WO2018181891A1 - Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask - Google Patents

Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask Download PDF

Info

Publication number
WO2018181891A1
WO2018181891A1 PCT/JP2018/013591 JP2018013591W WO2018181891A1 WO 2018181891 A1 WO2018181891 A1 WO 2018181891A1 JP 2018013591 W JP2018013591 W JP 2018013591W WO 2018181891 A1 WO2018181891 A1 WO 2018181891A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
etching
phase shift
oxygen
shielding film
Prior art date
Application number
PCT/JP2018/013591
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 小嶋
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2019510238A priority Critical patent/JP6965920B2/en
Priority to KR1020197027998A priority patent/KR102553992B1/en
Priority to SG11201907839R priority patent/SG11201907839RA/en
Publication of WO2018181891A1 publication Critical patent/WO2018181891A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a phase shift mask blank, a phase shift mask, and a method for manufacturing a phase shift mask, and more particularly to semiconductor integrated circuits, CCD (charge coupled device), LCD (liquid crystal display device) color filters, magnetic heads, and the like.
  • the present invention relates to a phase shift mask used for manufacturing.
  • phase shift method In recent years, with the miniaturization of semiconductor elements, high resolution is also required for projection exposure. Therefore, in the photomask field, a phase shift method has been developed as a technique for improving the resolution of a transfer pattern.
  • the principle of the phase shift method is that the phase of the transmitted light that has passed through the phase shift section adjacent to the opening is adjusted so that the phase of the transmitted light that has passed through the opening is reversed. The light intensity is weakened (phase shift effect), and as a result, the resolution of the transfer pattern is improved. Photomasks using this principle are collectively called phase shift masks.
  • the most common phase shift mask blank used for the phase shift mask has a structure in which a phase shift film and a light shielding film are sequentially laminated on a transparent substrate such as a glass substrate.
  • the thickness and composition of the phase shift film are adjusted so that the desired phase difference and transmittance are obtained.
  • the film thickness is 60 nm to 80 nm.
  • the mainstream is a single-layer film or a multi-layer film of MoSi-based material.
  • the film thickness and the composition of the light shielding film are adjusted so that the OD value (optical density) combined with the phase shift film becomes a desired value, and the OD value combined with the above phase shift film is 2.8.
  • the mainstream is a single layer film or a multilayer film of a chromium-based material having a film thickness of 40 nm to 60 nm.
  • a resist film is formed on the light shielding film of the phase shift mask blank, a pattern is drawn on the resist film by a laser beam or an electron beam, and this is developed to form a resist pattern.
  • the light shielding film is etched using the resist pattern as a mask to form a light shielding film pattern
  • the phase shift film is etched using the light shielding film pattern as a mask, and the resist film and the light shielding film are further removed to form the phase shift film pattern.
  • the method of forming is common.
  • Oxygen-containing chlorine-based etching (Cl / O-based) is mainly used for dry etching of a chromium-based light shielding film, and fluorine-based etching (F-based) is mainly used for dry-etching a phase shift film of a MoSi-based material.
  • the assist pattern for assisting the transfer of the main pattern of the photomask needs to be formed smaller than the main pattern so as not to be transferred onto the wafer during exposure.
  • Assist pattern dimensions for generations of 28 nm or less of logic devices or 30 nm or less of memory devices are required to have a resolution of 60 nm or less.
  • One of the effective means for improving the resolution of the photomask pattern is to make the resist film thinner. By reducing the aspect ratio (film thickness / width) of the resist film, it is possible to reduce the collapse of the resist pattern and the defect defect during development.
  • the resist film has been thinned in order to improve the pattern resolution.
  • the resist film is also damaged when the light shielding film having a film thickness of 40 nm to 60 nm is dry-etched, there is a limit to reducing the thickness of the resist film in consideration of the resistance at the time of etching the light shielding film.
  • Patent Document 1 and Patent Document 2 a phase shift mask blank in which an etching mask film is formed on a light shielding film has been proposed (Patent Document 1 and Patent Document 2).
  • the etching mask film is mainly composed of MoSiN or SiON, which are silicon compounds, in order to obtain sufficient resistance against the light shielding film etching of the underlying chromium-based material.
  • the film thickness is mainly 3 nm to 30 nm, which is thinner than the light shielding film, so that it is possible to suppress the damage of the resist during dry etching more than the light shielding film, and the resist film can be further thinned.
  • the dimensions of the etching mask film and the light shielding film are not the same, and an undercut may occur in the lower light shielding film.
  • the etching mask film made of a silicon compound and processed by fluorine etching (F system) and the light shielding film made of a chromium material and processed by oxygen-containing chlorine etching (Cl / O system) are etched in the lateral direction. This is because the dimension of the line pattern is smaller in the light shielding film that is easier to proceed.
  • the amount of undercut of the light shielding film is generally adjusted by dry etching of the light shielding film, but since the amount of etching progressed in the horizontal direction varies depending on the width and area of the pattern region to be etched, in all patterns It is very difficult to remove the undercut of the light shielding film.
  • both the etching mask film and the phase shift film are processed by fluorine-based etching (F system).
  • F system fluorine-based etching
  • the dimension of the phase shift film is determined by the etching mask film in the initial stage of etching of the phase shift film, but the thin etching mask film is in the middle.
  • the dimension of the phase shift film is determined by the exposed light shielding film of the lower layer. That is, since the dimension of the phase shift film changes before and after the disappearance of the etching mask film, a step is generated in the phase shift film, and a uniform dimension cannot be obtained.
  • phase shift mask blank in which an etching mask film and a part of a light shielding film are formed using the same chromium-based material.
  • a phase shift mask blank when the etching mask film is subjected to an etching process by oxygen-containing chlorine-based etching (Cl / O system), an influence such as undercut occurs in the light-shielding film, or the light-shielding film is oxygenated. If an etching process is performed using the chlorine-containing etching (Cl / O system), the etching mask film is also removed at the same time, which makes it difficult to process.
  • the silicon compound constituting the etching mask film has poor adhesion to the resist film than the chromium-based material. Therefore, even if the resist film is thinned by the etching mask film, the resist pattern may fall down due to the deterioration of the adhesion to the resist film.
  • dry etching of the phase shift film requires control of the etching shape of the phase shift film and the depth of the transparent substrate in the opening, so that only conditions suitable for simultaneous removal of the etching mask film cannot be selected. This causes a residue (removal residue) of the etching mask film and the underlying light shielding film. Furthermore, the residue of the etching mask film can be removed only by fluorine etching (F system), and the phase shift film and the transparent substrate are damaged at the same time. Therefore, this residue cannot be corrected by dry etching.
  • F system fluorine etching
  • the present invention has been made in view of the above problems, is easy to correct for defects, achieves both improved resolution and dimensional improvement of the pattern of the phase shift mask, suppresses residues of the etching mask film and the light shielding film, and etches. It is an object of the present invention to provide a phase shift mask blank, a phase shift mask, and a method of manufacturing the phase shift mask that enable dry etching correction of the residue of the mask film and the light shielding film.
  • a phase shift mask blank is a phase shift mask blank in which a phase shift film, a light shielding film, and an etching mask film are stacked in this order on a substrate transparent to an exposure wavelength.
  • the phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by fluorine-based etching (F-based).
  • the light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and can be etched by non-oxygen-containing chlorine-based etching (Cl-based), and the etching mask film is made of fluorine. Resistant to non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-containing chlorine-based etching (Cl / O-based) No etching stopper layer between the substrate and the phase shift film, characterized in that.
  • a phase shift mask blank is a phase in which a phase shift film, a lower light shielding film, an upper light shielding film, and an etching mask film are laminated in this order on a substrate transparent to the exposure wavelength.
  • a shift mask blank wherein the phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based).
  • the lower light-shielding film is resistant to fluorine etching (F system) and non-oxygen-containing chlorine etching (Cl system), and can be etched by fluorine etching (F system).
  • the upper light shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based), and fluorine-based etching (F-based) and non-acidic.
  • the etching mask film can be etched by both or any of the chlorine-containing etching (Cl-based), and the etching mask film is fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching. It is resistant to (O-based) and can be etched by oxygen-containing chlorine-based etching (Cl / O-based).
  • the lower light-shielding film has a film thickness of 2 nm or more and 30 nm or less and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
  • a phase shift mask according to one embodiment of the present invention is a phase shift mask in which a plurality of films including a phase shift film, a light shielding film, and an etching mask film are stacked in this order on a substrate transparent to an exposure wavelength.
  • a blank phase shift mask having a circuit pattern formed by selectively removing a part of the film, wherein the phase shift film comprises oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen It is resistant to chlorine-containing etching (Cl-based) and can be etched by fluorine-based etching (F-based), and the light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based).
  • the etching mask film is composed of fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based). Resistant to a, and is etchable in an oxygen-containing chlorine-based etch (Cl / O system), no etching stopper layer between the phase shift film and the substrate, characterized in that
  • phase shift mask in which a circuit pattern is formed by selectively removing a part of the film of the phase shift mask blank, wherein the phase shift film is oxygen-containing chlorine-based etching (Cl / O-based) It is resistant to non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and can be etched by fluorine-based etching (F-based).
  • the mask film has resistance to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and oxygen-containing chlorine-based etching (Cl / O-based). It is possible to etch with
  • the lower light-shielding film has a film thickness of 2 nm or more and 30 nm or less and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
  • a method of manufacturing a phase shift mask using a phase shift mask blank according to an embodiment of the present invention includes a step of forming a resist pattern on the etching mask film and oxygen-containing chlorine-based etching (Cl / O-based). Forming a pattern on the etching mask film, and forming a pattern on the light-shielding film by non-oxygen-containing chlorine-based etching (Cl-based) and / or fluorine-based etching (F-based). A step of forming a pattern on the phase shift film by fluorine-based etching (F-based), and an oxygen-containing chlorine-based etching (Cl / O-based) from the pattern formed on the light-shielding film.
  • a non-oxygen-containing chlorine-based etching (Cl-based) or non-oxygen-containing chlorine-based etch from the pattern formed on the phase shift film Characterized in that it comprises a, and removing the light shielding film at both ring (Cl based) and fluorine-based etching (F based).
  • a method of manufacturing a phase shift mask using a phase shift mask blank according to an embodiment of the present invention includes a step of forming a resist pattern on the etching mask film and oxygen-containing chlorine-based etching (Cl / O-based). Forming a pattern on the etching mask film, and forming a pattern on the upper light-shielding film by both or one of non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based).
  • the film made of the chromium-based material that is easily etched in the lateral direction and processed by the oxygen-containing chlorine-based etching (Cl / O-based) is the uppermost layer as the etching mask film. Only exists. Accordingly, an undercut does not occur in the lower light shielding film, the lower light shielding film or the antireflection film below it, and a phase shift mask with improved dimensions can be obtained.
  • a thin film thickness is sufficient for this etching mask film, it is possible to improve the dimension by shortening the etching time and the resolution by reducing the resist thickness. Furthermore, since the chromium-based material constituting the etching mask film has better adhesion with the resist film than the conventional silicon compound, it is possible to suppress the collapse of the resist pattern.
  • the lower light shielding film is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based).
  • F-based fluorine-based etching
  • Cl-based non-oxygen-containing chlorine-based etching
  • O-based oxygen-based etching
  • a material having such characteristics there is a ruthenium simple substance or a ruthenium compound.
  • films and substrates other than the etching mask film are resistant to oxygen-containing chlorine-based etching (Cl / O system) for removing the etching mask film. That is, the lower light shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based). Further, the film and the substrate other than the upper light-shielding film are resistant to non-oxygen-containing chlorine-based etching (Cl-based) for removing the upper light-shielding film. Furthermore, films and substrates other than the lower light shielding film have resistance to oxygen-based etching (O-based) for removing the lower light shielding film.
  • O-based oxygen-based etching
  • the residue of the etching mask film, the upper light shielding film, and the lower light shielding film can be reduced. Further, when the etching mask film, the upper light shielding film, and the lower light shielding film are subjected to dry etching correction, the etching mask film residue is removed by oxygen-containing chlorine etching (Cl / O system), and the upper light shielding film residue is removed. If removed by non-oxygen-containing chlorine-based etching (Cl-based) and the residue of the lower light shielding film is removed by oxygen-based etching (O-based), only the residue is corrected without damaging the phase shift film and the substrate. can do.
  • phase resolution mask pattern resolution improvement and dimension improvement can be achieved at the same time, etching mask film and light shielding film residue suppression, etching mask film and light shielding film It is possible to provide a phase shift mask blank, a phase shift mask, and a method for manufacturing the phase shift mask that enable dry etching correction of residues.
  • phase shift mask blank concerning a 1st embodiment. It is the cross-sectional schematic which shows the phase shift mask blank which concerns on 2nd Embodiment. It is a section schematic diagram showing the phase shift mask blank concerning a 3rd embodiment. It is a section schematic diagram showing the phase shift mask blank concerning a 4th embodiment. It is a section schematic diagram showing the phase shift mask blank concerning a 5th embodiment. It is a section schematic diagram showing the phase shift mask blank concerning a 6th embodiment. It is the schematic diagram which expanded the effective area of the phase shift mask blank concerning the comparative example 1 which provided the etching stopper layer.
  • FIG. 8 It is the schematic diagram which expanded the effective area of the phase shift mask concerning the comparative example 2 which provided the etching stopper layer on both sides of the phase shift film. It is a figure similar to FIG. 8 concerning this Embodiment. It is the cross-sectional schematic diagram which shows in order the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 1st Embodiment. It is the cross-sectional schematic which shows the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 2nd Embodiment in order. It is the cross-sectional schematic which shows in order the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 3rd Embodiment.
  • a phase shift mask blank is a halftone phase shift mask blank used for producing a phase shift mask to which exposure light having a wavelength of 20 nm or more and a wavelength of 200 nm or less is applied, and at least exposure.
  • the phase shift film is resistant to fluorine and can be etched by fluorine-based etching (F-based), and is resistant to oxygen-containing chlorine-based etching (Cl / O-based) formed on the phase-shifted film.
  • an upper light-shielding film that can be etched by fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and formed above the upper light-shielding film.
  • Resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and etched with oxygen-containing chlorine-based etching (Cl / O-based) It has a possible etching mask film. However, an etching stopper layer is not provided between the phase shift film and the substrate.
  • phase shift mask blank according to this embodiment is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based).
  • F-based fluorine-based etching
  • Cl-based non-oxygen-containing chlorine-based etching
  • O-based oxygen-based etching
  • a lower light-shielding film is provided between the phase shift film and the upper light-shielding film.
  • This lower light-shielding film contains ruthenium and has a film thickness of 2 nm or more and 30 nm or less.
  • the lower layer light shielding film and the upper layer light shielding film exhibit a light shielding function. That is, by providing the lower light shielding film, the thickness of the upper light shielding film can be reduced accordingly. For example, when tantalum is contained in the upper light-shielding film, etching is generally difficult because etching becomes difficult due to oxidation. In this case, if the thickness of the upper light-shielding film can be reduced by the amount of the lower light-shielding film, the processing efficiency is improved and the residual probability is improved.
  • FIG. 1 is a schematic cross-sectional view showing a phase shift mask blank according to the first embodiment.
  • a phase shift mask blank 10 in FIG. 1 includes a substrate 11 transparent to an exposure wavelength, a phase shift film 12 formed on the substrate 11, and a light shielding film (upper layer light shielding) formed on the phase shift film 12. And an etching mask film 14 formed on the light shielding film 13. There is no etching stopper layer between the substrate 11 and the phase shift film 12. In the phase shift mask using the phase shift mask blank 10, the etching mask film 14 is not partially removed but remains on the mask.
  • FIG. 2 is a schematic cross-sectional view showing a phase shift mask blank according to the second embodiment.
  • the phase shift mask blank 10 of FIG. 2 includes a substrate 11 that is transparent to the exposure wavelength, a phase shift film 12 formed on the substrate 11, and a lower light shielding film 18 formed on the phase shift film 12.
  • the upper light shielding film 13 is formed on the lower light shielding film 18 and the etching mask film 14 is formed on the upper light shielding film 13.
  • the etching mask film 14 is not partially removed but remains on the mask.
  • FIG. 3 is a schematic sectional view showing a phase shift mask blank according to the third embodiment.
  • the phase shift mask blank 20 of FIG. 3 includes a substrate 21 transparent to the exposure wavelength, a phase shift film 22 formed on the substrate 21, and a light shielding film (upper layer light shielding) formed on the phase shift film 22. And an etching mask film 24 formed on the light shielding film 23. No etching stopper layer is provided between the substrate 21 and the phase shift film 22. In the phase shift mask using the phase shift mask blank 20, the etching mask film 24 is completely removed and does not remain on the mask.
  • FIG. 4 is a schematic sectional view showing a phase shift mask blank according to the fourth embodiment.
  • the phase shift mask blank 20 of FIG. 4 includes a substrate 21 transparent to the exposure wavelength, a phase shift film 22 formed on the substrate 21, and a lower light shielding film 28 formed on the phase shift film 22.
  • the upper light shielding film 23 is formed on the lower light shielding film 28 and the etching mask film 24 is formed on the upper light shielding film 23.
  • No etching stopper layer is provided between the substrate 21 and the phase shift film 22. In the phase shift mask using the phase shift mask blank 20, the etching mask film 24 is completely removed and does not remain on the mask.
  • substrates 11 and 21 that are transparent to the exposure wavelength, and quartz glass, CaF 2, aluminosilicate glass, or the like is generally used.
  • the phase shift films 12 and 22 contain silicon and contain at least one selected from transition metals, nitrogen, oxygen, and carbon. Specifically, silicon oxide films, nitride films, and oxynitride films Or a single layer film of silicon and transition metal oxide film, nitride film, oxynitride film, or a multi-layer film or a gradient film thereof, and the transmittance and level with respect to the exposure wavelength by appropriately selecting the composition and film thickness. The phase difference is adjusted.
  • the transition metal molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, or the like can be used, but molybdenum is preferable.
  • the transmittance value is 3% or more and less than 100% with respect to the transmittance of the substrate when the final phase shift mask is completed, and it is possible to appropriately select the optimum transmittance according to the desired wafer pattern.
  • the transmittance is generally 5% or more and 40% or less.
  • the value of the phase difference is preferably 170 degrees or more and 190 degrees or less, particularly 175 degrees or more and 180 degrees or less when the final phase shift mask is completed.
  • the composition of the phase shift films 12 and 22 varies depending on the desired combination of transmittance and phase difference.
  • silicon and molybdenum oxynitride film having a transmittance of 6% and a phase difference of 177 degrees oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O
  • silicon is 20 atom% or more and 60 atom% or less, particularly 30 atom% or more and 50 atom% or less.
  • Molybdenum is 0 atomic% to 20 atomic%, particularly 0 atomic% to 10 atomic%, oxygen is 0 atomic% to 20 atomic%, particularly 0 atomic% to 10 atomic%, and nitrogen is 30 It is preferable that they are atom% or more and 80 atom% or less, especially 40 atom% or more and 70 atom% or less.
  • the phase shift film when it is a multi-layer film or an inclined film, it contains a transition metal having a strong resistance to non-oxygen-containing chlorine-based etching (Cl-based) or oxygen-based etching (O-based) applied to the removal of the light shielding film. It is preferable to form a silicon compound film with a small amount or no content on the outermost surface. Specifically, it is preferable to form SiO 2 or SiON on the outermost surface of the phase shift film. In particular, in the phase shift films 12 and 22 having no etching stopper layer in the lower layer, even if strong etching conditions for strong cleaning or etching mask film removal are applied, the outermost SiO 2 or SiON may be damaged. Since substrates having the same composition are also damaged at the same time, it is possible to suppress fluctuations in phase difference and transmittance with respect to the substrate.
  • the upper light shielding films 13 and 23 are made of a tantalum compound not containing silicon, and are a single layer film containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof. Preferably, it is a film mainly composed of tantalum nitride. The reason why silicon is not contained is to prevent SiO 2 and SiN that are difficult to process by non-oxygen-containing chlorine-based etching (Cl-based) from being mixed in the film.
  • Cl-based non-oxygen-containing chlorine-based etching
  • the film thickness of the upper light shielding film 13 varies depending on the transmittance of the phase shift film, but the light shielding film (including the lower light shielding film, the same applies hereinafter), the phase shift film, and the etching mask film are combined.
  • the OD value (optical density) with respect to the exposure wavelength is adjusted to 2.5 or more, more preferably 2.8 or more.
  • the film thickness of the upper light shielding film 13 is 10 nm to 35 nm, particularly 15 nm to 30 nm. preferable.
  • the film thickness of the upper light-shielding film 23 (the sum of the lower light-shielding films 28, the same applies hereinafter) also varies depending on the transmittance of the phase shift film. Therefore, the OD value (optical density) with respect to the exposure wavelength is adjusted to be 2.5 or more, more preferably 2.8 or more for the light shielding film and the phase shift film.
  • the thickness of the light shielding film is preferably 15 nm to 50 nm, particularly preferably 20 nm to 45 nm.
  • the upper light shielding film 23 may have a function as an antireflection layer.
  • the reflectance with respect to the wavelength (for example, 257 nm) used for the reflection inspection of the phase shift mask blank or the phase shift mask is, for example, 30% or less, in order to detect defects with high accuracy.
  • a method of increasing the gas content on the surface side of the light shielding film to obtain a higher refractive index and lower extinction coefficient is generally used.
  • the composition of the upper light shielding film 13 is such that tantalum is used to realize resistance to oxygen-containing chlorine-based etching (Cl / O system), processability to non-oxygen-containing chlorine-based etching (Cl system), and resistance to various chemical cleaning.
  • nitrogen is 0 atom% or more, 70 atom% or less, particularly 10 atom% or more, 60 atom% or less, oxygen is 0 atom% or more 10 atom% or less, particularly 0 atom% or more, 5 atom% or less, carbon 0 atom% or more, 20 atom% or less, especially 0 atom% or more, 10 atom% or less, boron 0 atom% or more, 20 atom% In the following, it is particularly preferably 0 atomic% or more and 10 atomic% or less.
  • the composition of the upper light shielding film 23 is resistant to oxygen-containing chlorine-based etching (Cl / O-based), processability to non-oxygen-containing chlorine-based etching (Cl-based), an effect as an antireflection layer, and various chemical solution cleaning
  • tantalum is 40 atomic% or more and 90 atomic% or less, particularly 50 atomic% or more and 80 atomic% or less
  • nitrogen is 10 atomic% or more and 70 atomic% or less, particularly 10 atomic% or more, 60 atoms or less.
  • Oxygen is 0 atomic% or more, 20 atomic% or less, especially 0 atomic% or more, 10 atomic% or less, carbon is 0 atomic% or more, 20 atomic% or less, especially 0 atomic% or more, 10 atomic% or less, boron Is preferably 0 atom% or more and 20 atom% or less, particularly preferably 0 atom% or more and 10 atom% or less.
  • the upper light shielding film is preferably made of a tantalum compound or a silicon compound.
  • the tantalum compound preferably contains tantalum and one or more selected from nitrogen, boron, silicon, oxygen and carbon.
  • the silicon compound preferably contains silicon and contains at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, nitrogen, oxygen, and carbon.
  • the lower light-shielding films 18 and 28 are ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more, specifically, one or more kinds selected from ruthenium alone or ruthenium and nitrogen, boron, carbon, and oxygen. It is preferable that it consists of a compound of either of these materials, one or more materials selected from niobium and zirconium, or both.
  • the film thickness of the lower light shielding films 18 and 28 is preferably 2 nm or more and 30 nm or less, particularly 5 nm or more and 20 nm or less in order to achieve both sufficient etching resistance and light shielding properties.
  • Etching of the lower light shielding films 18 and 28 can be performed by oxygen-based dry etching (O-based), and in addition to oxygen gas, an inert gas such as argon gas or helium gas may be mixed as necessary. .
  • O-based oxygen-based dry etching
  • an inert gas such as argon gas or helium gas may be mixed as necessary.
  • the lower light shielding films 18 and 28 are resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based).
  • the etching mask films 14 and 24 are a single chromium film, a single-layer film containing chromium and one or more selected from nitrogen, oxygen, and carbon, or a multilayer film or a gradient film thereof.
  • the film thickness of the etching mask film 14 is preferably 2 nm or more and 30 nm or less, particularly 20 nm or less in order to reduce resist damage during dry etching of the etching mask film and to realize thinning of the resist.
  • the etching mask film 14 may have a function as an antireflection layer.
  • the thickness of the etching mask film 14 in the case of providing the function as the antireflection layer is preferably 5 nm or more.
  • the film thickness of the etching mask film 24 is preferably 2 nm or more and 30 nm or less, particularly 15 nm or less in order to reduce resist damage during dry etching of the etching mask film and realize thinning of the resist.
  • the thickness is preferably 3 nm or more.
  • the composition of the etching mask film 14 is a resistance to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and processing for oxygen-containing chlorine-based etching (Cl / O-based).
  • F-based fluorine-based etching
  • Cl-based non-oxygen-containing chlorine-based etching
  • O-based oxygen-based etching
  • processing for oxygen-containing chlorine-based etching Cl / O-based
  • chromium is 30 atomic% or more and 100 atomic% or less, particularly 35 atomic% or more and 50 atomic% or less, and oxygen is 0 atomic% or more.
  • 60 atom% or less particularly 20 atom% or more, 60 atom% or less, nitrogen is 0 atom% or more, 50 atom% or less, particularly 0 atom% or more, 30 atom% or less, carbon is 0 atom% or more, 30 atom%. In the following, it is particularly preferably 0 atomic% or more and 20 atomic% or less.
  • the etching mask film 24 is composed of fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), oxygen-containing chlorine-based etching (Cl / O-based).
  • F-based fluorine-based etching
  • Cl-based non-oxygen-containing chlorine-based etching
  • O-based oxygen-based etching
  • oxygen-containing chlorine-based etching Cl / O-based.
  • nitrogen is 0 atom% or more and 50 atom% or less, particularly 0 atom% or more and 40 atom% or less, carbon is 0 atom% or more and 30 atom% or less, particularly 0 atom % Or more and 20 atomic% or less is preferable.
  • phase shift mask blanks according to the fifth and sixth embodiments will be described.
  • an antireflection film layer is provided between the light shielding film and the etching mask film, so that the phase shift masks according to the first to fourth embodiments are provided. Different from mask blank.
  • FIG. 5 is a schematic sectional view showing a phase shift mask blank according to the fifth embodiment.
  • the phase shift mask blank 10 ′ of FIG. 5 is formed on the substrate 11 ′ transparent to the exposure wavelength, the phase shift film 12 ′ formed on the substrate 11 ′, and the phase shift film 12 ′.
  • No etching stopper layer is provided between the substrate 11 'and the phase shift film 12'.
  • the etching mask film 15' is completely removed and does not remain on the mask.
  • FIG. 6 is a schematic sectional view showing a phase shift mask blank according to the sixth embodiment.
  • the phase shift mask blank 10 ′ of FIG. 6 was formed on the substrate 11 ′ transparent to the exposure wavelength, the phase shift film 12 ′ formed on the substrate 11 ′, and the phase shift film 12 ′.
  • the upper light shielding film 13 ′ formed on the lower light shielding film 18 ′
  • the antireflection film 14 ′ formed on the upper light shielding film 13 ′
  • the etching mask film 15 ′ is formed. No etching stopper layer is provided between the substrate 11 'and the phase shift film 12'. In the phase shift mask using the phase shift mask blank 10 ', the etching mask film 15' is completely removed and does not remain on the mask.
  • the substrate 11 ′ transparent to the exposure wavelength, and quartz glass, CaF 2, aluminosilicate glass, or the like is generally used.
  • the phase shift film 12 ′ contains silicon and contains at least one selected from transition metals, nitrogen, oxygen and carbon. Specifically, a silicon oxide film, a nitride film, an oxynitride film, Or a silicon and transition metal oxide film, nitride film, single layer film of oxynitride film, or a multilayer film or a gradient film thereof, and the transmittance and phase difference with respect to the exposure wavelength by appropriately selecting the composition and film thickness Is adjusted.
  • the transition metal molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, or the like can be used, but molybdenum is preferable.
  • the transmittance value is 3% or more and less than 100% with respect to the transmittance of the substrate when the final phase shift mask is completed, and it is possible to appropriately select the optimum transmittance according to the desired wafer pattern.
  • the transmittance is generally 5% or more and 40% or less.
  • the value of the phase difference is preferably 170 degrees or more and 190 degrees or less, particularly 175 degrees or more and 180 degrees or less when the final phase shift mask is completed.
  • the substrate 11 ′ is finally dug by about 5 nm to 20 nm in the mask manufacturing process of patterning the phase shift film 12 ′ using fluorine-based etching (F system) and removing the antireflection film 14 ′.
  • the phase shift film 12 ′ needs to be formed with a phase difference shallower than a desired value when the mask is completed in consideration of the digging amount of the substrate.
  • the film thickness of the phase shift film changes depending on the desired combination of transmittance and phase difference. For example, when a phase shift film having a transmittance of 6% and a phase difference of 177 degrees is formed, the film thickness should be 60 nm or more and 80 nm or less. preferable.
  • the composition of the phase shift film 12 ′ varies depending on a desired combination of transmittance and retardation. For example, when a silicon and molybdenum oxynitride film having a transmittance of 6% and a retardation of 177 degrees is formed, oxygen-containing chlorine is used.
  • silicon is 20 atom% or more and 60 atom% or less, particularly 30 atom% or more and 50 atom% or less
  • molybdenum is 0 atom% or more and 20 atom% or less, particularly 0 atom% or more and 10 atom% or less
  • nitrogen is 30 atom% or more and 80 atom% or less, particularly 40 atom% or more and 70 atom% or less. It is preferred.
  • phase shift film is a multi-layer film or an inclined film
  • a silicon compound with little or no transition metal content that has strong resistance to non-oxygen-containing chlorine-based etching (Cl-based) applied to the removal of the light-shielding film It is preferable to form a film on the outermost surface. Specifically, it is preferable to form SiO 2 or SiON on the outermost surface of the phase shift film.
  • phase shift film 12 ′ having no etching stopper layer in the lower layer even if strong etching conditions such as strong cleaning or etching mask film removal are applied, even if the outermost SiO 2 or SiON is damaged, Since substrates having the same composition are also damaged at the same time, it is possible to suppress fluctuations in phase difference and transmittance with respect to the substrate.
  • the light shielding film 13 ′ is made of a tantalum compound not containing silicon, and is a single layer film containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof.
  • a film containing tantalum nitride as a main component is preferable. The reason why silicon is not contained is to prevent SiO 2 and SiN that are difficult to process by non-oxygen-containing chlorine-based etching (Cl-based) from being mixed in the film.
  • the film thickness of the light-shielding film 13 ′ (including the lower-layer light-shielding film 18 ′, including the same, hereinafter the same) varies depending on the transmittance of the phase shift film, but the antireflection film, the light shielding film, and the phase shift film are different.
  • the OD value (optical density) for the combined exposure wavelength is adjusted to 2.5 or more, more preferably 2.8 or more.
  • the thickness of the light shielding film 13 ′ is preferably 10 nm to 35 nm, and particularly preferably 15 nm to 30 nm.
  • the composition of the light shielding film 13 ′ is such that tantalum is used to realize resistance to oxygen-containing chlorine-based etching (Cl / O system), processability to non-oxygen-containing chlorine-based etching (Cl system), and resistance to various chemical cleaning.
  • nitrogen is 0 atom% or more, 70 atom% or less, particularly 10 atom% or more, 60 atom% or less, oxygen is 0 atom% or more 10 atom% or less, particularly 0 atom% or more, 5 atom% or less, carbon 0 atom% or more, 20 atom% or less, especially 0 atom% or more, 10 atom% or less, boron 0 atom% or more, 20 atom% In the following, it is particularly preferably 0 atomic% or more and 10 atomic% or less.
  • the lower light-shielding film 18 ′ is ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more. Specifically, the ruthenium alone or ruthenium and one or more kinds selected from nitrogen, boron, carbon, and oxygen. It is preferable that it consists of a compound with one or both of one or more materials selected from the materials, niobium and zirconium.
  • the film thickness of the lower light shielding films 18 and 28 is preferably 2 nm or more and 30 nm or less, and particularly preferably 5 nm or more and 20 nm or less in order to achieve both sufficient etching resistance and light shielding properties.
  • the film formation is performed by sputtering using an ion sputtering apparatus with the ruthenium simple substance or ruthenium compound as a target.
  • Etching of the lower light shielding film 18 ′ can be performed by oxygen-based dry etching (O-based), and an inert gas such as argon gas or helium gas may be mixed in addition to the oxygen gas as necessary.
  • the lower light shielding film 18 ′ is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based).
  • the antireflection film 14 ′ is a single layer film made of a tantalum compound not containing silicon and containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof.
  • it is a film mainly composed of tantalum oxide. Therefore, it is possible to continuously form films in the same film formation chamber without changing the sputtering film formation of the light shielding film and the target.
  • the reflectance with respect to the exposure wavelength is suppressed to 45% or less, particularly 30% or less, in order to suppress multiple reflections between the phase shift mask and the projection exposure surface during exposure. preferable.
  • the reflectance with respect to the wavelength (for example, 257 nm) used for the reflection inspection of the phase shift mask blank or the phase shift mask is, for example, 30% or less, in order to detect defects with high accuracy.
  • the film thickness of the antireflection film 14 ′ is preferably 2 nm or more and 20 nm or less, and particularly 15 nm or less in order to obtain a sufficient antireflection effect. Furthermore, 3 nm or more is preferable in order to prevent pinholes during film formation and film disappearance during etching and cleaning.
  • the composition of the antireflection film 14 ′ is such that it has resistance to oxygen-containing chlorine-based etching (Cl / O system) and non-oxygen-containing chlorine-based etching (Cl system), processability to fluorine-based etching (F system), antireflection effect, And, in order to realize resistance to various chemical cleaning, tantalum is 10 atomic% or more and 70 atomic% or less, particularly 20 atomic% or more and 60 atomic% or less, nitrogen is 0 atomic% or more, 20 atomic% or less, especially 0 atom.
  • the etching mask film 15 ' is a single layer film containing chromium alone, chromium and at least one selected from nitrogen, oxygen and carbon, or a multilayer film or a gradient film thereof.
  • the film thickness of the etching mask film 15 ′ is preferably 2 nm or more and 30 nm or less, particularly 15 nm or less in order to reduce resist damage during dry etching of the etching mask film and to realize thinning of the resist.
  • 3 nm or more is preferable in order to prevent pinholes during film formation and film disappearance during etching and cleaning.
  • the composition of the etching mask film 15 ′ is resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and to oxygen-containing chlorine-based etching (Cl / O-based).
  • chromium is 30 atomic% to 100 atomic%, particularly 50 atomic% to 100 atomic%
  • oxygen is 0 atomic% to 50 atomic%
  • nitrogen is 0 atom% or more and 50 atom% or less, especially 0 atom% or more and 40 atom% or less
  • carbon is 0 atom% or more and 30 atom% or less, especially 0 atom%.
  • it is preferable that it is 20 atomic% or less.
  • phase shift film, the light shielding film, the antireflection film, and the etching mask film of the phase shift mask blank according to each embodiment described above can be formed by any known method.
  • the most preferable method for obtaining a film having excellent homogeneity is a sputter film formation method, but it is not necessary to limit to the sputter film formation method.
  • the target and sputtering gas are selected according to the film composition.
  • a target containing chromium is used, and only an inert gas such as argon gas, only a reactive gas such as oxygen, or a mixture of an inert gas and a reactive gas is used.
  • the method of performing reactive sputtering in gas can be mentioned.
  • the flow rate of the sputtering gas may be adjusted according to the film characteristics, and may be constant during film formation. When the amount of oxygen or nitrogen is to be changed in the thickness direction of the film, it is changed according to the target composition. May be.
  • the power applied to the target, the distance between the target and the substrate, and the pressure in the deposition chamber may be adjusted.
  • a target in which the content ratio of silicon and metal is adjusted may be used alone, or a silicon target, a metal target, and silicon and metal
  • a plurality of targets may be appropriately selected from the targets consisting of
  • the phase shift mask can be obtained by patterning or removing each film of the phase shift mask blank according to each embodiment described above into a desired pattern.
  • FIG. 7 is an enlarged schematic view of the effective area of the phase shift mask blank according to Comparative Example 1 provided with the etching stopper layer.
  • the etching stopper layer 2 is formed on the substrate 3, and the phase shift film 1 is formed on the etching stopper layer 2.
  • the etching stopper layer 2 can be formed of, for example, a mixed film containing silicon and aluminum, but there may be a defect C in the film as shown in FIG. In this case, if the defect C exists in the region through which the exposure light DUV passes, a part of the exposure light that passes through the etching stopper layer 2 is hindered, and there is a possibility that high-precision exposure cannot be performed.
  • a lower light shielding film is provided between the phase shift film and the upper light shielding film. For this reason, the thickness of the upper light shielding film can be reduced by the amount of the lower light shielding film.
  • the upper light-shielding film is formed of a compound containing tantalum, the film becomes hard due to oxidation caused by cleaning, etching, natural oxidation, etc., and therefore it takes a relatively long time to remove.
  • processing time can be shortened by using a ruthenium simple substance or a ruthenium compound. Since the unnecessary lower light shielding film is removed by etching together with the upper light shielding film, there is also an effect that the correction of the phase shift film with, for example, a fluorine-based gas is not hindered.
  • FIG. 8 is an enlarged schematic view of the effective area of the phase shift mask according to Comparative Example 2 in which the etching stopper layer is provided with the phase shift film interposed therebetween.
  • the lower etching stopper layer 2 is formed on the substrate 3
  • the phase shift film 1 is formed on the lower etching stopper layer 2
  • the upper etching stopper layer 2 is formed on the phase shift film 1.
  • the two etching stopper layers 2 are made of, for example, an aluminum compound.
  • the lower light shielding film is finally removed and only the phase shift film 1 remains on the substrate 3. Since the irradiation is not hindered, the defect D can be easily removed.
  • a ruthenium simple substance or a lower light shielding film using a ruthenium compound is used as the etching stopper layer of the upper light shielding film using a tantalum compound. Therefore, since the etching resistance is different, the lower light shielding film can be used as a stopper layer for correcting the upper light shielding film. Further, the light shielding effect can be exhibited by the lower light shielding film together with the upper light shielding film. That is, the lower light shielding film has both the light shielding function and the etching suppression function.
  • phase shift mask manufactured from the phase shift mask blank according to the first to sixth embodiments described above and a method of manufacturing the phase shift mask will be described.
  • FIG. 10 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 100 using the phase shift mask blank 10 shown in FIG.
  • the members indicated by the reference numerals already described are the same as those in FIG.
  • FIG. 10A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing.
  • FIG. 10B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 10C shows a process of cleaning after removing the remaining resist pattern 15.
  • FIG. 10A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing.
  • FIG. 10B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 10C
  • 10D shows a process of patterning the light shielding film 13 along the pattern of the etching mask film 14 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). Indicates.
  • FIG. 10E shows a step of patterning the phase shift film 12 by fluorine-based dry etching (F system) along the pattern of the etching mask film 14 and the light shielding film 13.
  • FIG. 10F shows a process of newly forming the second resist pattern 16.
  • FIG. 10G shows a step of removing the etching mask film 14 in a region not covered with the second resist pattern 16 by oxygen-containing chlorine-based dry etching (Cl / O-based).
  • FIG. 10H shows a non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based film in a region not covered with the second resist pattern 16. The process of removing by both etching (F system) is shown.
  • FIG. 10I shows a process of removing the remaining second resist pattern 16 after removing it.
  • an area denoted by reference numeral 101 represents an area where a circuit pattern formed on the phase shift mask 100 is arranged (hereinafter, this area is referred to as “effective area 101”).
  • an area denoted by reference numeral 102 is an area where a pattern is arranged so as to surround an effective area 101 where a circuit pattern is arranged.
  • this area is referred to as an “outer peripheral portion 102”.
  • the definition of the effective area and the outer peripheral portion is the same in the phase shift mask described with reference to FIGS. 11 to 15 below.
  • the pattern formed in the effective area 101 includes only the substrate 11 and the phase shift film 12, and the light shielding film 13 and the etching mask film 14 are also laminated.
  • the pattern exists only on the outer peripheral portion 102.
  • a pattern in which the substrate 11, the phase shift film 12, the light shielding film 13, and the etching mask film 14 are stacked may be formed in the effective area 101.
  • FIG. 11 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 100 using the phase shift mask blank 10 shown in FIG.
  • the members indicated by the reference numerals already described are the same as those in FIG.
  • FIG. 11A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing.
  • FIG. 11B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 11C shows a process of removing the remaining resist pattern 15 after removing it.
  • FIG. 11A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing.
  • FIG. 11B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • the upper light shielding film 13 is patterned along the pattern of the etching mask film 14 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). A process is shown.
  • FIG. 11E shows a process of etching the lower light shielding film 18 by oxygen-based etching (O-based) along the pattern of the etching mask film 14 and the upper light shielding film 13.
  • FIG. 11F shows a process of patterning the phase shift film 12 by fluorine dry etching (F system).
  • FIG. 11G shows a process of newly forming the second resist pattern 16.
  • FIG. 11H shows a step of removing the etching mask film 14 in a region not covered with the second resist pattern 16 by oxygen-containing chlorine-based dry etching (Cl / O-based).
  • FIG. 11I shows that the upper light shielding film 13 in a region not covered with the second resist pattern 16 is both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based). The process of removing by one side is shown.
  • FIG. 11H shows a step of removing the etching mask film 14 in a region not covered with the second resist pattern 16 by oxygen-containing chlorine-based dry etching (Cl / O-based).
  • FIG. 11I shows that the upper light shielding film 13 in a region not covered with the second resist pattern 16 is both non
  • FIG. 11J shows a step of removing the lower light shielding film 18 in a region not covered with the second resist pattern 16 by oxygen-based etching (O-based).
  • FIG. 11K shows a process of removing the remaining second resist pattern 16 after removing it.
  • an area indicated by reference numeral 101 represents an effective area
  • an area indicated by reference numeral 102 represents an outer peripheral portion.
  • the pattern formed in the effective area 101 is formed only of the substrate 11 and the phase shift film 12, and the upper light shielding film 13, the lower light shielding film 18, and The pattern in which the etching mask film 14 is laminated exists only in the outer peripheral portion 102.
  • a pattern in which the substrate 11, the phase shift film 12, the upper light shielding film 13, the lower light shielding film 18, and the etching mask film 14 are stacked may be formed in the effective area 101.
  • FIG. 12 is a schematic cross-sectional view sequentially showing a method of manufacturing the phase shift mask 200 using the phase shift mask blank 20 shown in FIG.
  • the members denoted by the reference numerals already described are the same as those in FIG.
  • FIG. 12A shows a process of forming a resist pattern 25 by applying a resist film on the etching mask film 24, performing drawing, and then performing development processing.
  • FIG. 12B shows a process of patterning the etching mask film 24 along the resist pattern 25 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 12C shows a process of removing the remaining resist pattern 25 after removing it.
  • 12D shows a step of patterning the light shielding film 23 along the pattern of the etching mask film 24 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). Indicates.
  • FIG. 12E shows a process of patterning the phase shift film 22 by fluorine-based dry etching (F system) along the pattern of the etching mask film 24 and the light shielding film 23.
  • FIG. 12F shows a process of removing the etching mask film 24 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 12G shows a process of newly forming the second resist pattern 26.
  • FIG. 12H shows a non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based film in a region not covered with the second resist pattern 26. The process of removing by both etching (F system) is shown.
  • FIG. 12I shows a process of removing the remaining second resist pattern 26 and then cleaning it.
  • an area indicated by reference numeral 201 represents an effective area
  • an area indicated by reference numeral 202 represents an outer peripheral portion.
  • the pattern formed in the effective area 201 is formed only from the substrate 21 and the phase shift film 22, and the pattern in which the light shielding film 23 is also laminated is It exists only in the outer periphery 202.
  • a pattern in which the substrate 21, the phase shift film 22, and the light shielding film 23 are stacked may be formed in the effective area 201.
  • FIG. 13 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 200 using the phase shift mask blank 20 shown in FIG.
  • the members indicated by the reference numerals already described are the same as those in FIG.
  • FIG. 13A shows a process of forming a resist pattern 25 by applying a resist film on the etching mask film 24, performing drawing, and then performing development processing.
  • FIG. 13B shows a process of patterning the etching mask film 24 along the resist pattern 25 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 13C shows a process of removing the remaining resist pattern 25 after removing it.
  • FIG. 13A shows a process of forming a resist pattern 25 by applying a resist film on the etching mask film 24, performing drawing, and then performing development processing.
  • FIG. 13B shows a process of patterning the etching mask film 24 along the resist pattern 25 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • the upper light shielding film 23 is patterned along the pattern of the etching mask film 24 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). A process is shown.
  • FIG. 13E shows a process of etching the lower light-shielding film 28 by oxygen-based etching (O-based) along the pattern of the etching mask film 24 and the upper light-shielding film 23.
  • FIG. 13F shows a step of patterning the phase shift film 22 by fluorine-based dry etching (F system) along the pattern of the etching mask film 24 and the light shielding film 23 and the lower light shielding film 28.
  • FIG. 13G shows a process of removing the etching mask film 24 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 13H shows a process of newly forming the second resist pattern 26.
  • FIG. 13I shows that the light shielding film 23 in a region not covered with the second resist pattern 26 is both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based), or one of them. The process of removing is shown.
  • FIG. 13G shows a process of removing the etching mask film 24 by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 13H shows a process of newly forming the second resist pattern 26.
  • FIG. 13J shows a step of removing the lower light shielding film 28 in a region not covered with the second resist pattern 26 by oxygen-based etching (O-based).
  • FIG. 13K shows a process of removing the remaining second resist pattern 26 and then cleaning it.
  • an area indicated by reference numeral 201 represents an effective area
  • an area indicated by reference numeral 202 represents an outer peripheral portion.
  • the pattern formed in the effective area 201 is formed only from the substrate 21 and the phase shift film 22, and the upper light shielding film 23 and the lower light shielding film 28 are also formed.
  • the stacked pattern exists only in the outer peripheral portion 202.
  • a pattern in which the substrate 21, the phase shift film 22, the upper light shielding film 23, and the lower light shielding film 28 are stacked may be formed in the effective area 201.
  • either a positive resist or a negative resist may be used as the resist film material.
  • a chemically amplified resist for electron beam drawing that enables formation of a high-precision pattern.
  • the thickness of the resist film is, for example, in the range of not less than 50 nm and not more than 200 nm.
  • the lower limit of the thickness of the resist film is determined by comprehensively considering conditions such as etching resistance of the resist material to be used, and is preferably 60 nm or more.
  • the energy density of the electron beam at the time of writing is in the range of 10 to 100 ⁇ C / cm 2. After this drawing, heat treatment and development processing are performed. To obtain a resist pattern.
  • conditions for oxygen-containing chlorine-based dry etching (Cl / O-based) for patterning the etching mask film are performed.
  • the resist pattern can be removed by dry etching. To wet peel.
  • the conditions for non-oxygen-containing chlorine-based dry etching (Cl-based) for patterning the upper light-shielding film are as follows.
  • an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the upper etching mask film and the lower light shielding film have resistance to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
  • Fluorine-based etching can be added before non-oxygen-containing chlorine-based dry etching (Cl system).
  • the oxygen-based dry etching (O) system for patterning the lower light-shielding film uses an argon gas, a helium gas, or the like as necessary in addition to the oxygen gas.
  • An inert gas may be mixed. Since the etching mask film, the upper light shielding film, and the phase shift film have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
  • the fluorine-based dry etching (F-based) conditions for patterning the phase shift film have been conventionally performed. It may be a known one that has been used for dry etching of a silicon-based compound film, and the fluorine-based gas is generally CF 4 , C 2 F 6, or SF 6 , and if necessary, nitrogen gas or helium An inert gas such as a gas may be mixed.
  • the uppermost etching mask film is resistant to fluorine-based dry etching (F system), and therefore remains in the process without being removed or patterned together with the light shielding film.
  • F system fluorine-based dry etching
  • the substrate is simultaneously dug by about 1 nm to 3 nm to prevent the phase shift film from coming off and the phase difference of It is common to make fine adjustments.
  • the drawing method may use laser drawing whose accuracy is lower than that of electron beam drawing.
  • a resist film is applied, electron beam drawing or laser drawing is performed, and then a development process is performed to obtain a second resist pattern.
  • the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for removing the etching mask film are conventionally used for removing the chromium compound film.
  • an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the underlying light shielding film, phase shift film, and substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O system), they remain without being removed or patterned in this step. Accordingly, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (removal residue) of the etching mask film.
  • etching conditions that facilitate the lateral etching a higher pressure (low vacuum) and a larger over-etching amount are preferable than the etching conditions used in the steps of FIGS. 12B and 13B.
  • the over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
  • the non-oxygen-containing chlorine-based dry etching (Cl-based) conditions for removing the upper light shielding film are as follows:
  • an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the lower light shielding film, the phase shift film, and the substrate, which are lower layers, are all resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
  • oxygen-based dry etching (O-based) conditions for removing the lower light-shielding film are argon gas or helium gas as required in addition to oxygen gas.
  • An inert gas such as may be mixed. Since the underlying phase shift film and the substrate are both resistant to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
  • Etching conditions that facilitate the etching in the horizontal direction are based on the etching conditions used in the steps of FIGS. 10D, 11D, 11E, 12D, 13D, and 13E. However, a high pressure (low vacuum) and a large over-etching amount are preferable.
  • the over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
  • the resist pattern can be removed by dry etching. To wet peel.
  • FIG. 14 is a diagram for explaining a method of manufacturing the phase shift mask 100 ′ using the phase shift mask blank 10 ′ shown in FIG. 5.
  • the members indicated by the reference numerals already described are the same as those in FIG.
  • FIG. 14A shows a step of forming a resist pattern 16 ′ by applying a resist film on the etching mask film 15 ′, performing drawing, and then performing development processing.
  • FIG. 14B shows a process of patterning the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system) along the resist pattern 16 ′.
  • FIG. 14C shows a process of removing the remaining resist pattern 16 'after removing it.
  • FIG. 14D shows a process of patterning the antireflection film 14 ′ by fluorine dry etching (F system) along the pattern of the etching mask film 15 ′.
  • FIG. 14 (e) shows a case where non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based) is performed along the pattern of the etching mask film 15 ′ and the antireflection film 14 ′.
  • a process of patterning the light shielding film 13 ′ will be described.
  • FIG. 14F shows a step of patterning the phase shift film 12 ′ by fluorine-based dry etching (F system) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, and the light shielding film 13 ′.
  • FIG. 14G shows a process of removing the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 14H shows a process of newly forming the second resist pattern 17 '.
  • FIG. 14I shows a process of removing the antireflection film 14 ′ in the region not covered with the second resist pattern 17 ′ by fluorine-based dry etching (F-based).
  • F-based fluorine-based dry etching
  • FIG. 14J shows that the light shielding film 13 ′ in the region not covered with the second resist pattern 17 ′ is non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based).
  • F system fluorine etching
  • FIG. 14K shows a process of removing the remaining second resist pattern 17 'after removing it.
  • an area indicated by reference numeral 101 ' represents an effective area
  • an area indicated by reference numeral 102' represents an outer peripheral portion.
  • the pattern formed in the effective area 101 ′ is composed only of the substrate 11 ′ and the phase shift film 12 ′, and the light shielding film 13 ′ and the antireflection film 14 ′.
  • the laminated pattern exists only in the outer peripheral portion 102 '.
  • a pattern in which the substrate 11 ′, the phase shift film 12 ′, the light shielding film 13 ′, and the antireflection film 14 ′ are stacked may be formed in the effective area 101 ′.
  • FIG. 15 is a diagram for explaining a method of manufacturing the phase shift mask 100 ′ using the phase shift mask blank 10 ′ shown in FIG. 6.
  • the members indicated by the reference numerals already described are the same as those in FIG.
  • FIG. 15A shows a process of forming a resist pattern 16 ′ by applying a resist film on the etching mask film 15 ′, performing drawing, and then performing a development process.
  • FIG. 15B shows a process of patterning the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system) along the resist pattern 16 ′.
  • FIG. 15C shows a process of removing the remaining resist pattern 16 'after removing it.
  • FIG. 15D shows a process of patterning the antireflection film 14 ′ by fluorine dry etching (F system) along the pattern of the etching mask film 15 ′.
  • FIG. 15 (e) shows a case where non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based) is performed along the pattern of the etching mask film 15 ′ and the antireflection film 14 ′.
  • a process of patterning the upper light shielding film 13 ′ is shown.
  • 15F shows a step of patterning the lower light-shielding film 18 ′ by oxygen-based dry etching (O-based) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, and the upper light-shielding film 13 ′.
  • O-based oxygen-based dry etching
  • FIG. 15G shows the phase shift film 12 ′ by fluorine-based dry etching (F system) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, the upper light shielding film 13 ′, and the lower light shielding film 18 ′.
  • the process of patterning is shown.
  • FIG. 15H shows a process of removing the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system).
  • FIG. 15I shows a process of newly forming the second resist pattern 17 '.
  • FIG. 15J shows a step of removing the antireflection film 14 ′ in the region not covered with the second resist pattern 17 ′ by fluorine-based dry etching (F-based).
  • FIG. 15 (k) shows that the upper light shielding film 13 ′ in the region not covered with the second resist pattern 17 ′ is subjected to both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based), or The process of removing by either one is shown.
  • FIG. 15L shows a step of removing the lower light shielding film 18 'in the region not covered with the second resist pattern 17' by oxygen-based dry etching (O-based).
  • FIG. 15 (m) shows a process of removing the remaining second resist pattern 17 'after removing it.
  • an area indicated by reference numeral 101 ' represents an effective area
  • an area indicated by reference numeral 102' represents an outer peripheral portion.
  • the pattern formed in the effective area 101 ′ is composed only of the substrate 11 ′ and the phase shift film 12 ′, and the upper light shielding film 13 ′ and the lower light shielding film 18 are formed.
  • the pattern in which 'and the antireflection film 14' are also laminated exists only in the outer peripheral portion 102 '.
  • a pattern in which the substrate 11 ′, the phase shift film 12 ′, the upper light shielding film 13 ′, the lower light shielding film 18 ′, and the antireflection film 14 ′ are stacked is formed in the effective area 101 ′. Also good.
  • the resist film material can be either a positive resist or a negative resist, but it can be used for electron beam lithography that enables the formation of a high-precision pattern. It is preferable to use a chemically amplified resist.
  • the film thickness of the resist film is, for example, in the range of not less than 50 nm and not more than 200 nm. In particular, when producing a phase shift mask that requires fine pattern formation, it is necessary to reduce the resist film thickness so that the aspect ratio of the resist pattern does not increase in order to prevent pattern collapse. Film thickness is preferred.
  • the lower limit of the thickness of the resist film is determined by comprehensively considering conditions such as etching resistance of the resist material to be used, and is preferably 60 nm or more.
  • the energy density of the electron beam at the time of writing is in the range of 10 to 100 ⁇ C / cm 2. After this drawing, heat treatment and development processing are performed. To obtain a resist pattern.
  • the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for patterning the etching mask film are the same as those in the conventional dry etching of a chromium compound film. It may be a known one that has been used, and in addition to chlorine gas and oxygen gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the lower antireflection film has resistance to oxygen-containing chlorine-based dry etching (Cl / O-based), it remains without being removed or patterned in this step.
  • the resist pattern can be removed by dry etching, but in general, the resist pattern is wet-exfoliated with a removing solution.
  • the fluorine-based dry etching (F-based) conditions for patterning the antireflection film are CF 4 , C 2 F 6 and SF 6 as the fluorine-based gas. It is common and you may mix inert gas, such as nitrogen gas and helium gas, as needed. Since the upper etching mask film is resistant to fluorine-based dry etching (F-based), it remains without being removed or patterned in this step. Further, since the lower light-shielding film can be processed by fluorine-based dry etching (F-based), the light-shielding film may be patterned to such an extent that the entire film is not removed in this step.
  • the non-oxygen-containing chlorine-based dry etching (Cl-based) conditions for patterning the upper light-shielding film include nitrogen gas and nitrogen gas as necessary in addition to chlorine gas.
  • An inert gas such as helium gas may be mixed. Since the uppermost etching mask film and the lower phase shift film are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
  • the oxygen-based dry etching (O-based) conditions for patterning the lower light-shielding film are mixed with an inert gas such as argon gas or helium gas in addition to oxygen gas as necessary. May be. Since the upper light shielding film and the lower phase shift film have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
  • an inert gas such as argon gas or helium gas
  • the fluorine-based dry etching (F-based) conditions for patterning the phase shift film have been conventionally used when dry-etching a silicon-based compound film.
  • the fluorine-based gas CF 4 , C 2 F 6, and SF 6 are generally used, and an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the uppermost etching mask film is resistant to fluorine-based dry etching (F system), it remains without being removed or patterned in this step together with the antireflection film and the light shielding film.
  • F system fluorine-based dry etching
  • FIGS. 14 (f) and 15 (g) it is common to simultaneously dig out the substrate by about 1 nm to 3 nm to prevent the phase shift film from coming off and to finely adjust the phase difference.
  • the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for removing the etching mask film have been conventionally used for removing the chromium compound film.
  • an inert gas such as nitrogen gas or helium gas may be mixed as necessary.
  • the lower antireflection film, light shielding film, phase shift film, and substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), so they are not removed or patterned in this step. Remains. Accordingly, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (removal residue) of the etching mask film.
  • etching conditions that facilitate the lateral etching a higher pressure (low vacuum) and a larger over-etching amount are preferable than the etching conditions used in the steps of FIGS. 14B and 15B.
  • the over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
  • the drawing method may be laser drawing, which is less accurate than electron beam drawing.
  • a resist film is applied, and electron beam drawing or laser drawing is performed. And a development process is performed thereafter to obtain a second resist pattern.
  • the conditions of fluorine dry etching for removing the antireflection film (F system), CF 4 and C 2 F 6 and SF 6 as a fluorine-based gas It is common and you may mix inert gas, such as nitrogen gas and helium gas, as needed. Since the lower light-shielding film can also be removed by fluorine-based dry etching (F-based), part or all of the film may be removed in this step. 14 (i) and 15 (j), the substrate is also dug simultaneously. Therefore, in order to completely remove the antireflection film and realize a desired phase difference, the final digging amount of the substrate combined with the digging amounts in FIGS. 14 (g) and 15 (h). Is preferably adjusted from 5 nm to 20 nm.
  • the non-oxygen-containing chlorine-based dry etching (Cl-based) condition for removing the upper light-shielding film is not limited to chlorine gas, but may be nitrogen gas or An inert gas such as helium gas may be mixed. Since the lower light shielding film, the phase shift film, and the substrate, which are lower layers, are all resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
  • the oxygen-based dry etching (O-based) conditions for removing the lower light-shielding film are mixed with an inert gas such as argon gas or helium gas in addition to oxygen gas as necessary. May be. Since the underlying phase shift film and the substrate are both resistant to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
  • an inert gas such as argon gas or helium gas
  • etching condition that facilitates lateral etching that can suppress residues (remaining removal) of the light shielding film.
  • a higher pressure (low vacuum) and a larger overetching amount are preferable than the etching conditions used in the steps of FIGS. 14 (e), 15 (e), and (f).
  • the over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
  • the resist pattern can be removed by dry etching, but in general, the resist pattern is wet-exfoliated with a remover.
  • FIG. 16 is an enlarged schematic cross-sectional view showing a method of correcting a residue of an etching mask film and a light shielding film of the phase shift mask 100 using the phase shift mask blank 10 shown in FIG.
  • FIG. 16A shows a state of a part of the mask in which the etching mask film residue 14 a and the light shielding film residue 13 a exist on the phase shift film 12.
  • FIG. 16B shows a process of newly forming a resist pattern 17 for residue correction so as not to cover the region where the residues 13a and 14a are generated.
  • a resist pattern 17 is obtained by forming a resist film, performing electron beam drawing or laser drawing, and developing the resist film.
  • the resist pattern 17 may be obtained by performing spot exposure on the areas where the residues 13a and 14a are generated and then developing the areas.
  • FIG. 16C shows a step of removing the etching mask film residue 14a in a region not covered with the resist pattern 17 by oxygen-containing chlorine-based dry etching (Cl / O-based). Since the light shielding film residue 13a, the phase shift film 12 and the substrate 11 are resistant to oxygen-containing chlorine-based dry etching (Cl / O system), they remain without being removed or patterned in this step.
  • the etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue 14a of the etching mask film. Etching conditions that facilitate etching in the horizontal direction are the same as those used in the step of FIG.
  • FIG. 16D shows a step of removing the light shielding film residue 13a in a region not covered with the resist pattern 17 by non-oxygen-containing chlorine-based dry etching (Cl-based). Since the phase shift film 12 and the substrate 11 are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step. As the etching conditions, it is desirable to select conditions that facilitate the lateral etching in order to remove the light shielding film residue 13a. Etching conditions that facilitate lateral etching are the same as those used in the process of FIG.
  • FIG. 16E shows a process of removing the remaining resist pattern 17 and then cleaning it. Peeling and removal can be performed by dry etching, but in general, wet peeling is performed with a stripping solution. By this step, the residue correction of the etching mask film and the light shielding film of the phase shift mask 100 is completed.
  • FIG. 17 is an enlarged schematic cross-sectional view showing a method for correcting a residue of an etching mask film and a light shielding film of the phase shift mask 100 using the phase shift mask blank 10 shown in FIG.
  • FIG. 17A shows a state of a part of the mask in which the residue 14a of the etching mask film, the residue 13a of the upper light shielding film, and the residue 18a of the lower light shielding film exist on the phase shift film 12.
  • FIG. 17B shows a process of newly forming a resist pattern 17 for residue correction so as not to cover the regions where the residues 13a, 14a and 18a are generated.
  • a resist pattern 17 is obtained by forming a resist film, performing electron beam drawing or laser drawing, and developing the resist film.
  • the resist pattern 17 may be obtained by performing spot exposure on the regions where the residues 13a, 14a, and 18a are generated and then developing the regions.
  • FIG. 17C shows a step of removing the etching mask film residue 14a in a region not covered with the resist pattern 17 by oxygen-containing chlorine-based dry etching (Cl / O-based). Since the upper light shielding film residue 13a, the lower light shielding film residue 18a, the phase shift film 12 and the substrate 11 are resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), they are removed or patterned in this step. Remains.
  • the etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue 14a of the etching mask film. Etching conditions that facilitate lateral etching are the same as those used in the step of FIG.
  • FIG. 17D shows a step of removing the residue 13a of the upper light shielding film in the region not covered with the resist pattern 17 by non-oxygen-containing chlorine-based dry etching (Cl-based). Since the lower layer light shielding film residue 18a, the phase shift film 12 and the substrate 11 are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
  • the etching conditions it is desirable to select conditions that facilitate the lateral etching in order to remove the residue 13a of the upper light-shielding film. Etching conditions that facilitate the lateral etching are the same as those used in the step of FIG.
  • FIG. 17E shows a process of removing the lower light shielding film residue 18a in the region not covered with the resist pattern 17 by oxygen-based dry etching (O-based). Since the phase shift film 12 and the substrate 11 have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step. As the etching conditions, it is desirable to select a condition that facilitates the etching in the lateral direction in order to remove the residue 18a of the lower light shielding film. Etching conditions that facilitate lateral etching are the same as those used in the step of FIG.
  • FIG. 17 (f) shows a process of removing the remaining resist pattern 17 and then cleaning it. Peeling and removal can be performed by dry etching, but in general, wet peeling is performed with a stripping solution. By this step, the residue correction of the etching mask film and the light shielding film of the phase shift mask 100 is completed.
  • the etching mask film is removed in the steps shown in FIGS. 14 (g) and 15 (h). If a part of the etching mask film cannot be completely removed and remains as a residue on the antireflection film, FIG. This residue can be detected by performing a reflective mask inspection after the steps shown in FIG. 14 (g) and FIG. 15 (h).
  • the detected residue of the etching mask film is removed by oxygen-containing chlorine-based dry etching (Cl / O system).
  • the antireflection film, the upper light shielding film, the lower light shielding film, the phase shift film, and the substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), they are removed or patterned in this step. It remains without being.
  • the etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue of the etching mask film. Etching conditions that facilitate lateral etching are the same as those used in the steps of FIGS. 14 (g) and 15 (h).
  • Example 1 A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 66 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 28 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, oxygen, and nitrogen.
  • Cr: O: N 45: 45: 10 (atomic% ratio).
  • the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.2.
  • phase shift mask blank in which a phase shift film made of silicon, molybdenum, oxygen and nitrogen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chrome, oxygen and nitrogen are laminated on a quartz substrate. Obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed.
  • phase shift masks when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 2 A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 66 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • an ion sputtering apparatus was used to form a lower light-shielding film made of ruthenium with a thickness of 10 nm.
  • the target was ruthenium, and the sputtering gas was xenon.
  • Ru 100 (atomic% ratio).
  • An upper light-shielding film made of tantalum and nitrogen was formed on the lower light-shielding film with a thickness of 18 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, oxygen, and nitrogen.
  • Cr: O: N 45: 45: 10 (atomic% ratio).
  • the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.2.
  • phase shift film made of silicon, molybdenum, oxygen and nitrogen, a lower light shielding film made of ruthenium, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, oxygen and nitrogen are formed on the quartz substrate.
  • a laminated phase shift mask blank was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed.
  • a positive resist film is spin-coated on the phase shift mask of this embodiment in which the residues of the etching mask film, the upper light shielding film, and the lower light shielding film are detected by defect inspection, and only the vicinity of the residue portion is formed by a laser drawing apparatus. Draw on. Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the residue of the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 3 A phase shift film made of silicon and nitrogen was formed to a thickness of 68 nm on a quartz substrate using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and nitrogen.
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 26 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this light shielding film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift mask blank in which a phase shift film made of silicon and nitrogen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium and nitrogen were laminated on a quartz substrate.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 5.5%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • phase shift masks when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 4 A phase shift film made of silicon and nitrogen was formed to a thickness of 61 nm on a quartz substrate using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and nitrogen.
  • a lower light-shielding film made of a ruthenium compound was formed to a thickness of 17 nm using an ion sputtering apparatus.
  • the target was ruthenium, and the sputtering gas was xenon and nitrogen.
  • Ru: N 95: 5 (atomic% ratio).
  • An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 10 nm on the lower light-shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this light shielding film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift film made of silicon and nitrogen a phase shift film made of silicon and nitrogen, a lower light shielding film made of ruthenium compound, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium and nitrogen are laminated on the quartz substrate.
  • a mask blank was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W.
  • an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Overetching was stopped when an average of 18 nm was dug into the quartz substrate. Thus, a desired phase difference can be realized in combination with the thickness of the phase shift film being 61 nm.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 7.4%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • phase shift mask was 9% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 3.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the residue of the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 5 A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 62 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • Si: Mo: O: N 40: 8: 7: 45 (atomic% ratio).
  • a second phase shift film made of silicon and oxygen was formed to a thickness of 10 nm on the first phase shift film using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • Si: O 33: 67 (atomic% ratio).
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 28 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, oxygen, and nitrogen.
  • the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the light shielding film made of tantalum and nitrogen, chromium and oxygen A phase shift mask blank on which an etching mask film made of nitrogen was laminated was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
  • the first and second phase shift films were patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 7.2%, The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed.
  • phase shift masks when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • permeability and phase difference of this phase shift mask were measured with MPM193 by Lasertec, it confirmed that it was not changing from the value before residue correction.
  • Example 6 A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 62 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • Si: Mo: O: N 40: 8: 7: 45 (atomic% ratio).
  • a second phase shift film made of silicon and oxygen was formed to a thickness of 10 nm on the first phase shift film using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • Si: O 33: 67 (atomic% ratio).
  • a lower light-shielding film made of a ruthenium compound was formed to a thickness of 5 nm using an ion sputtering apparatus.
  • the target was ruthenium, and the sputtering gas was xenon and boron.
  • Ru: B 80: 20 (atomic% ratio).
  • An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 24 nm on the lower light-shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, oxygen, and nitrogen.
  • the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the lower light shielding film made of ruthenium compound, and the tantalum and nitrogen thus obtained was a phase shift mask blank in which an upper light shielding film and an etching mask film made of chromium, oxygen and nitrogen were laminated.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the first and second phase shift films were patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 7.2%, The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • permeability and phase difference of this phase shift mask were measured with MPM193 by Lasertec, it confirmed that it was not changing from the value before residue correction.
  • Example 7 A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 59 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 20 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift film made of silicon, molybdenum, oxygen and nitrogen, a light shielding film made of tantalum and nitrogen, an antireflection film made of tantalum and oxygen, and an etching mask film made of chromium and nitrogen are laminated on the quartz substrate.
  • a phase shift mask blank was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 8.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • Example 8 A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 59 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus.
  • the target was ruthenium / niobium alloy, and the sputtering gas was xenon.
  • Ru: Nb 85: 15 (atomic% ratio).
  • An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 12 nm on the lower light-shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift film made of silicon, molybdenum, oxygen and nitrogen a lower light shielding film made of ruthenium compound, an upper light shielding film made of tantalum and nitrogen, an antireflection film made of tantalum and oxygen, and chromium on a quartz substrate.
  • phase shift mask blank in which an etching mask film made of nitrogen was laminated.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 8.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • phase shift mask was 8% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 7.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • Example 9 A phase shift film made of silicon and nitrogen was formed to a thickness of 64 nm on a quartz substrate using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and nitrogen.
  • a light-shielding film made of tantalum, nitrogen, and oxygen was formed to a thickness of 30 nm on the phase shift film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon, nitrogen, and oxygen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 6 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • an etching mask film made of chromium and nitrogen was formed to a thickness of 4 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift film made of silicon and nitrogen the light shielding film made of tantalum, nitrogen and oxygen, the antireflection film made of tantalum and oxygen, and the etching mask film made of chromium and nitrogen were laminated on the quartz substrate.
  • a phase shift mask blank was obtained.
  • a negative chemically amplified electron beam resist is spin-coated at a film thickness of 80 nm on this etching mask film, the pattern is drawn with an electron beam at a dose of 37 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Development was performed for 60 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 1 nm on average.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug on average 8 nm.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • phase shift mask was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film part relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.8%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 4 nm was confirmed.
  • phase shift masks when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was found to be 3% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • Example 10 A phase shift film made of silicon and nitrogen was formed to a thickness of 64 nm on a quartz substrate using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and nitrogen.
  • An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus.
  • the target was ruthenium, and the sputtering gas was xenon and nitrogen.
  • Ru: N 80: 20 (atomic% ratio).
  • an upper light-shielding film made of tantalum, nitrogen and oxygen was formed to a thickness of 23 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon, nitrogen, and oxygen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 6 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • an etching mask film made of chromium and nitrogen was formed to a thickness of 4 nm using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • phase shift film made of silicon and nitrogen a lower light shielding film made of a ruthenium compound, an upper light shielding film made of tantalum, nitrogen and oxygen, an antireflection film made of tantalum and oxygen, and chromium and nitrogen.
  • a phase shift mask blank on which an etching mask film made of was laminated was obtained.
  • a negative chemically amplified electron beam resist is spin-coated at a film thickness of 80 nm on this etching mask film, the pattern is drawn with an electron beam at a dose of 37 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Development was performed for 60 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 1 nm on average.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug on average 8 nm.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • phase shift mask was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film part relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.8%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 4 nm was confirmed.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • Example 11 A phase shift film made of silicon and oxygen was formed to a thickness of 169 nm using an RF sputtering apparatus using two targets on a quartz substrate.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 48 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An etching mask film made of chromium, nitrogen and carbon was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, nitrogen, and carbon.
  • phase shift mask blank in which a phase shift film made of silicon and oxygen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, nitrogen and carbon were laminated on a quartz substrate.
  • a negative chemically amplified electron beam resist is spin-coated on the etching mask film at a film thickness of 120 nm, a pattern is drawn with an electron beam at a dose of 36 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Then, development was performed for 70 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 2 nm on average.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • phase shift mask was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 98%, and the phase difference was 180 degrees. Further, when the phase difference of the phase shift mask was measured over the entire surface of the mask, it was confirmed that no phase difference error due to pattern dependency or mask position dependency occurred. In addition, when a program defect portion where a black defect of the phase shift film was intentionally arranged was corrected with an electron beam, it was confirmed that it could be corrected with a good shape.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 12 A phase shift film made of silicon and oxygen was formed to a thickness of 169 nm using an RF sputtering apparatus using two targets on a quartz substrate.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • a lower light shielding film made of a ruthenium compound was formed to a thickness of 20 nm using an ion sputtering apparatus.
  • the target was ruthenium, and the sputtering gas was xenon and nitrogen.
  • Ru: N 90: 10 (atomic% ratio).
  • An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 32 nm on the lower light-shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An etching mask film made of chromium, nitrogen and carbon was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon, nitrogen, and carbon.
  • phase shift film made of silicon and oxygen, a lower light shielding film made of a ruthenium compound, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, nitrogen and carbon are laminated on the quartz substrate.
  • a phase shift mask blank was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on the etching mask film at a film thickness of 120 nm, a pattern is drawn with an electron beam at a dose of 36 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Then, development was performed for 70 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the phase shift film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 2 nm on average.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • phase shift mask was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 98%, and the phase difference was 180 degrees. Further, when the phase difference of the phase shift mask was measured over the entire surface of the mask, it was confirmed that no phase difference error due to pattern dependency or mask position dependency occurred. In addition, when a program defect portion where a black defect of the phase shift film was intentionally arranged was corrected with an electron beam, it was confirmed that it could be corrected with a good shape.
  • a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • the etching gas was chlorine and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed.
  • this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
  • Example 13 A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 56 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • Si: Mo: O: N 40: 8: 7: 45 (atomic% ratio).
  • a second phase shift film made of silicon and oxygen was formed to a thickness of 8 nm on the first phase shift film using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • Si: O 33: 67 (atomic% ratio).
  • a light shielding film made of tantalum and nitrogen was formed to a thickness of 20 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the light shielding film made of tantalum and nitrogen, and the tantalum and oxygen are formed on the quartz substrate.
  • a phase shift mask blank in which an antireflection film and an etching mask film made of chromium and nitrogen were laminated was obtained.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the first and second phase shift films were patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
  • the light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 9.3%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • phase shift mask in which additional dry etching was added after the above-described light shielding film removal step was produced.
  • the added dry etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition. When the transmittance and phase difference of this phase shift mask were measured by MPM193 manufactured by Lasertec, it was confirmed that there was no fluctuation from the value of the phase shift mask not subjected to additional dry etching.
  • Example 14 A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 56 nm on a quartz substrate using a DC sputtering apparatus using two targets.
  • the target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen.
  • Si: Mo: O: N 40: 8: 7: 45 (atomic% ratio).
  • a second phase shift film made of silicon and oxygen was formed to a thickness of 8 nm on the first phase shift film using a DC sputtering apparatus.
  • the target was silicon, and the sputtering gas was argon and oxygen.
  • Si: O 33: 67 (atomic% ratio).
  • An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus.
  • the target was ruthenium, and the sputtering gas was xenon and nitrogen.
  • Ru: N 80: 20 (atomic% ratio).
  • an upper light shielding film made of tantalum and nitrogen was formed to a thickness of 11 nm using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and nitrogen.
  • An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus.
  • the target was tantalum, and the sputtering gas was xenon and oxygen.
  • An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus.
  • the target was chromium, and the sputtering gas was argon and nitrogen.
  • Cr: N 90: 10 (atomic% ratio).
  • the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the lower light shielding film made of ruthenium alloy, and the tantalum and nitrogen A phase shift mask blank was obtained in which an upper light shielding film, an antireflection film made of tantalum and oxygen, and an etching mask film made of chromium and nitrogen were laminated.
  • a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 ⁇ C / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern.
  • the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
  • the etching mask film was patterned using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 5 mTorr
  • the ICP power was set to 400 W
  • the bias power was set to 40 W.
  • the resist pattern was stripped and washed by sulfuric acid water washing.
  • the antireflection film was patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
  • the upper light shielding film was patterned using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
  • the lower light shielding film was patterned using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W.
  • an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
  • the first and second phase shift films were patterned using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
  • the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium
  • the gas pressure was set to 10 mTorr
  • the ICP power was set to 500 W
  • the bias power was set to 10 W.
  • Over-etching was performed at 200%.
  • a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
  • the antireflection film was removed using a dry etching apparatus.
  • the etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
  • the upper light shielding film was removed using a dry etching apparatus.
  • the etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the lower light shielding film was removed using a dry etching apparatus.
  • the etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
  • the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask.
  • the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 9.3%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed.
  • phase shift mask was 8% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 13.
  • the etching mask film removal step is performed, and the particles are intentionally removed by washing.
  • An etching mask film residue was generated on the antireflection film.
  • a reflection mask inspection was performed, and it was confirmed that this residue was detected.
  • the residue of the etching mask film was removed using a dry etching apparatus.
  • the etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
  • phase shift mask in which additional dry etching was added after the above-described light shielding film removal step was produced.
  • the added dry etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition. When the transmittance and phase difference of this phase shift mask were measured by MPM193 manufactured by Lasertec, it was confirmed that there was no fluctuation from the value of the phase shift mask not subjected to additional dry etching.
  • composition and film thickness and layer structure of the phase shift mask blank and the manufacturing process and conditions of the phase shift mask using the phase shift mask were selected within an appropriate range, a logic system device of 28 nm or less, or 30 nm or less It is possible to provide a phase shift mask in which a fine pattern is formed with high accuracy corresponding to memory device manufacturing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The purpose of the present invention is to obtain a phase shift mask with an improved size, wherein an undercut does not occur in a lower layer light-blocking film when the phase shift mask is fabricated. This phase shift mask blank is formed by stacking, on a substrate transparent to an exposure wavelength, a phase shift film having resistance to oxygen-containing chlorine-based etching (Cl/O system) and non-oxygen containing chlorine-based etching (Cl system), and capable of being etched by fluorine-based etching (F system), a light-blocking film having resistance to oxygen-containing chlorine-based etching (Cl/O system), and capable of being etched by non-oxygen containing chlorine-based etching (Cl system), and an etching mask film having resistance to fluorine-based etching (F system) and non-oxygen containing chlorine-based etching (Cl system), and capable of being etched by oxygen-containing chlorine-based etching (Cl/O system), and does not have an etching stopper layer between the phase shift film and the substrate.

Description

位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法Phase shift mask blank, phase shift mask, and method of manufacturing phase shift mask
 本発明は、位相シフトマスクブランク、位相シフトマスク、及び位相シフトマスクの製造方法に関し、特に、半導体集積回路、CCD(電荷結合素子)、LCD(液晶表示素子)用カラーフィルタ、及び磁気ヘッド等の製造に用いられる位相シフトマスクに関する。 The present invention relates to a phase shift mask blank, a phase shift mask, and a method for manufacturing a phase shift mask, and more particularly to semiconductor integrated circuits, CCD (charge coupled device), LCD (liquid crystal display device) color filters, magnetic heads, and the like. The present invention relates to a phase shift mask used for manufacturing.
 近年、半導体素子の微細化に伴い、投影露光にも高い解像性が求められている。そこで、フォトマスクの分野においては、転写パターンの解像性を向上させる手法として、位相シフト法が開発された。位相シフト法の原理は、開口部に隣接する位相シフト部を通過した透過光の位相が開口部を通過した透過光の位相と反転するように調整することによって、透過光が干渉し合う部分の光強度を弱め(位相シフト効果)、その結果として転写パターンの解像性を向上させるものであり、この原理を用いたフォトマスクを総じて位相シフトマスクと呼ぶ。 In recent years, with the miniaturization of semiconductor elements, high resolution is also required for projection exposure. Therefore, in the photomask field, a phase shift method has been developed as a technique for improving the resolution of a transfer pattern. The principle of the phase shift method is that the phase of the transmitted light that has passed through the phase shift section adjacent to the opening is adjusted so that the phase of the transmitted light that has passed through the opening is reversed. The light intensity is weakened (phase shift effect), and as a result, the resolution of the transfer pattern is improved. Photomasks using this principle are collectively called phase shift masks.
 位相シフトマスクに使用される位相シフトマスクブランクは、ガラス基板等の透明基板上に位相シフト膜と遮光膜を順次積層した構造が最も主流である。位相シフト膜は所望の位相差、透過率となるように、膜厚と組成が調整されており、位相差175度から180度、透過率5%から7%の場合、膜厚60nmから80nmのMoSi系材料の単層膜もしくは複数層膜で形成されるのが主流である。また、遮光膜は位相シフト膜と合わせたOD値(光学濃度)が所望の値となるように、膜厚と組成が調整されており、上述の位相シフト膜と合わせたOD値が2.8以上の場合、膜厚40nmから60nmのクロム系材料の単層膜もしくは複数層膜で形成されるのが主流である。 The most common phase shift mask blank used for the phase shift mask has a structure in which a phase shift film and a light shielding film are sequentially laminated on a transparent substrate such as a glass substrate. The thickness and composition of the phase shift film are adjusted so that the desired phase difference and transmittance are obtained. When the phase difference is 175 to 180 degrees and the transmittance is 5% to 7%, the film thickness is 60 nm to 80 nm. The mainstream is a single-layer film or a multi-layer film of MoSi-based material. Further, the film thickness and the composition of the light shielding film are adjusted so that the OD value (optical density) combined with the phase shift film becomes a desired value, and the OD value combined with the above phase shift film is 2.8. In the above case, the mainstream is a single layer film or a multilayer film of a chromium-based material having a film thickness of 40 nm to 60 nm.
 位相シフトマスクのパターン形成方法としては、位相シフトマスクブランクの遮光膜上にレジスト膜を形成し、このレジスト膜にレーザー光もしくは電子ビームによりパターンを描画し、これを現像してレジストパターンを形成し、このレジストパターンをマスクとして遮光膜をエッチングして遮光膜パターンを形成し、この遮光膜パターンをマスクとして位相シフト膜をエッチングし、更にレジスト膜と遮光膜を除去して位相シフト膜のパターンを形成する方式が一般的である。 As a pattern formation method of the phase shift mask, a resist film is formed on the light shielding film of the phase shift mask blank, a pattern is drawn on the resist film by a laser beam or an electron beam, and this is developed to form a resist pattern. The light shielding film is etched using the resist pattern as a mask to form a light shielding film pattern, the phase shift film is etched using the light shielding film pattern as a mask, and the resist film and the light shielding film are further removed to form the phase shift film pattern. The method of forming is common.
 高精度なパターン形成が要求される位相シフトマスクでは、エッチングはガスプラズマを用いるドライエッチングが主流である。クロム系材料の遮光膜のドライエッチングは酸素含有塩素系エッチング(Cl/O系)、MoSi系材料の位相シフト膜のドライエッチングはフッ素系エッチング(F系)が主流である。 For phase shift masks that require highly accurate pattern formation, dry etching using gas plasma is the mainstream for etching. Oxygen-containing chlorine-based etching (Cl / O-based) is mainly used for dry etching of a chromium-based light shielding film, and fluorine-based etching (F-based) is mainly used for dry-etching a phase shift film of a MoSi-based material.
 一方、半導体素子の微細化に伴い、原版となるフォトマスクパターンも微細に形成する技術が求められている。特に、フォトマスクのメインパターンの転写性を補助するアシストパターンは、露光の際にウェハ上に転写されないように、メインパターンよりも小さく形成する必要がある。ロジック系デバイスの28nm以下、又はメモリ系デバイスの30nm以下の世代用のアシストパターン寸法は60nm以下の解像性が要求される。 On the other hand, with the miniaturization of semiconductor elements, there is a demand for a technique for finely forming a photomask pattern as an original. In particular, the assist pattern for assisting the transfer of the main pattern of the photomask needs to be formed smaller than the main pattern so as not to be transferred onto the wafer during exposure. Assist pattern dimensions for generations of 28 nm or less of logic devices or 30 nm or less of memory devices are required to have a resolution of 60 nm or less.
 フォトマスクパターンの解像性の改善に有力な手段の一つとして、レジスト膜の薄膜化がある。レジスト膜のアスペクト比(膜厚/幅)を下げることにより、現像の際のレジストパターンの倒れや抜け不良を減少させることができる。 One of the effective means for improving the resolution of the photomask pattern is to make the resist film thinner. By reducing the aspect ratio (film thickness / width) of the resist film, it is possible to reduce the collapse of the resist pattern and the defect defect during development.
 位相シフトマスクにおいてもパターンの解像性改善を実現するために、レジスト膜の薄膜化が行われて来た。しかし、膜厚40nmから60nmの遮光膜をドライエッチングする際にレジスト膜もダメージを受けるため、遮光膜エッチングの際の耐性まで考慮するとレジスト膜の薄膜化には限界があった。 In the phase shift mask, the resist film has been thinned in order to improve the pattern resolution. However, since the resist film is also damaged when the light shielding film having a film thickness of 40 nm to 60 nm is dry-etched, there is a limit to reducing the thickness of the resist film in consideration of the resistance at the time of etching the light shielding film.
 そこで、遮光膜の上にエッチングマスク膜を形成した位相シフトマスクブランクが提案された(特許文献1及び特許文献2)。エッチングマスク膜は、下層のクロム系材料の遮光膜エッチングに対して十分な耐性を得るため、ケイ素系化合物であるMoSiNやSiONが主流である。また、膜厚は遮光膜よりも薄い3nmから30nmが主流であり、ドライエッチングする際のレジストのダメージを遮光膜よりも抑制することが可能となり、更なるレジスト膜の薄膜化が実現できる。 Therefore, a phase shift mask blank in which an etching mask film is formed on a light shielding film has been proposed (Patent Document 1 and Patent Document 2). The etching mask film is mainly composed of MoSiN or SiON, which are silicon compounds, in order to obtain sufficient resistance against the light shielding film etching of the underlying chromium-based material. Also, the film thickness is mainly 3 nm to 30 nm, which is thinner than the light shielding film, so that it is possible to suppress the damage of the resist during dry etching more than the light shielding film, and the resist film can be further thinned.
 このエッチングマスク膜付き位相シフトマスクブランクを用いた位相シフトマスク作製の際に、エッチングマスク膜と遮光膜の寸法が同一にはならず、下層の遮光膜にアンダーカットが生じる場合がある。これは、ケイ素系化合物からなりフッ素系エッチング(F系)で加工するエッチングマスク膜とクロム系材料からなり酸素含有塩素系エッチング(Cl/O系)で加工する遮光膜では、横方向にエッチングが進み易い遮光膜の方がラインパターンの寸法が細くなるからである。この遮光膜のアンダーカット量は、遮光膜のドライエッチングにより調整する方法が一般的であるが、エッチングするパターン領域の幅や面積により横方向へのエッチングの進み量が変わるため、すべてのパターンにおいて遮光膜のアンダーカットを消すことは至難である。 When producing a phase shift mask using this phase shift mask blank with an etching mask film, the dimensions of the etching mask film and the light shielding film are not the same, and an undercut may occur in the lower light shielding film. This is because the etching mask film made of a silicon compound and processed by fluorine etching (F system) and the light shielding film made of a chromium material and processed by oxygen-containing chlorine etching (Cl / O system) are etched in the lateral direction. This is because the dimension of the line pattern is smaller in the light shielding film that is easier to proceed. The amount of undercut of the light shielding film is generally adjusted by dry etching of the light shielding film, but since the amount of etching progressed in the horizontal direction varies depending on the width and area of the pattern region to be etched, in all patterns It is very difficult to remove the undercut of the light shielding film.
 このエッチングマスク膜付き位相シフトマスクブランクを用いた位相シフトマスク作製に不可欠な工程として、エッチングマスク膜と位相シフト膜が共にフッ素系エッチング(F系)で加工されるため、位相シフト膜のドライエッチングの際に同時にエッチングマスク膜の除去も行う工程がある。この工程の際、前述の遮光膜のアンダーカットが生じていた場合、位相シフト膜のエッチングの初期の段階ではエッチングマスク膜により位相シフト膜の寸法が決まるが、膜厚の薄いエッチングマスク膜が途中で消失した後は、露出した下層の遮光膜により位相シフト膜の寸法が決まる。つまり、エッチングマスク膜消失の前後で位相シフト膜の寸法が変わるため、位相シフト膜に段差が発生し、均一な寸法を得ることができない。 As an indispensable process for producing a phase shift mask using this phase shift mask blank with an etching mask film, both the etching mask film and the phase shift film are processed by fluorine-based etching (F system). There is a step of removing the etching mask film at the same time. In this process, when the above-described undercut of the light-shielding film occurs, the dimension of the phase shift film is determined by the etching mask film in the initial stage of etching of the phase shift film, but the thin etching mask film is in the middle. After disappearance of the phase shift film, the dimension of the phase shift film is determined by the exposed light shielding film of the lower layer. That is, since the dimension of the phase shift film changes before and after the disappearance of the etching mask film, a step is generated in the phase shift film, and a uniform dimension cannot be obtained.
 更に、位相シフトマスクブランクにおいて、同じクロム系材料を用いてエッチングマスク膜と遮光膜の一部とを形成したものもある。このような位相シフトマスクブランクにて、エッチングマスク膜を酸素含有塩素系エッチング(Cl/O系)でエッチング処理しようとすると、遮光膜にアンダーカットが生じるなどの影響が生じ、あるいは遮光膜を酸素含有塩素系エッチング(Cl/O系)でエッチング処理しようとすると、同時にエッチングマスク膜も除去されてしまい、加工が困難になるという問題がある。 Further, there is a phase shift mask blank in which an etching mask film and a part of a light shielding film are formed using the same chromium-based material. In such a phase shift mask blank, when the etching mask film is subjected to an etching process by oxygen-containing chlorine-based etching (Cl / O system), an influence such as undercut occurs in the light-shielding film, or the light-shielding film is oxygenated. If an etching process is performed using the chlorine-containing etching (Cl / O system), the etching mask film is also removed at the same time, which makes it difficult to process.
 また、エッチングマスク膜を構成するケイ素化合物はクロム系材料よりもレジスト膜との密着性が悪い。そのため、エッチングマスク膜によりレジスト膜の薄膜化を実現しても、レジスト膜との密着性の悪化が原因となり、レジストパターンの倒れが発生してしまう場合がある。 Also, the silicon compound constituting the etching mask film has poor adhesion to the resist film than the chromium-based material. Therefore, even if the resist film is thinned by the etching mask film, the resist pattern may fall down due to the deterioration of the adhesion to the resist film.
 更に、位相シフト膜のドライエッチングには位相シフト膜のエッチング形状や開口部の透明基板の深さ制御が要求されるため、同時に行うエッチングマスク膜除去に適した条件のみを選択することができず、エッチングマスク膜及び下層の遮光膜の残渣(除去残り)の原因となる。更に、エッチングマスク膜の残渣はフッ素系エッチング(F系)でしか除去できず、位相シフト膜や透明基板も同時にダメージを受けてしまうため、この残渣をドライエッチング修正することはできない。 In addition, dry etching of the phase shift film requires control of the etching shape of the phase shift film and the depth of the transparent substrate in the opening, so that only conditions suitable for simultaneous removal of the etching mask film cannot be selected. This causes a residue (removal residue) of the etching mask film and the underlying light shielding film. Furthermore, the residue of the etching mask film can be removed only by fluorine etching (F system), and the phase shift film and the transparent substrate are damaged at the same time. Therefore, this residue cannot be corrected by dry etching.
特開2005-62884号公報JP 2005-62884 A 国際公開第2004/090635号International Publication No. 2004/090635
 本発明は、以上の課題に鑑みてなされ、欠陥に対する修正が容易であり、位相シフトマスクのパターンの解像性改善と寸法改善とを両立し、エッチングマスク膜及び遮光膜の残渣抑制と、エッチングマスク膜及び遮光膜の残渣のドライエッチング修正とを可能にする位相シフトマスクブランク及び位相シフトマスク及び位相シフトマスクの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, is easy to correct for defects, achieves both improved resolution and dimensional improvement of the pattern of the phase shift mask, suppresses residues of the etching mask film and the light shielding film, and etches. It is an object of the present invention to provide a phase shift mask blank, a phase shift mask, and a method of manufacturing the phase shift mask that enable dry etching correction of the residue of the mask film and the light shielding film.
 本発明の一形態に係る位相シフトマスクブランクは、露光波長に対して透明な基板上に、位相シフト膜と、遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクであって、前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、前記遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つ非酸素含有塩素系エッチング(Cl系)でエッチング可能であり、前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能であり、前記位相シフト膜と前記基板との間にエッチングストッパー層を有しない、ことを特徴とする。 A phase shift mask blank according to an aspect of the present invention is a phase shift mask blank in which a phase shift film, a light shielding film, and an etching mask film are stacked in this order on a substrate transparent to an exposure wavelength. The phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by fluorine-based etching (F-based). The light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and can be etched by non-oxygen-containing chlorine-based etching (Cl-based), and the etching mask film is made of fluorine. Resistant to non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-containing chlorine-based etching (Cl / O-based) No etching stopper layer between the substrate and the phase shift film, characterized in that.
 本発明の一形態に係る位相シフトマスクブランクは、露光波長に対して透明な基板上に、位相シフト膜と、下層遮光膜と、上層遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクであって、前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、前記下層遮光膜は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能であり、前記上層遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)の両方、又はいずれか一方にてエッチング可能であり、前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能である、ことを特徴とする A phase shift mask blank according to an aspect of the present invention is a phase in which a phase shift film, a lower light shielding film, an upper light shielding film, and an etching mask film are laminated in this order on a substrate transparent to the exposure wavelength. A shift mask blank, wherein the phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based). In addition, the lower light-shielding film is resistant to fluorine etching (F system) and non-oxygen-containing chlorine etching (Cl system), and can be etched by fluorine etching (F system). The upper light shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based), and fluorine-based etching (F-based) and non-acidic. The etching mask film can be etched by both or any of the chlorine-containing etching (Cl-based), and the etching mask film is fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching. It is resistant to (O-based) and can be etched by oxygen-containing chlorine-based etching (Cl / O-based).
 また、前記下層遮光膜は、膜厚が2nm以上、30nm以下であり、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物から形成されている、と好ましい。 Further, it is preferable that the lower light-shielding film has a film thickness of 2 nm or more and 30 nm or less and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
 本発明の一形態に係る位相シフトマスクは、露光波長に対して透明な基板上に、位相シフト膜と、遮光膜と、エッチングマスク膜を含む複数の膜がこの順序で積層された位相シフトマスクブランクの、前記膜の一部が選択的に除去されることで回路パターンが形成された位相シフトマスクであって、前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、前記遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つ非酸素含有塩素系エッチング(Cl系)でエッチング可能であり、前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能であり、前記位相シフト膜と前記基板との間にエッチングストッパー層を有しない、ことを特徴とする A phase shift mask according to one embodiment of the present invention is a phase shift mask in which a plurality of films including a phase shift film, a light shielding film, and an etching mask film are stacked in this order on a substrate transparent to an exposure wavelength. A blank phase shift mask having a circuit pattern formed by selectively removing a part of the film, wherein the phase shift film comprises oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen It is resistant to chlorine-containing etching (Cl-based) and can be etched by fluorine-based etching (F-based), and the light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based). It has resistance and can be etched by non-oxygen-containing chlorine-based etching (Cl-based), and the etching mask film is composed of fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based). Resistant to a, and is etchable in an oxygen-containing chlorine-based etch (Cl / O system), no etching stopper layer between the phase shift film and the substrate, characterized in that
 また、本発明の一形態に係る位相シフトマスクは、露光波長に対して透明な基板上に、位相シフト膜と、下層遮光膜と、上層遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクの、前記膜の一部が選択的に除去されることで回路パターンが形成された位相シフトマスクであって、前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、前記下層遮光膜は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能であり、前記上層遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)の両方、又はいずれか一方にてエッチング可能であり、前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能である、ことを特徴とする In the phase shift mask according to one embodiment of the present invention, a phase shift film, a lower light shielding film, an upper light shielding film, and an etching mask film are stacked in this order on a substrate transparent to the exposure wavelength. A phase shift mask in which a circuit pattern is formed by selectively removing a part of the film of the phase shift mask blank, wherein the phase shift film is oxygen-containing chlorine-based etching (Cl / O-based) It is resistant to non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and can be etched by fluorine-based etching (F-based). Resistant to etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based). It has resistance to etching (Cl / O system) and can be etched by fluorine etching (F system) and / or non-oxygen-containing chlorine system etching (Cl system). The mask film has resistance to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and oxygen-containing chlorine-based etching (Cl / O-based). It is possible to etch with
 また、前記下層遮光膜は、膜厚が2nm以上、30nm以下であり、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物から形成されている、と好ましい。 Further, it is preferable that the lower light-shielding film has a film thickness of 2 nm or more and 30 nm or less and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
 また、本発明の一形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法は、前記エッチングマスク膜上にレジストパターンを形成する工程と、酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜にパターンを形成する工程と、非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記遮光膜にパターンを形成する工程と、フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、前記遮光膜に形成されたパターン上から酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜を除去する工程と、前記位相シフト膜に形成されたパターン上から非酸素含有塩素系エッチング(Cl系)又は非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方にて前記遮光膜を除去する工程と、を含むことを特徴とする。 A method of manufacturing a phase shift mask using a phase shift mask blank according to an embodiment of the present invention includes a step of forming a resist pattern on the etching mask film and oxygen-containing chlorine-based etching (Cl / O-based). Forming a pattern on the etching mask film, and forming a pattern on the light-shielding film by non-oxygen-containing chlorine-based etching (Cl-based) and / or fluorine-based etching (F-based). A step of forming a pattern on the phase shift film by fluorine-based etching (F-based), and an oxygen-containing chlorine-based etching (Cl / O-based) from the pattern formed on the light-shielding film. A non-oxygen-containing chlorine-based etching (Cl-based) or non-oxygen-containing chlorine-based etch from the pattern formed on the phase shift film. Characterized in that it comprises a, and removing the light shielding film at both ring (Cl based) and fluorine-based etching (F based).
 また、本発明の一形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法は、前記エッチングマスク膜上にレジストパターンを形成する工程と、酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜にパターンを形成する工程と、非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記上層遮光膜にパターンを形成する工程と、酸素系エッチング(O系)にて前記下層遮光膜にパターンを形成する工程と、フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、前記上層遮光膜に形成されたパターン上から酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜を除去する工程と、非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記上層遮光膜を除去する工程と、前記位相シフト膜に形成されたパターン上から、酸素系エッチング(O系)にて前記下層遮光膜を除去する工程と、を含む、ことを特徴とする A method of manufacturing a phase shift mask using a phase shift mask blank according to an embodiment of the present invention includes a step of forming a resist pattern on the etching mask film and oxygen-containing chlorine-based etching (Cl / O-based). Forming a pattern on the etching mask film, and forming a pattern on the upper light-shielding film by both or one of non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based). Forming a pattern on the lower light-shielding film by oxygen-based etching (O-based), forming a pattern on the phase-shift film by fluorine-based etching (F-based), and forming on the upper light-shielding film Removing the etching mask film from the formed pattern by oxygen-containing chlorine-based etching (Cl / O system), and a non-oxygen-containing chlorine-based etch (Cl-based) and / or fluorine-based etching (F-based) or at least one of them, the step of removing the upper light-shielding film, and the oxygen-based etching (O-based) from the pattern formed on the phase shift film And removing the lower light shielding film at
 本発明の一形態に係る位相シフトマスクブランクでは、前述の横方向にエッチングが進み易いクロム系材料からなり酸素含有塩素系エッチング(Cl/O系)で加工する膜がエッチングマスク膜として最上層にしか存在しない。したがって、それより下層の上層遮光膜、下層遮光膜または反射防止膜にアンダーカットが生じず、寸法が改善された位相シフトマスクを得ることができる。 In the phase shift mask blank according to an embodiment of the present invention, the film made of the chromium-based material that is easily etched in the lateral direction and processed by the oxygen-containing chlorine-based etching (Cl / O-based) is the uppermost layer as the etching mask film. Only exists. Accordingly, an undercut does not occur in the lower light shielding film, the lower light shielding film or the antireflection film below it, and a phase shift mask with improved dimensions can be obtained.
 また、このエッチングマスク膜は薄い膜厚で十分であるため、エッチング時間の短縮による寸法改善とレジスト薄膜化による解像性改善を実現できる。更に、エッチングマスク膜を構成するクロム系材料は、従来のケイ素化合物よりレジスト膜との密着性が良いため、レジストパターンの倒れを抑制することができる。 In addition, since a thin film thickness is sufficient for this etching mask film, it is possible to improve the dimension by shortening the etching time and the resolution by reducing the resist thickness. Furthermore, since the chromium-based material constituting the etching mask film has better adhesion with the resist film than the conventional silicon compound, it is possible to suppress the collapse of the resist pattern.
 また本発明一形態では、下層遮光膜が、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能であると好ましい。このような特性を持つ素材として,ルテニウム単体又はルテニウム化合物がある。 In one embodiment of the present invention, the lower light shielding film is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based). Preferably there is. As a material having such characteristics, there is a ruthenium simple substance or a ruthenium compound.
 また本発明の一形態では、エッチングマスク膜を除去する酸素含有塩素系エッチング(Cl/O系)に対して、エッチングマスク膜以外の膜及び基板は耐性を有している。つまり、下層遮光膜は酸素含有塩素系エッチング(Cl/O系)に対して耐性を有する。また、上層遮光膜を除去する非酸素含有塩素系エッチング(Cl系)に対して、上層遮光膜以外の膜及び基板は耐性を有している。更に、下層遮光膜を除去する酸素系エッチング(O系)に対して下層遮光膜以外の膜及び基板は耐性を有している。したがって、従来のエッチングマスク付き位相シフトマスクのように他の膜や基板のダメージ、寸法制御、深さ制御等に制限されることなく、膜の除去に適した条件を設定することが可能となり、エッチングマスク膜及び上層遮光膜、下層遮光膜の残渣を低減することができる。更に、エッチングマスク膜や上層遮光膜、下層遮光膜の残渣をドライエッチング修正する場合、エッチングマスク膜の残渣を酸素含有塩素系エッチング(Cl/O系)にて除去し、上層遮光膜の残渣を非酸素含有塩素系エッチング(Cl系)にて除去し、下層遮光膜の残渣を酸素系エッチング(O系)にて除去すれば、位相シフト膜と基板にダメージを与えることなく、残渣のみを修正することができる。 In one embodiment of the present invention, films and substrates other than the etching mask film are resistant to oxygen-containing chlorine-based etching (Cl / O system) for removing the etching mask film. That is, the lower light shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based). Further, the film and the substrate other than the upper light-shielding film are resistant to non-oxygen-containing chlorine-based etching (Cl-based) for removing the upper light-shielding film. Furthermore, films and substrates other than the lower light shielding film have resistance to oxygen-based etching (O-based) for removing the lower light shielding film. Therefore, it is possible to set conditions suitable for film removal without being limited to damage to other films and substrates, dimension control, depth control, etc. like the conventional phase shift mask with etching mask, The residue of the etching mask film, the upper light shielding film, and the lower light shielding film can be reduced. Further, when the etching mask film, the upper light shielding film, and the lower light shielding film are subjected to dry etching correction, the etching mask film residue is removed by oxygen-containing chlorine etching (Cl / O system), and the upper light shielding film residue is removed. If removed by non-oxygen-containing chlorine-based etching (Cl-based) and the residue of the lower light shielding film is removed by oxygen-based etching (O-based), only the residue is corrected without damaging the phase shift film and the substrate. can do.
 本発明によれば、欠陥に対する修正が容易であり、位相シフトマスクのパターンの解像性改善と寸法改善とを両立し、エッチングマスク膜及び遮光膜の残渣抑制と、エッチングマスク膜及び遮光膜の残渣のドライエッチング修正とを可能にする位相シフトマスクブランク及び位相シフトマスク及び位相シフトマスクの製造方法を提供することができる。 According to the present invention, defects can be easily corrected, phase resolution mask pattern resolution improvement and dimension improvement can be achieved at the same time, etching mask film and light shielding film residue suppression, etching mask film and light shielding film It is possible to provide a phase shift mask blank, a phase shift mask, and a method for manufacturing the phase shift mask that enable dry etching correction of residues.
第1の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is a section schematic diagram showing the phase shift mask blank concerning a 1st embodiment. 第2の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is the cross-sectional schematic which shows the phase shift mask blank which concerns on 2nd Embodiment. 第3の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is a section schematic diagram showing the phase shift mask blank concerning a 3rd embodiment. 第4の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is a section schematic diagram showing the phase shift mask blank concerning a 4th embodiment. 第5の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is a section schematic diagram showing the phase shift mask blank concerning a 5th embodiment. 第6の実施形態に係る位相シフトマスクブランクを示す断面概略図である。It is a section schematic diagram showing the phase shift mask blank concerning a 6th embodiment. エッチングストッパー層を設けた比較例1に係わる位相シフトマスクブランクの有効エリアを拡大した模式図である。It is the schematic diagram which expanded the effective area of the phase shift mask blank concerning the comparative example 1 which provided the etching stopper layer. 位相シフト膜を挟んでエッチングストッパー層を設けた比較例2に係わる位相シフトマスクの有効エリアを拡大した模式図である。It is the schematic diagram which expanded the effective area of the phase shift mask concerning the comparative example 2 which provided the etching stopper layer on both sides of the phase shift film. 本実施の形態に係わる図8と同様な図である。It is a figure similar to FIG. 8 concerning this Embodiment. 第1の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic diagram which shows in order the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 1st Embodiment. 第2の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic which shows the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 2nd Embodiment in order. 第3の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic which shows in order the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 3rd Embodiment. 第4の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic which shows the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 4th Embodiment in order. 第5の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic which shows in order the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 5th Embodiment. 第6の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造方法を順に示す断面概略図である。It is the cross-sectional schematic which shows the manufacturing method of the phase shift mask using the phase shift mask blank which concerns on 6th Embodiment in order. 本実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正方法を示す拡大断面概略図である。It is an expanded cross-sectional schematic diagram which shows the etching mask film | membrane of a phase shift mask using the phase shift mask blank which concerns on this embodiment, and the residue correction method of a light shielding film. 本実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正方法を示す拡大断面概略図である。It is an expanded cross-sectional schematic diagram which shows the etching mask film | membrane of a phase shift mask using the phase shift mask blank which concerns on this embodiment, and the residue correction method of a light shielding film.
 以下に図面を参照しながら、本発明を実施するためのいくつかの実施形態について説明する。なお、断面概略図は、実際の寸法比やパターン数を正確には反映しておらず、基板の掘り込み量や膜のダメージ量は省略してある。 Hereinafter, some embodiments for carrying out the present invention will be described with reference to the drawings. Note that the schematic cross-sectional view does not accurately reflect the actual dimensional ratio and the number of patterns, and the amount of digging of the substrate and the amount of damage to the film are omitted.
 以下に説明する実施形態に係る位相シフトマスクブランクは、波長20nm以上、波長200nm以下の露光光が適用される位相シフトマスクの作製に用いられるハーフトーン型位相シフトマスクブランクであって、少なくとも、露光波長に対して透明な基板上に他の膜を介さず積層された、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な位相シフト膜と、位相シフト膜上に形成された、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)でエッチング可能な上層遮光膜と、上層遮光膜より上層に形成された、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能なエッチングマスク膜を有する。ただし、位相シフト膜と基板との間にエッチングストッパー層を有していない。 A phase shift mask blank according to an embodiment described below is a halftone phase shift mask blank used for producing a phase shift mask to which exposure light having a wavelength of 20 nm or more and a wavelength of 200 nm or less is applied, and at least exposure. Oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based) laminated on a transparent substrate with no other film interposed therebetween The phase shift film is resistant to fluorine and can be etched by fluorine-based etching (F-based), and is resistant to oxygen-containing chlorine-based etching (Cl / O-based) formed on the phase-shifted film. And an upper light-shielding film that can be etched by fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and formed above the upper light-shielding film. Resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and etched with oxygen-containing chlorine-based etching (Cl / O-based) It has a possible etching mask film. However, an etching stopper layer is not provided between the phase shift film and the substrate.
 さらに、本実施形態に係わる位相シフトマスクブランクは、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能である下層遮光膜を、位相シフト膜と上層遮光膜との間に有する。この下層遮光膜は、ルテニウムを含有し、膜厚が2nm以上、30nm以下である。 Furthermore, the phase shift mask blank according to this embodiment is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based). A lower light-shielding film is provided between the phase shift film and the upper light-shielding film. This lower light-shielding film contains ruthenium and has a film thickness of 2 nm or more and 30 nm or less.
 下層遮光膜と上層遮光膜とで、遮光機能を発揮する。すなわち、下層遮光膜を設けることで、その分、上層遮光膜の膜厚を薄くできる。たとえば上層遮光膜にタンタルを含有した場合、酸化によりエッチングしにくくなるため、一般的にエッチングに時間がかかる。この場合、下層遮光膜を設けた分だけ上層遮光膜の膜厚を薄くできると、加工効率が向上することとなり、残渣確率が改善する。 The lower layer light shielding film and the upper layer light shielding film exhibit a light shielding function. That is, by providing the lower light shielding film, the thickness of the upper light shielding film can be reduced accordingly. For example, when tantalum is contained in the upper light-shielding film, etching is generally difficult because etching becomes difficult due to oxidation. In this case, if the thickness of the upper light-shielding film can be reduced by the amount of the lower light-shielding film, the processing efficiency is improved and the residual probability is improved.
 図1は、第1の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図1の位相シフトマスクブランク10は、露光波長に対して透明な基板11と、基板11上に成膜された位相シフト膜12と、位相シフト膜12上に成膜された遮光膜(上層遮光膜ともいう)13と、遮光膜13上に成膜されたエッチングマスク膜14からなる。基板11と位相シフト膜12との間にエッチングストッパー層を有していない。この位相シフトマスクブランク10を用いた位相シフトマスクでは、エッチングマスク膜14が一部除去されずにマスク上に残る。 FIG. 1 is a schematic cross-sectional view showing a phase shift mask blank according to the first embodiment. A phase shift mask blank 10 in FIG. 1 includes a substrate 11 transparent to an exposure wavelength, a phase shift film 12 formed on the substrate 11, and a light shielding film (upper layer light shielding) formed on the phase shift film 12. And an etching mask film 14 formed on the light shielding film 13. There is no etching stopper layer between the substrate 11 and the phase shift film 12. In the phase shift mask using the phase shift mask blank 10, the etching mask film 14 is not partially removed but remains on the mask.
 図2は、第2の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図2の位相シフトマスクブランク10は、露光波長に対して透明な基板11と、基板11上に成膜された位相シフト膜12と、位相シフト膜12上に成膜された下層遮光膜18と、下層遮光膜18上に成膜された上層遮光膜13と、上層遮光膜13上に成膜されたエッチングマスク膜14からなる。基板11と位相シフト膜12との間にエッチングストッパー層を有していない。この位相シフトマスクブランク10を用いた位相シフトマスクでは、エッチングマスク膜14が一部除去されずにマスク上に残る。 FIG. 2 is a schematic cross-sectional view showing a phase shift mask blank according to the second embodiment. The phase shift mask blank 10 of FIG. 2 includes a substrate 11 that is transparent to the exposure wavelength, a phase shift film 12 formed on the substrate 11, and a lower light shielding film 18 formed on the phase shift film 12. The upper light shielding film 13 is formed on the lower light shielding film 18 and the etching mask film 14 is formed on the upper light shielding film 13. There is no etching stopper layer between the substrate 11 and the phase shift film 12. In the phase shift mask using the phase shift mask blank 10, the etching mask film 14 is not partially removed but remains on the mask.
 図3は、第3の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図3の位相シフトマスクブランク20は、露光波長に対して透明な基板21と、基板21上に成膜された位相シフト膜22と、位相シフト膜22上に成膜された遮光膜(上層遮光膜ともいう)23と、遮光膜23上に成膜されたエッチングマスク膜24からなる。基板21と位相シフト膜22との間にエッチングストッパー層を有していない。この位相シフトマスクブランク20を用いた位相シフトマスクでは、エッチングマスク膜24が完全に除去されてマスク上に残らない。 FIG. 3 is a schematic sectional view showing a phase shift mask blank according to the third embodiment. The phase shift mask blank 20 of FIG. 3 includes a substrate 21 transparent to the exposure wavelength, a phase shift film 22 formed on the substrate 21, and a light shielding film (upper layer light shielding) formed on the phase shift film 22. And an etching mask film 24 formed on the light shielding film 23. No etching stopper layer is provided between the substrate 21 and the phase shift film 22. In the phase shift mask using the phase shift mask blank 20, the etching mask film 24 is completely removed and does not remain on the mask.
 図4は、第4の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図4の位相シフトマスクブランク20は、露光波長に対して透明な基板21と、基板21上に成膜された位相シフト膜22と、位相シフト膜22上に成膜された下層遮光膜28と、下層遮光膜28上に成膜された上層遮光膜23と、上層遮光膜23上に成膜されたエッチングマスク膜24からなる。基板21と位相シフト膜22との間にエッチングストッパー層を有していない。この位相シフトマスクブランク20を用いた位相シフトマスクでは、エッチングマスク膜24が完全に除去されてマスク上に残らない。 FIG. 4 is a schematic sectional view showing a phase shift mask blank according to the fourth embodiment. The phase shift mask blank 20 of FIG. 4 includes a substrate 21 transparent to the exposure wavelength, a phase shift film 22 formed on the substrate 21, and a lower light shielding film 28 formed on the phase shift film 22. The upper light shielding film 23 is formed on the lower light shielding film 28 and the etching mask film 24 is formed on the upper light shielding film 23. No etching stopper layer is provided between the substrate 21 and the phase shift film 22. In the phase shift mask using the phase shift mask blank 20, the etching mask film 24 is completely removed and does not remain on the mask.
 ここで、前記露光波長に対して透明な基板11、21に対する特別な制限はなく、石英ガラスやCaFあるいはアルミノシリケートガラスなどが一般的である。 Here, there is no special limitation on the substrates 11 and 21 that are transparent to the exposure wavelength, and quartz glass, CaF 2, aluminosilicate glass, or the like is generally used.
 また、前記位相シフト膜12、22は、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、具体的にはケイ素の酸化膜、窒化膜、酸窒化膜、もしくはケイ素および遷移金属の酸化膜、窒化膜、酸窒化膜の単層膜、又はこれらの複数層膜もしくは傾斜膜であり、組成と膜厚を適宜選択することで露光波長に対する透過率と位相差を調整させたものである。遷移金属としては、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムなどを用いることができるが、モリブデンが好ましい。 The phase shift films 12 and 22 contain silicon and contain at least one selected from transition metals, nitrogen, oxygen, and carbon. Specifically, silicon oxide films, nitride films, and oxynitride films Or a single layer film of silicon and transition metal oxide film, nitride film, oxynitride film, or a multi-layer film or a gradient film thereof, and the transmittance and level with respect to the exposure wavelength by appropriately selecting the composition and film thickness. The phase difference is adjusted. As the transition metal, molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, or the like can be used, but molybdenum is preferable.
 透過率の値は、最終的な位相シフトマスク完成時に基板の透過率に対して3%以上、100%未満であり、所望のウェハパターンに応じて最適な透過率を適宜選択することが可能であるが、透過率5%以上、40%以下が一般的である。位相差の値は、最終的な位相シフトマスク完成時に170度以上、190度以下、特に175度以上、180度以下が好ましい。位相シフト膜12、22をエッチングする際は、同時に基板を1nmから3nm程度掘り込み、位相シフト膜の抜け不良を防止すると共に、位相差の微調整を行うことが一般的である。したがって、基板の掘り込み量を考慮して、マスク完成時に所望する値より浅い位相差で位相シフト膜12、22を成膜する必要がある。 The transmittance value is 3% or more and less than 100% with respect to the transmittance of the substrate when the final phase shift mask is completed, and it is possible to appropriately select the optimum transmittance according to the desired wafer pattern. However, the transmittance is generally 5% or more and 40% or less. The value of the phase difference is preferably 170 degrees or more and 190 degrees or less, particularly 175 degrees or more and 180 degrees or less when the final phase shift mask is completed. When etching the phase shift films 12 and 22, it is common to dig a substrate of about 1 nm to 3 nm at the same time to prevent the phase shift film from coming off and to finely adjust the phase difference. Therefore, it is necessary to form the phase shift films 12 and 22 with a phase difference shallower than a desired value when the mask is completed in consideration of the digging amount of the substrate.
 位相シフト膜12、22の組成は、所望の透過率と位相差の組み合わせにより変化する。例えば、透過率6%、位相差177度のケイ素とモリブデンの酸窒化膜の場合、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)に対する耐性、フッ素系エッチング(F系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、ケイ素が20原子%以上、60原子%以下、特に30原子%以上、50原子%以下、モリブデンが0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、酸素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、窒素が30原子%以上、80原子%以下、特に40原子%以上、70原子%以下であることが好ましい。 The composition of the phase shift films 12 and 22 varies depending on the desired combination of transmittance and phase difference. For example, in the case of a silicon and molybdenum oxynitride film having a transmittance of 6% and a phase difference of 177 degrees, oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O In order to realize resistance to (system), processability to fluorine-based etching (F system), and resistance to various chemical cleaning, silicon is 20 atom% or more and 60 atom% or less, particularly 30 atom% or more and 50 atom% or less. Molybdenum is 0 atomic% to 20 atomic%, particularly 0 atomic% to 10 atomic%, oxygen is 0 atomic% to 20 atomic%, particularly 0 atomic% to 10 atomic%, and nitrogen is 30 It is preferable that they are atom% or more and 80 atom% or less, especially 40 atom% or more and 70 atom% or less.
 また、位相シフト膜を複数層膜又は傾斜膜とする場合、遮光膜の除去に適用する非酸素含有塩素系エッチング(Cl系)又は酸素系エッチング(O系)により強い耐性を持つ遷移金属の含有量が少ない又は含有しないケイ素化合物膜を最表面に形成することが好ましい。具体的には、SiOやSiONを位相シフト膜の最表面に形成することが好ましい。特に、下層にエッチングストッパー層が無い位相シフト膜12、22において、仮に強い洗浄やエッチングマスク膜除去での強いエッチング条件を適用するなどして最表面のSiOやSiONがダメージを受けたとしても、組成が同等である基板も同時にダメージを受けるため、基板に対しての位相差や透過率の変動を抑制することが可能である。 In addition, when the phase shift film is a multi-layer film or an inclined film, it contains a transition metal having a strong resistance to non-oxygen-containing chlorine-based etching (Cl-based) or oxygen-based etching (O-based) applied to the removal of the light shielding film. It is preferable to form a silicon compound film with a small amount or no content on the outermost surface. Specifically, it is preferable to form SiO 2 or SiON on the outermost surface of the phase shift film. In particular, in the phase shift films 12 and 22 having no etching stopper layer in the lower layer, even if strong etching conditions for strong cleaning or etching mask film removal are applied, the outermost SiO 2 or SiON may be damaged. Since substrates having the same composition are also damaged at the same time, it is possible to suppress fluctuations in phase difference and transmittance with respect to the substrate.
 また、上層遮光膜13、23は、ケイ素を含有しないタンタル化合物からなり、窒素、ホウ素、酸素及び炭素から選ばれる1種以上を含有する単層膜、又はこれらの複数層膜もしくは傾斜膜であり、好ましくは窒化タンタルを主成分とする膜である。ケイ素を含有しないのは、非酸素含有塩素系エッチング(Cl系)で加工が困難なSiOやSiNが膜中に混成されることを防止するためである。 Further, the upper light shielding films 13 and 23 are made of a tantalum compound not containing silicon, and are a single layer film containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof. Preferably, it is a film mainly composed of tantalum nitride. The reason why silicon is not contained is to prevent SiO 2 and SiN that are difficult to process by non-oxygen-containing chlorine-based etching (Cl-based) from being mixed in the film.
 上層遮光膜13の膜厚は、位相シフト膜の透過率により変化するが、遮光膜(下層遮光膜がある場合には、これも含む、以下同じ)及び位相シフト膜及びエッチングマスク膜を合わせた露光波長に対するOD値(光学濃度)が2.5以上、より好ましくは2.8以上になるように調整する。例えば、位相シフト膜の透過率が6%の場合には、上層遮光膜13(下層遮光膜18を有する場合はその和、以下同じ)の膜厚は10nm以上35nm以下、特に15nm以上30nm以下が好ましい。 The film thickness of the upper light shielding film 13 varies depending on the transmittance of the phase shift film, but the light shielding film (including the lower light shielding film, the same applies hereinafter), the phase shift film, and the etching mask film are combined. The OD value (optical density) with respect to the exposure wavelength is adjusted to 2.5 or more, more preferably 2.8 or more. For example, when the transmittance of the phase shift film is 6%, the film thickness of the upper light shielding film 13 (the sum of the lower light shielding film 18 and the same hereinafter) is 10 nm to 35 nm, particularly 15 nm to 30 nm. preferable.
 一方、上層遮光膜23(下層遮光膜28を有する場合はその和、以下同じ)の膜厚も、位相シフト膜の透過率により変化するが、エッチングマスク膜24は最終的に位相シフトマスク上に残らないため、露光波長に対するOD値(光学濃度)は遮光膜と位相シフト膜とを合わせて2.5以上、より好ましくは2.8以上になるように調整する。例えば、位相シフト膜の透過率が6%の場合には、遮光膜の膜厚は15nm以上50nm以下、特に20nm以上45nm以下が好ましい。 On the other hand, the film thickness of the upper light-shielding film 23 (the sum of the lower light-shielding films 28, the same applies hereinafter) also varies depending on the transmittance of the phase shift film. Therefore, the OD value (optical density) with respect to the exposure wavelength is adjusted to be 2.5 or more, more preferably 2.8 or more for the light shielding film and the phase shift film. For example, when the transmittance of the phase shift film is 6%, the thickness of the light shielding film is preferably 15 nm to 50 nm, particularly preferably 20 nm to 45 nm.
 また、上層遮光膜23には、反射防止層としての機能を持たせてもよい。この場合、露光波長に対する反射率を例えば45%以下、特に30%以下に抑えることが、露光の際に位相シフトマスクと投影露光面との間での多重反射を抑制する上で好ましい。さらに、位相シフトマスクブランクや位相シフトマスクの反射検査に用いる波長(例えば257nm)に対する反射率を例えば30%以下とすることが、欠陥を高精度で検出する上で好ましい。これら反射防止層としての効果を増大させるためには、遮光膜の表面側のガス含有量を増やしてより高屈折率、低消衰係数とする方法が一般的である。 Further, the upper light shielding film 23 may have a function as an antireflection layer. In this case, it is preferable to suppress the reflectance with respect to the exposure wavelength to, for example, 45% or less, particularly 30% or less in order to suppress multiple reflection between the phase shift mask and the projection exposure surface during exposure. Furthermore, it is preferable that the reflectance with respect to the wavelength (for example, 257 nm) used for the reflection inspection of the phase shift mask blank or the phase shift mask is, for example, 30% or less, in order to detect defects with high accuracy. In order to increase the effect as the antireflection layer, a method of increasing the gas content on the surface side of the light shielding film to obtain a higher refractive index and lower extinction coefficient is generally used.
 上層遮光膜13の組成は、酸素含有塩素系エッチング(Cl/O系)に対する耐性、非酸素含有塩素系エッチング(Cl系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、タンタルが50原子%以上、100原子%以下、特に60原子%以上、90原子%以下、窒素が0原子%以上、70原子%以下、特に10原子%以上、60原子%以下、酸素が0原子%以上、10原子%以下、特に0原子%以上、5原子%以下、炭素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、ホウ素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下であることが好ましい。また、上層遮光膜23の組成は、酸素含有塩素系エッチング(Cl/O系)に対する耐性、非酸素含有塩素系エッチング(Cl系)に対する加工性、反射防止層としての効果、そして各種薬液洗浄に対する耐性を実現するために、タンタルが40原子%以上、90原子%以下、特に50原子%以上、80原子%以下、窒素が10原子%以上、70原子%以下、特に10原子%以上、60原子%以下、酸素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、炭素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、ホウ素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下であることが好ましい。 The composition of the upper light shielding film 13 is such that tantalum is used to realize resistance to oxygen-containing chlorine-based etching (Cl / O system), processability to non-oxygen-containing chlorine-based etching (Cl system), and resistance to various chemical cleaning. 50 atom% or more, 100 atom% or less, particularly 60 atom% or more, 90 atom% or less, nitrogen is 0 atom% or more, 70 atom% or less, particularly 10 atom% or more, 60 atom% or less, oxygen is 0 atom% or more 10 atom% or less, particularly 0 atom% or more, 5 atom% or less, carbon 0 atom% or more, 20 atom% or less, especially 0 atom% or more, 10 atom% or less, boron 0 atom% or more, 20 atom% In the following, it is particularly preferably 0 atomic% or more and 10 atomic% or less. Further, the composition of the upper light shielding film 23 is resistant to oxygen-containing chlorine-based etching (Cl / O-based), processability to non-oxygen-containing chlorine-based etching (Cl-based), an effect as an antireflection layer, and various chemical solution cleaning In order to realize resistance, tantalum is 40 atomic% or more and 90 atomic% or less, particularly 50 atomic% or more and 80 atomic% or less, nitrogen is 10 atomic% or more and 70 atomic% or less, particularly 10 atomic% or more, 60 atoms or less. %, Oxygen is 0 atomic% or more, 20 atomic% or less, especially 0 atomic% or more, 10 atomic% or less, carbon is 0 atomic% or more, 20 atomic% or less, especially 0 atomic% or more, 10 atomic% or less, boron Is preferably 0 atom% or more and 20 atom% or less, particularly preferably 0 atom% or more and 10 atom% or less.
 或いは、上層遮光膜は、タンタル化合物又はケイ素化合物からなると好ましい。前記タンタル化合物は、タンタルと、窒素、ホウ素、ケイ素、酸素及び炭素から選ばれる1種以上とを含有すると好ましい。前記ケイ素化合物は、ケイ素を含有し、且つモリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウム、窒素、酸素、炭素から選ばれる1種以上とを含有すると好ましい。 Alternatively, the upper light shielding film is preferably made of a tantalum compound or a silicon compound. The tantalum compound preferably contains tantalum and one or more selected from nitrogen, boron, silicon, oxygen and carbon. The silicon compound preferably contains silicon and contains at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, nitrogen, oxygen, and carbon.
 下層遮光膜18,28は、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物であり、具体的にはルテニウム単体、又はルテニウムと、窒素、ホウ素、炭素及び酸素から選ばれる1種類以上の素材、ニオブ及びジルコニウムから選ばれる1種類以上の素材のどちらか、もしくは両方との化合物からなると好ましい。下層遮光膜18,28の膜厚は、2nm以上30nm以下、特に十分なエッチング耐性と遮光性を両立するために5nm以上20nm以下が好ましい。下層遮光膜18,28のエッチング加工は、酸素系ドライエッチング(O系)で行うことができ、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。また、下層遮光膜18,28は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有する。     The lower light-shielding films 18 and 28 are ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more, specifically, one or more kinds selected from ruthenium alone or ruthenium and nitrogen, boron, carbon, and oxygen. It is preferable that it consists of a compound of either of these materials, one or more materials selected from niobium and zirconium, or both. The film thickness of the lower light shielding films 18 and 28 is preferably 2 nm or more and 30 nm or less, particularly 5 nm or more and 20 nm or less in order to achieve both sufficient etching resistance and light shielding properties. Etching of the lower light shielding films 18 and 28 can be performed by oxygen-based dry etching (O-based), and in addition to oxygen gas, an inert gas such as argon gas or helium gas may be mixed as necessary. . The lower light shielding films 18 and 28 are resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based).
 また、前記エッチングマスク膜14、24は、クロム単体又は、クロムと、窒素、酸素及び炭素から選ばれる1種以上とを含有する単層膜、又はこれらの複数層膜もしくは傾斜膜である。エッチングマスク膜14の膜厚は、2nm以上30nm以下、特にエッチングマスク膜のドライエッチングの際のレジストダメージを低減し、レジストの薄膜化を実現するために、20nm以下が好ましい。また、エッチングマスク膜14は、反射防止層としての機能を持たせてもよい。この場合、露光波長に対する反射率を例えば45%以下、特に30%以下に抑えることが、露光の際に位相シフトマスクと投影露光面との間での多重反射を抑制する上で好ましい。さらに、位相シフトマスクブランクや位相シフトマスクの反射検査に用いる波長(例えば257nm)に対する反射率を例えば30%以下とすることが、欠陥を高精度で検出する上で好ましい。これら反射防止層としての機能を持たせた場合のエッチングマスク膜14の膜厚は、十分な反射防止効果を得るために5nm以上が好ましい。一方、エッチングマスク膜24の膜厚は、2nm以上、30nm以下、特にエッチングマスク膜のドライエッチングの際のレジストダメージを低減し、レジストの薄膜化を実現するために、15nm以下が好ましく、更に、成膜時のピンホールや、エッチング時や洗浄時での膜消失を防止するために、3nm以上が好ましい。 Further, the etching mask films 14 and 24 are a single chromium film, a single-layer film containing chromium and one or more selected from nitrogen, oxygen, and carbon, or a multilayer film or a gradient film thereof. The film thickness of the etching mask film 14 is preferably 2 nm or more and 30 nm or less, particularly 20 nm or less in order to reduce resist damage during dry etching of the etching mask film and to realize thinning of the resist. The etching mask film 14 may have a function as an antireflection layer. In this case, it is preferable to suppress the reflectance with respect to the exposure wavelength to, for example, 45% or less, particularly 30% or less in order to suppress multiple reflection between the phase shift mask and the projection exposure surface during exposure. Furthermore, it is preferable that the reflectance with respect to the wavelength (for example, 257 nm) used for the reflection inspection of the phase shift mask blank or the phase shift mask is, for example, 30% or less, in order to detect defects with high accuracy. In order to obtain a sufficient antireflection effect, the thickness of the etching mask film 14 in the case of providing the function as the antireflection layer is preferably 5 nm or more. On the other hand, the film thickness of the etching mask film 24 is preferably 2 nm or more and 30 nm or less, particularly 15 nm or less in order to reduce resist damage during dry etching of the etching mask film and realize thinning of the resist. In order to prevent pinholes during film formation and film disappearance during etching or cleaning, the thickness is preferably 3 nm or more.
 エッチングマスク膜14の組成は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)に対する耐性、酸素含有塩素系エッチング(Cl/O系)に対する加工性、反射防止層としての効果、そして各種薬液洗浄に対する耐性を実現するために、クロムが30原子%以上、100原子%以下、特に35原子%以上、50原子%以下、酸素が0原子%以上、60原子%以下、特に20原子%以上、60原子%以下、窒素が0原子%以上、50原子%以下、特に0原子%以上、30原子%以下、炭素が0原子%以上、30原子%以下、特に0原子%以上、20原子%以下であることが好ましい。 The composition of the etching mask film 14 is a resistance to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and processing for oxygen-containing chlorine-based etching (Cl / O-based). In order to realize properties, an effect as an antireflection layer, and resistance to various chemical cleaning, chromium is 30 atomic% or more and 100 atomic% or less, particularly 35 atomic% or more and 50 atomic% or less, and oxygen is 0 atomic% or more. 60 atom% or less, particularly 20 atom% or more, 60 atom% or less, nitrogen is 0 atom% or more, 50 atom% or less, particularly 0 atom% or more, 30 atom% or less, carbon is 0 atom% or more, 30 atom%. In the following, it is particularly preferably 0 atomic% or more and 20 atomic% or less.
 また、エッチングマスク膜24の組成は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)に対する耐性、酸素含有塩素系エッチング(Cl/O系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、クロムが30原子%以上、100原子%以下、特に50原子%以上、100原子%以下、酸素が0原子%以上、50原子%以下、特に0原子%以上、40原子%以下、窒素が0原子%以上、50原子%以下、特に0原子%以上、40原子%以下、炭素が0原子%以上、30原子%以下、特に0原子%以上、20原子%以下であることが好ましい。 The etching mask film 24 is composed of fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), oxygen-containing chlorine-based etching (Cl / O-based). In order to realize the workability of the resin and the resistance to various chemical cleaning, chromium is 30 atomic% or more and 100 atomic% or less, particularly 50 atomic% or more and 100 atomic% or less, and oxygen is 0 atomic% or more and 50 atomic% or less. In particular, 0 atom% or more and 40 atom% or less, nitrogen is 0 atom% or more and 50 atom% or less, particularly 0 atom% or more and 40 atom% or less, carbon is 0 atom% or more and 30 atom% or less, particularly 0 atom % Or more and 20 atomic% or less is preferable.
 続いて第5、第6の実施形態に係る位相シフトマスクブランクの説明を行う。第5、第6の実施形態に係る位相シフトマスクブランクは、遮光膜とエッチングマスク膜の間に反射防止膜の層が設けられていることが、第1~第4の実施形態に係る位相シフトマスクブランクと異なる。 Subsequently, phase shift mask blanks according to the fifth and sixth embodiments will be described. In the phase shift mask blanks according to the fifth and sixth embodiments, an antireflection film layer is provided between the light shielding film and the etching mask film, so that the phase shift masks according to the first to fourth embodiments are provided. Different from mask blank.
 図5は、第5の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図5の位相シフトマスクブランク10’は、露光波長に対して透明な基板11’と、基板11’上に成膜された位相シフト膜12’と、位相シフト膜12’上に成膜された遮光膜(上層遮光膜ともいう)13’と、遮光膜13’上に成膜された反射防止膜14’と、反射防止膜14’上に成膜されたエッチングマスク膜15’からなる。基板11’と位相シフト膜12’との間にエッチングストッパー層を有していない。この位相シフトマスクブランク10’を用いた位相シフトマスクでは、エッチングマスク膜15’が完全に除去されてマスク上に残らない。 FIG. 5 is a schematic sectional view showing a phase shift mask blank according to the fifth embodiment. The phase shift mask blank 10 ′ of FIG. 5 is formed on the substrate 11 ′ transparent to the exposure wavelength, the phase shift film 12 ′ formed on the substrate 11 ′, and the phase shift film 12 ′. A light shielding film (also referred to as an upper light shielding film) 13 ', an antireflection film 14' formed on the light shielding film 13 ', and an etching mask film 15' formed on the antireflection film 14 '. No etching stopper layer is provided between the substrate 11 'and the phase shift film 12'. In the phase shift mask using the phase shift mask blank 10 ', the etching mask film 15' is completely removed and does not remain on the mask.
 図6は、第6の実施形態に係る位相シフトマスクブランクを示す断面概略図である。図6の位相シフトマスクブランク10’は、露光波長に対して透明な基板11’と、基板11’上に成膜された位相シフト膜12’と、位相シフト膜12’上に成膜された下層遮光膜18’と、下層遮光膜18’上に成膜された上層遮光膜13’と、上層遮光膜13’上に成膜された反射防止膜14’と、反射防止膜14’上に成膜されたエッチングマスク膜15’からなる。基板11’と位相シフト膜12’との間にエッチングストッパー層を有していない。この位相シフトマスクブランク10’を用いた位相シフトマスクでは、エッチングマスク膜15’が完全に除去されてマスク上に残らない。 FIG. 6 is a schematic sectional view showing a phase shift mask blank according to the sixth embodiment. The phase shift mask blank 10 ′ of FIG. 6 was formed on the substrate 11 ′ transparent to the exposure wavelength, the phase shift film 12 ′ formed on the substrate 11 ′, and the phase shift film 12 ′. On the lower light shielding film 18 ′, the upper light shielding film 13 ′ formed on the lower light shielding film 18 ′, the antireflection film 14 ′ formed on the upper light shielding film 13 ′, and the antireflection film 14 ′. The etching mask film 15 ′ is formed. No etching stopper layer is provided between the substrate 11 'and the phase shift film 12'. In the phase shift mask using the phase shift mask blank 10 ', the etching mask film 15' is completely removed and does not remain on the mask.
 ここで、前記露光波長に対して透明な基板11’に対する特別な制限はなく、石英ガラスやCaFあるいはアルミノシリケートガラスなどが一般的である。 Here, there is no particular limitation on the substrate 11 ′ transparent to the exposure wavelength, and quartz glass, CaF 2, aluminosilicate glass, or the like is generally used.
 また、前記位相シフト膜12’は、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、具体的にはケイ素の酸化膜、窒化膜、酸窒化膜、もしくはケイ素および遷移金属の酸化膜、窒化膜、酸窒化膜の単層膜、又はこれらの複数層膜もしくは傾斜膜であり、組成と膜厚を適宜選択することで露光波長に対する透過率と位相差を調整させたものである。遷移金属としては、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムなどを用いることができるが、モリブデンが好ましい。 The phase shift film 12 ′ contains silicon and contains at least one selected from transition metals, nitrogen, oxygen and carbon. Specifically, a silicon oxide film, a nitride film, an oxynitride film, Or a silicon and transition metal oxide film, nitride film, single layer film of oxynitride film, or a multilayer film or a gradient film thereof, and the transmittance and phase difference with respect to the exposure wavelength by appropriately selecting the composition and film thickness Is adjusted. As the transition metal, molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, or the like can be used, but molybdenum is preferable.
 透過率の値は、最終的な位相シフトマスク完成時に基板の透過率に対して3%以上、100%未満であり、所望のウェハパターンに応じて最適な透過率を適宜選択することが可能であるが、透過率5%以上、40%以下が一般的である。位相差の値は、最終的な位相シフトマスク完成時に170度以上190度以下、特に175度以上180度以下が好ましい。基板11’は、フッ素系エッチング(F系)を用いる位相シフト膜12’のパターニング及び反射防止膜14’の除去のマスク製造工程の際に、最終的に5nmから20nm程度掘り込まれる。したがって、位相シフト膜12’では、基板の掘り込み量を考慮して、マスク完成時に所望する値より浅い位相差で成膜する必要がある。位相シフト膜の膜厚は、所望する透過率と位相差の組み合わせにより変化するが、例えば透過率6%、位相差177度の位相シフト膜を成膜する場合、膜厚は60nm以上80nm以下が好ましい。 The transmittance value is 3% or more and less than 100% with respect to the transmittance of the substrate when the final phase shift mask is completed, and it is possible to appropriately select the optimum transmittance according to the desired wafer pattern. However, the transmittance is generally 5% or more and 40% or less. The value of the phase difference is preferably 170 degrees or more and 190 degrees or less, particularly 175 degrees or more and 180 degrees or less when the final phase shift mask is completed. The substrate 11 ′ is finally dug by about 5 nm to 20 nm in the mask manufacturing process of patterning the phase shift film 12 ′ using fluorine-based etching (F system) and removing the antireflection film 14 ′. Therefore, the phase shift film 12 ′ needs to be formed with a phase difference shallower than a desired value when the mask is completed in consideration of the digging amount of the substrate. The film thickness of the phase shift film changes depending on the desired combination of transmittance and phase difference. For example, when a phase shift film having a transmittance of 6% and a phase difference of 177 degrees is formed, the film thickness should be 60 nm or more and 80 nm or less. preferable.
 位相シフト膜12’の組成は、所望の透過率と位相差の組み合わせにより変化するが、例えば透過率6%、位相差177度のケイ素とモリブデンの酸窒化膜を成膜する場合、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)に対する耐性、フッ素系エッチング(F系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、ケイ素が20原子%以上、60原子%以下、特に30原子%以上、50原子%以下、モリブデンが0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、酸素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、窒素が30原子%以上、80原子%以下、特に40原子%以上、70原子%以下であることが好ましい。 The composition of the phase shift film 12 ′ varies depending on a desired combination of transmittance and retardation. For example, when a silicon and molybdenum oxynitride film having a transmittance of 6% and a retardation of 177 degrees is formed, oxygen-containing chlorine is used. Resistant to chemical etching (Cl / O), non-oxygen-containing chlorine etching (Cl) and oxygen etching (O), processability to fluorine etching (F), and resistance to various chemical cleaning Therefore, silicon is 20 atom% or more and 60 atom% or less, particularly 30 atom% or more and 50 atom% or less, molybdenum is 0 atom% or more and 20 atom% or less, particularly 0 atom% or more and 10 atom% or less, oxygen Is 0 atom% or more and 20 atom% or less, particularly 0 atom% or more and 10 atom% or less, and nitrogen is 30 atom% or more and 80 atom% or less, particularly 40 atom% or more and 70 atom% or less. It is preferred.
 また、位相シフト膜を複数層膜又は傾斜膜とする場合、遮光膜の除去に適用する非酸素含有塩素系エッチング(Cl系)により強い耐性を持つ遷移金属の含有量が少ない又は含有しないケイ素化合物膜を最表面に形成することが好ましい。具体的には、SiOやSiONを位相シフト膜の最表面に形成することが好ましい。特に、下層にエッチングストッパー層が無い位相シフト膜12’において、仮に強い洗浄やエッチングマスク膜除去での強いエッチング条件を適用するなどして最表面のSiOやSiONがダメージを受けたとしても、組成が同等である基板も同時にダメージを受けるため、基板に対しての位相差や透過率の変動を抑制することが可能である。 In addition, when the phase shift film is a multi-layer film or an inclined film, a silicon compound with little or no transition metal content that has strong resistance to non-oxygen-containing chlorine-based etching (Cl-based) applied to the removal of the light-shielding film It is preferable to form a film on the outermost surface. Specifically, it is preferable to form SiO 2 or SiON on the outermost surface of the phase shift film. In particular, in the phase shift film 12 ′ having no etching stopper layer in the lower layer, even if strong etching conditions such as strong cleaning or etching mask film removal are applied, even if the outermost SiO 2 or SiON is damaged, Since substrates having the same composition are also damaged at the same time, it is possible to suppress fluctuations in phase difference and transmittance with respect to the substrate.
 また、前記遮光膜13’は、ケイ素を含有しないタンタル化合物からなり、窒素、ホウ素、酸素及び炭素から選ばれる1種以上を含有する単層膜、又はこれらの複数層膜もしくは傾斜膜であり、好ましくは窒化タンタルを主成分とする膜である。ケイ素を含有しないのは、非酸素含有塩素系エッチング(Cl系)で加工が困難なSiOやSiNが膜中に混成されることを防止するためである。遮光膜13’(下層遮光膜18’がある場合には、これも含む、以下同じ)の膜厚は、位相シフト膜の透過率により変化するが、反射防止膜及び遮光膜及び位相シフト膜を合わせた露光波長に対するOD値(光学濃度)が2.5以上、より好ましくは2.8以上になるように調整する。例えば、位相シフト膜の透過率が6%の場合、遮光膜13’の膜厚は10nm以上35nm以下、特に15nm以上30nm以下が好ましい。 Further, the light shielding film 13 ′ is made of a tantalum compound not containing silicon, and is a single layer film containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof. A film containing tantalum nitride as a main component is preferable. The reason why silicon is not contained is to prevent SiO 2 and SiN that are difficult to process by non-oxygen-containing chlorine-based etching (Cl-based) from being mixed in the film. The film thickness of the light-shielding film 13 ′ (including the lower-layer light-shielding film 18 ′, including the same, hereinafter the same) varies depending on the transmittance of the phase shift film, but the antireflection film, the light shielding film, and the phase shift film are different. The OD value (optical density) for the combined exposure wavelength is adjusted to 2.5 or more, more preferably 2.8 or more. For example, when the transmittance of the phase shift film is 6%, the thickness of the light shielding film 13 ′ is preferably 10 nm to 35 nm, and particularly preferably 15 nm to 30 nm.
 遮光膜13’の組成は、酸素含有塩素系エッチング(Cl/O系)に対する耐性、非酸素含有塩素系エッチング(Cl系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、タンタルが50原子%以上、100原子%以下、特に60原子%以上、90原子%以下、窒素が0原子%以上、70原子%以下、特に10原子%以上、60原子%以下、酸素が0原子%以上、10原子%以下、特に0原子%以上、5原子%以下、炭素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、ホウ素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下であることが好ましい。 The composition of the light shielding film 13 ′ is such that tantalum is used to realize resistance to oxygen-containing chlorine-based etching (Cl / O system), processability to non-oxygen-containing chlorine-based etching (Cl system), and resistance to various chemical cleaning. 50 atom% or more, 100 atom% or less, particularly 60 atom% or more, 90 atom% or less, nitrogen is 0 atom% or more, 70 atom% or less, particularly 10 atom% or more, 60 atom% or less, oxygen is 0 atom% or more 10 atom% or less, particularly 0 atom% or more, 5 atom% or less, carbon 0 atom% or more, 20 atom% or less, especially 0 atom% or more, 10 atom% or less, boron 0 atom% or more, 20 atom% In the following, it is particularly preferably 0 atomic% or more and 10 atomic% or less.
 下層遮光膜18’は、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物であり、具体的にはルテニウム単体、又はルテニウムと、窒素、ホウ素、炭素及び酸素から選ばれる1種類以上の素材、ニオブ及びジルコニウムから選ばれる1種類以上の素材のどちらか、もしくは両方との化合物からなると好ましい。下層遮光膜18,28の膜厚は、2nm以上、30nm以下、特に十分なエッチング耐性と遮光性を両立するために5nm以上、20nm以下が好ましい。その成膜は、上記のルテニウム単体又はルテニウム化合物をターゲットとして、イオンスパッタ装置を用いたスパッタ処理により行う。下層遮光膜18’のエッチング加工は、酸素系ドライエッチング(O系)で行うことができ、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。また、下層遮光膜18’は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有する。 The lower light-shielding film 18 ′ is ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more. Specifically, the ruthenium alone or ruthenium and one or more kinds selected from nitrogen, boron, carbon, and oxygen. It is preferable that it consists of a compound with one or both of one or more materials selected from the materials, niobium and zirconium. The film thickness of the lower light shielding films 18 and 28 is preferably 2 nm or more and 30 nm or less, and particularly preferably 5 nm or more and 20 nm or less in order to achieve both sufficient etching resistance and light shielding properties. The film formation is performed by sputtering using an ion sputtering apparatus with the ruthenium simple substance or ruthenium compound as a target. Etching of the lower light shielding film 18 ′ can be performed by oxygen-based dry etching (O-based), and an inert gas such as argon gas or helium gas may be mixed in addition to the oxygen gas as necessary. Further, the lower light shielding film 18 ′ is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based).
 また、前記反射防止膜14’は、ケイ素を含有しないタンタル化合物からなり、窒素、ホウ素、酸素及び炭素から選ばれる1種以上を含有する単層膜、又はこれらの複数層膜もしくは傾斜膜であり、好ましくは酸化タンタルを主成分とする膜である。したがって、遮光膜のスパッタ成膜とターゲットを変えずに、同じ成膜チャンバーで連続して成膜することができる。反射防止の機能としては、露光波長に対する反射率を例えば45%以下、特に30%以下に抑えることが、露光の際に位相シフトマスクと投影露光面との間での多重反射を抑制する上で好ましい。さらに、位相シフトマスクブランクや位相シフトマスクの反射検査に用いる波長(例えば257nm)に対する反射率を例えば30%以下とすることが、欠陥を高精度で検出する上で好ましい。反射防止膜14’の膜厚は、2nm以上20nm以下、特に、十分な反射防止効果を得るために、15nm以下が好ましい。更に、成膜時のピンホールや、エッチング時や洗浄時での膜消失を防止するために、3nm以上が好ましい。 The antireflection film 14 ′ is a single layer film made of a tantalum compound not containing silicon and containing one or more selected from nitrogen, boron, oxygen and carbon, or a multilayer film or a gradient film thereof. Preferably, it is a film mainly composed of tantalum oxide. Therefore, it is possible to continuously form films in the same film formation chamber without changing the sputtering film formation of the light shielding film and the target. As an antireflection function, the reflectance with respect to the exposure wavelength is suppressed to 45% or less, particularly 30% or less, in order to suppress multiple reflections between the phase shift mask and the projection exposure surface during exposure. preferable. Furthermore, it is preferable that the reflectance with respect to the wavelength (for example, 257 nm) used for the reflection inspection of the phase shift mask blank or the phase shift mask is, for example, 30% or less, in order to detect defects with high accuracy. The film thickness of the antireflection film 14 ′ is preferably 2 nm or more and 20 nm or less, and particularly 15 nm or less in order to obtain a sufficient antireflection effect. Furthermore, 3 nm or more is preferable in order to prevent pinholes during film formation and film disappearance during etching and cleaning.
 反射防止膜14’の組成は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)に対する耐性、フッ素系エッチング(F系)に対する加工性、反射防止の効果、そして各種薬液洗浄に対する耐性を実現するために、タンタルが10原子%以上、70原子%以下、特に20原子%以上、60原子%以下、窒素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、酸素が40原子%以上、90原子%以下、特に50原子%以上、80原子%以下、炭素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下、ホウ素が0原子%以上、20原子%以下、特に0原子%以上、10原子%以下であることが好ましい。 The composition of the antireflection film 14 ′ is such that it has resistance to oxygen-containing chlorine-based etching (Cl / O system) and non-oxygen-containing chlorine-based etching (Cl system), processability to fluorine-based etching (F system), antireflection effect, And, in order to realize resistance to various chemical cleaning, tantalum is 10 atomic% or more and 70 atomic% or less, particularly 20 atomic% or more and 60 atomic% or less, nitrogen is 0 atomic% or more, 20 atomic% or less, especially 0 atom. % Or more, 10 atom% or less, oxygen 40 atom% or more, 90 atom% or less, especially 50 atom% or more, 80 atom% or less, carbon 0 atom% or more, 20 atom% or less, especially 0 atom% or more, 10 It is preferable that the atomic% or less and boron be 0 atomic% or more and 20 atomic% or less, particularly 0 atomic% or more and 10 atomic% or less.
 また、前記エッチングマスク膜15’は、クロム単体又は、クロムと、窒素、酸素及び炭素から選ばれる1種以上とを含有する単層膜、又はこれらの複数層膜もしくは傾斜膜である。エッチングマスク膜15’の膜厚は、2nm以上30nm以下、特にエッチングマスク膜のドライエッチングの際のレジストダメージを低減し、レジストの薄膜化を実現するために、15nm以下が好ましい。更に、成膜時のピンホールや、エッチング時や洗浄時での膜消失を防止するために、3nm以上が好ましい。 Further, the etching mask film 15 'is a single layer film containing chromium alone, chromium and at least one selected from nitrogen, oxygen and carbon, or a multilayer film or a gradient film thereof. The film thickness of the etching mask film 15 ′ is preferably 2 nm or more and 30 nm or less, particularly 15 nm or less in order to reduce resist damage during dry etching of the etching mask film and to realize thinning of the resist. Furthermore, 3 nm or more is preferable in order to prevent pinholes during film formation and film disappearance during etching and cleaning.
 エッチングマスク膜15’の組成は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)に対する耐性、酸素含有塩素系エッチング(Cl/O系)に対する加工性、そして各種薬液洗浄に対する耐性を実現するために、クロムが30原子%以上、100原子%以下、特に50原子%以上、100原子%以下、酸素が0原子%以上、50原子%以下、特に0原子%以上、40原子%以下、窒素が0原子%以上、50原子%以下、特に0原子%以上、40原子%以下、炭素が0原子%以上、30原子%以下、特に0原子%以上、20原子%以下であることが好ましい。 The composition of the etching mask film 15 ′ is resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based) and oxygen-based etching (O-based), and to oxygen-containing chlorine-based etching (Cl / O-based). In order to realize processability and resistance to chemical cleaning, chromium is 30 atomic% to 100 atomic%, particularly 50 atomic% to 100 atomic%, oxygen is 0 atomic% to 50 atomic%, In particular, 0 atom% or more and 40 atom% or less, nitrogen is 0 atom% or more and 50 atom% or less, especially 0 atom% or more and 40 atom% or less, carbon is 0 atom% or more and 30 atom% or less, especially 0 atom%. As mentioned above, it is preferable that it is 20 atomic% or less.
 上述した各実施形態に係る位相シフトマスクブランクの、位相シフト膜、遮光膜、反射防止膜、エッチングマスク膜は、いずれも公知の方法により成膜することができる。最も容易に均質性に優れた膜を得る方法としては、スパッタ成膜法が好ましく挙げられるが、スパッタ成膜法に限定する必要はない。 The phase shift film, the light shielding film, the antireflection film, and the etching mask film of the phase shift mask blank according to each embodiment described above can be formed by any known method. The most preferable method for obtaining a film having excellent homogeneity is a sputter film formation method, but it is not necessary to limit to the sputter film formation method.
 ターゲットとスパッタガスは膜組成によって選択される。例えば、クロムを含有する膜の成膜方法としては、クロムを含有するターゲットを用い、アルゴンガス等の不活性ガスのみ、酸素等の反応性ガスのみ、又は不活性ガスと反応性ガスとの混合ガス中で反応性スパッタリングを行う方法を挙げることができる。スパッタガスの流量は膜特性に合わせて調整すればよく、成膜中一定としてもよいし、酸素量や窒素量を膜の厚み方向に変化させたいときは、目的とする組成に応じて変化させてもよい。また、ターゲットに対する印加電力、ターゲットと基板の距離、成膜チャンバー内の圧力を調整しても良い。また、例えば、ケイ素と金属を含有する膜の成膜では、ターゲットとして、ケイ素と金属の含有比を調整したターゲットを単独で使用してもよいし、ケイ素ターゲット、金属ターゲット、及びケイ素と金属とからなるターゲットから複数のターゲットを適宜選択しても良い。 The target and sputtering gas are selected according to the film composition. For example, as a method for forming a film containing chromium, a target containing chromium is used, and only an inert gas such as argon gas, only a reactive gas such as oxygen, or a mixture of an inert gas and a reactive gas is used. The method of performing reactive sputtering in gas can be mentioned. The flow rate of the sputtering gas may be adjusted according to the film characteristics, and may be constant during film formation. When the amount of oxygen or nitrogen is to be changed in the thickness direction of the film, it is changed according to the target composition. May be. Further, the power applied to the target, the distance between the target and the substrate, and the pressure in the deposition chamber may be adjusted. In addition, for example, in the formation of a film containing silicon and metal, a target in which the content ratio of silicon and metal is adjusted may be used alone, or a silicon target, a metal target, and silicon and metal A plurality of targets may be appropriately selected from the targets consisting of
 位相シフトマスクは、上述した各実施形態に係る位相シフトマスクブランクが有する各々の膜を、所望のパターンにパターニング又は除去することにより得られる。 The phase shift mask can be obtained by patterning or removing each film of the phase shift mask blank according to each embodiment described above into a desired pattern.
 ここで、基板上にエッチングストッパー層を設けないことによる効果について説明する。図7は、エッチングストッパー層を設けた比較例1に係わる位相シフトマスクブランクの有効エリアを拡大した模式図である。図7において、基板3上にエッチングストッパー層2が成膜され、エッチングストッパー層2上に位相シフト膜1が成膜される。 Here, the effect of not providing the etching stopper layer on the substrate will be described. FIG. 7 is an enlarged schematic view of the effective area of the phase shift mask blank according to Comparative Example 1 provided with the etching stopper layer. In FIG. 7, the etching stopper layer 2 is formed on the substrate 3, and the phase shift film 1 is formed on the etching stopper layer 2.
 エッチングストッパー層2は、例えばケイ素とアルミニウムを含む混合膜で形成することができるが、図7に示すように、膜内に欠陥Cが存在する場合がある。この場合、露光光DUVが通過する領域に欠陥Cが存在すると、エッチングストッパー層2を通過する露光光の一部が妨げられ、高精度な露光を行えない虞れがある。 The etching stopper layer 2 can be formed of, for example, a mixed film containing silicon and aluminum, but there may be a defect C in the film as shown in FIG. In this case, if the defect C exists in the region through which the exposure light DUV passes, a part of the exposure light that passes through the etching stopper layer 2 is hindered, and there is a possibility that high-precision exposure cannot be performed.
 同様に、基板3の表面に、欠損Aや隆起Bなどの不具合が生じていた場合も、露光光DUVの通過を妨げる虞れがある。このような不具合は、基板3の表面が露出していれば、欠損Aは透明な素材で埋め、また隆起Bは削除するなどの修正処理を行うことができる。しかしながら、基板3上にエッチングストッパー層2を形成していた場合、上記の修正は不可能であるため、このような不具合が生じた位相シフトマスクブランクを廃棄しなくてはならず、歩留まりが悪化する。これに対し、本実施形態のようにエッチングストッパー層を設けなければ、上述した不具合は生じない。 Similarly, if a defect such as a defect A or a bulge B occurs on the surface of the substrate 3, there is a possibility that the passage of the exposure light DUV may be hindered. Such a problem can be corrected if the surface of the substrate 3 is exposed, such that the defect A is filled with a transparent material and the ridge B is deleted. However, when the etching stopper layer 2 is formed on the substrate 3, the above-described correction is impossible. Therefore, the phase shift mask blank in which such a defect has occurred must be discarded, and the yield deteriorates. To do. On the other hand, if the etching stopper layer is not provided as in this embodiment, the above-described problems do not occur.
 次に、下層遮光膜としてルテニウム単体又はルテニウム化合物を用いる効果について説明する。第2,4,6の実施形態において、位相シフト膜と上層遮光膜との間に、下層遮光膜を設けている。このため、下層遮光膜の分だけ上層遮光膜の膜厚を薄くできる。たとえば、上層遮光膜を、タンタルを含む化合物で形成した場合、洗浄、エッチング、自然酸化等により生じる酸化により被膜が硬くなるため、除去に比較的長く時間がかかる。これに対しルテニウム単体又はルテニウム化合物を用いることで、処理時間をより短くすることができる。なお、最終的に不要な下層遮光膜は、上層遮光膜と共にエッチング除去されるので、例えばフッ素系ガスによる位相シフト膜の修正を妨げないという効果もある。 Next, the effect of using ruthenium alone or a ruthenium compound as the lower light shielding film will be described. In the second, fourth, and sixth embodiments, a lower light shielding film is provided between the phase shift film and the upper light shielding film. For this reason, the thickness of the upper light shielding film can be reduced by the amount of the lower light shielding film. For example, when the upper light-shielding film is formed of a compound containing tantalum, the film becomes hard due to oxidation caused by cleaning, etching, natural oxidation, etc., and therefore it takes a relatively long time to remove. On the other hand, processing time can be shortened by using a ruthenium simple substance or a ruthenium compound. Since the unnecessary lower light shielding film is removed by etching together with the upper light shielding film, there is also an effect that the correction of the phase shift film with, for example, a fluorine-based gas is not hindered.
 図8は、位相シフト膜を挟んでエッチングストッパー層を設けた比較例2に係わる位相シフトマスクの有効エリアを拡大した模式図である。図8において、基板3上に下層エッチングストッパー層2が成膜され、下層エッチングストッパー層2上に位相シフト膜1が成膜され、位相シフト膜1上に上層エッチングストッパー層2が成膜される。ここで、2つのエッチングストッパー層2は、例えばアルミニウム化合物を用いてなるものとする。 FIG. 8 is an enlarged schematic view of the effective area of the phase shift mask according to Comparative Example 2 in which the etching stopper layer is provided with the phase shift film interposed therebetween. In FIG. 8, the lower etching stopper layer 2 is formed on the substrate 3, the phase shift film 1 is formed on the lower etching stopper layer 2, and the upper etching stopper layer 2 is formed on the phase shift film 1. . Here, the two etching stopper layers 2 are made of, for example, an aluminum compound.
 図8において、加工処理が完了した位相シフトマスクを検査したところ、例えば微細な異物の存在等に起因して、本来除去されるべき位置に欠陥Dが生じたものとする。この場合、修正加工によって欠陥Dを削除することが求められ、通常はフッ素ガスアシストによる電子線の照射によりその修正を行っている。しかしながら、図8の構成では、電子線が照射される位置に上層エッチングストッパー層2が成膜されているために、その下方の位相シフト膜1を削除することができない。したがって、加工が困難になるので、歩留まりの悪化を招くこととなる。 In FIG. 8, when the phase shift mask that has been processed is inspected, it is assumed that, for example, a defect D is generated at a position that should be removed due to the presence of fine foreign matters. In this case, it is required to delete the defect D by correction processing, and the correction is usually performed by irradiation of an electron beam with fluorine gas assist. However, in the configuration of FIG. 8, since the upper etching stopper layer 2 is formed at a position where the electron beam is irradiated, the phase shift film 1 below the upper etching stopper layer 2 cannot be deleted. Therefore, processing becomes difficult, leading to a deterioration in yield.
 これに対し、図9に示す本実施形態の位相シフトマスクの場合、下層遮光膜は最終的に除去され、基板3上には位相シフト膜1のみが残るため、フッ素ガスアシストによる電子線EVの照射を妨げないから、欠陥Dの除去を容易に行うことができる。 On the other hand, in the case of the phase shift mask of the present embodiment shown in FIG. 9, the lower light shielding film is finally removed and only the phase shift film 1 remains on the substrate 3. Since the irradiation is not hindered, the defect D can be easily removed.
 本実施形態においては、タンタル化合物を用いた上層遮光膜のエッチングストッパー層として、ルテニウム単体又はルテニウム化合物を用いた下層遮光膜を用いている。したがって、エッチング耐性が異なるため、上層遮光膜の修正のストッパー層として下層遮光膜を使用できる。また、上層遮光膜と共に下層遮光膜により遮光効果を発揮できる。すなわち、下層遮光膜は、遮光機能とエッチング抑制機能の双方の役割を持つのである。     In this embodiment, a ruthenium simple substance or a lower light shielding film using a ruthenium compound is used as the etching stopper layer of the upper light shielding film using a tantalum compound. Therefore, since the etching resistance is different, the lower light shielding film can be used as a stopper layer for correcting the upper light shielding film. Further, the light shielding effect can be exhibited by the lower light shielding film together with the upper light shielding film. That is, the lower light shielding film has both the light shielding function and the etching suppression function.
 続いて、上で述べた第1~第6の実施形態に係る位相シフトマスクブランクから作製される位相シフトマスク及び位相シフトマスクの製造方法の好適な実施形態を挙げる。 Subsequently, preferred embodiments of a phase shift mask manufactured from the phase shift mask blank according to the first to sixth embodiments described above and a method of manufacturing the phase shift mask will be described.
 図10は、図1に示す位相シフトマスクブランク10を用いた位相シフトマスク100の製造方法を順に示す断面概略図である。既に説明した符号で示す部材は、図1と同じものである。図10(a)は、エッチングマスク膜14上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン15を形成する工程を示す。図10(b)は、レジストパターン15に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜14をパターニングする工程を示す。図10(c)は、残存したレジストパターン15を剥離除去した後、洗浄する工程を示す。図10(d)は、エッチングマスク膜14のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により遮光膜13をパターニングする工程を示す。 FIG. 10 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 100 using the phase shift mask blank 10 shown in FIG. The members indicated by the reference numerals already described are the same as those in FIG. FIG. 10A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing. FIG. 10B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 10C shows a process of cleaning after removing the remaining resist pattern 15. FIG. 10D shows a process of patterning the light shielding film 13 along the pattern of the etching mask film 14 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). Indicates.
 図10(e)は、エッチングマスク膜14及び遮光膜13のパターンに沿って、フッ素系ドライエッチング(F系)により位相シフト膜12をパターニングする工程を示す。図10(f)は、第2のレジストパターン16を新たに形成する工程を示す。図10(g)は、第2のレジストパターン16に覆われていない領域のエッチングマスク膜14を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図10(h)は、第2のレジストパターン16に覆われていない領域の遮光膜13を非酸素含有塩素系ドライエッチング(Cl系)又は非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方により除去する工程を示す。図10(i)は、残存した第2のレジストパターン16を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク100が作製される。 FIG. 10E shows a step of patterning the phase shift film 12 by fluorine-based dry etching (F system) along the pattern of the etching mask film 14 and the light shielding film 13. FIG. 10F shows a process of newly forming the second resist pattern 16. FIG. 10G shows a step of removing the etching mask film 14 in a region not covered with the second resist pattern 16 by oxygen-containing chlorine-based dry etching (Cl / O-based). FIG. 10H shows a non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based film in a region not covered with the second resist pattern 16. The process of removing by both etching (F system) is shown. FIG. 10I shows a process of removing the remaining second resist pattern 16 after removing it. By executing the steps described above, the phase shift mask 100 is manufactured.
 この位相シフトマスク100では、エッチングマスク膜14が一部除去されずにマスク上に残る。また、図10(i)において、符号101で示される領域は、位相シフトマスク100上に形成される回路パターンの配置される領域を表し(以下ではこの領域を「有効エリア101」と呼ぶ)、一方符号102で示される領域は、回路パターンの配置される有効エリア101を取り囲むようにパターンが配置された領域で、以下ではこの領域のことを「外周部102」と呼ぶ。なお、有効エリアと外周部の定義は、以下の図11~図15で説明する位相シフトマスクにおいても同じとする。なお、図10で説明した位相シフトマスク100の例では、有効エリア101内に形成されているパターンは基板11と位相シフト膜12のみから成り、遮光膜13とエッチングマスク膜14も積層されているパターンは外周部102のみに存在する。ただし別の実施形態として、有効エリア101内に、基板11と位相シフト膜12と遮光膜13とエッチングマスク膜14が積層されたパターンが形成されてもよい。 In this phase shift mask 100, the etching mask film 14 remains on the mask without being partially removed. Further, in FIG. 10I, an area denoted by reference numeral 101 represents an area where a circuit pattern formed on the phase shift mask 100 is arranged (hereinafter, this area is referred to as “effective area 101”). On the other hand, an area denoted by reference numeral 102 is an area where a pattern is arranged so as to surround an effective area 101 where a circuit pattern is arranged. Hereinafter, this area is referred to as an “outer peripheral portion 102”. The definition of the effective area and the outer peripheral portion is the same in the phase shift mask described with reference to FIGS. 11 to 15 below. In the example of the phase shift mask 100 described with reference to FIG. 10, the pattern formed in the effective area 101 includes only the substrate 11 and the phase shift film 12, and the light shielding film 13 and the etching mask film 14 are also laminated. The pattern exists only on the outer peripheral portion 102. However, as another embodiment, a pattern in which the substrate 11, the phase shift film 12, the light shielding film 13, and the etching mask film 14 are stacked may be formed in the effective area 101.
 図11は、図2に示す位相シフトマスクブランク10を用いた位相シフトマスク100の製造方法を順に示す断面概略図である。既に説明した符号で示す部材は、図2と同じものである。図11(a)は、エッチングマスク膜14上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン15を形成する工程を示す。図11(b)は、レジストパターン15に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜14をパターニングする工程を示す。図11(c)は、残存したレジストパターン15を剥離除去した後、洗浄する工程を示す。図11(d)は、エッチングマスク膜14のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により上層遮光膜13をパターニングする工程を示す。図11(e)は、エッチングマスク膜14及び上層遮光膜13のパターンに沿って、酸素系エッチング(O系)により下層遮光膜18をエッチングする工程を示す。 FIG. 11 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 100 using the phase shift mask blank 10 shown in FIG. The members indicated by the reference numerals already described are the same as those in FIG. FIG. 11A shows a process of forming a resist pattern 15 by applying a resist film on the etching mask film 14, performing drawing, and then performing development processing. FIG. 11B shows a process of patterning the etching mask film 14 along the resist pattern 15 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 11C shows a process of removing the remaining resist pattern 15 after removing it. In FIG. 11D, the upper light shielding film 13 is patterned along the pattern of the etching mask film 14 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). A process is shown. FIG. 11E shows a process of etching the lower light shielding film 18 by oxygen-based etching (O-based) along the pattern of the etching mask film 14 and the upper light shielding film 13.
 図11(f)は、フッ素系ドライエッチング(F系)により位相シフト膜12をパターニングする工程を示す。図11(g)は、第2のレジストパターン16を新たに形成する工程を示す。図11(h)は、第2のレジストパターン16に覆われていない領域のエッチングマスク膜14を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図11(i)は、第2のレジストパターン16に覆われていない領域の上層遮光膜13を非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により除去する工程を示す。図11(j)は、第2のレジストパターン16に覆われていない領域の下層遮光膜18を酸素系エッチング(O系)により除去する工程を示す。図11(k)は、残存した第2のレジストパターン16を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク100が作製される。 FIG. 11F shows a process of patterning the phase shift film 12 by fluorine dry etching (F system). FIG. 11G shows a process of newly forming the second resist pattern 16. FIG. 11H shows a step of removing the etching mask film 14 in a region not covered with the second resist pattern 16 by oxygen-containing chlorine-based dry etching (Cl / O-based). FIG. 11I shows that the upper light shielding film 13 in a region not covered with the second resist pattern 16 is both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based). The process of removing by one side is shown. FIG. 11J shows a step of removing the lower light shielding film 18 in a region not covered with the second resist pattern 16 by oxygen-based etching (O-based). FIG. 11K shows a process of removing the remaining second resist pattern 16 after removing it. By executing the steps described above, the phase shift mask 100 is manufactured.
 この位相シフトマスク100では、エッチングマスク膜14が一部除去されずにマスク上に残る。また、図11(k)において、符号101で示される領域は有効エリアを表し、符号102で示される領域は外周部を表している。図11(k)に示された位相シフトマスク100の例では、有効エリア101内に形成されているパターンは基板11と位相シフト膜12のみから形成され、上層遮光膜13、下層遮光膜18及びエッチングマスク膜14が積層されているパターンは外周部102のみに存在する。ただし別の実施形態として、有効エリア101内に、基板11と位相シフト膜12と上層遮光膜13と下層遮光膜18及びエッチングマスク膜14が積層されたパターンが形成されてもよい。 In this phase shift mask 100, the etching mask film 14 remains on the mask without being partially removed. Further, in FIG. 11 (k), an area indicated by reference numeral 101 represents an effective area, and an area indicated by reference numeral 102 represents an outer peripheral portion. In the example of the phase shift mask 100 shown in FIG. 11 (k), the pattern formed in the effective area 101 is formed only of the substrate 11 and the phase shift film 12, and the upper light shielding film 13, the lower light shielding film 18, and The pattern in which the etching mask film 14 is laminated exists only in the outer peripheral portion 102. However, as another embodiment, a pattern in which the substrate 11, the phase shift film 12, the upper light shielding film 13, the lower light shielding film 18, and the etching mask film 14 are stacked may be formed in the effective area 101.
 次に、図12は、図3に示す位相シフトマスクブランク20を用いた位相シフトマスク200の製造方法を順に示す断面概略図である。既に説明した符号で示す部材は、図3と同じものである。図12(a)は、エッチングマスク膜24上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン25を形成する工程を示す。図12(b)は、レジストパターン25に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜24をパターニングする工程を示す。図12(c)は、残存したレジストパターン25を剥離除去した後、洗浄する工程を示す。図12(d)は、エッチングマスク膜24のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により遮光膜23をパターニングする工程を示す。 Next, FIG. 12 is a schematic cross-sectional view sequentially showing a method of manufacturing the phase shift mask 200 using the phase shift mask blank 20 shown in FIG. The members denoted by the reference numerals already described are the same as those in FIG. FIG. 12A shows a process of forming a resist pattern 25 by applying a resist film on the etching mask film 24, performing drawing, and then performing development processing. FIG. 12B shows a process of patterning the etching mask film 24 along the resist pattern 25 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 12C shows a process of removing the remaining resist pattern 25 after removing it. 12D shows a step of patterning the light shielding film 23 along the pattern of the etching mask film 24 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). Indicates.
 図12(e)は、エッチングマスク膜24及び遮光膜23のパターンに沿って、フッ素系ドライエッチング(F系)により位相シフト膜22をパターニングする工程を示す。図12(f)は、エッチングマスク膜24を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図12(g)は、第2のレジストパターン26を新たに形成する工程を示す。図12(h)は、第2のレジストパターン26に覆われていない領域の遮光膜23を非酸素含有塩素系ドライエッチング(Cl系)又は非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方により除去する工程を示す。図12(i)は、残存した第2のレジストパターン26を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク200が作製される。 FIG. 12E shows a process of patterning the phase shift film 22 by fluorine-based dry etching (F system) along the pattern of the etching mask film 24 and the light shielding film 23. FIG. 12F shows a process of removing the etching mask film 24 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 12G shows a process of newly forming the second resist pattern 26. FIG. 12H shows a non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based film in a region not covered with the second resist pattern 26. The process of removing by both etching (F system) is shown. FIG. 12I shows a process of removing the remaining second resist pattern 26 and then cleaning it. By executing the steps described above, the phase shift mask 200 is manufactured.
 この位相シフトマスク200では、エッチングマスク膜24が完全に除去されてマスク上に残らない。また、図12(i)において、符号201で示される領域は有効エリアを表し、符号202で示される領域は外周部を表している。図12(i)に示された位相シフトマスク200の例では、有効エリア201内に形成されているパターンは基板21と位相シフト膜22のみから形成され、遮光膜23も積層されているパターンは外周部202のみに存在する。ただし別の実施形態として、有効エリア201内に、基板21と位相シフト膜22と遮光膜23が積層されたパターンが形成されてもよい。 In this phase shift mask 200, the etching mask film 24 is completely removed and does not remain on the mask. In FIG. 12 (i), an area indicated by reference numeral 201 represents an effective area, and an area indicated by reference numeral 202 represents an outer peripheral portion. In the example of the phase shift mask 200 shown in FIG. 12I, the pattern formed in the effective area 201 is formed only from the substrate 21 and the phase shift film 22, and the pattern in which the light shielding film 23 is also laminated is It exists only in the outer periphery 202. However, as another embodiment, a pattern in which the substrate 21, the phase shift film 22, and the light shielding film 23 are stacked may be formed in the effective area 201.
 次に、図13は、図4に示す位相シフトマスクブランク20を用いた位相シフトマスク200の製造方法を順に示す断面概略図である。既に説明した符号で示す部材は、図4と同じものである。図13(a)は、エッチングマスク膜24上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン25を形成する工程を示す。図13(b)は、レジストパターン25に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜24をパターニングする工程を示す。図13(c)は、残存したレジストパターン25を剥離除去した後、洗浄する工程を示す。図13(d)は、エッチングマスク膜24のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により上層遮光膜23をパターニングする工程を示す。図13(e)は、エッチングマスク膜24及び上層遮光膜23のパターンに沿って、酸素系エッチング(O系)により下層遮光膜28をエッチングする工程を示す。 Next, FIG. 13 is a schematic cross-sectional view sequentially illustrating a method of manufacturing the phase shift mask 200 using the phase shift mask blank 20 shown in FIG. The members indicated by the reference numerals already described are the same as those in FIG. FIG. 13A shows a process of forming a resist pattern 25 by applying a resist film on the etching mask film 24, performing drawing, and then performing development processing. FIG. 13B shows a process of patterning the etching mask film 24 along the resist pattern 25 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 13C shows a process of removing the remaining resist pattern 25 after removing it. In FIG. 13D, the upper light shielding film 23 is patterned along the pattern of the etching mask film 24 by non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based). A process is shown. FIG. 13E shows a process of etching the lower light-shielding film 28 by oxygen-based etching (O-based) along the pattern of the etching mask film 24 and the upper light-shielding film 23.
 図13(f)は、エッチングマスク膜24及び遮光膜23と下層遮光膜28のパターンに沿って、フッ素系ドライエッチング(F系)により位相シフト膜22をパターニングする工程を示す。図13(g)は、エッチングマスク膜24を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図13(h)は、第2のレジストパターン26を新たに形成する工程を示す。図13(i)は、第2のレジストパターン26に覆われていない領域の遮光膜23を非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により除去する工程を示す。図13(j)は、第2のレジストパターン26に覆われていない領域の下層遮光膜28を酸素系エッチング(O系)により除去する工程を示す。図13(k)は、残存した第2のレジストパターン26を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク200が作製される。 FIG. 13F shows a step of patterning the phase shift film 22 by fluorine-based dry etching (F system) along the pattern of the etching mask film 24 and the light shielding film 23 and the lower light shielding film 28. FIG. 13G shows a process of removing the etching mask film 24 by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 13H shows a process of newly forming the second resist pattern 26. FIG. 13I shows that the light shielding film 23 in a region not covered with the second resist pattern 26 is both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based), or one of them. The process of removing is shown. FIG. 13J shows a step of removing the lower light shielding film 28 in a region not covered with the second resist pattern 26 by oxygen-based etching (O-based). FIG. 13K shows a process of removing the remaining second resist pattern 26 and then cleaning it. By executing the steps described above, the phase shift mask 200 is manufactured.
 この位相シフトマスク200では、エッチングマスク膜24が完全に除去されてマスク上に残らない。また、図13(k)において、符号201で示される領域は有効エリアを表し、符号202で示される領域は外周部を表している。図13(k)に示された位相シフトマスク200の例では、有効エリア201内に形成されているパターンは基板21と位相シフト膜22のみから形成され、上層遮光膜23及び下層遮光膜28も積層されているパターンは外周部202のみに存在する。ただし別の実施形態として、有効エリア201内に、基板21と位相シフト膜22と上層遮光膜23及び下層遮光膜28が積層されたパターンが形成されてもよい。 In this phase shift mask 200, the etching mask film 24 is completely removed and does not remain on the mask. In FIG. 13 (k), an area indicated by reference numeral 201 represents an effective area, and an area indicated by reference numeral 202 represents an outer peripheral portion. In the example of the phase shift mask 200 shown in FIG. 13K, the pattern formed in the effective area 201 is formed only from the substrate 21 and the phase shift film 22, and the upper light shielding film 23 and the lower light shielding film 28 are also formed. The stacked pattern exists only in the outer peripheral portion 202. However, as another embodiment, a pattern in which the substrate 21, the phase shift film 22, the upper light shielding film 23, and the lower light shielding film 28 are stacked may be formed in the effective area 201.
 図10(a)、図11(a)、図12(a)、及び図13(a)の工程において、レジスト膜の材料としては、ポジ型レジストとネガ型レジストのいずれが用いられても良いが、高精度パターンの形成を可能とする電子ビーム描画用の化学増幅型レジストを用いることが好ましい。レジスト膜の膜厚は、例えば50nm以上、200nm以下の範囲である。特に、微細なパターン形成が求められる位相シフトマスクを作製する場合、パターン倒れを防止する上で、レジストパターンのアスペクト比が大きくならないようにレジスト膜を薄膜化することが必要であり、150nm以下の膜厚が好ましい。一方、レジスト膜の膜厚の下限は用いるレジスト材料のエッチング耐性などの条件を総合的に考慮して決定され、60nm以上が好ましい。レジスト膜として電子ビーム描画用の化学増幅型のものを使用する場合、描画の際の電子ビームのエネルギー密度は10から100μC/cmの範囲であり、この描画の後に加熱処理及び現像処理を施してレジストパターンを得る。 In the steps of FIGS. 10A, 11A, 12A, and 13A, either a positive resist or a negative resist may be used as the resist film material. However, it is preferable to use a chemically amplified resist for electron beam drawing that enables formation of a high-precision pattern. The thickness of the resist film is, for example, in the range of not less than 50 nm and not more than 200 nm. In particular, when producing a phase shift mask that requires fine pattern formation, it is necessary to reduce the resist film thickness so that the aspect ratio of the resist pattern does not increase in order to prevent pattern collapse. Film thickness is preferred. On the other hand, the lower limit of the thickness of the resist film is determined by comprehensively considering conditions such as etching resistance of the resist material to be used, and is preferably 60 nm or more. When a chemically amplified resist film for electron beam writing is used as the resist film, the energy density of the electron beam at the time of writing is in the range of 10 to 100 μC / cm 2. After this drawing, heat treatment and development processing are performed. To obtain a resist pattern.
 また、図10(b)、図11(b)、図12(b)、及び図13(b)の工程において、エッチングマスク膜をパターニングする酸素含有塩素系ドライエッチング(Cl/O系)の条件は、従来よりクロム化合物膜をドライエッチングする際に用いられてきた公知のものとしてよく、塩素ガスと酸素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の遮光膜は、酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In addition, in the steps of FIGS. 10B, 11B, 12B, and 13B, conditions for oxygen-containing chlorine-based dry etching (Cl / O-based) for patterning the etching mask film are performed. May be a known one that has been conventionally used for dry etching of chromium compound films, and in addition to chlorine gas and oxygen gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Good. Since the lower light-shielding film has resistance to oxygen-containing chlorine-based dry etching (Cl / O-based), it remains without being removed or patterned in this step.
 また、図10(c)、図11(c)、図12(c)、及び図13(c)の工程において、レジストパターンの剥離除去は、ドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。 Further, in the steps of FIG. 10C, FIG. 11C, FIG. 12C, and FIG. 13C, the resist pattern can be removed by dry etching. To wet peel.
 また、図10(d)、図11(d)、図12(d)、及び図13(d)の工程において、上層遮光膜をパターニングする非酸素含有塩素系ドライエッチング(Cl系)の条件は、塩素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。上層のエッチングマスク膜と下層遮光膜は、非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。また、上層遮光膜の最表面組成がエッチングや洗浄により変化し、非酸素含有塩素系エッチング(Cl系)でのエッチングレートが低下した場合は、遮光膜最表面をより効率良く除去する目的で、非酸素含有塩素系ドライエッチング(Cl系)の前にフッ素系エッチング(F系)を加えることもできる。 Also, in the steps of FIGS. 10D, 11D, 12D, and 13D, the conditions for non-oxygen-containing chlorine-based dry etching (Cl-based) for patterning the upper light-shielding film are as follows. In addition to chlorine gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the upper etching mask film and the lower light shielding film have resistance to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step. In addition, when the outermost surface composition of the upper light-shielding film changes due to etching or cleaning, and the etching rate in the non-oxygen-containing chlorine-based etching (Cl-based) is lowered, for the purpose of more efficiently removing the light-shielding film outermost surface, Fluorine-based etching (F system) can be added before non-oxygen-containing chlorine-based dry etching (Cl system).
 また、図11(e)、及び図13(e)の工程において、下層遮光膜をパターニングする酸素系ドライエッチング(O)系は、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。エッチングマスク膜と上層遮光膜と位相シフト膜は、酸素系ドライエッチング(O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In addition, in the steps of FIGS. 11E and 13E, the oxygen-based dry etching (O) system for patterning the lower light-shielding film uses an argon gas, a helium gas, or the like as necessary in addition to the oxygen gas. An inert gas may be mixed. Since the etching mask film, the upper light shielding film, and the phase shift film have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
 また、図10(e)、図11(f)、図12(e)、及び図13(f)の工程において、位相シフト膜をパターニングするフッ素系ドライエッチング(F系)の条件は、従来よりケイ素系化合物膜をドライエッチングする際に用いられてきた公知のものとしてよく、フッ素系ガスとしては、CFやCやSFが一般的であり、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。 Further, in the steps of FIGS. 10E, 11F, 12E, and 13F, the fluorine-based dry etching (F-based) conditions for patterning the phase shift film have been conventionally performed. It may be a known one that has been used for dry etching of a silicon-based compound film, and the fluorine-based gas is generally CF 4 , C 2 F 6, or SF 6 , and if necessary, nitrogen gas or helium An inert gas such as a gas may be mixed.
 最上層のエッチングマスク膜は、フッ素系ドライエッチング(F系)に対して耐性を有しているため、遮光膜と共に本工程では除去もしくはパターニングされずに残る。図10(e)、図11(f)、図12(e)、及び図13(f)では、同時に基板を1nmから3nm程度掘り込み、位相シフト膜の抜け不良を防止すると共に、位相差の微調整を行うことが一般的である。 The uppermost etching mask film is resistant to fluorine-based dry etching (F system), and therefore remains in the process without being removed or patterned together with the light shielding film. 10 (e), 11 (f), 12 (e), and 13 (f), the substrate is simultaneously dug by about 1 nm to 3 nm to prevent the phase shift film from coming off and the phase difference of It is common to make fine adjustments.
 また、図10(f)、図11(g)、図12(g)、及び図13(h)の工程において、描画方式は、電子ビーム描画よりも精度が落ちるレーザー描画を用いても良く、レジスト膜を塗布し、電子ビーム描画又はレーザー描画を行い、その後に現像処理を施すことで、第2のレジストパターンを得る。 Further, in the steps of FIG. 10 (f), FIG. 11 (g), FIG. 12 (g), and FIG. 13 (h), the drawing method may use laser drawing whose accuracy is lower than that of electron beam drawing. A resist film is applied, electron beam drawing or laser drawing is performed, and then a development process is performed to obtain a second resist pattern.
 また、図12(f)、及び図13(g)の工程において、エッチングマスク膜を除去する酸素含有塩素系ドライエッチング(Cl/O系)の条件は、従来よりクロム化合物膜の除去に用いられてきた公知のものとしてよく、塩素ガスと酸素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の遮光膜、位相シフト膜、基板は、いずれも酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。したがって、エッチングマスク膜の残渣(除去残り)を抑制できる横方向のエッチングが進み易いエッチング条件を選択することが可能となる。横方向のエッチングが進み易いエッチング条件としては、図12(b)、及び図13(b)の工程に用いるエッチング条件よりも高圧力(低真空)、大オーバーエッチング量が好ましい。ここでのオーバーエッチング量とは、膜を抜ききるエッチング時間に対してその後に延長して行うエッチング時間の比率である。 In the steps of FIGS. 12F and 13G, the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for removing the etching mask film are conventionally used for removing the chromium compound film. In addition to chlorine gas and oxygen gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the underlying light shielding film, phase shift film, and substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O system), they remain without being removed or patterned in this step. Accordingly, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (removal residue) of the etching mask film. As the etching conditions that facilitate the lateral etching, a higher pressure (low vacuum) and a larger over-etching amount are preferable than the etching conditions used in the steps of FIGS. 12B and 13B. The over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
 また、図10(h)、図11(i)、図12(h)、及び図13(i)の工程において、上層遮光膜を除去する非酸素含有塩素系ドライエッチング(Cl系)の条件は、塩素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の下層遮光膜、位相シフト膜、基板は、いずれも非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In addition, in the steps of FIG. 10H, FIG. 11I, FIG. 12H, and FIG. 13I, the non-oxygen-containing chlorine-based dry etching (Cl-based) conditions for removing the upper light shielding film are as follows: In addition to chlorine gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the lower light shielding film, the phase shift film, and the substrate, which are lower layers, are all resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
 また、図11(j)、及び図13(j)の工程において、下層遮光膜を除去する酸素系ドライエッチング(O系)の条件は、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の位相シフト膜、基板は、いずれも酸素系ドライエッチング(O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In the steps of FIGS. 11 (j) and 13 (j), oxygen-based dry etching (O-based) conditions for removing the lower light-shielding film are argon gas or helium gas as required in addition to oxygen gas. An inert gas such as may be mixed. Since the underlying phase shift film and the substrate are both resistant to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
 したがって、遮光膜の残渣(除去残り)を抑制できる横方向のエッチングが進み易いエッチング条件を選択することが可能となる。横方向のエッチングが進み易いエッチング条件としては、図10(d)、図11(d)、(e)、図12(d)及び図13(d),(e)の工程に用いるエッチング条件よりも高圧力(低真空)、大オーバーエッチング量が好ましい。ここでのオーバーエッチング量とは、膜を抜ききるエッチング時間に対してその後に延長して行うエッチング時間の比率である。 Therefore, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (remaining removal) of the light shielding film. Etching conditions that facilitate the etching in the horizontal direction are based on the etching conditions used in the steps of FIGS. 10D, 11D, 11E, 12D, 13D, and 13E. However, a high pressure (low vacuum) and a large over-etching amount are preferable. The over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
 また、図10(i)、図11(k)、図12(i)、及び図13(k)の工程において、レジストパターンの剥離除去は、ドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。 Further, in the steps of FIGS. 10 (i), 11 (k), 12 (i), and 13 (k), the resist pattern can be removed by dry etching. To wet peel.
 続いて第5、第6の実施形態に係る位相シフトマスクブランクから作製される、位相シフトマスク及び位相シフトマスクの製造方法を説明する。図14は、図5に示す位相シフトマスクブランク10’を用いた位相シフトマスク100’の製造方法を説明する図である。既に説明した符号で示す部材は、図5と同じものである。図14(a)は、エッチングマスク膜15’上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン16’を形成する工程を示す。図14(b)は、レジストパターン16’に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜15’をパターニングする工程を示す。図14(c)は、残存したレジストパターン16’を剥離除去した後、洗浄する工程を示す。図14(d)は、エッチングマスク膜15’のパターンに沿ってフッ素系ドライエッチング(F系)により反射防止膜14’をパターニングする工程を示す。図14(e)は、エッチングマスク膜15’及び反射防止膜14’のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により遮光膜13’をパターニングする工程を示す。 Subsequently, a phase shift mask and a method for manufacturing the phase shift mask manufactured from the phase shift mask blank according to the fifth and sixth embodiments will be described. FIG. 14 is a diagram for explaining a method of manufacturing the phase shift mask 100 ′ using the phase shift mask blank 10 ′ shown in FIG. 5. The members indicated by the reference numerals already described are the same as those in FIG. FIG. 14A shows a step of forming a resist pattern 16 ′ by applying a resist film on the etching mask film 15 ′, performing drawing, and then performing development processing. FIG. 14B shows a process of patterning the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system) along the resist pattern 16 ′. FIG. 14C shows a process of removing the remaining resist pattern 16 'after removing it. FIG. 14D shows a process of patterning the antireflection film 14 ′ by fluorine dry etching (F system) along the pattern of the etching mask film 15 ′. FIG. 14 (e) shows a case where non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based) is performed along the pattern of the etching mask film 15 ′ and the antireflection film 14 ′. A process of patterning the light shielding film 13 ′ will be described.
 図14(f)は、エッチングマスク膜15’及び反射防止膜14’及び遮光膜13’のパターンに沿って、フッ素系ドライエッチング(F系)により位相シフト膜12’をパターニングする工程を示す。図14(g)は、エッチングマスク膜15’を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図14(h)は、第2のレジストパターン17’を新たに形成する工程を示す。図14(i)は、第2のレジストパターン17’に覆われていない領域の反射防止膜14’をフッ素系ドライエッチング(F系)により除去する工程を示す。図14(j)は、第2のレジストパターン17’に覆われていない領域の遮光膜13’を非酸素含有塩素系ドライエッチング(Cl系)又は非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方により除去する工程を示す。図14(k)は、残存した第2のレジストパターン17’を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク100’が作製される。 FIG. 14F shows a step of patterning the phase shift film 12 ′ by fluorine-based dry etching (F system) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, and the light shielding film 13 ′. FIG. 14G shows a process of removing the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 14H shows a process of newly forming the second resist pattern 17 '. FIG. 14I shows a process of removing the antireflection film 14 ′ in the region not covered with the second resist pattern 17 ′ by fluorine-based dry etching (F-based). FIG. 14J shows that the light shielding film 13 ′ in the region not covered with the second resist pattern 17 ′ is non-oxygen-containing chlorine-based dry etching (Cl-based) or non-oxygen-containing chlorine-based dry etching (Cl-based). The process of removing by both fluorine etching (F system) is shown. FIG. 14K shows a process of removing the remaining second resist pattern 17 'after removing it. By performing the above-described steps, the phase shift mask 100 ′ is manufactured.
 この位相シフトマスク100’では、エッチングマスク膜15’が完全に除去されてマスク上に残らない。また、図14(k)において、符号101’で示される領域は有効エリアを表し、符号102’で示される領域は外周部を表す。図14(k)の位相シフトマスク100’の例では、有効エリア101’内に形成されているパターンは基板11’と位相シフト膜12’のみから成り、遮光膜13’や反射防止膜14’も積層されているパターンは外周部102’のみに存在する。ただし別の実施形態として、有効エリア101’内に、基板11’と位相シフト膜12’と遮光膜13’と反射防止膜14’が積層されたパターンが形成されてもよい。 In this phase shift mask 100 ', the etching mask film 15' is completely removed and does not remain on the mask. In FIG. 14 (k), an area indicated by reference numeral 101 'represents an effective area, and an area indicated by reference numeral 102' represents an outer peripheral portion. In the example of the phase shift mask 100 ′ of FIG. 14 (k), the pattern formed in the effective area 101 ′ is composed only of the substrate 11 ′ and the phase shift film 12 ′, and the light shielding film 13 ′ and the antireflection film 14 ′. Also, the laminated pattern exists only in the outer peripheral portion 102 '. However, as another embodiment, a pattern in which the substrate 11 ′, the phase shift film 12 ′, the light shielding film 13 ′, and the antireflection film 14 ′ are stacked may be formed in the effective area 101 ′.
 図15は、図6に示す位相シフトマスクブランク10’を用いた位相シフトマスク100’の製造方法を説明する図である。既に説明した符号で示す部材は、図6と同じものである。図15(a)は、エッチングマスク膜15’上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン16’を形成する工程を示す。図15(b)は、レジストパターン16’に沿って酸素含有塩素系ドライエッチング(Cl/O系)によりエッチングマスク膜15’をパターニングする工程を示す。図15(c)は、残存したレジストパターン16’を剥離除去した後、洗浄する工程を示す。図15(d)は、エッチングマスク膜15’のパターンに沿ってフッ素系ドライエッチング(F系)により反射防止膜14’をパターニングする工程を示す。図15(e)は、エッチングマスク膜15’及び反射防止膜14’のパターンに沿って非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により上層遮光膜13’をパターニングする工程を示す。図15(f)は、エッチングマスク膜15’及び反射防止膜14’並びに上層遮光膜13’のパターンに沿って酸素系ドライエッチング(O系)により下層遮光膜18’をパターニングする工程を示す。 FIG. 15 is a diagram for explaining a method of manufacturing the phase shift mask 100 ′ using the phase shift mask blank 10 ′ shown in FIG. 6. The members indicated by the reference numerals already described are the same as those in FIG. FIG. 15A shows a process of forming a resist pattern 16 ′ by applying a resist film on the etching mask film 15 ′, performing drawing, and then performing a development process. FIG. 15B shows a process of patterning the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system) along the resist pattern 16 ′. FIG. 15C shows a process of removing the remaining resist pattern 16 'after removing it. FIG. 15D shows a process of patterning the antireflection film 14 ′ by fluorine dry etching (F system) along the pattern of the etching mask film 15 ′. FIG. 15 (e) shows a case where non-oxygen-containing chlorine-based dry etching (Cl-based) and / or fluorine-based etching (F-based) is performed along the pattern of the etching mask film 15 ′ and the antireflection film 14 ′. A process of patterning the upper light shielding film 13 ′ is shown. FIG. 15F shows a step of patterning the lower light-shielding film 18 ′ by oxygen-based dry etching (O-based) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, and the upper light-shielding film 13 ′.
 図15(g)は、エッチングマスク膜15’及び反射防止膜14’及び上層遮光膜13’と下層遮光膜18’のパターンに沿って、フッ素系ドライエッチング(F系)により位相シフト膜12’をパターニングする工程を示す。図15(h)は、エッチングマスク膜15’を酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。図15(i)は、第2のレジストパターン17’を新たに形成する工程を示す。図15(j)は、第2のレジストパターン17’に覆われていない領域の反射防止膜14’をフッ素系ドライエッチング(F系)により除去する工程を示す。図15(k)は、第2のレジストパターン17’に覆われていない領域の上層遮光膜13’を非酸素含有塩素系ドライエッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方により除去する工程を示す。図15(l)は、第2のレジストパターン17’に覆われていない領域の下層遮光膜18’を酸素系ドライエッチング(O系)により除去する工程を示す。図15(m)は、残存した第2のレジストパターン17’を剥離除去した後、洗浄する工程を示す。上に述べた工程を実行することで、位相シフトマスク100’が作製される。 FIG. 15G shows the phase shift film 12 ′ by fluorine-based dry etching (F system) along the pattern of the etching mask film 15 ′, the antireflection film 14 ′, the upper light shielding film 13 ′, and the lower light shielding film 18 ′. The process of patterning is shown. FIG. 15H shows a process of removing the etching mask film 15 ′ by oxygen-containing chlorine-based dry etching (Cl / O system). FIG. 15I shows a process of newly forming the second resist pattern 17 '. FIG. 15J shows a step of removing the antireflection film 14 ′ in the region not covered with the second resist pattern 17 ′ by fluorine-based dry etching (F-based). FIG. 15 (k) shows that the upper light shielding film 13 ′ in the region not covered with the second resist pattern 17 ′ is subjected to both non-oxygen-containing chlorine-based dry etching (Cl-based) and fluorine-based etching (F-based), or The process of removing by either one is shown. FIG. 15L shows a step of removing the lower light shielding film 18 'in the region not covered with the second resist pattern 17' by oxygen-based dry etching (O-based). FIG. 15 (m) shows a process of removing the remaining second resist pattern 17 'after removing it. By performing the above-described steps, the phase shift mask 100 ′ is manufactured.
 この位相シフトマスク100’では、エッチングマスク膜15’が完全に除去されてマスク上に残らない。また、図15(m)において、符号101’で示される領域は有効エリアを表し、符号102’で示される領域は外周部を表す。図15(m)の位相シフトマスク100’の例では、有効エリア101’内に形成されているパターンは基板11’と位相シフト膜12’のみから成り、上層遮光膜13’、下層遮光膜18’や反射防止膜14’も積層されているパターンは外周部102’のみに存在する。ただし別の実施形態として、有効エリア101’内に、基板11’と位相シフト膜12’と上層遮光膜13’と下層遮光膜18’と反射防止膜14’が積層されたパターンが形成されてもよい。 In this phase shift mask 100 ', the etching mask film 15' is completely removed and does not remain on the mask. In FIG. 15 (m), an area indicated by reference numeral 101 'represents an effective area, and an area indicated by reference numeral 102' represents an outer peripheral portion. In the example of the phase shift mask 100 ′ of FIG. 15 (m), the pattern formed in the effective area 101 ′ is composed only of the substrate 11 ′ and the phase shift film 12 ′, and the upper light shielding film 13 ′ and the lower light shielding film 18 are formed. The pattern in which 'and the antireflection film 14' are also laminated exists only in the outer peripheral portion 102 '. However, as another embodiment, a pattern in which the substrate 11 ′, the phase shift film 12 ′, the upper light shielding film 13 ′, the lower light shielding film 18 ′, and the antireflection film 14 ′ are stacked is formed in the effective area 101 ′. Also good.
 図14(a)及び図15(a)の工程において、レジスト膜の材料としては、ポジ型レジストでもネガ型レジストでも用いることができるが、高精度パターンの形成を可能とする電子ビーム描画用の化学増幅型レジストを用いることが好ましい。レジスト膜の膜厚は、例えば50nm以上200nm以下の範囲である。特に、微細なパターン形成が求められる位相シフトマスクを作製する場合、パターン倒れを防止する上で、レジストパターンのアスペクト比が大きくならないようにレジスト膜を薄膜化することが必要であり、150nm以下の膜厚が好ましい。一方、レジスト膜の膜厚の下限は用いるレジスト材料のエッチング耐性などの条件を総合的に考慮して決定され、60nm以上が好ましい。レジスト膜として電子ビーム描画用の化学増幅型のものを使用する場合、描画の際の電子ビームのエネルギー密度は10から100μC/cmの範囲であり、この描画の後に加熱処理及び現像処理を施してレジストパターンを得る。 In the processes of FIGS. 14A and 15A, the resist film material can be either a positive resist or a negative resist, but it can be used for electron beam lithography that enables the formation of a high-precision pattern. It is preferable to use a chemically amplified resist. The film thickness of the resist film is, for example, in the range of not less than 50 nm and not more than 200 nm. In particular, when producing a phase shift mask that requires fine pattern formation, it is necessary to reduce the resist film thickness so that the aspect ratio of the resist pattern does not increase in order to prevent pattern collapse. Film thickness is preferred. On the other hand, the lower limit of the thickness of the resist film is determined by comprehensively considering conditions such as etching resistance of the resist material to be used, and is preferably 60 nm or more. When a chemically amplified resist film for electron beam writing is used as the resist film, the energy density of the electron beam at the time of writing is in the range of 10 to 100 μC / cm 2. After this drawing, heat treatment and development processing are performed. To obtain a resist pattern.
 また、図14(b)及び図15(b)の工程において、エッチングマスク膜をパターニングする酸素含有塩素系ドライエッチング(Cl/O系)の条件は、従来よりクロム化合物膜をドライエッチングする際に用いられてきた公知のものとしてよく、塩素ガスと酸素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の反射防止膜は、酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In the steps of FIGS. 14B and 15B, the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for patterning the etching mask film are the same as those in the conventional dry etching of a chromium compound film. It may be a known one that has been used, and in addition to chlorine gas and oxygen gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the lower antireflection film has resistance to oxygen-containing chlorine-based dry etching (Cl / O-based), it remains without being removed or patterned in this step.
 また、図14(c)及び図15(c)の工程において、レジストパターンの剥離除去は、ドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。 In the steps of FIGS. 14C and 15C, the resist pattern can be removed by dry etching, but in general, the resist pattern is wet-exfoliated with a removing solution.
 また、図14(d)及び図15(d)の工程において、反射防止膜をパターニングするフッ素系ドライエッチング(F系)の条件は、フッ素系ガスとしてCFやCやSFが一般的であり、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。上層のエッチングマスク膜は、フッ素系ドライエッチング(F系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。また、下層の遮光膜はフッ素系ドライエッチング(F系)でも加工できるため、本工程にて膜全てを抜き切らない程度に遮光膜をパターニングしてもよい。 14D and 15D, the fluorine-based dry etching (F-based) conditions for patterning the antireflection film are CF 4 , C 2 F 6 and SF 6 as the fluorine-based gas. It is common and you may mix inert gas, such as nitrogen gas and helium gas, as needed. Since the upper etching mask film is resistant to fluorine-based dry etching (F-based), it remains without being removed or patterned in this step. Further, since the lower light-shielding film can be processed by fluorine-based dry etching (F-based), the light-shielding film may be patterned to such an extent that the entire film is not removed in this step.
 また、図14(e)及び図15(e)の工程において、上層遮光膜をパターニングする非酸素含有塩素系ドライエッチング(Cl系)の条件は、塩素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。最上層のエッチングマスク膜と下層の位相シフト膜は、非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 14E and 15E, the non-oxygen-containing chlorine-based dry etching (Cl-based) conditions for patterning the upper light-shielding film include nitrogen gas and nitrogen gas as necessary in addition to chlorine gas. An inert gas such as helium gas may be mixed. Since the uppermost etching mask film and the lower phase shift film are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
 また、図15(f)の工程において、下層遮光膜をパターニングする酸素系ドライエッチング(O系)の条件は、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。上層遮光膜と下層の位相シフト膜は、酸素系ドライエッチング(O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In the step of FIG. 15F, the oxygen-based dry etching (O-based) conditions for patterning the lower light-shielding film are mixed with an inert gas such as argon gas or helium gas in addition to oxygen gas as necessary. May be. Since the upper light shielding film and the lower phase shift film have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
 また、図14(f)及び図15(g)の工程において、位相シフト膜をパターニングするフッ素系ドライエッチング(F系)の条件は、従来よりケイ素系化合物膜をドライエッチングする際に用いられてきた公知のものとしてよく、フッ素系ガスとしては、CFやCやSFが一般的であり、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。最上層のエッチングマスク膜は、フッ素系ドライエッチング(F系)に対して耐性を有しているため、反射防止膜及び遮光膜と共に本工程では除去もしくはパターニングされずに残る。図14(f)及び図15(g)では、同時に基板を1nmから3nm程度掘り込み、位相シフト膜の抜け不良を防止すると共に、位相差の微調整を行うことが一般的である。 14F and 15G, the fluorine-based dry etching (F-based) conditions for patterning the phase shift film have been conventionally used when dry-etching a silicon-based compound film. As the fluorine-based gas, CF 4 , C 2 F 6, and SF 6 are generally used, and an inert gas such as nitrogen gas or helium gas may be mixed as necessary. Since the uppermost etching mask film is resistant to fluorine-based dry etching (F system), it remains without being removed or patterned in this step together with the antireflection film and the light shielding film. In FIGS. 14 (f) and 15 (g), it is common to simultaneously dig out the substrate by about 1 nm to 3 nm to prevent the phase shift film from coming off and to finely adjust the phase difference.
 また、図14(g)及び図15(h)の工程において、エッチングマスク膜を除去する酸素含有塩素系ドライエッチング(Cl/O系)の条件は、従来よりクロム化合物膜の除去に用いられてきた公知のものとしてよく、塩素ガスと酸素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の反射防止膜、遮光膜、位相シフト膜、基板は、いずれも酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。したがって、エッチングマスク膜の残渣(除去残り)を抑制できる横方向のエッチングが進み易いエッチング条件を選択することが可能となる。横方向のエッチングが進み易いエッチング条件としては、図14(b)及び図15(b)の工程に用いるエッチング条件よりも高圧力(低真空)、大オーバーエッチング量が好ましい。ここでのオーバーエッチング量とは、膜を抜ききるエッチング時間に対してその後に延長して行うエッチング時間の比率である。 14G and 15H, the oxygen-containing chlorine-based dry etching (Cl / O-based) conditions for removing the etching mask film have been conventionally used for removing the chromium compound film. In addition to chlorine gas and oxygen gas, an inert gas such as nitrogen gas or helium gas may be mixed as necessary. The lower antireflection film, light shielding film, phase shift film, and substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), so they are not removed or patterned in this step. Remains. Accordingly, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (removal residue) of the etching mask film. As the etching conditions that facilitate the lateral etching, a higher pressure (low vacuum) and a larger over-etching amount are preferable than the etching conditions used in the steps of FIGS. 14B and 15B. The over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
 また、図14(h)及び図15(i)の工程において、描画方式は、電子ビーム描画よりも精度が落ちるレーザー描画を用いても良く、レジスト膜を塗布し、電子ビーム描画又はレーザー描画を行い、その後に現像処理を施すことで、第2のレジストパターンを得る。 14 (h) and FIG. 15 (i), the drawing method may be laser drawing, which is less accurate than electron beam drawing. A resist film is applied, and electron beam drawing or laser drawing is performed. And a development process is performed thereafter to obtain a second resist pattern.
 また、図14(i)及び図15(j)の工程において、反射防止膜を除去するフッ素系ドライエッチング(F系)の条件は、フッ素系ガスとしてCFやCやSFが一般的であり、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の遮光膜はフッ素系ドライエッチング(F系)でも除去できるため、本工程にて膜の一部又は全てを除去してもよい。図14(i)及び図15(j)では、同時に基板も掘り込まれる。したがって、反射防止膜を完全に除去し、且つ所望の位相差を実現するためには、図14(g)及び図15(h)での掘り込み量と合わせた最終的な基板の掘り込み量を5nmから20nmに調整することが好ましい。 Further, in the step of FIG. 14 (i) and FIG. 15 (j), the conditions of fluorine dry etching for removing the antireflection film (F system), CF 4 and C 2 F 6 and SF 6 as a fluorine-based gas It is common and you may mix inert gas, such as nitrogen gas and helium gas, as needed. Since the lower light-shielding film can also be removed by fluorine-based dry etching (F-based), part or all of the film may be removed in this step. 14 (i) and 15 (j), the substrate is also dug simultaneously. Therefore, in order to completely remove the antireflection film and realize a desired phase difference, the final digging amount of the substrate combined with the digging amounts in FIGS. 14 (g) and 15 (h). Is preferably adjusted from 5 nm to 20 nm.
 また、図14(j)及び図15(k)の工程において、上層遮光膜を除去する非酸素含有塩素系ドライエッチング(Cl系)の条件は、塩素ガスに加えて必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の下層遮光膜、位相シフト膜、基板は、いずれも非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 14 (j) and 15 (k), the non-oxygen-containing chlorine-based dry etching (Cl-based) condition for removing the upper light-shielding film is not limited to chlorine gas, but may be nitrogen gas or An inert gas such as helium gas may be mixed. Since the lower light shielding film, the phase shift film, and the substrate, which are lower layers, are all resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step.
 また、図15(l)の工程において、下層遮光膜を除去する酸素系ドライエッチング(O系)の条件は、酸素ガスに加えて必要に応じてアルゴンガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の位相シフト膜、基板は、いずれも酸素系ドライエッチング(O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。 In the process of FIG. 15 (l), the oxygen-based dry etching (O-based) conditions for removing the lower light-shielding film are mixed with an inert gas such as argon gas or helium gas in addition to oxygen gas as necessary. May be. Since the underlying phase shift film and the substrate are both resistant to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step.
 したがって、遮光膜の残渣(除去残り)を抑制できる横方向のエッチングが進み易いエッチング条件を選択することが可能となる。横方向のエッチングが進み易いエッチング条件としては、図14(e)及び図15(e)、(f)の工程に用いるエッチング条件よりも高圧力(低真空)、大オーバーエッチング量が好ましい。ここでのオーバーエッチング量とは、膜を抜ききるエッチング時間に対してその後に延長して行うエッチング時間の比率である。 Therefore, it is possible to select an etching condition that facilitates lateral etching that can suppress residues (remaining removal) of the light shielding film. As the etching conditions that facilitate the lateral etching, a higher pressure (low vacuum) and a larger overetching amount are preferable than the etching conditions used in the steps of FIGS. 14 (e), 15 (e), and (f). The over-etching amount here is the ratio of the etching time that is extended after that to the etching time for completely removing the film.
 また、図14(k)及び図15(m)の工程において、レジストパターンの剥離除去は、ドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。 In the steps of FIGS. 14 (k) and 15 (m), the resist pattern can be removed by dry etching, but in general, the resist pattern is wet-exfoliated with a remover.
 以上、各実施形態に係る位相シフトマスクブランクを用いて位相シフトマスクを作製する方法の例を説明したが、マスク検査にて欠陥を検出した場合は、上で説明した方法の途中にこの欠陥を修正する工程が加わる場合がある。欠陥の修正方法には、欠陥の種類や大きさにより様々な方法があり得るが、位相シフト膜の一部が所望のサイズより大きくなる黒欠陥の場合は、フッ素系ガスを供給しつつ欠陥部分に電子線を照射することで欠陥部分のみを精度良くエッチングにより除去する修正方法(電子線修正)が一般的である。本実施形態では、ルテニウム単体又はルテニウム化合物を用いた下層遮光膜を最終的に除去するので、電子線修正を妨げることがない。 As mentioned above, although the example of the method of producing a phase shift mask using the phase shift mask blank concerning each embodiment was explained, when a defect was detected by mask inspection, this defect was in the middle of the method explained above. A process to correct may be added. There are various defect correction methods depending on the type and size of the defect, but in the case of a black defect in which a part of the phase shift film is larger than the desired size, the defective portion is supplied while supplying a fluorine-based gas. A correction method (electron beam correction) in which only a defective portion is accurately removed by etching by irradiating an electron beam on the surface is generally used. In the present embodiment, the lower light shielding film using ruthenium alone or a ruthenium compound is finally removed, so that electron beam correction is not hindered.
 次に、上で説明した工程で製造された位相シフトマスクに、エッチングマスク膜及び上層遮光膜(及び下層遮光膜)の残渣が発生した場合の、残渣修正方法の好適な実施形態を説明する。 Next, a preferred embodiment of the residue correction method in the case where residues of the etching mask film and the upper light shielding film (and the lower light shielding film) are generated in the phase shift mask manufactured in the process described above will be described.
 図16は、図1に示す位相シフトマスクブランク10を用いた位相シフトマスク100のエッチングマスク膜及び遮光膜の残渣修正方法を示す拡大断面概略図である。図16(a)は、位相シフト膜12上にエッチングマスク膜の残渣14a及び遮光膜の残渣13aが存在するマスクの一部分の様子を示す。 FIG. 16 is an enlarged schematic cross-sectional view showing a method of correcting a residue of an etching mask film and a light shielding film of the phase shift mask 100 using the phase shift mask blank 10 shown in FIG. FIG. 16A shows a state of a part of the mask in which the etching mask film residue 14 a and the light shielding film residue 13 a exist on the phase shift film 12.
 次に、図16(b)は、残渣13a及び14aが発生した領域を覆わないように残渣修正用のレジストパターン17を新たに形成する工程を示す。本工程では、レジスト膜を成膜した後、電子ビーム描画又はレーザー描画を行った後、現像処理することで、レジストパターン17を得る。また、残渣13a及び14aが発生した領域にスポット露光を施した後、現像処理することでレジストパターン17を得てもよい。 Next, FIG. 16B shows a process of newly forming a resist pattern 17 for residue correction so as not to cover the region where the residues 13a and 14a are generated. In this step, a resist pattern 17 is obtained by forming a resist film, performing electron beam drawing or laser drawing, and developing the resist film. Alternatively, the resist pattern 17 may be obtained by performing spot exposure on the areas where the residues 13a and 14a are generated and then developing the areas.
 次に、図16(c)は、レジストパターン17に覆われていない領域のエッチングマスク膜の残渣14aを酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。遮光膜の残渣13a及び位相シフト膜12及び基板11は、酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、エッチングマスク膜の残渣14aを除去するため、横方向のエッチングが進み易い条件を選択することが好ましい。横方向のエッチングが進み易いエッチング条件は、図10(g)の工程に用いるものと同様である。 Next, FIG. 16C shows a step of removing the etching mask film residue 14a in a region not covered with the resist pattern 17 by oxygen-containing chlorine-based dry etching (Cl / O-based). Since the light shielding film residue 13a, the phase shift film 12 and the substrate 11 are resistant to oxygen-containing chlorine-based dry etching (Cl / O system), they remain without being removed or patterned in this step. The etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue 14a of the etching mask film. Etching conditions that facilitate etching in the horizontal direction are the same as those used in the step of FIG.
 次に、図16(d)は、レジストパターン17に覆われていない領域の遮光膜の残渣13aを非酸素含有塩素系ドライエッチング(Cl系)により除去する工程を示す。位相シフト膜12及び基板11は、非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、遮光膜の残渣13aを除去するため、横方向のエッチングが進み易い条件を選択することが望ましい。横方向のエッチングが進み易いエッチング条件は、図10(h)の工程に用いるものと同様である。 Next, FIG. 16D shows a step of removing the light shielding film residue 13a in a region not covered with the resist pattern 17 by non-oxygen-containing chlorine-based dry etching (Cl-based). Since the phase shift film 12 and the substrate 11 are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step. As the etching conditions, it is desirable to select conditions that facilitate the lateral etching in order to remove the light shielding film residue 13a. Etching conditions that facilitate lateral etching are the same as those used in the process of FIG.
 次に、図16(e)は、残存したレジストパターン17を剥離除去した後、洗浄する工程を示す。剥離除去はドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。本工程により、位相シフトマスク100のエッチングマスク膜及び遮光膜の残渣修正が完了する。 Next, FIG. 16E shows a process of removing the remaining resist pattern 17 and then cleaning it. Peeling and removal can be performed by dry etching, but in general, wet peeling is performed with a stripping solution. By this step, the residue correction of the etching mask film and the light shielding film of the phase shift mask 100 is completed.
 図17は、図2に示す位相シフトマスクブランク10を用いた位相シフトマスク100のエッチングマスク膜及び遮光膜の残渣修正方法を示す拡大断面概略図である。図17(a)は、位相シフト膜12上にエッチングマスク膜の残渣14a及び上層遮光膜の残渣13a及び下層遮光膜の残渣18aが存在するマスクの一部分の様子を示す。 FIG. 17 is an enlarged schematic cross-sectional view showing a method for correcting a residue of an etching mask film and a light shielding film of the phase shift mask 100 using the phase shift mask blank 10 shown in FIG. FIG. 17A shows a state of a part of the mask in which the residue 14a of the etching mask film, the residue 13a of the upper light shielding film, and the residue 18a of the lower light shielding film exist on the phase shift film 12.
 次に、図17(b)は、残渣13a、14a、18aが発生した領域を覆わないように残渣修正用のレジストパターン17を新たに形成する工程を示す。本工程では、レジスト膜を成膜した後、電子ビーム描画又はレーザー描画を行った後、現像処理することで、レジストパターン17を得る。また、残渣13a、14a、18aが発生した領域にスポット露光を施した後、現像処理することでレジストパターン17を得てもよい。 Next, FIG. 17B shows a process of newly forming a resist pattern 17 for residue correction so as not to cover the regions where the residues 13a, 14a and 18a are generated. In this step, a resist pattern 17 is obtained by forming a resist film, performing electron beam drawing or laser drawing, and developing the resist film. Alternatively, the resist pattern 17 may be obtained by performing spot exposure on the regions where the residues 13a, 14a, and 18a are generated and then developing the regions.
 次に、図17(c)は、レジストパターン17に覆われていない領域のエッチングマスク膜の残渣14aを酸素含有塩素系ドライエッチング(Cl/O系)により除去する工程を示す。上層遮光膜の残渣13a、下層遮光膜の残渣18a、位相シフト膜12及び基板11は、酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、エッチングマスク膜の残渣14aを除去するため、横方向のエッチングが進み易い条件を選択することが好ましい。横方向のエッチングが進み易いエッチング条件は、図11(h)の工程に用いるものと同様である。 Next, FIG. 17C shows a step of removing the etching mask film residue 14a in a region not covered with the resist pattern 17 by oxygen-containing chlorine-based dry etching (Cl / O-based). Since the upper light shielding film residue 13a, the lower light shielding film residue 18a, the phase shift film 12 and the substrate 11 are resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), they are removed or patterned in this step. Remains. The etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue 14a of the etching mask film. Etching conditions that facilitate lateral etching are the same as those used in the step of FIG.
 次に、図17(d)は、レジストパターン17に覆われていない領域の上層遮光膜の残渣13aを非酸素含有塩素系ドライエッチング(Cl系)により除去する工程を示す。下層遮光膜の残渣18a、位相シフト膜12及び基板11は、非酸素含有塩素系ドライエッチング(Cl系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、上層遮光膜の残渣13aを除去するため、横方向のエッチングが進み易い条件を選択することが望ましい。横方向のエッチングが進み易いエッチング条件は、図11(i)の工程に用いるものと同様である。 Next, FIG. 17D shows a step of removing the residue 13a of the upper light shielding film in the region not covered with the resist pattern 17 by non-oxygen-containing chlorine-based dry etching (Cl-based). Since the lower layer light shielding film residue 18a, the phase shift film 12 and the substrate 11 are resistant to non-oxygen-containing chlorine-based dry etching (Cl-based), they remain without being removed or patterned in this step. As the etching conditions, it is desirable to select conditions that facilitate the lateral etching in order to remove the residue 13a of the upper light-shielding film. Etching conditions that facilitate the lateral etching are the same as those used in the step of FIG.
 次に、図17(e)は、レジストパターン17に覆われていない領域の下層遮光膜の残渣18aを酸素系ドライエッチング(O系)により除去する工程を示す。位相シフト膜12及び基板11は、酸素系ドライエッチング(O系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、下層遮光膜の残渣18aを除去するため、横方向のエッチングが進み易い条件を選択することが望ましい。横方向のエッチングが進み易いエッチング条件は、図11(j)の工程に用いるものと同様である。 Next, FIG. 17E shows a process of removing the lower light shielding film residue 18a in the region not covered with the resist pattern 17 by oxygen-based dry etching (O-based). Since the phase shift film 12 and the substrate 11 have resistance to oxygen-based dry etching (O-based), they remain without being removed or patterned in this step. As the etching conditions, it is desirable to select a condition that facilitates the etching in the lateral direction in order to remove the residue 18a of the lower light shielding film. Etching conditions that facilitate lateral etching are the same as those used in the step of FIG.
 次に、図17(f)は、残存したレジストパターン17を剥離除去した後、洗浄する工程を示す。剥離除去はドライエッチングにより行うことも可能だが、一般には剥離液によりウェット剥離する。本工程により、位相シフトマスク100のエッチングマスク膜及び遮光膜の残渣修正が完了する。 Next, FIG. 17 (f) shows a process of removing the remaining resist pattern 17 and then cleaning it. Peeling and removal can be performed by dry etching, but in general, wet peeling is performed with a stripping solution. By this step, the residue correction of the etching mask film and the light shielding film of the phase shift mask 100 is completed.
 次に、図14、15に示す工程で作製される位相シフトマスクの製造中にエッチングマスク膜の残渣が発生した場合の残渣修正方法の好適な実施形態を説明する。 Next, a preferred embodiment of a residue correction method in the case where an etching mask film residue is generated during the manufacture of the phase shift mask manufactured in the steps shown in FIGS.
 エッチングマスク膜の除去は、図14(g)及び図15(h)に示す工程にて行うが、ここでエッチングマスク膜の一部が除去しきれず反射防止膜上に残渣として残った場合、図14(g)及び図15(h)に示す工程の後に、反射マスク検査を行えば、この残渣を検出することができる。 The etching mask film is removed in the steps shown in FIGS. 14 (g) and 15 (h). If a part of the etching mask film cannot be completely removed and remains as a residue on the antireflection film, FIG. This residue can be detected by performing a reflective mask inspection after the steps shown in FIG. 14 (g) and FIG. 15 (h).
 次に、検出したエッチングマスク膜の残渣を酸素含有塩素系ドライエッチング(Cl/O系)により除去する。ここで、反射防止膜、上層遮光膜、下層遮光膜、位相シフト膜、基板は、いずれも酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有するため、本工程では除去もしくはパターニングされずに残る。エッチング条件は、エッチングマスク膜の残渣を除去するため、横方向のエッチングが進み易い条件を選択することが好ましい。横方向のエッチングが進み易いエッチング条件は、図14(g)及び図15(h)の工程に用いるものと同様である。 Next, the detected residue of the etching mask film is removed by oxygen-containing chlorine-based dry etching (Cl / O system). Here, since the antireflection film, the upper light shielding film, the lower light shielding film, the phase shift film, and the substrate are all resistant to oxygen-containing chlorine-based dry etching (Cl / O-based), they are removed or patterned in this step. It remains without being. The etching conditions are preferably selected so that the etching in the lateral direction is easy to proceed in order to remove the residue of the etching mask film. Etching conditions that facilitate lateral etching are the same as those used in the steps of FIGS. 14 (g) and 15 (h).
 次に、反射マスク検査またはSEM観察にて検出したエッチングマスク膜の残渣が完全に除去されていることを確認する。本工程により、位相シフトマスクのエッチングマスク膜の残渣修正が完了する。この後、図14(h)及び図15(i)以降に示される工程を行い、位相シフトマスクの製造を継続するとよい。 Next, it is confirmed that the residue of the etching mask film detected by the reflection mask inspection or SEM observation is completely removed. By this step, the residue correction of the etching mask film of the phase shift mask is completed. Thereafter, the steps shown in FIG. 14 (h) and FIG. 15 (i) and thereafter are preferably performed to continue manufacturing the phase shift mask.
 以下、実施例により、本発明の実施形態を更に具体的に説明するが、本発明は下記実施例に制限されるものではない。 Hereinafter, the embodiments of the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples.
(実施例1)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる位相シフト膜を66nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
Example 1
A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 66 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を28nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 28 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、クロムと酸素と窒素からなるエッチングマスク膜を18nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:O:N=45:45:10(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.2であった。 On this light shielding film, an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: O: N = 45: 45: 10 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.2.
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる位相シフト膜、タンタルと窒素からなる遮光膜、クロムと酸素と窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift mask blank in which a phase shift film made of silicon, molybdenum, oxygen and nitrogen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chrome, oxygen and nitrogen are laminated on a quartz substrate. Obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は6.1%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより5%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例2)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる位相シフト膜を66nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
(Example 2)
A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 66 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウムからなる下層遮光膜を10nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノンを用いた。この遮光膜の組成をESCAで分析したところ、Ru=100(原子%比)であった。 On the phase shift film, an ion sputtering apparatus was used to form a lower light-shielding film made of ruthenium with a thickness of 10 nm. The target was ruthenium, and the sputtering gas was xenon. When the composition of this light-shielding film was analyzed by ESCA, Ru = 100 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を18nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 An upper light-shielding film made of tantalum and nitrogen was formed on the lower light-shielding film with a thickness of 18 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、クロムと酸素と窒素からなるエッチングマスク膜を18nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:O:N=45:45:10(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.2であった。 On this light shielding film, an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: O: N = 45: 45: 10 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.2.
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる位相シフト膜、ルテニウムからなる下層遮光膜、タンタルと窒素からなる上層遮光膜、クロムと酸素と窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift film made of silicon, molybdenum, oxygen and nitrogen, a lower light shielding film made of ruthenium, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, oxygen and nitrogen are formed on the quartz substrate. A laminated phase shift mask blank was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は6.1%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより7%改善することを確認した。上層遮光膜が薄くなったため、実施例1より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was examined, it was 7% of the phase shift mask using the conventional silicon compound film as the etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that of Example 1.
 次に、欠陥検査にてエッチングマスク膜及び上層遮光膜及び下層遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film is spin-coated on the phase shift mask of this embodiment in which the residues of the etching mask film, the upper light shielding film, and the lower light shielding film are detected by defect inspection, and only the vicinity of the residue portion is formed by a laser drawing apparatus. Draw on. Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜の残渣を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例3)
 石英基板の上にDCスパッタ装置を用いて、ケイ素と窒素からなる位相シフト膜を68nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:N=50:50(原子%比)であった。
(Example 3)
A phase shift film made of silicon and nitrogen was formed to a thickness of 68 nm on a quartz substrate using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: N = 50: 50 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を26nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=70:30(原子%比)であった。また、分光光度計にてこの遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 26 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 70: 30 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser obtained by combining the light-shielding film and the phase shift film was measured with a spectrophotometer and found to be 2.9.
 この遮光膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this light shielding film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素と窒素からなる位相シフト膜、タンタルと窒素からなる遮光膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift mask blank was obtained in which a phase shift film made of silicon and nitrogen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium and nitrogen were laminated on a quartz substrate.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は5.5%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより5%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 5.5%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例4)
 石英基板の上にDCスパッタ装置を用いて、ケイ素と窒素からなる位相シフト膜を61nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:N=50:50(原子%比)であった。
Example 4
A phase shift film made of silicon and nitrogen was formed to a thickness of 61 nm on a quartz substrate using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: N = 50: 50 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を17nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ru:N=95:5(原子%比)であった。 On the phase shift film, a lower light-shielding film made of a ruthenium compound was formed to a thickness of 17 nm using an ion sputtering apparatus. The target was ruthenium, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ru: N = 95: 5 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を10nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この上層遮光膜の組成をESCAで分析したところ、Ta:N=70:30(原子%比)であった。また、分光光度計にてこの遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 10 nm on the lower light-shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this upper light shielding film was analyzed by ESCA, it was Ta: N = 70: 30 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser obtained by combining the light-shielding film and the phase shift film was measured with a spectrophotometer and found to be 2.9.
 この遮光膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this light shielding film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素と窒素からなる位相シフト膜、ルテニウム化合物からなる下層遮光膜、タンタルと窒素からなる上層遮光膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 In this way, a phase shift film made of silicon and nitrogen, a lower light shielding film made of ruthenium compound, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium and nitrogen are laminated on the quartz substrate. A mask blank was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスはCFとヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was CF 4 and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスはCFとヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。オーバーエッチングは、石英基板を平均18nm掘り込んだ時点で停止した。これにより位相シフト膜の厚さを61nmとしたことと相まって、所望の位相差を実現できる。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was CF 4 and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Overetching was stopped when an average of 18 nm was dug into the quartz substrate. Thus, a desired phase difference can be realized in combination with the thickness of the phase shift film being 61 nm.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は7.4%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより9%改善することを確認した。上層遮光膜が薄くなったため、実施例3より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 7.4%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, the phase shift mask was 9% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 3.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜の残渣を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例5)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜を62nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。続いて、第1の位相シフト膜の上にDCスパッタ装置を用いて、ケイ素と酸素からなる第2の位相シフト膜を10nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 5)
A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 62 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio). Subsequently, a second phase shift film made of silicon and oxygen was formed to a thickness of 10 nm on the first phase shift film using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を28nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 28 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、クロムと酸素と窒素からなるエッチングマスク膜を18nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:O:N=45:45:10(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.1であった。 On this light shielding film, an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: O: N = 45: 45: 10 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser including the etching mask film, the light shielding film and the phase shift film was measured with a spectrophotometer and found to be 3.1.
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜、ケイ素と酸素からなる第2の位相シフト膜、タンタルと窒素からなる遮光膜、クロムと酸素と窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, on the quartz substrate, the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the light shielding film made of tantalum and nitrogen, chromium and oxygen A phase shift mask blank on which an etching mask film made of nitrogen was laminated was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、第1と第2の位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the first and second phase shift films were patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は7.2%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより5%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 7.2%, The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは60Wに設定した。このエッチング条件では石英基板が2nmのダメージを受けることを事前の評価で確認してある。 Next, the residue of the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。また、この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、残渣修正前の値から変動していないことを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed. Moreover, when the transmittance | permeability and phase difference of this phase shift mask were measured with MPM193 by Lasertec, it confirmed that it was not changing from the value before residue correction.
(実施例6)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜を62nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。続いて、第1の位相シフト膜の上にDCスパッタ装置を用いて、ケイ素と酸素からなる第2の位相シフト膜を10nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 6)
A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 62 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio). Subsequently, a second phase shift film made of silicon and oxygen was formed to a thickness of 10 nm on the first phase shift film using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を5nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノンとホウ素を用いた。この遮光膜の組成をESCAで分析したところ、Ru:B=80:20(原子%比)であった。 On the phase shift film, a lower light-shielding film made of a ruthenium compound was formed to a thickness of 5 nm using an ion sputtering apparatus. The target was ruthenium, and the sputtering gas was xenon and boron. When the composition of this light shielding film was analyzed by ESCA, it was Ru: B = 80: 20 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を24nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 24 nm on the lower light-shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、クロムと酸素と窒素からなるエッチングマスク膜を18nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:O:N=45:45:10(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.1であった。 On this light shielding film, an etching mask film made of chromium, oxygen and nitrogen was formed to a thickness of 18 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: O: N = 45: 45: 10 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser including the etching mask film, the light shielding film and the phase shift film was measured with a spectrophotometer and found to be 3.1.
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜、ケイ素と酸素からなる第2の位相シフト膜、ルテニウム化合物からなる下層遮光膜、タンタルと窒素からなる上層遮光膜、クロムと酸素と窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, on the quartz substrate, the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the lower light shielding film made of ruthenium compound, and the tantalum and nitrogen Thus obtained was a phase shift mask blank in which an upper light shielding film and an etching mask film made of chromium, oxygen and nitrogen were laminated.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、第1と第2の位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the first and second phase shift films were patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は7.2%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより6%改善することを確認した。上層遮光膜が薄くなったため、実施例5より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 7.2%, The phase difference was 180 degrees. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. Further, when a plurality of the phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 6% of the phase shift mask using the conventional silicon compound film as the etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 5.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。また、この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、残渣修正前の値から変動していないことを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed. Moreover, when the transmittance | permeability and phase difference of this phase shift mask were measured with MPM193 by Lasertec, it confirmed that it was not changing from the value before residue correction.
(実施例7)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる位相シフト膜を59nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
(Example 7)
A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 59 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を20nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 20 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を10nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.0であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 35: 65 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.0.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる位相シフト膜、タンタルと窒素からなる遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift film made of silicon, molybdenum, oxygen and nitrogen, a light shielding film made of tantalum and nitrogen, an antireflection film made of tantalum and oxygen, and an etching mask film made of chromium and nitrogen are laminated on the quartz substrate. A phase shift mask blank was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均15nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は8.1%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより7%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 8.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was examined, it was 7% of the phase shift mask using the conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
(実施例8)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる位相シフト膜を59nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
(Example 8)
A phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 59 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を10nmの厚さで成膜した。ターゲットはルテニウム・ニオブ合金を用い、スパッタガスはキセノンを用いた。この遮光膜の組成をESCAで分析したところ、Ru:Nb=85:15(原子%比)であった。 An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus. The target was ruthenium / niobium alloy, and the sputtering gas was xenon. When the composition of the light shielding film was analyzed by ESCA, it was Ru: Nb = 85: 15 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を12nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 12 nm on the lower light-shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を10nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.0であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 35: 65 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.0.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる位相シフト膜、ルテニウム化合物からなる下層遮光膜、タンタルと窒素からなる上層遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift film made of silicon, molybdenum, oxygen and nitrogen, a lower light shielding film made of ruthenium compound, an upper light shielding film made of tantalum and nitrogen, an antireflection film made of tantalum and oxygen, and chromium on a quartz substrate. And a phase shift mask blank in which an etching mask film made of nitrogen was laminated.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均15nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は8.1%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより8%改善することを確認した。上層遮光膜が薄くなったため、実施例7より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 8.1%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were prepared and the probability that residues of the etching mask film and the light shielding film were generated in the defect inspection was investigated, the phase shift mask was 8% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 7.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
(実施例9)
 石英基板の上にDCスパッタ装置を用いて、ケイ素と窒素からなる位相シフト膜を64nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:N=50:50(原子%比)であった。
Example 9
A phase shift film made of silicon and nitrogen was formed to a thickness of 64 nm on a quartz substrate using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: N = 50: 50 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素と酸素からなる遮光膜を30nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素と酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N:O=85:10:5(原子%比)であった。 A light-shielding film made of tantalum, nitrogen, and oxygen was formed to a thickness of 30 nm on the phase shift film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon, nitrogen, and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N: O = 85: 10: 5 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を6nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=30:70(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.0であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 6 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 30: 70 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.0.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を4nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 On this antireflection film, an etching mask film made of chromium and nitrogen was formed to a thickness of 4 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素と窒素からなる位相シフト膜、タンタルと窒素と酸素からなる遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, the phase shift film made of silicon and nitrogen, the light shielding film made of tantalum, nitrogen and oxygen, the antireflection film made of tantalum and oxygen, and the etching mask film made of chromium and nitrogen were laminated on the quartz substrate. A phase shift mask blank was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚80nmでスピンコートし、パターンをドーズ量37μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で60秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated at a film thickness of 80 nm on this etching mask film, the pattern is drawn with an electron beam at a dose of 37 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Development was performed for 60 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均1nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 1 nm on average.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均8nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug on average 8 nm.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は6.8%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、4nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより3%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film part relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.8%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 4 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was found to be 3% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
(実施例10)
 石英基板の上にDCスパッタ装置を用いて、ケイ素と窒素からなる位相シフト膜を64nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:N=50:50(原子%比)であった。
(Example 10)
A phase shift film made of silicon and nitrogen was formed to a thickness of 64 nm on a quartz substrate using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: N = 50: 50 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を10nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ru:N=80:20(原子%比)であった。 An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus. The target was ruthenium, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ru: N = 80: 20 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素と酸素からなる上層遮光膜を23nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素と酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N:O=85:10:5(原子%比)であった。 On the lower light-shielding film, an upper light-shielding film made of tantalum, nitrogen and oxygen was formed to a thickness of 23 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon, nitrogen, and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N: O = 85: 10: 5 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を6nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=30:70(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、3.0であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 6 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 30: 70 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 3.0.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を4nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 On this antireflection film, an etching mask film made of chromium and nitrogen was formed to a thickness of 4 nm using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素と窒素からなる位相シフト膜、ルテニウム化合物からなる下層遮光膜、タンタルと窒素と酸素からなる上層遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, a phase shift film made of silicon and nitrogen, a lower light shielding film made of a ruthenium compound, an upper light shielding film made of tantalum, nitrogen and oxygen, an antireflection film made of tantalum and oxygen, and chromium and nitrogen. A phase shift mask blank on which an etching mask film made of was laminated was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚80nmでスピンコートし、パターンをドーズ量37μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で60秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated at a film thickness of 80 nm on this etching mask film, the pattern is drawn with an electron beam at a dose of 37 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Development was performed for 60 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均1nm掘り込んだ時点で停止した。 Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 1 nm on average.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均8nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug on average 8 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は6.8%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、4nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより5%改善することを確認した。上層遮光膜が薄くなったため、実施例9より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film part relative to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 6.8%, The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 4 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 5% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 9.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
(実施例11)
 石英基板の上に2つのターゲットを用いたRFスパッタ装置を用いて、ケイ素と酸素からなる位相シフト膜を169nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 11)
A phase shift film made of silicon and oxygen was formed to a thickness of 169 nm using an RF sputtering apparatus using two targets on a quartz substrate. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を48nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 48 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film, and the phase shift film were combined was measured with a spectrophotometer and found to be 2.9.
 この遮光膜の上にDCスパッタ装置を用いて、クロムと窒素と炭素からなるエッチングマスク膜を10nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素と炭素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N:C=85:10:5(原子%比)であった。 An etching mask film made of chromium, nitrogen and carbon was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, nitrogen, and carbon. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N: C = 85: 10: 5 (atomic% ratio).
 このようにして、石英基板の上に、ケイ素と酸素からなる位相シフト膜、タンタルと窒素からなる遮光膜、クロムと窒素と炭素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 In this way, a phase shift mask blank was obtained in which a phase shift film made of silicon and oxygen, a light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, nitrogen and carbon were laminated on a quartz substrate.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚120nmでスピンコートし、パターンをドーズ量36μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で70秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on the etching mask film at a film thickness of 120 nm, a pattern is drawn with an electron beam at a dose of 36 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Then, development was performed for 70 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimension of the lower light shielding film becomes thinner than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 2 nm on average.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は98%、位相差は180度であった。また、この位相シフトマスクの位相差をマスク全面で測定したところ、パターン依存やマスク位置依存による位相差誤差が生じていないことを確認した。また、位相シフト膜の黒欠陥を意図的に配置したプログラム欠陥部を電子線修正したところ、形状良く修正できることを確認した。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより2%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 98%, and the phase difference Was 180 degrees. Further, when the phase difference of the phase shift mask was measured over the entire surface of the mask, it was confirmed that no phase difference error due to pattern dependency or mask position dependency occurred. In addition, when a program defect portion where a black defect of the phase shift film was intentionally arranged was corrected with an electron beam, it was confirmed that it could be corrected with a good shape. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. In addition, when a plurality of phase shift masks were prepared and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was found to be 2% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例12)
 石英基板の上に2つのターゲットを用いたRFスパッタ装置を用いて、ケイ素と酸素からなる位相シフト膜を169nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 12)
A phase shift film made of silicon and oxygen was formed to a thickness of 169 nm using an RF sputtering apparatus using two targets on a quartz substrate. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を20nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノン及び窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ru:N=90:10(原子%比)であった。 On the phase shift film, a lower light shielding film made of a ruthenium compound was formed to a thickness of 20 nm using an ion sputtering apparatus. The target was ruthenium, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ru: N = 90: 10 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を32nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 An upper light-shielding film made of tantalum and nitrogen was formed to a thickness of 32 nm on the lower light-shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film, and the phase shift film were combined was measured with a spectrophotometer and found to be 2.9.
 この遮光膜の上にDCスパッタ装置を用いて、クロムと窒素と炭素からなるエッチングマスク膜を10nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素と炭素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N:C=85:10:5(原子%比)であった。 An etching mask film made of chromium, nitrogen and carbon was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon, nitrogen, and carbon. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N: C = 85: 10: 5 (atomic% ratio).
 このようにして、石英基板の上に、ケイ素と酸素からなる位相シフト膜、ルテニウム化合物からなる下層遮光膜、タンタルと窒素からなる上層遮光膜、クロムと窒素と炭素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 In this manner, a phase shift film made of silicon and oxygen, a lower light shielding film made of a ruthenium compound, an upper light shielding film made of tantalum and nitrogen, and an etching mask film made of chromium, nitrogen and carbon are laminated on the quartz substrate. A phase shift mask blank was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚120nmでスピンコートし、パターンをドーズ量36μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で70秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on the etching mask film at a film thickness of 120 nm, a pattern is drawn with an electron beam at a dose of 36 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Then, development was performed for 70 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the upper light-shielding film is narrower than the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した Next, the phase shift film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug 2 nm on average.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は98%、位相差は180度であった。また、この位相シフトマスクの位相差をマスク全面で測定したところ、パターン依存やマスク位置依存による位相差誤差が生じていないことを確認した。また、位相シフト膜の黒欠陥を意図的に配置したプログラム欠陥部を電子線修正したところ、形状良く修正できることを確認した。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、2nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより4%改善することを確認した。上層遮光膜が薄くなったため、実施例11より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of ArF excimer laser was 98%, and the phase difference Was 180 degrees. Further, when the phase difference of the phase shift mask was measured over the entire surface of the mask, it was confirmed that no phase difference error due to pattern dependency or mask position dependency occurred. In addition, when a program defect portion where a black defect of the phase shift film was intentionally arranged was corrected with an electron beam, it was confirmed that it could be corrected with a good shape. Further, when the pattern roughness dependency of the pattern dimension of the phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 2 nm was confirmed. Further, when a plurality of phase shift masks were prepared and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was investigated, it was 4% of the phase shift mask using a conventional silicon compound film as the etching mask film. Confirmed to improve. Since the upper light-shielding film is thin, the improvement rate is higher than that of Example 11.
 次に、欠陥検査にてエッチングマスク膜及び遮光膜の残渣を検出した本実施例の位相シフトマスクの上にポジ型レジスト膜をスピンコートし、レーザー描画装置によって残渣部周辺のみに描画を行った。その後、現像を行い、残渣部周辺のみが開口したレジストパターンを形成した。 Next, a positive resist film was spin-coated on the phase shift mask of this example in which the residue of the etching mask film and the light shielding film was detected by defect inspection, and writing was performed only around the residue portion by a laser drawing apparatus. . Thereafter, development was performed to form a resist pattern having openings only around the residue.
 次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、上層遮光膜の残渣を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the residue of the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、本実施例の位相シフトマスクのエッチングマスク膜及び遮光膜の残渣修正を完了した。この位相シフトマスクを欠陥検査したところ、エッチングマスク膜及び遮光膜の残渣が完全に除去されていることを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid, and the residue correction of the etching mask film and the light shielding film of the phase shift mask of this example was completed. When this phase shift mask was inspected for defects, it was confirmed that the residues of the etching mask film and the light shielding film were completely removed.
(実施例13)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜を56nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。続いて、第1の位相シフト膜の上にDCスパッタ装置を用いて、ケイ素と酸素からなる第2の位相シフト膜を8nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 13)
A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 56 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio). Subsequently, a second phase shift film made of silicon and oxygen was formed to a thickness of 8 nm on the first phase shift film using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる遮光膜を20nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。 On the phase shift film, a light shielding film made of tantalum and nitrogen was formed to a thickness of 20 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio).
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を10nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 35: 65 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 2.9.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜、ケイ素と酸素からなる第2の位相シフト膜、タンタルと窒素からなる遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the light shielding film made of tantalum and nitrogen, and the tantalum and oxygen are formed on the quartz substrate. A phase shift mask blank in which an antireflection film and an etching mask film made of chromium and nitrogen were laminated was obtained.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、第1と第2の位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the first and second phase shift films were patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均15nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
 次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は9.3%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより7%改善することを確認した。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 9.3%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were produced and the probability of the residue of the etching mask film and the light shielding film being generated in the defect inspection was examined, it was 7% of the phase shift mask using the conventional silicon compound film as the etching mask film. Confirmed to improve.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
 次に、上述の遮光膜の除去工程の後に追加のドライエッチングを加えた位相シフトマスクを作製した。追加したドライエッチングのエッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは60Wに設定した。このエッチング条件では石英基板が2nmのダメージを受けることを事前の評価で確認してある。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、追加のドライエッチングを行っていない位相シフトマスクの値から変動していないことを確認した。 Next, a phase shift mask in which additional dry etching was added after the above-described light shielding film removal step was produced. The added dry etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition. When the transmittance and phase difference of this phase shift mask were measured by MPM193 manufactured by Lasertec, it was confirmed that there was no fluctuation from the value of the phase shift mask not subjected to additional dry etching.
(実施例14)
 石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜を56nmの厚さで成膜した。ターゲットはモリブデンとケイ素を用い、スパッタガスはアルゴンと酸素と窒素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。続いて、第1の位相シフト膜の上にDCスパッタ装置を用いて、ケイ素と酸素からなる第2の位相シフト膜を8nmの厚さで成膜した。ターゲットはケイ素を用い、スパッタガスはアルゴンと酸素を用いた。この位相シフト膜の組成をESCAで分析したところ、Si:O=33:67(原子%比)であった。
(Example 14)
A first phase shift film made of silicon, molybdenum, oxygen and nitrogen was formed to a thickness of 56 nm on a quartz substrate using a DC sputtering apparatus using two targets. The target was molybdenum and silicon, and the sputtering gas was argon, oxygen, and nitrogen. When the composition of this phase shift film was analyzed by ESCA, it was Si: Mo: O: N = 40: 8: 7: 45 (atomic% ratio). Subsequently, a second phase shift film made of silicon and oxygen was formed to a thickness of 8 nm on the first phase shift film using a DC sputtering apparatus. The target was silicon, and the sputtering gas was argon and oxygen. When the composition of this phase shift film was analyzed by ESCA, it was Si: O = 33: 67 (atomic% ratio).
 この位相シフト膜の上にイオンスパッタ装置を用いて、ルテニウム化合物からなる下層遮光膜を10nmの厚さで成膜した。ターゲットはルテニウムを用い、スパッタガスはキセノン及び窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ru:N=80:20(原子%比)であった。 An underlayer light-shielding film made of a ruthenium compound was formed to a thickness of 10 nm on this phase shift film using an ion sputtering apparatus. The target was ruthenium, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ru: N = 80: 20 (atomic% ratio).
 この下層遮光膜の上にDCスパッタ装置を用いて、タンタルと窒素からなる上層遮光膜を11nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと窒素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:N=85:15(原子%比)であった。また、分光光度計にてこのエッチングマスク膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 On this lower light shielding film, an upper light shielding film made of tantalum and nitrogen was formed to a thickness of 11 nm using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and nitrogen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: N = 85: 15 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the etching mask film, the light shielding film, and the phase shift film were combined was measured with a spectrophotometer and found to be 2.9.
 この遮光膜の上にDCスパッタ装置を用いて、タンタルと酸素からなる反射防止膜を10nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはキセノンと酸素を用いた。この遮光膜の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。また、分光光度計にてこの反射防止膜と遮光膜と位相シフト膜を合わせたArFエキシマレーザーの露光波長(193nm)での光学濃度(OD値)を測定したところ、2.9であった。 An antireflection film made of tantalum and oxygen was formed to a thickness of 10 nm on the light shielding film using a DC sputtering apparatus. The target was tantalum, and the sputtering gas was xenon and oxygen. When the composition of this light shielding film was analyzed by ESCA, it was Ta: O = 35: 65 (atomic% ratio). Further, the optical density (OD value) at the exposure wavelength (193 nm) of the ArF excimer laser in which the antireflection film, the light shielding film and the phase shift film were combined was measured with a spectrophotometer and found to be 2.9.
 この反射防止膜の上にDCスパッタ装置を用いて、クロムと窒素からなるエッチングマスク膜を13nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと窒素を用いた。このエッチングマスク膜の組成をESCAで分析したところ、Cr:N=90:10(原子%比)であった。 An etching mask film made of chromium and nitrogen was formed to a thickness of 13 nm on this antireflection film using a DC sputtering apparatus. The target was chromium, and the sputtering gas was argon and nitrogen. When the composition of this etching mask film was analyzed by ESCA, it was Cr: N = 90: 10 (atomic% ratio).
 このようにして、石英基板の上にケイ素とモリブデンと酸素と窒素からなる第1の位相シフト膜、ケイ素と酸素からなる第2の位相シフト膜、ルテニウム合金からなる下層遮光膜、タンタルと窒素からなる上層遮光膜、タンタルと酸素からなる反射防止膜、クロムと窒素からなるエッチングマスク膜が積層された位相シフトマスクブランクを得た。 Thus, on the quartz substrate, the first phase shift film made of silicon, molybdenum, oxygen and nitrogen, the second phase shift film made of silicon and oxygen, the lower light shielding film made of ruthenium alloy, and the tantalum and nitrogen A phase shift mask blank was obtained in which an upper light shielding film, an antireflection film made of tantalum and oxygen, and an etching mask film made of chromium and nitrogen were laminated.
 次に、このエッチングマスク膜上にネガ型化学増幅型電子線レジストを膜厚150nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。このレジストパターンの解像性をHMDS処理したケイ素化合物のエッチングマスク膜上に同様の処理を施したレジストパターンと比較したところ、レジストパターンの倒れが10nm改善していることを確認した。 Next, a negative chemically amplified electron beam resist is spin-coated on this etching mask film to a film thickness of 150 nm, the pattern is drawn with an electron beam at a dose of 35 μC / cm 2 , heat-treated at 110 ° C. for 10 minutes, and paddle development is performed. Was developed for 90 seconds to form a resist pattern. When the resolution of this resist pattern was compared with a resist pattern obtained by performing the same treatment on an etching mask film of a silicon compound treated with HMDS, it was confirmed that the collapse of the resist pattern was improved by 10 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜をパターニングした。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。 Next, the etching mask film was patterned using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. Next, the resist pattern was stripped and washed by sulfuric acid water washing.
 次に、ドライエッチング装置を用いて、反射防止膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、遮光膜を平均5nm掘り込んだ時点で停止した。 Next, the antireflection film was patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the light shielding film was dug in an average of 5 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜をパターニングした。エッチングガスは塩素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層のエッチングマスク膜に対して下層の反射防止膜及び上層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the upper light shielding film was patterned using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the line pattern dimensions of the lower anti-reflection film and the upper light-shielding film were reduced with respect to the upper etching mask film did not occur.
 次に、ドライエッチング装置を用いて、下層遮光膜をパターニングした。エッチングガスは酸素とヘリウムを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。このドライエッチングの処理後に、上層遮光膜に対して下層遮光膜のラインパターンの寸法が細くなるアンダーカットは発生しなかった。 Next, the lower light shielding film was patterned using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 40 W. After the dry etching process, an undercut in which the dimension of the line pattern of the lower light-shielding film was narrower than that of the upper light-shielding film did not occur.
 次に、ドライエッチング装置を用いて、第1と第2の位相シフト膜をパターニングした。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均2nm掘り込んだ時点で停止した。 Next, the first and second phase shift films were patterned using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 2 nm.
 次に、ドライエッチング装置を用いて、エッチングマスク膜を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ポジ型レジスト膜をスピンコートし、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターンを形成した。 Next, a positive resist film was spin-coated and drawn by a laser drawing apparatus. Thereafter, development was performed to form a resist pattern.
 次に、ドライエッチング装置を用いて、反射防止膜を除去した。エッチングガスはCFと酸素を用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは20Wに設定した。ドライエッチングは、石英基板を平均15nm掘り込んだ時点で停止した。 Next, the antireflection film was removed using a dry etching apparatus. The etching gas was CF 4 and oxygen, the gas pressure was set to 5 mTorr, the ICP power was set to 400 W, and the bias power was set to 20 W. Dry etching was stopped when the quartz substrate was dug in an average of 15 nm.
 次に、ドライエッチング装置を用いて、上層遮光膜を除去した。エッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the upper light shielding film was removed using a dry etching apparatus. The etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、ドライエッチング装置を用いて、下層遮光膜を除去した。エッチングガスは酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。 Next, the lower light shielding film was removed using a dry etching apparatus. The etching gas was oxygen and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Over-etching was performed at 200%.
 次に、レジストパターンを硫酸加水洗浄によって剥離洗浄し、位相シフトマスクを得た。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、ArFエキシマレーザーの露光波長(193nm)での石英基板の透過率に対する位相シフト膜部の透過率は9.3%、位相差は180度であった。また、この位相シフトマスクのパターン寸法のパターン粗密依存性を従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクと比較したところ、3nmの改善を確認した。また、この位相シフトマスクを複数枚作製し、欠陥検査にてエッチングマスク膜及び遮光膜の残渣が発生する確率を調査したところ、従来のケイ素化合物膜をエッチングマスク膜とする位相シフトマスクより8%改善することを確認した。上層遮光膜が薄くなったため、実施例13より改善率が高くなっている。 Next, the resist pattern was peeled and washed by washing with sulfuric acid to obtain a phase shift mask. When the transmittance and phase difference of this phase shift mask were measured with MPM193 manufactured by Lasertec Corporation, the transmittance of the phase shift film portion with respect to the transmittance of the quartz substrate at the exposure wavelength (193 nm) of the ArF excimer laser was 9.3%. The phase difference was 180 degrees. Further, when the pattern roughness dependence of the pattern dimension of this phase shift mask was compared with a phase shift mask using a conventional silicon compound film as an etching mask film, an improvement of 3 nm was confirmed. Further, when a plurality of phase shift masks were prepared and the probability that residues of the etching mask film and the light shielding film were generated in the defect inspection was investigated, the phase shift mask was 8% of the phase shift mask using a conventional silicon compound film as an etching mask film. Confirmed to improve. Since the upper light-shielding film is thinner, the improvement rate is higher than that in Example 13.
 次に、上述のエッチングマスク膜の除去工程の前にSiからなる粒子をマスク表面に撒布し、エッチングマスク膜の除去工程を行い、洗浄にて粒子を除去することにより、意図的に反射防止膜上にエッチングマスク膜の残渣を発生させた。次に、反射マスク検査を行い、この残渣を検出することを確認した。次に、ドライエッチング装置を用いて、エッチングマスク膜の残渣を除去した。エッチングガスは塩素と酸素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは100%行った。次に、検出した残渣発生領域をSEMにて観察したところ、残渣が完全に除去されていることを確認した。 Next, before the above-described etching mask film removal step, particles made of Si 3 N 4 are distributed on the mask surface, the etching mask film removal step is performed, and the particles are intentionally removed by washing. An etching mask film residue was generated on the antireflection film. Next, a reflection mask inspection was performed, and it was confirmed that this residue was detected. Next, the residue of the etching mask film was removed using a dry etching apparatus. The etching gas was chlorine, oxygen, and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 10 W. Overetching was performed 100%. Next, when the detected residue generation region was observed with SEM, it was confirmed that the residue was completely removed.
 次に、上述の遮光膜の除去工程の後に追加のドライエッチングを加えた位相シフトマスクを作製した。追加したドライエッチングのエッチングガスは塩素とヘリウムを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは60Wに設定した。このエッチング条件では石英基板が2nmのダメージを受けることを事前の評価で確認してある。この位相シフトマスクの透過率と位相差をレーザーテック社製MPM193で測定したところ、追加のドライエッチングを行っていない位相シフトマスクの値から変動していないことを確認した。 Next, a phase shift mask in which additional dry etching was added after the above-described light shielding film removal step was produced. The added dry etching gas was chlorine and helium, the gas pressure was set to 10 mTorr, the ICP power was set to 500 W, and the bias power was set to 60 W. It has been confirmed by prior evaluation that the quartz substrate is damaged by 2 nm under this etching condition. When the transmittance and phase difference of this phase shift mask were measured by MPM193 manufactured by Lasertec, it was confirmed that there was no fluctuation from the value of the phase shift mask not subjected to additional dry etching.
 本発明では、位相シフトマスクブランクの組成及び膜厚及び層構造と、これを用いた位相シフトマスクの製造工程及び条件を適切な範囲で選択したので、28nm以下のロジック系デバイス、又は30nm以下のメモリ系デバイス製造に対応した、微細なパターンを高精度で形成した位相シフトマスクを提供することができる。 In the present invention, since the composition and film thickness and layer structure of the phase shift mask blank and the manufacturing process and conditions of the phase shift mask using the phase shift mask were selected within an appropriate range, a logic system device of 28 nm or less, or 30 nm or less It is possible to provide a phase shift mask in which a fine pattern is formed with high accuracy corresponding to memory device manufacturing.
10,20:位相シフトマスクブランク、11,21:基板(露光波長に対して透明な基板)、12,22:位相シフト膜、13,23:遮光膜又は上層遮光膜、14,24:エッチングマスク膜、15,25:レジストパターン、16,26:第2のレジストパターン、13a:残渣(上層遮光膜の残渣)、14a:残渣(エッチングマスク膜の残渣)、18a:残渣(下層遮光膜の残渣)、17:レジストパターン、18,28:下層遮光層、100,200:位相シフトマスク、10’:位相シフトマスクブランク、11’:基板(露光波長に対して透明な基板)、12’:位相シフト膜、13’:遮光膜又は上層遮光膜、14’:反射防止膜、15’:エッチングマスク膜、16’:レジストパターン、17’:第2のレジストパターン、18’:下層遮光層、100’:位相シフトマスク 10, 20: phase shift mask blank, 11, 21: substrate (substrate transparent to exposure wavelength), 12, 22: phase shift film, 13, 23: light shielding film or upper light shielding film, 14, 24: etching mask Film, 15, 25: Resist pattern, 16, 26: Second resist pattern, 13a: Residue (residue of upper light shielding film), 14a: Residue (residue of etching mask film), 18a: Residue (residue of lower light shielding film) ), 17: resist pattern, 18, 28: lower light shielding layer, 100, 200: phase shift mask, 10 ′: phase shift mask blank, 11 ′: substrate (substrate transparent to exposure wavelength), 12 ′: phase Shift film, 13 ′: light shielding film or upper light shielding film, 14 ′: antireflection film, 15 ′: etching mask film, 16 ′: resist pattern, 17 ′: second resist pattern Emissions, 18 ': lower shielding layer, 100': phase shift mask

Claims (36)

  1.  露光波長に対して透明な基板上に、位相シフト膜と、遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクであって、
     前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、
     前記遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つ非酸素含有塩素系エッチング(Cl系)でエッチング可能であり、
     前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能であり、
     前記位相シフト膜と前記基板との間にエッチングストッパー層を有しない、
    ことを特徴とする位相シフトマスクブランク。
    A phase shift mask blank in which a phase shift film, a light shielding film, and an etching mask film are laminated in this order on a substrate transparent to an exposure wavelength,
    The phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by fluorine-based etching (F-based). ,
    The light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and can be etched by non-oxygen-containing chlorine-based etching (Cl-based).
    The etching mask film is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-containing chlorine-based etching (Cl / O-based). ,
    Not having an etching stopper layer between the phase shift film and the substrate;
    A phase shift mask blank characterized by that.
  2.  前記遮光膜は、ケイ素を含有しないタンタル化合物からなり、前記ケイ素を含有しないタンタル化合物は、タンタルに加えて、窒素、ホウ素、酸素及び炭素から選ばれる1種以上を含有する、
    ことを特徴とする請求項1に記載の位相シフトマスクブランク。
    The light shielding film is made of a tantalum compound not containing silicon, and the tantalum compound not containing silicon contains at least one selected from nitrogen, boron, oxygen and carbon in addition to tantalum.
    The phase shift mask blank according to claim 1.
  3.  前記遮光膜は、窒化タンタルを主成分とする、
    ことを特徴とする請求項2に記載の位相シフトマスクブランク。
    The light shielding film is mainly composed of tantalum nitride,
    The phase shift mask blank according to claim 2.
  4.  前記エッチングマスク膜は、クロム単体、又はクロムに加えて、窒素、酸素及び炭素から選ばれる1種以上を含有する、
    ことを特徴とする請求項1ないし3のいずれか1項に記載の位相シフトマスクブランク。
    The etching mask film contains at least one selected from nitrogen, oxygen and carbon in addition to chromium alone or chromium.
    The phase shift mask blank according to any one of claims 1 to 3, wherein:
  5.  前記位相シフト膜は、透過する露光光に対して所定量の位相変化を与える機能を有し、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、
     前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムから選ばれる1種以上である、
    ことを特徴とする請求項1ないし4のいずれか1項に記載の位相シフトマスクブランク。
    The phase shift film has a function of giving a predetermined amount of phase change to transmitted exposure light, contains silicon, and contains at least one selected from transition metals, nitrogen, oxygen and carbon,
    The transition metal is at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, and hafnium.
    The phase shift mask blank according to any one of claims 1 to 4, wherein the phase shift mask blank is provided.
  6.  前記遮光膜と前記エッチングマスク膜の間に、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な反射防止膜が積層されている、
    ことを特徴とする請求項1ないし5のいずれか1項に記載の位相シフトマスクブランク。
    Between the light shielding film and the etching mask film, it has resistance to oxygen-containing chlorine-based etching (Cl / O system) and non-oxygen-containing chlorine-based etching (Cl system), and fluorine-based etching (F system). The antireflection film that can be etched with is laminated,
    The phase shift mask blank according to claim 1, wherein the phase shift mask blank is provided.
  7.  前記反射防止膜は、酸化タンタルを主成分とする、
    ことを特徴とする、請求項6に記載の位相シフトマスクブランク。
    The antireflection film is mainly composed of tantalum oxide,
    The phase shift mask blank according to claim 6.
  8.  露光波長に対して透明な基板上に、位相シフト膜と、下層遮光膜と、上層遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクであって、
     前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、
     前記下層遮光膜は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能であり、
     前記上層遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)の両方、又はいずれか一方にてエッチング可能であり、
     前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能である、
    ことを特徴とする位相シフトマスクブランク。
    A phase shift mask blank in which a phase shift film, a lower light shielding film, an upper light shielding film, and an etching mask film are laminated in this order on a substrate transparent to the exposure wavelength,
    The phase shift film has resistance to oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and fluorine-based etching ( F system) can be etched,
    The lower light-shielding film has resistance to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based).
    The upper light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and is both fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based) or any one of them. It can be etched on one side,
    The etching mask film is resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and oxygen-containing chlorine-based etching (Cl / O-based) can be etched,
    A phase shift mask blank characterized by that.
  9.  前記下層遮光膜は、膜厚が2nm以上、30nm以下であり、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物から形成されている、
    ことを特徴とする請求項8に記載の位相シフトマスクブランク。
    The lower light-shielding film has a thickness of 2 nm or more and 30 nm or less, and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
    The phase shift mask blank according to claim 8.
  10.  前記上層遮光膜は、タンタル化合物又はケイ素化合物からなることを特徴とする請求項8又は9に記載の位相シフトマスクブランク。 The phase shift mask blank according to claim 8 or 9, wherein the upper light shielding film is made of a tantalum compound or a silicon compound.
  11.  前記タンタル化合物は、タンタルと、窒素、ホウ素、ケイ素、酸素及び炭素から選ばれる1種以上とを含有することを特徴とする請求項10に記載の位相シフトマスクブランク。 The phase shift mask blank according to claim 10, wherein the tantalum compound contains tantalum and at least one selected from nitrogen, boron, silicon, oxygen, and carbon.
  12.  前記ケイ素化合物は、ケイ素を含有し、且つモリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウム、窒素、酸素、炭素から選ばれる1種以上を含有することを特徴とする請求項10に記載の位相シフトマスクブランク。 The silicon compound contains silicon and contains one or more selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, nitrogen, oxygen, and carbon. The described phase shift mask blank.
  13.  前記エッチングマスク膜は、クロム単体、又はクロムに加えて、窒素、酸素及び炭素から選ばれる1種以上を含有し、
    ことを特徴とする請求項8ないし12のいずれか1項に記載の位相シフトマスクブランク。
    The etching mask film contains at least one selected from nitrogen, oxygen and carbon in addition to chromium alone or chromium.
    The phase shift mask blank according to any one of claims 8 to 12, wherein
  14.  前記位相シフト膜は、透過する露光光に対して所定量の位相変化を与える機能を有し、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、
     前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムから選ばれる1種以上である、
    ことを特徴とする請求項8ないし13のいずれか1項に記載の位相シフトマスクブランク。
    The phase shift film has a function of giving a predetermined amount of phase change to transmitted exposure light, contains silicon, and contains at least one selected from transition metals, nitrogen, oxygen and carbon,
    The transition metal is at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, and hafnium.
    The phase shift mask blank according to any one of claims 8 to 13,
  15.  前記上層遮光膜と前記エッチングマスク膜の間に、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な反射防止膜が積層されている、
    ことを特徴とする請求項8ないし14のいずれか1項に記載の位相シフトマスクブランク。
    Resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based) between the upper light shielding film and the etching mask film ) An anti-reflective film that can be etched in
    The phase shift mask blank according to claim 8, wherein:
  16.  前記反射防止膜は、酸化タンタルを主成分とする、
    ことを特徴とする、請求項15に記載の位相シフトマスクブランク。
    The antireflection film is mainly composed of tantalum oxide,
    The phase shift mask blank according to claim 15, wherein:
  17.  露光波長に対して透明な基板上に、位相シフト膜と、遮光膜と、エッチングマスク膜を含む複数の膜がこの順序で積層された位相シフトマスクブランクの、前記膜の一部が選択的に除去されることで回路パターンが形成された位相シフトマスクであって、
     前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、
     前記遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つ非酸素含有塩素系エッチング(Cl系)でエッチング可能であり、
     前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能であり、
     前記位相シフト膜と前記基板との間にエッチングストッパー層を有しない、
    ことを特徴とする位相シフトマスク。
    A portion of the film of the phase shift mask blank in which a plurality of films including a phase shift film, a light shielding film, and an etching mask film are laminated in this order on a substrate transparent to the exposure wavelength is selectively A phase shift mask in which a circuit pattern is formed by being removed,
    The phase shift film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by fluorine-based etching (F-based). ,
    The light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and can be etched by non-oxygen-containing chlorine-based etching (Cl-based).
    The etching mask film is resistant to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-containing chlorine-based etching (Cl / O-based). ,
    Not having an etching stopper layer between the phase shift film and the substrate;
    A phase shift mask characterized by that.
  18.  前記遮光膜は、ケイ素を含有しないタンタル化合物からなり、前記ケイ素を含有しないタンタル化合物は、タンタルに加えて、窒素、ホウ素、酸素及び炭素から選ばれる1種以上を含有する、
    ことを特徴とする請求項17に記載の位相シフトマスク。
    The light shielding film is made of a tantalum compound not containing silicon, and the tantalum compound not containing silicon contains at least one selected from nitrogen, boron, oxygen and carbon in addition to tantalum.
    The phase shift mask according to claim 17.
  19.  前記遮光膜は、窒化タンタルを主成分とする、
    ことを特徴とする請求項18に記載の位相シフトマスク。
    The light shielding film is mainly composed of tantalum nitride,
    The phase shift mask according to claim 18.
  20.  前記エッチングマスク膜は、クロム単体、又はクロムに加えて、窒素、酸素及び炭素から選ばれる1種以上を含有する、
    ことを特徴とする請求項17ないし19のいずれか1項に記載の位相シフトマスク。
    The etching mask film contains at least one selected from nitrogen, oxygen and carbon in addition to chromium alone or chromium.
    The phase shift mask according to any one of claims 17 to 19, wherein the phase shift mask is provided.
  21.  前記位相シフト膜は、透過する露光光に対して所定量の位相変化を与える機能を有し、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、
     前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムから選ばれる1種以上である、
    ことを特徴とする請求項17ないし20のいずれか1項に記載の位相シフトマスク。
    The phase shift film has a function of giving a predetermined amount of phase change to transmitted exposure light, contains silicon, and contains at least one selected from transition metals, nitrogen, oxygen and carbon,
    The transition metal is at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, and hafnium.
    The phase shift mask according to any one of claims 17 to 20, wherein
  22.  前記遮光膜と前記エッチングマスク膜の間に、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な反射防止膜が積層されている、
    ことを特徴とする請求項17ないし21のいずれか1項に記載の位相シフトマスク。
    Between the light shielding film and the etching mask film, it has resistance to oxygen-containing chlorine-based etching (Cl / O system) and non-oxygen-containing chlorine-based etching (Cl system), and fluorine-based etching (F system). The antireflection film that can be etched with is laminated,
    The phase shift mask according to any one of claims 17 to 21, wherein the phase shift mask is provided.
  23.  前記反射防止膜は、酸化タンタルを主成分とする、
    ことを特徴とする、請求項22に記載の位相シフトマスク。
    The antireflection film is mainly composed of tantalum oxide,
    The phase shift mask according to claim 22, wherein
  24.  露光波長に対して透明な基板上に、位相シフト膜と、下層遮光膜と、上層遮光膜と、エッチングマスク膜がこの順序で積層された位相シフトマスクブランクの、前記膜の一部が選択的に除去されることで回路パターンが形成された位相シフトマスクであって、
     前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であり、
     前記下層遮光膜は、フッ素系エッチング(F系)及び非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つ酸素系エッチング(O系)でエッチング可能であり、
     前記上層遮光膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)の両方、又はいずれか一方にてエッチング可能であり、
     前記エッチングマスク膜は、フッ素系エッチング(F系)と非酸素含有塩素系エッチング(Cl系)と酸素系エッチング(O系)とに対して耐性を有し、且つ酸素含有塩素系エッチング(Cl/O系)でエッチング可能である、
    ことを特徴とする位相シフトマスク。
    A part of the film of the phase shift mask blank in which the phase shift film, the lower layer light shielding film, the upper layer light shielding film, and the etching mask film are laminated in this order on the substrate transparent to the exposure wavelength is selective. A phase shift mask in which a circuit pattern is formed by being removed,
    The phase shift film has resistance to oxygen-containing chlorine-based etching (Cl / O-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and fluorine-based etching ( F system) can be etched,
    The lower light-shielding film has resistance to fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based), and can be etched by oxygen-based etching (O-based).
    The upper light-shielding film is resistant to oxygen-containing chlorine-based etching (Cl / O-based) and is both fluorine-based etching (F-based) and non-oxygen-containing chlorine-based etching (Cl-based) or any one of them. It can be etched on one side,
    The etching mask film is resistant to fluorine-based etching (F-based), non-oxygen-containing chlorine-based etching (Cl-based), and oxygen-based etching (O-based), and oxygen-containing chlorine-based etching (Cl / O-based) can be etched,
    A phase shift mask characterized by that.
  25.  前記下層遮光膜は、膜厚が2nm以上、30nm以下であり、ルテニウム単体、又はルテニウム含有量が50原子%以上のルテニウム化合物から形成されている、
    ことを特徴とする請求項24に記載の位相シフトマスク。
    The lower light-shielding film has a thickness of 2 nm or more and 30 nm or less, and is formed of ruthenium alone or a ruthenium compound having a ruthenium content of 50 atomic% or more.
    25. The phase shift mask according to claim 24, wherein:
  26.  前記上層遮光膜は、タンタル化合物又はケイ素化合物からなることを特徴とする請求項24又は25に記載の位相シフトマスク。 The phase shift mask according to claim 24 or 25, wherein the upper light shielding film is made of a tantalum compound or a silicon compound.
  27.  前記タンタル化合物は、タンタルと、窒素、ホウ素、ケイ素、酸素及び炭素から選ばれる1種以上とを含有することを特徴とする請求項26に記載の位相シフトマスク。 The phase shift mask according to claim 26, wherein the tantalum compound contains tantalum and at least one selected from nitrogen, boron, silicon, oxygen, and carbon.
  28.  前記ケイ素化合物は、ケイ素を含有し、且つモリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウム、窒素、酸素、炭素から選ばれる1種以上を含有することを特徴とする請求項26に記載の位相シフトマスク。 The silicon compound contains silicon and contains at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, hafnium, nitrogen, oxygen, and carbon. The phase shift mask as described.
  29.  前記エッチングマスク膜は、クロム単体、又はクロムに加えて、窒素、酸素及び炭素から選ばれる1種以上を含有し、
    ことを特徴とする請求項24ないし28のいずれか1項に記載の位相シフトマスク。
    The etching mask film contains at least one selected from nitrogen, oxygen and carbon in addition to chromium alone or chromium.
    The phase shift mask according to any one of claims 24 to 28, wherein:
  30.  前記位相シフト膜は、透過する露光光に対して所定量の位相変化を与える機能を有し、ケイ素を含有し、且つ遷移金属、窒素、酸素及び炭素から選ばれる1種以上を含有し、
     前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、ハフニウムから選ばれる1種以上である、
    ことを特徴とする請求項24ないし29のいずれか1項に記載の位相シフトマスク。
    The phase shift film has a function of giving a predetermined amount of phase change to transmitted exposure light, contains silicon, and contains at least one selected from transition metals, nitrogen, oxygen and carbon,
    The transition metal is at least one selected from molybdenum, titanium, vanadium, cobalt, nickel, zirconium, niobium, and hafnium.
    30. A phase shift mask according to any one of claims 24 to 29, wherein:
  31.  前記上層遮光膜と前記エッチングマスク膜の間に、酸素含有塩素系エッチング(Cl/O系)と非酸素含有塩素系エッチング(Cl系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な反射防止膜が積層されている、
    ことを特徴とする請求項24ないし30のいずれか1項に記載の位相シフトマスク。
    Resistant to oxygen-containing chlorine-based etching (Cl / O-based) and non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based) between the upper light shielding film and the etching mask film ) An anti-reflective film that can be etched in
    The phase shift mask according to any one of claims 24 to 30, wherein:
  32.  前記反射防止膜は、酸化タンタルを主成分とする、
    ことを特徴とする、請求項31に記載の位相シフトマスク。
    The antireflection film is mainly composed of tantalum oxide,
    The phase shift mask according to claim 31, wherein:
  33.  請求項1ないし7のいずれか1項に記載の位相シフトマスクブランクを用いる位相シフトマスクの製造方法であって、
     前記エッチングマスク膜上にレジストパターンを形成する工程と、
     酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜にパターンを形成する工程と、
     非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記遮光膜にパターンを形成する工程と、
     フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、
     前記遮光膜に形成されたパターン上から酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜を除去する工程と、
     前記位相シフト膜に形成されたパターン上から、非酸素含有塩素系エッチング(Cl系)又は非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方にて前記遮光膜を除去工程と、を含む、
    ことを特徴とする位相シフトマスクの製造方法。
    A method of manufacturing a phase shift mask using the phase shift mask blank according to any one of claims 1 to 7,
    Forming a resist pattern on the etching mask film;
    Forming a pattern on the etching mask film by oxygen-containing chlorine-based etching (Cl / O system);
    A step of forming a pattern on the light shielding film by non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based), or any one of them;
    Forming a pattern on the phase shift film by fluorine etching (F system);
    Removing the etching mask film from the pattern formed on the light shielding film by oxygen-containing chlorine-based etching (Cl / O system);
    The light shielding film is removed from the pattern formed on the phase shift film by non-oxygen-containing chlorine-based etching (Cl-based) or both non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based). Including a process,
    A method of manufacturing a phase shift mask.
  34.  前記遮光膜上に発生した前記エッチングマスク膜の残渣のみを酸素含有塩素系エッチング(Cl/O系)にて除去する修正工程と、前記位相シフト膜上に発生した前記遮光膜の残渣のみを非酸素含有塩素系エッチング(Cl系)にて除去する修正工程のいずれか一つを含む、
    ことを特徴とする、請求項33に記載の位相シフトマスクの製造方法。
    A correction step of removing only the residue of the etching mask film generated on the light shielding film by oxygen-containing chlorine-based etching (Cl / O system), and removing only the residue of the light shielding film generated on the phase shift film. Including any one of the correction steps to be removed by oxygen-containing chlorine-based etching (Cl-based),
    The method of manufacturing a phase shift mask according to claim 33, wherein:
  35.  請求項8ないし16のいずれか1項に記載の位相シフトマスクブランクを用いる位相シフトマスクの製造方法であって、
     前記エッチングマスク膜上にレジストパターンを形成する工程と、
     酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜にパターンを形成する工程と、
     非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記上層遮光膜にパターンを形成する工程と、
     酸素系エッチング(O系)にて前記下層遮光膜にパターンを形成する工程と、
     フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、
     前記上層遮光膜に形成されたパターン上から酸素含有塩素系エッチング(Cl/O系)にて前記エッチングマスク膜を除去する工程と、
     前記下層遮光膜に形成されたパターン上から非酸素含有塩素系エッチング(Cl系)とフッ素系エッチング(F系)の両方、又はいずれか一方にて前記上層遮光膜を除去する工程と、
     前記位相シフト膜に形成されたパターン上から、酸素系エッチング(O系)にて前記下層遮光膜を除去する工程と、を含む、
    ことを特徴とする位相シフトマスクの製造方法。
    A phase shift mask manufacturing method using the phase shift mask blank according to any one of claims 8 to 16,
    Forming a resist pattern on the etching mask film;
    Forming a pattern on the etching mask film by oxygen-containing chlorine-based etching (Cl / O system);
    A step of forming a pattern on the upper light-shielding film by both or one of non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based);
    Forming a pattern on the lower light-shielding film by oxygen-based etching (O-based);
    Forming a pattern on the phase shift film by fluorine etching (F system);
    Removing the etching mask film from the pattern formed on the upper light shielding film by oxygen-containing chlorine-based etching (Cl / O system);
    Removing the upper light shielding film from the pattern formed on the lower light shielding film by non-oxygen-containing chlorine-based etching (Cl-based) and fluorine-based etching (F-based), or any one of them;
    Removing the lower light-shielding film from the pattern formed on the phase shift film by oxygen-based etching (O-based).
    A method of manufacturing a phase shift mask.
  36.  前記上層遮光膜上に発生した前記エッチングマスク膜の残渣のみを酸素含有塩素系エッチング(Cl/O系)にて除去する修正工程と、前記下層遮光膜上に発生した前記上層遮光膜の残渣のみを非酸素含有塩素系エッチング(Cl系)にて除去する修正工程と、前記位相シフト膜上に発生した前記下層遮光膜の残渣のみを酸素系エッチング(O系)にて除去する修正工程のいずれか一つを含む、
    ことを特徴とする、請求項35に記載の位相シフトマスクの製造方法。
    A correction step of removing only the residue of the etching mask film generated on the upper light shielding film by oxygen-containing chlorine-based etching (Cl / O system), and only the residue of the upper light shielding film generated on the lower light shielding film Any of a correction step of removing oxygen by chlorine-free etching (Cl-based) and a correction step of removing only the residue of the lower light shielding film generated on the phase shift film by oxygen-based etching (O-based) Including one,
    36. A method of manufacturing a phase shift mask according to claim 35, wherein:
PCT/JP2018/013591 2017-03-31 2018-03-30 Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask WO2018181891A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019510238A JP6965920B2 (en) 2017-03-31 2018-03-30 Manufacturing method of phase shift mask blank, phase shift mask and phase shift mask
KR1020197027998A KR102553992B1 (en) 2017-03-31 2018-03-30 Phase shift mask blank, phase shift mask and method for manufacturing phase shift mask
SG11201907839R SG11201907839RA (en) 2017-03-31 2018-03-30 Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071233 2017-03-31
JP2017-071233 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181891A1 true WO2018181891A1 (en) 2018-10-04

Family

ID=63676487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013591 WO2018181891A1 (en) 2017-03-31 2018-03-30 Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask

Country Status (5)

Country Link
JP (1) JP6965920B2 (en)
KR (1) KR102553992B1 (en)
SG (1) SG11201907839RA (en)
TW (1) TWI778039B (en)
WO (1) WO2018181891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112755A (en) * 2019-01-16 2020-07-27 東京エレクトロン株式会社 Hard mask and method for producing semiconductor device
WO2022235545A1 (en) * 2021-05-03 2022-11-10 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264083B2 (en) * 2019-03-29 2023-04-25 信越化学工業株式会社 PHASE SHIFT MASK BLANKS, MANUFACTURING METHOD THEREOF AND PHASE SHIFT MASK
US11940725B2 (en) 2021-01-27 2024-03-26 S&S Tech Co., Ltd. Phase shift blankmask and photomask for EUV lithography
KR102392332B1 (en) * 2021-06-08 2022-04-28 에스케이씨솔믹스 주식회사 Blank mask and photomask using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312043A (en) * 2000-04-27 2001-11-09 Dainippon Printing Co Ltd Halftone phase shift photomask and blanks for the same
JP2009244793A (en) * 2008-03-31 2009-10-22 Hoya Corp Photomask blank, photomask and its method for manufacturing
JP2010072406A (en) * 2008-09-19 2010-04-02 Hoya Corp Photomask blank, photomask, and method of manufacturing the same
WO2015037392A1 (en) * 2013-09-10 2015-03-19 Hoya株式会社 Mask blank, transfer mask and method for producing transfer mask
JP2016191784A (en) * 2015-03-31 2016-11-10 Hoya株式会社 Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314690B2 (en) 2003-04-09 2008-01-01 Hoya Corporation Photomask producing method and photomask blank
KR100546365B1 (en) * 2003-08-18 2006-01-26 삼성전자주식회사 Blank photomask and method of fabricating photomask using the same
JP5294227B2 (en) * 2006-09-15 2013-09-18 Hoya株式会社 Mask blank and transfer mask manufacturing method
JP5009649B2 (en) * 2007-02-28 2012-08-22 Hoya株式会社 Mask blank, exposure mask manufacturing method, reflective mask manufacturing method, and imprint template manufacturing method
US8968970B2 (en) * 2009-10-09 2015-03-03 Samsung Electronics Co., Ltd. Phase shift masks and methods of forming phase shift masks
JP5739375B2 (en) * 2012-05-16 2015-06-24 信越化学工業株式会社 Halftone phase shift mask blank and method of manufacturing halftone phase shift mask
JP5779290B1 (en) * 2014-03-28 2015-09-16 Hoya株式会社 Mask blank, phase shift mask manufacturing method, phase shift mask, and semiconductor device manufacturing method
JP6292581B2 (en) * 2014-03-30 2018-03-14 Hoya株式会社 Mask blank, transfer mask manufacturing method, and semiconductor device manufacturing method
JP6150299B2 (en) * 2014-03-30 2017-06-21 Hoya株式会社 Mask blank, transfer mask manufacturing method, and semiconductor device manufacturing method
JP6380204B2 (en) * 2015-03-31 2018-08-29 信越化学工業株式会社 Halftone phase shift mask blank, halftone phase shift mask and pattern exposure method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312043A (en) * 2000-04-27 2001-11-09 Dainippon Printing Co Ltd Halftone phase shift photomask and blanks for the same
JP2009244793A (en) * 2008-03-31 2009-10-22 Hoya Corp Photomask blank, photomask and its method for manufacturing
JP2010072406A (en) * 2008-09-19 2010-04-02 Hoya Corp Photomask blank, photomask, and method of manufacturing the same
WO2015037392A1 (en) * 2013-09-10 2015-03-19 Hoya株式会社 Mask blank, transfer mask and method for producing transfer mask
JP2016191784A (en) * 2015-03-31 2016-11-10 Hoya株式会社 Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112755A (en) * 2019-01-16 2020-07-27 東京エレクトロン株式会社 Hard mask and method for producing semiconductor device
JP7310146B2 (en) 2019-01-16 2023-07-19 東京エレクトロン株式会社 Substrate for manufacturing semiconductor device with hard mask and method for manufacturing semiconductor device
WO2022235545A1 (en) * 2021-05-03 2022-11-10 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Also Published As

Publication number Publication date
JPWO2018181891A1 (en) 2020-02-06
TW201901282A (en) 2019-01-01
SG11201907839RA (en) 2019-10-30
TWI778039B (en) 2022-09-21
KR102553992B1 (en) 2023-07-10
KR20190133006A (en) 2019-11-29
JP6965920B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6266842B2 (en) Mask blank, mask blank manufacturing method, phase shift mask, phase shift mask manufacturing method, and semiconductor device manufacturing method
WO2018181891A1 (en) Phase shift mask blank, phase shift mask and manufacturing method for phase shift mask
JP2006078807A (en) Photomask blank and photomask
JP2007241060A (en) Photomask blank and method for manufacturing photomask
JP6287932B2 (en) Method for manufacturing halftone phase shift photomask blank
TWI526775B (en) Photomask blank and method of manufacturing photomask
JP6573806B2 (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
US20160202602A1 (en) Mask blank, transfer mask and methods of manufacturing the same
JP7184558B2 (en) Phase shift mask blank, phase shift mask, and method for manufacturing phase shift mask
WO2016185941A1 (en) Mask blank, transfer mask, method of manufacturing transfer mask and method of manufacturing semiconductor device
JP6332109B2 (en) Method for manufacturing halftone phase shift photomask blank
US9726972B2 (en) Mask blank, transfer mask, and method for manufacturing transfer mask
TW201635008A (en) Mask blanks, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP4930736B2 (en) Photomask manufacturing method and photomask
JP2010237692A (en) Photomask blank and method of manufacturing photomask
TWI750341B (en) Mask base, transfer mask and method for manufacturing semiconductor element
JP6903878B2 (en) Phase shift mask blank and phase shift mask
JP2010164777A (en) Method for manufacturing photomask, and photomask blank
JP5007843B2 (en) Photomask blank and photomask
TWI808486B (en) Phase-shift blank mask, manufacturing method of phase-shift mask and phase-shift mask
JP6019731B2 (en) Method for manufacturing phase shift mask
JP5362388B2 (en) Photomask manufacturing method and pattern transfer method
JP6551585B2 (en) Halftone phase shift photomask blank and method of manufacturing the same
TW202326280A (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
JP5434825B2 (en) Dry etching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510238

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027998

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776026

Country of ref document: EP

Kind code of ref document: A1