WO2018185962A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018185962A1
WO2018185962A1 PCT/JP2017/037981 JP2017037981W WO2018185962A1 WO 2018185962 A1 WO2018185962 A1 WO 2018185962A1 JP 2017037981 W JP2017037981 W JP 2017037981W WO 2018185962 A1 WO2018185962 A1 WO 2018185962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission period
switching
period
conversion device
Prior art date
Application number
PCT/JP2017/037981
Other languages
English (en)
French (fr)
Inventor
貴昭 ▲高▼原
大斗 水谷
亮太 近藤
村上 哲
岩蕗 寛康
佳 早瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780088696.XA priority Critical patent/CN110447163B/zh
Priority to JP2018510145A priority patent/JP6381853B1/ja
Priority to US16/479,703 priority patent/US11563368B2/en
Priority to EP17904457.3A priority patent/EP3609062A4/en
Publication of WO2018185962A1 publication Critical patent/WO2018185962A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/096Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the power supply of the control circuit being connected in parallel to the main switching element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device including a full-bridge inverter that converts a DC voltage into a high-frequency AC voltage and outputs the voltage to a transformer, and a rectifier circuit that rectifies the output of the transformer.
  • An isolated DC / DC converter that combines a full-bridge inverter and a rectifier circuit exhibits a resonance phenomenon between the transformer leakage inductance and parasitic capacitance and the parasitic capacitance of the switch element when all the switch elements are off. appear.
  • the turn-on voltage varies depending on the turn-on timing, and the switching loss varies. Since the cooler is designed with the maximum switching loss, the size of the cooler increases and the cost increases.
  • the switching element of the upper arm in the first series circuit and the switching element of the lower arm in the second series circuit are turned off, the switching element of the lower arm in the first series circuit and the second series circuit
  • the second off period in which all switching elements until the switching elements of the upper arm in the first series circuit and the switching elements of the lower arm in the second series circuit are turned on is set to be different from each other.
  • the voltage between the drain and source of the switching element has reached a minimum value Power converter to adjust the first OFF period and the second off period is disclosed to be turned on (e.g., Patent Document 1).
  • JP 2011-101497 A paragraphs [0016], [0021]-[0024] and FIGS. 1 and 3)
  • Patent Document 1 discloses a method of storing a control amount corresponding to an input / output condition in a controller in advance.
  • the control amount to be stored becomes enormous because the control amount needs to cope with not only the input / output voltage / current but also the change of the temperature condition.
  • the resonance frequency of the resonance phenomenon that occurs when all the switching elements are turned off is higher than the switching frequency, a minimum point can be obtained when there is a slight deviation in the control amount stored in advance.
  • the switching loss is increased because the device is turned on.
  • the present invention has been made to solve the above problems, and provides a small power converter by miniaturizing the controller and the cooler by suppressing an increase in switching loss by a simple control method. With the goal.
  • a first leg and a second leg in which two switching elements constituting an upper arm and a lower arm are connected in series are connected in parallel, and the first leg and the first leg
  • the 2 leg is connected to the DC power supply in parallel, and is a full bridge that uses the connection point between the upper arm and the lower arm of the first leg and the connection point of the upper arm and the lower arm of the second leg as an AC voltage output terminal.
  • Power converter comprising: an inverter having a configuration; a transformer having a primary side connected to an output terminal of an AC voltage; a rectifier circuit connected to a secondary side of the transformer; and a control unit for turning on / off each switching element.
  • the control unit includes a first power transmission period in which the switching element of the upper arm of the first leg and the switching element of the lower arm of the second leg are simultaneously turned on, the switching element of the lower arm of the first leg,
  • the second power transmission period in which the switching elements of the upper arms of the legs are simultaneously turned on is alternately provided, and the control unit turns off all the switching elements between the first power transmission period and the second power transmission period.
  • a first power non-transmission period is provided, a second power non-transmission period in which all switching elements are turned off is provided between the second power transmission period and the first power transmission period. Controlling the lengths of the first power non-transmission period and the second power non-transmission period to be changed for each switching period after making the total length of the non-transmission period and the second power non-transmission period constant. It is.
  • the control unit makes the total length of the first power non-transmission period and the second power non-transmission period constant, and then the first power non-transmission period and the second power non-transmission Since the length of the period is controlled to change every switching cycle, the controller and cooler are downsized by suppressing the increase in switching loss with a simple control method, and a small power converter is provided. can do.
  • Embodiment 1 is a power conversion device configured by a full-bridge inverter, a transformer, a rectifier circuit, and a control unit, in which switching elements in the first diagonal are simultaneously turned off and switching in the second diagonal
  • T1 first power non-transmission period
  • T2 Second power non-transmission period
  • a period in which the switching elements in the first diagonal are simultaneously turned on first power transmission period
  • a period in which the switching elements in the second diagonal are simultaneously turned on (first 2 power transmission periods) are set to be equal (Ton)
  • the control unit T1 first power non-transmission
  • T1 first power non-transmission
  • FIG. 1 which is a configuration diagram of the power conversion device
  • FIGS. 2 to 4 which are time charts for explaining the operation
  • the control unit (duty calculator) 5 to 7 are block diagrams showing the configuration
  • FIG. 8 is a block diagram showing the configuration of the control unit (turn-on phase calculator)
  • FIG. 9 is a block diagram showing the configuration of the control unit (PWM calculator).
  • FIG. 10 which is a block diagram of the modification concerning a power converter device.
  • the structure of the power converter device of Embodiment 1 is demonstrated based on FIG. Note that the DC power supply and the load are not components of the power conversion device, but are related to the operation of the power conversion device.
  • the power conversion device 1 is largely composed of a power conversion unit and a detection / control unit.
  • the power conversion unit includes an inverter 2 having a full bridge configuration, a transformer 5, a rectifier circuit 6, and an output smoothing filter 7.
  • a DC power source 11 is connected to the input side of the inverter 2 of the power conversion unit, and a load 12 is connected to the output side of the output smoothing filter 7.
  • the detection / control unit includes an input detection unit 8, an output detection unit 9, and a control unit 10.
  • the inverter 2 converts the DC voltage of the DC power supply 11 into a high frequency AC voltage and outputs it to the transformer 5.
  • the transformer 5 maintains insulation between the inverter 2 and the rectifier circuit 6 and converts the output voltage of the inverter 2 into a high-frequency AC voltage having a predetermined peak value.
  • the rectifier circuit 6 rectifies the high-frequency AC voltage output from the transformer 5.
  • the output smoothing filter 7 removes the high frequency component of the voltage output from the rectifier circuit 6 and supplies DC power to the load 12.
  • the inverter 2 having a full bridge configuration is configured by a parallel connection of a first leg 3 and a second leg 4 each having a switching element connected in series.
  • the first leg 3 has a configuration in which an upper arm 3U and a lower arm 3L are connected in series.
  • the upper arm 3U includes a switching element S1 and a feedback diode D1 connected in antiparallel to the switching element S1.
  • the lower arm 3L includes a switching element S2 and a feedback diode D2 connected in antiparallel to the switching element S2.
  • the second leg 4 has a configuration in which an upper arm 4U and a lower arm 4L are connected in series.
  • the upper arm 4U includes a switching element S3 and a feedback diode D3 connected in antiparallel to the switching element S3.
  • the lower arm 4L includes a switching element S4 and a feedback diode D4 connected in antiparallel to the switching element S4.
  • the ends of the upper arms 3U, 4U and the ends of the lower arms 3L, 4L of the parallel circuit of the first leg 3 and the second leg 4 are a positive input terminal and a negative input terminal, respectively.
  • the output voltage of the DC power supply 11 is applied between these input terminals.
  • the switching element S1 and the switching element S3 are referred to as an upper arm side switching element, and the switching element S2 and the switching element S4 are referred to as a lower arm side switching element.
  • connection point between the upper arm 3U and the lower arm 3L of the first leg 3 and the connection point between the upper arm 4U and the lower arm 4L of the second leg 4 are output terminals of the inverter 2.
  • a voltage (VINV) output to the output terminals of these inverters 2 is applied to the primary coil of the transformer 5.
  • a rectifier circuit 6 including diodes D5, D6, D7, and D8 is connected to the secondary side coil of the transformer 5.
  • An output smoothing filter 7 including an inductor 71 and a capacitor 72 is connected to the output terminal of the rectifier circuit 6.
  • a load 12 is connected to the output of the output smoothing filter 7.
  • power control of a full-bridge inverter generally includes PWM (Pulse Width Modulation) control (hard switching method) and phase shift control (soft switching method).
  • PWM control is performed. (Hard switching method) is used.
  • the switching elements S1 to S4 may be an IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in anti-parallel, or a MOSFET (Metal Oxide Semiconductor Field Ffect Transistor) in which a diode is connected between a source and a drain. desirable. Further, as the feedback diodes D1 to D4, diodes built in the IGBT or MOSFET may be used, or an external diode may be provided separately.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Ffect Transistor
  • An input detection unit 8 is provided in parallel with the DC power supply 11 to detect at least one of the voltage Vdc and current Idc of the DC power supply 11. Further, an output detection unit 9 is provided in parallel with the load 12 to detect at least one of the voltage Vout and the current Iout of the load 12.
  • the control unit 10 includes a duty calculator 21, a turn-on phase calculator 22, and a PWM calculator 23.
  • the functions of the duty calculator 21, the turn-on phase calculator 22, and the PWM calculator 23 will be described.
  • the duty calculator 21 calculates a duty D, which is a ratio of the on-time length to the switching period, based on the detection value of at least one of the input detection unit 8 and the output detection unit 9.
  • the turn-on phase calculator 22 calculates a turn-on phase based on the duty D calculated by the duty calculator 21.
  • the PWM calculator 23 calculates the gate signals of the switching elements S1 to S4 according to the calculated duty D and turn-on phase.
  • FIG. 2 shows a time chart before and after a certain switching period.
  • F2a indicates drive signals supplied to the gates of the switching elements S1 and S2 of the first leg 3, respectively.
  • F2b indicates drive signals supplied to the gates of the switching elements S3 and S4 of the second leg 4, respectively.
  • F2a and F2b the upper arm side switching element and the lower arm side switching element of each leg are repeatedly turned on and off alternately.
  • F2c represents the output voltage (VINV) of the inverter 2, which is a voltage input to the transformer 5.
  • F2d to F2g indicate the voltages (drain-source voltages) Vds-S1, Vds-S2, Vds-S3, and Vds-S4 across the switching elements S1 to S4 by solid lines, respectively. Further, the total currents Id-Q1, Id-Q2, Id-Q3, and Id-Q4 of the currents flowing through the switching elements S1 to S4 and the feedback diodes D1 to D4 of each arm are indicated by broken lines.
  • t0 to t4 represent switching times of the switching elements S1 to S4 from on to off or from off to on.
  • Vds is a drain voltage with reference to the source potential of the switching elements S1 to S4
  • Id is a current of the switching element with a positive direction flowing from the drain.
  • Times t0 to t4 are one switching period that is a repetition period of PWM control, and this period length is defined as Ts.
  • the period lengths of the times t0 to t1 and t2 to t3 are set to be equal, and this period length is defined as Ton.
  • a period from when the switching elements S1 and S4 are simultaneously turned off to when the switching elements S2 and S3 are simultaneously turned on is defined as T1 (first power non-transmission period).
  • T2 second power non-transmission period
  • T1 and T2 are equal. Note that the period from t0 to t1 is appropriately described as a first power transmission period, and the period from t2 to t3 is appropriately described as a second power transmission period.
  • the switching elements S1 to S4 are turned off, and the switching element S1 of the upper arm 3U of the first leg 3 and the switching element S4 of the lower arm of the second leg 4 are turned on.
  • the switching element S1 and the switching element S4 are turned on in a voltage application state to cause the drain-source voltage to transition to 0 V, so that hard switching occurs and switching loss occurs.
  • the output voltage (VINV) of the inverter 2 is output in the direction of the arrow in FIG.
  • the switching element S1 of the upper arm 3U of the first leg 3 and the switching element S4 of the lower arm 4L of the second leg 4 are turned off, and all the switching elements S1 to S4 are turned off.
  • the voltage output from the inverter 2 stops.
  • the switching element S1 and the switching element S4 are turned off during the current flow to cut off the current, so that hard switching occurs and a switching loss occurs.
  • a period T1 (first power non-transmission period) from time t1 to time t2 will be described.
  • the output voltage (VINV) of the inverter 2 becomes 0 V, and the drain-source voltage of the switching elements S1 to S4 is applied to a state where 1/2 of the voltage Vdc of the DC power supply 11 is applied.
  • a resonance phenomenon occurs between the leakage inductance of the transformer 5 and the parasitic capacitance of the transformer 5 and the parasitic capacitances of the switching elements S1 to S4 during this period, and the output voltage (VINV) of the inverter 2 resonates. It becomes a voltage waveform.
  • the voltage waveform between the drain and source of the switching elements S1 to S4 is a waveform in which this resonance voltage is superimposed on the half voltage of the voltage Vdc of the DC power supply 11.
  • the switching elements S1 to S4 are in the off state, power is not supplied from the DC power supply 11, and power is transferred by resonance between the transformer 5 and the switching elements S1 to S4.
  • the switching element S2 of the lower arm 3L of the first leg 3 and the switching element S3 of the upper arm 4U of the second leg 4 are turned on.
  • the switching element S2 and the switching element S3 are turned on in a voltage application state to cause the drain-source voltage to transition to 0 V, so that hard switching is performed and switching loss occurs.
  • the output voltage (VINV) of the inverter 2 is output in the direction opposite to the arrow in FIG.
  • the switching element S2 of the lower arm 3L of the first leg 3 and the switching element S3 of the upper arm 4U of the second leg 4 are turned off, and all the switching elements S1 to S4 are turned off.
  • the voltage output from the inverter 2 stops.
  • the switching element S2 and the switching element S3 are turned off during current flow to cut off the current, so that hard switching occurs and switching loss occurs.
  • the period T2 (second power non-transmission period) from time t3 to time t4 is the same as the period from time t1 to time t2. That is, the voltage waveform between the drain and source of the switching elements S1 to S4 is a waveform in which the resonance voltage is superimposed on the half voltage of the voltage Vdc of the DC power supply 11. During this time, since the switching elements S1 to S4 are in the off state, power is not supplied from the DC power supply 11, and power is transferred by resonance between the transformer 5 and the switching elements S1 to S4.
  • time t4 becomes time t0.
  • the switching loss at the time of turn-on at times t0 and t2 is proportional to the drain-source voltage immediately before the turn-on, the switching loss varies depending on the phase of the resonance voltage. For example, when switching is performed with the resonance voltage in the ideal state being Vdc / 2 as a reference, the turn-on loss decreases when switching is performed at the minimum point of the resonance voltage, and the turn-on loss is increased when switching is performed at the maximum point.
  • F3a to F3g in FIG. 3 correspond to F2a to F2g in FIG.
  • F4a to F4g in FIG. 4 correspond to F2a to F2g in FIG.
  • switching elements S1 to S4 are turned on / off under the following conditions.
  • the switching cycle Ts is constant.
  • the on time Ton is constant.
  • the switching elements S1 and S4 are turned on and off at the same time, and the switching elements S2 and S3 are turned on and off at the same time.
  • the timing at which the switching elements S1 to S4 are turned on, that is, the turn-on phase is changed within the switching period Ts.
  • T1 first power non-transmission period
  • T2 second power non-transmission period
  • FIG. 3 and 4 show time charts according to the switching pattern of the power conversion device 1 according to the first embodiment.
  • FIG. 3 shows a case where T1 (first power non-transmission period) is set shorter than T2 (second power non-transmission period).
  • FIG. 4 shows a case where T1 (first power non-transmission period) is set longer than T2 (second power non-transmission period).
  • T1 and T2 by changing the length of T1 (first power non-transmission period), the turn-on phase changes and the turn-on voltage changes. That is, by making T1 and T2 different, the drain-source voltage of switching elements S1 and S4 at time t0 or switching elements S2 and S3 at time t2 is compared with the case where T1 and T2 are the same. Can be reduced.
  • the turn-on phase is changed within a predetermined turn-on phase range in order to make the switching cycle Ts constant and the on-time Ton of the switching elements S1 to S4 constant.
  • the turn-on phase range that is, the range in which T1 (first power non-transmission period) can be taken (changed) is from 0 to (Ts-2Ton).
  • the initial value of time t2 is set to the time obtained by adding the dead time to time t1.
  • the turn-on phase is advanced or delayed by a predetermined unit time for each switching period.
  • Ts T1 + T2
  • Tref T1 + T2
  • t2 is advanced by a predetermined unit time in the next switching cycle. Shorten the length of T1.
  • the length of T2 is shortened by shortening the length of T1.
  • the turn-on phase is varied within a predetermined turn phase range, and the turn-on voltages of the switching elements S1 to S4 can be averaged by looking at a plurality of switching periods.
  • the resonance voltage waveform between the drain and source of the switching elements S1 to S4 generated in T1 (first power non-transmission period) and T2 (second power non-transmission period) described above. Set to a value shorter than the period.
  • T1 first power non-transmission period
  • Ton 2Ton + T1 + T2
  • Tref T1 + T2
  • T1 first power non-transmission period
  • Ts-2Ton-length of dead time the length of dead time
  • the start phase of T2 is increased so that T2 (second power non-transmission period) is increased from 0 to (Ts-2Ton) and then decreased from (Ts-2Ton) to 0. Even if the control is performed and the phase control is repeated thereafter, the same effect can be obtained.
  • T2 second power non-transmission period
  • Ts-2Ton-length of dead time is increased from the length of dead time to (Ts-2Ton-length of dead time), and then decreased to the length of dead time.
  • the duty calculator 21 calculates the duty D based on the outputs of the input detection unit 8 and the output detection unit 9. Since the detection signals for calculating the duty D are different, the duty calculator 21 in FIGS. 5 to 7 is distinguished from 21A to 21C, respectively.
  • FIG. 5 shows a block diagram of the duty calculator 21A.
  • the duty calculator 21A includes an adder / subtractor 211 and a proportional controller 212.
  • the deviation between the voltage detection value Vout of the output detection unit 9 and the predetermined load voltage target value Vout * is proportionally (P) controlled, and the duty D is calculated.
  • FIG. 6 shows a block diagram of the duty calculator 21B.
  • the duty calculator 21 ⁇ / b> B includes an adder / subtractor 211 and a proportional controller 212.
  • the duty D is calculated based on the deviation between the current detection value Iout of the output detection unit 9 and the load current target value Iout *.
  • FIG. 7 shows a block diagram of the duty calculator 21C.
  • the duty calculator 21 ⁇ / b> C includes adders / subtractors 211 and 214, a proportional-integral controller 213, and a proportional controller 215.
  • the load current target value Iout * is calculated by proportionally integrating the deviation between the voltage detection value Vdc of the input detection unit 8 and the power supply voltage target value Vdc *.
  • the duty D is calculated based on the deviation between the calculated load current target value Iout * and the detected current value Iout of the output detector 9.
  • the duty D may be calculated based on the current Idc of the DC power supply 11 and the DC power supply current target value Idc *, which are detection values of the input detection unit 8. Which detection value is used to determine the duty D may be determined depending on what load the load 12 is. For example, if the load requires a constant current, the duty D is determined based on the current detection value of the output detection unit 9, and if the load requires a constant voltage, based on the voltage detection value of the output detection unit 9. Thus, the duty D may be determined.
  • FIG. 8 shows a block diagram of the turn-on phase calculator 22.
  • the turn-on phase calculator 22 includes a carrier phase calculator 221, a multiplier 225, and an adder / subtractor 226.
  • the turn-on phase range is calculated from the calculation result of the duty calculator 21 and the switching cycle Ts, and the carrier CarA synchronized with the reference carrier CarS and the carrier CarB having a phase difference with the reference carrier CarS within the turn-on phase range are calculated.
  • the carrier CarB is given a phase difference from the reference carrier CarS by the carrier phase calculator 221.
  • the multiplier 225 calculates Ton, that is, the minimum value of t2 (t2min), based on the duty D and the switching period Ts, which are the calculation results of the duty calculator 21. Further, the turn-on phase range is calculated by calculating the maximum value (t2max) of t2 by the adder / subtractor 226.
  • the carrier phase calculator 221 changes the turn-on phase for each switching period within the calculated turn-on phase range (t2min to t2max). Specifically, the turn-on phase is controlled by advancing or delaying the phase of the carrier CarB by a predetermined unit time for each switching period.
  • FIG. 9 shows a block diagram of an example of the PWM calculator 23.
  • the PWM calculator 23 includes comparators 231 and 232, an AND gate 233, and a delay unit 234.
  • the PWM calculator 23 calculates a PWM signal to the gates of the switching elements S1 to S4 based on the duty D that is the calculation result of the duty calculator 21 and the carriers CarA and CarB that are the calculation results of the turn-on phase calculator 22.
  • Carriers CarA and CarB are input to comparators 231 and 232, respectively, and are compared with duty D to generate a pulse waveform.
  • a PWM signal to be output to the switching elements S1 and S4 is generated from the output of the comparator 231 using the AND gate 233 and the delay device 234.
  • a PWM signal to be output to the switching elements S2 and S3 is generated from the output of the comparator 232 using the AND gate 233 and the delay device 234. Note that by providing a delay device 234 for calculating the dead time Td, a PWM signal to the switching elements S1 to S4 having a predetermined dead time Td is generated.
  • the leakage inductance and parasitic capacitance of the transformer and the variation of the parasitic capacitance of the switching element are taken into consideration. Adjustment is not necessary.
  • the difference from the power converter 1 of FIG. 1 is the configuration of the transformer 5A and the rectifier circuit 6A.
  • the transformer 5A has a center tap configuration in which a middle point is provided in the transformer secondary winding, and the rectifier circuit 6A includes diodes D9 and D10.
  • T1 first power non-transmission period
  • Ts-2Ton the turn-on voltages of the switching elements S1 to S4 can be viewed and averaged in a plurality of switching periods.
  • the rectifier circuit 6 (6A) and the output smoothing filter 7 have been described as separate components. However, the components of the output smoothing filter may be incorporated into the rectifier circuit, and the whole may be combined with the rectifier circuit. .
  • the lengths of the first power transmission period and the second power transmission period are set equal. However, for example, when there is a ripple in the input voltage or the impedance of the circuit is different, the amplitude of the first power transmission period and the amplitude of the second power transmission period are different, and a bias is generated in the transformer 5A. The lengths of the first power transmission period and the second power transmission period may be set differently.
  • the turn-on voltages of the switching elements S1 to S4 can be averaged by looking at a plurality of switching periods.
  • the thermal time constant of the cooler is larger than the switching period. For this reason, the loss of a switching element is averaged and the maximum loss which should be considered when designing a cooler can be suppressed.
  • the controller and the cooler can be downsized, and a small power converter can be realized.
  • the power conversion device has a period until the switching elements in the first diagonal of the full-bridge inverter are simultaneously turned off and the switching elements in the second diagonal are simultaneously turned on.
  • T2 second power non-transmission period
  • T2 is defined as a period until the switching elements in the second diagonal are simultaneously turned off and the switching elements in the first diagonal are simultaneously turned on.
  • the period in which the switching elements in one diagonal are simultaneously turned on (first power transmission period) and the period in which the switching elements in the second diagonal are simultaneously turned on (second power transmission period) are set to be equal (Ton ), And under the condition that the switching cycle Ts and Ton are constant, the control unit changes T1 (first power non-transmission period) from 0 to (Ts ⁇ 2Ton) at a constant time interval for each switching cycle. In is intended to repeat the sweep. For this reason, the turn-on voltage of the switching element can be averaged by looking at a plurality of switching periods. As a result, the power converter of Embodiment 1 can provide a small power converter by miniaturizing the controller and the cooler by suppressing an increase in switching loss by a simple control method.
  • Embodiment 2 the turn-on voltage of the switching element is averaged by sweeping T1 (first power non-transmission period) from 0 to (Ts-2Ton).
  • the power conversion device according to aspect 2 includes a temperature detection unit for the switching element, changes the turn-on phase of the switching element based on the temperature detection value of the switching element, and searches for a point where the temperature of the switching element is minimized. In this configuration, the turn-on phase of the switching element that minimizes the turn-on loss of the switching element is searched.
  • FIG. 11 is a configuration diagram of the power conversion device
  • FIG. 12 which is a block diagram showing the configuration of the control unit (turn-on phase calculator)
  • the power conversion device of the second embodiment The difference will be mainly described.
  • FIG. 11 the same or corresponding parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • the power conversion device 100 is mainly composed of a power conversion unit and a detection / control unit.
  • the power conversion unit includes an inverter 2 having a full bridge configuration, a transformer 5, a rectifier circuit 6, and an output smoothing filter 7.
  • a DC power source 11 is connected to the input side of the inverter 2 of the power conversion unit, and a load 12 is connected to the output side of the output smoothing filter 7.
  • the detection / control unit includes an input detection unit 8, an output detection unit 9, a temperature detection unit 130, and a control unit 110.
  • the inverter 2 converts the DC voltage of the DC power supply 11 into a high frequency AC voltage and outputs it to the transformer 5.
  • the transformer 5 maintains insulation between the inverter 2 and the rectifier circuit 6 and converts it into a predetermined high-frequency AC voltage.
  • the rectifier circuit 6 rectifies the high-frequency AC voltage output from the transformer 5.
  • the output smoothing filter 7 removes the high frequency component of the voltage output from the rectifier circuit 6 and supplies DC power to the load 12.
  • the configuration of the inverter 2 of the power conversion unit of the power conversion device 100 is the same as that of the first embodiment.
  • the difference from the first embodiment that is, the difference in operation of the inverter 2 of the power conversion unit of the power conversion device 100, the configuration of the detection / control unit, and the difference in operation will be mainly described.
  • the power conversion device 100 includes an input detection unit 8, an output detection unit 9, and a temperature detection unit 130 as detection units.
  • power conversion device 100 includes input detection unit 8 in parallel with DC power supply 11 and detects at least one of voltage Vdc and current Idc of DC power supply 11.
  • an output detection unit 9 is provided in parallel with the load 12 to detect at least one of the load voltage Vout and the current Iout.
  • a temperature detection unit 130 that detects the temperatures of the switching elements S1 to S4 is provided.
  • the temperature detecting unit 130 may detect the temperature inside the module when the switching elements S1 to S4 are modules, or the temperature of the heat sink, the mounted board, the bus bar, etc. in the case of a discrete product. Also good. Although description will be made assuming that all the temperatures of the switching elements S1 to S4 are detected, the temperature of the switching elements may be detected by one or more representatives.
  • the control unit 110 includes a duty calculator 21, a turn-on phase calculator 122, and a PWM calculator 23. As will be described next, the difference between the control unit 110 and the control unit 10 of the first embodiment is a turn-on phase calculator 122.
  • FIG. 12 shows a block diagram of the turn-on phase calculator 122.
  • the turn-on phase calculator 122 includes a carrier phase calculator 221A, a multiplier 225, and an adder / subtractor 226.
  • the signal from the temperature detection unit 130 is described as Tmp.
  • the temperature detector 130 detects the temperatures of the switching elements S 1 to S 4 and outputs them to the turn-on phase calculator 122.
  • the turn-on phase calculator 122 calculates the turn-on phase range from the duty D, which is the calculation result of the duty calculator 21, and the switching period Ts as in the first embodiment, and the carrier CarA synchronized with the reference carrier CarS within the same range, A carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range is calculated.
  • the carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range calculates the turn-on phase by the carrier phase calculator 221A.
  • the carrier phase calculator 221A periodically sweeps the turn-on phase of the carrier CarB within the turn-on phase range. That is, for example, T1 (first power non-transmission period) is increased from 0 to (Ts-2Ton).
  • the carrier phase calculator 221A stores the temperature detection result in each turn-on phase, and selects the phase of the carrier CarB that minimizes the temperature detection result. For storing the temperature detection result, the temperature detection result for each turn-on phase may be stored, or only the data corresponding to the minimum temperature may be stored.
  • a sweep is periodically performed to increase T1 (first power non-transmission period) from 0 to (Ts-2Ton). Furthermore, when one or more voltages and currents detected by the input detection unit 8 and the output detection unit 9 exceed a predetermined threshold, a sweep is started to increase T1 from 0 to (Ts ⁇ 2Ton). Therefore, it is possible to respond quickly by changing the operating conditions of the power conversion apparatus 100.
  • the search by the hill-climbing method will be described.
  • the hill-climbing method it is possible to search for a turn-on phase that minimizes the temperature detection result and determine the phase of the carrier CarB.
  • a waiting time until the temperature is saturated may be provided.
  • the turn-on phase can be adjusted depending on the temperature, so that adjustment in consideration of individual variations in transformer leakage inductance, parasitic capacitance, and switching element parasitic capacitance is unnecessary. .
  • the search is made for the turn-on phase that minimizes the turn-on loss of the switching element.
  • the present invention can also be applied to a power conversion device configured as described above.
  • the power conversion device includes the temperature detection unit of the switching element, changes the turn-on phase of the switching element based on the temperature detection value of the switching element, and minimizes the temperature of the switching element. By searching for such a point, the turn-on phase of the switching element that minimizes the turn-on loss of the switching element can be searched. Therefore, similarly to the power conversion device of the first embodiment, the controller and the cooler can be downsized by suppressing an increase in switching loss by a simple control method, and a small power conversion device can be provided.
  • Embodiment 3 The power conversion device of the third embodiment changes the turn-on phase of the switching element based on the detection value of the input detection unit or the output detection unit, and searches for a point where the detected input current of the input detection unit is minimized. In this configuration, the turn-on phase of the switching element that minimizes the turn-on loss of the switching element is searched.
  • FIG. 13 is a configuration diagram of the power conversion device
  • FIG. 14 is a block diagram illustrating the configuration of the control unit (turn-on phase calculator), and the control unit (duty calculator).
  • FIG. 15 which is a block diagram showing the configuration of the second embodiment, differences from the second embodiment will be mainly described. 13 to 15, the same or corresponding portions as those in the first and second embodiments are denoted by the same reference numerals.
  • the power conversion device 200 is largely composed of a power conversion unit and a detection / control unit.
  • the power conversion unit includes an inverter 2 having a full bridge configuration, a transformer 5, a rectifier circuit 6, and an output smoothing filter 7.
  • a DC power source 11 is connected to the input side of the inverter 2 of the power conversion unit, and a load 12 is connected to the output side of the output smoothing filter 7.
  • the detection / control unit includes an input detection unit 8, an output detection unit 9, and a control unit 210.
  • the inverter 2 converts the DC voltage of the DC power supply 11 into a high frequency AC voltage and outputs it to the transformer 5.
  • the transformer 5 maintains insulation between the inverter 2 and the rectifier circuit 6 and converts it into a predetermined high-frequency AC voltage.
  • the rectifier circuit 6 rectifies the high-frequency AC voltage output from the transformer 5.
  • the output smoothing filter 7 removes the high frequency component of the voltage output from the rectifier circuit 6 and supplies DC power to the load 12.
  • inverter 2 of the power conversion unit of power conversion device 200 are the same as those in the second embodiment.
  • the difference from the second embodiment, that is, the difference in configuration and operation of the detection / control unit of the power conversion device 200 will be mainly described.
  • input detection unit 8 and output detection unit 9 are provided as detection units.
  • power conversion apparatus 200 includes input detection unit 8 in parallel with DC power supply 11 and detects at least one of voltage Vdc and current Idc of DC power supply 11.
  • an output detection unit 9 is provided in parallel with the load 12 to detect at least one of the load voltage Vout and the current Iout.
  • the control unit 210 includes a duty calculator 21, a turn-on phase calculator 222, and a PWM calculator 23. As will be described next, the difference between the control unit 210 and the control unit 110 of the second embodiment is a turn-on phase calculator 222.
  • the temperatures of the switching elements S1 to S4 detected by the temperature detection unit 130 are output to the turn-on phase calculator 122.
  • the voltage and current values detected by the input detection unit 8 or the output detection unit 9 are also output to the turn-on phase calculator 222.
  • FIG. 14 is a block diagram of the turn-on phase calculator 222.
  • the turn-on phase calculator 222 includes a carrier phase calculator 221B, a multiplier 225, and an adder / subtractor 226.
  • signals from the input detection unit 8 and the output detection unit 9 are described as SG.
  • the turn-on phase calculator 222 calculates the turn-on phase range from the duty D, which is the calculation result of the duty calculator 21, and the switching cycle Ts as in the second embodiment, and the carrier CarA synchronized with the reference carrier CarS within the same range, A carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range is calculated.
  • the carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range calculates the turn-on phase by the carrier phase calculator 221B.
  • the output power is determined by controlling the amount of output current. Therefore, the smaller the input current, the smaller the switching loss.
  • the input current detection value detected by the input detection unit 8 is used to search for a point where the input current detection value is minimum.
  • the duty calculator 21B shown in FIG. 15 calculates the duty D based on the deviation between the output current detection value Iout of the output detector 9 and the load current target value Iout *.
  • the turn-on phase calculator 222 controls the turn-on phase and searches for a point at which the input current is minimum based on the input current detection value of the input detection unit 8.
  • the carrier phase calculator 221B periodically sweeps the turn-on phase of the carrier CarB within the turn-on phase range. That is, for example, T1 (first power non-transmission period) is increased from 0 to (Ts-2Ton).
  • T1 first power non-transmission period
  • Ts-2Ton The input current detection value in each turn-on phase is stored, and the phase of the carrier CarB that minimizes the input current detection value is selected.
  • the search result may be stored by storing the input current detection value for each turn-on phase or storing only the turn-on phase data corresponding to the minimum input current.
  • a sweep is periodically performed to increase T1 (first power non-transmission period) from 0 to (Ts-2Ton). Furthermore, when one or more voltages and currents detected by the input detection unit 8 and the output detection unit 9 exceed a predetermined threshold, a sweep is started to increase T1 from 0 to (Ts ⁇ 2Ton). Therefore, it is possible to respond quickly by changing the operating conditions of the power conversion apparatus 100.
  • the search by the hill-climbing method will be described.
  • the hill-climbing method it is possible to search for the turn-on phase where the input current detection value is minimum and determine the phase of the carrier CarB.
  • the input is a voltage source and the output is a voltage source load such as a battery
  • the DC power source 11 is a constant power source such as an AC / DC converter and the output side is a voltage source load such as a battery
  • the switching loss is smaller when the output current is larger.
  • the switching loss of the switching elements S1 to S4 is minimized by searching for the maximum value of the output current detection value based on the output current detection value output from the output detection unit 9 to the carrier phase calculator 221B. Can be searched.
  • a point where the switching loss of the switching element is minimized can be searched based on the input current detection value. It is not necessary to make adjustments that take into account variations in capacity between individuals.
  • the power conversion device of Embodiment 3 changes the turn-on phase of the switching element based on the detection value of the input detection unit or the output detection unit, and the detected input current of the input detection unit is minimized.
  • the turn-on phase of the switching element that minimizes the turn-on loss of the switching element is searched. Therefore, similarly to the power conversion device of the first embodiment, the controller and the cooler can be downsized by suppressing an increase in switching loss by a simple control method, and a small power conversion device can be provided.
  • Embodiment 4 In the power conversion device of the fourth embodiment, when a large-capacity battery is used as a load in the second embodiment, the temperature change accompanying the battery voltage rise is removed, and only the temperature change due to the resonance vibration is detected. In this configuration, a high-pass filter is provided.
  • FIG. 16 which is a configuration diagram of the power conversion device
  • FIG. 17 which is a block diagram showing the configuration of the control unit (turn-on phase calculator), the second embodiment.
  • the difference will be mainly explained. 16 and 17, the same or corresponding parts as those in the first and second embodiments are denoted by the same reference numerals.
  • the power conversion device 300 is largely composed of a power conversion unit and a detection / control unit.
  • the power conversion unit includes an inverter 2 having a full bridge configuration, a transformer 5, a rectifier circuit 6, and an output smoothing filter 7.
  • a DC power source 11 is connected to the input side of the inverter 2 of the power conversion unit, and a load 12 is connected to the output side of the output smoothing filter 7.
  • the detection / control unit includes an input detection unit 8, an output detection unit 9, and a control unit 310.
  • inverter 2 of the power conversion unit of power conversion device 300 are the same as those in the second embodiment.
  • the difference from the second embodiment, that is, the difference in configuration and operation of the detection / control unit of the power conversion device 300 will be mainly described.
  • the power conversion device 300 includes an input detection unit 8, an output detection unit 9, and a temperature detection unit 130 as detection units.
  • power conversion device 300 includes input detection unit 8 in parallel with DC power supply 11 and detects at least one of voltage Vdc and current Idc of DC power supply 11.
  • an output detection unit 9 is provided in parallel with the load 12 to detect at least one of the load voltage Vout and the current Iout.
  • a temperature detection unit 130 that detects the temperatures of the switching elements S1 to S4 is provided.
  • the control unit 310 includes a duty calculator 21, a turn-on phase calculator 322, and a PWM calculator 23. As will be described next, the difference between the control unit 310 and the control unit 210 of the second embodiment is a turn-on phase calculator 322.
  • FIG. 17 shows a block diagram of the turn-on phase calculator 322.
  • the turn-on phase calculator 322 includes a carrier phase calculator 221A, a multiplier 225, an adder / subtractor 226, and a high-pass filter 327.
  • a signal from the temperature detection unit 130 is described as Tmp.
  • the temperature detector 130 detects the temperatures of the switching elements S 1 to S 4 and outputs them to the turn-on phase calculator 322.
  • the signal (Tmp) from the temperature detection unit 130 is input to the carrier phase calculator 221A via the high-pass filter 327.
  • the turn-on phase calculator 322 calculates a turn-on phase range from the duty D, which is the calculation result of the duty calculator 21, and the switching cycle Ts, and the carrier CarA synchronized with the reference carrier CarS within the same range.
  • the carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range is calculated.
  • the carrier CarB having a phase difference from the reference carrier CarS within the turn-on phase range calculates the turn-on phase by the carrier phase calculator 221A.
  • the carrier phase calculator 221A periodically sweeps the turn-on phase of the carrier CarB within the turn-on phase range. That is, for example, T1 (first power non-transmission period) is increased from 0 to (Ts-2Ton).
  • the carrier phase calculator 221A stores the temperature detection result via the high-pass filter 327 in each turn-on phase, and selects the phase of the carrier CarB that minimizes this temperature detection result. For storing the temperature detection result via the high-pass filter 327, the temperature detection result for each turn-on phase may be stored, or only the data corresponding to the minimum temperature may be stored.
  • the temperature detection results of the switching elements S1 to S4 detected by the temperature detection unit 130 are input to the carrier phase calculator 221A via the high-pass filter circuit 327. Based on this input result, the turn-on phase of the switch element is changed as in the second embodiment, and the lengths of the first power non-transmission period and the second power non-transmission period are controlled.
  • the high-pass filter circuit 327 is provided in the turn-on phase calculator 322 .
  • a power conversion device having a large-capacity battery as a load such as an in-vehicle charger mounted on an EV (Electric Vehicle) / PHEV (Plug-in Hybrid Electric Vehicle), etc.
  • the battery voltage gradually increases.
  • the temperature of the switching element also changes gradually.
  • the resonance vibration during the power non-transmission period is a high frequency on the order of MHz, and the time constant of the temperature change is shorter than the time constant of the temperature change due to the change of the battery voltage.
  • the high-pass filter circuit 327 newly provided in the fourth embodiment, it is possible to remove the temperature change due to the battery voltage rise and detect only the temperature change due to the resonance vibration. For this reason, it is possible to search for a point where the switching loss is minimized with higher accuracy.
  • the power conversion device removes the temperature change caused by the battery voltage rise and detects only the temperature change due to the resonance vibration when the large-capacity battery is used as a load.
  • the high-pass filter is provided in the vessel. Therefore, similarly to the power conversion device of the first embodiment, the controller and the cooler can be downsized by suppressing an increase in switching loss by a simple control method, and a small power conversion device can be provided. Furthermore, it is possible to search for a point where the switching loss is minimized with higher accuracy.
  • Embodiment 5 The power conversion device of the fifth embodiment is parallel to the switching element of the inverter of the power conversion unit in order to facilitate the search for the point at which the switching loss is minimized, compared to the second to fourth embodiments.
  • a capacitor is added or an inductor is added to the primary winding of the transformer.
  • FIG. 18 is a configuration diagram of the power conversion device. The explanation is centered.
  • FIG. 18 the same or corresponding parts as those in the first and third embodiments are denoted by the same reference numerals.
  • the power conversion device 400 is largely composed of a power conversion unit and a detection / control unit.
  • the power conversion unit includes an inverter 402 having a full bridge configuration, a transformer 5, a rectifier circuit 6, an output smoothing filter 7, and an inductor L ⁇ b> 1 connected in series to the primary winding of the transformer 5.
  • a DC power supply 11 is connected to the input side of the inverter 402 of the power conversion unit, and a load 12 is connected to the output side of the output smoothing filter 7.
  • the detection / control unit includes an input detection unit 8, an output detection unit 9, and a control unit 210.
  • inverter 402 of the power conversion unit of power conversion device 500 are the same as those in the third embodiment.
  • Capacitors C1 to C4 are connected in parallel to switching elements S1 to S4 of inverter 402, and inductor L1 is connected in series to the primary winding of transformer 5, so that the first power non-transmission period and the second power non-transmission It becomes possible to lower the frequency of the resonance vibration generated during the period, and it becomes easy to search for a point where the switching loss is minimized.
  • the inductor L1 may be connected in series with the secondary winding of the transformer 5, or may be provided on both the primary side and the secondary side.
  • the power conversion device has a configuration in which a capacitor is added in parallel to the switching element of the inverter of the power conversion unit, or an inductor is added to the primary winding of the transformer. . Therefore, similarly to the power conversion device of the first embodiment, the controller and the cooler can be downsized by suppressing an increase in switching loss by a simple control method, and a small power conversion device can be provided. Furthermore, it is possible to easily search for a point where the switching loss is minimized.
  • This invention can be widely applied to power converters because the controller and the cooler can be miniaturized by suppressing an increase in switching loss by a simple control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

フルブリッジインバータ(2)の第1対角にあるスイッチング素子S1、S4が同時にオフし、第2対角にあるスイッチング素子S2、S3が同時にオンするまでの期間をT1、第2対角にあるスイッチング素子S2、S3が同時にオフし、第1対角にあるスイッチング素子S1、S4が同時にオンするまでの期間をT2とし、T1およびT2の合計長さを一定にした上で、T1およびT2の長さをスイッチング周期ごとに変化するように制御する。

Description

電力変換装置
 この発明は、直流電圧を高周波交流電圧に変換し、トランスに出力するフルブリッジインバータと、トランスの出力を整流する整流回路とを備えた電力変換装置に関するものである。
 フルブリッジインバータと整流回路とを組み合わせた絶縁型DC/DCコンバータは、全てのスイッチ素子がオフしている状態において、トランスの漏れインダクタンスや寄生容量とスイッチ素子の寄生容量との間で共振現象が発生する。ターンオンのタイミングによってターンオン電圧が変動し、スイッチング損失が変動する。スイッチング損失の最大値で冷却器を設計するため冷却器が大型化し、コスト増加になる。
 この問題を解決するため、第1直列回路における上アームのスイッチング素子と第2直列回路における下アームのスイッチング素子がオフした後に、第1の直列回路における下アームのスイッチング素子と第2直列回路における上アームのスイッチング素子がオンするまでの全スイッチング素子がオフ状態となる第1オフ期間と、第1直列回路における下アームのスイッチング素子と第2直列回路における上アームのスイッチング素子がオフした後に、第1の直列回路における上アームのスイッチング素子と第2の直列回路における下アームのスイッチング素子がオンするまでの全スイッチング素子がオフ状態となる第2オフ期間とを互いに異なるように設定し、いずれかのスイッチング素子のドレイン-ソース間の電圧が極小値に達した時にターンオンするように第1オフ期間および第2オフ期間を調整する電力変換装置が開示されている(例えば、特許文献1)。
特開2011-101497号公報(段落[0016]、[0021]-[0024]および図1、3)
 特許文献1では、入出力条件に応じた制御量を予め制御器に保存しておく手法が開示されている。しかし、制御量は入出力の電圧・電流のみならず、温度条件の変化にも対応させる必要があるため、保存する制御量が膨大となる課題がある。さらに、全てのスイッチング素子がオフしている状態で発生する共振現象の共振周波数はスイッチング周波数に対して高周波であるために、予め保存された制御量に微小なずれが生じた場合に、極小点以外でターンオンすることとなりスイッチング損失が増大してしまう問題がある。
 この発明は、上記の問題を解決するためになされたものであり、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することを目的とする。
 この発明に係る第1の電力変換装置は、上アームと下アームを構成する2個のスイッチング素子が直列に接続された第1レグと第2レグとが並列に接続され、第1レグと第2レグとは直流電源に並列に接続され、第1レグの上アームと下アームとの接続点と、第2レグの上アームと下アームとの接続点を交流電圧の出力端子とするフルブリッジ構成のインバータと、交流電圧の出力端子に一次側が接続されたトランスと、トランスの二次側に接続された整流回路と、各スイッチング素子をオン/オフする制御部と、を備えた電力変換装置において、制御部は、インバータの第1レグの上アームのスイッチング素子と第2レグの下アームのスイッチング素子を同時にオンする第1電力伝送期間と、第1レグの下アームのスイッチング素子と第2レグの上アームのスイッチング素子を同時にオンする第2電力伝送期間を交互に設け、さらに、制御部は、第1電力伝送期間と第2電力伝送期間の間に全てのスイッチング素子がオフ状態となる第1電力非伝送期間を設け、第2電力伝送期間と第1電力伝送期間の間に全てのスイッチング素子がオフ状態となる第2電力非伝送期間を設け、さらに、制御部は、第1電力非伝送期間、および第2電力非伝送期間の合計長さを一定にした上で、第1電力非伝送期間および第2電力非伝送期間の長さをスイッチング周期ごとに変化させるように制御するものである。
 この発明に係る電力変換装置は、制御部は、第1電力非伝送期間、および第2電力非伝送期間の合計長さを一定にした上で、第1電力非伝送期間および第2電力非伝送期間の長さをスイッチング周期ごとに変化させるように制御するものであるから、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。
この発明の実施の形態1の電力変換装置に係る構成図である。 この発明の実施の形態1の電力変換装置に係る動作説明用のタイムチャートである。 この発明の実施の形態1の電力変換装置に係る動作説明用のタイムチャートである。 この発明の実施の形態1の電力変換装置に係る動作説明用のタイムチャートである。 この発明の実施の形態1の電力変換装置に係る制御部(デューティ演算器)の構成を示すブロック図である。 この発明の実施の形態1の電力変換装置に係る制御部(デューティ演算器)の構成を示すブロック図である。 この発明の実施の形態1の電力変換装置に係る制御部(デューティ演算器)の構成を示すブロック図である。 この発明の実施の形態1の電力変換装置に係る制御部(ターンオン位相演算器)の構成を示すブロック図である。 この発明の実施の形態1の電力変換装置に係る制御部(PWM演算器)の構成を示すブロック図である。 この発明の実施の形態1の電力変換装置に係る変形例の構成図である。 この発明の実施の形態2の電力変換装置に係る構成図である。 この発明の実施の形態2の電力変換装置に係る制御部(ターンオン位相演算器)の構成を示すブロック図である。 この発明の実施の形態3の電力変換装置に係る構成図である。 この発明の実施の形態3の電力変換装置に係る制御部(ターンオン位相演算器)の構成を示すブロック図である。 この発明の実施の形態3の電力変換装置に係る制御部(デューティ演算器)の構成を示すブロック図である。 この発明の実施の形態4の電力変換装置に係る構成図である。 この発明の実施の形態4の電力変換装置に係る制御部(ターンオン位相演算器)の構成を示すブロック図である。 この発明の実施の形態5の電力変換装置に係る構成図である。
実施の形態1.
 実施の形態1は、フルブリッジインバータと、トランスと、整流回路と、制御部とから構成された電力変換装置において、第1対角にあるスイッチング素子が同時にオフし、第2対角にあるスイッチング素子が同時にオンするまでの期間をT1(第1電力非伝送期間)、第2対角にあるスイッチング素子が同時にオフし、第1対角にあるスイッチング素子が同時にオンするまでの期間をT2(第2電力非伝送期間)とし、第1対角にあるスイッチング素子が同時にオンしている期間(第1電力伝送期間)と、第2対角にあるスイッチング素子が同時にオンしている期間(第2電力伝送期間)を等しく設定(Ton)し、スイッチング周期Ts、およびTon一定の条件で、制御部はスイッチング周期毎に一定時間間隔でT1(第1電力非伝送期間)を0から(Ts-2Ton)の間でスイープを繰り返すものである。
 以下、実施の形態1に係る電力変換装置の構成および動作について、電力変換装置の構成図である図1、動作説明用のタイムチャートである図2-図4、制御部(デューティ演算器)の構成を示すブロック図である図5-図7、制御部(ターンオン位相演算器)の構成を示すブロック図である図8、制御部(PWM演算器)の構成を示すブロック図である図9、および電力変換装置に係る変形例の構成図である図10に基づいて説明する。
 まず、実施の形態1の電力変換装置の構成を図1に基づいて説明する。
 なお、直流電源と負荷は電力変換装置の構成要素ではないが、電力変換装置の動作上関連しているため、特に区別せずに説明する。
 図1において、電力変換装置1は、大きく電力変換部と検出・制御部とから構成される。
 電力変換部は、フルブリッジ構成のインバータ2と、トランス5と、整流回路6と、出力平滑フィルタ7とを備える。電力変換部のインバータ2の入力側には直流電源11が接続され、出力平滑フィルタ7の出力側には、負荷12が接続されている。
 検出・制御部は、入力検出部8と、出力検出部9と、制御部10とを備える。
 まず、電力変換部の全体の機能、動作を説明し、その後、各構成要素の構成、機能について説明する。
 インバータ2は、直流電源11の直流電圧を高周波交流電圧に変換し、トランス5に出力する。トランス5は、インバータ2と整流回路6との間の絶縁を保ち、インバータ2の出力電圧を所定の波高値を有する高周波交流電圧に変換する。整流回路6はトランス5から出力される高周波交流電圧を整流する。出力平滑フィルタ7は整流回路6から出力される電圧の高周波成分を除去し、負荷12に直流電力を供給する。
 次に、インバータ2の構成について説明する。
 フルブリッジ構成のインバータ2は、それぞれスイッチング素子が直列に接続された第1レグ3と第2レグ4との並列接続で構成される。
 第1レグ3は、上アーム3Uと下アーム3Lとが直列に接続された構成である。上アーム3Uは、スイッチング素子S1とスイッチング素子S1に逆並列に接続された帰還ダイオードD1とを備える。下アーム3Lは、スイッチング素子S2とスイッチング素子S2に逆並列に接続された帰還ダイオードD2とを備える。
 第2レグ4は、上アーム4Uと下アーム4Lとが直列に接続された構成である。上アーム4Uは、スイッチング素子S3とスイッチング素子S3に逆並列に接続された帰還ダイオードD3とを備える。下アーム4Lは、スイッチング素子S4とスイッチング素子S4に逆並列に接続された帰還ダイオードD4とを備える。
 第1レグ3と第2レグ4との並列回路の上アーム3U、4Uの端部と下アーム3L、4Lの端部が、それぞれ正極側入力端子および負極側入力端子となっている。これらの入力端子間に直流電源11の出力電圧が印加されている。なお、適宜、スイッチング素子S1およびスイッチング素子S3を、上アーム側スイッチング素子と記載し、スイッチング素子S2とスイッチング素子S4を下アーム側スイッチング素子と記載する。
 また、第1レグ3の上アーム3Uと下アーム3Lとの接続点、および第2レグ4の上アーム4Uと下アーム4Lとの接続点が、インバータ2の出力端子となっている。これらのインバータ2の出力端子に出力される電圧(VINV)がトランス5の一次側コイルに印加される。
 トランス5の二次側コイルには、ダイオードD5、D6、D7、D8から成る整流回路6が接続されている。整流回路6の出力端子に、インダクタ71とコンデンサ72から成る出力平滑フィルタ7が接続されている。出力平滑フィルタ7の出力には、負荷12が接続されている。
 なお、フルブリッジ構成のインバータの電力制御には、一般的にPWM(Pulse Width Modulation)制御(ハードスイッチング方式)と位相シフト制御(ソフトスイッチング方式)とがあるが、本実施の形態では、PWM制御(ハードスイッチング方式)を用いている。
 なお、スイッチング素子S1~S4は、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)、またはソース・ドレイン間にダイオードが接続されたMOSFET(Metal Oxide Semiconductor Field Fffect Transistor)などを用いることが望ましい。また、帰還ダイオードD1~D4はIGBTやMOSFETに内蔵されたダイオードを用いてもよく、外付けに別途ダイオードを設けてもよい。
 次に、検出・制御部の構成、機能を説明する。
 直流電源11と並列に入力検出部8を設け、直流電源11の電圧Vdcおよび電流Idcの内少なくとも一方を検出する。また、負荷12と並列に出力検出部9を設け、負荷12の電圧Voutおよび電流Ioutの内少なくとも一方を検出する。
 制御部10は、デューティ演算器21、ターンオン位相演算器22、およびPWM演算器23を備える。
 デューティ演算器21、ターンオン位相演算器22、およびPWM演算器23の機能について説明する。
 デューティ演算器21は、入力検出部8および出力検出部9の内少なくとも一方の検出値に基づき、スイッチング周期に対するオン時間長さの比率であるデューティDを演算する。ターンオン位相演算器22は、デューティ演算器21が演算したデューティDに基づきターンオン位相を演算する。PWM演算器23は、演算されたデューティDとターンオン位相に応じてスイッチング素子S1~S4のゲート信号を演算する。
 なお、デューティDは、D=Ton/Tsと定義し、0.5以上にはならない。
 実施の形態1の電力変換装置1の機能、動作の理解を容易にするため、基本的な動作を図2のタイムチャートに基づいて説明し、その後、電力変換装置1に係る動作を図3、図4のタイムチャートに基づいて説明する。
 まず、図2に基づいて、インバータ2の基本的な動作説明を行う。
 図2はある1スイッチング周期前後のタイムチャートを示すものである。ここでは、図1に示したインバータ2を構成するスイッチング素子としてMOSFETを使用した場合を想定して説明する。
 F2aは第1レグ3のスイッチング素子S1、S2のゲートにそれぞれ供給される駆動信号を示している。F2bは第2レグ4のスイッチング素子S3、S4のゲートにそれぞれ供給される駆動信号を示している。
 F2a、F2bで示すように、各レグの上アーム側スイッチング素子と下アーム側スイッチング素子は交互にオン、オフを繰り返す。
 また、F2cはトランス5に入力される電圧であるインバータ2の出力電圧(VINV)を示している。
 F2d~F2gは、それぞれ、スイッチング素子S1~S4の両端の電圧(ドレン-ソース間電圧)Vds―S1、Vds―S2、Vds―S3、およびVds―S4を実線で示している。さらに、各アームのスイッチング素子S1~S4と帰還ダイオードD1~D4を流れる電流の合計電流Id-Q1、Id-Q2、Id-Q3、およびId―Q4を破線で示している。
 図2において、t0~t4はスイッチング素子S1~S4のオンからオフ、またはオフからオンへの切り換えの時刻を表している。
 また、Vdsはスイッチング素子S1~S4のソース電位を基準としたドレイン電圧であり、Idはドレインから流入する方向を正としたスイッチング素子の電流である。
 時刻t0~t4は、PWM制御の繰り返し周期である1スイッチング周期であり、この期間長さをTsと定義する。また、トランス5の偏磁を抑制するために時刻t0~t1とt2~t3の期間長さを等しく設定し、この期間長さをTonと定義する。
 さらに、スイッチング素子S1、S4が同時にオフしてからスイッチング素子S2、S3が同時にオンするまでの期間(すなわちt1からt2までの期間)をT1(第1電力非伝送期間)と定義する。また、スイッチング素子S2、S3が同時にオフしてからスイッチング素子S1、S4が同時にオンするまでの期間(すなわちt3からt4までの期間)をT2(第2電力非伝送期間)と定義する。そして、図2においては、T1とT2とは等しい。
 なお、t0からt1までの期間を第1電力伝送期間と、t2からt3までの期間を第2電力伝送期間と、適宜記載する。
 以下、図2に基づいて、インバータ2の動作説明を行う。
 時刻t0において、スイッチング素子S1~S4がオフの状態から、第1レグ3の上アーム3Uのスイッチング素子S1と第2レグ4の下アームのスイッチング素子S4をターンオンする。
 このとき、スイッチング素子S1とスイッチング素子S4は電圧印加状態でターンオンすることでドレイン―ソース間電圧を0Vへと遷移させるため、ハードスイッチングとなりスイッチング損失が発生する。
 t0からt1までの期間(第1電力伝送期間)において、インバータ2の出力電圧(VINV)は図1の矢印の方向に出力され、負荷12に電力が供給される。
 時刻t1において、第1レグ3の上アーム3Uのスイッチング素子S1と第2レグ4の下アーム4Lのスイッチング素子S4をターンオフし、スイッチング素子S1~S4を全てオフ状態とする。このとき、インバータ2からの電圧出力は停止する。
 そして、このとき、スイッチング素子S1とスイッチング素子S4は電流通流中にターンオフすることで電流を遮断するため、ハードスイッチングとなりスイッチング損失が発生する。
 次に、時刻t1から時刻t2の期間T1(第1電力非伝送期間)について説明する。
 理想的にはインバータ2の出力電圧(VINV)は0Vとなり、スイッチング素子S1~S4のドレイン―ソース間電圧はそれぞれ直流電源11の電圧Vdcの1/2が印加される状態となる。しかし、実際の回路では、この間にトランス5の漏れインダクタンスと、トランス5の寄生容量およびスイッチング素子S1~S4の寄生容量との間で共振現象が発生し、インバータ2の出力電圧(VINV)は共振電圧波形となる。
 これに伴い、スイッチング素子S1~S4のドレイン―ソース間の電圧波形は、直流電源11の電圧Vdcの1/2電圧にこの共振電圧が重畳した波形となる。この間、スイッチング素子S1~S4はオフ状態であるため、直流電源11からの電力供給はなく、トランス5とスイッチング素子S1~S4との間で共振による電力授受が行われる。
 時刻t2において、第1レグ3の下アーム3Lのスイッチング素子S2と第2レグ4の上アーム4Uのスイッチング素子S3をターンオンする。
 このとき、スイッチング素子S2とスイッチング素子S3は電圧印加状態でターンオンすることでドレイン―ソース間電圧を0Vへと遷移させるため、ハードスイッチングとなりスイッチング損失が発生する。
 t2からt3までの期間(第2電力伝送期間)において、インバータ2の出力電圧(VINV)は図1の矢印の逆方向に出力され、負荷12に電力が供給される。
 時刻t3において、第1レグ3の下アーム3Lのスイッチング素子S2と第2レグ4の上アーム4Uのスイッチング素子S3をターンオフし、スイッチング素子S1~S4を全てオフ状態とする。このとき、インバータ2からの電圧出力は停止する。
 そして、このとき、スイッチング素子S2とスイッチング素子S3は電流通流中にターンオフすることで電流を遮断するため、ハードスイッチングとなりスイッチング損失が発生する。
 時刻t3から時刻t4の期間T2(第2電力非伝送期間)については、上記の時刻t1から時刻t2の期間と同様である。すなわち、スイッチング素子S1~S4のドレイン―ソース間の電圧波形は、直流電源11の電圧Vdcの1/2電圧に共振電圧が重畳した波形となる。この間、スイッチング素子S1~S4はオフ状態であるため、直流電源11からの電力供給はなく、トランス5とスイッチング素子S1~S4との間で共振による電力授受が行われる。
 時刻t4以降は、上記で説明した動作の繰り返しとなる。すなわち、図2において、時刻t4が時刻t0となる。
 ここで、時刻t0、t2におけるターンオン時のスイッチング損失はターンオン直前のドレイン-ソース間電圧に比例するため、共振電圧の位相によってスイッチング損失が変動する。例えば、理想状態である共振電圧がVdc/2の状態でスイッチングした場合を基準とすると、共振電圧の極小点でスイッチングすればターンオン損失は減少し、極大点でスイッチングすればターンオン損失が増加する。
 ヒートシンク等の放熱器を設計する場合、最大損失条件を放熱可能なように冷却器サイズを決定するため、変動するスイッチング損失の最大値で冷却器を設計する必要がある。このため、冷却器が大型化し、装置の大型化やコスト増加が課題となる。
 次に、本願実施の形態1の電力変換装置1、具体的にはインバータ2の動作について、図3、図4のタイムチャートに基づいて説明する。なお、図3のF3a~F3gは、図2のF2a~F2gに対応する。また、図4のF4a~F4gは、図2のF2a~F2gに対応する。
 実施の形態1による電力変換装置1では、次の条件でスイッチング素子S1~S4をオン/オフする。(1)スイッチング周期Tsは一定。(2)オン時間Tonは一定。(3)スイッチング素子S1とS4とは同時にターンオン、ターンオフし、スイッチング素子S2とS3とは同時にターンオン、ターンオフする。(4)スイッチング周期Ts内においてスイッチング素子S1~S4をターンオンするタイミング、即ちターンオン位相を変化させる。
 上記条件のもとで、T1(第1電力非伝送期間)とT2(第2電力非伝送期間)を異なるように設定する状態を設け、変動するターンオン電圧に対して、ターンオン位相をスイッチング周期毎に変更し、複数のスイッチング周期で見たとき、ターンオン電圧を平均化する。
 図3、図4に本実施の形態1による電力変換装置1のスイッチングパターンに応じたタイムチャートを示す。図3はT1(第1電力非伝送期間)をT2(第2電力非伝送期間)よりも短く設定した場合である。図4はT1(第1電力非伝送期間)をT2(第2電力非伝送期間)よりも長く設定した場合である。
 T1(第1電力非伝送期間)とT2(第2電力非伝送期間)とが同じである図2と、T1とT2が異なる図3、図4におけるスイッチング素子S1~S4のターンオンを比較する。図3、図4においては、T1(第1電力非伝送期間)の長さを変更することにより、ターンオンの位相が変化し、ターンオンする電圧が変化することになる。
 すなわち、T1とT2とを異なるようにすることで時刻t0におけるスイッチング素子S1、S4、または時刻t2におけるスイッチング素子S2、S3のドレインーソース間電圧を、T1とT2とが同じである場合と比較して低減することができる。
 本実施の形態1による電力変換装置1では、スイッチング周期Tsを一定かつ、スイッチング素子S1~S4のオン時間Tonを一定とするため、予め定めたターンオン位相範囲内でターンオン位相を変更する。例えば、図3、図4において、ターンオン位相範囲、すなわちT1(第1電力非伝送期間)が取りえる(変化しえる)範囲は、0から(Ts-2Ton)である。
 しかし、実際には、T1=0またはT1=(Ts-2Ton)では、デッドタイムを考慮する。例えば、時刻t1にデッドタイムを加算した時刻に時刻t2の初期値を設定する。
 このターンオン位相範囲内において、スイッチング周期毎に予め定めた単位時間分ターンオン位相を進ませたり、遅らせたりする。
 例えば、図2に示したT1(第1電力非伝送期間)の長さとT2(第2電力非伝送期間)の長さが同じ状態を初期状態とし、最大のターンオン位相範囲でターンオン位相を可変する場合を説明する。
 なお、先に説明したように、Ts一定、Ton一定、Ts=2Ton+T1+T2であり、(T1+T2)は一定である。ここで、説明を分かりやすくするために、Tref=T1+T2と定義する。
 図2に示したT1(第1電力非伝送期間)の長さとT2(第2電力非伝送期間)の長さが同じ状態から、次のスイッチング周期では、予め定めた単位時間分、t2を進ませ、T1の長さを短くする。T2はT1の長さを短くした分長さは短くなる。
 次のスイッチング周期では、予め定めた単位時間分更にt2を進ませ、T1=0(t1=t2)となるまで、スイッチング周期毎にt2を進ませる動作を繰り返す。
 T1=0(t1=t2)となったスイッチング周期の次のスイッチング周期では、予め定めた単位時間分、T1の長さを長くする(t2を遅らせる)。
 T1=(Ts-2Ton)(すなわち、t3=t4)となるまでスイッチング周期毎にt2を遅らせる動作を繰り返す。
 T1=(Ts-2Ton)(すなわち、t3=t4)となったスイッチング周期の次の周期では、予め定めた単位時間分、t2を進ませる。
 上記の動作を繰り返すことにより、予め定めたターン位相範囲内でターンオン位相を可変することとなり、スイッチング素子S1~S4のターンオン電圧を複数のスイッチング周期で見て、平均化できる。
 なお、予め定めた単位時間については、先に説明したT1(第1電力非伝送期間)およびT2(第2電力非伝送期間)で発生するスイッチング素子S1~S4のドレイン―ソース間の共振電圧波形の周期よりも短い値に設定する。
 上記説明では、分かりやすいように図2のT1=T2の状態から開始する場合を説明したが、下記のようにしてもよい。
 Ts一定、Ton一定、Ts=2Ton+T1+T2であり、Tref(=T1+T2)一定の条件の下で、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させ、その後、(Ts-2Ton)から0に減少させるように、T1(第1電力非伝送期間)の開始位相を制御し、以降この位相制御を繰り返すことで、スイッチング素子S1~S4のターンオン電圧を複数のスイッチング周期で見て、平均化できる。
 デッドタイムを考慮した場合、T1(第1電力非伝送期間)をデッドタイムの長さから(Ts-2Ton-デッドタイムの長さ)まで増加させ、その後、デッドタイムの長さに減少させる。
 また、T2(第2電力非伝送期間)を0から(Ts-2Ton)まで増加させ、その後(Ts-2Ton)から0に減少させるように、T2(第2電力非伝送期間)の開始位相を制御し、以降この位相制御を繰り返しても、同様の効果を奏することができる。
 デッドタイムを考慮した場合、T2(第2電力非伝送期間)をデッドタイムの長さから(Ts-2Ton-デッドタイムの長さ)まで増加させ、その後、デッドタイムの長さに減少させる。
 次に、制御部10のデューティ演算器21、ターンオン位相演算器22、およびPWM演算器23の機能、動作を図5-図9に基づいて説明する。
 まず、デューティ演算器21について説明する。
 デューティ演算器21では、入力検出部8、出力検出部9の出力をもとにデューティDを演算する。なお、デューティDを演算するための検出信号が異なるため、図5-図7のデューティ演算器21をそれぞれ21A~21Cと区別している。
 図5にデューティ演算器21Aのブロック図を示す。デューティ演算器21Aは、加減算器211と比例制御器212とを備える。
 出力検出部9の電圧検出値Voutと予め定めた負荷電圧目標値Vout*との偏差を比例(P)制御し、デューティDを演算する。
 また、デューティ演算器21の別の例として、図6にデューティ演算器21Bのブロック図を示す。デューティ演算器21Bは、加減算器211と比例制御器212とを備える。
 出力検出部9の電流検出値Ioutと、負荷電流目標値Iout*との偏差に基づき、デューティDを演算している。
 さらに、デューティ演算器21の別の例として、図7にデューティ演算器21Cのブロック図を示す。デューティ演算器21Cは、加減算器211、214と比例積分制御器213と、比例制御器215とを備える。
 直流電源11がAC/DCコンバータ等の電流源である場合、入力検出部8の電圧検出値Vdcと電源電圧目標値Vdc*との偏差を比例積分して、負荷電流目標値Iout*を演算する。この演算した負荷電流目標値Iout*と出力検出部9の電流検出値Ioutとの偏差に基づいてデューティDを演算している。
 同様に、入力検出部8の検出値である直流電源11の電流Idcと直流電源電流目標値Idc*に基づいて、デューティDを演算してもよい。いずれの検出値を用いてデューティDを求めるかは、負荷12がどのような負荷であるかによって決定すればよい。
 例えば、定電流が要求される負荷であれば出力検出部9の電流検出値に基づいてデューティDを決定し、定電圧が要求される負荷であれば、出力検出部9の電圧検出値に基づいてデューティDを決定すればよい。
 次に、ターンオン位相演算器22について説明する。図8にターンオン位相演算器22のブロック図を示す。ターンオン位相演算器22は、キャリア位相演算器221と、乗算器225と、加減算器226とを備える。
 デューティ演算器21の演算結果、およびスイッチング周期Tsよりターンオン位相範囲を演算し、基準キャリアCarSと同期したキャリアCarAと、ターンオン位相範囲内で基準キャリアCarSと位相差を有するキャリアCarBを演算する。
 キャリアCarBは、キャリア位相演算器221によって基準キャリアCarSとの位相差が与えられる。
 例えば、時刻t2を可変にする場合、デューティ演算器21の演算結果であるデューティDとスイッチング周期Tsに基づいて、乗算器225でTon、すなわちt2の最小値(t2min)を演算する。さらに、加減算器226でt2の最大値(t2max)を演算することで、ターンオン位相範囲を演算する。
 キャリア位相演算器221は、演算したターンオン位相範囲(t2min~t2max)内でターンオン位相をスイッチング周期毎に変更していく。
 具体的には、スイッチング周期毎に予め定めた単位時間分キャリアCarBの位相を進ませたり、遅らせたりすることでターンオン位相を制御する。
 次に、PWM演算器23について説明する。図9にPWM演算器23の一例のブロック図を示す。PWM演算器23は、比較器231、232と、ANDゲート233と、遅延器234とを備える。
 PWM演算器23は、デューティ演算器21の演算結果であるデューティDと、ターンオン位相演算器22の演算結果であるキャリアCarA、CarBに基づいてスイッチング素子S1~S4のゲートへのPWM信号を演算して生成する。
 キャリアCarAとキャリアCarBはそれぞれ比較器231、232に入力され、デューティDと比較することでパルス波形を生成する。
 比較器231の出力から、ANDゲート233と遅延器234とを用いて、スイッチング素子S1、S4に出力するPWM信号を生成する。
 比較器232の出力から、ANDゲート233と遅延器234とを用いて、スイッチング素子S2、S3に出力するPWM信号を生成する。
 なお、デッドタイムTdを演算する遅延器234を設けることで、所定のデッドタイムTdを有するスイッチング素子S1~S4へのPWM信号を生成する。
 本実施の形態1による電力変換装置1によれば、ターンオン時の電圧は複数のスイッチング周期で平均化されるため、トランスの漏れインダクタンスおよび寄生容量、スイッチング素子の寄生容量の個体毎のばらつきを考慮した調整が不要である。
 次に、本実施の形態1の電力変換装置1の変形例として、トランス5と整流回路6との構成が異なる電力変換装置1Aについて図10に基づいて説明する。
 図10において、図1の電力変換装置1からの相違点は、トランス5Aおよび整流回路6Aの構成である。トランス5Aは、トランス2次側巻線に中点を設けたセンタータップの構成とし、整流回路6AはダイオードD9、D10から成る。
 図10における電力変換装置1Aに対しても、例えば、上記に説明したT1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させ、その後、(Ts-2Ton)から0に減少させるように、T1の開始位相を制御し、以降この位相制御を繰り返すことで、スイッチング素子S1~S4のターンオン電圧を複数のスイッチング周期で見て、平均化できる。
 なお、以上の説明では、整流回路6(6A)と出力平滑フィルタ7とを別の構成要素として説明したが、出力平滑フィルタの構成部品を整流回路に取り込み、全体を整流回路とまとめてもよい。
 なお、以上の説明では、第1電力伝送期間と第2電力伝送期間の長さを等しく設定した。しかし、例えば、入力電圧にリプルが存在する、あるいは回路のインピーダンスが異なる要因で、第1電力伝送期間の振幅と第2電力伝送期間の振幅が異なり、トランス5Aに偏磁が発生する場合には、第1電力伝送期間と第2電力伝送期間の長さを異なるように設定してもよい。
 以上より、実施の形態1による電力変換装置1によれば、スイッチング素子S1~S4のターンオン電圧を複数のスイッチング周期で見て平均化することが可能となる。一般的に、スイッチング周期よりも冷却器の熱時定数の方が大きい。このため、スイッチング素子の損失は平均化され、冷却器を設計する際に考慮すべき最大損失を抑制することできる。この結果、制御器と冷却器を小型化し、小型な電力変換装置を実現できる。
 以上説明したように、実施の形態1の電力変換装置は、フルブリッジインバータの第1対角にあるスイッチング素子が同時にオフし、第2対角にあるスイッチング素子が同時にオンするまでの期間をT1(第1電力非伝送期間)、第2対角にあるスイッチング素子が同時にオフし、第1対角にあるスイッチング素子が同時にオンするまでの期間をT2(第2電力非伝送期間)とし、第1対角にあるスイッチング素子が同時にオンしている期間(第1電力伝送期間)と、第2対角にあるスイッチング素子が同時にオンしている期間(第2電力伝送期間)を等しく設定(Ton)し、スイッチング周期Ts、およびTon一定の条件で、制御部はスイッチング周期毎に一定時間間隔でT1(第1電力非伝送期間)を0から(Ts-2Ton)の間でスイープを繰り返すものである。このため、スイッチング素子のターンオン電圧を複数のスイッチング周期で見て平均化することできる。この結果、実施の形態1の電力変換装置は、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。
実施の形態2.
 実施の形態1の電力変換装置においては、T1(第1電力非伝送期間)を0から(Ts-2Ton)の間でスイープすることで、スイッチング素子のターンオン電圧を平均化したが、本実施の形態2の電力変換装置は、スイッチング素子の温度検出部を設け、スイッチング素子の温度検出値に基づき、スイッチング素子のターンオン位相を変更し、スイッチング素子の温度が最小となる点を探索することで、スイッチング素子のターンオン損失が最小となるスイッチング素子のターンオン位相を探索する構成としたものである。
 以下、実施の形態2の電力変換装置について、電力変換装置の構成図である図11および制御部(ターンオン位相演算器)の構成を示すブロック図である図12に基づいて、実施の形態1との差異を中心に説明する。図11において、実施の形態1の図1と同一あるいは相当部分は、同一の符号を付している。
 まず、実施の形態2の電力変換装置100の構成を図11に基づいて説明する。
 図11において、電力変換装置100は、大きく電力変換部と検出・制御部とから構成される。
 電力変換部は、フルブリッジ構成のインバータ2と、トランス5と、整流回路6と、出力平滑フィルタ7とを備える。電力変換部のインバータ2の入力側には直流電源11が接続され、出力平滑フィルタ7の出力側には、負荷12が接続されている。
 検出・制御部は、入力検出部8と、出力検出部9と、温度検出部130と、制御部110とを備える。
 まず、電力変換部の全体の機能、動作を説明する。
 インバータ2は、直流電源11の直流電圧を高周波交流電圧に変換し、トランス5に出力する。トランス5は、インバータ2と整流回路6との間の絶縁を保ち、所定の高周波交流電圧に変換する。整流回路6はトランス5から出力される高周波交流電圧を整流する。出力平滑フィルタ7は整流回路6から出力される電圧の高周波成分を除去し、負荷12に直流電力を供給する。
 実施の形態2において、電力変換装置100の電力変換部のインバータ2の構成は実施の形態1と同じである。
 実施の形態1との差異、すなわち、電力変換装置100の電力変換部のインバータ2の動作の差異および検出・制御部の構成、動作の差異を中心に説明する。
 実施の形態2による電力変換装置100では、検出部として、入力検出部8、出力検出部9、および温度検出部130を備える。
 電力変換装置100は、実施の形態1と同様に直流電源11と並列に入力検出部8を設け、直流電源11の電圧Vdcと電流Idcの少なくとも一方を検出する。また、負荷12と並列に出力検出部9を設け、負荷の電圧Voutと電流Ioutの少なくとも一方を検出する。さらに、スイッチング素子S1~S4の温度を検出する温度検出部130を備える。
 なお、温度検出部130はスイッチング素子S1~S4がモジュールの場合は、モジュール内部の温度を検出してもよいし、ディスクリート品の場合はヒートシンクや実装された基板、バスバー等の温度を検出してもよい。
 スイッチング素子S1~S4のすべての温度を検出することを想定して説明するが、スイッチング素子の温度の検出は、代表の1個または複数個であってもよい。
 制御部110は、デューティ演算器21、ターンオン位相演算器122、およびPWM演算器23を備える。次に説明するように、制御部110と実施の形態1の制御部10との相違点は、ターンオン位相演算器122である。
 まず、ターンオン位相演算器122について説明する。図12はターンオン位相演算器122のブロック図を示す。ターンオン位相演算器122は、キャリア位相演算器221Aと、乗算器225と、加減算器226とを備える。図12において、温度検出部130からの信号をTmpと記載している。
 温度検出部130は、スイッチング素子S1~S4の温度を検出し、ターンオン位相演算器122に出力する。
 ターンオン位相演算器122は、実施の形態1と同様にデューティ演算器21の演算結果であるデューティD、スイッチング周期Tsからターンオン位相範囲演算し、同範囲内で基準キャリアCarSと同期したキャリアCarAと、ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBを演算する。ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBはキャリア位相演算器221Aでターンオン位相を演算する。
 キャリア位相演算器221Aは、定期的にキャリアCarBをターンオン位相範囲内でターンオン位相をスイープする。すなわち、例えば、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させる。
 キャリア位相演算器221Aは、各ターンオン位相における温度検出結果を保存し、温度検出結果が最小となるキャリアCarBの位相を選択する。
 温度検出結果の保存は、各ターンオン位相に対する温度検出結果を保存してもよいし、最小温度に対応するデータのみを保存してもよい。
 電力変換装置100の動作条件の変化に対応するために、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させるスイープを定期的に行う。さらに、入力検出部8および出力検出部9で検出した1つあるいは複数の電圧、電流が所定の閾値を超えた場合に、T1を0から(Ts-2Ton)まで増加させるスイープを開始することで、電力変換装置100の動作条件の変化により迅速に対応することができる。
 次に、山登り法による探索について説明する。
 山登り法により、温度検出結果が最小となるターンオン位相を探索し、キャリアCarBの位相を決定することも可能である。
 山登り法を用いる場合、時刻t2の初期値を時刻t1と等しくする、すなわちT1=0とすることで、共振振幅が大きい状態、すなわち、より低い電圧でターンオンすることが可能となり、スイッチング素子S2、S3のターンオン損失をより効果的に低減することができる。
 山登り法を用いることで、定期的にT1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させるスイープを行ってスイッチング素子S1~S4の温度の最小値を探索する必要がなくなる。このため、常に温度が最小となる動作条件で動作を継続することができる。
 なお、スイッチング素子S1~S4の温度の検出が、スイッチング素子の電圧・電流変化と比較して応答が遅い場合は、温度が飽和するまでの待ち時間を設けてもよい。
 本実施の形態2による電力変換装置によれば、温度によりターンオン位相を調整可能であるため、トランスの漏れインダクタンスや寄生容量、スイッチング素子の寄生容量の個体毎のばらつきを考慮した調整が不要である。
 なお、本実施の形態2のスイッチング素子の温度検出値に基づき、スイッチング素子のターンオン損失が最小となるターンオン位相を探索は、トランス2次側巻線に中点を設け、整流回路6をセンタータップの構成とする電力変換装置にも適用することが可能である。
 以上説明したように、本実施の形態2の電力変換装置は、スイッチング素子の温度検出部を設け、スイッチング素子の温度検出値に基づき、スイッチング素子のターンオン位相を変更し、スイッチング素子の温度が最小となる点を探索することで、スイッチング素子のターンオン損失が最小となるスイッチング素子のターンオン位相を探索できる。したがって、実施の形態1の電力変換装置と同様に、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。
実施の形態3.
 実施の形態3の電力変換装置は、入力検出部あるいは出力検出部の検出値に基づき、スイッチング素子のターンオン位相を変更し、入力検出部の検出入力電流が最小となる点を探索することで、スイッチング素子のターンオン損失が最小となるスイッチング素子のターンオン位相を探索する構成としたものである。
 以下、実施の形態3の電力変換装置について、電力変換装置の構成図である図13、制御部(ターンオン位相演算器)の構成を示すブロック図である図14、および制御部(デューティ演算器)の構成を示すブロック図である図15に基づいて、実施の形態2との差異を中心に説明する。図13-図15において、実施の形態1、2の図と同一あるいは相当部分は、同一の符号を付している。
 まず、実施の形態3の電力変換装置200の構成を図13に基づいて説明する。
 図13において、電力変換装置200は、大きく電力変換部と検出・制御部とから構成される。
 電力変換部は、フルブリッジ構成のインバータ2と、トランス5と、整流回路6と、出力平滑フィルタ7とを備える。電力変換部のインバータ2の入力側には直流電源11が接続され、出力平滑フィルタ7の出力側には、負荷12が接続されている。
 検出・制御部は、入力検出部8と、出力検出部9と、制御部210とを備える。
 まず、電力変換部の全体の機能、動作を説明する。
 インバータ2は、直流電源11の直流電圧を高周波交流電圧に変換し、トランス5に出力する。トランス5は、インバータ2と整流回路6との間の絶縁を保ち、所定の高周波交流電圧に変換する。整流回路6はトランス5から出力される高周波交流電圧を整流する。出力平滑フィルタ7は整流回路6から出力される電圧の高周波成分を除去し、負荷12に直流電力を供給する。
 実施の形態3において、電力変換装置200の電力変換部のインバータ2の構成および動作は実施の形態2と同じである。
 実施の形態2との差異、すなわち、電力変換装置200の検出・制御部の構成、動作の差異を中心に説明する。
 実施の形態3による電力変換装置200では、検出部として、入力検出部8、および出力検出部9を備える。
 電力変換装置200は、実施の形態2と同様に直流電源11と並列に入力検出部8を設け、直流電源11の電圧Vdcと電流Idcの少なくとも一方を検出する。また、負荷12と並列に出力検出部9を設け、負荷の電圧Voutと電流Ioutの少なくとも一方を検出する。
 制御部210は、デューティ演算器21、ターンオン位相演算器222、およびPWM演算器23を備える。次に説明するように、制御部210と実施の形態2の制御部110との相違点は、ターンオン位相演算器222である。
 実施の形態2の電力変換装置100では、温度検出部130で検出したスイッチング素子S1~S4の温度をターンオン位相演算器122に出力していた。実施の形態3の電力変換装置200では、入力検出部8あるいは出力検出部9で検出した電圧、電流値をターンオン位相演算器222にも出力している。
 まず、ターンオン位相演算器222について説明する。図14はターンオン位相演算器222のブロック図を示す。ターンオン位相演算器222は、キャリア位相演算器221Bと、乗算器225と、加減算器226とを備える。図14において、入力検出部8、出力検出部9からの信号をSGと記載している。
 ターンオン位相演算器222は、実施の形態2と同様にデューティ演算器21の演算結果であるデューティD、スイッチング周期Tsからターンオン位相範囲演算し、同範囲内で基準キャリアCarSと同期したキャリアCarAと、ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBを演算する。ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBはキャリア位相演算器221Bでターンオン位相を演算する。
 入力が電圧源で出力がバッテリ等の電圧源負荷の場合、出力電流量を制御することで出力電力が決まるため、入力電流が小さい方がスイッチング損失は小さい状態となる。
 この場合は、入力検出部8で検出した入力電流検出値を用いて、入力電流検出値が最小となる点を探索する。
 以下、入力が電圧源で出力がバッテリ等の電圧源負荷の場合について、説明する。
 図15に示すデューティ演算器21Bは、出力検出部9の出力電流検出値Ioutと、負荷電流目標値Iout*との偏差に基づきデューティDを演算する。
 このとき、ターンオン位相演算器222は、ターンオン位相を制御し、入力検出部8の入力電流検出値に基づき、入力電流が最小となる点を探索する。
 キャリア位相演算器221Bは、定期的にキャリアCarBをターンオン位相範囲内でターンオン位相をスイープする。すなわち、例えば、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させる。
 各ターンオン位相における入力電流検出値を保存し、入力電流検出値が最小となるキャリアCarBの位相を選択する。
 探索結果の保存は、各ターンオン位相に対する入力電流検出値を保存してもよいし、最小入力電流に対応するターンオン位相データのみを保存してもよい。
 電力変換装置200の動作条件の変化に対応するために、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させるスイープを定期的に行う。さらに、入力検出部8および出力検出部9で検出した1つあるいは複数の電圧、電流が所定の閾値を超えた場合に、T1を0から(Ts-2Ton)まで増加させるスイープを開始することで、電力変換装置100の動作条件の変化により迅速に対応することができる。
 次に、山登り法による探索について説明する。
 山登り法により、入力電流検出値が最小となるターンオン位相を探索し、キャリアCarBの位相を決定することも可能である。
 山登り法を用いる場合、時刻t2の初期値を時刻t1と等しくする、すなわちT1=0とすることで、共振振幅が大きい状態、すなわち、より低い電圧でターンオンすることが可能となり、入力電流検出値の最小値をより効果的に探索することができる。
 山登り法を用いることで、定期的にT1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させるスイープを行って入力電流検出値の最小値を探索する必要はない。このため、常に入力電流検出値が最小となる動作条件で動作を継続することができる。
 以上、実施の形態3の電力変換装置200として、入力が電圧源で出力がバッテリ等の電圧源負荷の場合を説明した。
 直流電源11がAC/DCコンバータ等の定電力源であり、出力側がバッテリ等の電圧源負荷である場合、出力電流が大きい方がスイッチング損失は小さい状態となる。
 この場合には、出力検出部9からキャリア位相演算器221Bに出力された出力電流検出値に基づいて、出力電流検出値の最大値を探索することで、スイッチング素子S1~S4のスイッチング損失が最小となる点を探索できる。
 本実施の形態3による電力変換装置によれば、例えば、入力電流検出値に基づいて、スイッチング素子のスイッチング損失が最小となる点を探索できるため、トランスの漏れインダクタンスや寄生容量、スイッチング素子の寄生容量の個体毎のばらつきを考慮した調整が不要である。
 以上説明したように、実施の形態3の電力変換装置は、入力検出部あるいは出力検出部の検出値に基づき、スイッチング素子のターンオン位相を変更し、入力検出部の検出入力電流が最小となる点を探索することで、スイッチング素子のターンオン損失が最小となるスイッチング素子のターンオン位相を探索する構成としたものである。したがって、実施の形態1の電力変換装置と同様に、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。
実施の形態4.
 実施の形態4の電力変換装置は、実施の形態2において大容量バッテリを負荷とした場合、バッテリ電圧上昇に伴う温度変化を除去し、共振振動による温度変化のみを検出するため、ターンオン位相演算器にハイパスフィルタを設ける構成としたものである。
 以下、実施の形態4の電力変換装置について、電力変換装置の構成図である図16、および制御部(ターンオン位相演算器)の構成を示すブロック図である図17に基づいて、実施の形態2との差異を中心に説明する。図16、図17において、実施の形態1、2の図と同一あるいは相当部分は、同一の符号を付している。
 まず、実施の形態4の電力変換装置300の構成を図16に基づいて説明する。
 図16において、電力変換装置300は、大きく電力変換部と検出・制御部とから構成される。
 電力変換部は、フルブリッジ構成のインバータ2と、トランス5と、整流回路6と、出力平滑フィルタ7とを備える。電力変換部のインバータ2の入力側には直流電源11が接続され、出力平滑フィルタ7の出力側には、負荷12が接続されている。
 検出・制御部は、入力検出部8と、出力検出部9と、制御部310とを備える。
 実施の形態4において、電力変換装置300の電力変換部のインバータ2の構成および動作は実施の形態2と同じである。
 実施の形態2との差異、すなわち、電力変換装置300の検出・制御部の構成、動作の差異を中心に説明する。
 実施の形態4による電力変換装置300では、検出部として、入力検出部8、出力検出部9、および温度検出部130を備える。
 電力変換装置300は、実施の形態2と同様に直流電源11と並列に入力検出部8を設け、直流電源11の電圧Vdcと電流Idcの少なくとも一方を検出する。また、負荷12と並列に出力検出部9を設け、負荷の電圧Voutと電流Ioutの少なくとも一方を検出する。さらに、スイッチング素子S1~S4の温度を検出する温度検出部130を備える。
 制御部310は、デューティ演算器21、ターンオン位相演算器322、およびPWM演算器23を備える。次に説明するように、制御部310と実施の形態2の制御部210との相違点は、ターンオン位相演算器322である。
 まず、ターンオン位相演算器322について説明する。図17はターンオン位相演算器322のブロック図を示す。ターンオン位相演算器322は、キャリア位相演算器221Aと、乗算器225と、加減算器226と、ハイパスフィルタ327とを備える。図17において、温度検出部130からの信号をTmpと記載している。
 温度検出部130は、スイッチング素子S1~S4の温度を検出し、ターンオン位相演算器322に出力する。しかし、実施の形態2とは異なり、この温度検出部130からの信号(Tmp)は、ハイパスフィルタ327を介してキャリア位相演算器221Aに入力される。
 ターンオン位相演算器322は、実施の形態2と同様にデューティ演算器21の演算結果であるデューティD、スイッチング周期Tsからターンオン位相範囲を演算し、同範囲内で基準キャリアCarSと同期したキャリアCarAと、ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBを演算する。ターンオン位相範囲内で基準キャリアCarSと位相差を有したキャリアCarBはキャリア位相演算器221Aでターンオン位相を演算する。
 キャリア位相演算器221Aは、定期的にキャリアCarBをターンオン位相範囲内でターンオン位相をスイープする。すなわち、例えば、T1(第1電力非伝送期間)を0から(Ts-2Ton)まで増加させる。
 キャリア位相演算器221Aは、各ターンオン位相におけるハイパスフィルタ327を介した温度検出結果を保存し、この温度検出結果が最小となるキャリアCarBの位相を選択する。
 ハイパスフィルタ327を介した温度検出結果の保存は、各ターンオン位相に対する温度検出結果を保存してもよいし、最小温度に対応するデータのみを保存してもよい。
 このように、実施の形態4では、図17に示した通り、温度検出部130で検出したスイッチング素子S1~S4の温度検出結果はハイパスフィルタ回路327を介してキャリア位相演算器221Aに入力する。この入力結果に基づき、実施の形態2と同様にスイッチ素子のターンオン位相を変更し、第1電力非伝送期間および第2電力非伝送期間の長さを制御する。
 つぎに、ターンオン位相演算器322にハイパスフィルタ回路327を設けた理由について説明する。
 EV(Electric Vehicle)/PHEV(Plug-in Hybrid Electric Vehicle)などに搭載される車載充電器のように大容量バッテリを負荷とする電力変換装置の場合、バッテリの電圧が徐々に上昇するのに伴い、スイッチング素子の温度も徐々に変化する。一方、電力非伝送期間の共振振動はMHzオーダーの高周波であり、温度変化の時定数はバッテリ電圧の変化による温度変化の時定数と比較して短い。
 本実施の形態4で新たに設けたハイパスフィルタ回路327により、バッテリ電圧上昇に伴う温度変化を除去し、共振振動による温度変化のみを検出することが可能となる。このため、より高精度にスイッチング損失が最小となる点を探索できる。
 以上説明したように、実施の形態4の電力変換装置は、大容量バッテリを負荷とした場合、バッテリ電圧上昇に伴う温度変化を除去し、共振振動による温度変化のみを検出するため、ターンオン位相演算器にハイパスフィルタを設ける構成としたものである。したがって、実施の形態1の電力変換装置と同様に、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。さらに、より高精度にスイッチング損失が最小となる点を探索できる。
実施の形態5.
 実施の形態5の電力変換装置は、実施の形態2から実施の形態4に対して、スイッチング損失が最小となる点の探索を容易とするために、電力変換部のインバータのスイッチング素子に並列にコンデンサを追加する、あるいはトランスの1次巻線にインダクタを追加する構成としたものである。
 以下、実施の形態3の電力変換装置に適用した場合を例として、実施の形態5の電力変換装置について、電力変換装置の構成図である図18に基づいて、実施の形態3との差異を中心に説明する。図18において、実施の形態1、3の図と同一あるいは相当部分は、同一の符号を付している。
 まず、実施の形態5の電力変換装置400の構成を図18に基づいて説明する。
 図18において、電力変換装置400は、大きく電力変換部と検出・制御部とから構成される。
 電力変換部は、フルブリッジ構成のインバータ402と、トランス5と、整流回路6と、出力平滑フィルタ7と、トランス5の1次巻線に直列接続されたインダクタL1とを備える。電力変換部のインバータ402の入力側には直流電源11が接続され、出力平滑フィルタ7の出力側には、負荷12が接続されている。
 検出・制御部は、入力検出部8と、出力検出部9と、制御部210とを備える。
 実施の形態5において、電力変換装置500の電力変換部のインバータ402の基本構成および動作は実施の形態3と同じである。
 実施の形態3との差異、すなわち、インバータ402のスイッチング素子S1~S4に並列に接続されたコンデンサC1~C4、およびトランス5の1次巻線に直列に設けられたインダクタL1の機能を中心に説明する。
 インバータ402のスイッチング素子S1~S4に並列にコンデンサC1~C4を接続し、またトランス5の1次巻線にインダクタL1を直列に接続することで、第1電力非伝送期間および第2電力非伝送期間に発生する共振振動を低周波化することが可能となり、スイッチング損失が最小となる点の探索が容易となる。
 なお、コンデンサC1~C4、あるいはインダクタL1のいずれか1方のみを追加してもよい。また、コンデンサC1~C4のすべてを追加するのではなく、いずれか1つ以上のスイッチング素子S1~S4と並列に接続してもよい。例えば、上アーム(3U、4U)あるいは下アーム(3L、4L)のスイッチング素子に追加してもよい。また、第1レグ3あるいは第2レグ4のスイッチング素子に追加してもよい。スイッチング素子S1とS4、あるいはスイッチング素子S2とS3のいずれかの対角素子のみに追加してもよい。さらに、インダクタL1はトランス5の2次巻線と直列に接続してもよいし、1次側、2次側双方に設けてもよい。
 以上の説明では、実施の形態3の電力変換装置にコンデンサおよびインダクタを追加する例を説明したが、実施の形態2、4の電力変換装置に対しても同様に適用できる。
 以上説明したように、実施の形態5の電力変換装置は、電力変換部のインバータのスイッチング素子に並列にコンデンサを追加する、あるいはトランスの1次巻線にインダクタを追加する構成としたものである。したがって、実施の形態1の電力変換装置と同様に、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化し、小型な電力変換装置を提供することができる。さらに、スイッチング損失が最小となる点の探索を容易にできる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
 この発明は、簡易な制御法によりスイッチング損失の増加を抑制することで制御器と冷却器を小型化できるため、電力変換装置に広く適用できる。
 1,1A,100,200,300,400 電力変換装置、2,402 インバータ、3 第1レグ、4 第2レグ、5,5A トランス、6,6A 整流回路、7 出力平滑フィルタ、8 入力検出部、9 出力検出部、10,110,210,310 制御部、11 直流電源、12 負荷、21,21A,21B,21C デューティ演算器、22,122,222,322 ターンオン位相演算器、23 PWM演算器、71,L1 インダクタ、72,C1~C4 コンデンサ、211,214 加減算器、212 比例制御器、213 比例積分制御器、215 比例制御器、231,232 比較器、225 乗算器、226 加減算器、233 ANDゲート、234 遅延器、327 ハイパスフィルタ、3U,4U 上アーム、3L,4L 下アーム、S1~S4 スイッチング素子、D1~D4 帰還ダイオード、D5~D10 ダイオード。

Claims (16)

  1. 上アームと下アームを構成するスイッチング素子が直列に接続された第1レグと第2レグとが並列に接続され、前記第1レグと前記第2レグとは直流電源に並列に接続され、前記第1レグの前記上アームと前記下アームとの接続点と、前記第2レグの前記上アームと前記下アームとの接続点を交流電圧の出力端子とするフルブリッジ構成のインバータと、
    前記交流電圧の前記出力端子に一次側が接続されたトランスと、
    前記トランスの二次側に接続された整流回路と、
    前記各スイッチング素子をオン/オフする制御部と、を備えた電力変換装置において、
    前記制御部は、前記インバータの前記第1レグの前記上アームの前記スイッチング素子と前記第2レグの前記下アームの前記スイッチング素子を同時にオンする第1電力伝送期間と、前記第1レグの前記下アームの前記スイッチング素子と前記第2レグの前記上アームの前記スイッチング素子を同時にオンする第2電力伝送期間を交互に設け、
    さらに、前記制御部は、前記第1電力伝送期間と前記第2電力伝送期間の間に全ての前記スイッチング素子がオフ状態となる第1電力非伝送期間を設け、前記第2電力伝送期間と前記第1電力伝送期間の間に全ての前記スイッチング素子がオフ状態となる第2電力非伝送期間を設け、
    さらに、前記制御部は、前記第1電力非伝送期間、および前記第2電力非伝送期間の合計長さを一定にした上で、前記第1電力非伝送期間および前記第2電力非伝送期間の長さをスイッチング周期ごとに変化させるように制御する電力変換装置。
  2. 前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間の長さを、0またはデッドタイム分の長さから、増加させるように制御する請求項1に記載の電力変換装置。
  3. 前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間の長さを、前記スイッチング周期の長さから前記第1電力伝送期間および前記第2電力伝送期間の長さを引いた長さ、または、前記スイッチング周期の長さから前記第1電力伝送期間、前記第2電力伝送期間およびデッドタイム分の長さを引いた長さ、から減少させるように制御する請求項1に記載の電力変換装置。
  4. 前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間の長さを予め定めた単位時間変化させるように制御する請求項2または請求項3に記載の電力変換装置。
  5. 前記単位時間は、前記スイッチング素子のドレイン-ソース間電圧に発生する共振電圧波形の周期よりも短い請求項4に記載の電力変換装置。
  6. 前記インバータの入力側と前記整流回路の出力側の少なくとも一方の電圧および電流の少なくとも一方を検出する検出回路を備え、
    前記制御部は、前記スイッチング周期と、前記検出回路で検出した電圧、電流の少なくとも1つの検出値と前記検出値の予め定めた目標値とに基づいて前記第1電力伝送期間と前記第2電力伝送期間の長さを制御する請求項2または請求項3に記載の電力変換装置。
  7. さらに、前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間のいずれか一方の開始位相を演算し、前記第1電力非伝送期間、および前記第2電力非伝送期間の合計長さを一定にした上で、前記第1電力非伝送期間あるいは前記第2電力非伝送期間の長さを制御し、前記スイッチング素子の損失が最小となる点を探索し、この損失最小点で動作させる請求項1に記載の電力変換装置。
  8. 前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間の長さを予め定めた単位時間変化させるように制御する請求項7に記載の電力変換装置。
  9. 前記単位時間は、前記スイッチング素子のドレイン-ソース間電圧に発生する共振電圧波形の周期よりも短い請求項8に記載の電力変換装置。
  10. 前記制御部は、前記第1電力非伝送期間あるいは前記第2電力非伝送期間のいずれか一方を0またはデッドタイム分の長さから増加させるように前記第1電力非伝送期間あるいは前記第2電力非伝送期間の開始位相を制御し、前記スイッチング素子の損失が最小となる点を山登り法で探索する請求項7または請求項8に記載の電力変換装置。
  11. 前記制御部は、前記インバータの入力側の入力電流を検出する検出回路の検出信号に基づき前記入力電流が最小となるように前記第1電力非伝送期間あるいは前記第2電力非伝送期間の開始位相を制御する請求項7または請求項8に記載の電力変換装置。
  12. 前記制御部は、前記インバータの出力側の出力電流を検出する検出回路の検出信号に基づき前記出力電流が最大となるように前記第1電力非伝送期間あるいは前記第2電力非伝送期間の開始位相を制御する請求項7または請求項8に記載の電力変換装置。
  13. さらに、前記インバータを構成する前記スイッチング素子のうち、少なくとも1個以上の前記スイッチング素子の温度を検出する温度検出器を備え、
    前記温度検出器の検出信号に基づき、前記スイッチング素子の温度が最小となるように前記第1電力非伝送期間あるいは前記第2電力非伝送期間の開始位相を制御する請求項7または請求項8に記載の電力変換装置。
  14. 前記制御部は、前記温度検出器の検出信号に対してハイパスフィルタ回路をさらに有し、前記ハイパスフィルタ回路の出力結果に基づき、前記スイッチング素子の温度が最小となるように前記第1電力非伝送期間あるいは前記第2電力非伝送期間の開始位相を制御する請求項13に記載の電力変換装置。
  15. 前記スイッチング素子の少なくとも1つと並列にコンデンサを有する請求項7から請求項14のいずれか1項に記載の電力変換装置。
  16. 前記トランスの1次巻線あるいは2次巻線のいずれか1方、または両方の巻線に直列にインダクタを有する請求項7から請求項15のいずれか1項に記載の電力変換装置。
PCT/JP2017/037981 2017-04-03 2017-10-20 電力変換装置 WO2018185962A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780088696.XA CN110447163B (zh) 2017-04-03 2017-10-20 电力变换装置
JP2018510145A JP6381853B1 (ja) 2017-04-03 2017-10-20 電力変換装置
US16/479,703 US11563368B2 (en) 2017-04-03 2017-10-20 Power conversion device
EP17904457.3A EP3609062A4 (en) 2017-04-03 2017-10-20 POWER CONVERSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073382 2017-04-03
JP2017-073382 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018185962A1 true WO2018185962A1 (ja) 2018-10-11

Family

ID=63712540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037981 WO2018185962A1 (ja) 2017-04-03 2017-10-20 電力変換装置

Country Status (4)

Country Link
US (1) US11563368B2 (ja)
EP (1) EP3609062A4 (ja)
CN (1) CN110447163B (ja)
WO (1) WO2018185962A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913599B2 (ja) * 2017-10-17 2021-08-04 日立Astemo株式会社 制御装置
WO2023225882A1 (zh) * 2022-05-25 2023-11-30 深圳市富兰瓦时技术有限公司 软启动方法、功率转换系统及户用储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174205A (ja) * 1996-12-09 1998-06-26 Yamaha Motor Co Ltd 給電装置
JP2000341801A (ja) * 1999-05-31 2000-12-08 Denso Corp 電気自動車用電源装置
JP2011101497A (ja) 2009-11-05 2011-05-19 Fuji Electric Holdings Co Ltd 直流−直流変換回路の制御方法
JP2016144303A (ja) * 2015-02-02 2016-08-08 株式会社ダイヘン 電源装置及び溶接用電源装置
JP2016226225A (ja) * 2015-06-03 2016-12-28 三菱電機株式会社 電力変換装置および電力変換方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238257A (ja) 2001-02-06 2002-08-23 Toshiba Corp 共振型dc−dcコンバータの制御方法
JP2004040983A (ja) 2002-07-08 2004-02-05 Onkyo Corp スイッチング電源回路およびこの電源回路を備えたスイッチングレギュレータ
WO2006033214A1 (ja) * 2004-09-24 2006-03-30 Rohm Co., Ltd ファンモータ駆動装置および冷却装置
JP4735013B2 (ja) 2005-04-15 2011-07-27 パナソニック株式会社 電力変換装置
CN101473518B (zh) * 2006-06-20 2012-11-14 皇家飞利浦电子股份有限公司 谐振电源和操作谐振电源的方法
KR101560853B1 (ko) * 2008-01-07 2015-10-15 액세스 비지니스 그룹 인터내셔날 엘엘씨 듀티 사이클 제어를 갖는 유도성 전력 공급기
CN101795076B (zh) * 2009-01-29 2015-04-15 富士电机株式会社 功率变换器以及控制功率变换器的方法
US9787190B2 (en) * 2011-04-18 2017-10-10 Mitsubishi Electric Corporation Power conversion device and in-vehicle power supply device equipped with same
ITTO20110863A1 (it) 2011-09-28 2013-03-29 Magneti Marelli Spa Procedimento di conversione dc-dc con modulazione phase-shift e relativo apparato di conversione
JP5866614B1 (ja) 2014-12-05 2016-02-17 パナソニックIpマネジメント株式会社 スイッチング電源装置
CN205356156U (zh) * 2016-02-19 2016-06-29 襄阳九鼎昊天环保设备有限公司 基于dsp的智能型高频高压直流电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174205A (ja) * 1996-12-09 1998-06-26 Yamaha Motor Co Ltd 給電装置
JP2000341801A (ja) * 1999-05-31 2000-12-08 Denso Corp 電気自動車用電源装置
JP2011101497A (ja) 2009-11-05 2011-05-19 Fuji Electric Holdings Co Ltd 直流−直流変換回路の制御方法
JP2016144303A (ja) * 2015-02-02 2016-08-08 株式会社ダイヘン 電源装置及び溶接用電源装置
JP2016226225A (ja) * 2015-06-03 2016-12-28 三菱電機株式会社 電力変換装置および電力変換方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609062A4

Also Published As

Publication number Publication date
CN110447163A (zh) 2019-11-12
US11563368B2 (en) 2023-01-24
EP3609062A1 (en) 2020-02-12
EP3609062A4 (en) 2020-04-08
CN110447163B (zh) 2021-01-15
US20200266699A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP5558631B2 (ja) 電力変換装置およびそれを備えた車載電源装置
US9641079B2 (en) Dual buck-boost DC/DC converter
US10211719B2 (en) Power converter
US11056979B2 (en) Power conversion apparatus
US9025345B2 (en) Power supply apparatus
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP6706811B2 (ja) スナバ回路及びそれを用いた電力変換システム
WO2018061286A1 (ja) 電力変換装置
JP6132887B2 (ja) 電力変換装置
CN110235346B (zh) 电力变换装置
CN110707930B (zh) Dc/dc变换器
JP2015070716A (ja) Dc/dcコンバータ
US11316423B2 (en) Half-bridge having power semiconductors
JP5893089B2 (ja) 直流変換装置の制御方法
WO2018185962A1 (ja) 電力変換装置
JP5813184B1 (ja) 直流変換装置
KR102318118B1 (ko) 전원 제어 장치, 전력 변환 시스템 및 전원 제어 방법
KR20220045024A (ko) 플러그인 전기 자동차용 충전기
Asghari-Gorji et al. Input current ripples cancellation in bidirectional switched-inductor quasi-Z-source inverter using coupled inductors
JP6381853B1 (ja) 電力変換装置
KR102159570B1 (ko) 컨버터 장치 및 이를 동작시키는 방법
JP6301039B1 (ja) 電力変換装置
JP6234651B1 (ja) 電力変換装置
JP2022153069A (ja) 電力変換装置、電力変換システム、制御方法及びプログラム
CN116488472A (zh) 一种转换电路的控制装置、方法、芯片和电源变换器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510145

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017904457

Country of ref document: EP

Effective date: 20191104