WO2018187901A1 - 一种带有热管理设计电池模块、电池装置与电池系统 - Google Patents

一种带有热管理设计电池模块、电池装置与电池系统 Download PDF

Info

Publication number
WO2018187901A1
WO2018187901A1 PCT/CN2017/079902 CN2017079902W WO2018187901A1 WO 2018187901 A1 WO2018187901 A1 WO 2018187901A1 CN 2017079902 W CN2017079902 W CN 2017079902W WO 2018187901 A1 WO2018187901 A1 WO 2018187901A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
thermal management
fluid
battery module
management design
Prior art date
Application number
PCT/CN2017/079902
Other languages
English (en)
French (fr)
Inventor
郑铭尧
Original Assignee
郑铭尧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑铭尧 filed Critical 郑铭尧
Priority to CN201780089471.6A priority Critical patent/CN110800154B/zh
Priority to US16/603,578 priority patent/US11611119B2/en
Priority to EP17905542.1A priority patent/EP3611790A4/en
Priority to PCT/CN2017/079902 priority patent/WO2018187901A1/zh
Publication of WO2018187901A1 publication Critical patent/WO2018187901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery module with a thermal management design, a battery device and a battery system, in particular to a high-efficiency temperature control design of a battery device and a battery module, which can greatly reduce the influence degree of the battery device in a harsh ambient temperature.
  • a high-efficiency temperature control design of a battery device and a battery module which can greatly reduce the influence degree of the battery device in a harsh ambient temperature.
  • the performance of the battery core and the convenience to the user can be greatly improved by the overall temperature control design of the battery system.
  • lithium batteries have gradually become the main choice for various energy storage needs due to their high energy density and high service life, such as mobile devices such as notebook computers and smart phones.
  • lithium batteries are also the main energy storage components of electric vehicles, micro-grids and other energy storage systems, but the energy storage components are The application of the above new energy system still has its limitations; taking electric vehicles as an example, the current electric vehicles using energy storage technology use lithium batteries as the power source (the hybrid vehicles are powered by series or parallel power supply of lithium batteries and gasoline and diesel engines). Output), however, the energy density of the lithium battery still needs to be further improved to meet the expected mileage (more than 400 to 500 kilometers per charge); on the other hand, battery performance, service life, safety and price, etc. There is room for improvement.
  • the performance, life and safety of lithium batteries it can be divided into two aspects.
  • One is the improvement of battery cell materials and design, and the parameters and characteristics of lithium batteries are improved from the basic surface; on the other hand, it is from the system.
  • One of the most important factors is the control of the temperature of the lithium battery, which is closely related to the performance, life and safety of the lithium battery: the operating range of the lithium battery is about -20 to 60 ° C, and the charging temperature is generally controlled between 0 and 50.
  • the temperature of the lithium battery is controlled at 15 ⁇ 35 ° C, if the temperature is too high, the lithium battery will have safety concerns and greatly shorten the possibility of service life; temperature is too low, except In addition to safety and service life, batteries also have low efficiency and limited performance due to high resistance.
  • the lead-acid battery temperature needs to be maintained at 25 ⁇ 30 ° C, if the lithium battery is used as the battery of the uninterruptible system, the battery temperature must be controlled below 35 ⁇ 40 ° C, in order to reach Long enough life. Therefore, in order to meet the requirements of battery performance, life and safety for different applications, the control of battery temperature is very important, and how to control the battery temperature with minimum energy and efficiency, in addition to having a great impact on energy efficiency, In some applications, such as electric vehicle-related applications, it is even more important. For example, some pure electric vehicles that have been mass-produced can lose more than 30% of the maximum mileage in winter in subtropical or temperate regions under normal conditions. The main reason is that the thermal management design of the battery system requires energy to heat the battery during temperature control, or the heat generated by the battery is not enough to raise its own temperature to an appropriate range, and in most use cases, The battery itself needs to provide the energy needed for temperature control.
  • the existing battery temperature control design schemes include passive temperature control and active temperature control.
  • Passive temperature control uses the mechanism design of the battery system to bring the heat generated by the battery to the interface between the battery system and the outside world by heat conduction, and then use the external gas to naturally dissipate heat; although the design is the simplest and the manufacturing cost is low.
  • the temperature difference between the battery core or the module is the largest, and the heat dissipation efficiency is also the lowest; and because of the design of the passive temperature control, the battery system is extremely susceptible to the external environment, and the external high temperature or low temperature environment can be cooled by the original battery system.
  • the low thermal resistance path of the design easily affects the temperature of the battery cells or modules in the system.
  • the active temperature control method is to control the temperature of the battery core or the module in the battery system by means of temperature control medium or resistance heating, and the temperature control medium usually includes two kinds of gas and liquid.
  • the gas is the purpose of using a fan to achieve heat dissipation.
  • another heating device is required to heat the battery; and the forced cooling of the fan needs to retain the gas channel, the overall system The volume occupied is too large.
  • the active temperature control of the liquid is a way of high temperature control efficiency.
  • the volume of the overall battery system is smaller than that of the gas as the temperature control medium, and the application of the limited volume has obvious advantages.
  • the liquid in the device with the appropriate flow channel structure is used to form an optimal thermal contact with the battery cell or the module, and the compressor and the heating device outside the battery device are used to control the temperature of the liquid, and the liquid is forcibly input into the battery system.
  • the flow channel structure device regulates the temperature of the battery cell and the module.
  • the thermal path of the liquid and the cell or module in the flow channel structure device typically contains one or more non-metallic materials, typically plastic polymer materials, to ensure cell-to-cell interaction in the battery system.
  • the heat transfer characteristics of heat conductive plastic materials have been significantly improved in recent years, there is still a big gap compared with metal materials.
  • the heat transfer coefficients of pure copper and pure aluminum are about 400 and 230W(mK) -1 is tens or even hundreds of times the thermal conductivity of a general heat conductive plastic; therefore, the thermal resistance of the liquid and cell/module paths of the flow path structure device in the battery system is thus much increased, resulting in a low cooling rate.
  • liquid transport path of the flow channel structure device in the battery system is also long, although the system is superior to the gas forced temperature control system, there is still a considerable temperature difference between the battery core/module, and if there is an excessive liquid transport path in the battery device, Will increase the possibility of liquid leakage.
  • the vehicle battery includes a plurality of lithium iron batteries, at least one bracket, an electrical connection module and a Package. Wherein the lithium iron battery is assembled in the bracket, and the lithium iron battery is electrically connected through the electrical connection module, and finally the package is completely coated on the lithium iron battery in a vacuum environment.
  • the former case uses the package system as a thermal conductive gel, which can be completely filled in the gap after being packaged in the vacuum environment, and has the safety effect of waterproof, fireproof, shockproof and explosion-proof four-in-one, and the lithium iron battery is used.
  • the heat can also be dissipated to the outside through the package to ensure safety and stability during use.
  • the above-mentioned prior art as a thermal conductive colloid of the package is evaluated by the prior art, and the heat transfer coefficient thereof is not high. It is not able to withstand the harsh environment where the temperature is too high or too low. If the battery core after being packaged is too hot for any unknown reason, the pressure relief valve cannot be opened, which may have a greater impact on safety.
  • a battery device for use in a backup power supply system and method, the heat dissipation device and method of the battery device is a battery pole wire
  • the heat source of the battery module is conducted to the external heat sink fin device, wherein the heat source of the battery pole and the external heat sink fin are electrically insulated, and the heat is transferred to the heat sink fins, and then a fan is used.
  • the heat sink fins are dissipated. If the battery needs to be heated, it is performed by a heater.
  • the heat sink of the prior patent can dissipate heat, but if the outside temperature is high, it will be transmitted to the battery through the same path; On the one hand, if the outside temperature is too low, the temperature of the battery will continue to decrease due to the heat dissipation path. Although the battery has a heating function, the heat of the heater will continue to dissipate heat to the fin through the heat path after heating the battery. The previous case could not effectively manage the battery effectively.
  • a conventional US patent 20130071705 "STRUCTURE, PACKAGING ASSEMBLY, AND COVER FOR MULTI-CELL ARRAY BATTERIES", a package structure and a cover of a plurality of battery cells, and the battery pack is packaged by a compartment structure, and a vacuum is utilized
  • the insulation board (VIP) can be used as the outer wall of the battery pack to reduce the influence of the external temperature on the battery.
  • the previous patent is mainly used for packaging storage during battery transportation. It is not a complete and operable battery system design, so there is no Related thermal management design for battery system cooling or heating.
  • the active-passive composite temperature control technology is put forward before high energy and time efficiency, so that the battery cells in the battery module can achieve the purpose of rapid temperature control and narrowing the temperature difference of the plurality of battery cells, and finally greatly improve the battery system in each
  • the convenience of use in a climatic environment due to the increased energy efficiency of the battery device, the service life and usable energy of the battery device can be further extended, the energy consumption of excessive battery storage is avoided, and the battery device is widely used in various types.
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, which can greatly reduce the influence of the ambient temperature of the battery device and the battery system of the electric vehicle or other related applications, and at the same time can be used for the battery device.
  • the battery module and the battery core perform rapid temperature control and reduce the temperature difference between the battery cores, so that the overall battery device achieves high energy efficiency, high time efficiency and long operating life when used for charging and discharging;
  • the battery module in the present invention is defined as a number
  • the battery cells are connected in parallel to form a parallel group, and are introduced into a thermal management design, and a plurality of parallel groups are connected in series according to actual requirements, and voltage and temperature measuring circuits, etc.;
  • the battery device is connected in series or/and parallel with several battery modules, and Combined with battery management system (BMS) and thermal management design and related devices (if any); battery system further includes interface between battery device and charging device/load, temperature control device, main management device (including temperature control and Communication with external interface, etc.; and the battery module with battery design and battery device of the present invention
  • Battery system one of the main features of the battery system with thermal management design, utilizes a temperature-controlled medium that can be circulated in the battery device, performs temperature control before the battery device, and then
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, wherein another main feature of the battery system with thermal management design is to further include a temperature-controlled medium circulation device.
  • the control medium is a so-called system fluid
  • the above device may be referred to as a system fluid circulation device, and the device includes at least but not limited to a system fluid as a temperature control medium, a system fluid tube and a system fluid temperature control device;
  • the circulation device may further comprise: after the active temperature control is possible a system fluid circulating device, ie a system fluid delivery device, or a system fluid storage device for storing the temperature controlled system fluid, the devices being integrated into the system fluid circulation device in series or in parallel; wherein the system The fluid temperature control device determines whether to heat or cool the system fluid through appropriate control, and performs an active delivery cycle of the system fluid by the system fluid delivery device, or is passively controlled by the system fluid after temperature control.
  • the temperature-controlled system fluid is temperature-controlled to the battery module inside the battery device, or in some cases may be pre-stored in the system fluid storage device with heat preservation function,
  • the battery module in the battery device is then subjected to heat exchange to achieve rapid and high energy efficiency thermal management.
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, wherein one of the battery devices with a thermal management design is mainly characterized by providing a casing having high heat insulating capability.
  • the external environment is bad, such as high temperature or low temperature environment, the temperature of the battery core in the battery device covered by the outer casing may be unaffected or reduced by the external environmental temperature, and the outer casing with high thermal insulation capability may be completely or partially packaged.
  • the battery device is covered. If the outer casing is partially designed to cover the battery device, the battery device covered by the outer casing is in a range that can isolate most of the external environment temperature.
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system.
  • the housing includes at least a heat insulating unit and a structural unit, and
  • the simple layered structural unit, the scaffold structural unit or the layered-support composite structural unit is composed of a single or multiple insulating unit; wherein the insulating unit may be a vacuum layer formed by using a closed space, and the pressure in the vacuum layer is less than 10 -2 Pa, preferably less than 10 -3 Pa, and the vacuum layer can be maintained by a vacuuming device external to the battery system or a vacuuming device in the battery system;
  • the above method can maintain the high heat insulation effect of the outer casing of the battery device, and reduce the temperature of the battery core in the battery module covered by the outer casing to be affected by the ambient temperature.
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, and the battery device with a thermal management design.
  • the heat insulating unit of the outer casing can comprise a heat insulating material as a main body. Or further combined with insulation material and vacuum layer to form a composite insulation unit.
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, wherein one of the battery modules with a thermal management design is mainly characterized by a battery module capable of rapid heat exchange, the battery
  • the module is composed of at least one battery core and a heat exchange tube, wherein the heat exchange tube and the The positive or negative electrode of the battery core or the positive and negative poles are connected directly or indirectly to form a battery core charging and discharging circuit with heat exchange function, that is, the battery core can be heat exchanged through the heat exchange tube.
  • the heat exchange tube can also be used as a current path for charging and discharging; and at least a portion of the heat exchange tube is in direct or indirect contact with the temperature control medium to form a so-called module heat exchange interface, so that the battery module
  • the battery core can be quickly exchanged with the temperature control medium through the heat exchange tube, wherein the temperature control medium is a medium for temperature control of the device outside the battery module and the battery module, if the battery is equipped with a thermal management design
  • the device and the battery system the temperature control medium can be the system fluid; in addition to providing the battery module in the battery device and the battery core to achieve rapid and high energy efficiency thermal management, the heat exchange tube has a rapid heat exchange
  • the utility model can have a plurality of battery cells connected thereto having good uniform temperature characteristics; wherein the battery device has a pipe, or a flow channel device
  • the battery module can be combined with the battery module in a manner to introduce the system fluid that has been temperature-controlled outside the battery device into the battery device, and exchange heat with the module heat exchange interface
  • An object of the present invention is to provide a battery module with a thermal management design, a battery device and a battery system, and another main feature of the battery module with a thermal management design is that the heat exchange tube is made of a metal material as the battery core.
  • the heat exchange tube is made of a metal material as the battery core.
  • the generated heat is exchanged with the system fluid in the flow channel device via the module heat exchange interface; conversely, if the battery cell needs to be heated, the system fluid in the flow channel device can also be heated to the module
  • the exchange interface exchanges heat with the heat exchange tube, and then the heat is quickly and evenly transferred to the connected battery cells through the heat exchange tube to achieve thermal management of the battery core in the battery module with rapid energy efficiency;
  • the battery module with thermal management design, battery device and battery system have both rapid temperature control and isolated ambient temperature. Function, under the different needs provides high energy efficiency and the rapid thermal management.
  • the battery module with the thermal management design, the battery device and the battery system of the invention can greatly reduce the influence of the external environment temperature, and can quickly achieve the temperature of the battery device under the advantages of high energy efficiency and rapid heat exchange.
  • Good temperature operating range such as the temperature range of 15 ° C ⁇ 35 ° C, so the battery
  • the operational logic such as charge and discharge and safety management of the device can also be greatly simplified to avoid various problems that the high and low temperature operation logic needs to overcome.
  • the present invention provides a battery system with thermal management design including, but not limited to, a battery device and a system fluid circulation device, wherein the system fluid circulation device provides the temperature control required for the battery device
  • the system fluid is used for the heat exchange process required for temperature control.
  • the battery device with a thermal management design battery system may be a battery device with thermal management design, wherein the battery device comprises: a battery module, a casing, a positive and negative conductive wire and a flow a channel device, wherein the channel device has the system fluid, and the channel device is substantially combined with the battery module, and the system fluid can be in direct or indirect contact with the battery module for heat exchange; Including but not limited to an adiabatic unit, a structural unit and a channel, wherein the thermal insulation unit has high thermal insulation capability, the outer casing can effectively prevent the external environment temperature from affecting the battery module in the battery device.
  • the system fluid circulation device with a thermal management design battery system may further comprise a system fluid tube connectable to the temperature control related device of the battery device (if the battery device is provided Thermal management design of the battery device, the temperature control related device is the flow channel device, hereinafter, so that the system fluid can circulate between the battery device and the system fluid circulation device.
  • the system fluid circulation device with a thermal management design battery system further includes a system fluid temperature control device for heating or cooling the system fluid, wherein the system fluid temperature control device can be as hot Pump and other temperature control devices.
  • the system fluid temperature control device with the thermal management design battery system can be further combined with other devices, such as a car air conditioning system and related motor equipment in an electric vehicle related application, such as a vehicle.
  • a heat sink, an AC-DC inverter, a DC-AC converter, or/and a motor are utilized to assist in the fluid cooling or heating of the system to increase the energy efficiency of the system fluid temperature control device.
  • the system fluid temperature control device with a thermal management design battery system may further add a temperature control intermediate layer to the system fluid tube contact surface, the temperature control intermediate layer is provided with a fluid. And additionally configured with a fluid extraction and storage device; the design is mainly for operating at an ambient temperature, such as an electric vehicle lithium ion battery system operating at an ambient temperature of 15 ° C to 35 ° C, the temperature control intermediate layer can be filled with the The fluid serves as a medium for heat exchange between the fluid tube of the system and the fluid temperature control device of the system; if the ambient temperature is a harsh environment of excessive temperature or too low temperature, or the electric vehicle is in a long-term parking state, The harsh ambient temperature is affected by the path of the system fluid tube and the system fluid temperature control device, and the fluid in the temperature controlled intermediate layer can be withdrawn.
  • an ambient temperature such as an electric vehicle lithium ion battery system operating at an ambient temperature of 15 ° C to 35 ° C
  • the temperature control intermediate layer can be filled with the The fluid serves as a medium for heat exchange between the
  • the system fluid circulation device with a thermal management design battery system further includes a system fluid storage device to pre-store the temperature-controlled system fluid.
  • the system fluid circulation device with a thermal management design battery system further includes a system fluid delivery device, such as a pump, to actively circulate system fluid to the system fluid circulation device and the battery The device exchanges heat with the battery device.
  • a system fluid delivery device such as a pump
  • the associated temperature control devices of each of the battery modules may be connected in series or in parallel or in a suitable series-parallel connection. Linking in a combined manner allows the system fluid to circulate in a plurality of such associated temperature control devices.
  • the system fluid tube of the system fluid circulation device with a thermal management design battery system may further be connected to a branch tube, and the branch tube may extend to the battery device.
  • the positive and negative conductive wires are in direct or indirect contact with them, so that the system fluid can exchange heat with the positive and negative conductive wires through the branch pipe to prevent the external environment temperature of the outer casing from being affected by the positive and negative conductive wires.
  • the system flow system with the thermal management design battery system is composed of a liquid or a gas or a gas-liquid two-phase coexisting fluid, such as a refrigerant, dimethyl ether, pure water, pure a solution of water-ethylene glycol or pure water-propylene glycol or the like, or other liquid fluid that does not react with the system fluid circulation device and the battery device; a gaseous fluid such as water vapor, air or other fluid circulation device that does not interact with the system The gaseous fluid reacted by the device; the gas-liquid two-phase coexisting fluid such as water and water vapor, acetone and acetone vapor, or the like, or other two-phase fluid that does not react with the system fluid circulation device and the battery device.
  • a liquid or a gas or a gas-liquid two-phase coexisting fluid such as a refrigerant, dimethyl ether, pure water, pure a solution of water-ethylene glycol or pure water-propylene glycol or the like, or other liquid fluid that does not
  • the system fluid with the thermal management design battery system is more solid-liquid suspension fluid in which the solid-liquid two-phase coexists, by the high heat capacity and the high thermal conductivity solid particles suspended in the liquid phase.
  • Suspended particles such as silicon carbide (SiC) and alumina (Al 2 O 3 ) form a uniform mixed fluid with the liquid phase fluid to provide greater heat capacity and heat when the system fluid is heat exchanged with the battery module. Fast heat exchange characteristics.
  • the system fluid of the system fluid circulation device with the thermal management design battery system, the system fluid tube and the temperature control related device of the battery device can be further combined into a heat pipe, called a system heat pipe; Or combining the system fluid with the system fluid tube into a system fluid heat pipe, respectively, and combining the system fluid with the temperature control related device of the battery device (or the flow channel device with a thermal management design battery device) Forming a heat pipe, and one or a portion of the fluid heat pipe of the system is in direct or indirect contact with one end or a portion of the heat pipe of the flow channel, and the combination of the dual heat pipes can also replace the heat pipe of the system;
  • the system fluid is coexisted between the system fluid heat pipe and the internal gas-liquid two-phase in the double heat pipe combination of the flow pipe heat pipe, and the gas-liquid phase change and the liquid are respectively performed at the two ends of the single heat pipe or the double heat pipe combination not contacting each other.
  • the single heat pipe or one of the double heat pipe combinations may be directly or with the system fluid temperature control device Indirect contact for temperature control; the other end or another portion of the outer tube surface may be in direct or indirect contact with the battery module in the battery device, This exchanges heat with the battery module; the system fluid delivery device and the system fluid storage device can be further omitted due to the passive actuation characteristics of the heat pipe.
  • the present invention also provides a battery device with thermal management design, comprising a battery module, a casing, a positive and negative conductive wire and a flow channel device, wherein the flow channel device has the system fluid,
  • the flow channel device is substantially combined with the battery module, and the system fluid can be in direct or indirect contact with the battery module for heat exchange; and the outer casing includes a heat insulating unit, a structural unit and a channel, wherein the heat insulation
  • the unit is provided with high thermal insulation capability, and the outer casing can effectively prevent the ambient temperature from affecting the battery module in the battery device.
  • the structural unit is combined with the thermal insulation unit to form a complete mechanical strength outer casing, and the channel is connected to the outer casing.
  • the internal space of the battery device and the space outside the casing serve as a path for the positive and negative conductive wires, the signal transmission line and the system fluid of the battery device to communicate the internal and external space for charging and discharging, signal transmission and system fluid circulation of the battery device.
  • a device associated with the exterior of the housing; and the flow in the battery device with thermal management design The device and the system fluid therein may be further combined into the flow channel heat pipe, the outer tube surface of one or a portion of the flow path heat pipe being heat exchanged with the temperature control medium junction of the battery system, and the other end or another portion of the The outer tube surface is in direct or indirect contact with the battery module for heat exchange temperature control.
  • the channel with the thermal management design battery device can be singular or plural according to actual needs, and is disposed in an appropriate housing position to solve the space and function restrictions.
  • the positive and negative conductive lines and the signal transmission line are set on different channels to avoid possible signal interference.
  • the channel with the thermal management design battery device described above may be further An insulating sealing layer is added and at least partially filled with space outside the pipeline existing in the channel to reduce the ambient temperature outside the casing affecting the temperature of the battery module housed inside the casing.
  • the structural unit and the thermal insulation unit of the housing with the thermal management design battery device may be singular or plural, respectively, to form a complete outer casing to isolate or reduce the ambient temperature.
  • the internal influence of the battery unit may be singular or plural, respectively, to form a complete outer casing to isolate or reduce the ambient temperature.
  • the structural unit of the outer casing with the thermal management design battery device may further comprise a layered structural unit or a bracket structural unit or a combination thereof, and combined with the thermal insulation unit to constitute a complete mechanical strength shell, and can isolate or reduce the influence of the external environment temperature on the interior of the battery device, so if the environmental heat source or the environmental cold source has no directionality, the heat insulating unit completely covers the battery device. If the ambient heat source or the ambient heat source has directionality, the portion of the outer casing that does not have an environmental heat source or a cold source may not include the heat insulating unit, and thus the heat insulating unit of the outer casing may not completely cover the battery device.
  • the structural material of the structural unit of the outer casing with the thermal management design battery device includes, but is not limited to, a composite metal material such as titanium alloy, aluminum alloy or stainless steel, or plastic steel or glass fiber composite. Plastic material, carbon fiber composite plastic material, engineering plastic or a combination of the above materials.
  • the battery device with thermal management design has a higher thermal conductivity than the constituent material of the thermal insulation unit because the constituent material of the structural unit of the outer casing is generally higher.
  • the structural unit extends to the inner space covered by the outer casing to form a good heat conduction path, and the thermal insulation unit may be further included between the structural unit and the inner space covered by the outer casing to form a heatless good path from the outer side of the outer casing.
  • the space extends to the interior of the enclosure.
  • the heat insulating unit of the outer casing with the thermal management design battery device may be a sealing layer of a sealed space, and the air pressure in the sealing layer is vacuum to isolate or lower the outer portion of the outer casing.
  • one end of the sealed through hole can communicate with the sealing layer, and the other end is directly connected to the outside of the outer casing, and is connected with a switch controllable joint
  • the other end of the switch controllable joint is connected to a vacuuming device to measure and control the vacuum state of the sealing layer at an appropriate timing.
  • the vacuuming device may be a vacuum pump or other pumping device, and may be one of the battery devices.
  • the sealing layer may be further coated with a metal layer such as aluminum foil, copper or other metal deposition process the metal layer is deposited on the sealing layer, in order to prevent radiation heat loss.
  • the thermal insulation unit of the outer casing with the thermal management design battery device may be composed of a heat insulating material including, but not limited to, a foam material (such as polyurethane related (PU). :Polyurethane), polystyrene-related (PS: Polystyrene, etc.), silica-related (such as glass fibers, fumed silica, etc.), aerogel, perlite (perlite), glass wool, ceramic wool, vacuum insulation plate (VIP), or a combination of the above materials.
  • PU polyurethane related
  • PS Polystyrene, etc.
  • silica-related such as glass fibers, fumed silica, etc.
  • aerogel such as glass fibers, fumed silica, etc.
  • perlite perlite
  • glass wool glass wool
  • ceramic wool ceramic wool
  • VIP vacuum insulation plate
  • the thermal insulation unit of the housing with the thermal management design battery device may be combined with [0042] and [0043], that is, the vacuum pressure is less than or equal to 10 -2 Pa.
  • the heat insulating material is further included in the sealing layer, and the heat insulating material includes, but not limited to, a foaming material (such as polyurethane related, polystyrene related), silica related (such as glass fiber, fumed silica, etc.), gas. Gel, perlite, glass wool, ceramic wool, vacuum insulation panels, or combinations of the above materials.
  • the battery management device with thermal management is further provided with a battery management device (BMS), which can sense the voltage and temperature of the battery module or the battery cell in the battery device. And through the signal transmission line or other suitable wireless communication means (such as WIFI) to communicate with the main management device of the battery system and appropriate control behavior.
  • BMS battery management device
  • WIFI wireless communication means
  • the above-mentioned battery with thermal management design is disposed on the channel to communicate the pipeline inside and outside the casing, such as the pipeline of the system fluid communication, the signal transmission line and the positive and negative poles are electrically conductive.
  • the wire further has an insulating sleeve added to the surface thereof to reduce the ambient temperature outside the casing through the associated pipeline to affect the temperature of the battery device housed inside the casing.
  • the battery cell in addition to the above-described temperature management design with a thermal management design battery system or/with a thermal management design battery device, the battery cell also needs a mechanism to be fast and high outside the battery device. Heat exchange of energy efficiency to avoid accumulation of heat generated during operation of the battery device, or rapid heating after standing in a low temperature environment for a long time; on the other hand, all of the plurality of cells in the heating or cooling process still need to maintain a pole
  • the average temperature level is to minimize the temperature difference of each battery cell; if the above requirements are met, the battery system with thermal management design or the battery device with thermal management design or the battery with thermal management design
  • the device with the thermal management design of the battery system can further improve its overall performance and service life, and at the same time, it is convenient for the user.
  • the present invention also provides a battery module with thermal management design, and the battery module comprises a secondary battery core and a battery core charging and discharging circuit with heat exchange function, wherein the heat exchange function battery
  • the core charging and discharging circuit comprises at least one heat exchange tube, and the heat exchange tube functions as a part of the charging and discharging path of the battery core, and the heat exchange tube can generate the resistance heat generated by the charging and discharging path, and the singular or The heat generated by the operation of the battery cell directly or indirectly connected to the heat exchange tube is removed from the battery module; on the other hand, when the battery core needs to be temperature-controlled in advance, for example, the ambient temperature is too high Or when the battery is pre-cooled or heated to achieve a safe fast charging temperature, the heat exchange tube not only serves as a bridge for rapid and high energy efficiency of the battery core temperature control, but also further links
  • the plurality of heat exchange tubes have the additional benefit of achieving uniform temperature of the battery cells.
  • the heat exchange tube with a thermal management design battery module includes: an outer tube, a sealed space, and a fluid located in the sealed space, called a heat exchange tube fluid; wherein the heat exchange
  • the outer tube can be a conductive material, and the heat exchange tube fluid in the inner closed space of the tube is a main heat transfer medium, and the heat exchange tube has a material far superior to the traditional high heat conduction capability, such as metal materials such as copper and aluminum, so that the plurality of batteries
  • the core can pass through the heat exchange tube which is connected with the positive electrode, the negative electrode or the positive and negative poles of the battery core, and achieves the purpose of uniform temperature and rapid and high energy efficiency temperature control between the plurality of battery cores.
  • the battery core charging and discharging circuit having the heat exchange function in the thermal management design battery module, wherein the battery core has at least one pole directly or indirectly joined to the heat exchange tube due to the heat exchange
  • the tube is also a part of the battery core charging and discharging circuit, so the connection between the heat exchange tube and the battery core complies with the design specification of the charging and discharging circuit, that is, if the battery cells are connected in parallel to form a so-called parallel group, if the positive electrode and the negative electrode in the parallel group
  • There are heat exchange tubes on the charge and discharge lines that is, the positive poles of all the battery cells are connected to the same heat exchange tube (which may be singular or plural), and the other anodes of the battery cores are connected to another heat exchange tube (may be singular or In the plural, the two groups of heat exchange tubes need to be electrically insulated, and the rest of the charge and discharge lines are designed according to the known knowledge of the disclosure, and so on, and will not be described here.
  • the battery core charging and discharging circuit with the heat exchange function in the thermal management design battery module has the advantages that the heat exchange tube serves as a medium for heat exchange and a part of the charging and discharging circuit.
  • the heat exchange tube serves as a medium for heat exchange and a part of the charging and discharging circuit.
  • the positive and negative poles of the battery core are respectively connected to at least one of the positive and negative poles.
  • Both the ear and the ultra-volume metal foil are copper and aluminum metal materials with high heat transfer coefficient and low thermal resistance. Therefore, the existence of the heat exchange tube in the charging and discharging circuit can directly and efficiently exchange heat inside the battery core quickly. .
  • the heat exchange function is provided in the above-mentioned battery module with thermal management design
  • the battery core charging and discharging circuit wherein the positive and negative electrodes of the battery core are respectively joined with different heat exchange tubes, and in addition to direct bonding, the battery core electrode and the heat exchange tube can be bridged by a suitable metal structural member to enhance the battery core.
  • the process is convenient in manufacturing the battery module, so that the battery core can be charged, discharged, and exchanged with the heat exchange tube through the metal structural member.
  • the battery core charging and discharging circuit having the heat exchange function in the thermal management design battery module, wherein the heat exchange tube outer tube has at least a portion and the heat management design battery module
  • the temperature-controlled medium is in direct or indirect contact (if the battery module with thermal management design is part of the battery device with thermal management design, the temperature control medium is the system fluid of the flow channel device in the battery device,
  • the contact interface formed by the heat exchange tube and the temperature control medium is a so-called module heat exchange interface, so that the battery cell in the battery module can pass through the heat exchange tube and the The temperature control medium performs rapid heat exchange to meet the requirement of the average temperature of the plurality of battery cells in the same battery module; further, if the temperature control medium can be cycled between the battery modules by the temperature control related device of the battery device,
  • different battery modules can be realized by circulating the system fluid circulation device and the system fluid of the plurality of flow channel devices. Required between the average temperature of the fluid medium temperature control
  • the battery core charging and discharging circuit with the heat exchange function in the thermal management design battery module if the battery module is designed with the thermal management, the battery system has thermal management Designing a portion of the battery device, and the system fluid, the system fluid tube and the flow channel device comprise the system heat pipe, or the system fluid - the flow channel device and the system fluid - the system fluid tube respectively constitutes the flow channel heat pipe
  • the system fluid heat pipe forms a dual heat pipe combination of the flow pipe heat pipe - the system fluid heat pipe (as described in [0034]), and the outer pipe surface of the system heat pipe or the flow pipe heat pipe is connected to the battery module
  • the heat exchanger tube portion of the outer tube surface may constitute the module heat exchange interface, and the heat exchange tube and the system heat pipe or the flow channel heat pipe-system fluid heat pipe double heat pipe combination are at least partially directly or indirectly Contacting; wherein if the heat exchange tubes are plural, and the plurality of heat exchange tubes belong to different parallel groups in the battery module, the different parallel groups are connected in series
  • the battery core charging and discharging circuit having the heat exchange function in the thermal management design battery system wherein the metal outer tube of the heat exchange tube and the metal structural member can be soldered by various types Combined with technology, such as ultrasonic, resistance spot welding, laser welding and other technologies to complete the combination.
  • the heat exchange function battery cell charging and discharging circuit in the above-mentioned thermal management design battery module wherein the metal structural member and the battery core can be combined by various welding techniques, such as ultrasonic waves. , resistance spot welding, laser welding and other technologies to complete the combination.
  • the heat exchange function battery cell charging and discharging circuit in the thermal management design battery module wherein the heat exchange tube outer tube and the metal structural member are combined by at least one intermediary
  • the layer is achieved, such as tin and tin alloy.
  • the heat exchange function battery cell charging and discharging circuit in the above-mentioned thermal management design battery module wherein the surface of the heat exchange tube outer tube and the metal structural member are further subjected to a surface
  • the surface plating layer enables the interposer to be more closely bonded to the outer portion of the heat exchange tube and the metal structural member.
  • the heat exchange function battery cell charging and discharging circuit in the thermal management design battery module wherein a surface plating layer of the surface of the heat exchange tube outer tube and the metal structural member is nickel With nickel alloy plating.
  • the battery module with a thermal management design battery module may be a single or a plurality of battery cells as a parallel group, wherein the parallel group is connected to the metal structure by the heat exchange tube
  • the parallel connection may be performed.
  • the parallel group may have a metal structural member-heat exchange tube connection, and the positive and negative poles respectively have a metal structural member-heat exchange tube parallel connection group, or the parallel group may only One of the poles of the positive and negative poles is provided with a metal structural member-heat exchange tube in parallel, and the other pole is simply connected in parallel with a metal structural member; in general, the former is more suitable for high power applications, and the latter is for medium and low power. Application.
  • the number of the parallel groups with the thermal management design battery module may further be plural, and the plurality of parallel groups are connected in series with each other, that is, the lowest voltage of the parallel group in the module is the The negative pole of the module, and the positive pole of the parallel group is connected to the negative pole of the secondary low voltage parallel group, and so on, the positive pole of the parallel group of the highest voltage is the positive pole of the module; and the series connection between the plurality of parallel groups can also be made of a suitable metal
  • the structural member-heat exchange tube acts as a tandem medium.
  • the system fluid may be a highly insulating fluid such as pure water, mineral oil or the like.
  • the battery module with a thermal management design is provided, if the battery module is a part of the battery system with thermal management design in the battery system, and the system fluid, the system The fluid tube is combined with the flow channel device as the system heat pipe, or the system fluid - the flow channel device and the system fluid - the system fluid pipe respectively constitutes the flow channel heat pipe and the system fluid heat pipe to form the system fluid heat pipe -
  • the double heat pipe combination of the flow channel heat pipe (as described in [0034]), and some or all of the parallel groups are connected in series, and the plurality of parallel groups of the battery module and the heat pipe of the system (or the double heat pipe combination)
  • the module heat exchange interface between the flow path heat pipes) may add an intermediate layer, which may be a highly insulating fluid such as pure water, mineral oil, or the like, or a gas-liquid two-phase fluid such as pure water-water vapor.
  • a two-phase fluid, heat exchanged in the form of a heat-like tube or a solid electrical insulation layer having a high thermal conductivity, such as a silicon carbide layer, aluminum oxide, aluminum nitride, or a composite material comprising the above ceramic material;
  • a solid electrical insulation layer having a high thermal conductivity such as a silicon carbide layer, aluminum oxide, aluminum nitride, or a composite material comprising the above ceramic material.
  • the battery module with a thermal management design is provided, if the battery module is a part of the battery system with thermal management design in the battery system, and the system fluid, the system The fluid tube is combined with the flow channel device as the system heat pipe, or the system fluid - the flow channel device and the system fluid - the system fluid pipe respectively constitutes the flow channel heat pipe and the system fluid heat pipe to form the system fluid heat pipe -
  • the dual heat pipe combination of the flow channel heat pipe (as described in [0034]), wherein the module heat exchange interface between the battery module and the system heat pipe (or the flow channel heat pipe) can be used as the heat pipe by the heat exchange pipe a portion of the metal outer tube, such that the system fluid in which the two phases of the heat pipe coexist are in direct contact with the heat exchange tube for high-efficiency heat exchange; however, the heat exchange tube and the heat pipe of the system or the metal tube of the flow path heat pipe are
  • the tubes need to be electrically insulated to avoid short circuits between the parallel groups of different voltages.
  • the battery module with the thermal management design battery module may be singular or plural in the battery device, and if it is a plurality, the negative terminal of the battery module may be used. Proper parallel or series or parallel-series are performed with each other.
  • the heat exchange tube with the heat exchange function battery cell charge and discharge line with the thermal management design battery module may be a heat pipe, which is called a module heat pipe, except the heat pipe of the module.
  • the metal outer tube and the metal structural member serve as a charging and discharging path of the battery core, and the heat exchange of the battery core can be mainly carried out by the metal outer tube of the heat pipe of the module, and the two internal phases of the heat pipe of the module coexist.
  • the heat exchange tube fluid is respectively subjected to a gas-liquid phase change and a liquid-gas phase change at the closed end or the two portions of the heat pipe of the module to respectively perform an exothermic and endothermic behavior, whereby the module heat pipe can be quickly Transfer heat to the two ends or two parts of the module heat pipe.
  • the module heat pipe outer tube with the thermal management design battery module and the metal structural member body material are made of a metal material having a high heat transfer coefficient, such as copper, aluminum or a composite material thereof;
  • the heat exchange tube flow system inside the heat pipe of the module is composed of a gas-liquid two-phase coexisting fluid, such as water and water vapor, acetone and acetone vapor, or other gas-liquid two-phase fluid and does not react with the heat pipe wall of the module. Two-phase fluid.
  • a thermal management design battery module wherein the battery module is part of the battery system with thermal management design in the battery system with thermal management design, and the battery system includes the battery system a system heat pipe (or a combination of the system fluid heat pipe and the double heat pipe of the flow pipe heat pipe), as described in [0034], and the system heat pipe or the flow pipe heat pipe is further matched with the middle of the heat pipe like [0063]
  • the layer, together with the module heat pipe as described in [0066] forms a rapid heat transfer path between the battery cell and the system fluid temperature control device, in addition to avoiding the problem of liquid leakage in the general liquid cooling temperature control system, and is lightweight And high-speed heat transfer characteristics to provide a plurality of battery cells in the battery module for rapid and high energy efficiency temperature control and temperature uniformity requirements.
  • the battery module with thermal management design, battery device with thermal management design or battery system with thermal management design is defined as having at least one positive electrode, one negative electrode and one electrolyte An electrochemical cell;
  • the battery cell is not limited to any one form, and may be a conventional cylindrical cell, pouch cell or prismatic cell battery.
  • the battery core is not limited to the battery core of any electrochemical secondary battery, and may be a lead acid battery, a nickel-metal hydride battery, or a lithium ion battery ( Lithium ion battery or other battery of a secondary battery, and the performance or service life or safety of the secondary battery is related to its operating temperature range.
  • FIG. 1a-1i are schematic views of different embodiments of an insulated design housing portion with a thermally managed design battery unit and a partial battery system, respectively, in accordance with a first embodiment of the present invention.
  • FIGS. 2a-2g are schematic views respectively showing different housing design portions of a battery device with a thermal management design and a partial battery system in accordance with a second embodiment of the present invention.
  • 3a-3g are schematic views respectively showing a heat exchange interface of a battery core with a heat exchange function and a module heat exchange interface according to a third embodiment of the present invention.
  • FIGS. 4a-4g are schematic illustrations of a battery system with thermal management design according to a fourth embodiment of the present invention, respectively Figure.
  • the system fluid 121 may be composed of a liquid or a gas or a gas-liquid two-phase coexistence or a solid-liquid two-phase coexisting fluid, such as a refrigerant, dimethyl ether, pure water, pure water-ethylene glycol or a solution of pure water-propylene glycol, or other liquid fluid that does not react with the system fluid circulation device, the battery module and the battery device; a gaseous fluid such as water vapor, air or other system fluid circulation device, the battery module and the battery a gaseous fluid reacted by the device; a gas-liquid two-phase coexisting fluid such as water and water vapor, acetone and acetone vapor, or the like, or other two-phase coexisting fluid not reacting with the system fluid circulation device, the battery module and the battery device; coexistence of a fluid-solid suspension, suspended in a liquid phase to a high
  • the constituent material of the above-mentioned heat insulating material layer is not limited to the above examples.
  • the housing with the thermal management design battery device and other devices (battery module, flow channel device, etc.) other than the outer casing are separately described in the embodiment, and the battery device is generally referred to as a device other than the outer casing.
  • the battery unit 10 the housing 20 is described separately. If the original complete battery unit is described, the battery unit (10+20) is shown.
  • FIG. 1 Figure 1 (Fig 1a ⁇ Fig 1i) series is illustrated as a battery device with thermal management design (icon symbol) 10+ icon symbol 20) and a partial battery system 100 schematic diagram, mainly illustrating the battery device 10 (excluding the outer casing) in the present invention.
  • the battery module 11 in the battery device 10 is affected by the battery cell (not shown in FIG. 1), and the battery module 11 in the battery device 10 is simultaneously controlled by the temperature-controlled system fluid 121.
  • the battery module 11 can be the battery module with thermal management design, or the battery module generally composed of no heat exchange tube;
  • the system fluid circulation device is omitted, and only the system fluid tube 13 that is engaged with the battery device is retained, merely to illustrate the concept of the invention and not to limit the scope of the invention.
  • FIG. 1a illustrates a schematic diagram of a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of a battery system 100, including the battery device 10, which is composed of a plurality of The battery module 11, the positive and negative conductive wires 14 and the flow channel device 12; the system fluid tube 13; the outer casing 20 (such as a dotted line range) having at least the sealing layer (201) as a heat insulating unit and the channel 30
  • the sealing layer (201) of the outer casing 20 is a gas-tight space as indicated by a dashed arrow for thermally insulating the battery device 10, and the channel 30 is connected to the inside of the outer casing 20 to accommodate the battery module.
  • the space 101 and the outside of the outer casing 20, the system fluid tube 13 and the positive and negative conductive wires 14 are disposed in the channel 30, wherein the system fluid tube 13 in the channel 30 is further
  • the flow path device 12 of the battery device 10 is connected to provide the system fluid 121 to be externally transported to the battery device 10 and exchange heat with the battery module 11.
  • FIG. 1b is a schematic diagram of a battery device (10+20) with a thermal management design and a partial battery system 100.
  • the housing 20 (such as a dotted line range) is further provided with a sealing through hole 23, wherein the sealing layer
  • the inner space of the 201 is connected to one end of the sealed through hole 23, and the other end of the sealed through hole 23 is connected to the switch controllable joint 25 and the vacuuming device 26 outside the outer casing 20.
  • the internal space of the sealing layer 201 can maintain a state of being filled with gas; if the external ambient temperature of the battery device 10 is too high or too low, such as below 5 ° C or above 40 ° C, then utilized
  • the switch controllable joint 25 outside the outer casing 20 and the vacuuming device 26 draw the gas in the sealing layer 201 to achieve a proper vacuum confined space, generally at least 10 -2 Pa, and more than 10 -3 in more cases.
  • the vacuum pressure below Pa is achieved, and after the vacuum environment is reached, the switch controllable joint 25 and the vacuuming device 26 can be vented and closed, and the outer casing is thus provided with a suitable vacuum to seal the sealing layer 201, thereby achieving a high heat insulating effect.
  • the sealing layer 201 in the outer casing 20 can also maintain a proper vacuum at any ambient temperature to improve the simplicity of system control.
  • the vacuuming device 26 described above is a vacuum pump or other pumping device, and is not limited to being fixed to the battery device 10.
  • 1c illustrates a schematic diagram of a battery device with thermal management design (icon symbol 10+icon 20) and a portion of battery system 100, including a battery device 10, which is composed of a plurality of batteries.
  • the material 22 is configured to adiabatically encapsulate the battery device 10, and the channel 30 is connected to the outside of the casing 20 to accommodate the battery module and the runner device space 101 and the outside of the casing 20, and the system is disposed in the channel 30.
  • the flow path device 12 delivered to the battery unit 10 forms a circulation loop and is in heat exchange with the battery module 11.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, shown in Figure 1d, is an extension of Figure 1c of the above embodiment, wherein the channel 30 in the housing 20 is further An insulating sealing layer 21 is further provided, which further prevents or reduces the external ambient temperature of the outer casing 20 from affecting the space in the channel 30, affecting the battery module 11 of the internal battery device 10 of the outer casing 20 and the battery. The temperature of the core.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in FIG. 1e, is a continuation of the variation of FIG. 1d of the above embodiment, wherein a further sealing pass is further provided in the outer casing 20.
  • the sealing layer 201 filling the first heat insulating material 22, as indicated by a dotted arrow, is connected to the sealing through hole 23, that is, the first heat insulating material 22 does not completely fill the sealing layer 201,
  • the sealing layer 201 is regulated by the sealing through hole 23 to have no residual space pressure occupied by the first heat insulating material 22, and the sealing through hole 23 and the switch controllable joint 25 are connected to the vacuuming device 26,
  • the configuration, usage, and function of the vacuuming device 26 are as described in FIG. 1b and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in FIG. 1e, is a variation of the above embodiment, wherein the first insulating material 22 is inside the sealing layer 201.
  • the porous insulating material layer is composed of a porous structural layer mainly composed of silica or other materials having a low thermal conductivity coefficient such as PU.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in FIG. 1e, is a variation of the above embodiment, wherein the first insulating material 22 is removed inside the sealing layer.
  • the porous space occupying the outside is a vacuum, which is usually less than or equal to 10 -2 Pa, but the vacuum pressure can still be reduced to below 10 -3 Pa for the demand.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in FIG. 1e, is a variation of the above embodiment, wherein the sealing layer is insulated from the heat insulating material.
  • the unit may be a vacuum insulated plate (VIP), wherein the main material inside the VIP is a porous insulating material layer, which is composed of a porous structural layer mainly composed of silica or other materials having a low thermal conductivity coefficient such as PU. It is usually vacuum-sealed with aluminum foil and the internal porous space is vacuum. The pressure is usually less than or equal to 10 -3 Pa to achieve low heat radiation, low heat conduction and low heat convection.
  • VIP vacuum insulated plate
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, as shown in Figure 1f, in order to continue the variation of the embodiment of Figure 1e above, a battery device with thermal management design (icon 10 + icon symbol 20) and a schematic diagram of a partial battery system 100, wherein the outer casing 20, wherein the thermal insulation unit is VIP or has the sealing layer 201 of the first thermal insulation material 22 (as indicated by the dashed arrow)
  • the other heat transfer path is performed by heat conduction of the continuous surface of the metal foil, so that the surface of the heat insulating unit can be further coated with a second heat insulating material.
  • the second thermal insulation material 27 has a thermal conductivity lower than that of the metal foil of the thermal insulation unit, and the second thermal insulation material 27 and the metal foil need to have good adhesion, by its own characteristics or by a bond. The agent is reached.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in FIG. 1g, is a continuation of the variation of the embodiment of FIG. 1f, wherein the sealing passage is further added to the outer casing 20.
  • a hole 23 wherein the inner space of the sealing layer 201 is connected to one end of the sealing through hole 23, that is, when the heat insulating unit is VIP or other surface having the sealing layer 201 of the first heat insulating material 22 has another second heat insulating material 27, There is still a space left in the sealing layer 201.
  • the sealing through hole 23 is used to regulate the air pressure of the remaining space inside the sealing layer 201, and the sealing through hole 23 and the switch controllable joint 25 are connected to the vacuuming device 26.
  • the configuration, usage, and function of the vacuuming device 26 are as described in FIG. 1b and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, as shown in Figure 1h, is a continuation of the variation of the embodiment of Figure 1f above, wherein the strength of the casing is not considered
  • the outer casing 20 may directly form the sealing layer 201 or VIP having the first heat insulating material 22 as the heat insulating unit of the outer casing 20, and the outer casing 20 may be separately formed in a single or plural number, that is, the structural unit is not present. Or as described above with a simple layered structural unit 202 (such as a single-dotted arrow range)
  • the outer casing 20 is combined, as shown in FIG.
  • the continuous layered structural unit 202 can be used to form the outer casing 20 with a plurality of the thermal insulation units (having the first thermal insulation material 22, the sealing layer 201).
  • the plurality of layered structural units 202 are not contiguous with the heat insulating unit; and the second heat insulating material 27 may be further coated on the surface of the heat insulating unit according to requirements, as described in the related description of FIG. 1f, and details are not described herein again. .
  • FIG. 1i A schematic diagram of a partial battery system 100 with a thermal management design battery device (icon symbol 10 + icon symbol 20) and a portion of the battery system 100, as shown in FIG. 1i, in order to continue the variation of any of the above embodiments 1a to 1h, if Due to the strength of the mechanism, the outer casing 20 needs to be added to the bracket structure unit 203. If the bracket structure unit 203 is added, no new heat transfer path is generated between the outer portion of the outer casing and the inner portion of the outer casing, as shown in Fig. 1i-(1).
  • the outer casing 20 The bracket structure unit 203 is configured to form a heat transfer path through the support structure 203 from the outside of the outer casing 20 to the inner portion of the outer casing 20, and transfer heat to the inner layer structure unit 202 (such as a single-dotted arrow) Scope) (in this case) or other device related to the battery device 10, the heat external to the outer casing 20 can be simply transmitted to the battery module 11, and any heat insulating unit of the outer casing 20 can be shown in FIG. 1a to FIG.
  • Designing the support structure unit 20 3 and the inner layer structure unit 202 is thermally insulated to prevent or reduce the battery module 11 and the battery core in the battery device 10 from being affected by the ambient temperature; as in the concept of FIG. 1i-(4),
  • the structure of the support structure unit 203 and the layered structural unit 202 (such as a single-dotted arrow range) inside the outer casing 20 directly forms the thermal insulation unit 204 (a thick dotted line range), such as the sealing layer 201, the first thermal insulation.
  • the material 22 or the sealing layer 201 including the heat insulating material; or the concept of FIGS.
  • the heat insulating unit 204 is added to the structural unit 203 and the layered structural unit 202 inside the outer casing 20 (thick dotted line range)
  • This example is implanted with the insulating layer 201 insulation design concept of FIG. 1d to prevent the external environment temperature from affecting the battery module 11 inside the battery device 10 due to the addition of the new heat transfer path generated by the bracket structure unit 203. Battery core.
  • FIG. 1a to FIG. 1i A schematic diagram of a partial battery system 100 with a thermal management design battery device (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in any of the embodiments of FIG. 1a to FIG. 1i, further provided with a battery management device (BMS) 15,
  • BMS battery management device
  • the battery management device 15 can sense the voltage and temperature of the battery module 11 in the battery device 10, and can communicate with the main control system outside the battery system 100 via a wireless communication or signal transmission line for appropriate control behavior.
  • Embodiment 2 is illustrated in the series of FIG. 2 as a battery device with thermal management design (icon symbol) No. 10+ icon symbol 20) and a schematic diagram of a portion of the battery system 100, similar to the embodiment 1, the embodiment 2 is mainly by the heat insulating design of the outer casing 20 in the present invention, the temperature outside the outer casing 20 can be prevented from affecting the inside of the outer casing 20
  • the battery module 11 and the battery cell in the battery device 10 can simultaneously perform high-efficiency temperature control of the battery module 11 and the battery cell in the battery device 10 by the temperature-controlled system fluid 121.
  • the main difference between the first embodiment and the second embodiment is that, in addition to the first heat insulating material 22 and the second heat insulating material 27, a third heat insulating material 24 is added as the heat insulating unit of the outer casing 20, and the third heat insulating material.
  • the heat insulating unit is formed by coating the first heat insulating material 22 and the second heat insulating material 27 (if any) coated on the surface of the first heat insulating material 22, wherein the third heat insulating material 24 can be a simple heat insulating material.
  • the sealing layer 201 that is, the sealing layer 201 having the third heat insulating material 24 also has the first heat insulating material 22 and the second heat insulating material 27 (if any); b) only having the third thermal insulation material 24
  • the sealing layer 201 covering the first heat insulating material 22 and the second heat insulating material 27 (if any) is designed; the embodiment shown in FIG. 2, wherein the battery module 11 can be the battery module with thermal management design, or
  • the battery module is generally composed of a heatless exchange tube; the embodiment shown in FIG. 2 omits the system fluid circulation system, and only the system fluid tube 13 engaged with the battery unit 10 is retained, as an explanation of the main concept of the present invention. It is not intended to limit the scope of the invention.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as illustrated in FIG. 2a, includes a battery device 10, which is composed of a plurality of battery modules 11, positive and negative electrodes The conductive wire 14 and the flow channel device 12; a system fluid pipe 13; a casing 20 having at least one heat insulating unit, and a channel 30, wherein the first heat insulating material 22 is present in the heat insulating unit of the outer casing 20,
  • the first heat insulating material 22 may be present in the sealing layer 201, such as VIP; in addition to the first heat insulating material 22 (including being present alone or present in the sealing layer 201), the third heat insulating material 24 may further be packaged
  • the first heat insulating material 22 is coated, and the third heat insulating material 24 covering the first heat insulating material 22 may be present in a material form or present in the other sealing layer 201 for thermally insulating the battery device 10;
  • the channel 30 is connected to the outer casing 20 to
  • the system fluid tube 13 and the positive and negative conductive wires 14 are disposed in the channel 30, wherein the system fluid One or a part of the tube 13
  • the flow path device 12 of the battery device 10 is connected in one step to form a circulation of the system fluid 121 from the system fluid tube 13 to the flow device 12 of the battery device 10 after the external temperature control of the outer casing 20 is completed.
  • a circuit and heat exchange with the battery module 11; the channel 30 further adds the heat insulating sealing layer 21, which prevents or reduces the ambient temperature outside the outer casing 20 from affecting the battery device 10 inside the outer casing 20.
  • the battery module 11 and the battery Pool core are provided to form a circulation of the system fluid 121 from the system fluid tube 13 to the flow device 12 of the battery device 10 after the external temperature control of the outer casing 20 is completed.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, as shown in Figure 2b, is a variation of the embodiment of Figure 2a, wherein the first insulating material 22 is coated
  • the third heat insulating material 24 is present in the other sealing layer 201 as the heat insulating unit of the outer casing 20; and the outer casing 20 is further provided with a sealing through hole 23, wherein the sealing layer 201 is connected to the sealing through hole 23,
  • the third heat insulating material 24 is porous or cannot completely fill the inner space of the sealing layer 201, the air pressure of the remaining space inside the sealing layer 201 can be regulated by the sealing through hole 23, and the sealing through hole 23 and the switch
  • the controllable connector 25 is connected to a vacuuming device 26.
  • the configuration, usage and function of the vacuuming device 26 are as described in FIG. 1(b) and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, as shown in Figure 2c, is a variation of the embodiment of Figure 2a, wherein the thermal insulation unit of the housing 20
  • the sealing layer 201 has an inner space with the third heat insulating material 24 covering the first heat insulating material 22, and the first heat insulating material 22 is VIP or the first heat insulating material 22 exists in the inner space of the sealing layer 201.
  • the surface of the sealing layer 201 is covered by an aluminum foil or a metal foil. At this time, the heat transfer has a chance to be performed by heat conduction through the continuous surface of the metal foil.
  • the VIP or the sealing layer 201 having the first heat insulating material 22 The surface of the metal foil may be further coated with the second heat insulating material 27, wherein the second heat insulating material 27 has a thermal conductivity lower than that of the metal foil, and the second heat insulating material 27 and the metal foil need to have good adhesion. It is achieved by its own characteristics or by a binder.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of the battery system 100, as shown in Figure 2d, is a variation of the embodiment of Figure 2c, wherein the housing 20 is further provided with the sealing through hole 23
  • the sealing layer 201 is connected to the sealing through hole 23.
  • the sealing through hole 23 can regulate the air pressure of the remaining space inside the sealing layer 201.
  • the sealing through hole 23 and the switch controllable joint 25 are connected to a vacuuming device 26.
  • the configuration, usage and function of the vacuuming device 26 are as described in FIG. 1b and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of battery system 100, as shown in Figure 2e, is a variation of the embodiment of Figure 2d, wherein the effect of heat source 200 in a particular direction is to be prevented.
  • the outer casing 20 may be designed to partially cover the battery unit 10 or only a portion of the heat source unit 200 for the specific direction of the heat source 200, in order to prevent the heat source from being sufficiently prevented.
  • the outer casing 20 can further be further provided with a sealing through hole 23, a switch controllable joint 25 and a vacuum
  • the empty device 26 enables the battery device to achieve the effect of high heat insulation by the first heat insulating material 22, the second heat insulating material 27, the third heat insulating material 24 and the remaining space in the vacuum state in the outer casing sealing layer 201.
  • the configuration, usage, and function of the vacuuming device 26 described above are as described in FIG. 1b and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of the battery system 100, as shown in Figure 2f, is a variation of the embodiment of Figure 2d, wherein the housing 20 can be further added a second channel 32, wherein the heat insulating sealing layer 211 and the heat insulating sealing layer 212 are respectively disposed on the first channel 31 and the second channel 32; the first channel 31 is configured to configure the system fluid tube 13, the first The second channel 32 is configured to configure the positive and negative conductive wires 14; the outer casing 20 can further be further provided with a sealing through hole 23, a switch controllable joint 25 and a vacuuming device 26 for assembling the outer casing 20 to seal All of the insulating material in layer 201 occupies the vacuum pressure of the remaining space to achieve a high thermal insulation effect.
  • the arrangement, the manner of use and the function of the sealed through hole 23, the switch controllable joint 25 and the vacuuming device 26 are as described in FIG. 1b and the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a partial battery system 100, as shown in Figure 2g, is a variation of any of the embodiments of Figures 2a - 2f, wherein the system fluid 121, the The system fluid tube 13 and the flow channel device 12 can be further replaced by a heat pipe, called the system heat pipe 16, for heat exchange with the battery module 11 inside the casing 20.
  • the system fluid 121 coexists in two phases of the internal space of the heat pipe 16 of the system, and the system heat pipe 16 is closed at both ends to perform gas-liquid phase change and liquid-gas phase change, respectively, to perform the functions of exothermic and endothermic, and
  • the gas phase system fluid (not shown) inside the system heat pipe 16 can perform a rapid convection rate, so that the heat transfer rate of the heat pipe 16 of the system is much higher than that of the conventional high heat conduction rate materials such as copper and aluminum.
  • One end portion of the outer tube surface is in direct or indirect contact with the system fluid temperature control device (not shown) for temperature control; and the system heat pipe 16 is closed at the other end portion of the outer tube portion, the outer tube surface may also be directly or indirectly
  • the battery module 11 is in contact with and performs heat exchange. If the battery module 11 is designed with the thermal management battery module, the battery module 11 can be connected to the battery module 11 through the module heat exchange interface (not shown). The heat exchange is further performed by heat exchange with the coupled battery cell (not shown) by the battery core charge and discharge line (not shown) having the heat exchange function.
  • the outer casing 20 can further be provided with a sealing through hole 23, a switch controllable joint 25 and a vacuuming device 26 for accommodating all the heat insulating materials in the sealing layer 201 of the outer casing 20 as the heat insulating unit.
  • the vacuum pressure of the remaining space to achieve high insulation effect is arranged, used and functioned as FIG. 1(b) is related to the above description, and details are not described herein again.
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of the battery system 100, as shown in Figure 2g, continues the above embodiment, if the system heat pipe 16 is in direct contact with the battery module 11 In contact with the module, the module heat exchange interface (not shown) of the battery module 16 and the battery module 11 of the battery module 11 of the heat exchange function of the battery core charge and discharge line part of the contact surface of one of the non-conducting
  • the body is made of a material having good heat conduction to prevent the battery cell (not shown) or the plurality of battery modules 11 from being externally short-circuited due to different voltage levels; if the system heat pipe 16 is indirect
  • the method is in contact with the battery module 11 , and the module heat exchange interface (not shown) of the battery module 11 , the contact surface of the battery core charging and discharging line with the heat exchange function of the battery module 11 and the system heat pipe 16
  • An intermediate layer 161 is required, and the intermediate layer 161 can be a non-electrical conductor
  • a battery device with thermal management design (icon symbol 10 + icon symbol 20) and a portion of the battery system 100, as shown in Figure 2g, followed by the above embodiment, between the system heat pipe 16 and the battery with heat exchange function
  • the module heat exchange interface (not shown) of the contact surface of the core charging and discharging circuit, wherein the intermediate layer 161 can further utilize the gas-liquid phase change and the liquid-gas phase change if it is a sealed space of a fluid having two phases of liquid and gas coexistence.
  • the system heat pipe 16 may be replaced by a plurality of heat pipes to enhance the flexibility and convenience of the application, and a good thermal path is formed by direct or indirect contact between the plurality of heat pipes; in this case, the system fluid 121 is utilized.
  • the system fluid heat pipe (not shown) formed by the system fluid pipe 13 is coupled with the system heat pipe (not shown) formed by the system fluid 121 and the flow channel device 12 to replace a single system heat pipe; Wherein the flow path heat pipe is directly exchanged with the heat exchange tube (not shown) or the heat exchange tube of the heat exchange tube by the intermediate layer 161 in the module heat exchange interface of the battery module 11, and the system fluid
  • the heat pipe is in heat exchange with the system fluid temperature control device (not shown) in the system fluid circulation device (not shown) in the battery system 100; and the flow channel heat pipe is in contact with the system fluid heat pipe in series
  • the contact mode may be direct contact, or may be indirectly contacted by a thermal conductive adhesive or other material having a good heat conduction and having a flattened contact surface to modify the contact surface between the fluid heat pipe of the system and the heat pipe of the flow channel.
  • the intermediate layer 161 between the heat pipe 16 of the system and the battery module 11 may be solid, and the constituent material thereof may be a ceramic material (such as boron nitride, aluminum nitride, silicon carbide, aluminum oxide, zinc oxide, etc.). ), a thermally conductive plastic (such as PP, Nylon, PBT, PET, PPS, ABS, PC, etc.) or a combination thereof.
  • the intermediate layer 161 between the system heat pipe 16 and the battery module 11 is a fluid or a solid-liquid composite material; wherein the fluid may be composed of a liquid or a gas or a gas-liquid two-phase coexisting fluid, the liquid fluid a solution such as a refrigerant, dimethyl ether, pure water, pure water-ethylene glycol or pure water-propylene glycol, or other liquid fluid that does not react with the heat pipe 16 of the system and the battery device 10; a fluid such as water vapor, air or other gaseous fluid that does not react with the heat pipe of the system and the battery device 10; a gas-liquid two-phase coexisting fluid such as water and water vapor, acetone and acetone vapor, or the like, or other non-contact a two-phase fluid
  • BMS battery management device
  • the third embodiment illustrated in the series of FIG. 3 is a schematic diagram of a battery module 11 with thermal management design according to the present invention, which mainly comprises: (i) the heat exchange battery core charging and discharging circuit, and (ii) the module heat exchange interface,
  • the battery module 11 with thermal management design can be matched with the battery device with thermal management design or the battery system with thermal management design, or with the battery device with thermal management design and the battery system with thermal management design, Or it can be combined with a general battery device and a general battery system without heat management.
  • the battery module 11 with thermal management design is part of the battery device with thermal management design, and is equipped with a battery system with thermal management design.
  • the heat exchange tube 131 is composed of a heat exchange tube 131, wherein the heat exchange tube 131 is a metal outer tube 1311 sealed at both ends, and a hollow sealed space inside the tube There is a heat exchange tube fluid 122; the metal outer tube 1311 of the heat exchange tube 131 and the battery core 111 are combined by soldering, ultrasonic welding or other techniques to form a parallel group 18, by which the heat exchange can be performed.
  • the metal outer tube 1311 of the tube 131 serves as a current path for charging and discharging the battery core 111.
  • the heat generated by the battery core and the metal outer tube 1311 of the heat exchange tube 131 during charge and discharge can be directly
  • the heat is transferred to the module heat exchange interface of the battery module 11 by the heat exchange tube 131 itself; if the battery core is heated, the opposite direction of the heat dissipation path is used;
  • the module heat exchange interface is formed by a portion of the heat exchange tube 131 outside the tube 1311 and the interface of the system fluid 121 in the flow channel device 12 with the thermal management design battery device, FIG. 3a-(1)
  • the design of the module heat exchange interface is different from that of FIG.
  • a battery module 11 with thermal management design as shown in FIG. 3b, in connection with the embodiment of FIG. 3a, the heat exchange cell core charging and discharging circuit further adds a metal structural member 80 to the battery cell 111 and the heat exchange.
  • the metal outer tube 1311 of the tube 131 is respectively combined with the battery core 111 and the metal outer tube 1311 of the heat exchange tube 131 by soldering, ultrasonic welding or other techniques to form the parallel group 18, so that the The battery core 111 in the battery module 11 and the permeable metal structural member 80, the heat exchange tube fluid 122 in the heat exchange tube 131, the heat exchange tube metal outer tube 1311, and the heat management design battery device
  • the system fluid 121 in the flow path device 12 (not shown) is rapidly undergoing heat exchange.
  • the temperature of the core 111 is too high, and the heat generated by the battery core 111 can be conducted to the heat exchange tube 131 by the metal structural member 80 having the heat exchange cell charge and discharge line, and then the heat is used.
  • the metal outer tube 1311 of the exchange tube 131 and the heat exchange tube fluid 122 sealed therein are respectively thermally and thermally convected, respectively, in the module heat exchange interface and the thermal management design battery device (not shown)
  • the system fluid 121 in the flow channel device 12 contacts and performs heat exchange in a direct manner to rapidly cool the battery cell 111. Otherwise, if the ambient temperature is too low, the battery cell 111 needs to be heated, and the same can be utilized.
  • the heat transfer path is heated by temperature control System fluid 121 is heated 111 to the battery cell.
  • the liquid heat exchange tube fluid 1222 of the inner closed space 1312 of the heat exchange tube 131 absorbs a large amount of heat at a high temperature end by a phase transition process, and then forms the gaseous heat exchange tube fluid 1221 by a phase transition process.
  • the gas heat exchange tube fluid 1221 is rapidly conducted, and then a phase transition is performed at the low temperature end, so that the gaseous heat exchange tube fluid 1221 releases heat and condenses into the liquid heat exchange tube fluid 1222, and the liquid heat exchange
  • the tube fluid 1222 is transported to the high temperature end by a fine wick 1313.
  • the above cycle can greatly increase the transfer speed and heat transfer of heat conduction and heat exchange.
  • the heat exchange tube fluid 122 is a gas-liquid two-phase coexisting fluid (1221+). 1222), such as water and steam, acetone and acetone vapor, or other two-phase fluid which is not in contact with the heat exchange tube metal outer tube 1311 and the fine capillary structure 1313.
  • the heat exchange tube 131 can be a module heat pipe, except for the internal closed space 1312. Having the heat exchange tube fluid 122, further absorbing or releasing a large amount of heat by a liquid-gas and gas-liquid phase conversion program, respectively, and the gas in the inner closed space 1312 is mainly the gas heat exchange tube fluid 1221, except
  • the liquid heat exchange tube fluid 1222 can be transported by the fine capillary structure 1313 to be in the hot zone of the module heat pipe 131. In the cold zone, the two-phase fluid circulation of the liquid-transformed gaseous state and the gaseous-transformed liquid state are respectively performed, and generally, the heat transfer capability of a good thermal conductor such as copper or aluminum is several hundred times or more.
  • a battery module 11 with a thermal management design is connected to the above embodiment FIG. 3c, and the flow channel device 12 with the thermal management design battery device (not shown) and the system fluid 121 may also be provided.
  • the battery core 111 connected to the middle portion of the heat exchange tube 131 is temperature-controlled at both ends of the heat exchange tube 131 to achieve high-efficiency thermal management of the battery core 111 in the battery module 11, as described above. As described above, it will not be described here.
  • the battery module 11 includes a plurality of battery cells 111, a plurality of metal structural members 80, a runner device (not shown), and a system fluid (not shown), wherein the metal structural member 80 is directly combined with a plurality of the battery cells 111 in parallel to form the parallel group 18 such that the parallel group 18 has at least one pole by having the metal structural member 80 and the number Charging and discharging the heat exchange cell charging and discharging circuit composed of the single or plural heat exchange tubes 131, wherein the metal structural member 80 and the heat exchange tube 131 in the heat exchange cell charging and discharging circuit are The actual demand elastic matching, such as the singular metal structural member 80 with a single number of the heat exchange tubes 131 (Fig.
  • the heat exchange tube 131 can only be combined with one pole of the parallel group 18 (Fig. 3a, 3b, 3c, 3d) Or 3e), or both poles of the parallel group 18 include a heat exchange tube 131 as shown in FIG. 3f; if the battery core 111 needs to be dissipated, the one in FIG. 3a, b, c, e or f
  • the heat exchange tubes 131 are each a hot zone (connecting the battery core 111, which is part of the charge and discharge line with the heat exchange cell), and the other end is the system using the battery device (not shown) with thermal management design.
  • the cooling zone of the fluid 121 for cooling may also be used as a cold zone at both ends of the heat exchange tube 131, and the heat exchange tube 131 is in the middle of the two ends.
  • the part is taken as a hot zone combined with the battery cell 111, as shown in FIG. 3d; if the battery cell 111 is to be heated, the hot zone and the cold zone of the heat exchange tube 131 are opposite; the shape of the heat exchange tube 131 It can also be flexibly designed according to actual needs, and is not limited to the straight tube in FIG.
  • the metal structural member 80 is made of a material having a high heat transfer coefficient, and is a good electronic conductor such as copper or aluminum. material.
  • a battery module 11 with a thermal management design as shown in FIG. 3g, in connection with FIGS. 3a to 3f, if the battery module 11 with thermal management design is part of the battery device (not shown) with thermal management design And the system fluid 121 with the thermal management design battery device and the flow channel device 12 are further combined with the system fluid tube 13 of the system fluid circulation device with a thermal management design battery system (not shown) as a system
  • the heat pipe 16 is in the module heat exchange interface, and a part of the system heat pipe 16 is in direct contact with the surface of the outer pipe 1311 of the heat exchange pipe 131 (Fig.
  • a battery module 11 with thermal management design is a battery in which the parallel groups 18 are connected in series by 16 groups of 16 battery cells 111.
  • the module heat exchange interface is composed of the intermediate layer 161, a part of the metal outer tube (not shown) of the heat exchange tube 131 and a part of the metal heat pipe 161 of the system heat pipe 161, which is one of 3g-(3)
  • the fluid may be a gas 1621-liquid 1631 two-phase fluid, and the heat is exchanged in the form of a heat exchanger such as gas 1621-liquid 1631 or liquid 1631.
  • the two-phase change of the gas 1621 is transmitted between the metal outer tube 1611 of the heat pipe 16 of the system and the surface of the metal outer tube (not shown) of the four groups of the heat exchange tubes 131, wherein the four groups of the heat exchange tubes 131 are The main part of the battery core charging and discharging circuit with the heat exchange function in the battery module 11
  • the metal structural member 80 performs heat exchange and charge and discharge procedures with the battery core 111.
  • system heat pipe 16 and the four sets of the heat exchange tubes 131 are respectively located on two sides of the intermediate layer 161, and the outer layer 161 is respectively respectively.
  • the metal outer tube of the four sets of the heat exchange tubes 131 is combined with the metal outer tube 1611 of the system heat pipe 16 and can maintain a closed hollow intermediate layer 161, so that the metal outer tubes of the four sets of the heat exchange tubes 131
  • the surface of the metal outer tube 1611 of the heat pipe 16 of the system may directly contact the two-phase fluid in the intermediate layer 161, and the outer metal tubes of the other four groups of the heat exchange tubes 131 are provided with an appropriate insulation design.
  • the two phases of the gas 1620-liquid 1630 and the liquid 1630-gas 1620 transfer heat to the system heat pipe 16 and the system fluid temperature control device 41 for heat exchange, and finally by the system fluid temperature control device 41
  • the gas phase system fluid 1620 is cooled, and the cooled liquid phase system fluid 1630 is transferred to the intermediate layer 161 by the capillary phenomenon of the fine capillary structure 1650, and then the four groups of the heat exchange tubes 131 are cooled by the principle of a heat-like tube;
  • the heat exchange tube 131 can also be the module heat pipe.
  • a battery module 11 with a thermal management design as shown in Figures 3g-(5), followed by the embodiment of Figures 3a-(4), this example is the heat dissipation of the battery core, if the battery core is to be heated, the heat transfer The direction is the opposite direction; wherein the module heat exchange interface with the thermal management design battery module 11 is a direct contact surface of the four heat exchange tubes 131 and the two-phase system fluid (1620, 1630), wherein the A portion of the metal outer tube (not shown) of the heat exchange tube 131 is directly coupled to the metal outer tube 1611 of the system heat pipe 16, so that a portion of the group of the heat exchange tubes 131 can directly contact the surface of the metal outer tube
  • the two-phase system fluids (1620 and 1630) in the heat pipe 16 of the system are in direct contact with each other.
  • the metal outer tubes of the four sets of the heat exchange tubes 131 and the The intermediate layer 161 has a thin insulating layer (not shown) between the outer casings, and the constituent material thereof may also be an electrical insulating material with good heat transfer as mentioned in the solid material as shown in FIG.
  • the exchange tube 131 uses the two phases of the system fluid (1620 and 1630) in the heat pipe 16 of the system to heat - liquid or liquid-gas two-phase change in the system heat pipe 16 has four sets of the heat exchange tube 131 direct contact end and the other end of the system fluid temperature control device 41 is transferred, and finally by the system fluid temperature
  • the control device 41 cools the gas phase system fluid 1620, and the cooled liquid phase system fluid 1630 is transferred to the surface of the metal outer tube of the four groups of the heat exchange tubes 131 by the capillary phenomenon of the fine capillary structure 1650;
  • the heat exchange tube 131 can also be a module heat pipe, and the system heat pipe 16 can also be replaced by a plurality of heat pipes, as described in detail [0096].
  • the fourth embodiment illustrated in FIG. 4 is a schematic diagram of a battery management system 100 with thermal management design, which mainly illustrates the overall heat exchange design of the battery system 100, wherein the battery module can be the one illustrated in FIG.
  • the heat exchange design battery module with the heat exchange interface of the heat exchange cell and the heat exchange interface of the module may also have a battery core charge and discharge line without the heat exchange tube or/and a heat exchange interface without the module.
  • the battery module is constructed.
  • FIG. 4a illustrates an embodiment of a battery system 100 with thermal management design of the present invention, including the battery pack 10 with thermal management design (in addition to the housing 20), which is comprised of a plurality of batteries with thermal management design Module 11, the positive and negative conductive wires 14, and the flow channel device 12
  • the system fluid circulation device includes the system fluid tube 13, the system fluid storage device 40, the system fluid temperature control device 41, and the system fluid delivery device 42; the housing 20 includes the thermal insulation unit, the channel 30 and The heat insulating sealing layer 21, wherein the heat insulating unit of the outer casing 20 includes the first heat insulating material 22 and the third heat insulating material 24 for thermally insulating the battery device 10, and the channel 30 is connected to the outer casing 20.
  • the external space is covered with the internal space 101 of the battery device 10, and the system fluid tube 13 and the positive and negative conductive lines 14 are disposed in the channel 30, wherein the system fluid tube 13 in the channel 30 is further
  • the flow channel device 12 of the battery device 10 is connected such that the temperature-controlled system fluid 121 is transported by the system fluid tube 13 to the flow channel device 12 inside the outer casing 20, and is coupled to the battery module 11
  • the module heat exchange interface performs heat exchange; the heat insulating sealing layer 21 prevents or reduces the external ambient temperature of the outer casing 20 from affecting the temperature of the battery device 10 inside the outer casing 20.
  • the system fluid storage device 40, the system fluid temperature control device 41, the system fluid delivery device 42 are connected in series with the system fluid tube 13, and the other end or another portion of the system fluid tube 13 is connected to the system
  • the flow channel device 12 in the battery device 10 wherein the system fluid 121 is transported through the system fluid transfer device 42 in the system fluid circulation device, and the system fluid 121 is heated by the system fluid temperature control device 41.
  • the temperature-controlled system fluid 121 can be stored in the system fluid storage device 40 having an insulated design, or directly returned to the system fluid tube 13 according to the current situation to enter the flow channel device 12 and the battery.
  • the battery module 11 performs heat exchange on the module heat exchange interface, and then exchanges heat with the battery core 111 in the battery module 11 by the heat exchange cell charging and discharging circuit.
  • the system fluid 121 described above is a pure water-propylene glycol solution, but a liquid or a gas or a gas-liquid two-phase coexisting fluid may be selected according to the actual design, as described above.
  • a battery management system 100 with a thermal management design continues the embodiment of FIG. 4a, and further provides a branch pipe 50 between the positive and negative conductive wires 14 and the thermal management design battery device 10.
  • the branch pipe 50 is connected to the system fluid pipe 13 and has a controllable switch (not shown) for controlling whether the system fluid 121 is allowed to circulate to the branch pipe 50, and is heated with the positive and negative conductive wires 14. exchange.
  • This design can avoid or reduce the temperature of the battery device 10 by the heat conduction after the positive and negative conductive wires 14 are affected by the ambient temperature; the outer casing extending to the battery device (icon symbol 10 + icon symbol 20) 20 external system fluid tube 13 and the positive and negative conductive wires 14 may additionally be provided with a heat insulating sleeve (not shown) on the surface to further prevent or reduce the ambient temperature outside the outer casing 20 from affecting the inner space of the outer casing 20 The temperature of the battery unit 10 housed in 101.
  • the heat insulating unit of the outer casing 20 may include a vacuum insulation panel (VIP) as the first heat insulating material 22, and the first heat insulating material 22 achieves the same effect as shown in the embodiment of FIG. 1 and FIG. 2, and the description thereof will not be repeated here;
  • the first sealing material 201 of the outer casing 20 is substantially filled or not completely filled with the first heat insulating material 22 as shown in FIG. 2a-(1), and the outer space of the sealing layer 201 of the outer casing 20 of the outer casing 20 can be
  • the third heat insulating material 24 is further included, as shown in FIGS. 2a-(2), and will not be described again.
  • the housing 20 is further provided with the sealing through hole 23, the switch controllable joint 25 and the vacuuming device 26, as shown in FIG. 4c.
  • the vacuuming device 26 can be used to adjust the vacuum pressure of the remaining space in the sealing layer 201, basically The vacuum pressure is lower than or equal to 10 -2 Pa, and further may be further lower than or equal to 10 -3 Pa.
  • the configuration, the use manner and the function of the sealed through hole 23, the switch controllable joint 25 and the vacuuming device 26 are as shown in FIG. 1b and related description, and details are not described herein again.
  • a battery management system 100 with thermal management design as shown in FIG. 4d, following the variation of FIG. 4c of the above embodiment, wherein the housing 20 can be further provided with a second channel 32, wherein the heat insulating sealing layer 211 and the The first sealing channel 212 is disposed on the first channel 31 and the second channel 32.
  • the first channel 31 is configured to configure the system fluid tube 13
  • the second channel 32 is configured to configure the positive and negative conductive lines 14 .
  • the outer casing 20 of the plurality of channels (31, 32) is designed primarily to provide a more flexible spatial arrangement.
  • a battery system 100 with thermal management design as shown in FIG. 4d, following the above embodiment FIG. 4c, the battery core 111 and the heat exchange tube 131 constitute the heat exchange battery core charging and discharging circuit, which can be like a figure
  • the metal structural member 80 is placed between the battery core 111 and the heat exchange tube 131, and is ultrasonically welded to each other to form the parallel group, as shown in FIG. 3e-(1), and then The parallel group is connected in series to form the thermal management design battery module 11 having the heat exchange cell core charge and discharge line, and the method is as shown in FIG.
  • the system fluid circulation system of FIG. 4d is used.
  • the system fluid delivery device 42 transports the system fluid 121 heated by the system fluid temperature control device 41 or the system fluid 121 that has been heated and stored in the system fluid storage device 40 to the battery device 10
  • the runner device 12 The module heat exchange interface in this example is a direct contact design such that the system fluid 121 is in direct contact with the outer tube of the heat exchange tube 131 having the heat exchange cell charge and discharge line, so that the heat of the system fluid 121 can pass through the
  • the module heat exchange interface is transmitted to the heat exchange battery core charging and discharging circuit, and finally
  • the metal structure member 80 is transferred to the battery core 111 to heat it; on the other hand, the outer casing 20 in the example, the first heat insulating material 22, the second portion of the sealing layer 201 of the heat insulating unit
  • the mode of operation is illustrated in Figure 2g; the intermediate layer 161 is as illustrated in Figures 3g-(4); wherein the system heat pipe 16 is in direct contact with the system fluid temperature control device 41, and the system fluid 121 is The gas-liquid two-phase coexisting state is in the internal closed space of the heat pipe 16 of the system, and the system fluid temperature control device 41 performs temperature control on the direct contact end of the heat pipe 16 of the system, and then the gas-liquid after the temperature control in the heat pipe 16 of the system
  • the two-phase system fluid 121 performs fluid transport in a manner that does not require additional energy, and the temperature of the heat exchange tube 131 is controlled by the intermediate layer 161 of the module heat exchange interface, thereby eliminating the need for the system fluid delivery device.
  • the battery core is connected to the heat exchange tube (not Shown) is further heat exchanged with the heat exchanger tube, wherein the heat exchanger tube for the module may be a heat pipe.
  • a battery system 100 with thermal management design continues the above embodiment, wherein the system heat pipe 16 can be replaced by a plurality of heat pipes to enhance the flexibility and convenience of the application, and between the plurality of heat pipes Forming a good thermal path by direct or indirect contact, such as a plurality of system heat pipes 16 being combined in parallel; in this example, the system fluid heat pipe (not shown) is formed by the system fluid 121 and the system fluid pipe 13.
  • the flow path heat pipe (not shown) formed by the system fluid 121 and the flow path device 12 is a closed pipe instead of a single heat pipe of the system, and one end thereof is in contact with the intermediate layer 161, and The heat exchange is performed, wherein the system fluid 121 can be a gas-liquid two-phase fluid as described above, and the number of the heat pipes of the flow channel can be one or more.
  • the contact surface between the fluid heat pipe of the system and the heat pipe of the flow channel is in direct contact, and the fluid heat pipe of the system may be modified indirectly by a thermal conductive adhesive or other material having a good heat conduction and a flattened contact surface. Good contact with the contact surface between the runner heat pipe.
  • a battery system 100 with thermal management design continues with Figures 4a-4e of the above embodiment, wherein the system fluid circulation device, according to different designs, the system fluid tube 13 is heat exchanged with the system fluid temperature control device 41, wherein a heat insulating sleeve 17 is further disposed on the surface thereof to prevent or reduce the external environment temperature by the
  • the system fluid tube 13 affects the temperature of the battery module (not shown) and the battery core (not shown) in the battery device (not shown); in addition, the surface of the positive and negative conductive wires 14 of the battery device may also be provided with the thermal insulation.
  • the sleeve 17 prevents or reduces the ambient temperature by which it affects the temperature of the battery module (not shown) and the battery core (not shown) in the battery device (not shown).
  • a battery system 100 with a thermal management design continues the change of FIG. 4f of the above embodiment, and further increases a temperature control intermediate between the system fluid tube 13r and the system fluid temperature control device 41.
  • a layer 411 wherein the temperature-controlled intermediate layer 411 has a fluid (not shown) as a heat transfer path between the system fluid tube 13 and the system fluid temperature control device 41, the fluid being in the battery device (not shown)
  • the battery module (not shown) needs to be dissipated or heated, it is present in the temperature control intermediate layer 411; if the battery module in the battery device needs to avoid or reduce the influence of the external environment temperature, the temperature control is present.
  • the fluid in the intermediate layer 411 can be evacuated from the fluid in the temperature control intermediate layer 411 by a fluid extraction and storage device 43 and stored in the fluid extraction and storage device 43.
  • the internal battery device 10 as shown in FIG. 4a-4e is further provided with a battery management device (BMS) 15, which can sense the battery device voltage or the battery device temperature or the battery device. Charge and discharge capacity, and can communicate with the main management device (not shown) of the battery system and appropriate control behavior.
  • BMS battery management device

Abstract

一种带有热管理设计的电池模块(11)、电池装置(10)与电池系统(100),利用电池模块(11)、电池装置(10)与电池系统(100)的三阶段热管理设计,不但可以避免外界环境温度对电池芯(111)造成影响,更可对电池芯(111)进行快速与高效率的温控,使电池芯(111)间达到均温与适当操作温度的要求;其中,电池模块(11)的温控设计主要为一具有热交换的电池芯充放电线路的设计,电池装置(10)的温控设计,主要为具有绝热能力的电池装置外壳(20),以防止或降低外部环境对电池模块(11)温度的影响,该电池系统(100)的温控设计,则主要包括一温控媒介循环系统,可将温控后之温控媒介透过该电池装置(10)与该电池模块(11)进行热交换。

Description

一种带有热管理设计电池模块、电池装置与电池系统 技术领域
本发明是关于一种带有热管理设计电池模块、电池装置与电池系统,尤其涉及到一电池装置与电池模块之高效率温控设计,可大幅降低电池装置于恶劣环境温度时之影响程度,除提升电池芯之使用寿命外,该电池芯之性能与对用户之便利性可因此电池系统整体温控设计而大幅提升。
背景技术
石油对全世界的经济与便利性不言而喻,然而以石化燃料作为主要能源的今日,如煤炭发电与汽柴油发动机之行动载具,虽然对人类生活质量有极大的贡献,但石化燃料燃烧产生之二氧化碳等温室气体与其他微量有毒气体使我们的生活环境渐趋恶化,如全球温度上升导致之气候异常与海平面上升等威胁。因此各式洁净能源技术开始广受重视,如风能、热能、太阳能等发电技术,搭配各式储能技术,而其中最受瞩目之储能技术则为电化学二次电池,包括铅酸电池、镍氢电池与锂电池等。
于上述目前已量产之电化学电池中,锂电池又因其高能量密度与高使用寿命,渐渐成为各式储能需求的主要选择,如笔记本电脑、智能型手机等行动装置。另一方面,为了解决上述石化燃料带来的问题,锂电池亦为电动车(electric vehicles)、微电网(micro-grid)与其他各式储能系统之主要储能组件,然而储能组件于上述新能源系统之应用仍有其局限性;以电动车为例,目前采用储能技术之电动车皆以锂电池为动力来源(复合动力车以锂电池与汽柴油发动机进行串联或并联供动力输出),然而锂电池之能量密度仍待进一步提升,以符合期望之行驶里程(每充一次电行驶里程大于400~500公里);另一方面,电池性能、使用寿命、安全性与价格等皆有进步之空间。
关于锂电池性能、寿命与安全性,可分为两方面进行探讨,一为电池芯材料与设计之进步,从基本面提升锂电池之参数与特性;另一方面,则是从系统面进 行,其中最重要因素之一为锂电池温度之控制,其与锂电池之性能、寿命与安全性息息相关:锂电池可操作范围约为-20~60℃,充电温度一般需控制在0~50℃间,而于电动车相关之应用更将锂电池温度控制于15~35℃,若温度过高,锂电池将有安全性之疑虑与大幅缩短可使用寿命之可能性;温度过低,除安全性与可使用寿命受影响外,电池亦因高阻值导致低效率与有限之性能。
在各式的应用领域中,存在许多不适宜电池操作之温度环境,因此电池温度的控制非常重要,例如于夏日时常将电动车停放至无遮蔽之大太阳下时,可能存在过高之电池温度环境;在冬天或是高纬度的地区,电动车停放在户外导致电池温度时常低于0℃,此时需足够长之时间将电池加热至适当之温度范围,以进行充电或较佳性能之行驶;又如数据中心之不断电系统,需要将铅酸电池温度维持在25~30℃,若以锂电池作为不断电系统的电池,亦须将电池温度控制于35~40℃以下,以达到足够长的使用年限。因此,为了达到不同应用对电池性能、寿命与安全性之要求,电池温度之控制十分重要,而如何以最少之能量并有效率地控制电池温度,除了对能源利用效率有很大的影响外,在某些应用上,如电动车相关之应用,则更为重要,如部分已量产之纯电动车,在正常情况使用下,于亚热带或温带地区之冬季可损失超过30%之最大行驶里程,其主要原因为电池系统之热管理设计导致温控时需要能量以加热电池,或是电池于使用时产生之热量不足以将其自身温度提升到适当之范围,而在大部分使用情境下,电池本身需提供温控所需要之能量。
除了上述环境温度对电池之影响外,电池系统中各电池芯的相对温度差异程度亦非常重要,由于电池系统通常包含复数个电池芯,并经由适当之串联与并联组成,随着单电池芯容量与应用标的的异同,锂电池系统所使用的电池芯数目可为上百甚至数千颗,而操作或储存时的温度差异过大将导致不同电池芯或电池模块有不同的老化程度,而老化程度高的电池芯或电池模块于操作时由于性能较差,故拖累了整体系统的性能,进而造成其他电池芯或电池模块加速老化,进而降低系统使用寿命。
由上述可得知,电化学二次电池各式之应用标的,电池的温控都扮演着相当重要的角色,因此,一个高能源与时间效率之热管理设计是必须的,以应付各种不同因温度变化原因,对电池性能、寿命与安全性造成之影响,例如上述之车用锂电池、户外与太阳能发电系统并网之储能装置、独立的电信电源备用系统 (UPS,uninterruptable power supply)、数据中心(data center)的电源备用系统,或是微电网(micro-grid)中的储能装置等,皆会有类似的问题亟待克服。
习知现有的电池温控设计方案,包括被动温控与主动温控两种。被动温控即利用电池系统的机构设计,将电池产生之热量以热传导之方式带至电池系统与外界之接口,再利用外界之气体自然对流进行散热;虽然此方式设计最为简单,制造成本亦低,但电池芯或模块间之温度差异最大,散热效率亦最低;且由于是被动温控之设计,电池系统极易受外界环境影响,外界的高温或低温环境可以藉由原来电池系统中为了散热设计之低热阻路径,轻易的影响系统内电池芯或模块之温度。如电动车相关之应用,虽可以藉由行驶时设计的流道降外部空气导入电池系统以进行冷却,然而低温环境操作时则须克服保温之难题,而停车后经一段时间再次启动时,仍无法避免环境对电池温度之影响,进而导致电池可操作寿命降低之后果。
主动温控之方式则是藉由温控媒介或电阻加热等装置进行电池系统中电池芯或模块之温控,温控媒介通常包括气体与液体两种。其中气体则是利用风扇达到散热之目的,然而若要克服恶劣环境温度对电池之影响,尤其是低温环境,仍要另外的加热装置对电池进行加热;且风扇强制冷却需保留气体信道,整体系统所占有之体积过大,对于体积有限制之应用,如电动车等,通常会造成电池系统能量密度过低之后果,且电池芯或模块间容易造成较大之温差,进而导致各电池芯或模块间性能与寿命的差异过大。
而液体主动温控为温控效率较高之方式,整体电池系统的体积较以气体为温控媒介之方式为小,对体积有限制之应用具明显之优势。一般来说,利用具备适当流道结构装置中的液体与电池芯或模块形成最佳之热接触,辅以电池装置外之压缩机与加热装置控制液体的温度,将液体强制输入电池系统内之流道结构装置,以调控电池芯与模块之温度。但由于安全上之疑虑,流道结构装置中之液体与电池芯或模块之热路径通常包含一种或以上之非金属材料,通常为塑料高分子材料,以确保电池系统中之电池芯间与模块间无短路之可能性,虽近年来导热塑料材料之热传导特性有显著之提升,但与金属材料相比,仍有很大之差距,如纯铜与纯铝的热传导系数分别约为400与230W(m.K)-1,为一般导热塑料之热传导系数的数十甚至上百倍;因此电池系统中流道结构装置之液体与电池芯/模块路径之热阻因而提高许多,导致低冷却速率。另外,电池系统中流道结构装置之 液体传输路径亦长,虽较气体强制温控之系统优越,电池芯/模块间仍有相当之温度差,且电池装置中若存在过长的液体传输路径,将提升液体泄漏之可能性。
一习知台湾公开专利TW201401611『防水、防火、防震、防爆四合一之车用电池及其制造方法』,该车用电池系包括复数个锂铁电池、至少一支架、一电连接模块及一封装体。其中,该等锂铁电池系组装于该支架内,经该电连接模块将该等锂铁电池作电性连接后,最后在一真空环境下利用该封装体完全包覆于该等锂铁电池、该支架及该电连接组之外部。前案利用该封装体系为导热胶体,于该真空环境进行封装后而能彻底填充于缝隙中,而能有防水、防火、防震及防爆四合一之安全功效,且该等锂铁电池使用时之热量亦能透过该封装体驱散至外界,以确保使用时的安全性及稳定性,但上述前案作为封装体之导热胶体,以目前之习知技术进行评估,其热传导系数皆不高,且无法抵抗温度过高或过低之恶劣环境;另外被封装后之电池芯若因任何不明原因导致温度过高时,泄压阀无法开启,有可能对安全性造成更大之影响。
一习知美国专利20060110657『Battery assembly for use in an uninterruptible power supply system and method』,一种电池装置,使用在备用电源系统和方法,其该电池装置的散热装置及方法为一利用电池极头导线将电池模块的热源传导至外部的散热鳍片装置上,其中电池极头之热源与外部之散热鳍片中有一电绝缘之设计,经热传导之方式将热导至散热鳍片,再利用一风扇对散热鳍片进行散热,若电池需加热时则利用一加热器进行,但前案专利的散热装置虽能进行散热,但若外界温度较高时,亦会经由相同之路径传至电池;另一方面,若外界温度过低,电池之温度则会因此散热路径而持续降低,电池虽有加热功能,但由于加热器之热对电池加热后仍会经由热路径持续散热至鳍片,故上述前案无法有效地对电池进行有效的热管理。
一习知美国专利20130071705『STRUCTURE,PACKAGING ASSEMBLY,AND COVER FOR MULTI-CELL ARRAY BATTERIES』,一种复数电池芯电池之封装结构和盖体,并利用间格结构将电池组进行封装,并利用一真空绝热板(VIP)可作为电池组外挡墙,以降低外界温度对电池之影响;然而前案专利主要为应用于电池运送时之包装保存,并非一完整可操作之电池系统设计,故并无相关之电池系统散热或加热之热管理设计。
由于习知技术中并无适当的电池热管理系统与相关的电池模块与电池装置 设计,使电池在可以避免环境恶劣温度影响下,仍能兼具高效率的温控设计,以提升电池芯之使用寿命、可使用能量、电芯性能一致性与电池用户之便利性;因此,发明人提出本案「一种带有热管理设计电池模块、电池装置与电池系统」,从电池模块之均温与快速温控速率设计出发,搭配电池装置与外界环境温度之绝热设计与整体电池系统之主动-被动复合式温控技术,在高能源与时间效率之前提下,使电池模块中之电池芯可达到快速温控与缩小复数电池芯温差之目的,最后并大幅提升该电池系统于各种气候环境下使用之便利性;由于电池装置能源效率提升,可进一步延长电池装置之使用寿命与可使用能量,避免过多电池储存之能量消耗于温控之需求,大幅提升电池装置于各式恶劣环境使用之能力,与降低电池管理之复杂程度。
发明内容
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,可大幅减少电动车或其他相关应用之电池装置与电池系统被外界环境温度影响,并同时可以对电池装置中之电池模块与电池芯进行快速温控与降低电池芯间之温差,使整体电池装置于充电与放电使用时达到高能源效率、高时间效率与长操作寿命;本发明中电池模块之定义为数个电池芯进行并联形成并联组,并导入热管理设计,并根据实际需求串联数个并联组,与电压、温度量测电路等;电池装置则是数个电池模块进行串联或/与并联,并结合电池管理系统(BMS,battery management system)与热管理设计与相关装置(若有);电池系统则进一步包括电池装置与充电装置/负载之接口、温控装置、主管理装置(包括温控与对外接口之沟通)等;而本发明之带有热管理设计电池模块、电池装置与电池系统,带有热管理设计的该电池系统其中之一主要特征系利用一可循环于该电池装置中之温控媒介,先于该电池装置外进行温控,再藉由主动或被动输送技术将温控后之温控媒介导入该电池装置中,与该电池模块进行热交换。
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,其中该带有热管理设计之电池系统另一个主要特征为进一步包含一温控媒介循环装置,若此温控媒介为所谓之系统流体,则上述装置可称为系统流体循环装置,该装置至少包括但不限于一系统流体做为温控媒介、一系统流体管与一系统流体温控装置;该系统流体循环装置更可进一步包括:可进行主动输送温控后该 系统流体进行循环之装置,即系统流体输送装置,或一系统流体储存装置以储存温控后之该系统流体,上述各装置可以串联或并联之方式整合至该系统流体循环装置中;其中该系统流体温控装置经由适当控制决定是否加热或冷却该系统流体,并藉由该系统流体输送装置对该系统流体进行主动(active)输送循环,或是经温控后该系统流体产生物理变化而被动的(passive)自身进行输送循环,使温控后之该系统流体对该电池装置内部之该电池模块进行温控,或是某些情况下可预先储存于具保温功能之系统流体储存装置,以提供之后该电池装置内之该电池模块进行热交换,使该电池芯达到快速与高能源效率之热管理。
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,其中带有热管理设计之该电池装置之一主要特征为提供一外壳,此外壳具备高绝热能力之特性,当外界环境恶劣时,如过高温或过低温之环境,该外壳包覆之电池装置内电池芯之温度可不受或降低外界环境温度影响,其中具备高绝热能力之该外壳可完全或部分包覆该电池装置,若该外壳为部分包覆该电池装置之设计,则该外壳包覆之电池装置范围为可隔绝大部分外界环境温度影响之部分。
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,带有热管理设计之该电池装置之另一个主要特征为该外壳至少包括绝热单元与结构单元,并以简单层状结构单元、支架结构单元或层状-支架复合结构单元与单一或复数绝热单元构成;其中,该绝热单元可以为利用一密闭空间构成之真空层,且该真空层中的压力小于10-2Pa,较佳条件为小于10-3Pa,且可藉由该电池系统外部之抽真空设备,或是于该电池系统中另包含一抽真空设备,对真空层进行真空状态之维持;根据不同之需求,上述之方式皆可使该电池装置的该外壳保持高绝热效果,降低该外壳包覆之该电池模块内电池芯温度受外界环境温度之影响。
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,带有热管理设计之该电池装置再另一个主要特征为该外壳之该绝热单元可以包含绝热材料为主体;或是进一步搭配绝热材料与真空层,以构成一复合式绝热单元。
本发明的一目的在于提供一种带有热管理设计电池模块、电池装置与电池系统,其中带有热管理设计之该电池模块之一主要特征为可进行快速热交换之该电池模块,该电池模块系由至少一电池芯与一热交换管组成,其中该热交换管与该 电池芯之正极或负极或同时正负两极以直接或间接之方式进行连接,构成一具热交换功能之电池芯充放电线路,即该电池芯除了可以透过该热交换管进行热交换外,亦可藉由该热交换管作为电流路径,进行充放电;而该热交换管至少有一部分与温控媒介以直接或间接之方式接触,构成所谓之模块热交换接口,使该电池模块中的电池芯可透过该热交换管与温控媒介快速进行热交换,其中该温控媒介为该电池模块外之装置与该电池模块进行温控之媒介,若搭配带有热管理设计之该电池装置与该电池系统,则温控媒介可以为该系统流体;除提供该电池装置中之该电池模块与该电池芯达到快速与高能源效率之热管理外,该热交换管具备之快速热交换之特征可使复数个与其连接之该电池芯具备良好之均温特性;其中该电池装置中具备一管道,或称为流道装置,可与该电池模块可以某种方式进行结合,目的为将电池装置外已进行温控之该系统流体导入该电池装置内,并与该电池模块之该模块热交换接口进行热交换,若该电池装置具备数个电池模块,则可以将数个该流道装置进行串联,使该系统流体可以于所有该电池模块进热交换,于该系统流体进入的第一个与最后一个该流道装置分别与不同之管路接合,该管路即为该电池系统中系统流体循环装置中之系统流体管,作为该系统流体传输之路径,该两组系统流体管则为该系统流体进出该电池装置之管路。
本发明的一目的在于提供带有热管理设计电池模块、电池装置与电池系统,带有热管理设计之该电池模块又一主要特征为该热交换管以金属材质制成,以作为该电池芯进行充放电之电流路径,由于电流路径大多牵涉复数个电池芯以上之电流汇集,较高之电流易产生高温,因此可藉由该热交换管高热传递速率之特性,将充放电路径与电池芯产生之热量经由该模块热交换接口与该流道装置中之该系统流体进行热交换;相反的,若需要对电池芯进行加热,亦可经由该流道装置中之该系统流体于该模块热交换接口与该热交换管进行热交换,之后藉由该热交换管将热量迅速均匀传递至各连接之电池芯,以达到该电池模块中电池芯快速与高能源效率之热管理;综合上述设计,该带有热管理设计电池模块、电池装置与电池系统同时具备快速温控与隔绝环境温度两个功能,于不同需求下可提供高能源效率与快速之热管理。
由于本发明的该带有热管理设计电池模块、电池装置与电池系统可大幅降低外界环境温度的影响,并可在高能源效率与快速热交换之优势下,使该电池装置的温度快速达到较佳之温度操作范围,如15℃~35℃之温度区间,因此该电池 装置之充放电与安全管理等操作逻辑亦可大幅简化,以避免高低温操作逻辑需克服的各式问题。
为达到上述目的,本发明提供了一种带有热管理设计电池系统,其包括但不限于:一电池装置与一系统流体循环装置,其中该系统流体循环装置可提供该电池装置温控所需之系统流体以进行温控所需之热交换程序。
根据本发明一实施例,上述之带有热管理设计电池系统的该电池装置可为带有热管理设计电池装置,其中该电池装置包括:一电池模块、一外壳、正负极导电线与流道装置,其中该流道装置中具有该系统流体,藉由该流道装置与该电池模块进行实质结合,该系统流体可与该电池模块以直接或间接方式接触,进行热交换;另该外壳包括但不限于一绝热单元、一结构单元与一信道,其中该绝热单元具备高绝热能力,该外壳可有效避免外界环境温度影响该电池装置中之该电池模块。
根据本发明一实施例,上述之带有热管理设计电池系统的该系统流体循环装置可进一步包含一系统流体管,可与该电池装置中温控相关之装置连接(若该电池装置为带有热管理设计电池装置,则该温控相关装置为该流道装置,以下亦同),使该系统流体可于该电池装置与该系统流体循环装置间进行循环。
根据本发明一实施例,上述之带有热管理设计电池系统的该系统流体循环装置进一步包含一系统流体温控装置,以加热或冷却该系统流体,其中该系统流体温控装置可为如热帮浦等温控装置。
根据本发明一实施例,上述之带有热管理设计电池系统的该系统流体温控装置更可进一步与其他装置结合,如电动车相关应用中之车厢空调系统与相关之电机设备,如车用散热水箱、交流-直流逆变器、直流-交流转换器或/与马达,以适当利用辅助该系统流体冷却或加热,以提升该系统流体温控装置之能源效率。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体温控装置可进一步与该系统流体管接触表面之间增设一温控中间层,该温控中间层具备一流体,并另外配置一流体抽取与储存装置;此设计主要为于一般适当操作环境温度时,如电动车用锂离子电池系统于15℃~35℃之环境温度操作,该温控中间层可充满该流体,作为该系统流体管与该系统流体温控装置热交换之媒介;若环境温度为过高温或过低温之恶劣环境,或电动车为长时间停车状态,为了避 免恶劣环境温度藉由该系统流体管与该系统流体温控装置之路径影响该电池装置温度,可将该温控中间层中之该流体抽离。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体循环装置又进一步包含系统流体储存装置,以预先储存该温控后之系统流体。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体循环装置又进一步包含系统流体输送装置,如帮浦,以主动将系统流体循环于该系统流体循环装置与该电池装置间,藉以与该电池装置进行热交换。
根据本发明的一实施例,上述之带有热管理设计电池系统中若该电池装置具有复数个电池模块,则每个电池模块搭配之相关温控装置可以以串联或并联或适当之串-并联结合之方式进行链接,使该系统流体可以于复数个该相关温控装置中循环。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体循环装置中之该系统流体管更可以进一步连接一分支管,该分支管可延伸至与该电池装置中之该正负极导电线并与其直接或间接之接触,使该系统流体可藉由该分支管与该正负极导电线进行热交换,以避免外壳外部环境温度藉由该正负极导电线影响该电池装置内之该电池模块温度。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体系为液态或气态或气液两相共存之流体组成,液态流体如冷媒剂、二甲醚、纯水、纯水-乙二醇或纯水-丙二醇等之溶液,或其他不与该系统流体循环装置与该电池装置反应之液态流体;气态流体如水蒸气、空气或其他不与该系统流体循环装置与该电池装置反应之气态流体;气液两相共存流体如水与水蒸气、丙酮与丙酮蒸气等,或其他不与该系统流体循环装置与该电池装置反应之两相流体。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体更可为固液两相共存之固态悬浮流体,藉由悬浮于液相之高热容与高热导固态微粒,如碳化硅(SiC)、氧化铝(Al2O3)等悬浮微粒,与液相流体形成一均匀混合流体,使该系统流体与该电池模块进行热交换时,能提供更大之热容量与更快速之热交换特性。
根据本发明的一实施例,上述之带有热管理设计电池系统的该系统流体循环装置之该系统流体、该系统流体管与该电池装置之该温控相关装置(或是带有热管理设计电池装置之该流道装置)亦可进一步结合成为一热管,称为系统热管; 或是分别藉由该系统流体与该系统流体管结合成系统流体热管,与该系统流体与该电池装置之该温控相关装置(或是带有热管理设计电池装置之该流道装置)结合成流道热管,而该系统流体热管之一端或一部分与该流道热管之一端或一部分进行直接或间接接触,此双热管之组合亦可取代该系统热管;藉由上述单一该系统热管或该系统流体热管与该流道热管之双热管组合中之内部气液两相共存之该系统流体,于该单一热管或该双热管组合中未相互接触之两端分别进行气-液相变化与液-气相变化,以分别进行放热与吸热之行为,大幅提升热传导速率;此时该单一热管或该双热管组合中之一端或一部分该外管表面可与该系统流体温控装置以直接或间接方式接触,以进行温控;另一端或另一部分该外管表面则可直接或间接与该电池装置中之该电池模块接触,藉此与该电池模块进行热交换;而该系统流体输送装置与该系统流体储存装置则由于热管之被动(passive)作动特性可以进一步省略。
为达到上述目的,本发明还提供了一种带有热管理设计电池装置,包括一电池模块、一外壳、正负极导电线与流道装置,其中该流道装置中具有该系统流体,藉由该流道装置与该电池模块进行实质结合,该系统流体可与该电池模块以直接或间接方式接触,进行热交换;另该外壳包括一绝热单元、一结构单元与一信道,其中该绝热单元具备高绝热能力,该外壳可有效避免外界环境温度影响该电池装置中之该电池模块,该结构单元与该绝热单元结合,以构成一完整具机械强度之外壳,该信道连通该外壳包覆该电池装置的内部空间与外壳外部之空间,作为该电池装置之正负极导电线、讯号传输线与系统流体沟通内外空间之路径,以进行电池装置之充放电、讯号传输与系统流体循环于电池装置与外壳外部之相关装置;另该带有热管理设计电池装置中之该流道装置与其中之该系统流体可进一步结合成该流道热管,该流道热管之一端或一部分之该外管表面与该电池系统之该温控媒介结进行热交换,另一端或另一部分之该外管表面则与该电池模块以直接或间接之方式接触,以进行热交换温控。
根据本发明的一实施例,上述之带有热管理设计电池装置的该信道可根据实际需求,其数量分别可为单数或复数,并设置于适当之外壳位置,以解决空间与功能上的限制,如将正负极导电线与讯号传输线设置于不同信道,以避免可能之讯号干扰。
根据本发明的一实施例,上述之带有热管理设计电池装置的该信道可进一步 增设一绝热密封层,并至少部分填满原有于该信道中存在的管线外之空间,以降低该外壳外部之环境温度影响该外壳内部所容纳的该电池模块温度。
根据本发明的一实施例,上述之带有热管理设计电池装置的该外壳之该结构单元与该绝热单元可分别为单数或复数,以构成一完整之外壳,以隔绝或降低外界环境温度对该电池装置内部之影响。
根据本发明的一实施例,上述之带有热管理设计电池装置的该外壳之该结构单元可进一步包括层状结构单元或支架结构单元或上述之组合物,并与该绝热单元结合,以构成一完整具机械强度之外壳,并可隔绝或降低外界环境温度对该电池装置内部之影响,所以若该环境热源或环境冷源无方向性,则该绝热单元则将该电池装置完整包覆,若该环境热源或环境冷源具备方向性,则其他无环境热源或冷源影响之部分该外壳可以不包括该绝热单元,因此该外壳之该绝热单元可以不完全包覆该电池装置。
根据本发明的一实施例,上述带有热管理设计电池装置的该外壳之该结构单元之构成材料包括但不限于:复合金属材料,如钛合金、铝合金或不锈钢,或塑钢、玻璃纤维复合塑料材料、碳纤维复合塑料材料、工程塑料或上述材料之组合物。
根据本发明的一实施例,上述带有热管理设计电池装置,由于该外壳之该结构单元之构成材料一般来说较该绝热单元之构成材料具较高之热传导能力,因此若该外壳之该结构单元延伸至该外壳包覆之内部空间,形成一热传导良好路径,则该结构单元与该外壳包覆之内部空间之间可进一步包括该绝热单元,以构成无热传导良好路径由该外壳之外部空间延伸至该外壳之内部空间。
根据本发明的一实施例,上述带有热管理设计电池装置的该外壳之该绝热单元可为一密闭空间之密封层,且该密封层内气压为真空,以达隔绝或降低该外壳外部之环境温度对内部之该电池模块温度之影响,其中,该密封层之真空压力通常小于10-2Pa,较佳条件为小于10-3Pa,且该密封层之真空压力可为制程中控制后完全密封,与外界完全隔绝,或是于该外壳上另具备一密封通孔,该密封通孔之一端可连通该密封层,而另一端直接连接至该外壳外部,并连接一开关可控接头,该开关可控接头另一端连接一抽真空设备,以于适当时机量测并再次控制该密封层真空状态,如压力计显示该密封层无达到最小真空压力要求(例如10-3Pa),或是该电池装置定期检测保养时进行真空压力维持;该抽真空设备可为如真空帮 浦或其他抽气设备,并可为该电池装置之一部分或一外接设备;另一方面,该密封层可进一步包覆金属层,如铝箔、铜箔或是以其他金属沉积制程将该金属层沉积于该密封层上,以防止辐射热散失。
根据本发明的一实施例,上述之带有热管理设计电池装置的该外壳之该绝热单元可为一绝热材料构成,该绝热材料包括但不限于:发泡材料(foam,如聚氨酯相关(PU:Polyurethane)、聚苯乙烯相关(PS:Polystyrene)等)、二氧化硅相关(如玻璃纤维(glass fibers)、煅制二氧化硅(fumed silica)等)、气凝胶(aerogel)、珍珠岩(perlite)、玻璃棉、陶瓷棉、真空绝热板(vacuum insulation plate,VIP),或上述材料之组合物。
根据本发明的一实施例,上述之带有热管理设计电池装置的该外壳之该绝热单元可为如[0042]与[0043]之结合,即在真空压力小于或等于10-2Pa之该密封层中进一步包含该绝热材料,且该绝热材料包括但不限于:发泡材料(如聚氨酯相关、聚苯乙烯相关)、二氧化硅相关(如玻璃纤维、煅制二氧化硅等)、气凝胶、珍珠岩、玻璃棉、陶瓷棉、真空绝热板,或上述材料之组合物。
根据本发明的一实施例,上述之带有热管理设计电池装置,进一步设有一电池管理装置(BMS),该电池管理装置可感测该电池装置中该电池模块或该电池芯之电压与温度,并可透过该讯号传输线或其他适当之无线通信方式(如WIFI)与该电池系统之该主管理装置进行信息沟通与适当之控制行为。
根据本发明的一实施例,上述之带有热管理设计电池装置的配置于该信道以沟通该外壳内部与外部的管线,如该系统流体沟通之管路、该讯号传输线与该正负极导电线,进一步于其表面增设一绝热套管,以降低该外壳外部之环境温度透过相关管线影响该外壳内部所容纳之该电池装置之温度。
根据本发明的一实施例,除上述之带有热管理设计电池系统或/与带有热管理设计电池装置之温控设计外,该电池芯亦需要有一机制与该电池装置外部进行快速并高能源效率之热交换,以避免该电池装置操作时产生之热能累积,或于长时间静置于低温环境后需要快速加热;另一方面,在加热或冷却程序中所有复数电池芯仍需维持极佳之均温程度,即需尽量降低各电池芯的温度差异;若能达到上述之要求,该带有热管理设计电池系统或该带有热管理设计电池装置或存在该带有热管理设计电池装置之该带有热管理设计电池系统可以进一步提升其整体性能与使用寿命,并能同时兼备使用者之便利性。
为达到上述目的,本发明还提供了一种带有热管理设计电池模块,且该电池模块包括一二次电池芯与具热交换功能电池芯充放电线路所组成,其中该具热交换功能电池芯充放电线路至少包含一热交换管,该热交换管的作用除了可做为该电池芯充放电路径的一部份,且该热交换管可将充放电路径产生之电阻热,与单数或复数以直接或间接与该热交换管连接之该电池芯操作时产生之热移除于该电池模块外;另一方面,当需要对该电池芯预先进行温控时,例如于环境温度过高温或过低温时,欲对该电池芯预先进行冷却或加热,以达安全之快速充电温度时,该热交换管除了担任快速与高能源效率之该电池芯温控之桥梁,并可进一步使连结该热交换管之复数该电池芯达到均温之额外效益。
根据本发明的一实施例,上述带有热管理设计电池模块的该热交换管包括:一外管、一密闭空间与位于该密闭空间之一流体,称为热交换管流体;其中该热交换管外管可为导电材料,管内部密闭空间之该热交换管流体为主要热传递媒介,该热交换管具备远优于传统高热传导能力之材料,如铜、铝等金属材料,使复数电池芯间可以透过与该电池芯之正极、负极或正负两极均连结之热交换管,达到复数电池芯间均温与快速且高能源效率温控之目的。
根据本发明的一实施例,上述带有热管理设计电池模块中该具热交换功能之电池芯充放电线路,其中该电池芯至少有一极与该热交换管直接或间接接合,由于该热交换管亦为该电池芯充放电线路之一部分,因此该热交换管与电池芯间之连接,遵守充放电线路设计规范,即如电池芯并联形成所谓之并联组,若并联组中之正极与负极皆有热交换管于充放电线路,即所有电池芯之正极皆连接至相同之热交换管(可为单数或复数),所有电池芯之负极皆连接之另外之热交换管(可为单数或复数),此两群热交换管需为电绝缘,其余充放电线路设计规范,因为公开之习知知识,故以此类推,于此不再赘述。
根据本发明的一实施例,上述带有热管理设计电池模块中该具热交换功能之电池芯充放电线路,以热交换管同时作为电池芯进行热交换之媒介与充放电线路一部分之优点,为由于电池芯内部正、负电极极卷(jelly roll)分别与正、负极之极耳(metal tab)直接连接,而电池芯的正、负两极分别连接至少一正、负极之极耳,而极耳与极卷金属箔皆为热传系数高之铜、铝金属材料,热阻低,因此热交换管于充放电线路中之存在,可直接且有效率的对电池芯内部进行快速热交换。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能 之电池芯充放电线路,其中该电池芯正、负极分别与不同热交换管接合,除了直接接合外,另可藉由适当之金属结构件做电池芯电极与热交换管之桥梁,以提升其制造电池模块时制程之便利性,因此该电池芯可透过该金属结构件与该热交换管进行充放电与热交换。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能之电池芯充放电线路,其中该热交换管外管至少有一部分与该带有热管理设计电池模块外之温控媒介进行直接或间接接触(若该带有热管理设计电池模块为该带有热管理设计电池装置之一部分,则该温控媒介为该电池装置中该流道装置之该系统流体,以下亦同不再赘述);上述描述由该热交换管与该温控媒介构成之接触接口即所谓之模块热交换接口,使该电池模块中的该电池芯可透过该热交换管与该温控媒介进行快速热交换,达到同一电池模块中复数电池芯均温的要求;更进一步,若该温控媒介可藉由该电池装置之温控相关装置于各该电池模块间进行循环,如于该带有热管理设计电池装置中藉由循环于该系统流体循环装置与复数该流道装置之该系统流体,可达到不同该电池模块间之均温要求,该媒介流体温控装置并可藉由该系统流体与该热交换管对该电池芯进行温控。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能之电池芯充放电线路,若该电池模块为该带有热管理设计该电池系统中该带有热管理设计电池装置之一部分,且该系统流体、该系统流体管与该流道装置组成该系统热管,或该系统流体-该流道装置与该系统流体-该系统流体管分别组成该流道热管与该系统流体热管,形成该流道热管-该系统流体热管之双热管组合(如[0034]所述),该系统热管或该流道热管之一端或一部分之该外管表面则与该电池模块中之该热交换管部分外管表面可构成该模块热交换接口,该热交换管与上述该系统热管或该流道热管-系统流体热管双热管组合至少有一部份以直接或间接之方式进行接触;其中若该热交换管为复数,且该复数个该热交换管分别属于电池模块中不同并联组,该不同并联组进行串联后构成该电池模块,则复数个该热交换管分别对应电池模块串联中之不同电压,此时该模块热交换接口中之该复数个热交换管间互为电绝缘,以避免形成短路;若复数该热交换管中,某复数该热交换管间无电压差,则并不需要有电绝缘之设计。
根据本发明的一实施例,上述之带有热管理设计电池系统中该具热交换功能之电池芯充放电线路,其中该热交换管之金属外管与该金属结构件可藉由各式焊 接技术结合,如超音波、电阻点焊、雷射焊接等技术完成结合。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能电池芯充放电线路,其中该金属结构件与该电池芯可藉由各式焊接技术结合,如超音波、电阻点焊、雷射焊接等技术完成结合。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能电池芯充放电线路,其中该热交换管外管与该金属结构件之结合亦可藉由至少一中介层达成,如锡与锡合金。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能电池芯充放电线路,其中该热交换管外管与该金属结构件结合处之表面可再进一步进行一表面镀层,使该中介层与该热交换管外管与该金属结构件能更紧密接合。
根据本发明的一实施例,上述之带有热管理设计电池模块中该具热交换功能电池芯充放电线路,其中该热交换管外管与该金属结构件结合处表面之表面镀层可为镍与镍合金镀层。
根据本发明的一实施例,上述之带有热管理设计电池模块的该电池模块可为单一个或复数个电池芯作为一并联组,其中该并联组则藉由该热交换管与该金属结构件进行并联,该并联组可以为正负极两极皆具备金属结构件-热交换管连接,形成正负极分别具有金属结构件-热交换管并联之并联组,或是该并联组可以只为正负极两极其中一极具备金属结构件-热交换管并联,而另一极则单纯以金属结构件进行并联;一般来说,前者之设计较适合高功率应用,后者则为中低功率之应用。
根据本发明的一实施例,上述之带有热管理设计电池模块的该并联组数量可进一步为复数,而该复数个并联组间则相互进行串联,即模块中最低压之并联组负极为该模块之负极,而该并联组之正极则连接次低压并联组负极,以此类推,最高压之并联组正极为该模块之正极;另该复数个并联组间之串联,亦可以以适当之金属结构件-热交换管作为串联媒介。
根据本发明的一实施例,上述之带有热管理设计电池模块的若该电池模块之该并联组数量为复数,且不同并联组间部分或全部进行串联,为了降低复数并联组中该模块热交换接口中不同复数热交换管形成短路之可能性,该系统流体可为高绝缘之流体,如纯水、矿物油等。
根据本发明的一实施例,上述之带有热管理设计电池模块,若该电池模块为带有热管理设计该电池系统中该带有热管理设计电池装置之一部分,且该系统流体、该系统流体管与该流道装置结合为该系统热管,或是该系统流体-该流道装置与该系统流体-该系统流体管分别组成该流道热管与该系统流体热管,形成该系统流体热管-该流道热管之双热管组合(如[0034]所述),且不同并联组间部分或全部进行串联,则该电池模块之该复数并联组与上述该系统热管(或双热管组合中之该流道热管)间之该模块热交换接口可增加一中间层,该中间层可为高绝缘之流体,如纯水、矿物油等;或是气-液两相流体,如纯水-水蒸气两相流体,以类热管之形式进行热交换;或是具高热传导能力之固态电绝缘层,如碳化硅层、氧化铝、氮化铝、或包含上述陶瓷材料之复合材料等;或是上述该流体与该固态电绝缘层之组合;以避免于不同电压之并联组间形成短路。
根据本发明的一实施例,上述之带有热管理设计电池模块,若该电池模块为带有热管理设计该电池系统中该带有热管理设计电池装置之一部分,且该系统流体、该系统流体管与该流道装置结合为该系统热管,或是该系统流体-该流道装置与该系统流体-该系统流体管分别组成该流道热管与该系统流体热管,形成该系统流体热管-该流道热管之双热管组合(如[0034]所述),则该电池模块与该系统热管(或该流道热管)间之该模块热交换接口可藉由该热交换管作为上述该热管之金属外管之一部分,使上述该热管两相共存之系统流体与该热交换管直接接触,进行高效率热交换;然而该热交换管与上述该系统热管或该流道热管之该金属外管需为电绝缘,以避免于不同电压之该并联组间形成短路。
根据本发明的一实施例,上述之带有热管理设计电池模块的中该电池模块于该电池装置中之数量可为单数或复数,若为复数,则可藉由该电池模块之正极负极端子相互进行适当之并联或串联或并-串联。
根据本发明的一实施例,上述之带有热管理设计电池模块的该具热交换功能电池芯充放电线路之该热交换管可为一热管,称为模块热管,除藉由该模块热管的金属外管与该金属结构件做为该电池芯之充放电路径外,另该电池芯之热交换,主要可藉由该模块热管的金属外管做媒介,与该模块热管内部两相共存之该热交换管流体,分别于该模块热管之封闭两端或两部份分别进行气-液相变化与液-气相变化,以分别进行放热与吸热之行为,藉此该模块热管可快速的将热量传递于该模块热管之两端或两部分。
根据本发明的一实施例,上述之带有热管理设计电池模块的该模块热管外管与该金属结构件主体材料系为具高热传系数金属材料构成,如铜、铝或其复合材料等;另该模块热管内部之该热交换管流体系为气液两相共存之流体组成,如水与水蒸气、丙酮与丙酮蒸气等,或其他气液两相流体且不与该模块热管管壁反应之两相流体。
根据本发明的一实施例,上述之带有热管理设计电池模块,其中若该电池模块为带有热管理设计该电池系统中该带有热管理设计电池装置之一部分,且该电池系统包括该系统热管(或是该系统流体热管与该流道热管之双热管组合),如[0034]所述,且上述该系统热管或该流道热管进一步搭配如[0063]所述类热管之该中间层,与如[0066]所述之该模块热管,形成该电池芯与该系统流体温控装置间一快速热传递路径,除可避免一般液冷温控系统液体泄漏之问题,并具轻量化与高速热传递之特性,以提供复数该电池模块中之复数该电池芯快速且高能源效率温控与均温之要求。
根据本发明的一实施例,上述带有热管理设计电池模块、带有热管理设计电池装置或带有热管理设计电池系统中,该电池芯之定义为至少具备一正极、一负极与一电解质之一电化学单元(an electrochemical cell);该电池芯并不限定于任一种形式,可为目前常见的圆柱型(cylindrical cell)、软包型(pouch cell)或角型(prismatic cell)电池芯;另该电池芯并不限定于任何一种电化学二次电池之电池芯,可为铅酸电池(lead acid battery)、镍-金属氢电池(nickel-metal hydride battery)、锂离子电池(lithium ion battery)或其他二次电池(secondary battery)之电池芯,且该二次电池的性能或使用寿命或安全性与其操作温度范围有关连性。
附图说明
图1a-1i分别是根据本发明的第一实施例的带有热管理设计电池装置与部分电池系统的绝热设计外壳部分的不同实施方式示意图。
图2a-2g分别是根据本发明的第二实施例的带有热管理设计电池装置与部分电池系统的不同外壳设计部分示意图。
图3a-3g分别是根据本发明的第三实施例的带有热管理设计电池模块的具有热交换功能的电池芯充放电线路与模块热交换接口示意图。
图4a-4g分别是根据本发明的第四实施例的带有热管理设计电池系统示意 图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
从下列附图当中对于本发明许多具体实施例的说明,将可了解本发明于上述所提及的发明目的与优点。图式仅供例示,并不当成本发明的定义与范围。另为了凸显本发明之重点,下列图式(图1a~图4g)所有之讯号线皆省略不画出;另若无特别说明,下列各图式相关说明提及之该系统流体121即为上述之温控媒介,该系统流体121可为液态或气态或气液两相共存或固液两相共存之流体组成,液态流体如冷媒剂、二甲醚、纯水、纯水-乙二醇或纯水-丙二醇之溶液,或其他不与该系统流体循环装置、该电池模块与该电池装置反应之液态流体;气态流体如水蒸气、空气或其他不与系统流体循环装置、该电池模块与该电池装置反应之气态流体;气液两相共存流体如水与水蒸气、丙酮与丙酮蒸气等,或其他不与系统流体循环装置、该电池模块与该电池装置反应之两相共存流体;固液两相共存之固态悬浮流体,以悬浮于液相之高热容与高热导固态微粒,如电绝缘之碳化硅(SiC)、氧化铝(Al2O3)或氮化铝(AlN)等固态微粒均匀悬浮于纯水或矿物油或其他可耐高压之液态流体;然而根据本发明之精神,上述可为系统流体121并不受限于上述举例之液态或气态或气液两相共存或固液两相共存之流体种类;另若无特别说明,下列各图式相关说明提及之该绝热材料层之构成,可参照下列举例,如聚氨酯相关(PU:Polyurethane)、聚苯乙烯相关(PS:Polystyrene),或二氧化硅相关(如玻璃纤维(glass fibers)、(fumed silica)等),或气凝胶(aerogel)、珍珠岩(perlite)、玻璃棉、陶瓷棉或上述材料之组合物等,然而根据本发明之精神,上述该绝热材料层之构成材料并不受限于上述举例。另为方便解说,将带有热管理设计电池装置中之外壳与除外壳以外之其他装置(电池模块,流道装置…等)于实施例中分开叙述,该电池装置除外壳以外之装置仍统称为电池装置10,该外壳20则独立叙述,若需描述原始完整之该电池装置,则以该电池装置(10+20)示之。
图1(Fig 1a~Fig 1i)系列所例示为本发明带有热管理设计电池装置(图标符号 10+图标符号20)与部分电池系统100示意图,主要图示本发明中该电池装置10(不包括外壳)藉由该外壳20之绝热设计,可避免或降低该外壳20外部之环境温度对该电池装置10中之该电池模块11与其中之该电池芯(图1中未图示)之影响,同时可藉由经温控后之该系统流体121,对该电池装置10中该电池模块11进行高效率之温控;图1所示之实施例,其中之电池模块11可为该带有热管理设计电池模块,或为一般无热交换管构成之电池模块;另图1所示之实施例,皆省略该系统流体循环装置,只保留与该电池装置接合之该系统流体管13,仅作为阐述说明本发明之概念,而非作为本发明范围之限制。
图1a所例示为本发明之样态实施例一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100示意图,其包括该电池装置10,其系由复数个该电池模块11、该正负极导电线14和该流道装置12组成;该系统流体管13;该外壳20(如虚线范围),其至少具该密封层(201)作为绝热单元与该信道30,其中该外壳20之密封层(201)系为一具备气体之密闭空间如虚线箭头所示,用以绝热封装该电池装置10,该信道30系连通该外壳20包覆之内部容纳该电池模块11与该流道装置12该空间101与该外壳20外部,于该信道30中并配置该系统流体管13及该正负极导电线14,其中该信道30中之该系统流体管13系进一步与该电池装置10之该流道装置12进行连接,用以提供该系统流体121由该外壳20外部输送至该电池装置10,并与该电池模块11进行热交换。
接续上述实施例,图1b为一种带有热管理设计电池装置(10+20)与部分电池系统100示意图,该外壳20(如虚线范围)中进一步增设一密封通孔23,其中该密封层201内部空间与该密封通孔23一端连接,该密封通孔23另一端连接至该外壳20外部之开关可控接头25与抽真空设备26。当该电池装置10外部环境较温和时,该密封层201内部空间可维持充满气体之状态;若该电池装置10外部环境温度过高或过低,如5℃以下或40℃以上,此时利用该外壳20外部之该开关可控接头25与该抽真空设备26将该密封层201中之气体抽出,以达成适当真空密闭空间,一般至少达10-2Pa,更多状况需达10-3Pa以下之真空压力,而上述真空环境达成后,即可将该开关可控接头25与该抽真空设备26抽气关闭,该外壳因此具备适当真空该密封层201,可达高绝热之效果。该外壳20中之该密封层201亦可于任何环境温度皆维持适当真空状态,以提升系统控制之简易性。上述之该抽真空设备26系为真空帮浦或其他抽气设备,并不限定固定于该电池装 置上10。
图1c所例示为本发明之样态实施例一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100示意图,其包括一电池装置10,其系由复数个电池模块11、正负极导电线14和流道装置12组成;一系统流体管13;一外壳20,其至少具一绝热单元与一信道30,其中该外壳20之该绝热单元系以第一绝热材料22所组成,用以绝热封装该电池装置10,该信道30系连通该外壳20包覆之内部容纳该电池模块与流道装置空间101与外壳20外部,于该信道30中并配置该系统流体管13及正负极导电线14,其中该信道30中之该系统流体管13系进一步与该电池装置10的该流道装置12进行连接,用以提供该系统流体121由该外壳20外部输送至该电池装置10之该流道装置12形成一循环回路,并可与该电池模块11进行热交换。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,图1d所示,为为接续如上实施例图1c之延伸,其中该外壳20中的该信道30进一步增设一绝热密封层21,该绝热密封层21系进一步防止或降低外壳20的外部环境温度影响到透过该信道30中之空间,影响该外壳20内部电池装置10之该电池模块11与该电池芯之温度。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1e所示,为接续如上实施例图1d的变化,其中该外壳20中进一步增设一密封通孔23,且该绝热单元包含填充该第一绝热材料22之密封层201如虚线箭头所指范围,并与该密封通孔23连接,即该第一绝热材料22未完全填充该密封层201,且该密封层201透过该密封通孔23调控其内部无该第一绝热材料22占据之剩余空间气压,而该密封通孔23、该开关可控接头25与该抽真空设备26连接,该抽真空设备26之配置、使用方式与功能如图1b与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1e所示,为接续如上实施例的变化,其中该密封层201内部该第一绝热材料22为多孔绝热材料层,系为一以二氧化硅为主成分之多孔结构层或PU等其他具低热传导系数材料所组成。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1e所示,为接续如上实施例的变化,其中该密封层内部除该第一绝热 材料22占据外之多孔空间为真空,该真空压力通常小于等于10-2Pa,但仍可针对需求将真空压力降低至10-3Pa以下。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1e所示,为接续如上实施例的变化,其中由该密封层与该绝热材料构成之绝热单元可为真空绝热板(vacuum insulated plate,VIP),其中VIP内部主要材料为多孔绝热材料层,系为一以二氧化硅为主成分之多孔结构层或PU等其他具低热传导系数材料所组成,通常以铝箔包覆真空密封之且内部多孔空间为真空,压力通常小于等于10-3Pa,以达低热辐射、低热传导与低热对流之功能。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1f中所示,为接续如上图1e实施例的变化,一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100示意图,其中该外壳20,其中当该绝热单元为VIP或具有该第一绝热材料22之该密封层201(如虚线箭头所指部分)且表面有金属箔(如铝箔)包覆时,此时热量之另一传递路径为藉由该金属箔的连续表面以热传导之方式进行,因此该绝热单元表面可再进一步涂布一第二绝热材料27,上述该第二绝热材料27其热传导系数小于该绝热单元之该金属箔,且该第二绝热材料27与该金属箔需有良好的附着性,可藉由本身之特性或藉由一黏结剂达成。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1g所示,为接续如上图1f实施例的变化,其中该外壳20中进一步增设该密封通孔23,其中该密封层201内部空间与该密封通孔23一端连接,即该绝热单元为VIP或其他具有该第一绝热材料22密封层201之表面具有另一第二绝热材料27时,该密封层201内部仍有剩余空间,此时利用该密封通孔23调控该密封层201内部剩余空间之气压,而该密封通孔23、该开关可控接头25与该抽真空设备26连接,该抽真空设备26之配置、使用方式与功能如图1b与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图1h中所示,为再接续如上图1f实施例的变化,其中该外壳强度若不需要考虑,则该外壳20可以直接以形成具有该第一绝热材料22该密封层201或VIP做为该外壳20之该绝热单元,以单数或复数之数量单独构成该外壳20,即无该结构单元存在;又或如上述与简单层状结构单元202(如单点-虚线箭头范围) 结合构成该外壳20,如图1h所示;本例可以利用连续层状结构单元202,搭配复数个该绝热单元(具有该第一绝热材料22该密封层201)构成该外壳20,亦可利用不连续之复数个层状结构单元202与该绝热单元搭配;另根据需求,该绝热单元表面可再进一步涂布该第二绝热材料27,如图1f之相关说明所述,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100部分示意图,如图1i中所示,为再接续如上图1a~图1h任一实施例的变化,若因机构强度之要求,使外壳20需要加入支架结构单元203,若加入之该支架结构单元203于该外壳外部至该外壳内部之间未产生任何新热量良好传递路径,如图1i-(1)所示,则不需要有任何处置;但若所加入之支架结构单元203产生一新的热量良好传递路径,如图1i-(2)与如图1i-(3)所示,因该外壳20之支架结构单元203,使该外壳20之外部至该外壳20之内部间可透过支撑结构203形成热量良好传递路径,并将热量传至内部之层状结构单元202(如单点-虚线箭头范围)(此例)或其他该电池装置10相关之装置,导致该外壳20外部之热可简单传递至该电池模块11,此时可以以图1a~图1h所示任意该外壳20之绝热单元设计对该支架结构单元203与内部之该层状结构单元202进行绝热设计,以防止或减少该电池装置10中之该电池模块11与该电池芯受外界环境温度影响;如以图1i-(4)之概念,于该支架结构单元203与该外壳20内部之该层状结构单元202(如单点-虚线箭头范围)之表面直接形成该绝热单元204(粗虚线范围),如该密封层201、该第一绝热材料22或包括该绝热材料之该密封层201;或图1i-(5)之概念,于该支架结构单元203与该外壳20内部之该层状结构单元202加入绝热单元204(粗虚线范围),此例是以图1d之密封层201绝热设计概念植入,以防止因新增该支架结构单元203产生之新热量传递路径导致外界环境温度影响该电池装置10内部之该电池模块11与该电池芯。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100部分示意图,如图1a~图1i任一实施例所示,进一步设有一电池管理装置(BMS)15,该电池管理装置15可感测该电池装置10中电池模块11之电压与温度,并可藉由无线通信或讯号传输线与该电池系统100外部之主控制系统进行信息沟通与适当之控制行为。
实施例2于图2系列所例示为本发明一种带有热管理设计电池装置(图标符 号10+图标符号20)与部分电池系统100示意图,与实施例1相似,实施例2主要为藉由本发明中该外壳20之绝热设计,可避免该外壳20外部之温度影响该外壳20内部该电池装置10中之该电池模块11与该电池芯,同时可藉由经温控后之该系统流体121对该电池装置10内之该电池模块11与该电池芯进行高效率之温控,而实施例1与实施例2主要的差异,为除了该第一绝热材料22与该第二绝热材料27外,再增一第三绝热材料24作为该外壳20之该绝热单元,该第三绝热材料24包覆该第一绝热材料22与披覆于该第一绝热材料22表面之该第二绝热材料27(若有)构成之该绝热单元,其中该第三绝热材料24可为单纯之绝热材料或亦可存在于该密封层201,即具有该第三绝热材料24之该密封层201亦同时具有该第一绝热材料22与该第二绝热材料27(若有);于此例(实施例二)仅以具有该第三绝热材料24包覆该第一绝热材料22与该第二绝热材料27(若有)之密封层201设计说明;图2所示之实施例,其中之电池模块11可为该带有热管理设计电池模块,或为一般无热交换管构成之电池模块;另图2所示之实施例皆省略该系统流体循环系统,只保留与该电池装置10接合之该系统流体管13,作为阐述说明本发明之主要概念,而非作为本发明范围之限制。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2a所例示示意图,其包括一电池装置10,其系由复数个电池模块11、正负极导电线14和该流道装置12组成;一系统流体管13;一外壳20,其至少具一绝热单元,与一信道30,其中该外壳20之该绝热单元中存在第一绝热材料22,该第一绝热材料22可存在于该密封层201中,如VIP;除该第一绝热材料22外(包括单独存在或存在于该该密封层201中),该第三绝热材料24可进一步以包覆该第一绝热材料22,且包覆该第一绝热材料22的该第三绝热材料24可以以材料形式存在或存在于另一该密封层201中,用以绝热封装该电池装置10;该信道30系连通该外壳20包覆容纳该电池装置10的该内部空间101与该外壳20外部,于该信道30中并配置该系统流体管13及该正负极导电线14,其中该系统流体管13之一端或一部分进一步与该电池装置10的该流道装置12连接,使该系统流体121由该该外壳20外部温控完成后就由该系统流体管13输送至该电池装置10之该流道装置12形成循环回路,并与该电池模块11进行热交换;该信道30进一步增设该绝热密封层21,该绝热密封层21系防止或降低该外壳20外部之环境温度影响到该外壳20内部该电池装置10之该电池模块11与该电 池芯。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2b所示,为接续图2a实施例的变化,其中包覆该第一绝热材料22的该第三绝热材料24存在于另一该密封层201中,为该外壳20之该绝热单元;且该外壳20并进一步增设一密封通孔23,其中该密封层201与该密封通孔23连接,当该第三绝热材料24为多孔材质或无法完全填满该密封层201内部空间时,可藉由该密封通孔23调控密封层201内部剩余空间之气压,而该密封通孔23、该开关可控接头25与一抽真空设备26连接,该抽真空设备26之配置、使用方式与功能如图1(b)与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2c中所示,为再接续图2a实施例之变化,其中该外壳20中该绝热单元之该密封层201,其内部空间具有包覆该第一绝热材料22之该第三绝热材料24,且该第一绝热材料22为VIP或该第一绝热材料22存在于该密封层201内部空间,且该密封层201表面有铝箔或金属箔封装,此时热量之传递有机会以热传导之方式藉由金属箔的连续表面进行,此时VIP或具该第一绝热材料22之该密封层201其该金属箔表面可进一步涂布该第二绝热材料27,上述该第二绝热材料27其热传导系数小于该金属箔,且该第二绝热材料27与该金属箔需有良好的附着性,可藉由本身之特性或藉由一黏结剂达成。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2d所示,为接续图2c实施例之变化,其中该外壳20进一步增设该密封通孔23,其中该密封层201与该密封通孔23连接,当该第三绝热材料24无法填满该密封层201内部空间时,可藉由该密封通孔23调控密封层201内部剩余空间之气压,而该密封通孔23、该开关可控接头25与一抽真空设备26连接,该抽真空设备26之配置、使用方式与功能如图1b与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2e中所示,为接续图2d实施例之变化,其中若要防止特定方向热源200之影响时,该外壳20可为只部分包覆该电池装置10之设计或是只针对该特定方向热源200设置部分该绝热单元,目的为以足够防止该热源之影响即可。其中该外壳20亦可以再进一步增设一密封通孔23、一开关可控接头25与一抽真 空设备26,使该电池装置可藉由外壳密封层201中该第一绝热材料22、该第二绝热材料27、该第三绝热材料24与真空状态剩余空间,达高绝热之效果。上述之该抽真空设备26之配置、使用方式与功能如图1b与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2f中所示,为再接续图2d实施例之变化,其中该外壳20亦可以再进一步增设第二信道32,其中该绝热密封层211与该绝热密封层212分别置于该第一信道31及该第二信道32;该第一信道31系用以配置该该系统流体管13,该第二信道32用以配置该正负极导电线14;另该该外壳20亦可以再进一步增设一密封通孔23、一开关可控接头25与一抽真空设备26,用以调配该外壳20密封层201中所有绝热材料占据后之剩余空间之真空压力,以达高绝热之效果。上述之该密封通孔23、该开关可控接头25与该抽真空设备26之配置、使用方式与功能如图1b与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,为图2a~图2f任一实施例之变化,其中该系统流体121、该系统流体管13与该流道装置12更可进一步以一热管取代,称为系统热管16,藉以与该外壳20内部之该电池模块11进行热交换。藉由该系统热管16内部空间之两相共存之该系统流体121,该系统热管16封闭两端分别进行气-液相变化与液-气相变化,以进行放热与吸热之行为,同时该系统热管16内部之该气相系统流体(未图标)可进行快速对流速率,使该系统热管16之热传递速率远高于传统铜与铝等高热传导速率材料,此时该系统热管16封闭两端之一端部分该外管表面与该系统流体温控装置(未图标)直接或间接接触,以进行温控;而该系统热管16封闭两端之另一端部分该外管表面亦可直接或间接与该电池模块11接触,并进行热交换,其中若该电池模块11为该带有热管理设计电池模块,则该电池模块11可藉由该模块热交换接口(未图标)与该电池模块11进行热交换,且再进一步藉由该具热交换功能之电池芯充放电线路(未图示)与联结之该电池芯(未图示)进行热交换。另该外壳20亦可以再进一步增设一密封通孔23、一开关可控接头25与一抽真空设备26,用以调配该外壳20中作为该绝热单元之该密封层201中所有该绝热材料占据后剩余空间之真空压力,以达高绝热之效果。上述之该密封通孔23、该开关可控接头25与该抽真空设备26之配置、使用方式与功能如 图1(b)与上述相关说明,于此不再赘述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,接续上述实施例,若该系统热管16为以直接之方式与该电池模块11接触,则于该电池模块11之该模块热交换接口(未图标)该系统热管16与该电池模块11之该具热交换功能之电池芯充放电线路之部分接触面则有一方需为非电导体但具备良好热传导之材料构成,以避免该电池模块11内该电池芯(未图示)或复数该电池模块11间因不同电压位准产生电池芯外短路;若该系统热管16为以间接之方式与该电池模块11接触,则于该电池模块11之该模块热交换接口(未图标),该电池模块11之该具热交换功能之电池芯充放电线路之接触面与该系统热管16间需具备一中间层161,且该中间层161可为非电导体但具备良好热传导材料构成之固体或是流体或固体-流体复合材料以作为媒介,该流体可为单相流体,亦可为液气两相共存之流体,且该流体需密封于一封闭空间,形成该中间层161。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,再接续上述实施例,介于该系统热管16与该具热交换功能之电池芯充放电线路接触面之该模块热交换接口(未图标),其中该中间层161若为具液气两相共存之流体之密封空间,更可进一步利用气-液相变化与液-气相变化,在该系统热管16与该具热交换功能之电池芯充放电线路之接触面间以进行放热与吸热之行为,其类热管之被动式热传递机制与密封环境内之气-液流体循环平衡可大幅提升热传递速率,使该电池模块11中该电池芯需温控时,可藉由该系统热管16与该中间层161快速进行温控,且复数该电池模块11间之该电池芯(未图示)可藉由该中间层161以被动之方式进行均温之操作;另外,于该带有热管理设计电池装置(图标符号10+图标符号20)之该电池系统100中,该系统热管16之数量可以为单数或复数,若为复数则可以以并联之方式进行结合。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,再接续上述实施例,于该电池模块11之该模块热交换接口(未图标)中,该系统热管16可以由复数个热管取代,以提升应用上之弹性与便利,而于复数热管间则以直接或间接之接触形成良好热路径;于此例中,利用该系统流体121与该系统流体管13构成之该系统流体热管(未图标),加上以该系统流体121与该流道装置12构成之该流道热管(未图示),以取代单一之该系统热管; 其中该流道热管于该电池模块11之该模块热交换接口担任直接与该热交换管(未图示)或是间接藉由该中间层161与该热交换管进行热交换,而该系统流体热管则为与该电池系统100中该系统流体循环装置(未图标)中之该系统流体温控装置(未图标)进行热交换;而该流道热管与该系统流体热管以串联之方式进行接触,其接触方式可为直接接触,亦可以间接藉由导热胶或其他具良好热传导且具平整化接触面之材料,以修饰该系统流体热管与该流道热管间的接触面达到良好热接触。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,再接续上述实施例,于该电池模块11之该模块热交换接口(未图标)中,介于该系统热管16与该电池模块11间之该中间层161可为固体,其构成材料可为陶瓷材料(如氮化硼,氮化铝,碳化硅,氧化铝,氧化锌等)、导热塑料(如PP、Nylon、PBT、PET、PPS、ABS、PC等相关复合材料)、或上述之组合物等。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2g所示,再接续上述实施例,于该电池模块11之该模块热交换接口(未图标)中,介于该系统热管16与该电池模块11间之该中间层161为流体,或是固体-液体复合材料;其中流体可为液态或气态或气液两相共存之流体组成,液态流体如冷媒剂、二甲醚、纯水、纯水-乙二醇或纯水-丙二醇等之溶液,或其他不与接触之该系统热管16与该电池装置10等部件进行反应之液态流体;气态流体如水蒸气、空气或其他不与接触之该系统热管与该电池装置10等部件进行反应之气态流体;气液两相共存流体如水与水蒸气、丙酮与丙酮蒸气等,或其他不与接触之该系统热管与该电池装置10等部件进行反应之两相流体;固液两相共存之固体-液体复合材料,其中固体如上一段落所述,液态流体则如上所述。
一种带有热管理设计电池装置(图标符号10+图标符号20)与部分电池系统100,如图2a-2g任一实施例,该电池装置10进一步设有一电池管理装置(BMS)15,该电池管理装置15可感测该电池装置中电池模块11之电压与温度,并可藉由无线通信或讯号传输线与电池系统100外部之主控制系统(未图标)进行信息沟通与适当之控制行为。
图3系列所例示之实施例三为本发明一种带有热管理设计电池模块11示意图,主要包括:(i)该具热交换电池芯充放电线路,与(ii)该模块热交换接口,该 带有热管理设计电池模块11可搭配该带有热管理设计电池装置或该带有热管理设计电池系统,或同时搭配该带有热管理设计电池装置与该带有热管理设计电池系统,又或可搭配无热管理之一般电池装置与一般电池系统,于本实施例中,带有热管理设计电池模块11为该带有热管理设计电池装置之一部分,并搭配带有热管理设计电池系统;如图3a所示,为该带有热管理设计电池模块11之具热交换电池芯充放电线路与该带有热管理设计电池装置(未图标)之部分示意图,其中该电池模块11包括一电池芯111、电池芯固定机构(未图标)、电压量测电路(未图标)、温度感测装置(未图标)及该具热交换电池芯充放电线路所组成,于此实施例中,该具热交换电池芯充放电线路为该热交换管131构成,其中该热交换管131为以两端密封之金属外管1311为主体,管内中空之密封空间具有一热交换管流体122;该热交换管131之该金属外管1311与该电池芯111以锡焊、超音波焊接或其他技术相互结合,形成一并联组18,此时可藉由该热交换管131之该金属外管1311作为电流路径,对该电池芯111进行充放电,另一方面,于充放电时该电池芯与该热交换管131之该金属外管1311产生之热量,可直接藉由该热交换管131本身进行散热,将热传至该电池模块11之该模块热交换接口;反之若要对电池芯进行加热,为上述散热路径之相反方向;于此实施例中之该模块热交换接口,则为一部分之该热交换管131之外管1311与该带有热管理设计电池装置之该流道装置12中之该系统流体121直接接触之界面构成,图3a-(1)与图3a-(2)为不同该模块热交换接口之设计,但皆能使该电池模块11中的电池芯111可透过该热交换管131内的该热交换管流体122、该热交换管金属外管1311与该带有热管理设计电池装置之该流道装置12中之该系统流体121快速进行热交换,以提供该电池模块11中之该电池芯111可达到快速与高能源效率之热管理;为了简化起见,以下提及之图3a皆以图3a-(1)代表,然而皆不排除图3a-(2)或其他类似之设计。
一种带有热管理设计电池模块11,如图3b所示,接续实施例图3a,该具热交换电池芯充放电线路再进一步增加一金属结构件80置于该电池芯111与该热交换管131之该金属外管1311间,并分别与该电池芯111与该热交换管131之该金属外管1311以锡焊、超音波焊接或其他技术相互结合,形成该并联组18,使该电池模块11中的电池芯111与可透过金属结构件80、该热交换管131内的该热交换管流体122、该热交换管金属外管1311与该带有热管理设计电池装置 (未图标)之该流道装置12中之该系统流体121快速进行热交换。
一种带有热管理设计电池模块11,如上实施例图3c所示,接续实施例图3b,该具热交换电池芯充放电线路中,若密封于该热交换管131中之该热交换管流体122为气(1221)-液(1222)两相共存之流体(122=1221+1222),当该电池模块11中的该电池芯111需进行温控时,如充放电操作导致之该电池芯111温度过高,此时该电池芯111的所产生的热能,可藉由该具热交换电池芯充放电线路之该金属结构件80传导至该热交换管131,之后再藉由该热交换管131之该金属外管1311与密封于其中之该热交换管流体122分别以热传导与热对流之方式,于该模块热交换接口与该带有热管理设计电池装置(未图标)之该流道装置12中的该系统流体121以直接之方式接触并进行热交换,以快速对该电池芯111进行冷却,反之若因环境温度过低需对该电池芯111加热,亦可利用相同的热传递路径以经温控加热后之该系统流体121对该电池芯111加热。其中该热交换管131中内部封闭空间1312之该液态热交换管流体1222,藉由相转变程序在高温端对大量热量进行吸收,而后并藉由相转变程序形成该气态热交换管流体1221,以该气态热交换管流体1221进行快速传导,而后在低温端再进行一次相转变,使该气态热交换管流体1221将热量释出,冷凝成该液态热交换管流体1222,而该液态热交换管流体1222则藉由一微细毛细结构(wick)1313往高温端输送。上述循环可大幅提升热传导与热交换之传递速度与传递热量。
一种带有热管理设计电池模块11,如图3c所示,接续如上实施例,该具热交换电池芯充放电线路中,该热交换管流体122系为气液两相共存流体(1221+1222),如水与水蒸气、丙酮与丙酮蒸气等,或其他不与接触之该热交换管金属外管1311与该微细毛细结构1313反应之两相流体。
一种带有热管理设计电池模块11,如图3c所示,接续如上实施例,该具热交换电池芯充放电线路中,该热交换管131可为模块热管,除上述该内部封闭空间1312具有该热交换管流体122,进一步分别藉由液-气与气-液相转变程序对大量热量进行吸收或释放,并该内部封闭空间1312之气体主要为该气态热交换管流体1221,除可快速进行传导以大幅提升热传速度之特性外,其更包含该微细毛细结构1313,该液态热交换管流体1222可藉由该微细毛细结构1313进行输送,以在该模块热管131之热区与冷区间分别进行液态转变气态与气态转变液态之两相流体循环,一般来说,可为铜或铝等良好热导体之热传能力之数百倍以上。
一种带有热管理设计电池模块11,如图3d所示,接续如上实施例图3c,该带有热管理设计电池装置(未图标)之该流道装置12与该系统流体121亦可设于该热交换管131两端,以对该热交换管131中间段连结之该电池芯111进行温控,以对该电池模块11中之该电池芯111达到高效率热管理,相关说明如上所述,于此不再赘述。
一种带有热管理设计电池模块11,如图3e所示,接续如上实施例,该电池模块11包含复数个电池芯111、复数个金属结构件80、流道装置(未图标)与系统流体(未图标),其中该金属结构件80直接与复数个该电池芯111以并联的方式进行链接组合成该并联组18,使得该并联组18至少有一极藉由具有该金属结构件80与数量为单数或复数之该热交换管131组成之该具热交换电池芯充放电线路进行充放电,其中该具热交换电池芯充放电线路中之该金属结构件80与该热交换管131可根据实际需求弹性搭配,如单数该金属结构件80搭配单数该热交换管131(图3e-(1),1s16p)构成之该并联组18,或是复数该金属结构件80搭配单数该热交换管131(图3e-(2),1s16p)构成之该并联组18,或是复数该金属结构件80搭配复数该热交换管131(图3e-(3),1s24p)构成之该并联组18;其中更可进一步使复数并联组18藉由复数该热交换管131相互进行串联(图3f,8s2p),组成一完整之该电池模块11。
一种带有热管理设计电池模块11,如图3a~f所示,接续如上实施例,该热交换管131可以只与该并联组18之一极结合(如图3a、3b、3c、3d或3e所示),或是该并联组18之两极皆包含热交换管131如图3f所示;若需对该电池芯111进行散热,则图3a、b、c、e或f中之该热交换管131皆为一端为热区(连接电池芯111部分,为该具热交换电池芯充放电线路之一部分),另一端为利用该带有热管理设计电池装置(未图标)之该系统流体121进行冷却之冷区(无连接该电池芯111部分,为该模块热交换接口之一部分),亦可以以该热交换管131两端做为冷区,该热交换管131两端中间之部分作为结合该电池芯111之热区,如图3d所示;若需对该电池芯111进行加热,上述该热交换管131之热区与冷区则相反;另该热交换管131之形状也可以根据实际需求弹性设计,并不限于图3中之直管。
一种带有热管理设计电池模块11,如图3a~3f所示,接续如上实施例,该金属结构件80系为具高热传系数材料构成,且为电子良好导体,如铜或铝等金属 材料。
一种带有热管理设计电池模块11,如图3g所示,接续实施例图3a~3f,若该带有热管理设计电池模块11为该带有热管理设计电池装置(未图标)之一部分,且该带有热管理设计电池装置之该系统流体121与该流道装置12进一步与该带有热管理设计电池系统(未图标)之该系统流体循环装置之该系统流体管13结合为系统热管16,则于该模块热交换接口中,一部分之该系统热管16与该热交换管131之该外管1311表面以直接(图3g-(1))或藉由该中间层161间接接触(图3g-(2):该中间层161为固体;图3g-(3)该中间层161为具流体之中空密封空间,或为具固体与流体复合材料之中空密封空间),使该电池模块11中的该电池芯111可透过该热交换管131与该系统热管16进行热交换,相关实施之方式与材料选择于上述段落已详述,在此不再赘述。
一种带有热管理设计电池模块11,如图3g-(4)所示,接续上述实施例,为一由4组之16个该电池芯111并联而成该并联组18进行串联之该电池模块11(4s16p)组成之示意图;其中为了使4组1s16p之该并联组18组成之该电池模块11之热管理设计更清楚易懂,其相互之串联方式于此例未图示;此例之该模块热交换接口,为该中间层161、该热交换管131之部分该金属外管(未图标)与该系统热管161之部分该金属外管1611组成,为3g-(3)之其中一种特例,除该中间层161为具流体之中空密封空间外,该流体更可以为气1621-液1631两相流体,并以类热管之热交换形式将热量以气1621-液1631或液1631-气1621之两相变化传递于该系统热管16之该金属外管1611与4组该热交换管131之该金属外管(未图示)表面间,其中4组该热交换管131为该电池模块11中该具热交换功能之电池芯充放电线路之主要部分,可透过该金属结构件80与该电池芯111进行热交换与充放电程序;另外此例之该系统热管16与4组该热交换管131分别位于该中间层161两侧,该中间层161之外壳分别与4组该热交换管131之该金属外管与该系统热管16之该金属外管1611结合且可维持一封闭之中空该中间层161,使4组该热交换管131之该金属外管与该系统热管16之该金属外管1611之部分表面可直接与该中间层161内之两相流体直接接触,另4组该热交换管131之该金属外管间需具备适当之绝缘设计以保证相互之间无短路可能性,如4组该热交换管131之该金属外管与该中间层161外壳间有一薄绝缘层(未图示)等,其构成材料亦可为[0097]提及之具良好热传之电绝缘材料,于此不再赘述; 而当热量由4组该热交换管131传递至该中间层161内之两相流体(1621,1631),再至该系统热管16后,该系统热管16内两相之该系统流体再一次藉由气1620-液1630与液1630-气1620之两相变化将热量传递至该系统热管16与该系统流体温控装置41进行热交换之一端,最后再藉由该系统流体温控装置41将该气相系统流体1620冷却,冷却后之该液相系统流体1630则藉由该微细毛细结构1650之毛细现象传输至该中间层161,再经由类热管之原理冷却4组该热交换管131表面;其中该热交换管131亦可以为该模块热管。
一种带有热管理设计电池模块11,如图3g-(5)所示,接续实施例图3a-(4),本例为电池芯之散热,若欲为电池芯进行加热,则热传输方向为相反方向;其中本例该带有热管理设计电池模块11之该模块热交换接口为4组该热交换管131与该两相系统流体(1620,1630)之直接接触面,其中该4组该热交换管131之部分该金属外管(未图示)表面直接与该系统热管16之该金属外管1611结合,使4组该热交换管131之部分该金属外管表面可直接与该系统热管16内之该两相系统流体(1620与1630)直接接触,由于4组该热交换管131需保证无短路之可能性,因此4组该热交换管131之该金属外管与该中间层161外壳间有一薄绝缘层(未图示),其构成材料亦可为如图2g所述固体材料提及之具良好热传之电绝缘材料,于此不再赘述;4组该热交换管131藉由该系统热管16内之两相该系统流体(1620与1630),将热量以气-液或液-气之两相变化于该系统热管16中具有4组该热交换管131直接接触端与具有该系统流体温控装置41之另一端进行传递,最后再藉由该系统流体温控装置41将该气相系统流体1620冷却,冷却后之该液相系统流体1630则藉由该微细毛细结构1650之毛细现象传输至4组该热交换管131之该金属外管表面处;其中该热交换管131亦可以为模块热管,另该系统热管16亦可由复数个热管取代,详细内容如[0096]所述。
图4所例示之实施例四为本发明带有热管理设计电池系统100示意图,主要图标该电池系统100之整体热交换设计,其中之电池模块可为图三所例示之包含该热交换管之该具热交换电池芯充放电线路与该模块热交换接口之该带有热管理设计电池模块,亦可只具一般无该热交换管之电池芯充放电线路或/与无该模块热交换接口构成之电池模块。图4a所例示为本发明之一带有热管理设计电池系统100实施例,其包括该带有热管理设计电池装置10(除该外壳20外),其系由复数个该带有热管理设计电池模块11、该正负极导电线14、该流道装置12组 成;该系统流体循环装置,包括该系统流体管13、该系统流体储存装置40、该系统流体温控装置41及该系统流体输送装置42;该外壳20,包括该绝热单元、该信道30与该绝热密封层21,其中于此例该外壳20之该绝热单元包括该第一绝热材料22及该第三绝热材料24,用以绝热封装该电池装置10,该信道30则系连通该外壳20外部空间与其包覆容纳该电池装置10的该内部空间101,该信道30中并配置该系统流体管13及该正负极导电线14,其中该信道30中之该系统流体管13系进一步与该电池装置10的该流道装置12进行连接,使经温控后之该系统流体121藉由该系统流体管13输送至该外壳20内部之该流道装置12,并与该电池模块11之该模块热交换接口进行热交换;该绝热密封层21系防止或降低该外壳20的外部环境温度影响到该外壳20内部该电池装置10温度。于该系统流体循环装置中,该系统流体储存装置40、该系统流体温控装置41、该系统流体输送装置42与该系统流体管13串联,该系统流体管13另一端或另一部分则连接该电池装置10中之该流道装置12,其中系透过该系统流体输送装置42将该系统流体121在系统流体循环装置中输送,并以该系统流体温控装置41对该系统流体121进行加热或冷却,经温控后之该系统流体121可储存于具绝热设计之该系统流体储存装置40,或依当时之状况直接导回该系统流体管13,以进入该流道装置12与该电池装置10中该电池模块11于该模块热交换接口进行热交换,再藉由该具热交换电池芯充放电线路与该电池模块11中之该电池芯111进行热交换。上述之该系统流体121系为纯水-丙二醇溶液,但可根据实际设计选择液态或气态或气液两相共存之流体,如上述之相关说明。
一种带有热管理设计电池系统100,如图4b中所示,接续实施例图4a,进一步在该正负极导电线14与该带有热管理设计电池装置10之间设有一分支管50,其中该分支管50与该系统流体管13相接,并有一可控开关(未图标),作为控制该系统流体121是否允许循环于该分支管50,与该正负极导电线14进行热交换。此设计可避免或降低该正负极导电线14受环境温度影响后,藉由热传导之方式影响该电池装置10之温度;上述延伸至该电池装置(图标符号10+图标符号20)之该外壳20外部的该系统流体管13与该正负极导电线14,可另外于表面增设一绝热套管(未图示),以进一步防止或降低该外壳20外部之环境温度影响该外壳20内部空间101所容纳之该电池装置10的温度。
一种带有热管理设计电池系统100,如图4b中所示,接续上述实施例,于 该外壳20之该绝热单元中可包括真空绝热板(VIP)作为该第一绝热材料22,该第一绝热材料22达成功效如同图1与图2实施例中所示,在此不重复叙述;上述外壳20该密封层201中系实质上全部填满或尚未全部填满该第一绝热材料22如图2a-(1)所示,其该外壳20该绝热单元之该密封层201剩余空间可再进一步包括该第三绝热材料24,如图2a-(2)所示,与此不再赘述。
一种带有热管理设计电池系统100,再接续上述实施例图4b,该外壳20再进一步增设该密封通孔23、该开关可控接头25与该抽真空设备26,如图4c所示,若该第一绝热材料22与该第三绝热材料24并未完全填满该绝热单元之该密封层201,可利用该抽真空设备26调配该密封层201内剩余空间之真空压力,基本上该真空压力低于或等于10-2Pa,更可进一步低于或等于10-3Pa。上述之该密封通孔23、该开关可控接头25与该抽真空设备26之配置、使用方式与功能如图1b与相关说明,于此不再赘述。
一种带有热管理设计电池系统100,如图4d中所示,接续上述实施例图4c之变化,其中该外壳20亦可以再进一步增设一第二信道32,其中该绝热密封层211与该绝热密封层212分别置于该第一信道31及该第二信道32;该第一信道31系用以配置该系统流体管13,该第二信道32用以配置该正负极导电线14,而复数该信道(31,32)的该外壳20设计主要为提供更弹性的空间安排。
一种带有热管理设计电池系统100,如图4d中所示,接续上述实施例图4c,该电池芯111与该热交换管131构成之该具热交换电池芯充放电线路,可如同图3c中所示,利用该金属结构件80置于该电池芯111与该热交换管131之间,并以超音波焊接相互链接,组成该并联组,如图3e-(1)所示,之后再将该并联组进行串联,形成正负极皆有该具热交换电池芯充放电线路之该带有热管理设计电池模块11,其做法如图3f所示,惟该电池芯111数量与本例有出入;当以上述复数个该带有热管理设计电池模块11组成之该带有热管理设计电池装置10于低温气候欲进行充电时,则藉由图4d之该系统流体循环系统中之该系统流体输送装置42,将被该系统流体温控装置41加热后的该系统流体121,或是将已加热并储存于该系统流体储存装置40之该系统流体121,输送至该电池装置10之该流道装置12,此例中之该模块热交换接口为直接接触设计,使该系统流体121与该具热交换电池芯充放电线路之该热交换管131外管直接接触,因此该系统流体121之热量可经由该模块热交换接口传至该具热交换电池芯充放电线路,最后经 由该金属结构件80传至该电池芯111以对其进行加热;另一方面此例中之该外壳20,其该绝热单元之该密封层201中之该第一绝热材料22、该第二绝热材料27与该第三绝热材料24之绝热效果,使被加热后之该电池芯111温度可长时间维持,以进行安全之充电程序;而上述该金属结构件80系为具高热传系数材料构成,且为电子良好导体,如铜或铝等金属材料;另上述该热交换管131可为热管,为该模块热管。
一种带有热管理设计电池系统100,如图4e所示,接续实施例图4d之变化,其中该系统流体121、该系统流体管13与该流道装置12以该系统热管16取代,其运作模式如图2g与其相关说明;另该中间层161如说明与图3g-(4)所示;其中于该系统热管16直接与该系统流体温控装置41直接接触,且该系统流体121以气-液两相共存状态处于该系统热管16之内部封闭空间,该系统流体温控装置41对该系统热管16直接接触端进行温控后,由该系统热管16内经温控后之气-液两相之该系统流体121以不需施加额外能量之方式进行流体之输送,进而于该模块热交换接口之该中间层161对该热交换管131进行温控,因此不需要该系统流体输送装置42与该系统流体储存装置40;于该电池模块11中之该热交换管(未图标)与该模块热交换接口之该中间层161进行热交换后,与该热交换管连结之该电池芯(未图示)则进一步与该热交换管进行热交换,其中该热交换管可为该模块热管。
一种带有热管理设计电池系统100,如图4e中所示,接续上述实施例,其中该系统热管16可以由复数个热管取代,以提升应用上之弹性与便利,而于复数热管间则以直接或间接之接触形成良好热路径,如复数个该系统热管16以并联之方式进行结合;于此例中,利用该系统流体121与该系统流体管13构成之该系统流体热管(未图标),加上以该系统流体121与该流道装置12构成之该流道热管(未图示)为一封闭管道,以取代单一之该系统热管,上述其一端与该中间层接触161,并进行热交换,其中该系统流体121可为一气-液两相流体如上所述,且该流道热管数量可为一个或一个以上。;另一方面,该系统流体热管与该流道热管间的接触面,为直接接触,亦可以间接藉由导热胶或其他具良好热传导且具平整化接触面之材料,以修饰该系统流体热管与该流道热管间的接触面达到良好热接触。
一种带有热管理设计电池系统100,如图4f所示,接续上述实施例图4a-4e, 其中该系统流体循环装置,根据不同设计,与该系统流体温控装置41进行热交换之该系统流体管13其中进一步于其表面设置一绝热套管17,以防止或减少外界环境温度藉由该系统流体管13影响该电池装置(未图标)中该电池模块(未图标)与该电池芯(未图标)之温度;另外,该电池装置之该正负极导电线14表面亦可设置该绝热套管17,以防止或减少外界环境温度藉其影响该电池装置(未图标)中该电池模块(未图标)与该电池芯(未图标)之温度。
一种带有热管理设计电池系统100,如图4g所示,接续上述实施例图4f之变化,于该系统流体管13r与该系统流体温控装置41之接触面,进一步增加一温控中间层411,其中该温控中间层411具有一流体(未图标),作为该系统流体管13与该系统流体温控装置41之间之热传递路径,该流体于该电池装置(未图标)中之该电池模块(未图标)需进行散热或加热时,存在于该温控中间层411中;若于该电池装置中之该电池模块需避免或降低外界环境温度影响时,存在于该温控中间层411中之该流体则可以藉由一流体抽离与储存装置43将该温控中间层411中之该流体抽离净空并储存于该流体抽离与储存装置43中。
接续如上述实施例四如图4a-4e中所示内部电池装置10,进一步设有一电池管理装置(BMS)15,该电池管理装置15可感测该电池装置电压或电池装置温度或电池装置的充放电容量,并可与电池系统之主管理装置(未图标)进行信息沟通与适当之控制行为。
上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
同时本发明上述实施例仅为说明本发明技术方案之用,仅为本发明技术方案的列举,并不用于限制本发明的技术方案及其保护范围。采用等同技术手段、等同设备等对本发明权利要求书及说明书所公开的技术方案的改进应当认为是没有超出本发明权利要求书及说明书所公开的范围。

Claims (144)

  1. 一种带有热管理设计电池模块,其特征在于,包括:
    一个或一个以上的可重复充放使用的二次电池芯;和
    一具有热交换功能电池芯充放电线路以及一模块热交换接口,其中所述具有热交换功能电池芯充放电线路至少包括一个或一个以上的热交换管,并同时作为传热与电流的路径。
  2. 如权利要求1所述的带有热管理设计电池模块,其中所述热交换管至少包括一密闭空间、一构成所述密闭空间的外管与一热交换管流体,其中所述密闭空间以所述外管封装构成,且所述热交换管流体存在于所述密闭空间中,所述热交换管通过所述外管与所述密闭空间内的所述热交换管流体作为媒介,在所述热交换管的两端进行热传递。
  3. 如权利要求2所述的带有热管理设计电池模块,其中所述热交换管外管为金属外管。
  4. 如权利要求2所述的带有热管理设计电池模块,其中所述热交换管为模块热管。
  5. 如权利要求2所述的带有热管理设计电池模块,其中所述热交换管流体包括液态流体、气态流体或气液两相共存之流体。
  6. 如权利要求1所述的带有热管理设计电池模块,其中所述具有热交换功能电池芯充放电线路的所述热交换管,至少与数量为一个或一个以上所述电池芯的一极直接或间接接合,上述所述间接结合方式为通过一金属结构件的两端分别连接所述电池芯电极与所述热交换管,其中所述热交换管与所述金属结构件通过各式焊接技术进行结合,上述各式焊接技术包含超音波焊接、电阻点焊、雷射焊接。
  7. 如权利要求1所述的带有热管理设计电池模块,其中复数所述电池芯的复数正极与复数负极分别连结形成所述复数正极与所述复数负极并联两组充放电线路形成一并联组,其中所述并联组中至少一组相同极性电极的复数所述电池芯连结形成的充放电线路为所述具有热交换功能电池芯充放电线路。
  8. 如权利要求7所述的带有热管理设计电池模块,其中所述电池模块具备复数个所述并联组,并且和所述电池模块中复数所述并联组接序进行串联,从而, 所述串联中具有相同电位水平的所述电池芯或所述并联组的某一极性电极与邻近串接的另一电池芯或并联组的另一极性电极间连接至相同所述具有热交换功能电池芯充放电线路。
  9. 如权利要求1所述的带有热管理设计电池模块,其中所述模块热交换接口为所述电池模块对外进行热交换的主要途径,其中所述模块热交换接口的构成至少包括下列对象:(i)至少一端所述热交换管的部分所述外管表面;(ii)温控媒介,即所述模块外的温控源欲对所述模块温控时的媒介;且至少所述热交换管的部分所述外管表面与所述温控媒介以直接或间接的方式进行接触。
  10. 如权利要求9所述的带有热管理设计电池模块,其中所述电池模块为所述带有热管理设计电池装置或所述带有热管理设计电池系统的一部分。
  11. 如权利要求10所述的带有热管理设计电池模块,其中所述温控媒介为系统流体。
  12. 如权利要求9所述之带有热管理设计电池模块,其中所述模块热交换接口至少包括一组或一组以上的所述并联组所具备的所述热交换管外管部分表面,其中若复数个所述热交换管间为不同电压位准,则复数个不同电压位准的所述热交换管需互为电绝缘。
  13. 如权利要求9所述的带有热管理设计电池模块,其中至少所述热交换管的部分所述外管表面直接与所述温控媒介接触进行热交换。
  14. 如权利要求9所述的带有热管理设计电池模块,其中所述模块热交换接口中,设有一中间层,且至少所述热交换管的部分所述外管表面,通过所述中间层与所述温控媒介以间接接触方式进行热交换。
  15. 如权利要求14所述的带有热管理设计电池模块,其中所述中间层为具有高热传导能力的固态电绝缘层、胶态电绝缘层或具有电绝缘特性的液态流体或上述两者之组合。
  16. 如权利要求14所述的带有热管理设计电池模块,所述中间层为封闭空间,并具有气-液两相流体,以类热管的形式,利用气-液两相的变化,将热传递于所述热交换管与所述温控媒介间。
  17. 如权利要求14所述的带有热管理设计电池模块,其中所述模块热交换接口中,所述温控媒介透过一封闭的管道输送,因此所述温控媒介未直接接触所述中间层,即所述模块热交换接口包括至少所述热交换管的部分所述外管表面、 所述中间层与所述封闭管道外管,使所述热交换管中的所述热交换管流体通过上述所述模块热交换接口与所述封闭管道内的所述温控媒介进行热交换。
  18. 如权利要求17所述的带有热管理设计电池模块,其中所述封闭管道与所述温控媒介结合为一热管,为流道热管,其一部分与所述中间层接触,并进行热交换。
  19. 如权利要求18所述的带有热管理设计电池模块,其中所述温控媒介为气-液两相流体。
  20. 如权利要求19所述的带有热管理设计电池模块,其中所述流道热管数量至少为一。
  21. 如权利要求1所述的带有热管理设计电池模块,其中数量为一组电池模块或一组以上的所述电池模块为一电池装置的一部分,其中所述电池装置除所述电池模块外,还至少包括:一正负极导电线与一流道装置,其中所述正负极导电线,作为所述电池装置正负极电流输出/输入的路径,其中所述流道装置内部包括一系统流体,作为对所述电池模块进行热交换的温控媒介。
  22. 如权利要求21所述的带有热管理设计电池模块,其中所述电池模块数量为复数。
  23. 如权利要求22所述的带有热管理设计电池模块,其中复数个所述电池模块通过并联或串联或包括并联与串联的方式进行电连接。
  24. 如权利要求21所述的带有热管理设计电池模块,其中所述电池模块数量为单数。
  25. 如权利要求21所述的带有热管理设计电池模块,其中所述流道装置结合于所述电池模块。
  26. 如权利要求21所述的带有热管理设计电池模块,其中所述电池装置可以进一步包括一外壳;所述外壳至少包括一信道、一绝热单元与一结构单元,其中所述信道作为沟通所述电池装置的所述外壳内部与外部的路径,所述绝热单元则包覆所述电池装置,用以降低外界环境温度对所述电池装置的影响,所述结构单元则为提供所述外壳所需强度。
  27. 如权利要求26所述的带有热管理设计电池模块,其中所述信道、所述绝热单元与所述结构单元的数量皆为单数。
  28. 如权利要求26所述的带有热管理设计电池模块,其中所述信道、所述 绝热单元与所述结构单元的数量皆为复数。
  29. 如权利要求26所述的带有热管理设计电池模块,其中所述外壳的所述信道,连通所述外壳包覆所述电池装置的内部空间与外壳外部的空间,作为所述电池装置沟通内外空间的路径,以进行电池装置的充放电、讯号传输或温控相关功能的需求;其中所述信道内进一步增设绝热密封层,并至少部分填满原有于所述信道中存在的所述正负极导电线与其他存在于所述信道内的装置与管线外的空间。
  30. 如权利要求26所述的带有热管理设计电池模块,其中所述外壳的所述绝热单元设置为一密闭空间的密封层,且所述密封层内气压为真空,其真空压力低于或等于10-2Pa。
  31. 如权利要求30所述的带有热管理设计电池模块,其中所述外壳上进一步包括一密封通孔,所述密封通孔的一端可连通所述密封层,而另一端直接连接至所述外壳外部,并连接一开关可控接头,所述开关可控接头的另一端连接一抽真空设备,以控制所述密封层真空状态。
  32. 如权利要求31所述的带有热管理设计电池模块,其中所述抽真空设备为真空帮浦。
  33. 如权利要求31所述的带有热管理设计电池模块,其中所述抽真空设备为所述电池装置的一部分或一外接设备。
  34. 如权利要求31或32或33中任一所述的带有热管理设计电池模块,其中所述密封层进一步包覆一金属层或是以其他金属沉积制程将所述金属层沉积于所述密封层上,以防止辐射热散失。
  35. 如权利要求34所述的带有热管理设计电池模块,其中所述金属层是铝箔或铜箔。
  36. 如权利要求26所述的带有热管理设计电池模块,其中所述外壳的所述绝热单元被设置为一绝热材料层,所述绝热材料选自发泡材料、聚苯乙烯相关材料、二氧化硅相关材料、煅制二氧化硅材料、气凝胶、珍珠岩、玻璃棉、陶瓷棉或真空绝热板中的一种或多种组成的材料组。
  37. 如权利要求36所述的带有热管理设计电池装置,其中所述发泡材料是聚氨酯相关材料。
  38. 如权利要求36所述的带有热管理设计电池装置,其中所述二氧化硅相 关材料是玻璃纤维。
  39. 如权利要求30或36所述的带有热管理设计电池模块,其中所述外壳的所述绝热单元被设置为密封层所述绝热材料的结合,即在真空压力低于或等于10-2Pa的所述密封层中进一步包括所述绝热材料。
  40. 如权利要求26所述的带有热管理设计电池模块,其中所述外壳的所述结构单元包括层状结构单元、支架结构单元或上述结合物,其中所述结构单元的组成材料选自:复合金属材料、塑钢、玻璃纤维复合塑料材料、碳纤维复合塑料材料或工程塑料中的一种或多种组成的材料组。
  41. 根据权利要求40所述的带有热管理设计电池模块,其中所述复合金属材料选自钛合金、铝合金或不锈钢中的一种或多种。
  42. 如权利要求40或41所述的带有热管理设计电池模块,其中所述外壳的结构单元延伸至所述外壳包覆的内部空间,形成一热传导良好路径,从而,所述结构单元与所述外壳包覆的内部空间之间进一步包括一所述绝热单元,以构成无热传导良好路径的所述外壳的内部空间。
  43. 如权利要求26所述的带有热管理设计电池模块,其中所述外壳的所述绝热单元被设置为针对具有方向性的所述环境热源或环境冷源进行隔绝。
  44. 如权利要求43所述的带有热管理设计电池模块,其中其他无环境热源或源的所述外壳部分被设为不包括所述绝热单元。
  45. 如权利要求44所述的带有热管理设计电池模块,其中所述外壳的所述绝热单元被设为不完全包覆所述电池装置。
  46. 如权利要求29所述的带有热管理设计电池模块,其中所述电池装置包括复数个所述流道装置。
  47. 如权利要求46所述的带有热管理设计电池模块,其中所述流道装置被设为以串联或并联或包括串联与并联的方式进行连接,使所述系统流体在复数个所述流道装置中循环,并与每个对应的所述电池模块进行热交换。
  48. 如权利要求47所述的带有热管理设计电池模块,其中所述系统流体被设为不与所述电池系统其他对象反应的单相或多相流体,其中所述系统流体选自液态流体,气态流体,气液两相共存流体,固液两相共存流体中的一种或多种。
  49. 如权利要求48所述的带有热管理设计电池模块,其中所述液态流体选自冷媒剂、二甲醚、纯水、纯水-乙二醇、纯水-丙二醇的溶液或上述液体的组合 物。
  50. 如权利要求48所述的带有热管理设计电池模块,其中所述气态流体选自水蒸气或空气。
  51. 如权利要求48所述的带有热管理设计电池模块,其中所述气态流体选自水蒸气或空气。
  52. 如权利要求48所述的带有热管理设计电池模块,其中所述气液两相共存流体选自水与水蒸气或丙酮与丙酮蒸气。
  53. 如权利要求48所述的带有热管理设计电池模块,其中以悬浮于液相的高热容与高热导固态微粒形成的所述固液两相共存的固态悬浮流体选自电绝缘的碳化硅、氧化铝或氮化铝中一种或多种固态微粒均匀悬浮于可耐高压的液态流体。
  54. 如权利要求53所述的带有热管理设计电池模块,其中所述可耐高压的液态流体选自纯水或矿物油。
  55. 如权利要求47所述的带有热管理设计电池模块,其中所述流道装置被设置为一封闭管道。
  56. 如权利要求55所述的带有热管理设计电池模块,其中所述电池模块的所述导热路径至少包括所述流道装置以使所述系统流体在对所述电池模块进行温控时,所述系统流体得以在所述流道装置中输送。
  57. 如权利要求55或56所述的带有热管理设计电池模块,其中所述封闭管道形式存在的所述流道装置与存在其中的所述系统流体进一步结合为一热管,称为流道热管。
  58. 如权利要求57所述的带有热管理设计电池模块,其中所述气-液两相流体选自纯水-水蒸气、丙酮-丙酮蒸气或氨水-氨水蒸气中的一种。
  59. 如权利要求57所述的带有热管理设计电池模块,其中所述流道热管数量至少为一或一个以上。
  60. 如权利要求1所述的带有热管理设计电池模块,其中数量为一组或一组以上的所述电池模块被设置为一带有热管理设计电池系统中的一电池装置的一部分,所述带有热管理设计电池系统系包括所述电池装置和一系统流体循环装置,其中所述系统流体循环装置被设为连接于所述电池装置中的所述流道装置,从而,使作为温控媒介的所述系统流体在电池装置内的所述电池模块与电池装置 外的所述系统流体循环装置进行循环,以提供电池模块进行热交换所需。
  61. 如权利要求60所述的带有热管理设计电池模块,其中所述电池装置具有外壳,其中所述外壳至少包括一信道、一绝热单元与一结构单元,其中所述信道作为沟通所述电池装置的所述外壳内部与外部的路径,所述绝热单元则包覆所述电池装置,用以降低外界环境温度对所述电池装置的影响,所述结构单元则为所述外壳提供所需强度。
  62. 如权利要求61所述的带有热管理设计电池模块,其中所述信道、所述绝热单元与所述结构单元的数量都至少为一或一个以上。
  63. 如权利要求60所述的带有热管理设计电池模块,其中所述系统流体循环装置,其包括:
    一系统流体管,与所述电池装置中的所述流道装置连接,所述电池装置中的所述流道装置与所述系统流体循环装置形成一循环回路,使所述系统流体得以于所述循环回路输送;和
    一系统流体温控装置,用以加热或冷却所述系统流体,所述系统流体温控装置包括但不限于热帮浦或其他可进行加热与冷却的装置。
  64. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体循环装置进一步包括系统流体储存装置,并用以与所述系统流体温控装置连接,以储存所述系统流体,并具有保温功能。
  65. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体循环装置进一步包括系统流体输送装置,以主动将所述系统流体在所述系统流体循环装置与所述电池装置所形成的循环回路进行输送,并与所述电池模块进行热交换。
  66. 如权利要求65所述的带有热管理设计电池模块,其中所述系统流体输送装置为帮浦。
  67. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体管进一步包括一分支管,所述分支管延伸至与所述电池装置中的所述正负极导电线,并与其直接或间接的接触,使所述系统流体可通过所述分支管与所述正负极导电线进行热交换。
  68. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体管被设置为封闭管道,不与流道装置相互连通。
  69. 如权利要求68所述的带有热管理设计电池模块,其中所述系统流体管中的所述系统流体与所述流道装置中的所述系统流体被设置为相同。
  70. 如权利要求68所述的带有热管理设计电池模块,其中所述系统流体管中的所述系统流体与所述流道装置中的所述系统流体被设置为不同。
  71. 如权利要求69或70所述的带有热管理设计电池模块,其中所述系统流体被设为不与所述电池系统其他对象反应的单相或多相流体,其中所述系统流体选自液态流体,气态流体,气液两相共存流体,固液两相共存流体中的一种或多种。
  72. 如权利要求71所述的带有热管理设计电池模块,其中所述液态流体选自冷媒剂、二甲醚、纯水、纯水-乙二醇、纯水-丙二醇的溶液或上述液体的组合物。
  73. 如权利要求71所述的带有热管理设计电池模块,其中所述气态流体选自水蒸气或空气。
  74. 如权利要求71所述的带有热管理设计电池模块,其中所述气液两相共存流体选自水与水蒸气或丙酮与丙酮蒸气中的一种。
  75. 如权利要求71所述的带有热管理设计电池模块,其中以悬浮于液相的高热容与高热导固态微粒形成的所述固液两相共存的固态悬浮流体选自电绝缘的碳化硅、氧化铝或氮化铝中一种或多种固态微粒均匀悬浮于可耐高压的液态流体。
  76. 如权利要求75所述的带有热管理设计电池模块,其中所述可耐高压的液态流体选自纯水或矿物油。
  77. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体管、所述系统流体与所述流道装置进一步结合,构成一由所述电池装置中所述模块热交换接口延伸至所述外壳外的热管,称为系统热管,且所述系统热管于所述外壳外的一端与所述系统流体温控装置进行直接或间接的接触,使所述系统流体温控装置得以透过所述系统热管快速对所述外壳内所述电池装置的所述电池模块进行温控。
  78. 如权利要求77所述的带有热管理设计电池模块,其中所述带有热管理设计电池模块包括复数个所述流道装置,相应地,所述系统流体管结合的所述系统热管数量至少为一或一个以上。
  79. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体管与其内部的所述系统流体直接结合为一热管,所述热管称为所述系统流体热管,与所述流道装置以直接或间接的方式接触以进行热交换;所述系统流体热管的另一端则延伸至所述电池装置外,且与所述电池装置外的所述系统流体温控装置进行直接或间接的接触,使所述系统流体温控装置得以透过所述系统流体热管与所述流道装置中的所述系统流体对所述电池装置内的所述电池模块进行温控。
  80. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体管进一步在管表面增设一绝热套管,以降低所述外壳外部的环境温度透过所述系统流体管影响所述外壳内部所容纳的所述电池装置的温度。
  81. 如权利要求63所述的带有热管理设计电池模块,其中所述系统流体温控装置进一步与所述系统流体管接触表面之间增设一温控中间层,所述温控中间层包括一流体,能够进行热交换。
  82. 如权利要求81所述的带有热管理设计电池模块,其中所述带有热管理设计电池模块包括一流体抽取与储存装置以避免环境影响所述电池装置,其中所述流体抽取与储存装置能够将所述温控中间层中的所述流体抽离,以防止或降低所述系统流体温控装置停止运作时,所述系统流体管通过所述温控中间层与外界环境进行热交换。
  83. 一带有热管理设计电池装置,至少包括一电池模块、一正负极导电线与一流道装置;其中所述电池模块至少包括一个或一个以上的可重复充放使用的二次电池芯、具有热交换功能电池芯充放电线路和模块热交换接口,其中所述具有热交换功能电池芯充放电线路至少包含一金属结构件,其中所述模块热交换接口,为所述电池模块对外进行热交换的主要途径,其中所述模块热交换接口包括(i)至少一端的所述金属结构件部分表面和(ii)系统流体,即所述模块外的温控源欲对所述模块温控时的温控媒介,并且至少所述金属结构件的部分表面与所述系统流体以直接或间接的方式进行接触,其中所述正负极导电线,作为所述电池装置正负极电流输出/输入的路径,其中所述所述流道装置内部具有一系统流体,即模块热交换接口的温控媒介。
  84. 如权利要求83所述的带有热管理设计电池模块,其中所述电池模块数量为复数。
  85. 如权利要求84所述的带有热管理设计电池模块,其中复数个所述电池 模块通过并联或串联或包括并联与串联的方式进行电连接。
  86. 如权利要求83所述的带有热管理设计电池模块,其中所述电池模块数量为单数。
  87. 如权利要求83所述的带有热管理设计电池模块,其中所述流道装置结合于所述电池模块。
  88. 如权利要求83所述的带有热管理设计电池装置,其中所述带有热管理设计电池装置具有一外壳,其中所述外壳至少包括一信道、一绝热单元与一结构单元,其中所述信道作为沟通所述电池装置的所述外壳内部与外部的路径,所述绝热单元则包覆所述电池装置,用以降低外界环境温度对所述电池装置的影响,所述结构单元则为所述外壳提供所需强度。
  89. 如权利要求88所述的带有热管理设计电池装置,其中所述信道、所述绝热单元与所述结构单元的数量皆至少为一或一个以上。
  90. 如权利要求88所述的带有热管理设计电池装置,其中所述外壳的所述信道,连通所述外壳包覆所述电池装置的内部空间与外壳外部的空间,作为所述电池装置沟通内外空间的路径,以进行电池装置的充放电、讯号传输或温控相关功能的需求;其中所述信道内进一步增设绝热密封层,并至少部分填满原有于所述信道中存在的所述正负极导电线与其他存在于所述信道内的装置与管线外的空间。
  91. 如权利要求88所述的带有热管理设计电池装置,所述外壳的所述绝热单元为一密闭空间的密封层,且所述密封层内气压为真空,其真空压力低于或等于10-2Pa。
  92. 如权利要求91所述的带有热管理设计电池装置,其中所述外壳具有一密封通孔,所述密封通孔的一端得以连通所述密封层,而另一端直接连接至所述外壳外部,并连接一开关可控接头,所述开关可控接头的另一端连接一抽真空设备,以控制所述密封层真空状态。
  93. 如权利要求92所述的带有热管理设计电池装置,其中所述抽真空设备为真空帮浦。
  94. 如权利要求92所述的带有热管理设计电池装置,其中所述抽真空设备为所述电池装置之一部分或一外接设备。
  95. 如权利要求91所述的带有热管理设计电池装置,其中所述密封层进一 步包覆一金属层或是以金属沉积制程将所述金属层沉积于所述密封层上,以防止辐射热散失。
  96. 如权利要求95所述的带有热管理设计电池装置,其中所述金属层为铝箔或铜箔。
  97. 如权利要求88所述的带有热管理设计电池装置,其中所述外壳的所述绝热单元为一绝热材料,所述绝热材料选自发泡材料、聚苯乙烯相关材料、二氧化硅相关材料、煅制二氧化硅材料、气凝胶、珍珠岩、玻璃棉、陶瓷棉或真空绝热板中的一种或多种组成的材料组。
  98. 如权利要求97所述的带有热管理设计电池装置,其中所述发泡材料是聚氨酯相关材料。
  99. 如权利要求97所述的带有热管理设计电池装置,其中所述二氧化硅相关材料是玻璃纤维。
  100. 如权利要求95或97所述的带有热管理设计电池装置,其中所述外壳的所述绝热单元被设为在真空压力小于或等于10-2Pa的所述密封层中进一步包括所述绝热材料。
  101. 如权利要求88或89所述的带有热管理设计电池装置,其中所述外壳的所述结构单元包括层状结构单元、支架结构单元或上述结合物;其中所述结构单元的组成材料选自复合金属材料、塑钢、玻璃纤维复合塑料材料、碳纤维复合塑料材料或工程塑料中的一种或多种组成的材料组。
  102. 如权利要求101所述的带有热管理设计电池模块,其中所述复合金属材料选自钛合金、铝合金或不锈钢中的一种或多种。
  103. 如权利要求101或102所述的带有热管理设计电池装置,其中所述外壳结构单元延伸至所述外壳包覆的内部空间,形成一热传导良好路径,从而,所述结构单元与所述外壳包覆的内部空间之间进一步包括一所述绝热单元,以构成无热传导良好路径的所述外壳的内部空间。
  104. 如权利要求88所述的带有热管理设计电池装置,其中所述外壳的所述绝热单元被实施为针对具方向性的所述环境热源或环境冷源进行隔绝。
  105. 如权利要求104所述的带有热管理设计电池模块,其中所述其他无环境热源或冷源部分被设为不包括所述绝热单元。
  106. 如权利要求105所述的带有热管理设计电池模块,其中所述外壳的所 述绝热单元被设为不完全包覆所述电池装置。
  107. 如权利要求83所述的带有热管理设计电池装置,其中所述电池装置包括复数个所述流道装置。
  108. 如权利要求107所述的滴啊有热管理设计电池装置,其中所述流道装置通过以串联或并联或包括串联与并联的方式进行连接,使所述系统流体得以在复数个所述流道装置中循环,并与每个对应的所述电池模块进行热交换。
  109. 如权利要求108所述的带有热管理设计电池装置,其中所述系统流体是不与所述电池系统其他对象反应的流体。
  110. 如权利要求109所述的带有热管理设计电池系统,其中所述系统流体选自液态流体、气态流体、气液两相共存流体、固液两相共存流体中的一种。
  111. 如权利要求110所述的带有热管理设计电池系统,其中所述液态流体选自冷媒剂、二甲醚、纯水、纯水-乙二醇、纯水-丙二醇的溶液或上述液体的组合物。
  112. 如权利要求110所述的带有热管理设计电池系统,其中所述气态流体选自水蒸气或空气。
  113. 如权利要求110所述的带有热管理设计电池系统,其中所述气液两相共存流体选自水与水蒸气或丙酮与丙酮蒸气。
  114. 如权利要求110所述的带有热管理设计电池系统,其中以悬浮于液相的高热容与高热导固态微粒形成的所述固液两相共存的固态悬浮流体选自电绝缘的碳化硅、氧化铝或氮化铝中一种或多种固态微粒均匀悬浮于可耐高压的液态流体。
  115. 如权利要求114所述的带有热管理设计电池系统,其中所述可耐高压的液态流体选自纯水或矿物油。
  116. 如权利要求107或108所述的带有热管理设计电池装置,其中所述流道装置为一封闭管道。
  117. 如权利要求116所述的带有热管理设计电池模块,其中所述电池模块的所述导热路径至少包括所述流道装置以使所述系统流体在对所述电池模块进行温控时,所述系统流体得以在所述流道装置中输送。
  118. 如权利要求116或117所述的带有热管理设计电池装置,其中所述封闭管道形式存在的所述流道装置与所述系统流体结合为一热管,称为流道热管。
  119. 如权利要求118所述的带有热管理设计电池装置,其中所述温控媒介为气-液两相流体。
  120. 如权利要求119所述的带有热管理设计电池模块,其中所述流道热管数量至少为一或一个以上。
  121. 一种带有热管理设计电池系统,其特征在于,包括:
    一电池装置,其中所述电池装置至少包括:一电池模块、一正负极导电线、一流道装置与一外壳,其中所述电池模块数量至少一组或一组以上,且所述电池模块至少包括数量为一个或一个以上的二次电池芯,并以并联或串联或包括并联与串联的方式进行电连接,其中所述正负极导电线,作为所述电池装置正负极电流输出/输入的路径,其中所述流道装置,被实施为与所述电池模块结合,且所述流道装置内部具有所述系统流体作为对所述电池模块的温控媒介,其中所述外壳至少包括一信道、一绝热单元与一结构单元,其中所述信道作为沟通所述电池装置的所述外壳内部与外部的路径,所述绝热单元则包覆所述电池装置,用以降低外界环境温度对所述电池装置的影响,所述结构单元则为所述外壳提供所需强度;和
    一系统流体循环装置,其中所述系统流体循环装置被连接于所述电池装置中的所述流道装置,以提供所述电池模块进行热交换所需的所述系统流体。
  122. 如权利要求121所述的带有热管理设计电池系统,其中所述信道、所述绝热单元与所述结构单元的数量皆至少为一或一个以上。
  123. 如权利要求121所述的带有热管理设计电池系统,其中所述系统流体循环装置,至少包括:
    一系统流体管,被实施为连接于所述电池装置中的所述流道装置,所述电池装置中的所述流道装置与所述系统流体循环装置形成一循环回路,使所述系统流体得以于所述循环回路输送;和
    一系统流体温控装置,用以加热或冷却所述系统流体。
  124. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体循环装置进一步包括系统流体储存装置,并与所述系统流体温控装置连接,以储存所述系统流体,并具有保温功能。
  125. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体循环装置进一步包括系统流体输送装置,以主动将所述系统流体在所述系统流体 循环装置与所述电池装置所形成的循环回路进行输送,并与所述电池模块进行热交换。
  126. 如权利要求125所述的带有热管理设计电池系统,其中所述系统流体输送装置是帮浦。
  127. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体管进一步包括一分支管,所述分支管延伸至与所述电池装置中的所述正负极导电线,并与其直接或间接的接触,使所述系统流体得以通过所述分支管与所述正负极导电线进行热交换。
  128. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体管被设为封闭管道,不与流道装置相互连通。
  129. 如权利要求128所述的带有热管理设计电池系统,其中所述系统流体管中的所述系统流体与所述流道装置中的所述系统流体被设为相同流体。
  130. 如权利要求128所述的带有热管理设计电池系统,其中所述系统流体管中的所述系统流体与所述流道装置中的所述系统流体被设为不相同流体。
  131. 如权利要求128所述的带有热管理设计电池系统,其中所述系统流体是不与所述电池系统其他对象反应的流体。
  132. 如权利要求128所述的带有热管理设计电池系统,其中所述系统流体选自液态流体、气态流体、气液两相共存流体、固液两相共存流体中的一种。
  133. 如权利要求132所述的带有热管理设计电池系统,其中所述液态流体选自冷媒剂、二甲醚、纯水、纯水-乙二醇或纯水-丙二醇的溶液。
  134. 如权利要求132所述的带有热管理设计电池系统,其中所述气态流体选自水蒸气或空气。
  135. 如权利要求132所述的带有热管理设计电池系统,其中所述气液两相共存流体选自水与水蒸气或丙酮与丙酮蒸气。
  136. 如权利要求132所述的带有热管理设计电池系统,其中以悬浮于液相的高热容与高热导固态微粒形成的所述固液两相共存的固态悬浮流体选自电绝缘的碳化硅、氧化铝或氮化铝中一种或多种固态微粒均匀悬浮于可耐高压的液态流体。
  137. 如权利要求136所述的带有热管理设计电池系统,其中所述可耐高压的液态流体选自纯水或矿物油。
  138. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体管、所述系统流体与所述流道装置结合以构成一由所述电池装置中所述模块热交换接口延伸至所述外壳外的热管,称为系统热管,其中所述系统热管位于所述外壳外的一端与所述系统流体温控装置进行直接或间接的接触,使所述系统流体温控装置得以透过所述系统热管快速对所述外壳内所述电池装置的所述电池模块进行温控。
  139. 如权利要求138所述的带有热管理设计电池系统,其中所述系统流体管及流道装置是复数个。
  140. 如权利要求139所述的带有热管理设计电池系统,其中结合于所述系统流体管的所述系统热管数量至少为一或一个以上。
  141. 如权利要求123所述的带有热管理设计电池系统,其中所述系统流体管与其内部的所述系统流体被实施为直接结合为一热管,所述热管被称为系统流体热管,并与所述流道装置以直接或间接的方式接触以进行热交换;所述系统流体热管另一端则延伸至所述电池装置外,并且和所述电池装置外的所述系统流体温控装置进行直接或间接的接触,使所述系统流体温控装置得以透过所述系统流体热管与所述流道装置中的所述系统流体对所述电池装置内的所述电池模块进行温控。
  142. 如权利要求123或141所述的带有热管理设计电池系统,其中所述系统流体管在管表面设有一绝热套管,以降低所述外壳外部的环境温度透过所述系统流体管影响所述外壳内部所容纳的所述电池装置的温度。
  143. 如权利要求141所述的带有热管理设计电池系统,其中所述系统流体温控装置和所述热交换管接触表面之间设有一温控中间层,其中所述温控中间层包括一流体,能够进行热交换。
  144. 如权利要求142所述的带有热管理设计电池系统,其中所述带有热管理设计电池模块包括一流体抽取与储存装置以避免环境影响所述电池装置,其中所述流体抽取与储存装置能够将所述温控中间层中的所述流体抽离,以防止或降低所述系统流体温控装置停止运作时,所述热交换管通过所述温控中间层与外界环境进行热交换。
PCT/CN2017/079902 2017-04-10 2017-04-10 一种带有热管理设计电池模块、电池装置与电池系统 WO2018187901A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780089471.6A CN110800154B (zh) 2017-04-10 2017-04-10 一种带有热管理设计电池模块、电池装置与电池系统
US16/603,578 US11611119B2 (en) 2017-04-10 2017-04-10 Battery module, battery device, and battery system having thermal management design
EP17905542.1A EP3611790A4 (en) 2017-04-10 2017-04-10 BATTERY MODULE, BATTERY DEVICE AND BATTERY SYSTEM WITH THERMAL MANAGEMENT DESIGN
PCT/CN2017/079902 WO2018187901A1 (zh) 2017-04-10 2017-04-10 一种带有热管理设计电池模块、电池装置与电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079902 WO2018187901A1 (zh) 2017-04-10 2017-04-10 一种带有热管理设计电池模块、电池装置与电池系统

Publications (1)

Publication Number Publication Date
WO2018187901A1 true WO2018187901A1 (zh) 2018-10-18

Family

ID=63793135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079902 WO2018187901A1 (zh) 2017-04-10 2017-04-10 一种带有热管理设计电池模块、电池装置与电池系统

Country Status (4)

Country Link
US (1) US11611119B2 (zh)
EP (1) EP3611790A4 (zh)
CN (1) CN110800154B (zh)
WO (1) WO2018187901A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219996A1 (en) 2019-04-25 2020-10-29 Aerovironment Battery pack design and method
CN113437399A (zh) * 2021-06-07 2021-09-24 华南理工大学 一种动力电池模组电极温度调控的热管理系统
US20220363144A1 (en) * 2021-05-17 2022-11-17 Ford Global Technologies, Llc Traction battery pack thermal management assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088401B1 (en) * 2021-02-15 2021-08-10 Ahmed Tarfaoui Tubular battery pack and integral tubular battery with thermal management and safety relief system
KR20220144192A (ko) * 2021-04-19 2022-10-26 현대자동차주식회사 배터리 냉각 시스템 및 배터리 냉각 시스템의 열적 모델 생성 방법
CN113190981B (zh) * 2021-04-20 2024-01-19 海口安博尔能源技术开发有限公司 一种大功率系统集成方法
WO2023279096A2 (en) * 2021-07-02 2023-01-05 Aspen Aerogels, Inc. Systems and methods for mitigating thermal propagation in battery-based energy storage systems
JPWO2023021772A1 (zh) * 2021-08-18 2023-02-23
CN113627582A (zh) * 2021-08-31 2021-11-09 山东精工电源科技有限公司 锂电池防压及可分离防火数据存储装置及信息存储方法
CN113899414A (zh) * 2021-09-09 2022-01-07 重庆川仪自动化股份有限公司 一种电磁水表
FR3130076B1 (fr) * 2021-12-08 2024-03-15 Renault Sas Module pour batterie comprenant une membrane.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210662A1 (en) * 2004-03-24 2005-09-29 Wenman Li Method of constructing large capacity lithium-polymer power battery and associated cooling system
US20060110657A1 (en) 2004-11-15 2006-05-25 William Stanton Battery assembly for use in an uninterruptible power supply system and method
CN102769158A (zh) * 2011-12-30 2012-11-07 加拿大派维动力系统有限公司 电池芯的冷却/加热装置
US20130071705A1 (en) 2011-09-16 2013-03-21 General Electric Company Structure, packaging assembly, and cover for multi-cell array batteries
TW201401611A (zh) 2012-06-22 2014-01-01 Jia-Yuan Li 防水、防火、防震、防爆四合一之車用電池及其製造方法
CN103545572A (zh) * 2012-07-10 2014-01-29 光宝动力储能科技股份有限公司 电池装置
CN103633395A (zh) * 2013-11-05 2014-03-12 奇瑞汽车股份有限公司 一种电池包温控系统及其控制方法
CN106532178A (zh) * 2016-11-04 2017-03-22 北京汽车股份有限公司 电池包温度控制装置和温度控制方法以及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126271A (en) * 1980-03-06 1981-10-03 Matsushita Electric Ind Co Ltd Battery and battery system
JPS57117569U (zh) * 1981-01-14 1982-07-21
FR2679382B1 (fr) * 1991-07-15 1996-12-13 Accumulateurs Fixes Generateur electrochimique de forte energie massique specifique.
US6010800A (en) * 1998-06-17 2000-01-04 Hughes Electronics Corporation Method and apparatus for transferring heat generated by a battery
US6013388A (en) * 1998-06-17 2000-01-11 Hughes Electronics Corporation Battery cell terminal
DE102009016867A1 (de) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Akkumulator mit verlängerter Lebensdauer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210662A1 (en) * 2004-03-24 2005-09-29 Wenman Li Method of constructing large capacity lithium-polymer power battery and associated cooling system
US20060110657A1 (en) 2004-11-15 2006-05-25 William Stanton Battery assembly for use in an uninterruptible power supply system and method
US20130071705A1 (en) 2011-09-16 2013-03-21 General Electric Company Structure, packaging assembly, and cover for multi-cell array batteries
CN102769158A (zh) * 2011-12-30 2012-11-07 加拿大派维动力系统有限公司 电池芯的冷却/加热装置
TW201401611A (zh) 2012-06-22 2014-01-01 Jia-Yuan Li 防水、防火、防震、防爆四合一之車用電池及其製造方法
CN103545572A (zh) * 2012-07-10 2014-01-29 光宝动力储能科技股份有限公司 电池装置
CN103633395A (zh) * 2013-11-05 2014-03-12 奇瑞汽车股份有限公司 一种电池包温控系统及其控制方法
CN106532178A (zh) * 2016-11-04 2017-03-22 北京汽车股份有限公司 电池包温度控制装置和温度控制方法以及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611790A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219996A1 (en) 2019-04-25 2020-10-29 Aerovironment Battery pack design and method
JP2022530946A (ja) * 2019-04-25 2022-07-05 Hapsモバイル株式会社 バッテリパック設計および方法
EP3959766A4 (en) * 2019-04-25 2022-07-06 Hapsmobile Inc. METHOD AND BATTERY PACK DESIGN
JP7304428B2 (ja) 2019-04-25 2023-07-06 Hapsモバイル株式会社 バッテリパック設計および方法
US20220363144A1 (en) * 2021-05-17 2022-11-17 Ford Global Technologies, Llc Traction battery pack thermal management assembly
US11772500B2 (en) * 2021-05-17 2023-10-03 Ford Global Technologies, Llc Traction battery pack thermal management assembly
CN113437399A (zh) * 2021-06-07 2021-09-24 华南理工大学 一种动力电池模组电极温度调控的热管理系统

Also Published As

Publication number Publication date
CN110800154B (zh) 2023-04-28
US20200220240A1 (en) 2020-07-09
CN110800154A (zh) 2020-02-14
US11611119B2 (en) 2023-03-21
EP3611790A1 (en) 2020-02-19
EP3611790A4 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2018187901A1 (zh) 一种带有热管理设计电池模块、电池装置与电池系统
CN203351708U (zh) 电池组
CN104604018B (zh) 电池模块组件
CN205406672U (zh) 电池组和车辆
CN107431157B (zh) 电池模块
US20140011059A1 (en) Power supply device and vehicle equipped therewith
CN105190988B (zh) 具有改善的冷却效率的车辆电池组
CN204947033U (zh) 锂二次电池模组
JP2016539461A (ja) 液体金属電池の熱管理
CN108140915A (zh) 电池模块、包括电池模块的电池组以及包括电池组的车辆
CN111446517B (zh) 一种温控装置、电池模组、车辆及电池温控方法
CN210430029U (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
KR20170095040A (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
US20230291029A1 (en) Battery Module, Battery Device, and Battery System Having Thermal Management Design
CN210296573U (zh) 动力电池系统及车辆
CN210245575U (zh) 一种电池包集成结构
CN220041996U (zh) 浸润式电池模组、动力电池包及用电设备
CN111162350A (zh) 一种具有ptc加热片和热管集成化结构的电池箱
CN109786884A (zh) 快充型锂电池包及其热管理及冷却装置
CN102983377A (zh) 一种用于电动汽车锂离子电池的换热装置
CN216850065U (zh) 一种中心体加热制冷结构
CN217485571U (zh) 热电制冷均温电池模组及均温系统
CN218385674U (zh) 一种锂电池绝缘垫片
CN219801032U (zh) 电池装置
CN203056040U (zh) 一种用于电动汽车锂离子电池的换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017905542

Country of ref document: EP

Effective date: 20191111