvent.
 該処理液には、更に、水及び触媒を加えることが必要である。これにより、アルコキシシランオリゴマーが加水分解し、縮重合が更に進行して、シリカ質皮膜を形成することができる。 It is necessary to further add water and a catalyst to the treatment liquid. As a result, the alkoxysilane oligomer is hydrolyzed, and the condensation polymerization further proceeds to form a siliceous film.
 水の添加量については、通常、シリカ質皮膜形成用処理液の全体を基準として、0.1~20重量%程度とすればよい。 The amount of water added is usually about 0.1 to 20% by weight based on the entire treatment liquid for forming a siliceous film.
 触媒としては、酸、塩基、有機金属化合物等を用いることができる。 As the catalyst, acids, bases, organometallic compounds and the like can be used.
 これらの内で、酸としては、塩酸、硝酸、硫酸、リン酸、ホウ酸、ギ酸、酢酸、クエン酸、シュウ酸等を例示できる。 Among these, examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, formic acid, acetic acid, citric acid, and oxalic acid.
 塩基としては、水酸化カリウム、水酸化ナトリウム、アンモニア、モノエチルアミン、ジエチルアミン、トリエチルアミン等を例示できる。 Examples of the base include potassium hydroxide, sodium hydroxide, ammonia, monoethylamine, diethylamine, triethylamine and the like.
 有機金属化合物としては、例えば、金属成分として、チタン、ジルコニウム、アルミニウム、錫などを含む水溶性の有機金属キレート化合物、金属アルコキシド等を用いることができる。これらの内で、有機チタン化合物としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラターシャリーブチルチタネート、テトラオクチルチタネート等のチタンアルコキシド化合物;チタンジイソプロポキシビスアセチルアセトネート、チタンテトラアセチルアセトネート、チタンジオクチロキシビスエチルアセトアセトネート、チタンオクチレングリコレート、チタンジイソプロポキシビスエチルアセチルアセトネート、チタンラクテート、チタンラクテートアンモニウム塩、チタンジイソプロポキシビストリエタノールアミネート等のチタンキレート化合物等を例示でき、有機ジルコニウム化合物としては、ノルマルプロピルジルコネート、ノルマルブチルジルコネート等のジルコニウムアルコキシド化合物;ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムジブトキシビスエチルアセトアセテート、ジルコニウムトリブトキシモノステアレート等のジルコニウムキレート化合物を例示でき、有機アルミニウム化合物としては、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート等のアルミニウムアルコキシド化合物;、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリスエチルアセテート、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビスエチルアセトアセテート等のアルミニウムキレート化合物等を例示できる。 As the organic metal compound, for example, a water-soluble organic metal chelate compound containing titanium, zirconium, aluminum, tin or the like, a metal alkoxide, or the like can be used as a metal component. Among these, examples of the organic titanium compound include titanium alkoxide compounds such as tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra tertiary butyl titanate, and tetraoctyl titanate; titanium diisopropoxybisacetylacetonate, titanium tetra Titanium chelates such as acetylacetonate, titanium dioctyloxybisethylacetoacetonate, titanium octylene glycolate, titanium diisopropoxybisethylacetylacetonate, titanium lactate, titanium lactate ammonium salt, titanium diisopropoxybistriethanolaminate Examples of the organic zirconium compound include dipropyl compounds such as normal propyl zirconate and normal butyl zirconate. Examples of the zirconium oxide compound include zirconium tetraacetylacetonate, zirconium tributoxymonoacetylacetonate, zirconium dibutoxybisethylacetoacetate, zirconium tributoxymonostearate and the like. Aluminum alkoxide compounds such as aluminum butyl acetate, monobutoxy aluminum diisopropylate, aluminum butyrate; ethyl acetoacetate aluminum diisopropylate, aluminum trisethyl acetate, alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bisethylacetoacetate, etc. Examples of aluminum chelate compounds That.
 これらの触媒は、一種単独又は二種以上混合して用いることができる。 These catalysts can be used singly or in combination of two or more.
 触媒の配合量は、特に限定的ではないが、シリカ質皮膜形成用処理液の全体を基準として、通常、0.01~20重量%程度とすればよく、0.1~10重量%程度とすることが好ましい。 The compounding amount of the catalyst is not particularly limited, but is usually about 0.01 to 20% by weight, and about 0.1 to 10% by weight, based on the entire processing solution for forming a siliceous film. It is preferable to do.
 シリカ質皮膜形成用処理液には、更に、必要に応じて、シリカ超微粒子を添加することができる。シリカ超微粒子は、造膜助剤として作用するものであり、これを配合することによって、防錆性能をより向上させることができる。シリカ超微粒子としては、シリカ質皮膜形成用処理液への分散性が良好であることから、コロイダルシリカを用いることが好ましい。 Silica film forming treatment liquid may further contain ultrafine silica particles as necessary. Silica ultrafine particles act as a film-forming aid, and by adding this, the rust prevention performance can be further improved. As the ultrafine silica particles, colloidal silica is preferably used because of its good dispersibility in the processing solution for forming a siliceous film.
 コロイダルシリカは、粒子径約100nm以下の球状又は球が鎖に繋がった形状のシリカナノ粒子が溶媒中に分散した分散体であり、水を溶媒とする水系コロイダルシリカと各種の有機溶剤を溶媒とする溶剤系コロイダルシリカをいずれも用いることができる。水系コロイダルシリカにはアルカリ性タイプと酸性タイプを示すものがあり、いずれも使用可能であるが、特に、液状組成物の安定性を保つには酸性タイプが好ましい。溶剤系コロイダルシリカの溶剤としては、例えば、メタノール、イソプロパノール、ジメチルアセトアミド、エチレングリコール、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノエチルエーテル、酢酸エチル、プロピレングリコールモノエチルエーテルアセテート、メチルエチルケトン、メチルイソブチルケトン、トルエンなどを挙げることができる。コロイダルシリカにおけるシリカ含有量は、例えば、固形分濃度として5~40重量%程度である。 Colloidal silica is a dispersion in which silica nanoparticles having a particle diameter of about 100 nm or less or a shape in which spheres are connected to a chain are dispersed in a solvent, and water-based colloidal silica using water and various organic solvents as solvents. Any solvent-based colloidal silica can be used. Some water-based colloidal silicas show an alkaline type and an acidic type, both of which can be used. In particular, the acidic type is preferable for maintaining the stability of the liquid composition. Examples of the solvent for colloidal silica include methanol, isopropanol, dimethylacetamide, ethylene glycol, ethylene glycol mono-n-propyl ether, ethylene glycol monoethyl ether, ethyl acetate, propylene glycol monoethyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone. And toluene. The silica content in the colloidal silica is, for example, about 5 to 40% by weight as the solid content concentration.
 シリカ質皮膜形成用処理液におけるコロイダルシリカの配合量は、シリカ質皮膜形成用処理液の全体を基準として、通常、固形分量として1~50重量%程度とすることが好ましい。 The blending amount of colloidal silica in the siliceous film-forming treatment liquid is usually preferably about 1 to 50% by weight as the solid content based on the entire siliceous film-forming treatment liquid.
 シリカ質皮膜形成用処理液には、上記成分以外にも他の成分が含まれていてもよい。 In addition to the above components, the siliceous film-forming treatment liquid may contain other components.
 2-3.処理態様
 シリカ質皮膜形成処理は、化成処理済金属材料をシリカ質皮膜形成用処理液で処理することにより行われる。処理の態様は、化成処理済金属材料の化成処理皮膜上に、シリカ質皮膜が形成される態様である限りにおいて、特に制限されない。
2-3. Treatment Mode The siliceous film forming treatment is performed by treating the chemically treated metal material with a treatment liquid for forming a siliceous film. The mode of treatment is not particularly limited as long as the siliceous film is formed on the chemical conversion film of the chemical conversion-treated metal material.
 処理は、例えばシリカ質皮膜形成用処理液と化成処理皮膜とを接触させたあと、乾燥処理ことによって行われる。該接触は、通常は、シリカ質皮膜形成用処理液を化成処理皮膜に塗布することによって行われる。塗布方法としては、例えばディップコート、スプレーコート、ロールコート、スピンコート、バーコート等の公知の方法を採用することができる。 The treatment is performed, for example, by bringing a treatment liquid for forming a siliceous film into contact with a chemical conversion treatment film, and then performing a drying treatment. The contact is usually performed by applying a treatment liquid for forming a siliceous film to the chemical conversion film. As a coating method, for example, known methods such as dip coating, spray coating, roll coating, spin coating, and bar coating can be employed.
 シリカ質皮膜形成用処理液と金属材料表面との接触時の、シリカ質皮膜形成用処理液の温度は、特に制限されないが、例えば10~80℃、好ましくは10~30℃である。 The temperature of the siliceous film-forming treatment liquid at the time of contact between the siliceous film-forming treatment liquid and the surface of the metal material is not particularly limited, but is, for example, 10 to 80 ° C., preferably 10 to 30 ° C.
 化成処理液と金属材料表面との接触時間は、特に制限されないが、例えば1秒間~1分間、好ましくは1秒間~10秒間である。 The contact time between the chemical conversion solution and the metal material surface is not particularly limited, but is, for example, 1 second to 1 minute, preferably 1 second to 10 seconds.
 乾燥処理は、化成処理皮膜上のシリカ質皮膜形成用処理液の溶媒を除去することができる態様である限りにおいて、特に制限されない。乾燥温度は、例えば20~200℃、好ましくは50~200℃、より好ましくは100~180℃、さらに好ましくは120~180℃である。乾燥時間は、例えば30秒間~30分間、好ましくは5分間~30分間、より好ましくは10分間~20分間である。 The drying treatment is not particularly limited as long as the solvent can be removed from the siliceous film-forming treatment liquid on the chemical conversion film. The drying temperature is, for example, 20 to 200 ° C., preferably 50 to 200 ° C., more preferably 100 to 180 ° C., and still more preferably 120 to 180 ° C. The drying time is, for example, 30 seconds to 30 minutes, preferably 5 minutes to 30 minutes, more preferably 10 minutes to 20 minutes.
 シリカ質皮膜形成処理により、化成処理皮膜上に直接、シリカ質皮膜を形成することができる。こうして金属材料上に形成される、ジルコニウムを含有する化成処理皮膜及び該化成処理皮膜上のシリカ質皮膜からなる皮膜は、高い防錆性を有する防錆皮膜として機能することができる。また、シリカ質皮膜は、透明性が良好な薄膜であり、被処理物の外観を損なうことなく、良好な防錆性能を付与することができる。 A siliceous film can be formed directly on the chemical conversion film by the siliceous film formation treatment. Thus, the film | membrane which consists of a chemical conversion treatment film containing zirconium and the siliceous film | membrane on this chemical conversion treatment film | membrane formed on a metal material can function as a rust prevention film | membrane which has high rust prevention property. Further, the siliceous film is a thin film having good transparency, and can impart good antirust performance without impairing the appearance of the object to be processed.
 形成されるシリカ質皮膜の膜厚については、例えば、0.1~5μm程度とすることが好ましい。 The film thickness of the siliceous film to be formed is preferably about 0.1 to 5 μm, for example.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 実施例1~3
 亜鉛めっき鋼板(大きさ100×60×0.3mm)を、アルカリ脱脂処理した後、0.5%硝酸水溶液に10秒間浸漬して酸活性処理して、被処理物である金属材料を得た。
Examples 1 to 3
A galvanized steel sheet (size: 100 × 60 × 0.3 mm) was subjected to an alkaline degreasing treatment, and then immersed in a 0.5% nitric acid aqueous solution for 10 seconds to be subjected to an acid activation treatment, thereby obtaining a metal material as an object to be treated. .
 次いで、被処理物を、表1に示す組成を有する化成処理液に35℃で5分間浸漬することにより、被処理物の表面に化成処理皮膜が形成された試験試料を得た。 Then, the test sample in which the chemical conversion film was formed on the surface of the processed material was obtained by immersing the processed material in a chemical conversion solution having the composition shown in Table 1 for 5 minutes at 35 ° C.
 試験試料に対して塩水噴霧試験(JIS Z2371)を行い、試料表面積に対する白錆の発生面積比率が10%となるまでの時間を目視で求めた。結果を下記表1に示す。 A salt spray test (JIS Z2371) was performed on the test sample, and the time until the white rust generation area ratio to the sample surface area was 10% was visually determined. The results are shown in Table 1 below.
 実施例4~12
 亜鉛めっき鋼板(大きさ100×60×0.3mm)を、アルカリ脱脂処理した後、0.5%硝酸水溶液に10秒間浸漬して酸活性処理して、被処理物である金属材料を得た。
Examples 4-12
A galvanized steel sheet (size: 100 × 60 × 0.3 mm) was subjected to an alkaline degreasing treatment, and then immersed in a 0.5% nitric acid aqueous solution for 10 seconds to be subjected to an acid activation treatment, thereby obtaining a metal material as an object to be treated. .
 次いで、被処理物を、表1に示す組成を有する化成処理液に35℃で5分間浸漬することにより、被処理物の表面に化成処理皮膜が形成された化成処理済金属材料を得た。 Next, the processed material was immersed in a chemical conversion solution having the composition shown in Table 1 for 5 minutes at 35 ° C. to obtain a chemically treated metal material having a chemical conversion film formed on the surface of the processed material.
 一方で、シリカ質皮膜形成用処理液を次のようにして調製した。テトラメトキシシラン15重量%、3-メルカプトプロピルシラン15重量%、及びイソプロピルアルコール70重量%からなる混合液を調製した。次に、水とチタンジオクチロキシビスオクチレングリコレートを上記混合液100重量部に対しそれぞれ10重量部加えて加水分解し縮重合させて、シリカ成分の濃度が約25重量%のアルコキシシランオリゴマーのアルコール溶液を得た。この溶液にコロイダルシリカの濃度が30重量%のイソプロピルアルコール分散液を固形分量として5重量%となるように混合して、シリカ質皮膜形成用処理液を得た。 Meanwhile, a treatment liquid for forming a siliceous film was prepared as follows. A mixed solution consisting of 15% by weight of tetramethoxysilane, 15% by weight of 3-mercaptopropylsilane, and 70% by weight of isopropyl alcohol was prepared. Next, 10 parts by weight of water and titanium dioctyloxybisoctylene glycolate are added to 100 parts by weight of the above mixed solution, respectively, and hydrolyzed and polycondensed to obtain an alkoxysilane oligomer having a silica component concentration of about 25% by weight. An alcohol solution was obtained. To this solution, an isopropyl alcohol dispersion having a colloidal silica concentration of 30% by weight was mixed so as to have a solid content of 5% by weight to obtain a treatment liquid for forming a siliceous film.
 化成処理済金属材料を、シリカ質皮膜形成用処理液に20℃で5秒間浸漬した後に、150℃で15分間乾燥処理することにより、化成処理皮膜上にシリカ質皮膜が形成された試験試料を得た。 A test sample in which a siliceous film is formed on a chemical conversion film is obtained by immersing the chemical conversion-treated metal material in a processing solution for forming a siliceous film at 20 ° C. for 5 seconds and then drying at 150 ° C. for 15 minutes. Obtained.
 試験試料に対して、塩水噴霧試験(JIS Z2371)を行い、試料表面積に対する白錆の発生面積比率が10%となるまでの時間を目視で求めた。結果を下記表1に示す。 The salt spray test (JIS Z2371) was performed on the test sample, and the time until the white rust generation area ratio to the sample surface area was 10% was visually determined. The results are shown in Table 1 below.
 比較例1
 実施例1~12と同じ被処理物(亜鉛めっき鋼板をアルカリ脱脂処理後に酸活性処理して得られた金属材料)を試験試料として、実施例1~12と同様の方法で塩水噴霧試験を行い、試料表面積に対する白錆の発生面積比率が10%となるまでの時間を求めた。結果を下記表1に示す。
Comparative Example 1
A salt spray test was conducted in the same manner as in Examples 1-12, using the same workpieces (metal materials obtained by acid activation treatment after galvanized steel sheets as alkaline degreasing treatment) as in Examples 1-12. The time until the ratio of the white rust generation area to the sample surface area was 10% was determined. The results are shown in Table 1 below.
 比較例2
 化成処理をしない以外は、実施例4~12と同様にして試験試料を得た。試験試料に対して、実施例1~12と同様の方法で塩水噴霧試験を行い、試料表面積に対する白錆の発生面積比率が10%となるまでの時間を求めた。結果を下記表1に示す。
Comparative Example 2
Test samples were obtained in the same manner as in Examples 4 to 12 except that no chemical conversion treatment was performed. The test sample was subjected to a salt spray test in the same manner as in Examples 1 to 12, and the time until the white rust generation area ratio to the sample surface area reached 10% was determined. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

Claims (10)

  1. 下記工程1又は2:
    (工程1)金属材料をジルコニウム化合物及び両性界面活性剤を含有する化成処理液Aで処理する工程、又は
    (工程2)下記工程2a及び2bを含む工程;
     (工程2a)金属材料をジルコニウム化合物を含有する化成処理液Bで処理する工程、及び
     (工程2b)工程2aで得られた化成処理済金属材料をシリカ質皮膜形成用処理液で処理する工程、
    を含む、金属材料の処理方法。
    Step 1 or 2 below:
    (Step 1) A step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) a step comprising the following steps 2a and 2b;
    (Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound, and (Step 2b) a step of treating the chemical conversion-treated metal material obtained in Step 2a with a treatment solution for forming a siliceous film,
    A method for treating a metal material, comprising:
  2. 前記両性界面活性剤がベタイン型両性界面活性剤である、請求項1に記載の処理方法。 The processing method according to claim 1, wherein the amphoteric surfactant is a betaine amphoteric surfactant.
  3. 前記シリカ質皮膜形成用処理液がアルコキシシランオリゴマーを含有する処理液である、請求項1又は2に記載の処理方法。 The processing method according to claim 1 or 2, wherein the processing liquid for forming a siliceous film is a processing liquid containing an alkoxysilane oligomer.
  4. 前記シリカ質皮膜形成用処理液がさらにシリカ超微粒子を含有する、請求項3に記載の処理方法。 The processing method according to claim 3, wherein the processing liquid for forming a siliceous film further contains ultrafine silica particles.
  5. 前記シリカ超微粒子がコロイダルシリカである、請求項4に記載の処理方法。 The processing method according to claim 4, wherein the silica ultrafine particles are colloidal silica.
  6. 金属材料の防錆処理方法である、請求項1~5のいずれかに記載の処理方法。 The treatment method according to any one of claims 1 to 5, which is a rust prevention treatment method for a metal material.
  7. ジルコニウム化合物及び両性界面活性剤を含有する、金属材料の化成処理液。 A metal material chemical conversion treatment solution containing a zirconium compound and an amphoteric surfactant.
  8. アルコキシシランオリゴマーを含有する、金属材料上のジルコニウム含有化成処理皮膜に対するシリカ質皮膜形成用処理液。 A treatment liquid for forming a siliceous film for a zirconium-containing chemical conversion film on a metal material, which contains an alkoxysilane oligomer.
  9. 金属材料、並びに前記金属材料表面上の防錆皮膜を含み、且つ
    前記防錆皮膜が、下記皮膜1又は2:
    (皮膜1)ジルコニウム及び両性界面活性剤を含有する化成処理皮膜1、又は
    (皮膜2)下記皮膜2a及び2bからなる皮膜2;
     (皮膜2a)ジルコニウムを含有する化成処理皮膜2a、及び
     (皮膜2b)前記化成処理皮膜2a上のシリカ質皮膜2b、
    からなる、防錆皮膜含有金属材料。
    A metal material and a rust preventive film on the surface of the metal material, and the rust preventive film is the following film 1 or 2:
    (Coating 1) Chemical conversion coating 1 containing zirconium and an amphoteric surfactant, or (Coating 2) Coating 2 comprising the following coatings 2a and 2b;
    (Coating 2a) Chemical conversion coating 2a containing zirconium, and (Coating 2b) siliceous coating 2b on the chemical conversion coating 2a,
    A metal material containing a rust preventive film.
  10. 下記工程1又は2:
    (工程1)金属材料をジルコニウム化合物及び両性界面活性剤を含有する化成処理液Aで処理する工程、又は
    (工程2)下記工程2a及び2bを含む工程;
     (工程2a)金属材料をジルコニウム化合物を含有する化成処理液Bで処理する工程、及び
     (工程2b)工程2aで得られた化成処理済金属材料をシリカ質皮膜形成用処理液で処理する工程、
    を含む、防錆皮膜含有金属材料を製造する方法。
     
    Step 1 or 2 below:
    (Step 1) A step of treating a metal material with a chemical conversion treatment solution A containing a zirconium compound and an amphoteric surfactant, or (Step 2) a step comprising the following steps 2a and 2b;
    (Step 2a) a step of treating a metal material with a chemical conversion treatment solution B containing a zirconium compound, and (Step 2b) a step of treating the chemical conversion-treated metal material obtained in Step 2a with a treatment solution for forming a siliceous film,
    A method for producing a rust-proof coating-containing metal material.
PCT/JP2018/004949 2017-04-18 2018-02-14 Rustproofing method for metal material WO2018193696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513237A JP7043083B2 (en) 2017-04-18 2018-02-14 Rust prevention treatment method for metal materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082110 2017-04-18
JP2017082110 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193696A1 true WO2018193696A1 (en) 2018-10-25

Family

ID=63856229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004949 WO2018193696A1 (en) 2017-04-18 2018-02-14 Rustproofing method for metal material

Country Status (3)

Country Link
JP (2) JP7043083B2 (en)
TW (1) TW201843348A (en)
WO (1) WO2018193696A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143667A (en) * 1997-07-25 1999-02-16 Sanyo Chem Ind Ltd Surface treating agent for heat exchanger fin, method of surface treatment and surface treatment film
JP2016030777A (en) * 2014-07-28 2016-03-07 奥野製薬工業株式会社 Process liquid for siliceous film formation
WO2017163446A1 (en) * 2016-03-22 2017-09-28 奥野製薬工業株式会社 Coating formation composition and metal material treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074320B2 (en) 2005-01-24 2008-04-09 株式会社放電精密加工研究所 Non-chromium anticorrosion treatment method for metal member having zinc surface
WO2010032702A1 (en) 2008-09-17 2010-03-25 株式会社放電精密加工研究所 Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment
KR101944137B1 (en) * 2011-06-23 2019-01-30 니혼 파커라이징 가부시키가이샤 Zirconium-based coating compositions and processes
US9739544B2 (en) 2012-03-09 2017-08-22 Nippon Paint Surf Chemicals Co., Ltd. Surface treatment method for aluminum heat exchangers
JP6278308B2 (en) 2014-01-16 2018-02-14 奥野製薬工業株式会社 Rust prevention method for metal materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143667A (en) * 1997-07-25 1999-02-16 Sanyo Chem Ind Ltd Surface treating agent for heat exchanger fin, method of surface treatment and surface treatment film
JP2016030777A (en) * 2014-07-28 2016-03-07 奥野製薬工業株式会社 Process liquid for siliceous film formation
WO2017163446A1 (en) * 2016-03-22 2017-09-28 奥野製薬工業株式会社 Coating formation composition and metal material treatment method

Also Published As

Publication number Publication date
JP2020117816A (en) 2020-08-06
JPWO2018193696A1 (en) 2019-07-04
JP7043083B2 (en) 2022-03-29
JP6812040B2 (en) 2021-01-13
TW201843348A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
TWI445842B (en) Surface treatment composition
KR101277607B1 (en) Surface-treating agent, process for manufacturing plated steel sheet using the surface-treating agent, and plated steel sheet
EP2094880B1 (en) Process for treating metal surfaces
JP5571277B2 (en) Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
JP4856802B2 (en) Metal surface treatment method
JP5370997B2 (en) MEMBER HAVING CORROSION-RESISTANT LAMINATED FILM, PROCESS FOR PRODUCING THE MEMBER, TREATMENT LIQUID AND COATING COMPOSITION FOR PRODUCING THE MEMBER
WO2011105101A1 (en) Surface-treating agent for zinc-plated steel sheet, and zinc-plated steel sheet and process for production thereof
CN114086170A (en) Pretreating agent and chemical conversion treating agent
EP2708619B1 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
JP6571198B2 (en) Film-forming composition and method for treating metal material
JP6063931B2 (en) Zirconium-based coating composition and method
WO2022210245A1 (en) Chemical conversion coating agent, surface-treated metal and surface treatment method
JP6278308B2 (en) Rust prevention method for metal materials
JP6812040B2 (en) Rust prevention treatment method for metal materials
JPWO2019017073A1 (en) Treatment liquid for film formation
JP2016030777A (en) Process liquid for siliceous film formation
JP2008063612A (en) Surface-conditioning composition, surface-conditioning method and surface-conditioned article
JP3765812B2 (en) Chemical conversion solution for aluminum and aluminum alloy
JP7417888B2 (en) Zinc-based composite plating solution, method for forming zinc-based composite plating film, and method for forming composite oxide film
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
CN114616357A (en) Treating agent and coated metal material
CN110724957A (en) Stainless steel surface salting liquid, preparation method and application
JP4830032B2 (en) Chemical conversion treatment liquid, method for producing the same, and method for forming chemical conversion film
JP2008231449A (en) Method for preventing corrosion of aluminum-based metal article, and corrosion-prevented aluminum-based metal article obtained by the method
JPH04191397A (en) Production of surface-treated material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787317

Country of ref document: EP

Kind code of ref document: A1