WO2018192399A1 - 具有可调整性的伴随式随机重构密钥的序列加密方法 - Google Patents
具有可调整性的伴随式随机重构密钥的序列加密方法 Download PDFInfo
- Publication number
- WO2018192399A1 WO2018192399A1 PCT/CN2018/082638 CN2018082638W WO2018192399A1 WO 2018192399 A1 WO2018192399 A1 WO 2018192399A1 CN 2018082638 W CN2018082638 W CN 2018082638W WO 2018192399 A1 WO2018192399 A1 WO 2018192399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random
- segment
- key
- bit
- pseudo
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/14—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
- H04L9/16—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms the keys or algorithms being changed during operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/065—Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
- H04L9/0656—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
- H04L9/0662—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
- H04L9/0869—Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0894—Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/008—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving homomorphic encryption
Definitions
- the invention is mainly in the field of sequence cryptography in information security cryptography, and is mainly a sequence encryption method with adjustable concomitant random reconstruction key.
- the encryption process of the sequence cipher is to obtain the ciphertext by using the pseudo-random sequence generated by the sequence cipher generator according to the seed key and the plaintext bit stream by bitwise XOR.
- the sequence cipher encryption method can encrypt plaintext of any length as long as the period of the generated sequence cipher is large enough.
- the serial cipher encryption method is faster than the block cipher encryption method.
- the density of sequence encryption depends on the randomness of the sequence key produced by the sequence cipher generator. When the probability of acquiring the sequence key is small enough, the probability that the password is deciphered is small enough.
- the object of the present invention is to overcome the deficiencies of the prior art and to provide a sequence encryption method with an adaptive concomitant random reconstruction key.
- the object of the present invention is accomplished by the following technical solutions.
- the sequence encryption method with the adjustable companion random reconstruction key is based on a random binary sequence, and the sequence encryption/decryption of the random sequence key is reconstructed along with the encryption process.
- the method mainly includes the following steps:
- the seed random sequence B i is derived from a pseudo-random reconstruction of the alternate random sequence B j , or directly from the alternate random sequence B j; wherein, B j contract as part of both the encryption and decryption of the seed random sequence B i B j according to the conventions of the pseudo random starting position agreed reconstruction or taken;
- the ciphertext is generated by the XOR of the growth, inter-frequency ciphertext or mismatch.
- the beneficial effects of the present invention are: using random random pseudo-random manipulation of the encryption logic process to realize full chaos and concealment of the key construction process, and blocking the ciphertext parsing path by the implicit agreement of the encryption/decryption.
- 1 is a schematic diagram of a pseudo random construction seed random sequence with two alternate random sequences in the present invention
- FIG. 2 is a schematic diagram of a staggered random reconstruction state of a key b s in the present invention
- FIG. 3 is a schematic diagram of an encryption process of a pseudo-random reconstruction example in the present invention.
- FIG. 3 b s pseudo-random bits from the reconstructed B, b j b j + L bits to intercept, m s extended length acquired by L s, c s according to the length L s m s exclusive or postponed Generated, E is the engine generated randomly for each encryption, and S is the feature number.
- a function F whose range covers a random sequence or other determined range, and its independent variable may include a number of random values. Substituting a random value associated with or not related to this random sequence into this function obtains the length (in bits) of the bit segment in the random sequence, the binary start position of the bit segment, and other manipulation information, and thus The bit segment determined by the start position and length and other steps for further reconstruction of the obtained bit segment are reconstructed piece by piece to obtain a new random sequence.
- the object of the present invention is to generate a seed random sequence by pseudo-random construction using a random number called an engine for an existing random number sequence, and then gradually obtain a random key bit segment from the seed random sequence by pseudo-random reconstruction to implement sequence encryption.
- the pseudo-random reconstruction process of the key is accompanied by the whole process of encryption, in which each step uses the random number obtained by the pseudo-random reconstruction in the previous step to select the key bit segment and XOR encryption with the step-by-step plaintext segment.
- Each step key segment is combined into a current encryption key.
- Each step of random reconstruction may have a feature number involved in manipulating the random sequence of the seed sequence, and the entire reconstruction process presents a chaotic form determined by the randomness of the seed sequence.
- the random number sequence reconstruction function forms a sequence of functions with the encryption process. This sequence of functions can be adjusted by the secret rules of both the add/ decrypt sides.
- the instant key sequence obtained by manipulating the random seed sequence by the function sequence exhibits randomness and concealment, and has the effect of approximating one-time chaotic codebook.
- Another important object of the present invention is based on the transitivity of an exclusive OR operation, in which each XOR is performed by a random number determined by the value of the previous key segment and a multi-frequency XOR of the constructed corresponding plurality of key segments. .
- This random multi-frequency exclusive OR controlled by pseudo-random reconstruction causes the entire encryption process to exhibit a random nonlinear form of frequency conversion.
- B ⁇ b i1 + 1 , b i1 + 2 , b i1 + 3 , ..., b i1+L1 ⁇ , ⁇ b i2+1 , b i2+2 , b i2+3 ,..., b i2+L2 ⁇ ,..., where L 1 , L 2 , ... depend on the previous bit of B The value of the segment is constructed.
- B is an infinite random sequence b 1 , b 2 , b 3 , .
- This process which is called pseudo-random reconstruction by the present invention, is accompanied by the XOR process of B and plaintext, and realizes the chaos of the B- random sequence element run.
- B ⁇ b i1,1 , b i1,2 , b i1,3 ,...,b i1,L1 ⁇ , ⁇ b i2,1 ,b i2,2 ,b i2,3 ,...,b i2,L2 ⁇ ,...the alternative bit segments of one or more random sequences
- B j ⁇ b j i1,1 ,b j i1,2 ,b j i1,3 ,...,b j i1,L1 ⁇ , ⁇ b j i2 ,1 ,b j i2,2 ,b j i2,3 ,...,b j i2,L2 ⁇ ,...Pseudo-random hopping or non-jumping.
- B random sequence element runs more chaotic and has Concealed.
- the present invention provides a method for pseudo-random reconstruction of the seed random sequence B in which the random number E is involved, which is implicitly agreed by both the encryption/decryption. This makes the encryption key further chaotic and concealed, while the seed random sequence used for different encryptions based on the same alternate random sequence has random variation.
- the present invention also provides that the feature number S unique to each encrypted user participates in the above pseudo-random reconstruction. This allows random random variation of seed random sequences of different users based on the same alternate random sequence.
- the pseudo-random reconstruction method of the present invention is applicable to both the pseudo-random reconstruction process of the seed random sequence B and the pseudo-random reconstruction process of the key B.
- the pseudo-random reconstruction can be as follows according to the density (1) to (13). Any of the methods:
- B j ⁇ b j 1 ,b j 2 ,...,b j n ⁇ as an alternate random sequence
- B i ⁇ b i,1 ,b i,2 ,...,b i,n ⁇ as seeds
- Random sequence i can be omitted when there is only one seed random sequence
- B ⁇ b 1 , b 2 ,..., b n ⁇ .
- the random sequence B 0 (or B) of any source is based on the target random segment or the relevant segment in the previous step ( If the value of the corresponding ciphertext bit segment b 0 ' s-1 (or b' s-1 ), 1 is determined by the positioning function P as the starting target bit segment b 0 s (or b s ) in the source random sequence
- the start bit p; 2 determines the length l of the step source random bit b 0 s (or b s ) and the target random bit b s (or b s ) by the fixed length function L; 3 is pseudo randomized by 1 and/or 2
- the starting position and/or length of the random source bit segment is constructed in place of the position and/or length in (1) above, and the target random bit segment is intercepted.
- Another enhanced pseudo-random reconstruction is to determine the random source segment b j s-1 or b is- as the one of the above (4) or (5) or (6) or (7). 1 or b j,fj s-1 or b fj i,s-1 , one by one , select the source random sequence bit segment one by one to XOR the target bit segment.
- the swap is performed by the pairing bit determined by the pairing function C according to the random value of the previous key segment or the associated bit segment.
- the frequency is determined by the value of the previous frequency key segment or the associated bit segment by the delay function A for each frequency.
- the growth value of the key segment, the source segment increases with this growth value, and the length of the XOR segment is increased by this type.
- the length of the target segment is determined by the length of the initial segment (the starting position of the next target segment is still stepped by the target segment of the first frequency) and the growth operation portion of the target segment is backfilled to the source sequence. The corresponding location.
- the result is that its growth bit has undergone several XOR pre-processing before the next XOR.
- S can be one or more constants, a variable of a function, or a combination thereof.
- the encryption process of the present invention is implemented as follows:
- S0.2 Conventional physical feature quantity S (which may be a constant set and/or an element of a variable set, multiple elements, or integration of multiple elements) as a feature weight of the encrypted object participates in P, L, F, J , C, A operation.
- b J (S0+i)%n denotes one of (1), (2), and (3) of the pseudo-random construction, and %n denotes the continuation from the beginning after the delay to the end of the random sequence.
- b s Build(b fJ ' (s-1) ) indicates that one of (4), (5), (6), (7), (8), (9), (10), (11) is obtained.
- the independent variables of P, L, F, and J and S and E J are pseudo-random multi-frequency construction seed random segments.
- b' s represents the random value (the same below) contained in the bit segment b s .
- F is a function for calculating the X-sequence XOR frequency
- P is a function for calculating the start bit of the new bit segment
- P is a function for calculating the start bit of the B-bit segment of multi-frequency XOR or frequency
- b f ' s is the random value determined by the frequency b s (the same below)
- step b fs s-bit segments by computing a unit obtained by the F s P s, L s, F s , J s new location of the determined segment B
- the pairing function is selected by pairing function C for cf s between the X or X of each step.
- the growth value is determined by the growth function A for c f s and b f s between the XORs of each step and the subsequent increments of the c f s in the plaintext , selecting the growing key bits in the same pseudo-random method as before, increasing the XOR by frequency
- c f s represents the source bit segment (8""') after the match of the match before XOR
- the process of generating the random key is generated by the encryption process in a wrong step, that is, according to the position of the previous step of the target sequence or the value of the random number of the relevant position, the positioning function, the fixed length function, the fixed frequency function, the jump function, and the opposite adjustment
- the function, and the growth function determine the position, length, next-order XOR frequency of the next key, jump control when each key bit is selected, the offset control of each frequency target bit segment, and the growth control of the inter-frequency bit segment.
- a pseudo-random reconstruction process is accompanied by encryption.
- variable-frequency XOR process based on the ordered transferability of the XOR operation presents a nonlinear mixed form of the encryption process.
- the logic process of the method for source random seed reconstruction can be adjusted.
- expanding the reconstruction function into a general function can increase the chaos of random element runs.
- the alternate seed random sequence B 1 , B 2 , ... does not have to be generated in the encryption process (for example, changed according to a secret convention), and thus can be associated with the manipulation functions P, L, F, J, C, A and S are stored in advance as communication secrets between the two parties. And this kind of contract can be changed and easy to maintain.
- the plaintext can be prefixed with a garbled code to increase the difficulty of cracking.
- the decryption process is the same as the encryption process, and only (S6) is changed to (S6'):
- Embodiment 0 implements the simplest companion pseudo-random reconstruction process. Although not practical, the overall structure of the present invention is shown.
- step size of m s is the same as the step size of b s
- the decryption process is the same as the encryption process, and only (S6) is changed to (S6'):
- P(m s ), P( b s ), and P( b f s ) are the start time clear text, the current step key bit, and the start bit of the current frequency key bit.
- %2048 means to renew from the beginning after not only reaching the last position.
- Embodiment 1 implements a simple variable length variable frequency and backward pseudo-random reconstruction process.
- Embodiment 2 implements the encryption process of the previous step key segment random value pseudo-random reconstruction step key.
- the random sequence B T is defined as longer than B.
- Embodiment 3 implements a process of scheduling another random sequence to implement a pseudo-random reconstruction key from a random value obtained in the previous step.
- Embodiment 4 implements a process of controlling pseudo-random reconstruction of a key according to the progress of a ciphertext sequence.
- c' s-1 represents the value of the previous step ciphertext according to the approximate calculation unit, and the chaos of the key element run length is further improved.
- c's-1 is the generated item of the corresponding constructor when encrypting
- c's-1 is the source term of the corresponding constructor when decrypting
- Embodiment 5 implements the run of the plain text indirect scheduling pseudo-random reconstruction key (note: the calculation unit length is 20 bits).
- Embodiment 6 implements a process of implementing a pseudo-random reconstruction key from a random value and a plurality of feature values acquired from the previous step.
- the chaos of positioning and fixed-frequency travel is also further improved.
- Embodiment 7 implements a process of pseudo-randomly selecting a random sequence of step seed to reconstruct a key from a plurality of seed random sequences.
- Embodiment 8 implements a process of simultaneously implementing a pseudo-random reconstruction key using a plurality of seed random sequences.
- the chaos of positioning and fixed-frequency travel is also further improved.
- the decryption process is the same as the encryption process, and only (S6 9 ) is changed to (S6 9 '):
- Embodiment 9 implements a process of scheduling multiple seed random sequences directly from the previous step to directly encrypt the plaintext multi-frequency XOR.
- J 2 ⁇ j 2 1 ,j 2 2 ,...,j 2 L ⁇ , where j 2 1 is the first position of B 2 [ b' s-1 ], which is sequentially extended;
- J f,1 ⁇ j f,1 1 ,j f,1 2 ,...,j f,1 L ⁇ , where j f,1 1 is the first bit of B 1 [ b' f-1 s ], in turn Prolong
- J f,2 ⁇ j f,2 1 ,j f,2 2 ,...,j f,2 L ⁇ , where j f,2 1 is the first position of B 2 [ b' f-1 s ], in turn Prolong
- Embodiment 10 implements a multi-frequency encryption process in which a plurality of key segment bits are directly hopped or not skipped to a plaintext bit segment.
- Example 11 Decomposition of (S6 9 ) in Example 9:
- Embodiment 11 implements an encryption process with pseudo-random reconstruction with bit-pairing.
- a f,s L f-1,s +S%F s
- step S the ciphertext does not take the extended part, but all the bits of the extended part are backfilled to the corresponding position in the plaintext to participate in the next XOR.
- the splicing delay is spliced from the ciphertext, and when the ciphertext reaches the end, the delay is stopped.
- step S the explicit text does not take the extended part, but all the bits of the extended part are backfilled to the corresponding position of the ciphertext to participate in the next XOR.
- step source bit segment has been processed by the S step part, that is to say, the initial part of the target bit segment of step S+1 is both X-ORed by the S-step key and XORed by the S+1-step key. . Since the steps follow the pseudo-random convention step by step, the process does not change during decryption, so the decryption can still restore the plaintext.
- Embodiment 12 achieves variation in the length of the segment of each frequency difference. This makes the companion pseudo-random reconstruction method more tend to be the effect of the codebook.
- Embodiment 13 implements a non-sequential pseudo-random reconstruction process of a seed random sequence.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Storage Device Security (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (10)
- 一种具有可调整性的伴随式随机重构密钥的序列加密方法,其特征在于:基于随机二进制序列,伴随加密过程重构随机序列密钥的序列加/解密,其方法主要包括如下步骤:(1)、通过已存在的随机序列在每次加密初始动态构造种子随机序列B i,种子随机序列B i源自于备用随机序列B j的伪随机重构,或直接取自于备用随机序列B j;其中,B j作为加解密双方的契约的一部分,种子随机序列B i根据约定对B j从约定位置开始伪随机重构或截取;(2)、使用种子随机序列B i以定长或不定长的位段伪随机构造随机密钥 B;随机密钥 B的生成过程伴随着加/解密过程,通过对种子随机序列B i中各个位的伪随机重构逐步生成;通过加/解密双方的隐秘约定选取每一步异或密钥位段,包括对明文的异或频率、各频率的位段起始位置、位段长度,这种隐秘约定确定了伪随机重构的过程;(3)、通过定长或不定长的位段对明文分段进行加/解密,每段明文与伪随机重构所获取的若干相应密钥位段进行定频或变频、频间增长或不增长、频间密文对调或不对调的异或产生密文。
- 根据权利要求1所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:所述的隐秘约定由约定的构造函数实现,这种函数采用下述随机值作为自变量:①前一步密钥位段根据伪随机重构隐秘约定所确定的随机值,或者②其他随机序列的伪随机约定位段根据伪随机重构隐秘约定所确定随机值,或者③根据伪随机重构隐秘约定由前一步密文位段之值所确定的随机值。
- 根据权利要求1所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:(1)、对明文逐段进行加/解密的过程中明文位段依次顺延:明文位段的长度依赖于密钥位段的长度,密钥位段 b s 的长度l以及在种子随机序列B i中的起始位置p由加/解密双方约定的契约决定;同一明文位段可以由多个密钥位段依次进行多频异或,多频异或的频率f由加解密双方约定的契约决定;(2)、确定当步密钥位段 b s 的位置p是按前一步密钥位段 b s-1 的位置顺延或倒退;即:依据前一步位段的位置后移或前移若干位,当密钥 b s 的位置p顺延或倒退到达种子随机序列B的末位或头位后,从头位或末位开始续延或续退;(3)、确定当步密钥位段 b s 的长度l是选取前一步密钥位段 b s-1 的长度作为当步位段 b s 的长度;(4)、确定当步异或频率f是取频率为正整数,当选取频率为1时对种子随机序列B的伪随机重构过程呈现与明文等距顺延或倒退的形态,当选取频率大于1时对种子随机序列B的伪随机重构过程呈现与明文倍距跳跃顺延或倒退的形态;(5)、以上述所得密钥位段 b s 逐步对明文位段进行定频异或加密。
- 根据权利要求1或3所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:通过如下步骤提升加密密度:(1)、确定对伪随机重构的当步位段之值的计算单位,以前一步 b s-1 位段的约定起始位置和约定长度来确定计算单位;(2)、随机密钥 B当步位段 b s 的起始位置p s由随机密钥 B的前一步所在位段 b s-1 或相关位段的随机数按当次计算单位所取的随机值和特征量S通过定位函数P确定,P是满足其值域覆盖种子随机序列B全程的任意函数,即:P的值域P( b s )满足0<P( b s )≤n,n为B元素的最大位置;(3)、随机密钥 B当步位段 b s 的长度l由随机密钥 B的前一步所在位段 b s-1 或相关位段的随机数的值和特征量S通过定长函数L确定,L可以是值域大于0的任意函数,即:L的值域L( b s )满足0<L( b s )≤n,n为B元素的最大位置;(4)、随机密钥位段b s对明文位段m s的异或频率f由随机密钥 B的前一步所在段位 b s-1 或相关位段的随机值和特征量S通过定频函数F确定,F是满足其值域大于0的任意函数;(5)、通过步骤(2)和/或(3)所选p和/或l替代前述p和/或l,确定种子随机序列B中的密钥位段b s,通过步骤(4)确定当步异或频率f,当f大于1时,以顺延方式在B中选取f个位段,或按步骤(2)的方式在B中随机定位选取f个位段b s,b s2,…,b sf,以上述所选密钥位段对当步明文位段m s进行f次多频有序异或。
- 根据权利要求1或3或4所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:通过如下步骤进一步提升加密密度:(1)、以多个种子随机序列B i(i=1,2,3,…,m;m为任意正整数)伪随机构造随机密钥 B,构造方法为:(a)以约定过程根据前一步密钥位段 b s-1 或相关位段之值伪随机选取多个b i,s;(b)以约定过程根据前一步密钥位段 b s-1 或相关位段之值伪随机选取b i,s之一作为当步密钥位段 b s ;或者,(c)对b i,s,(i=1,2,3,…,m)逐个有序配对异或后,用所产生的结果作为当步密钥位段 b s ;(2)、通过上述(1).(b)或者(1).(c)所构密钥位段 b b 及同样方法构造的 b f s 对明文位段m s实施f频有序异或;或者(3)、通过上述(1).(a)所构各种子位段b i,s直接作为m个密钥位段,并以前述任意P、L、F方法逐一选取 b f i,s ,然后逐个或混合地对明文位段m s实施m*f的多频异或。
- 根据权利要求1或3或4或5所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:通过如下步骤进一步提升加密密度:(1)构造选取当步密钥位段的位跳跃函数J;(2)从p所确定源随机序列位置开始依据跳跃函数J,在获取 b i,s 和/或 b f i,s 时,跳跃或不跳跃地逐位提取当步或当频各个密钥位段的各位直至达到l长度;(3)以上述5.(2)或5.(3)的方式,对明文位段m s实施多频有序异或。
- 根据权利要求1或3或4或5或6所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:在多频异或过程中根据伪随机密约增加对多频异或频间目标位段的位配对对调的步骤:(1)构造选取当步目标位段的位配对函数C;(2)在以上述5.(2)或5.(3)的方式加密时对各频目标位段按所选配对位实施对调;并且(3)在以上述5.(2)或5.(3)的逆方式解密时对源位段(密文)按所选配对位实施对调。
- 根据权利要求1或3或4或5或6或7所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:在多频异或过程中根据伪随机密约增加逐频增长异或位段长度的步骤:(1)构造当步频间位段长度延升函数A;(2)在以上述5.(2)或5.(3)的方式加密时对源位段(明文)和密钥位段按所定增长值逐频延升;并且(3)在以上述5.(2)或5.(3)的方式解密时对源位段(密文)和密钥位段按所定增长值逐频延升;(4)当步目标位段仍然选取非增长的位段长度;(5)将计算中位段的累计增长位回填至源随机序列的相应位置。
- 根据权利要求1或3或4或5或6所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:增加备用随机序列、实现对种子随机序列伪随机构造的步骤,以提升种子随机序列B的混沌度:(1)、为构建种子随机序列B预生成多于一个备用随机序列B j,使用数量与B j匹配的被称为引擎的即次随机数E j,建立定位函数P 0和特征量S,在以E j和S驱动P j 0确定各个B j的起始位置后,逐位段有序以b j s和b j-1 s异或获取b s,异或过程中当任一B j到达末位后从头开始续延B j位直至达到种子随机序列B所需长度;(2)、由b j s-1或b s-1的位段通过P、L、F、J、C、A方法替代(1)的相应伪重构要素生成方法以确定种子随机序列B的对应位段,逐段构建种子随机序列B,被生成的种子随机序列B的长度根据需要变更;(3)、对于多种子随机序列B i,重复实施上述(1)、(2)获取不同B i。
- 根据权利要求4或5或6或7或8或9所述的具有可调整性的伴随式重构随机序列异或方法,其特征在于:参与伪随机重构的特征量S是一个常量或函数变量、多个常量或函数变量或多个常量或函数变量的整合;(1)、在加密过程中,P、L、F、J、C、A允许使用多个S=S 1,S 2,S 3,…,S m参与伪随机重构,而且,各个S i是否参与伪随机重构由操控函数K通过上述任一方法伪随机确定,即:随机从m个S i中选取k个参与计算,k≤m;(2)、当S为多组伪随机重构的特征量S j时,支持基于共同种子随机序列B i的j个各自占有序列密钥 B j 的j族明文序列加密,当S为多个函数生成的多组变量时,支持基于共同种子随机序列B i(i=1,2,3,…,k)的各自独占序列密钥 B j 实现的明文序列加密体系。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3060337A CA3060337A1 (en) | 2017-04-17 | 2018-04-11 | Sequence encryption method accompanying adjustable random reconfiguration of key |
KR1020197033966A KR20200015484A (ko) | 2017-04-17 | 2018-04-11 | 조절 가능한 동반식 랜덤 재구성 키를 갖는 시퀀스 암호화 방법 |
EP18788436.6A EP3614620A4 (en) | 2017-04-17 | 2018-04-11 | SEQUENCE ENCRYPTION PROCESS COMBINED WITH ADJUSTABLE RANDOM RECONFIGURATION OF A KEY |
JP2020505960A JP2020517209A (ja) | 2017-04-17 | 2018-04-11 | キーを付随式で調整可能にランダムに再構成するシーケンス暗号化方法 |
SG11201909664P SG11201909664PA (en) | 2017-04-17 | 2018-04-11 | Sequence encryption method accompanying adjustable random reconfiguration of key |
US16/654,045 US10855458B2 (en) | 2017-04-17 | 2019-10-16 | Sequence encryption method accompanying adjustable random reconfiguration of key |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710249427.9A CN107196760B (zh) | 2017-04-17 | 2017-04-17 | 具有可调整性的伴随式随机重构密钥的序列加密方法 |
CN201710249427.9 | 2017-04-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/654,045 Continuation US10855458B2 (en) | 2017-04-17 | 2019-10-16 | Sequence encryption method accompanying adjustable random reconfiguration of key |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018192399A1 true WO2018192399A1 (zh) | 2018-10-25 |
Family
ID=59871763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082638 WO2018192399A1 (zh) | 2017-04-17 | 2018-04-11 | 具有可调整性的伴随式随机重构密钥的序列加密方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10855458B2 (zh) |
EP (1) | EP3614620A4 (zh) |
JP (1) | JP2020517209A (zh) |
KR (1) | KR20200015484A (zh) |
CN (1) | CN107196760B (zh) |
CA (1) | CA3060337A1 (zh) |
SG (2) | SG11201909664PA (zh) |
WO (1) | WO2018192399A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2702078C1 (ru) * | 2018-11-06 | 2019-10-03 | Михаил Викторович Яковлев | Способ защиты командно-измерительной системы космического аппарата (КА) от несанкционированного вмешательства нелегитимным пользователем |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106953875A (zh) * | 2017-04-26 | 2017-07-14 | 吉林大学珠海学院 | 基于多密钥流密码的顺序加密方法 |
CN108616351B (zh) * | 2018-03-26 | 2020-09-18 | 山东大学 | 一种全动态加密解密方法及加密解密装置 |
WO2019231481A1 (en) * | 2018-05-29 | 2019-12-05 | Visa International Service Association | Privacy-preserving machine learning in the three-server model |
CN109255245A (zh) * | 2018-08-13 | 2019-01-22 | 海南新软软件有限公司 | 一种本地密钥保护方法、装置及系统 |
CN113472514A (zh) * | 2020-06-29 | 2021-10-01 | 徐智能 | 复重构密钥的序列加密方法 |
US20210119812A1 (en) * | 2020-12-23 | 2021-04-22 | Intel Corporation | Time-based multi-dimensional key recreation mechanism using puf technologies |
CN113630386B (zh) * | 2021-07-15 | 2023-05-09 | 金杉 | 一种加解密方法、装置及其通信系统 |
CN116032476B (zh) * | 2023-03-30 | 2023-06-02 | 北京点聚信息技术有限公司 | 基于序列分解的电子合同内容智能加密方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007092098A2 (en) * | 2005-12-21 | 2007-08-16 | Motorola Inc. | Data sequence encryption and decryption |
CN103117850A (zh) * | 2011-11-16 | 2013-05-22 | 中国科学院华南植物园 | 一种基于随机序列数据库的密码系统 |
CN103560876A (zh) * | 2013-11-22 | 2014-02-05 | 北京航空航天大学 | 一种使用基于混沌的随机时钟的加密方法及装置 |
CN104809407A (zh) * | 2015-05-05 | 2015-07-29 | 南京信息工程大学 | 云存储前端数据加解密及校验方法和系统 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5414771A (en) * | 1993-07-13 | 1995-05-09 | Mrj, Inc. | System and method for the creation of random sequences and for the cryptographic protection of communications |
US5541996A (en) * | 1994-12-12 | 1996-07-30 | Itt Corporation | Apparatus and method for a pseudo-random number generator for high precision numbers |
FR2742616B1 (fr) * | 1995-12-18 | 1998-01-09 | Cit Alcatel | Dispositif de chiffrement et dispositif de dechiffrement d'informations transportees par des cellules a mode de transfert asynchrone |
US6430170B1 (en) * | 1999-05-27 | 2002-08-06 | Qualcomm Inc. | Method and apparatus for generating random numbers from a communication signal |
ATE368981T1 (de) * | 2000-03-29 | 2007-08-15 | Vadium Technology Inc | Einmalige pad-verschlüsselung mit zentralschlüsseldienst und schlüsselfähigen zeichen |
US7170997B2 (en) * | 2000-12-07 | 2007-01-30 | Cryptico A/S | Method of generating pseudo-random numbers in an electronic device, and a method of encrypting and decrypting electronic data |
US6931128B2 (en) * | 2001-01-16 | 2005-08-16 | Microsoft Corporation | Methods and systems for generating encryption keys using random bit generators |
US20090245516A1 (en) * | 2008-02-26 | 2009-10-01 | Pasupuleti Sureshbabu Ravikiran | Method and system for high entropy encryption using an unpredictable seed based on user regisration time |
US20030016823A1 (en) * | 2001-07-05 | 2003-01-23 | Shine Chung | Method and apparatus of using irrational numbers in random number generators for cryptography |
US20040086117A1 (en) * | 2002-06-06 | 2004-05-06 | Petersen Mette Vesterager | Methods for improving unpredictability of output of pseudo-random number generators |
EP1475920A4 (en) * | 2002-12-03 | 2005-03-02 | Matsushita Electric Ind Co Ltd | KEY SHARING SYSTEM, SHARED KEY CREATING DEVICE, AND SHARED KEY RESTORING DEVICE |
DE10352401A1 (de) * | 2003-11-10 | 2005-06-16 | Micronas Gmbh | Verfahren zur Speicherung von Daten in einem Wahlzugriffspeicher und Verschlüsselungs- und Entschlüsselungsvorrichtung |
FR2862394B1 (fr) * | 2003-11-18 | 2006-02-17 | Atmel Grenoble Sa | Generateur de sequences binaires aleatoires |
JP4774509B2 (ja) * | 2005-05-13 | 2011-09-14 | 国立大学法人お茶の水女子大学 | 擬似乱数発生システム |
US8019802B2 (en) * | 2005-08-24 | 2011-09-13 | Qualcomm Incorporated | Cryptographically secure pseudo-random number generator |
US8145917B2 (en) * | 2005-12-30 | 2012-03-27 | Nokia Corporation | Security bootstrapping for distributed architecture devices |
FR2897451A1 (fr) * | 2006-02-13 | 2007-08-17 | France Telecom | Dispositif et procede de cryptographie pour generer des nombres pseudo-aletoires |
JP2009258141A (ja) * | 2006-06-30 | 2009-11-05 | Kiyoto Yui | 無限乱数発生装置を用いた無限暗号化・復号装置及び無限暗号化装置 |
CN100464584C (zh) * | 2006-11-21 | 2009-02-25 | 北京中星微电子有限公司 | 实现信号加密的视频监控系统和视频监控方法 |
JP5102536B2 (ja) * | 2007-05-17 | 2012-12-19 | Kddi株式会社 | ストリーム暗号の暗号化装置、復号化装置、暗号化方法、復号化方法およびプログラム |
EP2423903B1 (en) * | 2009-04-24 | 2014-07-16 | Nippon Telegraph And Telephone Corporation | Encryption apparatus, deccryption apparatus, encryption method, decryption method, security method, program, and recording medium |
CN103004129B (zh) * | 2010-07-23 | 2015-04-08 | 日本电信电话株式会社 | 加密装置、解密装置、加密方法、解密方法、程序及记录介质 |
US20120057704A1 (en) * | 2010-09-07 | 2012-03-08 | Futurewei Technologies, Inc. | System and Method for Providing Security in a Wireless Communications System |
US9465582B1 (en) * | 2010-11-18 | 2016-10-11 | The Boeing Company | Significant random number generator |
US9344278B2 (en) * | 2011-10-18 | 2016-05-17 | Broadcom Corporation | Secure data transfer using random ordering and random block sizing |
US8767954B2 (en) * | 2011-12-01 | 2014-07-01 | Colloid, Llc | Methods and systems for deriving a cryptographic framework |
US20140185808A1 (en) * | 2012-12-31 | 2014-07-03 | Cloud Star Corporation | Apparatus, systems, and methods for encryption key distribution |
US20140270165A1 (en) * | 2013-03-15 | 2014-09-18 | Alexandre Andre DURAND | Cryptographic system based on reproducible random sequences |
DE102013205168A1 (de) * | 2013-03-22 | 2014-09-25 | Robert Bosch Gmbh | Verfahren zum Erzeugen einer zufälligen Ausgangsbitfolge |
DE102013205166A1 (de) * | 2013-03-22 | 2014-09-25 | Robert Bosch Gmbh | Verfahren zum Erzeugen einer Einwegfunktion |
KR101443575B1 (ko) * | 2013-04-29 | 2014-09-23 | 한국전자통신연구원 | 이진 난수열을 정수 난수로 변환하는 장치 및 방법 |
WO2016135726A1 (en) * | 2015-02-25 | 2016-09-01 | Secret Double Octopus Ltd. | Method and system for authenticating and preserving the integrity of communication, secured by secret sharing |
US10348704B2 (en) * | 2015-07-30 | 2019-07-09 | Helder Silvestre Paiva Figueira | Method for a dynamic perpetual encryption cryptosystem |
US11057205B2 (en) * | 2017-12-05 | 2021-07-06 | Marc Leo Prince | Seed key expansion method and its uses |
-
2017
- 2017-04-17 CN CN201710249427.9A patent/CN107196760B/zh not_active Expired - Fee Related
-
2018
- 2018-04-11 CA CA3060337A patent/CA3060337A1/en not_active Abandoned
- 2018-04-11 WO PCT/CN2018/082638 patent/WO2018192399A1/zh unknown
- 2018-04-11 EP EP18788436.6A patent/EP3614620A4/en not_active Withdrawn
- 2018-04-11 SG SG11201909664P patent/SG11201909664PA/en unknown
- 2018-04-11 SG SG10202011550VA patent/SG10202011550VA/en unknown
- 2018-04-11 KR KR1020197033966A patent/KR20200015484A/ko not_active Application Discontinuation
- 2018-04-11 JP JP2020505960A patent/JP2020517209A/ja not_active Ceased
-
2019
- 2019-10-16 US US16/654,045 patent/US10855458B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007092098A2 (en) * | 2005-12-21 | 2007-08-16 | Motorola Inc. | Data sequence encryption and decryption |
CN103117850A (zh) * | 2011-11-16 | 2013-05-22 | 中国科学院华南植物园 | 一种基于随机序列数据库的密码系统 |
CN103560876A (zh) * | 2013-11-22 | 2014-02-05 | 北京航空航天大学 | 一种使用基于混沌的随机时钟的加密方法及装置 |
CN104809407A (zh) * | 2015-05-05 | 2015-07-29 | 南京信息工程大学 | 云存储前端数据加解密及校验方法和系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3614620A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2702078C1 (ru) * | 2018-11-06 | 2019-10-03 | Михаил Викторович Яковлев | Способ защиты командно-измерительной системы космического аппарата (КА) от несанкционированного вмешательства нелегитимным пользователем |
Also Published As
Publication number | Publication date |
---|---|
CA3060337A1 (en) | 2018-10-25 |
EP3614620A1 (en) | 2020-02-26 |
SG10202011550VA (en) | 2021-01-28 |
EP3614620A4 (en) | 2021-03-24 |
CN107196760B (zh) | 2020-04-14 |
KR20200015484A (ko) | 2020-02-12 |
CN107196760A (zh) | 2017-09-22 |
US10855458B2 (en) | 2020-12-01 |
SG11201909664PA (en) | 2019-11-28 |
US20200195430A1 (en) | 2020-06-18 |
JP2020517209A (ja) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018192399A1 (zh) | 具有可调整性的伴随式随机重构密钥的序列加密方法 | |
Barakat et al. | An introduction to cryptography | |
Wang et al. | HCTR: A variable-input-length enciphering mode | |
KR101516574B1 (ko) | 형태보존 암호화를 위한 가변길이 블록암호 장치 및 방법 | |
US20020048364A1 (en) | Parallel block encryption method and modes for data confidentiality and integrity protection | |
US8509427B2 (en) | Hybrid mode cryptographic method and system with message authentication | |
KR101593169B1 (ko) | 페이스텔 구조의 가변길이 블록암호 장치 및 방법 | |
Albrecht et al. | Cold boot key recovery by solving polynomial systems with noise | |
US9331848B1 (en) | Differential power analysis resistant encryption and decryption functions | |
JP2008516296A (ja) | 擬群を用いる、暗号法の基本要素、エラーコーディング、及び擬似ランダム数改善方法 | |
JP2001007800A (ja) | 暗号化装置および方法 | |
Kuang et al. | Quantum safe lightweight cryptography with quantum permutation pad | |
AlTawy et al. | Differential fault analysis of Streebog | |
WO2019225735A1 (ja) | データ処理装置、方法及びコンピュータプログラム | |
Petrides | Cryptanalysis of the public key cryptosystem based on the word problem on the Grigorchuk groups | |
Minematsu | A short universal hash function from bit rotation, and applications to blockcipher modes | |
Greene et al. | ARADI and LLAMA: Low-Latency Cryptography for Memory Encryption | |
WO2006085283A1 (en) | High speed encryption and decryption | |
Ye et al. | Hern & heron: Lightweight aead and hash constructions based on thin sponge (v1) | |
Yin et al. | Fast S-box security mechanism research based on the polymorphic cipher | |
Siddesh et al. | AN EFFICIENT VLSI ARCHITECTURE FOR AES AND its FPGA IMPLEMENTATION | |
Saeb | The stone cipher-192 (sc-192): A metamorphic cipher | |
Ahmad et al. | Comparative study between stream cipher and block cipher using RC4 and Hill Cipher | |
Hasan et al. | Variable Rounds Block Cipher Algorithm Design | |
Tomassini et al. | Nonuniform cellular automata for cryptography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788436 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020505960 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3060337 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197033966 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018788436 Country of ref document: EP Effective date: 20191118 |