WO2018192485A1 - 一种实现零功耗待机开关电源集成电路 - Google Patents

一种实现零功耗待机开关电源集成电路 Download PDF

Info

Publication number
WO2018192485A1
WO2018192485A1 PCT/CN2018/083346 CN2018083346W WO2018192485A1 WO 2018192485 A1 WO2018192485 A1 WO 2018192485A1 CN 2018083346 W CN2018083346 W CN 2018083346W WO 2018192485 A1 WO2018192485 A1 WO 2018192485A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
power supply
power
capacitor
voltage
Prior art date
Application number
PCT/CN2018/083346
Other languages
English (en)
French (fr)
Inventor
刘明
Original Assignee
刘明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘明 filed Critical 刘明
Priority to EP18787823.6A priority Critical patent/EP3614549A4/en
Publication of WO2018192485A1 publication Critical patent/WO2018192485A1/zh
Priority to US16/655,967 priority patent/US10897191B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/05Capacitor coupled rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/062Avoiding or suppressing excessive transient voltages or currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure belongs to the field of microelectronics, and particularly relates to a zero-power standby switching power supply integrated circuit.
  • the switching power supply Due to its high efficiency, low cost, small size and light weight, the switching power supply is used by almost all electrical equipment.
  • the traditional starting power supply of the switching power supply is a power-consuming resistor starting circuit (Fig. 1), a power-consuming capacitor starting circuit (Fig. 2), the switching power supply chip sinks current from the drain of the internal power FET MOSFET.
  • the Vdd storage capacitor charging start circuit (Fig. 3) and the high voltage depletion FET start circuit (Fig. 4) are used to realize the startup of the switching power supply.
  • the switching power supply Before or after the switching power supply is started, they consume power when the power supply is completely stopped, thereby not only affecting the efficiency of the power supply, but also making the standby power consumption of the power supply impossible, and it is impossible to completely Zero power or micro power standby. Therefore, since the switching power supply can not achieve zero power standby, various electrical equipment using such a switching power supply can not achieve zero power standby.
  • the embodiment of the present disclosure provides a zero-power standby switching power supply integrated circuit.
  • the zero-power controller includes a charge-coupled circuit, a zero-power microprocessor, and a zero-power voltage adjustment circuit.
  • the AC power input sequentially enters a zero-power voltage adjustment circuit and a zero-power microprocessor via a charge-coupled circuit.
  • the AC electric charge input can use only one capacitor C1, and the first end of the AC power source is connected to one of the two pairs of MOS tubes in the zero power consumption controller through the capacitor C1, and the other pair of MOS tube contacts Vacant, the second end of the AC power supply is directly connected to the ground of the zero-power controller.
  • the high-voltage rectification of the switching power supply uses only one diode (when the first end is the L end, the second end corresponds to the N end; when the first end When it is N-terminal, the second end corresponds to the L-end);
  • the two pairs of MOS transistors are all off.
  • the positive charge of the first end of the alternating current source flows into the p-type of the MOS transistor M1 in the zero-power controller through the capacitor C1.
  • the active region and the n-well are then flowed into the Vdd storage capacitor C3, and finally returned to the second end of the AC power source to charge the Vdd storage capacitor C3;
  • the negative charge of the first end of the alternating current power source flows through the capacitor C1 into the n-type active region and the p-well of the MOS transistor M3 in the zero-power controller, and then returns to the second end of the alternating current power supply;
  • the capacitor C1 is turned on to charge the capacitor C3 by controlling the MOS transistor M3 and the MOS transistor M4 to be turned off, and the capacitor C3 is turned off by the MOS transistor M3 and the MOS transistor M4 being connected in parallel to the two ends of the AC power source;
  • the zero-power controller controls the MOS transistor M3 and the MOS transistor M4 to turn from off to on, the drain voltages of M3 and M4 only drop from Vdd to 0V; or control the MOS transistor M3 and the MOS transistor M4 to be turned on. Turning off, the drain voltage only rises from 0V to Vdd.
  • the present disclosure includes both a capacitor C1 and a capacitor C2. From both ends of the AC power source, two capacitors C1 and C2 through the charge coupling circuit are respectively connected to the zero power controller. For the contact of the MOS tube, when the power is turned on, since the Vdd voltage has not been established, the two pairs of MOS tubes are all off. During the positive half cycle of the alternating current, the positive charge of the first end of the alternating current source flows into the zero-power controller through the capacitor C1.
  • the p-type active region and the n-well of the MOS transistor M1 are then flowed into the Vdd storage capacitor C3, and then returned to the second end of the AC power supply via the p-well and the n-type active region of the MOS transistor M4, to the Vdd storage capacitor C3.
  • the positive charge of the second end of the alternating current source flows into the p-type active region and the n-well of the MOS transistor M2 in the zero-power controller through the capacitor C2, and then flows into the Vdd storage capacitor C3, and then passes through the MOS transistor M3.
  • the p-well and n-type active regions are returned to the first end of the alternating current power source to charge the Vdd storage capacitor C3;
  • C1, C2 is connected in series to control the MOS tube M3 and MOS tube M4 to cut off the capacitor C3, C1, C2 in series through the MOS tube M3 and MOS tube M4 conduction parallel to the AC power supply to disconnect the capacitor Charging of C3;
  • the zero-power controller controls the MOS transistor M3 and the MOS transistor M4 to turn from off to on, the drain voltages of M3 and M4 only drop from Vdd to 0V; or control the MOS transistor M3 and the MOS transistor M4 to be turned on. Turning off, the drain voltage only rises from 0V to Vdd.
  • the zero-power voltage regulator in the zero-power controller is configured to form a closed-loop voltage regulator control through the MOS transistor M3 and the MOS transistor M4 while operating, when Vdd
  • the zero-power microprocessor performs overvoltage detection, undervoltage detection, overload detection, and overtemperature detection. If no abnormality occurs, the zero-power controller issues an instruction. Start the switching power supply. If the zero-power microprocessor detects more than one abnormality, or detects that the switching power supply output is idling, immediately stop the operation by the zero-power microprocessor controlling the switching power supply, and the switching power supply stops working. Next, the timing access monitors the abnormal parameters. If the parameters are found to be normal, the switching power supply resumes normal operation.
  • the switching power supply transformer Vdd winding T1_Na supplies power to the Vdd storage capacitor C3 through the external diode, and the zero-power voltage regulator controls the MOS tube M3.
  • the MOS tube M4 is turned on, by connecting the capacitor C1 and the pair of the two pairs of MOS tubes to the ground of the zero power consumption controller circuit, stopping charging the Vdd storage capacitor through the capacitor C1, and the Vdd voltage is powered by the switching power supply Vdd winding.
  • the resistance is milliohm level, and the AC current of the C1 pure capacitor circuit leads the phase of the alternating current voltage v phase 90°, and its active power Indicates the phase angle, so the current flowing in capacitor C1 is reactive current and does not consume any power.
  • the switching power supply transformer Vdd winding T1_Na supplies power to the Vdd storage capacitor C3 through an external diode, and the zero-power voltage regulator controls the MOS tube. M3 and MOS tube M4 are turned on. By connecting the capacitors C1, C2 and the contacts of the two pairs of MOS tubes to the ground of the zero-power controller circuit, the capacitors C1 and C2 are stopped to be charged to the Vdd storage capacitors, and the Vdd voltage is controlled by the switching power supply Vdd.
  • the winding power supply is maintained, because the MOS tube M3 and the MOS tube M4 are turned on when the resistance is milliohm level, C1, C2 are physically connected in series with the pure capacitor to the AC power source L and N terminals, C1, C2 series pure capacitor circuit
  • the intermediate current i phase leads the AC voltage at both ends v phase 90°, and its active power Indicates the phase angle, so the current through capacitors C1 and C2 is reactive current and does not consume any power.
  • the zero-power controller can establish a constant voltage source through the zero-power voltage regulation circuit as needed, enabling the zero-power controller to manage the entire switching power supply.
  • the zero-power microprocessor When the load is unloaded, the zero-power microprocessor immediately turns off the switching power supply, so that the switching power supply maintains the original output voltage without completely consuming power; according to the switching power supply output capacitor, the no-load discharge time constant and the empty
  • the timing and width of the startup switching power supply supplements the output capacitor with the lost charge to maintain the output terminal voltage. In this way, the switching power supply stops working for a long time, in seconds, and starts.
  • the time for replenishing the output capacitor is very short, in milliseconds, and the switching power supply is basically in a stopped state, so the average power consumption of the entire switching power supply is almost zero, thereby achieving zero power consumption when the switching power supply is in no-load standby.
  • the present disclosure also includes a high voltage MOS transistor M0 controlled by a zero power consumption controller to link the high voltage MOS transistor M0 and the switching power supply;
  • M0 enables the zero-power circuit of the present disclosure to maintain the voltage on the Vdd storage capacitor.
  • the MOS transistors M1 and M2 can be replaced with any other single-guide electronic device as long as the directions of the p-type semiconductor and the n-type semiconductor are the same as those described in the present disclosure or a single-guide electronic device.
  • the embodiment of the present disclosure further provides another zero-power standby switching power supply integrated circuit, including a zero-power controller for controlling a switching power supply, the zero-power controller including a charge-coupled circuit, and zero-power micro-processing a zero-power voltage adjustment circuit and a switching power supply state detector, the AC power source is coupled to the charge coupled circuit, the charge coupled circuit is coupled to the zero-power voltage adjustment circuit, the voltage adjustment circuit and the zero a power consumption microprocessor connection, the zero power consumption microprocessor being coupled to the switching power supply state detector, the switching power supply state detector being coupled to the switching power supply, the alternating current power input being coupled to the charge coupled circuit
  • the zero power consumption voltage adjustment circuit, the zero power consumption microprocessor, and the switching power supply state detector are sequentially input.
  • the charge coupled circuit includes a first capacitor and a third capacitor, the zero power consumption voltage adjustment circuit including a first pair of MOS transistors, a second pair of MOS transistors, a zero power consumption voltage regulator, and a reference voltage, the first pair
  • the MOS transistor includes a first MOS transistor and a third MOS transistor, the second pair of MOS transistors includes a second MOS transistor and a fourth MOS transistor, and the first end of the AC power source is connected to one end of the first capacitor.
  • the other end of the first capacitor is connected to the contact of the first pair of MOS tubes, the junction of the second pair of MOS tubes is vacant, and the second end of the alternating current power source passes the third capacitor and the zero power consumption a ground connection of the controller, the zero power controller is configured to connect the switching power supply, the third capacitor sequentially connects the first diode and the transformer winding of the switching power supply, the reference voltage and the zero Power consumption microprocessor connection.
  • the switching power supply includes a high voltage filter capacitor.
  • the charge coupling circuit further includes a second capacitor, one end of the second capacitor is connected to the N terminal of the AC power source, and the other end of the second capacitor is connected to the second MOS transistor and the fourth MOS transistor Contact connection.
  • the zero-power standby switching power supply integrated circuit further includes a high-voltage MOS transistor and a rectifier, the rectifier is connected to the high-voltage MOS transistor, and the high-voltage MOS transistor is further connected to the high-voltage filter capacitor, and the high-voltage MOS transistor is further Connected to the switching power supply.
  • the zero-power standby switching power supply of the present disclosure has a broad application prospect: not only saving unnecessary economic waste for people, because each household has dozens to dozens of devices that are still power-consuming in standby power, if With a population of more than one billion people and a population of several billion people in the world, the total amount of society is enormous.
  • the standby power consumption standard of China and the world can be pushed to the apex "0".
  • FIG. 1 is a schematic diagram of a resistor starting circuit of a conventional switching power supply.
  • FIG. 2 is a schematic diagram of a capacitor starting circuit of a conventional switching power supply.
  • FIG. 3 is a schematic diagram of a switching power supply chip of a conventional switching power supply from a drain current sinking current of an internal power MOSFET to a charging start circuit of a Vdd energy storage capacitor.
  • FIG. 4 is a schematic diagram of a high voltage depletion FET starting circuit of a conventional switching power supply.
  • FIG. 5 is a circuit diagram of an embodiment of the present disclosure, which is applied to an embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of another embodiment of the present disclosure.
  • FIG. 7 is a circuit flowchart of an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a security detection module according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a zero power standby switching power supply integrated circuit including a zero power consumption controller for controlling a switching power supply.
  • the zero-power controller includes a charge-coupled circuit, a zero-power microprocessor, and a zero-power voltage adjustment circuit, and the AC power input sequentially enters the zero-power voltage adjustment via the charge-coupled circuit.
  • the charge coupled circuit includes capacitors C1, C3 or capacitors C1, C2, C3.
  • Two pairs of MOS transistors, a zero-power voltage regulator, and a reference voltage form a zero-power voltage adjustment circuit.
  • the switching power supply includes a high voltage filter capacitor.
  • the L terminal of the AC power source is connected to the contact of the MOS transistor M1 and the MOS transistor M3 in the zero-power voltage adjustment circuit through the capacitor C1, and the contacts of the MOS transistor M2 and the MOS transistor M4 are vacant.
  • the N terminal of the AC power supply is connected to the ground of the zero power controller through the Vdd storage capacitor C3;
  • the Vdd storage capacitor C3 is sequentially connected to the diode D1 and the switching power supply transformer Vdd winding (T1_Na).
  • the present disclosure may further include a capacitor C2.
  • One end of the capacitor C2 is connected to the N terminal of the AC power source, and the other end is connected to the junction of the MOS transistor M2 and the MOS transistor M4.
  • the two pairs of MOS transistors are all off.
  • the positive charge of the L terminal of the alternating current power source enters the p-type of the MOS transistor M1 in the zero-power controller through the capacitor C1.
  • the active region and the n-well are then passed through the Vdd storage capacitor C3 and finally returned to the N-side of the AC power source to charge the Vdd storage capacitor C3.
  • the negative charge of the L terminal of the AC power source enters the n-type active region and the p-well of the MOS transistor M3 in the zero-power controller through the capacitor C1, and then returns to the N-side of the AC power supply, and at the same time
  • the zero-power voltage regulator in the power consumption controller forms a closed-loop voltage regulation control through the MOS transistor M3 and the MOS transistor M4.
  • capacitors C1, C2 In the case of capacitors C1, C2:
  • the two pairs of MOS transistors are all off.
  • the positive charge of the L terminal of the alternating current power source enters the p-type of the MOS transistor M1 in the zero-power controller through the capacitor C1.
  • the active region and the n-well are then passed through the Vdd storage capacitor C3, the p-well of the MOS transistor M4, and the n-type active region, and finally return to the N-terminal of the AC power source, thereby charging the Vdd storage capacitor C3.
  • the N-terminal positive charge of the AC power source enters the p-type active region and the n-well of the MOS transistor M2 in the zero-power controller through the capacitor C2, and then passes through the p-well of the Vdd storage capacitor C3 and the MOS transistor M3.
  • the n-type active region returns to the L terminal of the AC power source to charge the Vdd storage capacitor C3, and the zero-power voltage regulator in the zero-power controller forms a closed-loop voltage regulation through the MOS transistor M3 and the MOS transistor M4. control.
  • the zero-power controller issues a command to start the switching power supply, the switching power supply starts normally and enters the working state and supplies power to the load, and the switching power supply transformer Vdd winding passes through the diode D1. Power is supplied to the Vdd storage capacitor C3.
  • the zero-power voltage regulator in the zero-power controller controls the MOS transistor M3 and the MOS transistor M4 to be turned on, and the capacitors C1 and C2 and the two pairs of MOS transistors are connected to the zero-power controller.
  • the ground of the circuit stops charging to the Vdd storage capacitor C3 through the capacitors C1 and C2, and the Vdd voltage is maintained by the Vdd winding of the switching power supply.
  • the switching power supply status detector detects that the supply voltage is overvoltage or undervoltage, the chip temperature in the zero-power controller is over temperature, and the circuit is in an overload or no-load state, any one or more exceptions are abnormal. Immediately through the zero-power microprocessor control switching power supply stops working.
  • the zero-power standby switching power supply integrated circuit further includes a high-voltage MOS transistor (hereinafter referred to as M0) and a rectifier, the rectifier is connected to the high-voltage MOS transistor M0, and the high-voltage MOS transistor M0 is also connected to the high-voltage filter capacitor C4 is connected, and the high voltage MOS transistor M0 is also connected to the switching power supply.
  • M0 high-voltage MOS transistor
  • the zero-power controller controls M0 according to the working needs of the switching power supply, and charges the output of the rectifier to the high-voltage filter capacitor C4; each time the switching power supply is started, the high-voltage MOS transistor M0 is turned on, and the rectifier is charged to the high-voltage filter capacitor C4 of the switching power supply. After the switching power supply is started, the gate of the high-voltage MOS transistor M0 of the switching power supply is immediately driven, thereby achieving soft start.
  • an embodiment of the present disclosure provides a zero-power standby switching power supply integrated circuit including a zero-power controller for controlling a switching power supply. (as shown in Figure 7)
  • the zero-power controller includes a charge-coupled circuit, a zero-power microprocessor, and a zero-power voltage adjustment circuit.
  • the AC power input sequentially enters a zero-power voltage adjustment circuit and a zero-power microprocessor via a charge-coupled circuit.
  • the two capacitors C1, C2 of the charge coupled circuit are respectively connected to the contacts of the two pairs of MOS transistors.
  • both pairs of MOS transistors are turned off.
  • the positive charge of the L (N) terminal of the AC power source passes through the capacitor C1 ⁇ the p-type active region of the MOS transistor M1 in the silicon chip and the n-well ⁇ Vdd storage capacitor C3 ⁇ the p-well and the n of the MOS transistor M4 The active region is finally returned to the N (L) terminal of the AC power source to charge the Vdd storage capacitor C3.
  • the positive charge of the N (L) terminal of the AC power source passes through the capacitor C2 ⁇ the p-type active region of the MOS transistor M2 in the silicon chip and the n-well ⁇ Vdd storage capacitor C3 ⁇ the p-well and n of the MOS transistor M3
  • the active region returns to the L(N) terminal of the AC power source and charges the Vdd storage capacitor C3.
  • the switching power supply transformer Vdd winding (T1_Na) supplies power to the Vdd storage capacitor C3 through the external diode.
  • the on-chip zero-power voltage regulator controls the MOS transistor M3 and the MOS transistor M4 to be turned on. By connecting the capacitors C1, C2 and the contacts of the two pairs of MOS transistors to the ground of the chip circuit, the charging of the Vdd storage capacitor is stopped through C1 and C2. .
  • the Vdd voltage is maintained by the Vdd winding of the switching power supply. Because the MOS transistor M3 and the MOS transistor M4 are turned on, the resistance is milliohm. It can be considered that C1 and C2 are physically connected in series with the pure capacitor to the L terminal and N of the AC power supply. end. Capacitor C1, C2 in series of pure capacitor circuit AC current i phase ahead of its AC voltage v phase 90 °, its active power Therefore, the current through C1 and C2 is a reactive current and does not consume any electric energy.
  • the difference from the above description is that only one capacitor C1 is used for the alternating current charge input.
  • One end of the AC power source, L(N) is connected through capacitor C1 to one of the two pairs of MOS transistors in the chip.
  • the other MOS tube is vacant, and the other end of the AC power supply, N(L), is directly connected to the ground of the chip.
  • the high voltage rectification of the switching power supply requires only one diode.
  • the workflow of this embodiment is that when the power is turned on, since the Vdd voltage has not been established, the two pairs of MOS transistors are all turned off.
  • the positive charge of the L (N) terminal of the AC power source passes through the capacitor C1 ⁇ the p-type active region of the MOS transistor M1 in the silicon chip and the n-well ⁇ Vdd storage capacitor C3 and finally returns to the AC power source N (L). , charging the Vdd storage capacitor C3.
  • the negative charge of the L (N) terminal of the alternating current source passes through the capacitor C1 ⁇ the n-type active region of the MOS transistor M3 in the silicon chip and the p-well back to the N (L) terminal of the alternating current power source.
  • the switching power supply transformer Vdd winding T1_Na is supplied to the Vdd storage capacitor C3 through the external diode, and the zero-power voltage regulator controls the MOS tube M3 and the MOS tube M4 to be turned on.
  • the capacitor C1 and the pair of two pairs of MOS transistors Connect the capacitor C1 and the pair of two pairs of MOS transistors to the ground of the zero-power controller circuit, stop charging the Vdd storage capacitor through the capacitor C1, and maintain the Vdd voltage by the switching power supply Vdd winding, because the MOS tube M3 and MOS When the tube M4 is turned on, the resistance is milliohm level.
  • the alternating current i phase leads the AC voltage at both ends of the phase v phase by 90°, and its active power Indicates the phase angle, so the current flowing in capacitor C1 is reactive current and does not consume any power.
  • C1 (or C1, C2 series) is turned on to charge C3 by controlling the MOS transistor M3 and the MOS transistor M4 to be turned off, and C1 (or C1, C2 is connected in series) through the MOS transistor M3 and MOS.
  • the tube M4 is connected in parallel to the two ends of the alternating current power source to disconnect the charging of the C3, so that when the zero-power controller in the chip controls the MOS tube M3 and the MOS tube M4 to switch from off to on, M3 and M4
  • the drain voltage drops from Vdd (generally around 10V-20V) to 0V, or from on to off, and the drain voltage only rises from 0V to Vdd (typically around 10V-20V) because the dynamic range of the voltage is very high. Small, so it is frequent work and will not produce large switching power consumption.
  • This control method is not only superior to the traditional resistor starting mode (Fig. 1), the capacitor starting mode (Fig.
  • the switching power supply chip sinks the current from the internal power MOSFET's drain stage to the Vdd storage capacitor charging start circuit (Fig. 3), It is also superior to the way in which the charging circuit is cut off by high voltage electronics to save power in the startup circuit ( Figure 4).
  • the high-voltage tube M2 turns from on to off, and its drain dynamic voltage rises from Vdd (generally at 10V-20V) to 300V. Since this large dynamic range is from conduction to cutoff, it takes a slope of time, which inevitably occurs. Switching losses, especially since switching power supplies require frequent shutdown and startup for some reason (such as when no-load), the losses are greater.
  • the above two implementation modes are controlled by the zero-power voltage regulator in the chip through the MOS transistor M3 and the MOS transistor M4 to form a closed-loop voltage regulation control.
  • the Vdd voltage reaches the value set by the on-chip zero-power controller, and the built-in zero-power microprocessor detects no abnormality in overvoltage detection, undervoltage detection, overload detection, and overtemperature detection, it is zero.
  • the power controller issues an instruction to start the switching power supply. If the built-in zero-power microprocessor detects abnormalities in overvoltage detection, undervoltage detection, overload detection, and overtemperature detection, or detects that the switching power supply output is idling, it is processed according to the zero-power microprocessor process until it enters normal operation. status.
  • the technical solution of the present disclosure has the advantage that other switching power supply starting methods are not provided, that is, the conventional switching power supply starting mode can only be started (that is, charging the storage capacitor), and cannot establish a stable voltage source by itself.
  • the technical solution of the present disclosure not only reliably completes the startup task of the switching power supply, but the more important feature is that the zero-power controller can establish a stable voltage through the zero-power voltage adjustment circuit as needed, regardless of whether the switching power supply is in an active state or a closed state.
  • a constant voltage source allows the zero-power controller to manage the entire switching power supply.
  • Continuous operation after the completion of the switching power supply enables the dedicated zero-power microprocessor to monitor multiple parameters of the switching power supply, such as overvoltage and undervoltage of the supply voltage, over temperature of the chip, overload of the load, and no load. For example, when any one or more abnormalities of overvoltage or undervoltage, overtemperature and overload are detected, the switching power supply is stopped by the zero-power microprocessor to ensure the safety and power saving of the switching power supply system. In the case that the switching power supply stops working, the timing access monitors the abnormal parameters. If the parameters are found to be normal, the switching power supply resumes normal operation (see Figure 8: Microprocessor circuit flow chart).
  • the zero-power controller uses the switching power supply to output a large electrolytic capacitor (generally in the thousands of micro-methods).
  • a large electrolytic capacitor generally in the thousands of micro-methods.
  • the zero-power microprocessor immediately turns off the switching power supply, so that the switching power supply maintains the original without completely consuming power.
  • the output voltage is based on the no-load discharge time constant of the switching power supply output capacitor and the output voltage regulation accuracy requirement at no-load.
  • the timing fixed-width startup switching power supply supplements the output capacitor with the lost charge to maintain the output terminal voltage.
  • the switching power supply stops working for a long time (seconds), and the time for starting the charging of the output capacitor is very short (milliseconds), and the switching power supply is basically in a stopped state, so the average power consumption of the entire switching power supply. Almost zero, zero power consumption when the switching power supply is idle standby.
  • the genuine high-voltage electrolytic capacitor still has a certain leakage phenomenon under the voltage of more than one hundred volts (even if it only leaks 1uA of current, In the case of 300V, 300uW of power is lost), so when the switching power supply stops working, the technical solution of the present disclosure controls the high voltage MOS transistor (M0 in FIG. 5, M0 in FIG. 6) through the zero power consumption controller.
  • the open rectification output supplies power to the high voltage electrolytic capacitor, and the high voltage power supply is turned on in real time when the switching power supply is turned on, which is especially important for achieving zero power consumption and micro power standby during no-load standby.
  • M0 enables the zero-power circuit of the disclosed technical solution to maintain the voltage on the Vdd storage capacitor.
  • M0 is turned on to charge the high voltage rectifier to the high voltage filter capacitor of the switching power supply.
  • the voltage U(t) U ⁇ (-t/ ⁇ ) on the high voltage capacitor, ( ⁇ is the RC time constant).
  • the gate of the high-voltage MOS transistor M0 of the switching power supply is immediately driven, and the high voltage on the drain of the MOS transistor M0 needs to rise exponentially according to the above formula, which makes the switching power supply
  • the soft start can be done every time you start, and the soft start related parameters can be set by adjusting the RC time constant, which is also impossible with the traditional hard switching of the switching power supply. They can only be used during the initial drive. To make the startup softer, it can only be compensated by adjusting the gate drive pulse width from narrow to wide.
  • the MOS transistors M1 and M2 in FIG. 5 of the technical solution of the present disclosure may be replaced by any other single-guide electronic device as long as the directions of the p-type semiconductor and the n-type semiconductor are consistent with those described in the technical solution. can.
  • Embodiments of the present disclosure also provide a zero power standby switching power supply integrated circuit including a zero power consumption controller for controlling a switching power supply, the zero power consumption controller including a charge coupled circuit, a zero power consumption microprocessor, a zero power consumption voltage adjustment circuit and a switching power supply state detector, wherein an alternating current power source is coupled to the charge coupled circuit, the charge coupled circuit is coupled to the zero power consumption voltage adjustment circuit, the voltage adjustment circuit and the zero power consumption a microprocessor connection, the zero-power microprocessor is coupled to the switching power state detector, the switching power state detector is coupled to the switching power supply, and the AC power input is sequentially input through the charge coupled circuit The zero power consumption voltage adjustment circuit, the zero power consumption microprocessor, and the switching power supply state detector.
  • the charge coupling circuit includes a first capacitor C1 and a third capacitor C3, and the zero-power voltage adjustment circuit includes a first pair of MOS transistors, a second pair of MOS transistors, and a zero-power voltage.
  • the regulator and the reference voltage, the first pair of MOS transistors include a first MOS transistor M1 and a third MOS transistor M3, and the second pair of MOS transistors includes a second MOS transistor M2 and a fourth MOS transistor M4, the AC power source
  • the first end is connected to one end of the first capacitor C1, the other end of the first capacitor C1 is connected to the contact of the first pair of MOS tubes, and the contact of the second pair of MOS tubes is vacant, the alternating current
  • the second end of the power supply is connected to the ground of the zero-power controller through the third capacitor C3, the zero-power controller is used to connect the switching power supply, and the third capacitor C3 is connected to the first two The pole tube D1 and the transformer winding of the switching power supply are connected to the zero-power micro
  • the switching power supply includes a high voltage filter capacitor.
  • the charge coupled circuit further includes a second capacitor C2, one end of the second capacitor C2 is connected to the N terminal of the AC power source, and the other end of the second capacitor C2 is The contacts of the second MOS transistor M2 and the fourth MOS transistor M4 are connected.
  • the implementation of the zero-power standby switching power supply integrated circuit further includes a high-voltage MOS transistor M0 and a rectifier, the rectifier is connected to the high-voltage MOS transistor M0, and the high-voltage MOS transistor M0 is also The high voltage filter capacitor is connected, and the high voltage MOS transistor M0 is also connected to the switching power supply.
  • the technical solution of the present disclosure is applicable to various types and various power switching power sources, such as mobile phone chargers, whether it is a wired mobile phone charger or a wireless mobile phone charger, which can be inserted into the socket all the time, and automatically charges when the mobile phone is detected, the battery Fully automatic power off. It not only cuts off the battery of the mobile phone, but also prevents the battery from being damaged due to overcharging. At the same time, it also disconnects the power of the switching power supply chip and the high-voltage rectification part to completely prevent the aging of the device caused by the high-voltage connection for a long time, and the capacitor electrolyte is dry or even hot. insecure. For example, high-power electric vehicle chargers, electric vehicles are generally scheduled to be charged at night.
  • the charger of the zero-power standby switching power supply integrated circuit using the technical solution of the present disclosure completely cuts off the power of the charger after the battery is fully charged, thereby protecting the battery and protecting the charger.
  • a power converter commonly used as various types of electrical appliances.
  • the zero-power integrated circuit detects that the host is turned off, so that the switching power supply is turned off to a zero power standby state. (The output power of the switching power supply is kept at the original output voltage).
  • the power converter immediately enters the working state and outputs power to the host.
  • the technical solution provided by the present disclosure can also be widely used in various types of equipment using alternating current, such as television, audio, air conditioner, microwave oven, etc. in the home appliance; computer, fax, printing, copying, etc. in the office equipment, and various types in the industry. electrical equipment.
  • the present disclosure provides a zero-power standby switching power supply integrated circuit.
  • the above description is only a preferred embodiment of the present disclosure, and it should be pointed out that one of ordinary skill in the art In the meantime, several modifications and improvements may be made without departing from the principles of the present disclosure, and such modifications and modifications are also considered to be within the scope of the disclosure.
  • the components that are not clear in this embodiment can be implemented by the prior art.
  • the present disclosure discloses a zero power standby switching power supply integrated circuit including a zero power controller for controlling a switching power supply.
  • the zero-power controller includes a charge-coupled circuit, a zero-power microprocessor, and a zero-power voltage adjustment circuit.
  • the AC power input sequentially enters a zero-power voltage adjustment circuit and a zero-power microprocessor through a charge-coupled circuit. This allows the switching power supply to achieve zero power standby and can perform zero standby using all of the electrical devices of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种实现零功耗待机开关电源集成电路,包括一个用于控制开关电源的零功耗控制器。零功耗控制器包括电荷耦合电路、零功耗微处理器和零功耗电压调整电路,交流电源输入经电荷耦合电路依次进入零功耗电压调整电路、零功耗微处理器。

Description

一种实现零功耗待机开关电源集成电路
相关申请的交叉引用
本申请要求于2017年04月17日提交中国专利局的申请号为201710247971.X名称为“一种实现零功耗待机开关电源集成电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于微电子技术领域,具体涉及一种实现零功耗待机开关电源集成电路。
背景技术
开关电源由于效率高,成本低,体积小,重量轻等优点几乎被所有的用电设备采用。但是由于开关电源传统的启动电源都是采用耗电的电阻启动电路(如图1)、耗电的电容启动电路(如图2)、开关电源芯片从内部功率场效应晶体管MOSFET的漏级吸收电流对Vdd储能电容充电启动电路(如图3)和高压耗尽型场效应管启动电路(如图4)等来实现开关电源的启动。
但是,它们在开关电源启动前或启动后,在电源完全停止工作时,它们还消耗着电能,由此不仅影响电源的效率,还使电源待机功耗不可能很小,更不可能做到完全的零功耗或微功耗待机。所以,由于开关电源做不到零功耗待机,使得使用这样开关电源的各种电器设备也做不到零功耗待机。
发明内容
为了解决目前开关电源无法将待机功耗降低到零功耗的技术问题,本公开实施例提供了一种实现零功耗待机开关电源集成电路,
包括一个用于控制开关电源的零功耗控制器。所述零功耗控制器包括电荷耦合电路、零功耗微处理器和零功耗电压调整电路,交流电源输入经电荷耦合电路依次进入零功耗电压调整电路、零功耗微处理器。
本公开中一种方案,交流电电荷输入可以只使用一个电容C1,交流电源第一端通过电容C1连接到零功耗控制器中两对MOS管中的其中一对接点,另一对MOS管接点空置,交流电源的第二端直接接零功耗控制器的地,开关电源的高压整流只使用一个二极管(当第一端为L端时,第二端对应的为N端;当第一端为N端时,第二端对应的为L端);
在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源第一端正电荷通过电容C1流入零功耗控制器中MOS管M1的p型有源区和n阱,然后流入Vdd储能电容C3,最后回到交流电源第二端,向Vdd储能电容C3 充电;
在交流电的负半周期间,交流电源第一端负电荷通过电容C1流入零功耗控制器中MOS管M3的n型有源区和p阱,然后回到交流电源第二端;
对电容C1通过控制MOS管M3和MOS管M4截止的方式来开通对电容C3充电,对电容C1通过MOS管M3和MOS管M4导通并联到交流电源两端的方式来断开电容C3的充电;
当零功耗控制器控制MOS管M3和MOS管M4从截止转为导通的情况下,M3和M4的漏极电压仅从Vdd下降到0V;或控制MOS管M3和MOS管M4从导通转为截止,漏极电压仅从0V上升到Vdd。
进一步地,在本公开的另一种方案中,本公开同时包括电容C1和电容C2,从交流电源两端,通过电荷耦合电路的两个电容C1,C2分别连接到零功耗控制器中两对MOS管的接点,在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源第一端正电荷通过电容C1流入零功耗控制器中MOS管M1的p型有源区和n阱,然后流入Vdd储能电容C3,再经MOS管M4的p阱和n型有源区最后回到交流电源第二端,向Vdd储能电容C3充电;
在交流电的负半周期间,交流电源第二端正电荷通过电容C2流入零功耗控制器中MOS管M2的p型有源区和n阱,然后流入Vdd储能电容C3,再经MOS管M3的p阱和n型有源区回到交流电源第一端,向Vdd储能电容C3充电;
对C1,C2串联通过控制MOS管M3和MOS管M4截止的方式来开通对电容C3充电,对C1,C2串联通过MOS管M3和MOS管M4导通并联到交流电源两端的方式来断开电容C3的充电;
当零功耗控制器控制MOS管M3和MOS管M4从截止转为导通的情况下,M3和M4的漏极电压仅从Vdd下降到0V;或控制MOS管M3和MOS管M4从导通转为截止,漏极电压仅从0V上升到Vdd。
在只使用电容C1或者同时使用电容C1和C2的情况下,在工作的同时由零功耗控制器中的零功耗电压调整器通过MOS管M3、MOS管M4构成闭环稳压控制,当Vdd电压达到零功耗控制器所设定值时,且零功耗微处理器进行过压检测、欠压检测、过载检测和过温检测,如果未发生异常,则由零功耗控制器发出指令,启动开关电源,如果零功耗微处理器检测发现一项以上异常,或检测到开关电源输出空载,则立即通过零功耗微处理器控制开关电源停止工作,在开关电源停止工作的情况下,定时访问监测发生异常的参数,如发现各项参数恢复正常,则立即恢复开关电源正常工作。
只使用电容C1的情况下,当开关电源正常启动进入工作状态并向负载供电,同时开关 电源变压器Vdd绕组T1_Na通过外置二极管向Vdd储能电容C3供电,零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1与两对MOS管其中一对的接点接零功耗控制器电路的地,停止通过电容C1向Vdd储能电容充电,Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,C1的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
Figure PCTCN2018083346-appb-000001
Figure PCTCN2018083346-appb-000002
表示相位角,因此电容C1中流过的电流是无功电流,不消耗任何电能。
使用电容C1和C2的情况下,当开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组T1_Na通过外置二极管向Vdd储能电容C3供电,零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1,C2与两对MOS管的接点接零功耗控制器电路的地,停止通过电容C1,C2向Vdd储能电容充电,Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,C1,C2在物理上为直接串联的纯电容并联到交流电源L和N端,C1,C2串联的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
Figure PCTCN2018083346-appb-000003
Figure PCTCN2018083346-appb-000004
表示相位角,因此通过电容C1和C2的电流是无功电流,不消耗任何电能。
无论开关电源是工作状态还是关闭状态,零功耗控制器都能够根据需要通过零功耗电压调整电路建立一个稳恒电压源,使零功耗控制器能够将整个开关电源管理起来。
在检测到负载空载时,由零功耗微处理器立即关闭开关电源,使开关电源在完全不耗电的情况下维持原有的输出电压;根据开关电源输出电容空载放电时间常数和空载时对输出电压稳压精度要求,定时定宽启动开关电源为输出电容补充失去的电荷,以维持输出端电压不变,这种方式开关电源停止工作的时间很长,为秒级,而启动为输出电容补充电荷的时间很短,为毫秒级,开关电源基本上处在停止工作状态,故整个开关电源的平均功耗几乎为零,从而实现开关电源空载待机时的零功耗。
本公开还包括由零功耗控制器控制的高压MOS管M0,使高压MOS管M0和开关电源联动;
M0的加入,使本公开零功耗电路保持着Vdd储能电容上的电压,每次启动开关电源时开通M0使高压整流器向开关电源的高压滤波电容充电,高压电容上的电压U(t)=U^(-t/τ),τ是RC时间常数,t表示时间,因为开关电源立即启动后,Vdd不必等待充电,开关电源的高压MOS管栅极立即被驱动,而MOS管漏极上的高压需要按上式指数形上升,这就使得开关电源的每次启动都做到真正的软启动,并且能够通过调整RC时间常数来设定软启动相关参数。
所述MOS管M1和M2能够用其他的任何单向导电子器件代替,只要p型半导体和n型半导体的方向与本公开中所叙述的一致或单向导电子器件。
本公开实施例还提供了另一种实现零功耗待机开关电源集成电路,包括用于控制开关电源的零功耗控制器,所述零功耗控制器包括电荷耦合电路、零功耗微处理器、零功耗电压调整电路和开关电源状态检测器,交流电源与所述电荷耦合电路连接,所述电荷耦合电路与所述零功耗电压调整电路连接,所述电压调整电路与所述零功耗微处理器连接,所述零功耗微处理器与所述开关电源状态检测器连接,所述开关电源状态检测器与所述开关电源连接,所述交流电源输入经所述电荷耦合电路依次进入所述零功耗电压调整电路、所述零功耗微处理器、所述开关电源状态检测器。
所述电荷耦合电路包括第一电容以及第三电容,所述零功耗电压调整电路包括第一对MOS管、第二对MOS管、零功耗电压调整器以及基准电压,所述第一对MOS管包括第一MOS管及第三MOS管,所述第二对MOS管包括第二MOS管和第四MOS管,所述交流电源的第一端与所述第一电容的一端连接,所述第一电容的另一端与所述第一对MOS管的接点连接,所述第二对MOS管的接点空置,所述交流电源的第二端通过所述第三电容与所述零功耗控制器的地线连接,所述零功耗控制器用于连接所述开关电源,所述第三电容依次连接第一二极管以及所述开关电源的变压器绕组,所述基准电压与所述零功耗微处理器连接。
所述开关电源包括高压滤波电容。
所述电荷耦合电路还包括第二电容,所述第二电容的一端与所述交流电源的N端连接,所述第二电容的另一端与所述第二MOS管和所述第四MOS管的接点连接。
所述实现零功耗待机开关电源集成电路还包括高压MOS管以及整流器,所述整流器与所述高压MOS管连接,所述高压MOS管还与所述高压滤波电容连接,所述高压MOS管还与所述开关电源连接。
并且,本公开的零功耗待机开关电源具有广泛推广应用前景:不仅是为人们节省了不必要的经济浪费,因为每个家庭就有十几到几十个待机还耗电的大小设备,如果全国十几亿人口和世界几十亿人口,社会总量是巨大的。当把所有的设备待机都变成绿色的不浪费电能的设备时,人类可以少建多少个发电厂,少烧多少吨煤和油,可以减少多少二氧化碳排放,可以减少多少安全事故,这是人们盼望已久的。通过这项发明的推广使用相信可以把中国和世界的待机功耗标准推到顶点“0”。
附图说明
下面结合附图和具体实施方式对本公开做更进一步的具体说明,本公开的上述或其他方面的优点将会变得更加清楚。
图1为目前传统开关电源的一种电阻启动电路示意图。
图2为目前传统开关电源的一种电容启动电路示意图。
图3为目前传统开关电源的一种开关电源芯片从内部功率MOSFET的漏级吸收电流对Vdd储能电容充电启动电路示意图。
图4为目前传统开关电源的一种高压耗尽型场效应管启动电路示意图。
图5为本公开实施例提供的一种应用于本公开实施例的电路图。
图6为本公开实施例提供的一种另一实施方式电路图。
图7为本公开实施例提供的一种电路流程图。
图8为本公开实施例提供的一种安全检测模块工作流程图。
具体实施方式
下面结合附图及实施例对本公开做进一步说明。
本公开实施例提供了一种实现零功耗待机开关电源集成电路,其包括一个用于控制开关电源的零功耗控制器。
如图6所示,所述零功耗控制器包括电荷耦合电路、零功耗微处理器、零功耗电压调整电路,交流电源输入经所述电荷耦合电路依次进入所述零功耗电压调整电路、所述零功耗微处理器、所述开关电源状态检测器,。
所述电荷耦合电路包括电容C1、C3或者电容C1、C2、C3。
两对MOS管、零功耗电压调整器以及基准电压组成零功耗电压调整电路。
两对MOS管分别为MOS管M1和MOS管M3、MOS管M2和MOS管M4。
所述开关电源包括高压滤波电容。
交流电源的L端通过电容C1与零功耗电压调整电路中的MOS管M1和MOS管M3的接点连接,MOS管M2和MOS管M4的接点空置,
交流电源的N端通过Vdd储能电容C3与零功耗控制器的地线连接;
所述Vdd储能电容C3依次连接二极管D1和开关电源变压器Vdd绕组(T1_Na)。
如图5所示,进一步地,本公开还可以包括电容C2,电容C2一端与交流电源N端连接,另一端连接MOS管M2和MOS管M4的接点。
下面对本公开实施例的实现零功耗待机开关电源集成电路的工作原理进行说明。
在只包括电容C1的情况下:
在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源的L端正电荷通过电容C1进入零功耗控制器内MOS管M1的p型有源区和n阱,然后经过Vdd储能电容C3,最后回到交流电源的N端,从而向Vdd储能电容C3充电。
在交流电的负半周期间,交流电源的L端负电荷通过电容C1进入零功耗控制器内MOS管M3的n型有源区和p阱,然后回到交流电源的N端,同时由零功耗控制器内的零功耗 电压调整器通过MOS管M3和MOS管M4构成闭环稳压控制。
在包括电容C1、C2的情况下:
在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源的L端正电荷通过电容C1进入零功耗控制器内MOS管M1的p型有源区和n阱,然后经过Vdd储能电容C3、MOS管M4的p阱和n型有源区,最后回到交流电源的N端,从而向Vdd储能电容C3充电。
在交流电的负半周期间,交流电源的N端正电荷通过电容C2进入零功耗控制器内MOS管M2的p型有源区和n阱,然后经过Vdd储能电容C3、MOS管M3的p阱和n型有源区回到交流电源的L端,从而向Vdd储能电容C3充电,同时由零功耗控制器内的零功耗电压调整器通过MOS管M3和MOS管M4构成闭环稳压控制。
当Vdd电压达到零功耗控制器所设定的值时,由零功耗控制器发出指令,启动开关电源,开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组通过二极管D1向Vdd储能电容C3供电,零功耗控制器内的零功耗电压调整器控制MOS管M3和MOS管M4导通,将电容C1、C2与两对MOS管的接点接零功耗控制器电路的地,停止通过电容C1、C2向Vdd储能电容C3充电,Vdd电压靠开关电源Vdd绕组供电维持。
当启动开关电源时,如果开关电源状态检测器检测到供电电压过压或欠压、零功耗控制器中芯片温度过温、电路处于过载或空载状态中任何一项或一项以上异常时,立即通过零功耗微处理器控制开关电源停止工作。
所述实现零功耗待机开关电源集成电路还包括高压MOS管(以下记为M0)以及整流器,所述整流器与所述高压MOS管M0连接,所述高压MOS管M0还与所述高压滤波电容C4连接,所述高压MOS管M0还与所述开关电源连接。
零功耗控制器根据开关电源的工作需要控制M0,将整流器的输出向高压滤波电容C4充电;每次启动开关电源时开通高压MOS管M0,使整流器向开关电源的高压滤波电容C4充电,则开关电源启动后,开关电源的高压MOS管M0的栅极立即被驱动,从而实现软启动。
作为本公开实施例的一种实现方式,本公开实施例提供一种实现零功耗待机开关电源集成电路,其包括一个用于控制开关电源的零功耗控制器。(如图7所示)
所述零功耗控制器包括电荷耦合电路、零功耗微处理器和零功耗电压调整电路,交流电源输入经电荷耦合电路依次进入零功耗电压调整电路、零功耗微处理器。
如图5所示,从交流电源的两端L和N,通过电荷耦合电路的两个电容C1,C2分别连接到两对MOS管的接点。在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态。
在交流电的正半周期间,交流电源的L(N)端正电荷通过电容C1→硅芯片内MOS管M1的p型有源区和n阱→Vdd储能电容C3→MOS管M4的p阱和n型有源区最后回到交流电源的N(L)端,向Vdd储能电容C3充电。
在交流电的负半周期间,交流电源的N(L)端正电荷通过电容C2→硅芯片内MOS管M2的p型有源区和n阱→Vdd储能电容C3→MOS管M3的p阱和n型有源区回到交流电源的L(N)端,向Vdd储能电容C3充电。
当开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组(T1_Na)通过外置二极管向Vdd储能电容C3供电。片内的零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1,C2与两对MOS管的接点接芯片电路的地,停止通过C1,C2向Vdd储能电容充电。
Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,可以认为C1,C2在物理上为直接串联的纯电容并联到交流电源的L端和N端。电容C1,C2串联的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
Figure PCTCN2018083346-appb-000005
故通过C1和C2的电流是无功电流,不消耗任何电能。
作为本公开实施例的另一种实现方式,如图6所示,与上述描述的区别在于,交流电电荷输入只使用一个电容C1。交流电源的一端L(N)通过电容C1连接到芯片内两对MOS管中的其中一对接点。另一MOS管对接点空置,交流电源的另一端N(L)直接接芯片的地。而开关电源的高压整流只需用一个二极管。
如图6所示,本实施例工作流程是在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态。在交流电的正半周期间,交流电源的L(N)端正电荷通过电容C1→硅芯片内MOS管M1的p型有源区和n阱→Vdd储能电容C3最后回到交流电源N(L),向Vdd储能电容C3充电。在交流电的负半周期间,交流电源的L(N)端负电荷通过电容C1→硅芯片内MOS管M3的n型有源区和p阱回到交流电源的N(L)端。
当开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组T1_Na通过外置二极管向Vdd储能电容C3供电,零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1与两对MOS管其中一对的接点接零功耗控制器电路的地,停止通过电容C1向Vdd储能电容充电,Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,C1的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
Figure PCTCN2018083346-appb-000006
Figure PCTCN2018083346-appb-000007
表示相位角,因此电容C1中流过的电流是无功电流,不消耗任何电能。
在上述两种实现方式中,对C1(或C1,C2串联)通过控制MOS管M3和MOS管M4截止的方式来开通对C3充电,对C1(或C1,C2串联)通过MOS管M3和MOS管M4导通 并联到交流电源两端的方式来断开的C3的充电,这样当芯片内的零功耗控制器控制MOS管M3和MOS管M4从截止转为导通的情况下,M3和M4的漏极电压仅从Vdd(一般在10V-20V左右)下降到0V,或从导通转为截止,漏极电压仅从0V上升到Vdd(一般在10V-20V左右),因为电压动态范围很小,故就是频繁的工作也不会产生大的开关功耗。这种控制方式不仅优于传统的电阻启动方式(图1),电容启动方式(图2),开关电源芯片从内部功率MOSFET的漏级吸收电流对Vdd储能电容充电启动电路(图3),也优于为节省启动电路耗电而用高压电子器件切断充电回路的方式(图4)。图4中高压管M2由导通转为截止,其漏级动态电压从Vdd(一般在10V-20V)上升到300V,由于这个大动态范围由导通到截止是需要时间的一个斜率,必然发生开关损耗,特别是由于开关电源由于某些原因需要频繁关闭和启动时(如空载时),损耗更大。
上述两种实现方式,在工作的同时由芯片内的零功耗电压调整器通过MOS管M3,MOS管M4构成闭环稳压控制。当Vdd电压达到芯片内零功耗控制器所设定的值时,且芯片内置零功耗微处理器检测未发现过压检测、欠压检测、过载检测和过温检测发生异常,则由零功耗控制器发出指令,启动开关电源。如内置零功耗微处理器检测发现过压检测、欠压检测、过载检测和过温检测有异常,或检测到开关电源输出空载,则按零功耗微处理器流程处理直至进入正常工作状态。
本公开的技术方案还有一个其他开关电源启动方式都不具备的优点,就是传统的开关电源启动方式只能做启动(就是给储能电容充电),而不能自身建立一个稳恒的电压源,本公开的技术方案不仅可靠地完成开关电源的启动任务,它更重要的特点就是无论开关电源是工作状态还是关闭状态,零功耗控制器都能根据需要通过零功耗电压调整电路建立一个稳恒电压源,使零功耗控制器能将整个开关电源管理起来。在完成开关电源启动后持续工作,使专设零功耗微处理器监测开关电源多项参数,如供电电压的过压和欠压、芯片的过温、负载的过载和空载。如当检测到过压或欠压、过温和过载任何一项或几项异常时,立即通过零功耗微处理器控制开关电源停止工作,确保开关电源系统的安全和省电。在开关电源停止工作的情况下,定时访问监测发生异常的参数,如发现各项参数恢复正常,则立即恢复开关电源正常工作(见图8:微处理器电路流程图)。
本公开实施例中提供的零功耗控制器,利用开关电源输出电解电容很大(一般都在数千微法),在空载和断开充电时,其上的电压自放电很慢,可以在数十秒甚至更长时间维持电压不变的特性,在检测到负载空载时,由零功耗微处理器立即关闭开关电源,使开关电源在完全不耗电的情况下维持原有的输出电压,根据开关电源输出电容空载放电时间常数和空载时对输出电压稳压精度要求,定时定宽启动开关电源为输出电容补充失去的电荷,以维持输出端电压不变。这种方式开关电源停止工作的时间很长(秒级),而启动为输出电容补 充电荷的时间很短(毫秒级),开关电源基本上处在停止工作状态,故整个开关电源的平均功耗几乎为零,实现了开关电源空载待机时的零功耗。
为了进一步消除因开关电源高压滤波电容可能存在的漏电造成的功耗(实际上就是正品合格的高压电解电容在百伏以上的电压下都还是存在一定的漏电现象(哪怕是只漏电1uA的电流,在300V的情况下,就损耗了300uW的电能),所以在开关电源停止工作时,本公开技术方案通过零功耗控制器控制高压MOS管(图5中的M0,图6中的M0)断开整流输出对高压电解电容供电,在开关电源开启工作时实时接通高压电源,这对于空载待机时实现零功耗和微功耗待机尤为重要。
M0的加入,使本公开技术方案零功耗电路保持着Vdd储能电容上的电压。每次启动开关电源时开通M0使高压整流器向开关电源的高压滤波电容充电,高压电容上的电压U(t)=U^(-t/τ),(τ是RC时间常数)。因为开关电源立即启动后(Vdd不必等待充电),开关电源的高压MOS管M0的栅极立即被驱动,而MOS管M0的漏极上的高压需要按上式指数形上升,这就使得开关电源的每次启动都可以做到真正的软启动,并且可以通过调整RC时间常数来设定软启动相关参数,这也是传统的开关电源的硬开关无法做到的,它们只能在初始驱动时为了使启动变得软一些,只能靠调整栅极驱动脉宽由窄到宽来弥补。
由于不同工艺的需要,本公开的技术方案图5中的MOS管M1和M2可以用其他的任何单向导电子器件代替,只要p型半导体和n型半导体的方向与本技术方案所叙述的一致就可以。
本公开实施例还提供一种实现零功耗待机开关电源集成电路,包括用于控制开关电源的零功耗控制器,所述零功耗控制器包括电荷耦合电路、零功耗微处理器、零功耗电压调整电路和开关电源状态检测器,交流电源与所述电荷耦合电路连接,所述电荷耦合电路与所述零功耗电压调整电路连接,所述电压调整电路与所述零功耗微处理器连接,所述零功耗微处理器与所述开关电源状态检测器连接,所述开关电源状态检测器与所述开关电源连接,所述交流电源输入经所述电荷耦合电路依次进入所述零功耗电压调整电路、所述零功耗微处理器、所述开关电源状态检测器。
作为一种可选的实施方式,所述电荷耦合电路包括第一电容C1以及第三电容C3,所述零功耗电压调整电路包括第一对MOS管、第二对MOS管、零功耗电压调整器以及基准电压,所述第一对MOS管包括第一MOS管M1及第三MOS管M3,所述第二对MOS管包括第二MOS管M2和第四MOS管M4,所述交流电源的第一端与所述第一电容C1的一端连接,所述第一电容C1的另一端与所述第一对MOS管的接点连接,所述第二对MOS管的接点空置,所述交流电源的第二端通过所述第三电容C3与所述零功耗控制器的地线连接,所述零功耗控制器用于连接所述开关电源,所述第三电容 C3依次连接第一二极管D1以及所述开关电源的变压器绕组,所述基准电压与所述零功耗微处理器连接。
作为一种可选的实施方式,所述开关电源包括高压滤波电容。
作为一种可选的实施方式,所述电荷耦合电路还包括第二电容C2,所述第二电容C2的一端与所述交流电源的N端连接,所述第二电容C2的另一端与所述第二MOS管M2和所述第四MOS管M4的接点连接。
作为一种可选的实施方式,所述实现零功耗待机开关电源集成电路还包括高压MOS管M0以及整流器,所述整流器与所述高压MOS管M0连接,所述高压MOS管M0还与所述高压滤波电容连接,所述高压MOS管M0还与所述开关电源连接。
本公开的技术方案适用于各种类型和各种功率的开关电源,比如手机充电器,无论是有线手机充电器或无线手机充电器可以一直插在插座上,当检测到手机时自动充电,电池充满自动断电。不仅是对手机电池断电,防止由于过充损伤电池,同时也断开开关电源芯片和高压整流部分的电,以完全防止因长时间接高压造成的器件老化,电容电解液干枯甚至发热起火等不安全因素。还比如大功率电动车充电器,电动车的充电一般被安排在夜里,如果过冲无论是对铅酸电池还是锂电池都是非常有害,且是很危险的。对于充电器由于是工作在大功率状态,过冲轻者影响充电器寿命,重者造成事故。使用本公开技术方案的零功耗待机开关电源集成电路的充电器,在电池充满后完全切断充电器的电源,既保护了电池,也保护了充电器。还有作为各类电器普遍使用的电源变换器,在主机关掉后,电源变换器还插在插座上时,零功耗集成电路检测到主机关机,使开关电源关闭进入到零功耗待机状态(使开关电源输出电容保持原有输出电压),当主机打开时,电源变换器立即进入工作状态,向主机输出供电。
本公开提供的技术方案还可以广泛用在各类使用交流电的设备上,比如家电中的电视,音响,空调,微波炉等;办公设备中的电脑,传真,打印,复印等以及工业中的各类电器设备。
本公开的零功耗待机开关电源的广泛推广应用:
不仅是为人们节省了不必要的经济浪费,因为每个家庭就有十几到几十个待机还耗电的大小设备,如果全国十几亿人口和世界几十亿人口,社会总量是巨大的。当把所有的设备待机都变成绿色的不浪费电能的设备时,人类可以少建多少个发电厂,少烧多少吨煤和油,可以减少多少二氧化碳排放,可以减少多少安全事故,这是人们盼望已久的。通过这项发明的推广使用相信可以把中国和世界的待机功耗标准推到顶点“0”。
本公开提供了一种实现零功耗待机开关电源集成电路,具体实现该技术方案的方法和途径很多,以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术 人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
工业实用性
本公开公开了一种实现零功耗待机开关电源集成电路,包括一个用于控制开关电源的零功耗控制器。所述零功耗控制器包括电荷耦合电路、零功耗微处理器和零功耗电压调整电路,交流电源输入经电荷耦合电路依次进入零功耗电压调整电路、零功耗微处理器,由此使得开关电源可以做到零功耗待机,且可使用本公开的所有电气设备都能够做到零待机。

Claims (15)

  1. 一种实现零功耗待机开关电源集成电路,其特征在于,包括一个用于控制开关电源的零功耗控制器,所述零功耗控制器包括电荷耦合电路、零功耗微处理器和零功耗电压调整电路,交流电源输入经所述电荷耦合电路依次进入所述零功耗电压调整电路、所述零功耗微处理器。
  2. 根据权利要求1所述的一种实现零功耗待机开关电源集成电路,其特征在于,交流电电荷输入使用一个电容C1,交流电源第一端通过电容C1连接到零功耗控制器中两对MOS管中的其中一对接点,另一对MOS管接点空置,交流电源的第二端直接接零功耗控制器的地,开关电源的高压整流只使用一个二极管;在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源第一端正电荷通过电容C1流入零功耗控制器中MOS管M1的p型有源区和n阱,然后流入Vdd储能电容C3,最后回到交流电源第二端,向Vdd储能电容C3充电;在交流电的负半周期间,交流电源第一端负电荷通过电容C1流入零功耗控制器中MOS管M3的n型有源区和p阱,然后回到交流电源第二端;对电容C1通过控制MOS管M3和MOS管M4截止的方式来开通对电容C3充电,对电容C1通过MOS管M3和MOS管M4导通并联到交流电源两端的方式来断开电容C3的充电;当零功耗控制器控制MOS管M3和MOS管M4从截止转为导通的情况下,M3和M4的漏极电压仅从Vdd下降到0V;或控制MOS管M3和MOS管M4从导通转为截止,漏极电压仅从0V上升到Vdd。
  3. 根据权利要求2所述的一种实现零功耗待机开关电源集成电路,其特征在于,还包括电容C2,从交流电源两端,通过电荷耦合电路的两个电容C1,C2分别连接到零功耗控制器中两对MOS管的接点,在接通电源时,由于Vdd电压尚未建立,两对MOS管均为截止状态,在交流电的正半周期间,交流电源第一端正电荷通过电容C1流入零功耗控制器中MOS管M1的p型有源区和n阱,然后流入Vdd储能电容C3,再经MOS管M4的p阱和n型有源区最后回到交流电源第二端,向Vdd储能电容C3充电;在交流电的负半周期间,交流电源第二端正电荷通过电容C2流入零功耗控制器中MOS管M2的p型有源区和n阱,然后流入Vdd储能电容C3,再经MOS管M3的p阱和n型有源区回到交流电源第一端,向Vdd储能电容C3充电;对C1,C2串联通过控制MOS管M3和MOS管M4截止的方式来开通对电容C3充电,对C1,C2串联通过MOS管M3和MOS管M4导通并联到交流电源两端的方式来断开电容C3的充电;当零功耗控制器控制MOS管M3和MOS管M4从截止转为导通的情况下,M3和M4的 漏极电压仅从Vdd下降到0V;或控制MOS管M3和MOS管M4从导通转为截止,漏极电压仅从0V上升到Vdd。
  4. 根据权利要求2或3所述的一种实现零功耗待机开关电源集成电路,其特征在于,两对MOS管、零功耗电压调整器以及基准电压组成零功耗电压调整电路,在工作的同时由零功耗控制器中的零功耗电压调整器通过MOS管M3、MOS管M4构成闭环稳压控制,当Vdd电压达到零功耗控制器所设定值时,零功耗微处理器进行过压检测、欠压检测、过载检测和过温检测,如果未发生异常,则由零功耗控制器发出指令,启动开关电源,如果零功耗微处理器检测发现一项以上异常,或检测到开关电源输出空载,则立即通过零功耗微处理器控制开关电源停止工作,在开关电源停止工作的情况下,定时访问监测发生异常的参数,如发现各项参数恢复正常,则立即恢复开关电源正常工作。
  5. 根据权利要求2所述的一种实现零功耗待机开关电源集成电路,其特征在于,当开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组T1_Na通过外置二极管向Vdd储能电容C3供电,零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1与两对MOS管其中一对的接点接零功耗控制器电路的地,停止通过电容C1向Vdd储能电容充电,Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,C1的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
    Figure PCTCN2018083346-appb-100001
    表示相位角,因此电容C1中流过的电流是无功电流,不消耗任何电能。
  6. 根据权利要求3所述的一种实现零功耗待机开关电源集成电路,其特征在于,当开关电源正常启动进入工作状态并向负载供电,同时开关电源变压器Vdd绕组T1_Na通过外置二极管向Vdd储能电容C3供电,零功耗电压调整器控制MOS管M3和MOS管M4导通,通过将电容C1,C2与两对MOS管的接点接零功耗控制器电路的地,停止通过电容C1,C2向Vdd储能电容充电,Vdd电压靠开关电源Vdd绕组供电维持,因为MOS管M3和MOS管M4导通时电阻为毫欧级,C1,C2在物理上为直接串联的纯电容并联到交流电源L和N端,C1,C2串联的纯电容电路中交流电流i相位超前其两端交流电压v相位90°,其有功功率
    Figure PCTCN2018083346-appb-100002
    表示相位角,因此通过电容C1和C2的电流是无功电流,不消耗任何电能。
  7. 根据权利要求2或3所述的一种实现零功耗待机开关电源集成电路,其特征在于,无论开关电源是工作状态还是关闭状态,零功耗控制器都能够根据需要通过零功耗电压调整电路建立一个稳恒电压源,使零功耗控制器能够将整个开关电源管理起来。
  8. 根据权利要求2或3所述的一种实现零功耗待机开关电源集成电路,其特征在于, 在检测到负载空载时,由零功耗微处理器立即关闭开关电源,使开关电源在完全不耗电的情况下维持原有的输出电压;根据开关电源输出电容空载放电时间常数和空载时对输出电压稳压精度要求,定时定宽启动开关电源为输出电容补充失去的电荷,以维持输出端电压不变,这种方式开关电源停止工作的时间很长,为秒级,而启动为输出电容补充电荷的时间很短,为毫秒级,开关电源基本上处在停止工作状态,故整个开关电源的平均功耗几乎为零,从而实现开关电源空载待机时的零功耗。
  9. 根据权利要求2或3所述的一种实现零功耗待机开关电源集成电路,其特征在于,包括由零功耗控制器控制的高压MOS管M0,使高压MOS管M0和开关电源联动;M0的加入,使本公开零功耗电路保持着Vdd储能电容上的电压,每次启动开关电源时开通M0使高压整流器向开关电源的高压滤波电容充电,高压电容上的电压U(t)=U^(-t/τ),τ是RC时间常数,t表示时间,因为开关电源立即启动后,Vdd不必等待充电,开关电源的高压MOS管栅极立即被驱动,而MOS管漏极上的高压需要按上式指数形上升,这就使得开关电源的每次启动都做到真正的软启动,并且能够通过调整RC时间常数来设定软启动相关参数。
  10. 根据权利要求9所述的一种实现零功耗待机开关电源集成电路,其特征在于,所述MOS管M1和M2能够用其他的任何单向导电子器件代替。
  11. 一种实现零功耗待机开关电源集成电路,其特征在于,包括用于控制开关电源的零功耗控制器,所述零功耗控制器包括电荷耦合电路、零功耗微处理器、零功耗电压调整电路和开关电源状态检测器,交流电源与所述电荷耦合电路连接,所述电荷耦合电路与所述零功耗电压调整电路连接,所述电压调整电路与所述零功耗微处理器连接,所述零功耗微处理器与所述开关电源状态检测器连接,所述开关电源状态检测器与所述开关电源连接,所述交流电源输入经所述电荷耦合电路依次进入所述零功耗电压调整电路、所述零功耗微处理器、所述开关电源状态检测器。
  12. 根据权利要求11所述的一种实现零功耗待机开关电源集成电路,其特征在于,所述电荷耦合电路包括第一电容以及第三电容,所述零功耗电压调整电路包括第一对MOS管、第二对MOS管、零功耗电压调整器以及基准电压,所述第一对MOS管包括第一MOS管及第三MOS管,所述第二对MOS管包括第二MOS管和第四MOS管,所述交流电源的第一端与所述第一电容的一端连接,所述第一电容的另一端与所述第一对MOS管的接点连接,所述第二对MOS管的接点空置,所述交流电源的第二端通过所述第三电容与所述零功耗控制器的地线连接,所述零功耗控制器用于连接所述开关电源,所述第三电容依次连接第一二极管以及所述开关电源的变压器绕组,所述基准电压与所述零功耗微处理器连接。
  13. 根据权利要求12所述的一种实现零功耗待机开关电源集成电路,所述开关电源包括高压滤波电容。
  14. 根据权利要求11所述的一种实现零功耗待机开关电源集成电路,其特征在于,所述电荷耦合电路还包括第二电容,所述第二电容的一端与所述交流电源的N端连接,所述第二电容的另一端与所述第二MOS管和所述第四MOS管的接点连接。
  15. 根据权利要求13或14所述的一种实现零功耗待机开关电源集成电路,其特征在于,所述实现零功耗待机开关电源集成电路还包括高压MOS管以及整流器,所述整流器与所述高压MOS管连接,所述高压MOS管还与所述高压滤波电容连接,所述高压MOS管还与所述开关电源连接。
PCT/CN2018/083346 2017-04-17 2018-04-17 一种实现零功耗待机开关电源集成电路 WO2018192485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18787823.6A EP3614549A4 (en) 2017-04-17 2018-04-17 INTEGRATED CIRCUIT, FOR REALIZING STANDBY WITHOUT POWER CONSUMPTION, A SWITCHING POWER SUPPLY
US16/655,967 US10897191B2 (en) 2017-04-17 2019-10-17 Integrated circuit for realizing zero power consumption standby, of switching power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710247971.X 2017-04-17
CN201710247971.XA CN106849700A (zh) 2017-04-17 2017-04-17 一种实现零功耗待机开关电源集成电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/655,967 Continuation-In-Part US10897191B2 (en) 2017-04-17 2019-10-17 Integrated circuit for realizing zero power consumption standby, of switching power supply

Publications (1)

Publication Number Publication Date
WO2018192485A1 true WO2018192485A1 (zh) 2018-10-25

Family

ID=59147790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083346 WO2018192485A1 (zh) 2017-04-17 2018-04-17 一种实现零功耗待机开关电源集成电路

Country Status (4)

Country Link
US (1) US10897191B2 (zh)
EP (1) EP3614549A4 (zh)
CN (1) CN106849700A (zh)
WO (1) WO2018192485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897191B2 (en) 2017-04-17 2021-01-19 Ming Liu Integrated circuit for realizing zero power consumption standby, of switching power supply

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112294186A (zh) * 2019-07-31 2021-02-02 苏州市春菊电器有限公司 一种吸尘器的用电零功耗保护电路及其保护方法
CN111555643B (zh) * 2020-06-05 2024-02-27 上海晶丰明源半导体股份有限公司 开关电源控制器、开关电源系统及开关电源系统供电方法
CN114386539B (zh) * 2020-10-20 2024-03-08 Oppo广东移动通信有限公司 零功耗节点设备、工作方法及零功耗系统
CN116961378B (zh) * 2023-09-21 2024-01-16 深圳市力生美半导体股份有限公司 Ac-dc开关电源及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419434A (zh) * 2007-10-26 2009-04-29 王海 具有微功耗待机功能的容开电源
CN102594126A (zh) * 2011-01-17 2012-07-18 潘同卫 零损耗共地辅助兼待机电源
CN202759375U (zh) * 2012-06-04 2013-02-27 北京星原丰泰电子技术股份有限公司 用于控制电源启动冲击电流、延长电源维持时间的电路拓扑结构
US20130336031A1 (en) * 2010-07-22 2013-12-19 Earl W. McCune, Jr. AC/DC Power Conversion Methods and Apparatus
CN105429486A (zh) * 2015-12-31 2016-03-23 刘治发 一种实现小于0.1uw功耗待机电源电路
CN106849700A (zh) * 2017-04-17 2017-06-13 刘明 一种实现零功耗待机开关电源集成电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034604B2 (en) * 2003-03-17 2006-04-25 Schweitzer Engineering Laboratories, Inc. Communications device powered from host apparatus
JP4255487B2 (ja) * 2006-11-02 2009-04-15 エコパワー・デザイン株式会社 スイッチング電源装置、スイッチング周波数設定方法
US7847433B2 (en) * 2007-11-27 2010-12-07 Rain Bird Corporation Universal irrigation controller power supply
US9496793B2 (en) * 2011-11-01 2016-11-15 Azoteq (Pty) Ltd Capacitive sensing enabled switch mode power supply and data transfer
US9774263B1 (en) * 2016-08-05 2017-09-26 Schneider Electric It Corporation Power converter with extended hold-up time
CN106026717B (zh) * 2016-08-09 2018-07-20 河北工业大学 用于高频高压直流电源的三相整流器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419434A (zh) * 2007-10-26 2009-04-29 王海 具有微功耗待机功能的容开电源
US20130336031A1 (en) * 2010-07-22 2013-12-19 Earl W. McCune, Jr. AC/DC Power Conversion Methods and Apparatus
CN102594126A (zh) * 2011-01-17 2012-07-18 潘同卫 零损耗共地辅助兼待机电源
CN202759375U (zh) * 2012-06-04 2013-02-27 北京星原丰泰电子技术股份有限公司 用于控制电源启动冲击电流、延长电源维持时间的电路拓扑结构
CN105429486A (zh) * 2015-12-31 2016-03-23 刘治发 一种实现小于0.1uw功耗待机电源电路
CN106849700A (zh) * 2017-04-17 2017-06-13 刘明 一种实现零功耗待机开关电源集成电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614549A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897191B2 (en) 2017-04-17 2021-01-19 Ming Liu Integrated circuit for realizing zero power consumption standby, of switching power supply

Also Published As

Publication number Publication date
US20200052578A1 (en) 2020-02-13
EP3614549A1 (en) 2020-02-26
CN106849700A (zh) 2017-06-13
EP3614549A4 (en) 2020-04-29
US10897191B2 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2018192485A1 (zh) 一种实现零功耗待机开关电源集成电路
CN104836421B (zh) 一种开关电源的供电电路和供电方法
US9906145B2 (en) Power converter with load switch fault protection
US20120299529A1 (en) Solar charger for charging power battery
TWI633426B (zh) 供電系統及供電方法
JP2011250608A (ja) 太陽電池システム
CN110676918A (zh) 一种电池开关电路、供电管理系统及方法
CN104348347A (zh) 光伏逆变器辅助电源的启动电路
CN111404212A (zh) 电池组件及充放电模块
US8093865B2 (en) Charging device with backflow prevention
CN206547012U (zh) 充电电路及电子设备
CN210640722U (zh) 一种电池开关电路以及包含该电路的供电管理系统
CN111313374A (zh) 一种应用于电动自行车bms的电池系统欠压保护电路和方法
CN102148526B (zh) 充电器
CN102437724B (zh) 一种ac-dc芯片、系统及其高压启动控制电路
CN105634108B (zh) 离线式不间断电源
CN109038804A (zh) 一种供电切换电路及电子设备
CN206850679U (zh) 一种实现零功耗待机开关电源集成电路
CN106059280B (zh) 一种光伏逆变器辅助电源及启停控制方法
CN202550872U (zh) 一种ac-dc芯片、系统及其高压启动控制电路
CN213693505U (zh) 电源装置及其设备
CN204206316U (zh) 一种开机冲击电流的抑制装置和电视机
CN210273865U (zh) 一种充电器的同步整流电路
CN106787664A (zh) 软起动电路
CN107302314B (zh) 电源转换装置及防止电源转换装置异常关机的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018787823

Country of ref document: EP

Effective date: 20191118