WO2018179339A1 - Defibrillation catheter system - Google Patents

Defibrillation catheter system Download PDF

Info

Publication number
WO2018179339A1
WO2018179339A1 PCT/JP2017/013609 JP2017013609W WO2018179339A1 WO 2018179339 A1 WO2018179339 A1 WO 2018179339A1 JP 2017013609 W JP2017013609 W JP 2017013609W WO 2018179339 A1 WO2018179339 A1 WO 2018179339A1
Authority
WO
WIPO (PCT)
Prior art keywords
defibrillation
power supply
signal
input
supply device
Prior art date
Application number
PCT/JP2017/013609
Other languages
French (fr)
Japanese (ja)
Inventor
小島 康弘
伊藤 康平
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to CN201780084967.4A priority Critical patent/CN110234393B/en
Priority to KR1020197027891A priority patent/KR102045714B1/en
Publication of WO2018179339A1 publication Critical patent/WO2018179339A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/0563Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6869Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36507Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by gradient or slope of the heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3975Power supply

Definitions

  • the present invention relates to a defibrillation catheter that includes a defibrillation catheter that is inserted into a heart chamber and performs defibrillation, and a power supply device that supplies power to the defibrillation catheter during defibrillation.
  • a defibrillation catheter that includes a defibrillation catheter that is inserted into a heart chamber and performs defibrillation, and a power supply device that supplies power to the defibrillation catheter during defibrillation.
  • a defibrillation catheter system has been developed as one of medical devices for removing atrial fibrillation generated during cardiac catheterization (performing electrical defibrillation) (see, for example, Patent Document 1). .
  • the defibrillation catheter system includes a defibrillation catheter that is inserted into a heart chamber and performs defibrillation, and a power supply device that supplies power to the defibrillation catheter during defibrillation.
  • electrical stimulation for example, electrical energy consisting of DC voltage
  • Defibrillation treatment has been realized.
  • a defibrillation catheter system includes a defibrillation catheter that is inserted into a heart chamber to perform defibrillation, and power supply for defibrillation to the defibrillation catheter. And a power supply device for performing the above.
  • the power supply device is measured by a power supply unit that supplies power during defibrillation, a first input terminal for inputting a first electrocardiographic signal output from an electrocardiograph, and a biometric mechanism. And a second input terminal to which the second electrocardiographic signal is directly input without going through the electrocardiograph.
  • the first electrocardiogram measurement mode in which the second electrocardiogram signal is obtained from the second input terminal, and the first electrocardiogram signal is obtained from the first input terminal.
  • the second cardiac potential measurement mode and the defibrillation mode in which the defibrillation is performed can be switched, and the first or second cardiac potential signal can be selectively input. It has become.
  • the second electrocardiographic signal measured by the biometric mechanism is supplied to the power supply device that supplies power to the defibrillation catheter during defibrillation. Is input directly without going through an electrocardiograph, a second input terminal is provided. In this way, since the second electrocardiographic signal is directly input to the power supply device without going through the electrocardiograph, it is less affected by the device configuration of the electrocardiograph, for example. It becomes easy to cope with environmental conditions when using.
  • the first electrocardiogram measurement mode, the second electrocardiogram measurement mode, and the defibrillation mode can be switched, and the first or second electrocardiogram is switched.
  • a signal can be selectively input. For this reason, for example, one of the above-described plural types of modes can be used selectively according to the application, situation, etc., and one of the above-described two types of electrocardiographic signals is alternatively used. Be available.
  • an arithmetic processing unit for adjusting the gain of the peak value in the input first or second electrocardiographic signal is further provided in the power supply device. Also good. In this case, the peak values of these first or second electrocardiographic signals can be arbitrarily adjusted so as to be easily used in the power supply device.
  • a display unit that displays a cardiac potential waveform based on the first or second cardiac potential signal after the gain adjustment is performed may be further provided in the power supply device.
  • the first or second electrocardiogram signal after gain adjustment is made easy to see. Further improvement is achieved.
  • the myoelectric potential signal measured by the biometric mechanism can be directly input to the second input terminal without using an electrocardiograph. It may be.
  • the myoelectric potential signal obtained in the biometric mechanism can be used in the power supply apparatus.
  • the convenience can be further improved.
  • Examples of such a myoelectric potential signal include a signal indicating a compound muscle action potential (CMAP) obtained at a site near the diaphragm of the patient (CMAP: Compound Motor Action Potentials).
  • the second input terminal may be capable of selectively inputting the second cardiac potential signal or the myoelectric potential signal.
  • one of these two types of biological signals can be alternatively used depending on, for example, the application and situation. Therefore, the convenience can be further improved.
  • the power supply unit may stop supplying power for defibrillation during a period in which a myoelectric potential signal is input to the second input terminal.
  • power supply for defibrillation is erroneously executed (due to an erroneous operation or the like). It is prevented that it is done. As a result, the convenience can be further improved.
  • a display unit that displays a myoelectric potential waveform based on the input myoelectric potential signal may be further provided in the power supply device.
  • the myoelectric potential signal measured by the biomeasuring mechanism can be monitored at any time on the display unit in the power supply device. Therefore, the convenience can be further improved.
  • the power supply device may issue a warning to the outside.
  • the power supply device may issue a warning to the outside.
  • an excessive attenuation state of the myoelectric potential signal can be immediately grasped, it is possible to take a quick response. As a result, the convenience can be further improved.
  • the first electrocardiographic signal when the first electrocardiographic signal is measured using, for example, the biometric mechanism, the following may be performed. That is, the first electrocardiographic signal obtained in this biometric mechanism may be input to the first input terminal via the electrocardiograph. In this case, the first electrocardiographic signal obtained in the biometric mechanism can be used in the electrocardiograph and the power supply device. Therefore, the convenience can be further improved.
  • biometric mechanism for example, a method using at least two (plural) electrode pads, or another electrode catheter (inserted into a patient's heart chamber) different from the defibrillation catheter. Is mentioned.
  • the second input terminal to which the second electrocardiographic signal measured in the biometric mechanism is directly input without passing through the electrocardiograph Since the power supply device is provided, it is possible to easily cope with environmental conditions when the defibrillation catheter system is used.
  • the first electrocardiogram measurement mode, the second electrocardiogram measurement mode, and the defibrillation mode can be switched, and the first or second electrocardiogram signal is selectively input. Since it was made possible, for example, one of a plurality of modes or one of two types of electrocardiogram signals can be used alternatively depending on the application or situation. Therefore, convenience can be improved.
  • FIG. 5 is a block diagram schematically illustrating an example of an operation state at the time of measuring an electrocardiogram shown in FIG. 4.
  • FIG. 5 is a block diagram schematically illustrating an example of an operation state at the time of resistance measurement illustrated in FIG. 4.
  • FIG. 5 is a block diagram schematically illustrating an example of an operation state when performing defibrillation illustrated in FIG. 4.
  • FIG. 8 is a schematic diagram illustrating an example of an electrocardiographic waveform measured when performing defibrillation illustrated in FIG. 7. It is a block diagram showing typically the composition and example of an operation state of the defibrillation catheter system concerning a comparative example.
  • FIG. 2 is a block diagram schematically illustrating an example of an operation state when measuring a myoelectric potential in the defibrillation catheter system illustrated in FIG. 1. It is a schematic diagram showing the example of arrangement
  • FIG. 6 is a block diagram schematically showing another example of the operating state when measuring the cardiac potential in the defibrillation catheter system shown in FIG. 1.
  • FIG. 14 is a block diagram schematically illustrating an example of an operation state when performing defibrillation in the case illustrated in FIG. 13.
  • Embodiment Configuration Defibrillation catheter, power supply device, electrocardiograph, electrocardiogram display device, biometric mechanism
  • Action action and effect (basic action, details of defibrillation, comparative example, myoelectric potential measurement, etc.) 2. Modified example
  • FIG. 1 is a block diagram schematically showing an example of the overall configuration of a defibrillation catheter system (defibrillation catheter system 3) according to an embodiment of the present invention.
  • the defibrillation catheter system 3 is a system that is used, for example, when removing atrial fibrillation (electrical defibrillation) that has occurred in a patient (patient 9 in this example) during cardiac catheterization.
  • the defibrillation catheter system 3 includes a defibrillation catheter 1 and a power supply device 2 as shown in FIG.
  • the electrocardiograph 4 the electrocardiogram display device 5 (waveform display device), and the biological measurement mechanism 6 are used. are also used appropriately.
  • the defibrillation catheter 1 is an electrode catheter that is inserted into the body (inside the heart chamber) of a patient 9 through blood vessels to perform electrical defibrillation.
  • FIG. 2 schematically shows a schematic configuration example of the defibrillation catheter 1.
  • the defibrillation catheter 1 has a shaft 11 (catheter shaft) as a catheter body and a handle 12 attached to the proximal end of the shaft 11.
  • the shaft 11 has a flexible insulating tubular structure (tubular member, tube member), and has a shape extending along its own axial direction (Z-axis direction).
  • the shaft 11 has a so-called multi-lumen structure in which a plurality of lumens (pores, through-holes) are formed so as to extend along the axial direction of the shaft 11.
  • various thin wires conductive wires, operation wires, etc.
  • the outer diameter of the shaft 11 is, for example, about 1.2 mm to 3.3 mm.
  • a plurality of electrodes are provided in the tip region P ⁇ b> 1 of the shaft 11.
  • one tip electrode 110 and a plurality of ring-shaped electrodes 111, 112, 113 are respectively predetermined in this order from the tip side to the base end side of the shaft 11.
  • Each of the ring-shaped electrodes 111, 112, 113 is fixedly disposed on the outer peripheral surface of the shaft 11, while the tip electrode 110 is fixedly disposed at the forefront of the shaft 11.
  • FIG. 1 a plurality of electrodes
  • an electrode group 111 ⁇ / b> G is configured by a plurality of ring-shaped electrodes 111 arranged at intervals.
  • an electrode group 112G is constituted by a plurality of ring-shaped electrodes 112 arranged at intervals
  • an electrode group 113G is constituted by a plurality of ring-shaped electrodes 113 arranged at intervals.
  • the “electrode group” here refers to a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. The same applies to the following.
  • the distance between the electrode group 111G (the base-side ring electrode 111) and the electrode group 112G (the front-side ring electrode 112) is preferably about 40 to 100 mm, for example. If shown, it is 66 mm.
  • the ring-shaped electrodes 111, 112, and 113 are electrically connected to the handle 12 through a plurality of conductive wires (lead wires) inserted into the lumen of the shaft 11, as will be described in detail later.
  • the lead wire is not connected to the tip electrode 110 in this example.
  • a conductive wire may be connected to the tip electrode 110 as well.
  • Each of the tip electrode 110 and the ring-shaped electrodes 111, 112, 113 is electrically conductive, such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc. It is comprised with the metal material with favorable property, or various resin materials.
  • the tip electrode 110 and the ring electrodes 111, 112, 113 are each made of platinum or an alloy thereof. It is preferable.
  • the above-mentioned electrode group 111G is composed of a plurality of ring-shaped electrodes 111 that constitute the same pole (-pole or + pole).
  • the number of ring-shaped electrodes 111 constituting the electrode group 111G varies depending on the electrode width and arrangement interval, but is 4 to 13, for example, and preferably 8 to 10.
  • the width (length in the axial direction) of the ring-shaped electrode 111 is preferably about 2 to 5 mm, for example, and 4 mm is a preferable example.
  • the mounting interval of the ring electrodes 111 (the distance between adjacent electrodes) is preferably about 1 to 5 mm, for example, and 2 mm is a preferable example.
  • the electrode group 111G is positioned, for example, in a coronary vein.
  • the electrode group 112G is composed of a plurality of ring-shaped electrodes 112 that constitute an opposite pole (+ pole or ⁇ pole) to the electrode group 111G described above.
  • the number of ring-shaped electrodes 112 constituting this electrode group 112G varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
  • the width (length in the axial direction) of the ring-shaped electrode 112 is preferably about 2 to 5 mm, for example, and 4 mm is a preferable example.
  • the mounting interval of the ring-shaped electrodes 112 (the distance between adjacent electrodes) is preferably about 1 to 5 mm, for example, and 2 mm is a preferable example.
  • the electrode group 113G includes four ring electrodes 113.
  • the width (length in the axial direction) of the ring-shaped electrode 113 is preferably about 0.5 to 2.0 mm, for example, and is 1.2 mm as a suitable example.
  • the mounting interval of the ring-shaped electrodes 113 is preferably about 1.0 to 10.0 mm, for example, and 5 mm is a preferable example.
  • the electrode group 113G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
  • FIG. 3 schematically shows a cross-sectional configuration example (XY cross-sectional configuration example) of the shaft 11 along the line II-II in FIG.
  • the shaft 11 has a multi-lumen structure having an outer portion 70 (shell portion), a strand 71, an inner portion 72 (core portion), and a resin layer 73.
  • the shaft 11 is formed with four lumens L1 to L4 separated from each other.
  • the outer part 70 is a tubular member located on the outermost periphery of the shaft 11 as shown in FIG.
  • the outer portion 70 is made of, for example, a high hardness nylon elastomer.
  • nylon elastomer constituting the outer portion 70 for example, those having different hardness along the axial direction (Z-axis direction) are used.
  • the shaft 11 is configured so that its hardness gradually increases from the distal end side toward the proximal end side.
  • the strands 71 are disposed between the outer portion 70 and the inner portion 72, and form a braided blade. Further, the braided blade is formed only in a partial region of the shaft 11 along the axial direction, for example.
  • a strand 71 is made of stainless steel, for example, and is a stainless strand.
  • the inner part 72 is a core member located on the inner peripheral side of the outer part 70 and the wire 71 as shown in FIG.
  • the inner portion 72 is made of, for example, a low hardness nylon elastomer.
  • the four lumens L1 to L4 described above are formed in the inner portion 72, respectively.
  • the resin layer 73 is a layer that partitions the four lumens L1 to L4, and is made of, for example, a fluororesin.
  • fluororesin include materials having high insulating properties such as perfluoroalkyl vinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE).
  • the lumen L1 (first lumen) is arranged on the positive direction side of the X axis in the shaft 11 as shown in FIG.
  • a lead wire group 81G including a plurality of lead wires 81 is inserted through the lumen L1.
  • Each of the conductive wires 81 is individually electrically connected to the plurality of ring electrodes 111 in the electrode group 111G described above.
  • the conducting wire 81 electrically connected to the ring electrode 111 in this way constitutes a signal line for an electrocardiographic signal Sc0a described later (see FIG. 2).
  • the lumen L2 (second lumen) is arranged on the negative side of the X axis in the shaft 11 as shown in FIG.
  • a lead wire group 82G including a plurality of lead wires 82 is inserted through the lumen L2.
  • Each of these conducting wires 82 is individually electrically connected to the plurality of ring electrodes 112 in the electrode group 112G described above.
  • the conducting wire 82 electrically connected to the ring electrode 112 in this way also constitutes a signal line for an electrocardiographic signal Sc0a described later (see FIG. 2).
  • the lumen L3 (third lumen) is arranged on the negative side of the Y axis in the shaft 11 as shown in FIG.
  • a lead wire group 83G including a plurality of lead wires 83 is inserted through the lumen L3.
  • Each of the conductive wires 83 is individually electrically connected to the plurality of ring electrodes 113 in the electrode group 113G described above.
  • the conducting wire 83 electrically connected to the ring electrode 113 in this way constitutes a signal line for an electrocardiographic signal Sc0b described later (see FIG. 2).
  • the lumen L4 (fourth lumen) is arranged on the positive side of the Y axis in the shaft 11 as shown in FIG.
  • one operating wire 80 is inserted through the lumen L4. That is, the operation wire 80 is arranged in an eccentric state with respect to the central axis of the shaft 11.
  • the operation wire 80 is a member for performing a deflection movement operation (swing operation), which is an operation for deflecting (curving) the vicinity of the tip of the shaft 11.
  • the tip portion of the operation wire 80 is fixed to the tip electrode 110 by solder, for example. Note that a large-diameter portion (a retaining portion) for retaining may be formed at the tip of the operation wire 80.
  • the proximal end portion of the operation wire 80 is connected to the inside of the handle 12 (rotary plate 122) described later.
  • each of the above-described conductive wires 81, 82, and 83 is formed of a resin-coated wire in which the outer peripheral surface of the metal conductive wire is coated with a resin such as polyimide, for example.
  • the operation wire 80 is made of, for example, stainless steel or a Ni (nickel) -Ti (titanium) superelastic alloy.
  • the operation wire 80 is not necessarily made of metal, and may be made of, for example, a high-strength non-conductive wire.
  • the handle 12 is attached to the proximal end of the shaft 11, and has a handle body 121 (gripping part) and a rotating plate 122.
  • the handle body 121 is a portion that is gripped (gripped) by an operator (doctor) when the defibrillation catheter 1 is used. Inside the handle main body 121, the above-described various thin wires (the conductive wires 81, 82, 83, the operation wire 80, etc.) extend from the inside of the shaft 11 while being electrically insulated from each other.
  • the rotating plate 122 is a member for performing a deflection movement operation, which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, for example, an operation of rotating the rotating plate 122 along the rotation direction d1 indicated by the dashed arrow in FIG. 2 is possible. By such a rotation operation, the operation wire 80 described above is pulled toward the base end side, whereby an operation for deflecting the vicinity of the distal end of the shaft 11 (deflection movement operation) is possible.
  • the power supply device 2 is a device that supplies power to the defibrillation catheter 1 during defibrillation. Specifically, as shown in FIGS. 1 to 3, the power supply device 2 applies a DC voltage Vdc applied at the time of defibrillation to electrode groups 111G and 112G (on the shaft 11 of the defibrillation catheter 1).
  • the ring-shaped electrodes 111 and 112) are supplied via conductor groups 81G and 82G (conductors 81 and 82).
  • the power supply device 2 includes an input unit 21, a power supply unit 22, a switching unit 23, an arithmetic processing unit 24 (control unit), a display unit 25, and an audio output unit 26.
  • the power supply device 2 also has three (three types) input terminals Tin1, Tin2, Tin3 and two (two types) output terminals Tout1, Tout2, as shown in FIG. Further, in this power supply device 2, although details will be described later, a cardiac potential measurement mode in which cardiac potential measurement is performed (a “cardiac potential measurement mode A (see FIG. 5)” described later) or a “cardiac potential measurement mode B (see FIG. 13). ) ”) And“ defibrillation mode (see FIGS. 7 and 14) ”in which defibrillation is performed can be switched.
  • the power supply device 2 can be switched between these plural types (for example, three types) of modes.
  • the “cardiac potential measurement mode A” corresponds to a specific example of the “first cardiac potential measurement mode” in the present invention
  • the “cardiac potential measurement mode B” in the present invention This corresponds to a specific example of “second electrocardiographic measurement mode”.
  • the above-mentioned “defibrillation mode” (“defibrillation mode A (see FIG. 7)” or “defibrillation mode B (see FIG. 14)” described later) is the “defibrillation mode” in the present invention. This corresponds to a specific example.
  • the input unit 21 is a part for inputting various set values and an input signal Sin (operation input signal) for instructing a predetermined operation, and is configured using, for example, a predetermined dial, switch, touch panel, or the like.
  • These set values and instructions (input signal Sin) are input by an operator (for example, an engineer) of the power supply device 2.
  • an operator for example, an engineer
  • some setting values or the like may not be input by the operator but may be set in the power supply device 2 in advance at the time of shipping the product. The details of the above-described switch will be described later.
  • the above-described plural types of modes (“cardiac potential measurement mode A”, “cardiac potential measurement mode B”, “defibrillation mode (defibrillation mode A) Or a mode changeover switch for switching between defibrillation modes B) ”), an applied energy setting switch for setting electric energy (DC voltage Vdc) applied at the time of defibrillation, and charging the power supply unit 22 A charge switch for the purpose, an energy application switch (discharge switch) for performing defibrillation by applying electric energy, and the like.
  • the input signal Sin input at the input unit 21 is supplied to the arithmetic processing unit 24 as shown in FIG.
  • the power supply unit 22 is a part that outputs the DC voltage Vdc described above toward the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) in the defibrillation catheter 1. Such a power supply operation in the power supply unit 22 is controlled by the arithmetic processing unit 24 based on an input signal Sin from the input unit 21, for example.
  • the power supply unit 22 is configured using a predetermined power supply circuit (for example, a switching regulator) and a capacitor (capacitance element) for charging electric energy.
  • the switching unit 23 is a part that performs an operation (switching operation) of switching a supply path of the DC voltage Vdc, a resistance value R, and electrocardiogram signals Sc0a and Sc1, which will be described later.
  • Such a switching operation in the switching unit 23 is controlled by the arithmetic processing unit 24 based on an input signal Sin from the input unit 21, for example. The details of the switching operation in the switching unit 23 will be described later.
  • the arithmetic processing unit 24 is a part that controls the entire power supply device 2 and performs predetermined arithmetic processing, and includes, for example, a microcomputer. Specifically, the arithmetic processing unit 24 controls operations of the power supply unit 22, the switching unit 23, the display unit 25, and the audio output unit 26 based on the input signal Sin from the input unit 21. . Details of the operation example in the arithmetic processing unit 24 will be described later.
  • the arithmetic processing unit 24 includes an output circuit 241 and a gain adjusting unit 242 as shown in FIG.
  • the output circuit 241 transfers the DC voltage Vdc output from the power supply unit 22 to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 via the switching unit 23 and an output terminal Tout1 described later. It is a circuit for outputting. Specifically, although details will be described later, the output circuit 241 is configured so that the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). In addition, a DC voltage Vdc is output.
  • the gain adjusting unit 242 is a part that performs gain adjustment (amplification processing, etc.) of the crest value in various input signals (cardiac potential signals Sc1, Sc2, and myoelectric potential signal Sm to be described later). Note that various signals after gain adjustment (cardiac potential signals Sc1 ′, Sc2 ′, myoelectric potential signal Sm ′, etc. after gain adjustment) are supplied to the display unit 25 as shown in FIG. It has become so.
  • the display unit 25 is a part (monitor) that displays various information based on various signals supplied from the arithmetic processing unit 24 and outputs the information to the outside.
  • the display unit 25 has a function of displaying a cardiac potential waveform based on the above-described gain-adjusted cardiac potential signals Sc1 'and Sc2', for example, as shown in FIG.
  • the display unit 25 also has a function of displaying a myoelectric potential waveform based on the input myoelectric potential signal (for example, the myoelectric potential signal Sm ′ after gain adjustment described above).
  • the display target information is not limited to these signal information, and other information may also be displayed.
  • Such a display unit 25 is configured using a display of various types (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
  • the audio output unit 26 is a part that outputs various sounds to the outside based on the audio signal Ss supplied from the arithmetic processing unit 24. Note that such an audio output unit 26 is configured using, for example, a speaker.
  • the input terminal Tin1 is a terminal for inputting an electrocardiogram signal Sc1 output from an electrocardiograph 4 described later.
  • the cardiac potential signal Sc1 is a biological signal obtained by measurement in a later-described biological measurement mechanism 6 (a plurality of electrode pads 61 described later) and supplied to the electrocardiograph 4.
  • the electrocardiographic signal Sc1 (for example, an analog signal) input to the input terminal Tin1 in this way is supplied to the arithmetic processing unit 24.
  • the input terminal Tin1 corresponds to a specific example of “first input terminal” in the present invention
  • the cardiac potential signal Sc1 corresponds to a specific example of “first cardiac potential signal” in the present invention. is doing.
  • the input terminal Tin2 is a terminal for inputting a biological signal (cardiac potential signal Sc2 or myoelectric potential signal Sm) measured by the biological measurement mechanism 6 described later.
  • a biological signal cardiac potential signal Sc2 or myoelectric potential signal Sm
  • both of the electrocardiogram signal Sc2 and the myoelectric potential signal Sm do not pass through other devices such as the electrocardiograph 4.
  • the power is directly input to the input terminal Tin2 of the power supply device 2.
  • the electrocardiographic signal Sc2 or the myoelectric potential signal Sm (either one) is selectively input to the input terminal Tin2.
  • the cardiac potential signal Sc2 or myoelectric potential signal Sm input to the input terminal Tin2 in this way is supplied to the arithmetic processing unit 24, respectively.
  • either one of the electrocardiogram signal Sc2 via the input terminal Tin2 and the electrocardiogram signal Sc1 via the input terminal Tin1 is selectively selected. It is designed to be entered.
  • the input terminal Tin2 corresponds to a specific example of “second input terminal” in the present invention
  • the cardiac potential signal Sc2 is a specific example of “second cardiac potential signal” in the present invention. It corresponds to.
  • the input terminal Tin3 is a terminal for inputting the electrocardiographic signals Sc0a and Sc0b and the resistance value R measured in the defibrillation catheter 1 as shown in FIG.
  • the cardiac potential signal Sc0a is a cardiac potential signal measured in the above-described electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) and transmitted via the above-described conducting wires 81 and 82 (FIGS. 2 and 2). 3).
  • the cardiac potential signal Sc0b is a cardiac potential signal measured in the above-described electrode group 113G (ring-shaped electrode 113) and transmitted through the above-described conducting wire 83 (see FIGS. 2 and 3).
  • the resistance value R is a resistance value between the electrode groups 111G and 112G.
  • the cardiac potential signal Sc0a is passed through the switching unit 23 and the output terminal Tout2 described later in this order as shown in FIG. It is supplied to the electric meter 4.
  • the electrocardiogram signal Sc0b is supplied to the electrocardiograph 4 only through an output terminal Tout2, which will be described later, without going through the switching unit 23.
  • the resistance value R is supplied to the arithmetic processing unit 24 via the switching unit 23 as shown in FIG.
  • the output terminal Tout1 receives the DC voltage Vdc output from the output circuit 241 and supplied via the switching unit 23 as the electrode groups 111G and 112G ( This is a terminal for outputting to the ring-shaped electrodes 111, 112).
  • the output terminal Tout2 passes through the cardiac potential signal Sc0b supplied from the defibrillation catheter 1 via the input terminal Tin3, the input terminal Tin3 and the switching unit 23 in this order.
  • This is a terminal for outputting the electrocardiographic signal Sc0a supplied from the defibrillation catheter 1 to the electrocardiograph 4.
  • the electrocardiograph 4 is a device having a function of recording information such as an electrocardiogram signal (in this example, electrocardiogram signals Sc0a, Sc0b, Sc1). Specifically, in this example, as shown in FIG. 1, the electrocardiograph 4 includes an electrocardiogram signal Sc0a, Sc0b output from the output terminal Tout2 of the power supply device 2 and a biomeasuring mechanism 6 (described later). A cardiac potential signal Sc1 output from a plurality of electrode pads 61) to be described later is input and recorded. In this example, the electrocardiograph 4 also has a function of outputting an inputted and recorded cardiac potential signal to the outside. Specifically, although details will be described later, in this example, as shown in FIG.
  • the electrocardiograph 4 outputs the above-described electrocardiogram signal Sc1 to the input terminal Tin1 of the power supply device 2. ing.
  • the electrocardiograph 4 outputs the above-described electrocardiogram signals Sc1, Sc0a, Sc0b to the electrocardiogram display device 5 described later.
  • the electrocardiogram display device 5 is a device that displays an electrocardiogram waveform (electrocardiogram) and the like based on the electrocardiogram signals Sc1, Sc0a, Sc0b output from the electrocardiograph 4 described above.
  • the electrocardiograph 4 and the electrocardiogram display device 5 may be collectively referred to as a polygraph, a biological information monitor, a cardiac catheter inspection device, or an EP recording system. In this way, the electrocardiographic waveform and the like displayed on the electrocardiogram display device 5 are monitored at any time by, for example, an operator (physician) of the defibrillation catheter 1.
  • the biological measurement mechanism 6 is used in a state of being attached (attached) to the body surface of the patient 9 during defibrillation treatment or the like, and the above-described biological signals (cardiac potential signals Sc1, Sc2 and myoelectric potential signals).
  • This is a device for measuring Sm) from the patient 9.
  • the biometric mechanism 6 is configured by using a plurality (for example, six or eight) of electrode pads (electrode pads 61 and 62).
  • the living body measurement mechanism 6 includes two electrode pads 62 and a plurality of (for example, four or six) electrode pads 61 that are other electrode pads.
  • the above-described electrocardiogram signal Sc1 is measured by using a general measurement method as shown in FIG. .
  • the electrocardiographic signal Sc1 obtained from the electrode pad 61 in this way is supplied to the electrocardiograph 4.
  • the electrocardiogram waveform of the electrocardiogram signal Sc1 obtained by the above-described general measurement technique corresponds to what is called “12-lead electrocardiogram”. .
  • the electrocardiographic signal Sc2 or the myoelectric potential signal Sm obtained from the electrode pad 62 in this way is the above-mentioned of the power supply device 2 without passing through other devices such as the electrocardiograph 4 as shown in FIG. It is supplied to the arithmetic processing unit 24 in the power supply device 2 only through the input terminal Tin2.
  • the operation wire 80 moves to the proximal end side in the shaft 11. Be pulled.
  • the vicinity of the tip end region P1 of the shaft 11 is curved, for example, along the direction d2 indicated by the arrow in FIG.
  • defibrillation is performed from the power supply device 2 (power supply unit 22) to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1.
  • a DC voltage Vdc is supplied as electrical energy.
  • the output circuit 241 in the power supply device 2 is set so that the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). Outputs a DC voltage Vdc.
  • the DC voltage Vdc in which the electrode groups 111G and 112G have different polarities is directly applied to the heart of the patient 9 from the distal end region P1 of the defibrillation catheter 1 inserted into the patient 9 body. By being applied as electric energy, an electrical defibrillation process is performed.
  • an AED Automatic External Defibrillator: automatic external defibrillator
  • a fibrillator there are the following advantages compared with a fibrillator). That is, first, electrical energy is directly applied to the heart that has caused fibrillation by the electrode groups 111G and 112G of the defibrillation catheter 1 disposed in the heart chamber, thereby defibrillation treatment. Necessary and sufficient electrical stimulation (electric shock) can be reliably supplied only to the heart.
  • the biometric mechanism 6 (electrode pads 61 and 62) attached to the body surface of the patient 9 or a defibrillation catheter inserted into the body of the patient 9.
  • the cardiac potential is measured using one electrode (ring-shaped electrodes 111, 112, 113) or the like (see FIG. 1).
  • the cardiac potential of the patient 9 may be measured using another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1.
  • the electrocardiogram signals Sc1 and Sc2 are supplied into the power supply apparatus 2 via the input terminals Tin1, Tin2 and the like of the power supply apparatus 2 (see FIG. 1). .
  • electrocardiographic signals Sc1, Sc0a, Sc0b are supplied to the electrocardiogram display device 5 (see FIG. 1).
  • an electrocardiographic waveform based on these electrocardiographic signals is displayed on the display unit 25 and the electrocardiogram display device 5 in the power supply device 2, so that the operator (engineer or the like) of the power supply device 2 and the defibrillation catheter 1 It is appropriately monitored by an operator (doctor).
  • FIG. 4 is a flowchart showing an example of the defibrillation process in the defibrillation catheter system 3 of the present embodiment.
  • FIGS. 5 to 7 are schematic block diagrams showing examples of various operation states to be described later in the defibrillation process.
  • the electrocardiogram measurement mode set in the electrocardiogram measurement process (steps S13 and S23) described later is selected. That is, one of “cardiac potential measurement mode A” (see FIG. 5) and “cardiac potential measurement mode B” (see FIG. 13) described later is input to the input unit 21 by the operator (engineer or the like) of the power supply device 2. (For example, an input operation to the mode switch) is performed (step S11). In other words, the selection of the input terminal (one of the input terminals Tin1, Tin2) during the measurement process of the cardiac potential and the selection of the cardiac potential signal (one of the cardiac potential signals Sc1, Sc2). Selection).
  • the electrocardiographic signal Sc1 input from the input terminal Tin1 and the electrocardiographic signal Sc2 input from the input terminal Tin2 The electrocardiographic signal switching process (switching operation) is performed so that one of them is selectively supplied to the arithmetic processing unit 24.
  • one of such electrocardiographic signal switching operations (the electrocardiographic signal Sc 1 input from the input terminal Tin 1 and the electrocardiographic signal Sc 2 input from the input terminal Tin 2 is selected.
  • a switching unit that performs an operation to be supplied to the arithmetic processing unit 24) may be provided separately. In this case, the switching operation in the switching unit is controlled by the arithmetic processing unit 24 based on the input signal Sin supplied from the input unit 21, for example.
  • each electrode ring-shaped electrodes 111, 112, 113 of the defibrillation catheter 1 in the body of the patient 9 is subsequently determined by using an X-ray image or the like. Confirmed (step S12).
  • a measurement process of the cardiac potential of the patient 9 is performed (step S13). That is, in this example, the defibrillation catheter system 3 is set to the “cardiac potential measurement mode A”, whereby the cardiac potential measurement process is performed as follows. Moreover, the gain setting at the time of gain adjustment in the gain adjusting unit 242 is performed according to an operation on the input unit 21 by an operator (engineer or the like) of the power supply apparatus 2 (step S14).
  • the cardiac potential signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) attached to the body surface of the patient 9 is an electrocardiograph. 4 is directly input to the input terminal Tin2 of the power supply device 2 without going through 4 or the like, and is supplied to the arithmetic processing unit 24 in the power supply device 2.
  • the cardiac potential signal Sc2 is gain-adjusted by the gain adjusting unit 242 in the arithmetic processing unit 24, and a cardiac potential waveform based on the cardiac potential signal Sc2 'after gain adjustment is displayed on the display unit 25.
  • the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is output to the electrocardiogram display device 5 via the electrocardiograph 4.
  • the electrocardiogram waveform based on the electrocardiogram signal Sc1 is displayed on the electrocardiogram display device 5.
  • the cardiac potential signal Sc0a measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is input to the input terminal Tin3 of the power supply device 2. Then, the signal is supplied to the electrocardiograph 4 through the switching unit 23 and the output terminal Tout2 in this order.
  • the cardiac potential signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 passes through the input terminal Tin3 and the output terminal Tout2 of the power supply device 2 in this order (through the switching unit 23). (Without going through), it is supplied to the electrocardiograph 4.
  • the electrocardiogram signals Sc0a and Sc0b thus supplied to the electrocardiograph 4 are respectively output to the electrocardiogram display device 5, and the electrocardiogram waveforms based on these electrocardiogram signals Sc0a and Sc0b are displayed on the electrocardiogram display device 5. Is displayed.
  • the input signal Sin is supplied to the arithmetic processing unit 24 by an operation on the input unit 21 (for example, an input operation to the mode changeover switch) by an operator (engineer or the like) of the power supply device 2, so that the deduplication is performed.
  • the “defibrillation mode” for executing the movement is set (step S15).
  • a measurement process of the resistance value R between the electrode groups 111G and 112G in the defibrillation catheter 1 is performed (step S16). That is, when the defibrillation catheter system 3 is set to the “resistance measurement mode”, the resistance value R is measured as follows.
  • the resistance value R measured by the electrode groups 111 ⁇ / b> G and 112 ⁇ / b> G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal of the power supply device 2.
  • the data is supplied to the arithmetic processing unit 24 via the Tin 3 and the switching unit 23 in this order. Information on the resistance value R thus obtained is displayed on the display unit 25.
  • the electrocardiogram signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) is continuously input to the input terminal of the power supply device 2 without passing through the electrocardiograph 4 or the like. Directly input to Tin 2 and supplied to the arithmetic processing unit 24.
  • the cardiac potential signal Sc2 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc2 ′ after gain adjustment is continuously displayed on the display unit 25.
  • the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is also continuously output to the electrocardiogram display device 5 via the electrocardiograph 4.
  • the electrocardiographic waveform based on the electrocardiographic signal Sc1 is subsequently displayed on the electrocardiogram display device 5.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to the input terminal Tin3 of the power supply device 2 and The output is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23).
  • the electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
  • the arithmetic processing unit 24 in the power supply device 2 determines whether or not the resistance value R obtained in this way is within a predetermined range defined by predetermined threshold values Rth1 and Rth2 (Rth2> R > Whether or not Rth1 is satisfied is determined (step S17).
  • the electrode groups 111G and 112G of the defibrillation catheter 1 are determined. This means that it is not reliably brought into contact with a predetermined part (for example, a coronary vein tube wall or a right atrial inner wall) in the body of the patient 9.
  • the process returns to step S12 described above, and the position of each electrode (ring-shaped electrodes 111, 112, 113) is confirmed again using an X-ray image or the like.
  • the subsequent defibrillation is executed only when the electrode groups 111G and 112G of the defibrillation catheter 1 are reliably brought into contact with a predetermined site in the body of the patient 9. Therefore, it is possible to perform an effective defibrillation treatment.
  • step S17 when it is determined that the resistance value R is within a predetermined range (Rth2> R> Rth1 is satisfied) (step S17: Y), as described above, the electrode group 111G, This means that 112G is reliably in contact with a predetermined part in the body of the patient 9. Therefore, in this case, the input signal Sin is then supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the applied energy setting switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. As a result, the applied energy at the time of defibrillation is set (step S18). Specifically, the applied energy is set in increments of 1 J, for example, within a range from 1 J (joule) to 30 J.
  • an input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the charging switch) on the input unit 21 by an operator (engineer or the like) of the power supply device 2, whereby the power supply unit 22.
  • the inner capacitor is charged with energy (electric charge) for defibrillation (step S19).
  • step S20 execution of defibrillation is started (step S20). Specifically, an input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the energy application switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2.
  • the “defibrillation mode” described below is executed.
  • the “defibrillation mode (defibrillation mode A)” described in FIG. 7 below is a defibrillation mode performed when the above-described “cardiac potential measurement mode A” is set (selected). It corresponds to.
  • defibrillation mode A for example, as shown in FIG. 7, a DC voltage Vdc as electric energy is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. Thus, defibrillation in the body of the patient 9 is performed.
  • the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 causes the output circuit 241, the switching unit 23, and the output terminal Tout1 in the arithmetic processing unit 24 to be in this order. Via, it is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. At this time, as described above, the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). A DC voltage Vdc is output from the output circuit 241.
  • the electrocardiogram signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) is continuously input to the input terminal of the power supply device 2 without passing through the electrocardiograph 4 or the like. Directly input to Tin 2 and supplied to the arithmetic processing unit 24.
  • the cardiac potential signal Sc2 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc2 ′ after gain adjustment is continuously displayed on the display unit 25.
  • the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is also continuously output to the electrocardiogram display device 5 via the electrocardiograph 4.
  • the electrocardiographic waveform based on the electrocardiographic signal Sc1 is subsequently displayed on the electrocardiogram display device 5.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be applied to the input terminal Tin3 of the power supply device 2 and The output is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23).
  • the electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
  • the arithmetic processing unit 24 controls the operation of the power supply unit 22 so that the DC voltage Vdc is applied in synchronization with the cardiac potential signal Sc2 supplied through the above-described path. Specifically, the arithmetic processing unit 24 first detects one R wave (maximum peak) in the electrocardiogram waveform of the sequentially inputted electrocardiogram signal Sc2, and obtains the peak height. Then, the arithmetic processing unit 24 starts the predetermined time (for example, the R wave) from the time when the potential difference reaches the height (trigger level) of 80% with respect to the obtained peak height (when the next R wave rises).
  • the predetermined time for example, the R wave
  • the electrode group 111G is negative (negative electrode).
  • the DC voltage Vdc is applied so that the electrode group 112G becomes a positive electrode (positive electrode). Then, by supplying such electric energy, the measurement potential rises (see the broken arrow at the timing t1 in FIG. 8).
  • the DC voltage Vdc whose polarity is inverted is applied so that the electrode group 111G becomes a positive pole and the electrode group 112G becomes a negative pole. Then, by supplying such electric energy, the measurement potential rises in the opposite direction (see the broken arrow at the timing t3 in FIG. 8).
  • timing t4 the arithmetic processing unit 24 stops the output of the DC voltage Vdc from the power supply unit 22, thereby executing defibrillation in the body of the patient 9. Is stopped (step S21).
  • an application record at the time of defibrillation (for example, recording of a cardiac potential waveform as shown in FIG. 8) is temporarily (for example, 5 seconds) displayed on the display unit 25 of the power supply device 2 (step 5). S22).
  • step S13 the above-described “cardiac potential measurement mode A” (step S13, see FIG. 5) is set again.
  • the electrocardiographic waveform based on the electrocardiographic signal Sc2 ′ after gain adjustment is displayed again on the display unit 25 of the power supply device 2, and the electrocardiographic waveforms based on the electrocardiographic signals Sc1, Sc0a, Sc0b are displayed on the electrocardiogram. It is displayed again on the device 5. That is, the electrocardiographic waveform after the above defibrillation is executed is displayed (step S23).
  • step S24 the electrocardiographic waveform after such defibrillation is observed to determine whether or not it is normal. If it is determined that the condition is not normal (atrial fibrillation has not subsided) (step S24: N), the process returns to step S15 described above and proceeds to defibrillation again. On the other hand, if it is determined to be normal (step S24: Y), the series of defibrillation processes shown in FIG. 4 ends.
  • FIG. 9 is a block diagram schematically illustrating a configuration and an operation state example of a defibrillation catheter system (defibrillation catheter system 103) according to a comparative example.
  • the defibrillation catheter system 103 of this comparative example includes a defibrillation catheter 1 and a power supply device 102 as shown in FIG. That is, this defibrillation catheter system 103 is provided with a power supply device 102 according to a comparative example instead of the power supply device 2 according to the embodiment in the defibrillation catheter system 3 of the present embodiment shown in FIG. It corresponds to the thing. Further, in the case of defibrillation using the defibrillation catheter system 103, the electrocardiograph 4, the electrocardiogram display device 5, and the biometric mechanism 106 are similar to the defibrillation catheter system 3 of the present embodiment. Are also used appropriately. However, unlike the biometric mechanism 6 of the embodiment, the biometric mechanism 106 according to this comparative example is configured using only one type of electrode pad (a plurality of electrode pads 61). ) Electrode pads 62 are not provided.
  • the power supply apparatus 102 of the comparative example is not provided (omitted) with the input terminal Tin ⁇ b> 2 in the power supply apparatus 2 of the present embodiment, and is compared with the arithmetic processing unit 24.
  • This corresponds to the one provided with the arithmetic processing unit 204 according to the example.
  • the arithmetic processing unit 204 of this comparative example corresponds to the arithmetic processing unit 24 of the embodiment in which the gain adjusting unit 242 is not provided.
  • the cardiac potential signal Sc ⁇ b> 1 is calculated in the power supply apparatus 102 through the following path.
  • the unit 204 is supplied.
  • the electrocardiogram signal Sc1 measured by the living body measurement mechanism 6 is supplied to the electrocardiogram display device 5 via the electrocardiograph 4, and the electrocardiograph 4 and the power supply device 102.
  • the electrocardiogram display device 5 displays a cardiac potential waveform based on the cardiac potential signal Sc1
  • the display unit 25 of the power supply apparatus 102 displays the cardiac potential waveform based on the cardiac potential signal Sc1.
  • the cardiac potential signal Sc0a measured by the electrode groups 111G and 112G (ring electrodes 111 and 112) of the defibrillation catheter 1 is supplied to the input terminal Tin3, the switching unit 23, and the output terminal Tout2 of the power supply device 102 in this order. Via, it is supplied to the electrocardiograph 4.
  • the cardiac potential signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 passes through the input terminal Tin3 and the output terminal Tout2 of the power supply apparatus 102 in this order (through the switching unit 23). (Without going through), it is supplied to the electrocardiograph 4.
  • the electrocardiogram signals Sc0a and Sc0b thus supplied to the electrocardiograph 4 are respectively output to the electrocardiogram display device 5, and the electrocardiogram waveforms based on these electrocardiogram signals Sc0a and Sc0b are displayed on the electrocardiogram. Displayed on the device 5.
  • the electrocardiogram signal Sc1 obtained by measurement is supplied to the display unit 25 and the electrocardiogram display device 5 via the electrocardiograph 4, so that the electrocardiogram waveform. Is displayed. For this reason, it is easily affected by the device configuration of the electrocardiograph 4, for example, in a case where the electrocardiograph 4 does not have an electrocardiogram signal output function (no electrocardiogram signal output terminal is provided). Therefore, waveform information (cardiac potential signal Sc1) necessary for defibrillation cannot be supplied to the power supply apparatus 102.
  • the defibrillation catheter system 3 of the present embodiment is as follows, unlike the defibrillation catheter system 103 of the comparative example. That is, as shown in FIG. 1 and the like, the electrocardiographic signal Sc2 measured by the biometric mechanism 6 (electrode pad 62) is input to the power supply device 2 without passing through other devices such as the electrocardiograph 4. Direct input is made to the terminal Tin2. In other words, unlike the power supply device 102 in the defibrillation catheter system 103, the power supply device 2 in the defibrillation catheter system 3 directly inputs such a cardiac potential signal Sc2 (without passing through the electrocardiograph 4 or the like). An input terminal Tin2 is provided for this purpose.
  • the electrocardiograph 4 compared to the comparative example, for example, it is less affected by the device configuration of the electrocardiograph 4 and can easily cope with environmental conditions when the defibrillation catheter system 3 is used.
  • the electrocardiograph 4 does not have an electrocardiographic signal output function (no electrocardiographic signal output terminal is provided), for example, FIG.
  • waveform information (cardiac potential signal Sc2) necessary for defibrillation can be supplied to the power supply device 2 via the input terminal Tin2.
  • gain adjustment in the electrocardiograph 4 and gain adjustment in the power supply device 2 can be performed separately. Therefore, the peak value can be individually set between these gain adjustments.
  • gain adjustment is performed in the electrocardiograph 4 so that an electrocardiographic waveform having a peak value as large as possible is displayed as described above.
  • the display unit 25 of the power supply device 2 an arbitrary gain adjustment by the gain adjustment unit 242 is performed so that it can be easily used in the power supply device 2 (as described above, it is easy to adjust the timing of defibrillation execution).
  • the electrocardiographic waveform is monitored on the display unit 25, the electrocardiographic signal Sc2 'or the like after gain adjustment is made so that it is easy to see and the convenience is further improved.
  • the electrocardiographic signal Sc2 is input to the power supply device 2 without passing through the electrocardiograph 4, the following can also be said. That is, unlike the comparative example described above, the occurrence of a time lag due to the filtering process (gain adjustment) in the electrocardiograph 4 until the electrocardiogram signal Sc2 is displayed on the display unit 25 is avoided. Is done.
  • the above-described “cardiac potential measurement mode A (see FIG. 5)”, “cardiac potential measurement mode B (see FIG. 13)” described later), A plurality of types of modes such as “motion mode (see FIGS. 7 and 14)” can be switched.
  • the cardiac potential signal Sc2 see FIGS. 5 to 7 and the like
  • the cardiac potential signal Sc1 via the input terminal Tin1. Any one of these is selectively input.
  • the switching process between the plurality of types of modes and the selection process of one of the input terminal Tin1 (cardiac potential signal Sc1) and the input terminal Tin2 (cardiac potential signal Sc2) are respectively For example, it is performed via the input unit 21 according to an operation by an operator (engineer or the like) of the power supply device 2.
  • a mode or electrocardiographic signal selection process in this embodiment, for example, one of the above-described multiple types of modes can be used alternatively depending on the application, situation, etc.
  • one of the two types of electrocardiogram signals Sc1 and Sc2 can be used alternatively. Therefore, the convenience can be further improved.
  • the cardiac potential signal Sc0b measured in the electrode group 113G can be used.
  • the electrode groups 111G and 112G are used for processes other than the measurement process of the cardiac potential (for example, the measurement process of the resistance value R shown in FIG. 6 and the application process of the DC voltage Vdc shown in FIG. 7).
  • an electrocardiogram signal (cardiac potential signal Sc0b) can be acquired from the defibrillation catheter 1. That is, even in such a case, defibrillation treatment can be performed while displaying and monitoring the electrocardiogram signal Sc0b on the electrocardiogram display device 5, so that the convenience can be further improved.
  • the defibrillation catheter system 3 of the present embodiment is also provided with a myoelectric potential measurement function (myoelectric potential signal acquisition function) as described below, for example.
  • a myoelectric potential measurement function myoelectric potential signal acquisition function
  • Examples of such a myoelectric potential signal include a signal indicating a composite muscle action potential (CMAP) obtained in a region near the diaphragm of the patient 9.
  • CMAP composite muscle action potential
  • FIG. 10 is a block diagram schematically showing an example of the operation state when measuring the myoelectric potential in the defibrillation catheter system 3 as described above.
  • the myoelectric potential signal Sm measured by the living body measurement mechanism 6 is an electrocardiograph as with the above-described electrocardiographic signal Sc2. It is directly input to the input terminal Tin2 of the power supply device 2 without passing through other devices such as 4.
  • the power supply device 2 of the present embodiment has an input terminal Tin2 for directly inputting such a myoelectric potential signal Sm (not via the electrocardiograph 4 or the like) in addition to the electrocardiographic signal Sc2. Is provided.
  • the myoelectric potential signal Sm input to the power supply device 2 in this way is supplied to the arithmetic processing unit 24.
  • the gain adjustment unit 242 in the arithmetic processing unit 24 performs gain adjustment of the peak value, so that the myoelectric potential waveform based on the myoelectric potential signal Sm ′ after such gain adjustment is displayed on the display unit 25. It is displayed.
  • FIG. 11 is a schematic diagram showing an arrangement example of the electrode pads at the time of such myoelectric potential measurement (an example in the case of the above-described myoelectric potential signal Sm indicating CMAP).
  • two electrode pads 62 (referred to as electrode pads 62 a and 62 b) in the biometric mechanism 6 are respectively attached to portions near the diaphragm in the patient 9 (see the region Ad in FIG. 11). ing. Then, a myoelectric potential signal Sm indicating CMAP is obtained at these electrode pads 62a and 62b.
  • a mounting position of the electrode pad 62a for example, as shown in FIG.
  • a mounting position of the electrode pad 62b for example, as shown in FIG. 11 a position near the lower right rib can be mentioned.
  • a function for measuring myoelectric potential is provided in addition to the function for measuring cardiac potential (the input terminal Tin2 of the power supply device 2 receives the myoelectric potential signal Sm in addition to the cardiac potential signal Sc2. (Acquisition function is provided). That is, in addition to the cardiac potential signal Sc2 obtained in the biometric mechanism 6 (electrode pad 62), the myoelectric potential signal Sm obtained in the biometric mechanism 6 (electrode pad 62) can also be used in the power supply device 2. It becomes like this. As a result, the convenience can be further improved.
  • ablation treatment for atrial fibrillation including treatment using cryoballoon ablation
  • phrenic nerve palsy is included as a serious one.
  • the nerve that moves the diaphragm, which is one of the respiratory muscles is the phrenic nerve
  • the right phrenic nerve descends from the cervical spinal cord and is located just beside the superior vena cava.
  • Ablation treatment for atrial fibrillation may injure the phrenic nerve, and in many cases is temporary and recovers, but in rare cases, phrenic nerve palsy may persist. In most cases, the symptoms are asymptomatic, but a dyspnea may appear.
  • a signal indicating the above-mentioned CMAP may be observed.
  • a signal indicating CMAP can be easily obtained using the biometric mechanism 6 (electrode pad 62) used in the defibrillation treatment and the input terminal Tin2 of the power supply device 2. It becomes feasible.
  • the myoelectric potential signal Sm obtained in this way is supplied to the arithmetic processing unit 24 in the power supply device 2, and the myoelectric potential waveform is displayed on the display unit 25. It has come to be.
  • the gain adjustment unit 242 in the arithmetic processing unit 24 performs gain adjustment of the peak value of the myoelectric potential signal Sm, and the myoelectric potential signal Sm after such gain adjustment.
  • a myoelectric potential waveform based on ' is displayed on the display unit 25.
  • one of the electrocardiogram signal Sc2 (see FIGS. 5 to 7 and the like) and the myoelectric signal Sm (see FIG. 10) is selectively applied to the input terminal Tin2 of the power supply device 2.
  • the selection process of one of the cardiac potential signal Sc2 and the myoelectric potential signal Sm is performed via the input unit 21 in accordance with an operation by an operator (engineer or the like) of the power supply device 2, for example. Done.
  • the cardiac potential signal Sc2 or the myoelectric potential signal Sm input to the input terminal Tin2 in this way is supplied to the arithmetic processing unit 24, respectively.
  • one of these two types of biological signals (cardiac potential signal Sc2 and myoelectric potential signal Sm) is selected according to the application or situation. Available. Therefore, the convenience can be further improved.
  • the defibrillation is stopped (cannot be performed). Specifically, the arithmetic processing unit 24 in the power supply device 2 stops power supply (output of the DC voltage Vdc) for defibrillation from the power supply unit 22 during such myoelectric potential measurement period. As described above, operation control is performed. In this way, during the myoelectric potential measurement period, the output of the DC voltage Vdc from the power supply unit 22 is stopped, and the following occurs.
  • FIG. 12 is a schematic diagram showing an example of the myoelectric waveform obtained by the myoelectric potential measurement of the present embodiment. Specifically, an example of a myoelectric potential waveform based on the myoelectric potential signal Sm (or the myoelectric potential signal Sm ′ after gain adjustment) obtained by the measurement is displayed on the display unit 25 in the power supply device 2. .
  • the maximum value Smax shown in FIG. 12 indicates the maximum value of the crest value in this myoelectric waveform.
  • the maximum value Smax and the minimum threshold value Smin are shown only on the positive (+) side of the vertical axis for convenience of illustration.
  • a warning operation to the outside is performed.
  • the arithmetic processing unit 24 in the power supply device 2 issues a warning to the outside when it is determined that the crest value in the input myoelectric potential signal Sm is equal to or less than a threshold value (minimum threshold value Smin). It has become.
  • a warning operation include an operation of performing a predetermined warning display on the display unit 25 and outputting a predetermined warning sound using the audio output unit 26.
  • an excessive attenuation state of the myoelectric potential signal Sm can be immediately grasped, and an operator (such as an engineer) can take a quick response. Is possible. As a result, the convenience can be further improved.
  • the electrocardiographic signal Sc2 measured by the biometric mechanism 6 and the like are supplied to the power supply device 2 that supplies power to the defibrillation catheter 1 at the time of defibrillation. 4 is provided with an input terminal Tin ⁇ b> 2 that is directly input without going through 4. In this way, since the electrocardiogram signal Sc2 is directly input to the power supply device 2 without going through the electrocardiograph 4, the defibrillation catheter system is less affected by the device configuration of the electrocardiograph 4, for example. It becomes easy to cope with the environmental conditions when using 3.
  • the above-described plural types of modes (“cardiac potential measurement mode A”, “cardiac potential measurement mode B”, “defibrillation mode”) can be switched, and the cardiac potential signal Sc 1.
  • the electrocardiogram signal Sc2 can be selectively input, the following is obtained. That is, for example, one of the above-described plural types of modes or one of the above-described two types of electrocardiogram signals can be alternatively used according to the application or situation. Therefore, in this embodiment, convenience can be improved.
  • a myoelectric potential measuring function is provided in addition to the cardiac potential measuring function (the function of acquiring the myoelectric potential signal Sm in addition to the cardiac potential signal Sc2 at the input terminal Tin2 of the power supply device 2).
  • the following effects can also be obtained. That is, in addition to the electrocardiogram signal Sc2 obtained in the biometric mechanism 6, the myoelectric signal Sm obtained in the biometric mechanism 6 can be used in the power supply device 2. As a result, it is possible to further improve convenience.
  • cardiac potential measurement process B defibrillation processing
  • defibrillation mode B defibrillation processing
  • FIG. 13 a cardiac potential measurement process as shown in FIG. 13 can be used. That is, in addition to the above-described electrocardiogram measurement process in “cardiac potential measurement mode A”, the electrocardiogram measurement process in “cardiac potential measurement mode B” shown in FIG. 13 can be used. This corresponds to the case where “cardiac potential measurement mode B” is selected instead of “cardiac potential measurement mode A” in step S11 of FIG.
  • the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 is expressed as follows.
  • the signal is input to the power supply device 2 through a route. That is, the electrocardiogram signal Sc1 obtained in this way is input to the input terminal Tin1 of the power supply device 2 via the electrocardiograph 4.
  • the cardiac potential signal Sc1 input to the power supply device 2 is subjected to the gain adjustment described above to become a cardiac potential signal Sc1 ', and a cardiac potential waveform based on this cardiac potential signal Sc1' is displayed on the display unit 25.
  • An electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5. Further, at this time, regarding the electrocardiogram signal Sc0a measured by the electrode groups 111G and 112G in the defibrillation catheter 1, the power supply device 2 (input terminal Tin3, switching unit 23, output terminal Tout2) and the electrocardiograph 4 These may be displayed on the electrocardiogram display device 5 in this order. Similarly, the electrocardiographic signal Sc0b measured by the electrode group 113G in the defibrillation catheter 1 also passes through the power supply device 2 (input terminal Tin3, output terminal Tout2) and the electrocardiograph 4 in this order. It may be displayed on the electrocardiogram display device 5.
  • the electrocardiogram signal Sc1 obtained in the living body measurement mechanism 6 (electrode pad 61) is used in the electrocardiograph 4 and the power supply device 2. Will be able to. Therefore, it is possible to further improve convenience.
  • FIG. 14 shows an example of an operation state in the “defibrillation mode (defibrillation mode B)” performed when such “cardiac potential measurement mode B” is set (selected). It is schematically represented by a block diagram.
  • the “defibrillation mode B” basically, the “defibrillation mode” described above is basically used except that the input terminal Tin1 (cardiac potential signal Sc1) is used instead of the input terminal Tin2 (cardiac potential signal Sc2).
  • the defibrillation process is performed in the same manner as in “Mode A” (see FIG. 7).
  • the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 is connected to the output circuit 241, the switching unit 23, and the output terminal Tout1 in the arithmetic processing unit 24.
  • the electrodes are applied between the electrode groups 111G and 112G in the defibrillation catheter 1 in order.
  • the DC voltage Vdc is output from the output circuit 241 in the power supply device 2 so that these electrode groups 111G and 112G have different polarities.
  • the electrocardiograph Sc1 measured by the biomeasuring mechanism 6 continues from the above “cardiac potential measurement mode B”. 4 is input to the input terminal Tin 1 of the power supply device 2 through the power supply device 2 and supplied to the arithmetic processing unit 24.
  • the cardiac potential signal Sc1 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc1 'after gain adjustment is displayed on the display unit 25.
  • An electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring electrode 113) of the defibrillation catheter 1 is input to the input terminal Tin3 and the output terminal Tout2 of the power supply device 2.
  • the electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
  • the arithmetic processing unit 24 controls the operation of the power source unit 22 so that the DC voltage Vdc is applied in synchronization with the cardiac potential signal Sc1 supplied through the above-described path. In this way, the defibrillation process by the “defibrillation mode B” is performed.
  • the defibrillation process is performed in the same manner as in the case of the defibrillation catheter system 103 (see FIG. 9) according to the comparative example described above. become. That is, in the case of the “defibrillation mode B” (and the “cardiac potential measurement mode B” described above), the “defibrillation mode A (see FIG. 7)” described above (and the “cardiac potential measurement mode A ( Unlike FIG. 5)))), even if the electrode pad 62 is affixed to the patient 9, it is not used for the defibrillation process or the cardiac potential measurement process.
  • these “Defibrillation mode B” and “cardiac potential measurement mode B” can be suitably used, and the convenience is further improved.
  • each member described in the above embodiment is not limited, and other materials may be used.
  • the structure of the defibrillation catheter 1 was mentioned concretely and demonstrated, it is not necessary to necessarily provide all the members, and you may further provide other members.
  • a leaf spring that can be deformed in the bending direction may be provided inside the shaft 11 as a swinging member.
  • the configuration of the electrodes in the shaft 11 is not limited to that described in the above embodiment.
  • each member in the defibrillation catheter 1 is not limited to that described in the above embodiment, and other shapes, arrangements, materials, numbers, etc. May be.
  • the values, ranges, magnitude relationships, and the like of various parameters described in the above embodiments are not limited to those described in the above embodiments, and may be other values, ranges, magnitude relationships, and the like. .
  • the defibrillation catheter of the type in which the shape of the shaft 11 near the tip region P1 changes in one direction according to the operation with the handle 12 has been described as an example. Not limited. That is, the present invention can also be applied to, for example, a defibrillation catheter in which the shape of the shaft 11 near the distal end region P1 changes in both directions according to the operation with the handle 12. A plurality of operation wires are used. The present invention can also be applied to a defibrillation catheter of the type in which the shape near the distal end region P1 of the shaft 11 is fixed. In this case, the operation wire, the rotary plate 122, etc. Is no longer necessary. That is, the handle is composed of only the handle main body 121.
  • the biometric mechanism 6 demonstrated and demonstrated the example in the case where it was comprised using the several electrode pad (electrode pad 61, 62), it is not restricted to this example. That is, for example, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used as the biometric mechanism.
  • the block configuration of the power supply device 2 has been specifically described, but it is not always necessary to include all the blocks described in the above embodiment, and further includes other blocks. It may be.
  • the defibrillation catheter system 3 as a whole may further include other devices in addition to the devices described in the above embodiment. Specifically, for example, in some cases, the electrocardiograph 4 and the biological measurement mechanism 6 (electrode pads 61 and 62) may be included in the defibrillation catheter system.
  • the series of processing described in the above embodiment may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for causing each function to be executed by a computer.
  • Each program may be used by being incorporated in advance in the computer, for example, or may be used by being installed in the computer from a network or a recording medium.

Abstract

Provided is a defibrillation catheter system that is capable of improved convenience. The defibrillation catheter system 3 includes a defibrillation catheter 1 that is inserted into a heart chamber and performs defibrillation and a power supply device 2 that supplies power to the defibrillation catheter 1 at the time of defibrillation. The power supply device 2 has: a power supply unit 22 that supplies power at the time of defibrillation; a first input terminal (input terminal Tin1) for input of a first cardiac potential signal (cardiac potential signal Sc1) output from an electrocardiograph 4; and a second input terminal (input terminal Tin2) into which a second cardiac potential signal (cardiac potential signal Sc2) measured by a biometric mechanism 6 is directly input without passing through the electrocardiograph 4. The power supply device 2 is switchable between a first cardiac potential measurement mode (cardiac potential measurement mode A) in which a second cardiac potential signal is acquired from the second input terminal, a second cardiac potential measurement mode (cardiac potential measurement mode B) in which the first cardiac potential signal is acquired from the first input terminal, and a defibrillation mode for performing defibrillation. Additionally, in the power supply device 2, the first or second cardiac potential signal can be selectively input.

Description

除細動カテーテルシステムDefibrillation catheter system
 本発明は、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルに対して除細動の際の電力供給を行う電源装置とを備えた除細動カテーテルシステムに関する。 The present invention relates to a defibrillation catheter that includes a defibrillation catheter that is inserted into a heart chamber and performs defibrillation, and a power supply device that supplies power to the defibrillation catheter during defibrillation. About the system.
 例えば心臓カテーテル術中に生じた心房細動を除去する(電気的な除細動を行う)ための医療機器の1つとして、除細動カテーテルシステムが開発されている(例えば、特許文献1参照)。この除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルに対して除細動の際の電力供給を行う電源装置とを備えている。このような除細動カテーテルシステムを用いることで、心房細動を起こした心臓に対し、心腔内で直接的に電気的刺激(例えば直流電圧からなる電気的エネルギー)が付与される結果、効果的な除細動治療が実現されるようになっている。 For example, a defibrillation catheter system has been developed as one of medical devices for removing atrial fibrillation generated during cardiac catheterization (performing electrical defibrillation) (see, for example, Patent Document 1). . The defibrillation catheter system includes a defibrillation catheter that is inserted into a heart chamber and performs defibrillation, and a power supply device that supplies power to the defibrillation catheter during defibrillation. Yes. By using such a defibrillation catheter system, electrical stimulation (for example, electrical energy consisting of DC voltage) is directly applied to the heart that has undergone atrial fibrillation within the heart chamber, resulting in an effect. Defibrillation treatment has been realized.
特開2010-220778号公報JP 2010-220778 A
 ところで、このような除細動カテーテルシステムでは一般に、例えば、使用する際の利便性を向上することが求められている。したがって、利便性を向上させることが可能な除細動カテーテルシステムを提供することが望ましい。 By the way, in such a defibrillation catheter system, generally, for example, it is required to improve convenience when used. Therefore, it is desirable to provide a defibrillation catheter system that can improve convenience.
 本発明の一実施の形態に係る除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルに対して除細動の際の電力供給を行う電源装置とを備えたものである。この電源装置は、除細動の際の電力供給を行う電源部と、心電計から出力される第1の心電位信号を入力するための第1の入力端子と、生体測定機構において測定された第2の心電位信号が心電計を介さずに直接入力される第2の入力端子とを有している。また、この電源装置では、上記第2の入力端子から上記第2の心電位信号が取得される第1の心電位測定モードと、上記第1の入力端子から上記第1の心電位信号が取得される第2の心電位測定モードと、上記除細動が行われる除細動モードとが、切り替え可能になっていると共に、上記第1または第2の心電位信号が、選択的に入力可能となっている。 A defibrillation catheter system according to an embodiment of the present invention includes a defibrillation catheter that is inserted into a heart chamber to perform defibrillation, and power supply for defibrillation to the defibrillation catheter. And a power supply device for performing the above. The power supply device is measured by a power supply unit that supplies power during defibrillation, a first input terminal for inputting a first electrocardiographic signal output from an electrocardiograph, and a biometric mechanism. And a second input terminal to which the second electrocardiographic signal is directly input without going through the electrocardiograph. Further, in this power supply device, the first electrocardiogram measurement mode in which the second electrocardiogram signal is obtained from the second input terminal, and the first electrocardiogram signal is obtained from the first input terminal. The second cardiac potential measurement mode and the defibrillation mode in which the defibrillation is performed can be switched, and the first or second cardiac potential signal can be selectively input. It has become.
 本発明の一実施の形態に係る除細動カテーテルシステムでは、除細動カテーテルに対して除細動の際の電力供給を行う電源装置に、生体測定機構において測定された第2の心電位信号が心電計を介さずに直接入力される、第2の入力端子が設けられている。このようにして、第2の心電位信号が心電計を介さずに電源装置へ直接入力されることから、例えば心電計の装置構成等の影響を受けにくくなり、除細動カテーテルシステムを使用する際の環境条件に対応し易くなる。また、上記電源装置では、上記第1の心電位測定モードと上記第2の心電位測定モードと上記除細動モードとが、切り替え可能になっていると共に、上記第1または第2の心電位信号が選択的に入力可能となっている。このため、例えば用途や状況等に応じて、上記した複数種類のモードのうちの1つが択一的に利用可能になると共に、上記した2種類の心電位信号のうちの一方が択一的に利用可能となる。 In the defibrillation catheter system according to one embodiment of the present invention, the second electrocardiographic signal measured by the biometric mechanism is supplied to the power supply device that supplies power to the defibrillation catheter during defibrillation. Is input directly without going through an electrocardiograph, a second input terminal is provided. In this way, since the second electrocardiographic signal is directly input to the power supply device without going through the electrocardiograph, it is less affected by the device configuration of the electrocardiograph, for example. It becomes easy to cope with environmental conditions when using. In the power supply device, the first electrocardiogram measurement mode, the second electrocardiogram measurement mode, and the defibrillation mode can be switched, and the first or second electrocardiogram is switched. A signal can be selectively input. For this reason, for example, one of the above-described plural types of modes can be used selectively according to the application, situation, etc., and one of the above-described two types of electrocardiographic signals is alternatively used. Be available.
 本発明の一実施の形態に係る除細動カテーテルシステムでは、入力された第1または第2の心電位信号における波高値のゲイン調整を行う演算処理部を、上記電源装置に更に設けるようにしてもよい。このようにした場合、これらの第1または第2の心電位信号の波高値を、電源装置内で利用し易いように任意に調整できるようになる。 In the defibrillation catheter system according to one embodiment of the present invention, an arithmetic processing unit for adjusting the gain of the peak value in the input first or second electrocardiographic signal is further provided in the power supply device. Also good. In this case, the peak values of these first or second electrocardiographic signals can be arbitrarily adjusted so as to be easily used in the power supply device.
 この場合において、上記ゲイン調整が行われた後の第1または第2の心電位信号に基づいて心電位波形を表示する表示部を、上記電源装置に更に設けるようにしてもよい。このようにした場合、例えば、この表示部において心電位波形を監視する際に、見易いようにゲイン調整がなされた後の第1または第2の心電位信号が利用されることから、利便性の更なる向上が図られる。 In this case, a display unit that displays a cardiac potential waveform based on the first or second cardiac potential signal after the gain adjustment is performed may be further provided in the power supply device. In this case, for example, when the electrocardiogram waveform is monitored on the display unit, the first or second electrocardiogram signal after gain adjustment is made easy to see. Further improvement is achieved.
 本発明の一実施の形態に係る除細動カテーテルシステムでは、上記生体測定機構において測定された筋電位信号が、心電計を介さずに、上記第2の入力端子に更に直接入力可能となっていてもよい。このようにした場合、生体測定機構において得られた第2の心電位信号に加え、この生体測定機構において得られた筋電位信号についても、電源装置内で利用できるようになる。その結果、利便性の更なる向上が図られる。なお、このような筋電位信号としては、例えば、患者の横隔膜付近の部位において得られた複合筋活動電位(CMAP:Compound Motor Action Potentials)を示す信号が挙げられる。 In the defibrillation catheter system according to one embodiment of the present invention, the myoelectric potential signal measured by the biometric mechanism can be directly input to the second input terminal without using an electrocardiograph. It may be. In this case, in addition to the second electrocardiographic signal obtained in the biometric mechanism, the myoelectric potential signal obtained in the biometric mechanism can be used in the power supply apparatus. As a result, the convenience can be further improved. Examples of such a myoelectric potential signal include a signal indicating a compound muscle action potential (CMAP) obtained at a site near the diaphragm of the patient (CMAP: Compound Motor Action Potentials).
 この場合において、上記第2の入力端子が、上記第2の心電位信号または上記筋電位信号を選択的に入力可能となっていてもよい。このようにした場合、例えば用途や状況等に応じて、これら2種類の生体信号(第2の心電位信号または筋電位信号)のうちの一方を、択一的に利用可能となる。したがって、利便性の更なる向上が図られる。 In this case, the second input terminal may be capable of selectively inputting the second cardiac potential signal or the myoelectric potential signal. In such a case, one of these two types of biological signals (second cardiac potential signal or myoelectric potential signal) can be alternatively used depending on, for example, the application and situation. Therefore, the convenience can be further improved.
 また、上記第2の入力端子に対して筋電位信号が入力されている期間では、上記電源部が、除細動のための電力供給を停止するようにしてもよい。このようにした場合、例えば、筋電位信号の測定処理を行っていて、除細動は必要とされていないような場合に、除細動のための電力供給が(誤操作等により)誤って実行されてしまうことが、防止される。その結果、利便性の更なる向上が図られる。 Also, the power supply unit may stop supplying power for defibrillation during a period in which a myoelectric potential signal is input to the second input terminal. In this case, for example, when EMG signal measurement processing is performed and defibrillation is not required, power supply for defibrillation is erroneously executed (due to an erroneous operation or the like). It is prevented that it is done. As a result, the convenience can be further improved.
 更に、入力された筋電位信号に基づいて筋電位波形を表示する表示部を、上記電源装置に更に設けるようにしてもよい。このようにした場合、上記生体測定機構において測定された筋電位信号を、電源装置内の表示部において、随時監視できるようになる。したがって、利便性の更なる向上が図られる。 Furthermore, a display unit that displays a myoelectric potential waveform based on the input myoelectric potential signal may be further provided in the power supply device. In this case, the myoelectric potential signal measured by the biomeasuring mechanism can be monitored at any time on the display unit in the power supply device. Therefore, the convenience can be further improved.
 加えて、入力された筋電位信号における波高値が閾値以下であると判定された場合、上記電源装置が外部への警告を行うようにしてもよい。このようにした場合、例えば、筋電位信号の過度の減衰状態が即座に把握できるようになるため、迅速な対応をとることが可能となる。その結果、利便性の更なる向上が可能となる。 In addition, when it is determined that the peak value in the input myoelectric potential signal is equal to or lower than the threshold value, the power supply device may issue a warning to the outside. In such a case, for example, since an excessive attenuation state of the myoelectric potential signal can be immediately grasped, it is possible to take a quick response. As a result, the convenience can be further improved.
 本発明の一実施の形態に係る除細動カテーテルシステムでは、上記第1の心電位信号が、例えば、上記生体測定機構を用いて測定されたものである場合、以下のようにしてもよい。すなわち、この生体測定機構において得られた上記第1の心電位信号が、上記心電計を経由して、上記第1の入力端子に入力されるようにしてもよい。このようにした場合、上記生体測定機構において得られた上記第1の心電位信号を、上記心電計および上記電源装置内で利用することができるようになる。したがって、利便性の更なる向上が図られる。 In the defibrillation catheter system according to an embodiment of the present invention, when the first electrocardiographic signal is measured using, for example, the biometric mechanism, the following may be performed. That is, the first electrocardiographic signal obtained in this biometric mechanism may be input to the first input terminal via the electrocardiograph. In this case, the first electrocardiographic signal obtained in the biometric mechanism can be used in the electrocardiograph and the power supply device. Therefore, the convenience can be further improved.
 なお、上記生体測定機構としては、例えば、少なくとも2つ(複数)の電極パッド、あるいは、上記除細動カテーテルとは異なる別の電極カテーテル(患者の心腔内に挿入されたもの)を用いる手法が挙げられる。 As the biometric mechanism, for example, a method using at least two (plural) electrode pads, or another electrode catheter (inserted into a patient's heart chamber) different from the defibrillation catheter. Is mentioned.
 本発明の一実施の形態に係る除細動カテーテルシステムによれば、生体測定機構において測定された第2の心電位信号が心電計を介さずに直接入力される第2の入力端子を、電源装置に設けるようにしたので、除細動カテーテルシステムを使用する際の環境条件に対応し易くすることができる。また、電源装置において、第1の心電位測定モードと第2の心電位測定モードと除細動モードとが切り替え可能になっていると共に、第1または第2の心電位信号を選択的に入力可能としたので、例えば用途や状況等に応じて、複数種類のモードのうちの1つや、2種類の心電位信号のうちの一方を、択一的に利用することができる。よって、利便性を向上させることが可能となる。 According to the defibrillation catheter system according to one embodiment of the present invention, the second input terminal to which the second electrocardiographic signal measured in the biometric mechanism is directly input without passing through the electrocardiograph, Since the power supply device is provided, it is possible to easily cope with environmental conditions when the defibrillation catheter system is used. In the power supply device, the first electrocardiogram measurement mode, the second electrocardiogram measurement mode, and the defibrillation mode can be switched, and the first or second electrocardiogram signal is selectively input. Since it was made possible, for example, one of a plurality of modes or one of two types of electrocardiogram signals can be used alternatively depending on the application or situation. Therefore, convenience can be improved.
本発明の一実施の形態に係る除細動カテーテルシステムの全体構成例を模式的に表すブロック図である。It is a block diagram showing typically the example of whole composition of the defibrillation catheter system concerning one embodiment of the present invention. 図1に示した除細動カテーテルの概略構成例を表す模式図である。It is a schematic diagram showing the example of schematic structure of the defibrillation catheter shown in FIG. 図2に示したII-II線に沿ったシャフトの断面構成例を表す模式図である。FIG. 3 is a schematic diagram illustrating a cross-sectional configuration example of a shaft along the line II-II illustrated in FIG. 2. 図1に示した除細動カテーテルシステムにおける除細動処理の一例を表す流れ図である。It is a flowchart showing an example of the defibrillation process in the defibrillation catheter system shown in FIG. 図4に示した心電位測定の際の動作状態例を模式的に表すブロック図である。FIG. 5 is a block diagram schematically illustrating an example of an operation state at the time of measuring an electrocardiogram shown in FIG. 4. 図4に示した抵抗測定の際の動作状態例を模式的に表すブロック図である。FIG. 5 is a block diagram schematically illustrating an example of an operation state at the time of resistance measurement illustrated in FIG. 4. 図4に示した除細動実行の際の動作状態例を模式的に表すブロック図である。FIG. 5 is a block diagram schematically illustrating an example of an operation state when performing defibrillation illustrated in FIG. 4. 図7に示した除細動実行の際に測定される心電位波形の一例を表す模式図である。FIG. 8 is a schematic diagram illustrating an example of an electrocardiographic waveform measured when performing defibrillation illustrated in FIG. 7. 比較例に係る除細動カテーテルシステムの構成および動作状態例を模式的に表すブロック図である。It is a block diagram showing typically the composition and example of an operation state of the defibrillation catheter system concerning a comparative example. 図1に示した除細動カテーテルシステムにおける筋電位測定の際の動作状態例を模式的に表すブロック図である。FIG. 2 is a block diagram schematically illustrating an example of an operation state when measuring a myoelectric potential in the defibrillation catheter system illustrated in FIG. 1. 図10に示した筋電位測定の際の電極パッドの配置例を表す模式図である。It is a schematic diagram showing the example of arrangement | positioning of the electrode pad in the case of the myoelectric potential measurement shown in FIG. 図10に示した筋電位測定により得られる筋電位波形の一例を表す模式図である。It is a schematic diagram showing an example of the myoelectric potential waveform obtained by the myoelectric potential measurement shown in FIG. 図1に示した除細動カテーテルシステムにおける心電位測定の際の他の動作状態例を模式的に表すブロック図である。FIG. 6 is a block diagram schematically showing another example of the operating state when measuring the cardiac potential in the defibrillation catheter system shown in FIG. 1. 図13に示した場合における除細動実行の際の動作状態例を模式的に表すブロック図である。FIG. 14 is a block diagram schematically illustrating an example of an operation state when performing defibrillation in the case illustrated in FIG. 13.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
  構成(除細動カテーテル,電源装置,心電計,心電位表示装置,生体測定機構)
  動作および作用・効果(基本動作,除細動処理の詳細,比較例,筋電位測定処理等)
2.変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment Configuration (Defibrillation catheter, power supply device, electrocardiograph, electrocardiogram display device, biometric mechanism)
Action, action and effect (basic action, details of defibrillation, comparative example, myoelectric potential measurement, etc.)
2. Modified example
<実施の形態>
[構成]
 図1は、本発明の一実施の形態に係る除細動カテーテルシステム(除細動カテーテルシステム3)の全体構成例を、模式的にブロック図で表したものである。この除細動カテーテルシステム3は、例えば心臓カテーテル術中において患者(この例では患者9)に生じた心房細動を除去する(電気的な除細動を行う)際などに用いられるシステムである。
<Embodiment>
[Constitution]
FIG. 1 is a block diagram schematically showing an example of the overall configuration of a defibrillation catheter system (defibrillation catheter system 3) according to an embodiment of the present invention. The defibrillation catheter system 3 is a system that is used, for example, when removing atrial fibrillation (electrical defibrillation) that has occurred in a patient (patient 9 in this example) during cardiac catheterization.
 除細動カテーテルシステム3は、図1に示したように、除細動カテーテル1および電源装置2を備えている。また、この除細動カテーテルシステム3を用いた除細動等の際には、例えば図1に示したように、心電計4、心電図表示装置5(波形表示装置)および生体測定機構6についても、適宜、用いられるようになっている。 The defibrillation catheter system 3 includes a defibrillation catheter 1 and a power supply device 2 as shown in FIG. In the case of defibrillation using the defibrillation catheter system 3, for example, as shown in FIG. 1, the electrocardiograph 4, the electrocardiogram display device 5 (waveform display device), and the biological measurement mechanism 6 are used. Are also used appropriately.
(A.除細動カテーテル1)
 除細動カテーテル1は、血管を通して患者9の体内(心腔内)に挿入されて、電気的な除細動を行うための電極カテーテルである。図2は、この除細動カテーテル1の概略構成例を、模式的に表したものである。この除細動カテーテル1は、カテーテル本体としてのシャフト11(カテーテルシャフト)と、このシャフト11の基端に装着されたハンドル12とを有している。
(A. Defibrillation catheter 1)
The defibrillation catheter 1 is an electrode catheter that is inserted into the body (inside the heart chamber) of a patient 9 through blood vessels to perform electrical defibrillation. FIG. 2 schematically shows a schematic configuration example of the defibrillation catheter 1. The defibrillation catheter 1 has a shaft 11 (catheter shaft) as a catheter body and a handle 12 attached to the proximal end of the shaft 11.
(シャフト11)
 シャフト11は、可撓性を有する絶縁性の管状構造(管状部材,チューブ部材)からなり、自身の軸方向(Z軸方向)に沿って延伸する形状となっている。また、シャフト11は、自身の軸方向に沿って延在するように内部に複数のルーメン(細孔,貫通孔)が形成された、いわゆるマルチルーメン構造を有している。各ルーメンには、詳細は後述するが、各種の細線(導線や操作用ワイヤ等)がそれぞれ、互いに電気的に絶縁された状態で挿通されている。なお、このシャフト11の外径は、例えば1.2mm~3.3mm程度である。
(Shaft 11)
The shaft 11 has a flexible insulating tubular structure (tubular member, tube member), and has a shape extending along its own axial direction (Z-axis direction). The shaft 11 has a so-called multi-lumen structure in which a plurality of lumens (pores, through-holes) are formed so as to extend along the axial direction of the shaft 11. Although the details will be described later, various thin wires (conductive wires, operation wires, etc.) are inserted into the lumens in a state of being electrically insulated from each other. The outer diameter of the shaft 11 is, for example, about 1.2 mm to 3.3 mm.
 このようなシャフト11の先端領域P1には、例えば図2に示したように、複数の電極(先端電極110およびリング状電極111,112,113)が設けられている。具体的には、シャフト11の軸方向に沿って、1つの先端電極110および複数のリング状電極111,112,113がそれぞれ、シャフト11の先端側から基端側へ向けて、この順で所定の間隔をおいて配置されている。リング状電極111,112,113はそれぞれ、シャフト11の外周面上に固定配置される一方、先端電極110は、シャフト11の最先端に固定配置されている。また、図2に示したように、互いに間隔をおいて配置された複数のリング状電極111によって、電極群111Gが構成されている。同様に、互いに間隔をおいて配置された複数のリング状電極112によって、電極群112Gが構成され、互いに間隔をおいて配置された複数のリング状電極113によって、電極群113Gが構成されている。 For example, as shown in FIG. 2, a plurality of electrodes (tip electrode 110 and ring-shaped electrodes 111, 112, 113) are provided in the tip region P <b> 1 of the shaft 11. Specifically, along the axial direction of the shaft 11, one tip electrode 110 and a plurality of ring-shaped electrodes 111, 112, 113 are respectively predetermined in this order from the tip side to the base end side of the shaft 11. Are arranged at intervals. Each of the ring-shaped electrodes 111, 112, 113 is fixedly disposed on the outer peripheral surface of the shaft 11, while the tip electrode 110 is fixedly disposed at the forefront of the shaft 11. In addition, as shown in FIG. 2, an electrode group 111 </ b> G is configured by a plurality of ring-shaped electrodes 111 arranged at intervals. Similarly, an electrode group 112G is constituted by a plurality of ring-shaped electrodes 112 arranged at intervals, and an electrode group 113G is constituted by a plurality of ring-shaped electrodes 113 arranged at intervals. .
 なお、ここで言う「電極群」とは、同一の極を構成し(同一の極性を有し)、または、同一の目的を持って、狭い間隔(例えば5mm以下)で装着された複数の電極の集合体を意味しており、以下同様である。また、電極群111G(基端側のリング状電極111)と、電極群112G(先端側のリング状電極112)との離間距離は、例えば40~100mm程度であることが好ましく、好適な一例を示せば、66mmである。 The “electrode group” here refers to a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. The same applies to the following. In addition, the distance between the electrode group 111G (the base-side ring electrode 111) and the electrode group 112G (the front-side ring electrode 112) is preferably about 40 to 100 mm, for example. If shown, it is 66 mm.
 リング状電極111,112,113はそれぞれ、詳細は後述するが、シャフト11のルーメン内に挿通された複数の導線(リード線)を介して、ハンドル12と電気的に接続されている。一方、この例では先端電極110には、導線が接続されていないようになっている。ただし、この先端電極110にも導線が接続されているようにしてもよい。 The ring-shaped electrodes 111, 112, and 113 are electrically connected to the handle 12 through a plurality of conductive wires (lead wires) inserted into the lumen of the shaft 11, as will be described in detail later. On the other hand, the lead wire is not connected to the tip electrode 110 in this example. However, a conductive wire may be connected to the tip electrode 110 as well.
 このような先端電極110およびリング状電極111,112,113はそれぞれ、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、金(Au)、白金(Pt)等の、電気伝導性の良好な金属材料、あるいは、各種の樹脂材料により構成されている。なお、除細動カテーテル1の使用時におけるX線に対する造影性を良好にするためには、これらの先端電極110およびリング状電極111,112,113がそれぞれ、白金またはその合金により構成されていることが好ましい。 Each of the tip electrode 110 and the ring-shaped electrodes 111, 112, 113 is electrically conductive, such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc. It is comprised with the metal material with favorable property, or various resin materials. In addition, in order to improve the contrast with respect to X-rays when the defibrillation catheter 1 is used, the tip electrode 110 and the ring electrodes 111, 112, 113 are each made of platinum or an alloy thereof. It is preferable.
 ここで、上記した電極群111Gは、同一の極(-極または+極)を構成することになる、複数のリング状電極111からなる。この電極群111Gを構成するリング状電極111の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個であり、好ましくは8~10個である。また、リング状電極111の幅(軸方向の長さ)は、例えば2~5mm程度であることが好ましく、好適な一例を示せば、4mmである。リング状電極111の装着間隔(隣り合う電極の離間距離)は、例えば1~5mm程度であることが好ましく、好適な一例を示せば、2mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群111Gは、例えば冠状静脈内に位置するようになっている。 Here, the above-mentioned electrode group 111G is composed of a plurality of ring-shaped electrodes 111 that constitute the same pole (-pole or + pole). The number of ring-shaped electrodes 111 constituting the electrode group 111G varies depending on the electrode width and arrangement interval, but is 4 to 13, for example, and preferably 8 to 10. The width (length in the axial direction) of the ring-shaped electrode 111 is preferably about 2 to 5 mm, for example, and 4 mm is a preferable example. The mounting interval of the ring electrodes 111 (the distance between adjacent electrodes) is preferably about 1 to 5 mm, for example, and 2 mm is a preferable example. When the defibrillation catheter 1 is used (when placed in the heart chamber), the electrode group 111G is positioned, for example, in a coronary vein.
 電極群112Gは、上記した電極群111Gとは逆の極(+極または-極)を構成することになる、複数のリング状電極112からなる。この電極群112Gを構成するリング状電極112の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個であり、好ましくは8~10個である。また、リング状電極112の幅(軸方向の長さ)は、例えば2~5mm程度であることが好ましく、好適な一例を示せば、4mmである。リング状電極112の装着間隔(隣り合う電極の離間距離)は、例えば1~5mm程度であることが好ましく、好適な一例を示せば、2mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群112Gは、例えば右心房に位置するようになっている。 The electrode group 112G is composed of a plurality of ring-shaped electrodes 112 that constitute an opposite pole (+ pole or −pole) to the electrode group 111G described above. The number of ring-shaped electrodes 112 constituting this electrode group 112G varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10. The width (length in the axial direction) of the ring-shaped electrode 112 is preferably about 2 to 5 mm, for example, and 4 mm is a preferable example. The mounting interval of the ring-shaped electrodes 112 (the distance between adjacent electrodes) is preferably about 1 to 5 mm, for example, and 2 mm is a preferable example. When the defibrillation catheter 1 is used (when placed in the heart chamber), the electrode group 112G is positioned, for example, in the right atrium.
 電極群113Gは、この例では、4個のリング状電極113から構成されている。このリング状電極113の幅(軸方向の長さ)は、例えば0.5~2.0mm程度であることが好ましく、好適な一例を示せば、1.2mmである。リング状電極113の装着間隔(隣り合う電極の離間距離)は、例えば1.0~10.0mm程度であることが好ましく、好適な一例を示せば、5mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群113Gは、例えば、異常電位が発生しやすい上大静脈に位置するようになっている。 In this example, the electrode group 113G includes four ring electrodes 113. The width (length in the axial direction) of the ring-shaped electrode 113 is preferably about 0.5 to 2.0 mm, for example, and is 1.2 mm as a suitable example. The mounting interval of the ring-shaped electrodes 113 (the distance between adjacent electrodes) is preferably about 1.0 to 10.0 mm, for example, and 5 mm is a preferable example. When the defibrillation catheter 1 is used (when placed in the heart chamber), the electrode group 113G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
 図3は、図2中のII-II線に沿ったシャフト11の断面構成例(X-Y断面構成例)を、模式的に表したものである。この例では図3に示したように、シャフト11は、アウター部70(シェル部)、素線71、インナー部72(コア部)および樹脂層73を有するマルチルーメン構造となっている。具体的には、このシャフト11には、互いに分離した4つのルーメンL1~L4が形成されている。 FIG. 3 schematically shows a cross-sectional configuration example (XY cross-sectional configuration example) of the shaft 11 along the line II-II in FIG. In this example, as shown in FIG. 3, the shaft 11 has a multi-lumen structure having an outer portion 70 (shell portion), a strand 71, an inner portion 72 (core portion), and a resin layer 73. Specifically, the shaft 11 is formed with four lumens L1 to L4 separated from each other.
 アウター部70は、図3に示したように、シャフト11の最外周に位置するチューブ状の部材である。このアウター部70は、例えば、高硬度のナイロンエラストマーにより構成されている。このアウター部70を構成するナイロンエラストマーとしては、例えば、軸方向(Z軸方向)に沿って異なる硬度のものが用いられている。これによりシャフト11は、その先端側から基端側に向けて、段階的に硬度が高くなるように構成されている。 The outer part 70 is a tubular member located on the outermost periphery of the shaft 11 as shown in FIG. The outer portion 70 is made of, for example, a high hardness nylon elastomer. As the nylon elastomer constituting the outer portion 70, for example, those having different hardness along the axial direction (Z-axis direction) are used. As a result, the shaft 11 is configured so that its hardness gradually increases from the distal end side toward the proximal end side.
 素線71は、図3に示したように、アウター部70とインナー部72との層間に配置されており、編組ブレードを形成するようになっている。また、この編組ブレードは、例えば、シャフト11における軸方向に沿った一部の領域にのみ形成されている。このような素線71は、例えばステンレスにより構成されており、ステンレス素線となっている。 As shown in FIG. 3, the strands 71 are disposed between the outer portion 70 and the inner portion 72, and form a braided blade. Further, the braided blade is formed only in a partial region of the shaft 11 along the axial direction, for example. Such a strand 71 is made of stainless steel, for example, and is a stainless strand.
 インナー部72は、図3に示したように、アウター部70および素線71の内周側に位置する、コア部材である。このインナー部72は、例えば、低硬度のナイロンエラストマーにより構成されている。なお、このインナー部72内に、上記した4つのルーメンL1~L4がそれぞれ形成されるようになっている。 The inner part 72 is a core member located on the inner peripheral side of the outer part 70 and the wire 71 as shown in FIG. The inner portion 72 is made of, for example, a low hardness nylon elastomer. The four lumens L1 to L4 described above are formed in the inner portion 72, respectively.
 樹脂層73は、図3に示したように、4つのルーメンL1~L4を区画する層であり、例えばフッ素樹脂により構成されている。このフッ素樹脂としては、例えば、パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の、絶縁性の高い材料が挙げられる。 As shown in FIG. 3, the resin layer 73 is a layer that partitions the four lumens L1 to L4, and is made of, for example, a fluororesin. Examples of the fluororesin include materials having high insulating properties such as perfluoroalkyl vinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE).
 ルーメンL1(第1ルーメン)は、この例では図3に示したように、シャフト11内におけるX軸の正方向側に配置されている。このルーメンL1には、複数の導線81からなる導線群81Gが挿通されている。これらの導線81はそれぞれ、前述した電極群111Gにおける複数のリング状電極111に対して、個別に電気的接続されている。なお、このようにしてリング状電極111に電気的接続された導線81は、後述する心電位信号Sc0aの信号線を構成している(図2参照)。 In this example, the lumen L1 (first lumen) is arranged on the positive direction side of the X axis in the shaft 11 as shown in FIG. A lead wire group 81G including a plurality of lead wires 81 is inserted through the lumen L1. Each of the conductive wires 81 is individually electrically connected to the plurality of ring electrodes 111 in the electrode group 111G described above. The conducting wire 81 electrically connected to the ring electrode 111 in this way constitutes a signal line for an electrocardiographic signal Sc0a described later (see FIG. 2).
 ルーメンL2(第2ルーメン)は、この例では図3に示したように、シャフト11内におけるX軸の負方向側に配置されている。このルーメンL2には、複数の導線82からなる導線群82Gが挿通されている。これらの導線82はそれぞれ、前述した電極群112Gにおける複数のリング状電極112に対して、個別に電気的接続されている。なお、このようにしてリング状電極112に電気的接続された導線82もまた、後述する心電位信号Sc0aの信号線を構成している(図2参照)。 In this example, the lumen L2 (second lumen) is arranged on the negative side of the X axis in the shaft 11 as shown in FIG. A lead wire group 82G including a plurality of lead wires 82 is inserted through the lumen L2. Each of these conducting wires 82 is individually electrically connected to the plurality of ring electrodes 112 in the electrode group 112G described above. The conducting wire 82 electrically connected to the ring electrode 112 in this way also constitutes a signal line for an electrocardiographic signal Sc0a described later (see FIG. 2).
 ルーメンL3(第3ルーメン)は、この例では図3に示したように、シャフト11内におけるY軸の負方向側に配置されている。このルーメンL3には、複数の導線83からなる導線群83Gが挿通されている。これらの導線83はそれぞれ、前述した電極群113Gにおける複数のリング状電極113に対して、個別に電気的接続されている。なお、このようにしてリング状電極113に電気的接続された導線83は、後述する心電位信号Sc0bの信号線を構成している(図2参照)。 In this example, the lumen L3 (third lumen) is arranged on the negative side of the Y axis in the shaft 11 as shown in FIG. A lead wire group 83G including a plurality of lead wires 83 is inserted through the lumen L3. Each of the conductive wires 83 is individually electrically connected to the plurality of ring electrodes 113 in the electrode group 113G described above. The conducting wire 83 electrically connected to the ring electrode 113 in this way constitutes a signal line for an electrocardiographic signal Sc0b described later (see FIG. 2).
 ルーメンL4(第4ルーメン)は、この例では図3に示したように、シャフト11内におけるY軸の正方向側に配置されている。このルーメンL4には、この例では1本の操作用ワイヤ80が挿通されている。つまり、操作用ワイヤ80は、シャフト11の中心軸に対して偏心した状態で配置されている。この操作用ワイヤ80は、詳細は後述するが、シャフト11の先端付近を偏向させる(湾曲させる)際の操作である、偏向移動操作(首振り操作)を行うための部材である。このような操作用ワイヤ80の先端部分は、例えばハンダによって、先端電極110に固定されている。なお、操作用ワイヤ80の先端に、抜け止め用の大径部(抜け止め部)が形成されていてもよい。一方、操作用ワイヤ80の基端部分は、後述するハンドル12内(回転板122)に接続されるようになっている。 In this example, the lumen L4 (fourth lumen) is arranged on the positive side of the Y axis in the shaft 11 as shown in FIG. In this example, one operating wire 80 is inserted through the lumen L4. That is, the operation wire 80 is arranged in an eccentric state with respect to the central axis of the shaft 11. Although details will be described later, the operation wire 80 is a member for performing a deflection movement operation (swing operation), which is an operation for deflecting (curving) the vicinity of the tip of the shaft 11. The tip portion of the operation wire 80 is fixed to the tip electrode 110 by solder, for example. Note that a large-diameter portion (a retaining portion) for retaining may be formed at the tip of the operation wire 80. On the other hand, the proximal end portion of the operation wire 80 is connected to the inside of the handle 12 (rotary plate 122) described later.
 なお、上記した導線81,82,83はそれぞれ、例えば、ポリイミドなどの樹脂によって金属導線の外周面が被覆された、樹脂被覆線により構成されている。また、操作用ワイヤ80は、例えば、ステンレスやNi(ニッケル)-Ti(チタン)系超弾性合金により構成されている。ただし、この操作用ワイヤ80は、必ずしも金属により構成されている必要はなく、例えば、高強度の非導電性ワイヤなどにより構成されていてもよい。 Note that each of the above-described conductive wires 81, 82, and 83 is formed of a resin-coated wire in which the outer peripheral surface of the metal conductive wire is coated with a resin such as polyimide, for example. The operation wire 80 is made of, for example, stainless steel or a Ni (nickel) -Ti (titanium) superelastic alloy. However, the operation wire 80 is not necessarily made of metal, and may be made of, for example, a high-strength non-conductive wire.
(ハンドル12)
 ハンドル12は、シャフト11の基端に装着されており、ハンドル本体121(把持部)および回転板122を有している。
(Handle 12)
The handle 12 is attached to the proximal end of the shaft 11, and has a handle body 121 (gripping part) and a rotating plate 122.
 ハンドル本体121は、除細動カテーテル1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル本体121の内部には、シャフト11の内部から前述した各種の細線(導線81,82,83および操作用ワイヤ80等)がそれぞれ、互いに電気的に絶縁された状態で延伸している。 The handle body 121 is a portion that is gripped (gripped) by an operator (doctor) when the defibrillation catheter 1 is used. Inside the handle main body 121, the above-described various thin wires (the conductive wires 81, 82, 83, the operation wire 80, etc.) extend from the inside of the shaft 11 while being electrically insulated from each other.
 回転板122は、詳細は後述するが、シャフト11の先端付近を偏向させる際の操作である、偏向移動操作を行うための部材である。具体的には、例えば図2中の破線の矢印で示した回転方向d1に沿って、回転板122を回転させる操作が可能となっている。このような回転操作によって、前述した操作用ワイヤ80が基端側に引っ張られることで、シャフト11の先端付近を偏向させる操作(偏向移動操作)が可能となっている。 Although the details will be described later, the rotating plate 122 is a member for performing a deflection movement operation, which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, for example, an operation of rotating the rotating plate 122 along the rotation direction d1 indicated by the dashed arrow in FIG. 2 is possible. By such a rotation operation, the operation wire 80 described above is pulled toward the base end side, whereby an operation for deflecting the vicinity of the distal end of the shaft 11 (deflection movement operation) is possible.
(B.電源装置2)
 電源装置2は、除細動カテーテル1に対して、除細動の際の電力供給を行う装置である。具体的には図1~図3に示したように、この電源装置2は、除細動の際に印加される直流電圧Vdcを、除細動カテーテル1のシャフト11における電極群111G,112G(リング状電極111,112)に対し、導線群81G,82G(導線81,82)を介して供給するようになっている。
(B. Power supply 2)
The power supply device 2 is a device that supplies power to the defibrillation catheter 1 during defibrillation. Specifically, as shown in FIGS. 1 to 3, the power supply device 2 applies a DC voltage Vdc applied at the time of defibrillation to electrode groups 111G and 112G (on the shaft 11 of the defibrillation catheter 1). The ring-shaped electrodes 111 and 112) are supplied via conductor groups 81G and 82G (conductors 81 and 82).
 電源装置2は、図1に示したように、入力部21、電源部22、切替部23、演算処理部24(制御部)、表示部25および音声出力部26を有している。この電源装置2はまた、図1に示したように、3つ(3種類)の入力端子Tin1,Tin2,Tin3と、2つ(2種類)の出力端子Tout1,Tout2とを有している。また、この電源装置2では、詳細は後述するが、心電位測定が行われる心電位測定モード(後述する「心電位測定モードA(図5参照)」または「心電位測定モードB(図13参照)」)と、除細動が行われる「除細動モード(図7,図14参照)」とが、切り替え可能となっている。すなわち、電源装置2では、これら複数種類(例えば3種類)のモード間での切り替えが可能となっている。なお、上記した「心電位測定モードA」は、本発明における「第1の心電位測定モード」の一具体例に対応していると共に、上記した「心電位測定モードB」は、本発明における「第2の心電位測定モード」の一具体例に対応している。また、上記した「除細動モード」(後述する「除細動モードA(図7参照)」または「除細動モードB(図14参照)」)は、本発明における「除細動モード」の一具体例に対応している。 1, the power supply device 2 includes an input unit 21, a power supply unit 22, a switching unit 23, an arithmetic processing unit 24 (control unit), a display unit 25, and an audio output unit 26. The power supply device 2 also has three (three types) input terminals Tin1, Tin2, Tin3 and two (two types) output terminals Tout1, Tout2, as shown in FIG. Further, in this power supply device 2, although details will be described later, a cardiac potential measurement mode in which cardiac potential measurement is performed (a “cardiac potential measurement mode A (see FIG. 5)” described later) or a “cardiac potential measurement mode B (see FIG. 13). ) ”) And“ defibrillation mode (see FIGS. 7 and 14) ”in which defibrillation is performed can be switched. That is, the power supply device 2 can be switched between these plural types (for example, three types) of modes. The “cardiac potential measurement mode A” corresponds to a specific example of the “first cardiac potential measurement mode” in the present invention, and the “cardiac potential measurement mode B” in the present invention This corresponds to a specific example of “second electrocardiographic measurement mode”. Further, the above-mentioned “defibrillation mode” (“defibrillation mode A (see FIG. 7)” or “defibrillation mode B (see FIG. 14)” described later) is the “defibrillation mode” in the present invention. This corresponds to a specific example.
 入力部21は、各種の設定値や、所定の動作を指示するための入力信号Sin(操作入力信号)を入力する部分であり、例えば所定のダイヤルやスイッチ、タッチパネル等を用いて構成されている。これらの設定値や指示(入力信号Sin)は、電源装置2の操作者(例えば技師等)によって入力されるようになっている。ただし、一部の設定値等については、操作者によって入力されるのではなく、製品の出荷時等に予め電源装置2内で設定されているようにしてもよい。また、上記したスイッチとしては、詳細は後述するが、例えば、上記した複数種類のモード(「心電位測定モードA」,「心電位測定モードB」,「除細動モード(除細動モードAまたは除細動モードB)」)間での切り替えを行うためのモード切替スイッチ、除細動の際に印加する電気エネルギー(直流電圧Vdc)を設定する印加エネルギー設定スイッチ、電源部22を充電するための充電スイッチ、電気エネルギーを印加して除細動を実行するためのエネルギー印加スイッチ(放電スイッチ)等が挙げられる。なお、この入力部21において入力された入力信号Sinは、図1に示したように、演算処理部24へ供給されるようになっている。 The input unit 21 is a part for inputting various set values and an input signal Sin (operation input signal) for instructing a predetermined operation, and is configured using, for example, a predetermined dial, switch, touch panel, or the like. . These set values and instructions (input signal Sin) are input by an operator (for example, an engineer) of the power supply device 2. However, some setting values or the like may not be input by the operator but may be set in the power supply device 2 in advance at the time of shipping the product. The details of the above-described switch will be described later. For example, the above-described plural types of modes (“cardiac potential measurement mode A”, “cardiac potential measurement mode B”, “defibrillation mode (defibrillation mode A) Or a mode changeover switch for switching between defibrillation modes B) ”), an applied energy setting switch for setting electric energy (DC voltage Vdc) applied at the time of defibrillation, and charging the power supply unit 22 A charge switch for the purpose, an energy application switch (discharge switch) for performing defibrillation by applying electric energy, and the like. The input signal Sin input at the input unit 21 is supplied to the arithmetic processing unit 24 as shown in FIG.
 電源部22は、上記した直流電圧Vdcを、除細動カテーテル1における電極群111G,112G(リング状電極111,112)へ向けて出力する部分である。このような電源部22における電力供給動作は、例えば、入力部21からの入力信号Sinに基づいて、演算処理部24によって制御されるようになっている。また、この電源部22は、所定の電源回路(例えばスイッチングレギュレータ等)、および、電気エネルギーを充電するためのコンデンサ(容量素子)等を用いて構成されている。 The power supply unit 22 is a part that outputs the DC voltage Vdc described above toward the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) in the defibrillation catheter 1. Such a power supply operation in the power supply unit 22 is controlled by the arithmetic processing unit 24 based on an input signal Sin from the input unit 21, for example. The power supply unit 22 is configured using a predetermined power supply circuit (for example, a switching regulator) and a capacitor (capacitance element) for charging electric energy.
 切替部23は、図1に示したように、直流電圧Vdcや、後述する抵抗値Rおよび心電位信号Sc0a,Sc1の供給経路を切り替える動作(切替動作)を行う部分である。このような切替部23における切替動作は、例えば、入力部21からの入力信号Sinに基づいて、演算処理部24によって制御されるようになっている。なお、この切替部23における切替動作の詳細については、後述する。 As shown in FIG. 1, the switching unit 23 is a part that performs an operation (switching operation) of switching a supply path of the DC voltage Vdc, a resistance value R, and electrocardiogram signals Sc0a and Sc1, which will be described later. Such a switching operation in the switching unit 23 is controlled by the arithmetic processing unit 24 based on an input signal Sin from the input unit 21, for example. The details of the switching operation in the switching unit 23 will be described later.
 演算処理部24は、電源装置2全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を含んで構成されている。具体的には、演算処理部24は、入力部21からの入力信号Sinに基づいて、電源部22、切替部23、表示部25および音声出力部26の動作をそれぞれ制御するようになっている。なお、このような演算処理部24での動作例の詳細については、後述する。 The arithmetic processing unit 24 is a part that controls the entire power supply device 2 and performs predetermined arithmetic processing, and includes, for example, a microcomputer. Specifically, the arithmetic processing unit 24 controls operations of the power supply unit 22, the switching unit 23, the display unit 25, and the audio output unit 26 based on the input signal Sin from the input unit 21. . Details of the operation example in the arithmetic processing unit 24 will be described later.
 また、この演算処理部24は、図1に示したように、出力回路241およびゲイン調整部242を有している。 In addition, the arithmetic processing unit 24 includes an output circuit 241 and a gain adjusting unit 242 as shown in FIG.
 出力回路241は、電源部22から出力された直流電圧Vdcを、切替部23および後述する出力端子Tout1を介して、除細動カテーテル1の電極群111G,112G(リング状電極111,112)へ出力するための回路である。具体的には、詳細は後述するが、この出力回路241は、電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、直流電圧Vdcを出力するようになっている。 The output circuit 241 transfers the DC voltage Vdc output from the power supply unit 22 to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 via the switching unit 23 and an output terminal Tout1 described later. It is a circuit for outputting. Specifically, although details will be described later, the output circuit 241 is configured so that the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). In addition, a DC voltage Vdc is output.
 ゲイン調整部242は、入力された各種信号(後述する心電位信号Sc1,Sc2および筋電位信号Sm等)における、波高値のゲイン調整(増幅処理等)を行う部分である。なお、このようなゲイン調整後の各種信号(ゲイン調整後の心電位信号Sc1’,Sc2’および筋電位信号Sm’等)はそれぞれ、図1に示したように、表示部25へと供給されるようになっている。 The gain adjusting unit 242 is a part that performs gain adjustment (amplification processing, etc.) of the crest value in various input signals (cardiac potential signals Sc1, Sc2, and myoelectric potential signal Sm to be described later). Note that various signals after gain adjustment (cardiac potential signals Sc1 ′, Sc2 ′, myoelectric potential signal Sm ′, etc. after gain adjustment) are supplied to the display unit 25 as shown in FIG. It has become so.
 表示部25は、演算処理部24から供給された各種信号に基づいて各種情報を表示し、外部へと出力する部分(モニター)である。具体的には、表示部25は、例えば図1に示したように、上記したゲイン調整後の心電位信号Sc1’,Sc2’に基づいて、心電位波形を表示する機能を有している。また、表示部25は、入力された筋電位信号(例えば、上記したゲイン調整後の筋電位信号Sm’)に基づいて、筋電位波形を表示する機能も有している。ただし、表示対象の情報としては、これらの信号情報には限られず、他の情報も加えて表示するようにしてもよい。このような各種情報が表示部25に表示されることで、電源装置2の操作者(例えば技師等)は、例えば上記した心電位波形や筋電位波形等を監視しながら、除細動治療(入力部21への入力操作等)を行うことが可能となっている。なお、このような表示部25は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 25 is a part (monitor) that displays various information based on various signals supplied from the arithmetic processing unit 24 and outputs the information to the outside. Specifically, the display unit 25 has a function of displaying a cardiac potential waveform based on the above-described gain-adjusted cardiac potential signals Sc1 'and Sc2', for example, as shown in FIG. The display unit 25 also has a function of displaying a myoelectric potential waveform based on the input myoelectric potential signal (for example, the myoelectric potential signal Sm ′ after gain adjustment described above). However, the display target information is not limited to these signal information, and other information may also be displayed. By displaying such various kinds of information on the display unit 25, an operator (for example, an engineer) of the power supply device 2 can monitor the above-described cardiac potential waveform, myoelectric potential waveform, etc. It is possible to perform an input operation to the input unit 21). Such a display unit 25 is configured using a display of various types (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
 音声出力部26は、図1に示したように、演算処理部24から供給された音声信号Ssに基づいて、各種の音声を外部へと出力する部分である。なお、このような音声出力部26は、例えばスピーカ等を用いて構成されている。 As shown in FIG. 1, the audio output unit 26 is a part that outputs various sounds to the outside based on the audio signal Ss supplied from the arithmetic processing unit 24. Note that such an audio output unit 26 is configured using, for example, a speaker.
 入力端子Tin1は、図1に示したように、後述する心電計4から出力される心電位信号Sc1を入力するための端子である。なお、詳細は後述するが、この心電位信号Sc1は、後述する生体測定機構6(後述する複数の電極パッド61)における測定により得られて心電計4へと供給された生体信号である。このようにして入力端子Tin1へ入力された心電位信号Sc1(例えばアナログ信号)は、演算処理部24へと供給されるようになっている。なお、この入力端子Tin1は、本発明における「第1の入力端子」の一具体例に対応すると共に、心電位信号Sc1は、本発明における「第1の心電位信号」の一具体例に対応している。 As shown in FIG. 1, the input terminal Tin1 is a terminal for inputting an electrocardiogram signal Sc1 output from an electrocardiograph 4 described later. Although details will be described later, the cardiac potential signal Sc1 is a biological signal obtained by measurement in a later-described biological measurement mechanism 6 (a plurality of electrode pads 61 described later) and supplied to the electrocardiograph 4. The electrocardiographic signal Sc1 (for example, an analog signal) input to the input terminal Tin1 in this way is supplied to the arithmetic processing unit 24. The input terminal Tin1 corresponds to a specific example of “first input terminal” in the present invention, and the cardiac potential signal Sc1 corresponds to a specific example of “first cardiac potential signal” in the present invention. is doing.
 入力端子Tin2は、図1に示したように、後述する生体測定機構6において測定された生体信号(心電位信号Sc2または筋電位信号Sm)を入力するための端子である。具体的には、この例では図1に示したように、これらの心電位信号Sc2および筋電位信号Sm(例えばアナログ信号)はいずれも、心電計4等の他の機器を介さずに、電源装置2の入力端子Tin2へと直接入力されるようになっている。また、この入力端子Tin2には、上記した心電位信号Sc2または筋電位信号Sm(いずれか一方)が、選択的に入力されるようになっている。このようにして入力端子Tin2へ入力された心電位信号Sc2または筋電位信号Smはそれぞれ、演算処理部24へと供給されるようになっている。更に、詳細は後述するが、電源装置2では、この入力端子Tin2を介した心電位信号Sc2と、上記した入力端子Tin1を介した心電位信号Sc1とのうちのいずれか一方が、選択的に入力されるようになっている。なお、このような入力端子Tin2は、本発明における「第2の入力端子」の一具体例に対応すると共に、心電位信号Sc2は、本発明における「第2の心電位信号」の一具体例に対応している。 As shown in FIG. 1, the input terminal Tin2 is a terminal for inputting a biological signal (cardiac potential signal Sc2 or myoelectric potential signal Sm) measured by the biological measurement mechanism 6 described later. Specifically, in this example, as shown in FIG. 1, both of the electrocardiogram signal Sc2 and the myoelectric potential signal Sm (for example, an analog signal) do not pass through other devices such as the electrocardiograph 4. The power is directly input to the input terminal Tin2 of the power supply device 2. In addition, the electrocardiographic signal Sc2 or the myoelectric potential signal Sm (either one) is selectively input to the input terminal Tin2. The cardiac potential signal Sc2 or myoelectric potential signal Sm input to the input terminal Tin2 in this way is supplied to the arithmetic processing unit 24, respectively. Further, although details will be described later, in the power supply device 2, either one of the electrocardiogram signal Sc2 via the input terminal Tin2 and the electrocardiogram signal Sc1 via the input terminal Tin1 is selectively selected. It is designed to be entered. The input terminal Tin2 corresponds to a specific example of “second input terminal” in the present invention, and the cardiac potential signal Sc2 is a specific example of “second cardiac potential signal” in the present invention. It corresponds to.
 入力端子Tin3は、図1に示したように、除細動カテーテル1において測定された心電位信号Sc0a,Sc0bおよび抵抗値Rを入力するための端子である。ここで、心電位信号Sc0aは、前述した電極群111G,112G(リング状電極111,112)において測定され、前述した導線81,82を介して伝送された心電位信号である(図2,図3参照)。一方、心電位信号Sc0bは、前述した電極群113G(リング状電極113)において測定され、前述した導線83を介して伝送された心電位信号である(図2,図3参照)。また、抵抗値Rは、電極群111G,112G間の抵抗値である。このようにして入力端子Tin3へ入力された各信号のうち、心電位信号Sc0aについては、図1に示したように、切替部23および後述する出力端子Tout2をこの順に経由して、後述する心電計4へと供給されるようになっている。一方、心電位信号Sc0bについては、図1に示したように、切替部23を介さずに後述する出力端子Tout2のみを介して、心電計4へと供給されるようになっている。また、抵抗値Rについては、図1に示したように、切替部23を介して演算処理部24へと供給されるようになっている。 The input terminal Tin3 is a terminal for inputting the electrocardiographic signals Sc0a and Sc0b and the resistance value R measured in the defibrillation catheter 1 as shown in FIG. Here, the cardiac potential signal Sc0a is a cardiac potential signal measured in the above-described electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) and transmitted via the above-described conducting wires 81 and 82 (FIGS. 2 and 2). 3). On the other hand, the cardiac potential signal Sc0b is a cardiac potential signal measured in the above-described electrode group 113G (ring-shaped electrode 113) and transmitted through the above-described conducting wire 83 (see FIGS. 2 and 3). The resistance value R is a resistance value between the electrode groups 111G and 112G. Among the signals input to the input terminal Tin3 in this way, the cardiac potential signal Sc0a is passed through the switching unit 23 and the output terminal Tout2 described later in this order as shown in FIG. It is supplied to the electric meter 4. On the other hand, as shown in FIG. 1, the electrocardiogram signal Sc0b is supplied to the electrocardiograph 4 only through an output terminal Tout2, which will be described later, without going through the switching unit 23. Further, the resistance value R is supplied to the arithmetic processing unit 24 via the switching unit 23 as shown in FIG.
 出力端子Tout1は、図1に示したように、前述した出力回路241から出力されて切替部23を経由して供給されてきた直流電圧Vdcを、除細動カテーテル1の電極群111G,112G(リング状電極111,112)へと出力するための端子である。 As shown in FIG. 1, the output terminal Tout1 receives the DC voltage Vdc output from the output circuit 241 and supplied via the switching unit 23 as the electrode groups 111G and 112G ( This is a terminal for outputting to the ring-shaped electrodes 111, 112).
 出力端子Tout2は、図1に示したように、前述した入力端子Tin3を介して除細動カテーテル1から供給されてきた心電位信号Sc0bと、入力端子Tin3および切替部23をこの順に経由して除細動カテーテル1から供給されてきた心電位信号Sc0aとを、心電計4へと出力するための端子である。 As shown in FIG. 1, the output terminal Tout2 passes through the cardiac potential signal Sc0b supplied from the defibrillation catheter 1 via the input terminal Tin3, the input terminal Tin3 and the switching unit 23 in this order. This is a terminal for outputting the electrocardiographic signal Sc0a supplied from the defibrillation catheter 1 to the electrocardiograph 4.
(C.心電計4)
 心電計4は、心電位信号(この例では、心電位信号Sc0a,Sc0b,Sc1)等の情報を記録する機能を有する機器である。具体的には、この例では図1に示したように、心電計4は、電源装置2の前述した出力端子Tout2から出力された心電位信号Sc0a,Sc0bと、後述する生体測定機構6(後述する複数の電極パッド61)から出力された心電位信号Sc1とを、入力して記録するようになっている。また、この例では心電計4は、入力して記録した心電位信号を外部へ出力する機能も有している。具体的には、詳細は後述するが、この例では図1に示したように、心電計4は、上記した心電位信号Sc1を、電源装置2の入力端子Tin1へと出力するようになっている。また、この例では図1に示したように、心電計4は、上記した心電位信号Sc1,Sc0a,Sc0bをそれぞれ、後述する心電図表示装置5へと出力するようになっている。
(C. ECG 4)
The electrocardiograph 4 is a device having a function of recording information such as an electrocardiogram signal (in this example, electrocardiogram signals Sc0a, Sc0b, Sc1). Specifically, in this example, as shown in FIG. 1, the electrocardiograph 4 includes an electrocardiogram signal Sc0a, Sc0b output from the output terminal Tout2 of the power supply device 2 and a biomeasuring mechanism 6 (described later). A cardiac potential signal Sc1 output from a plurality of electrode pads 61) to be described later is input and recorded. In this example, the electrocardiograph 4 also has a function of outputting an inputted and recorded cardiac potential signal to the outside. Specifically, although details will be described later, in this example, as shown in FIG. 1, the electrocardiograph 4 outputs the above-described electrocardiogram signal Sc1 to the input terminal Tin1 of the power supply device 2. ing. In this example, as shown in FIG. 1, the electrocardiograph 4 outputs the above-described electrocardiogram signals Sc1, Sc0a, Sc0b to the electrocardiogram display device 5 described later.
(D.心電図表示装置5)
 心電図表示装置5は、上記した心電計4から出力される心電位信号Sc1,Sc0a,Sc0bに基づいて、心電位波形(心電図)等を表示する装置である。なお、これらの心電計4および心電図表示装置5を総称して、ポリグラフ、生体情報モニタ、心臓カテーテル用検査装置、またはEPレコーディングシステムと呼ばれることもある。このようにして心電図表示装置5に表示される心電位波形等は、例えば除細動カテーテル1の操作者(医師)によって、随時監視されるようになっている。
(D. ECG display device 5)
The electrocardiogram display device 5 is a device that displays an electrocardiogram waveform (electrocardiogram) and the like based on the electrocardiogram signals Sc1, Sc0a, Sc0b output from the electrocardiograph 4 described above. The electrocardiograph 4 and the electrocardiogram display device 5 may be collectively referred to as a polygraph, a biological information monitor, a cardiac catheter inspection device, or an EP recording system. In this way, the electrocardiographic waveform and the like displayed on the electrocardiogram display device 5 are monitored at any time by, for example, an operator (physician) of the defibrillation catheter 1.
(E.生体測定機構6)
 生体測定機構6は、除細動治療等の際に、患者9の体表面に装着(貼付)された状態で用いられるものであり、前述した生体信号(心電位信号Sc1,Sc2および筋電位信号Sm)を患者9から測定するための機器である。図1に示したように、この例では生体測定機構6は、複数(例えば6個または8個)の電極パッド(電極パッド61,62)を用いて構成されている。すなわち、この生体測定機構6は、2個の電極パッド62と、それ以外の電極パッドである複数(例えば4個または6個)の電極パッド61とを用いて構成されている。
(E. Biomeasuring mechanism 6)
The biological measurement mechanism 6 is used in a state of being attached (attached) to the body surface of the patient 9 during defibrillation treatment or the like, and the above-described biological signals (cardiac potential signals Sc1, Sc2 and myoelectric potential signals). This is a device for measuring Sm) from the patient 9. As shown in FIG. 1, in this example, the biometric mechanism 6 is configured by using a plurality (for example, six or eight) of electrode pads (electrode pads 61 and 62). In other words, the living body measurement mechanism 6 includes two electrode pads 62 and a plurality of (for example, four or six) electrode pads 61 that are other electrode pads.
 ここで、複数の電極パッド61のうちの6つの組み合わせからは、一般的な測定手法を用いることで、図1に示したように、前述した心電位信号Sc1が測定されるようになっている。このようにして電極パッド61から得られた心電位信号Sc1は、心電計4へと供給されるようになっている。なお、上記した一般的な測定手法(6つの電極パッド間での組み合わせを用いた測定手法)により得られる心電位信号Sc1の心電波形は、「12誘導心電図」と呼ばれるものに対応している。 Here, from the six combinations of the plurality of electrode pads 61, the above-described electrocardiogram signal Sc1 is measured by using a general measurement method as shown in FIG. . The electrocardiographic signal Sc1 obtained from the electrode pad 61 in this way is supplied to the electrocardiograph 4. The electrocardiogram waveform of the electrocardiogram signal Sc1 obtained by the above-described general measurement technique (measurement technique using a combination between six electrode pads) corresponds to what is called “12-lead electrocardiogram”. .
 一方、2個の電極パッド62からは、後述する除細動処理や筋電位の測定処理の際に、図1に示したように、前述した心電位信号Sc2および筋電位信号Smのうちの一方が測定されるようになっている。このようにして電極パッド62から得られた心電位信号Sc2または筋電位信号Smはそれぞれ、図1に示したように、心電計4等の他の機器を介さずに、電源装置2の前述した入力端子Tin2のみを介して、電源装置2内の演算処理部24へと供給されるようになっている。 On the other hand, from the two electrode pads 62, one of the above-described cardiac potential signal Sc2 and myoelectric potential signal Sm as shown in FIG. 1 during defibrillation processing and myoelectric potential measurement processing described later. Is to be measured. The electrocardiographic signal Sc2 or the myoelectric potential signal Sm obtained from the electrode pad 62 in this way is the above-mentioned of the power supply device 2 without passing through other devices such as the electrocardiograph 4 as shown in FIG. It is supplied to the arithmetic processing unit 24 in the power supply device 2 only through the input terminal Tin2.
[動作および作用・効果]
(A.基本動作)
 この除細動カテーテルシステム3では、例えば心臓カテーテル術中における除細動治療(除細動処理)の際などに、除細動カテーテル1におけるシャフト11の先端側が、血管を通して患者9の体内に挿入される(図1参照)。このとき、除細動カテーテル1の操作者(医師)によるハンドル12での操作に応じて、患者9の体内に挿入されたシャフト11の先端領域P1付近の形状が偏向する。具体的には、操作者の指によって、例えば図2中の矢印で示した回転方向d1に沿って回転板122が回転操作されると、シャフト11内で操作用ワイヤ80が、基端側へ引っ張られる。その結果、シャフト11の先端領域P1付近が、例えば図2中の矢印で示した方向d2に沿って湾曲する。
[Operation and action / effect]
(A. Basic operation)
In this defibrillation catheter system 3, for example, at the time of defibrillation treatment (defibrillation processing) during cardiac catheterization, the distal end side of the shaft 11 in the defibrillation catheter 1 is inserted into the body of the patient 9 through the blood vessel. (See FIG. 1). At this time, the shape of the vicinity of the distal end region P1 of the shaft 11 inserted into the body of the patient 9 is deflected according to the operation of the handle 12 by the operator (doctor) of the defibrillation catheter 1. Specifically, when the rotating plate 122 is rotated by the operator's finger, for example, along the rotation direction d1 indicated by the arrow in FIG. 2, the operation wire 80 moves to the proximal end side in the shaft 11. Be pulled. As a result, the vicinity of the tip end region P1 of the shaft 11 is curved, for example, along the direction d2 indicated by the arrow in FIG.
(A-1.除細動処理)
 ここで、上記した除細動処理を行う際には、電源装置2(電源部22)から除細動カテーテル1の電極群111G,112G(リング状電極111,112)に対し、除細動のための電気エネルギーとしての直流電圧Vdcが供給される。具体的には、これらの電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、電源装置2内の出力回路241から直流電圧Vdcが出力される。このようにして、電極群111G,112Gが互いに異なる極性となる直流電圧Vdcが、患者9の体内に挿入された除細動カテーテル1の先端領域P1からこの患者9の心臓に対し、直接的な電気エネルギーとして付与されることで、電気的な除細動処理がなされる。
(A-1. Defibrillation processing)
Here, when performing the above-mentioned defibrillation processing, defibrillation is performed from the power supply device 2 (power supply unit 22) to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1. For this purpose, a DC voltage Vdc is supplied as electrical energy. Specifically, the output circuit 241 in the power supply device 2 is set so that the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). Outputs a DC voltage Vdc. In this way, the DC voltage Vdc in which the electrode groups 111G and 112G have different polarities is directly applied to the heart of the patient 9 from the distal end region P1 of the defibrillation catheter 1 inserted into the patient 9 body. By being applied as electric energy, an electrical defibrillation process is performed.
 このような除細動カテーテルシステム3(除細動カテーテル1)を用いた除細動処理では、例えば、電気エネルギーを患者の体外から供給する機器である、AED(Automated External Defibrillator:自動体外式除細動器)等と比べ、例えば以下の利点がある。すなわち、まず、心腔内に配置された除細動カテーテル1の電極群111G,112Gによって、細動を起こした心臓に対して直接的に電気エネルギーが付与されることで、除細動治療に必要かつ十分な電気的刺激(電気ショック)が、心臓のみに確実に供給できるようになる。その結果、例えば上記したAED等を用いた場合と比べ、より効果的(効率的)な除細動処理を行うことが可能となる。また、心臓に対して直接的に電気エネルギーを付与することから、例えば上記したAED等を用いた場合とは異なり、患者の体表面に火傷を生じさせることがなくなるため、除細動処理の際の患者への侵襲性を低減することも可能となる。 In the defibrillation process using such a defibrillation catheter system 3 (defibrillation catheter 1), for example, an AED (Automated External Defibrillator: automatic external defibrillator) that is a device that supplies electric energy from outside the patient's body. For example, there are the following advantages compared with a fibrillator). That is, first, electrical energy is directly applied to the heart that has caused fibrillation by the electrode groups 111G and 112G of the defibrillation catheter 1 disposed in the heart chamber, thereby defibrillation treatment. Necessary and sufficient electrical stimulation (electric shock) can be reliably supplied only to the heart. As a result, for example, more effective (efficient) defibrillation processing can be performed as compared with the case where the above-described AED or the like is used. In addition, since electric energy is directly applied to the heart, unlike the case of using, for example, the above-described AED, the patient's body surface is not burned. It is also possible to reduce the invasiveness to the patient.
(A-2.心電位等の測定処理)
 一方、患者9の心電位等を測定する際には、患者9の体表面に装着された生体測定機構6(電極パッド61,62)、または、患者9の体内に挿入された除細動カテーテル1の電極(リング状電極111,112,113)等を用いて、心電位が測定される(図1参照)。あるいは、除細動カテーテル1とは異なる別の電極カテーテル(患者9の心腔内に挿入されたもの)を用いて、患者9の心電位が測定されるようにしてもよい。このようにして得られた心電位の情報のうち、心電位信号Sc1,Sc2については、電源装置2の入力端子Tin1,Tin2等を介してこの電源装置2内へ供給される(図1参照)。また、得られた心電位の情報のうち、心電位信号Sc1,Sc0a,Sc0bについては、心電図表示装置5へと供給される(図1参照)。そして、これらの心電位信号に基づく心電位波形が、電源装置2内の表示部25や心電図表示装置5に表示されることで、電源装置2の操作者(技師等)や除細動カテーテル1の操作者(医師)によって、適宜監視されることになる。
(A-2. Measurement processing of cardiac potential, etc.)
On the other hand, when measuring the cardiac potential or the like of the patient 9, the biometric mechanism 6 (electrode pads 61 and 62) attached to the body surface of the patient 9 or a defibrillation catheter inserted into the body of the patient 9. The cardiac potential is measured using one electrode (ring-shaped electrodes 111, 112, 113) or the like (see FIG. 1). Alternatively, the cardiac potential of the patient 9 may be measured using another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1. Among the information on the electrocardiogram thus obtained, the electrocardiogram signals Sc1 and Sc2 are supplied into the power supply apparatus 2 via the input terminals Tin1, Tin2 and the like of the power supply apparatus 2 (see FIG. 1). . Of the obtained electrocardiographic information, electrocardiographic signals Sc1, Sc0a, Sc0b are supplied to the electrocardiogram display device 5 (see FIG. 1). Then, an electrocardiographic waveform based on these electrocardiographic signals is displayed on the display unit 25 and the electrocardiogram display device 5 in the power supply device 2, so that the operator (engineer or the like) of the power supply device 2 and the defibrillation catheter 1 It is appropriately monitored by an operator (doctor).
(B.除細動処理の詳細)
 次に、図4~図9を参照して、上記した除細動処理(除細動治療)の詳細について、比較例(図9)と比較しつつ説明する。
(B. Details of defibrillation processing)
Next, details of the defibrillation process (defibrillation treatment) will be described with reference to FIGS. 4 to 9 in comparison with a comparative example (FIG. 9).
(B-1.本実施の形態の除細動処理)
 図4は、本実施の形態の除細動カテーテルシステム3における除細動処理の一例を、流れ図で表したものである。また、図5~図7はそれぞれ、この除細動処理の際における、後述する各種の動作状態例を、模式的にブロック図で表したものである。
(B-1. Defibrillation processing of this embodiment)
FIG. 4 is a flowchart showing an example of the defibrillation process in the defibrillation catheter system 3 of the present embodiment. FIGS. 5 to 7 are schematic block diagrams showing examples of various operation states to be described later in the defibrillation process.
 図4に示した本実施の形態の除細動処理では、まず、後述する心電位の測定処理(ステップS13,S23)の際に設定される、心電位測定モードが選択される。すなわち、後述する「心電位測定モードA」(図5参照)および「心電位測定モードB」(図13参照)のうちの一方が、電源装置2の操作者(技師等)による入力部21への操作(例えばモード切替スイッチへの入力操作)に応じて行われる(ステップS11)。これは、言い換えると、心電位の測定処理の際の入力端子の選択(入力端子Tin1,Tin2のうちの一方の選択)、および、心電位信号の選択(心電位信号Sc1,Sc2のうちの一方の選択)に相当する。このような心電位測定モードの選択が入力部21において行われると、電源装置2内では、入力端子Tin1から入力される心電位信号Sc1と、入力端子Tin2から入力される心電位信号Sc2とのうちの一方が選択的に演算処理部24へと供給されるように、心電位信号の切り替え処理(切り替え動作)がなされることになる。なお、電源装置2内に、このような心電位信号の切り替え動作(入力端子Tin1から入力される心電位信号Sc1と、入力端子Tin2から入力される心電位信号Sc2と、のうちの一方を選択的に演算処理部24へと供給する動作)を行う切替部を、別途設けるようにしてもよい。その場合、この切替部における切替動作は、例えば、入力部21から供給される入力信号Sinに基づいて、演算処理部24によって制御されるようになっている。 In the defibrillation process of the present embodiment shown in FIG. 4, first, the electrocardiogram measurement mode set in the electrocardiogram measurement process (steps S13 and S23) described later is selected. That is, one of “cardiac potential measurement mode A” (see FIG. 5) and “cardiac potential measurement mode B” (see FIG. 13) described later is input to the input unit 21 by the operator (engineer or the like) of the power supply device 2. (For example, an input operation to the mode switch) is performed (step S11). In other words, the selection of the input terminal (one of the input terminals Tin1, Tin2) during the measurement process of the cardiac potential and the selection of the cardiac potential signal (one of the cardiac potential signals Sc1, Sc2). Selection). When such a selection of the electrocardiographic measurement mode is performed in the input unit 21, in the power supply device 2, the electrocardiographic signal Sc1 input from the input terminal Tin1 and the electrocardiographic signal Sc2 input from the input terminal Tin2 The electrocardiographic signal switching process (switching operation) is performed so that one of them is selectively supplied to the arithmetic processing unit 24. In the power supply device 2, one of such electrocardiographic signal switching operations (the electrocardiographic signal Sc 1 input from the input terminal Tin 1 and the electrocardiographic signal Sc 2 input from the input terminal Tin 2 is selected. In addition, a switching unit that performs an operation to be supplied to the arithmetic processing unit 24) may be provided separately. In this case, the switching operation in the switching unit is controlled by the arithmetic processing unit 24 based on the input signal Sin supplied from the input unit 21, for example.
 図4に示した除細動処理では、続いて、X線画像等を用いることで、患者9の体内における、除細動カテーテル1の各電極(リング状電極111,112,113)の位置が確認される(ステップS12)。 In the defibrillation process shown in FIG. 4, the position of each electrode (ring-shaped electrodes 111, 112, 113) of the defibrillation catheter 1 in the body of the patient 9 is subsequently determined by using an X-ray image or the like. Confirmed (step S12).
 次に、例えば図5に示したようにして、患者9の心電位の測定処理が行われる(ステップS13)。すなわち、この例では、除細動カテーテルシステム3が「心電位測定モードA」に設定されることで、以下のようにして心電位の測定処理がなされる。また、ゲイン調整部242におけるゲイン調整の際のゲイン設定が、電源装置2の操作者(技師等)による入力部21への操作に応じて行われる(ステップS14)。 Next, for example, as shown in FIG. 5, a measurement process of the cardiac potential of the patient 9 is performed (step S13). That is, in this example, the defibrillation catheter system 3 is set to the “cardiac potential measurement mode A”, whereby the cardiac potential measurement process is performed as follows. Moreover, the gain setting at the time of gain adjustment in the gain adjusting unit 242 is performed according to an operation on the input unit 21 by an operator (engineer or the like) of the power supply apparatus 2 (step S14).
 この図5に示した「心電位測定モードA」では、まず、患者9の体表面に装着されている生体測定機構6(電極パッド62)にて測定された心電位信号Sc2が、心電計4等を介さずに電源装置2の入力端子Tin2に直接入力され、この電源装置2内の演算処理部24へと供給される。そして、この心電位信号Sc2は、演算処理部24内のゲイン調整部242においてゲイン調整がなされ、ゲイン調整後の心電位信号Sc2’に基づく心電位波形が、表示部25にて表示される。一方、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1は、心電計4を介して心電図表示装置5へと出力される。そして、この心電位信号Sc1に基づく心電位波形が、この心電図表示装置5にて表示される。 In the “cardiac potential measurement mode A” shown in FIG. 5, first, the cardiac potential signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) attached to the body surface of the patient 9 is an electrocardiograph. 4 is directly input to the input terminal Tin2 of the power supply device 2 without going through 4 or the like, and is supplied to the arithmetic processing unit 24 in the power supply device 2. The cardiac potential signal Sc2 is gain-adjusted by the gain adjusting unit 242 in the arithmetic processing unit 24, and a cardiac potential waveform based on the cardiac potential signal Sc2 'after gain adjustment is displayed on the display unit 25. On the other hand, the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is output to the electrocardiogram display device 5 via the electrocardiograph 4. The electrocardiogram waveform based on the electrocardiogram signal Sc1 is displayed on the electrocardiogram display device 5.
 また、この際に図5に示したように、除細動カテーテル1の電極群111G,112G(リング状電極111,112)にて測定された心電位信号Sc0aは、電源装置2の入力端子Tin3、切替部23および出力端子Tout2をこの順に経由して、心電計4へと供給される。一方、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bは、電源装置2の入力端子Tin3および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。このようにして心電計4へ供給された心電位信号Sc0a,Sc0bはそれぞれ、心電図表示装置5へと出力され、これらの心電位信号Sc0a,Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 5, the cardiac potential signal Sc0a measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is input to the input terminal Tin3 of the power supply device 2. Then, the signal is supplied to the electrocardiograph 4 through the switching unit 23 and the output terminal Tout2 in this order. On the other hand, the cardiac potential signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 passes through the input terminal Tin3 and the output terminal Tout2 of the power supply device 2 in this order (through the switching unit 23). (Without going through), it is supplied to the electrocardiograph 4. The electrocardiogram signals Sc0a and Sc0b thus supplied to the electrocardiograph 4 are respectively output to the electrocardiogram display device 5, and the electrocardiogram waveforms based on these electrocardiogram signals Sc0a and Sc0b are displayed on the electrocardiogram display device 5. Is displayed.
 続いて、電源装置2の操作者(技師等)による入力部21への操作(例えばモード切替スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、除細動を実行するための「除細動モード」の設定がなされる(ステップS15)。 Subsequently, the input signal Sin is supplied to the arithmetic processing unit 24 by an operation on the input unit 21 (for example, an input operation to the mode changeover switch) by an operator (engineer or the like) of the power supply device 2, so that the deduplication is performed. The “defibrillation mode” for executing the movement is set (step S15).
 すると、例えば図6に示したようにして、除細動カテーテル1における電極群111G,112G間の抵抗値Rの測定処理が行われる(ステップS16)。すなわち、この除細動カテーテルシステム3が「抵抗測定モード」に設定されることで、以下のようにして抵抗値Rの測定処理がなされる。 Then, for example, as shown in FIG. 6, a measurement process of the resistance value R between the electrode groups 111G and 112G in the defibrillation catheter 1 is performed (step S16). That is, when the defibrillation catheter system 3 is set to the “resistance measurement mode”, the resistance value R is measured as follows.
 具体的には、まず、図6に示したように、除細動カテーテル1の電極群111G,112G(リング状電極111,112)にて測定された抵抗値Rは、電源装置2の入力端子Tin3および切替部23をこの順に経由して、演算処理部24へと供給される。そして、このようにして得られた抵抗値Rの情報は、表示部25にて表示される。 Specifically, first, as shown in FIG. 6, the resistance value R measured by the electrode groups 111 </ b> G and 112 </ b> G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal of the power supply device 2. The data is supplied to the arithmetic processing unit 24 via the Tin 3 and the switching unit 23 in this order. Information on the resistance value R thus obtained is displayed on the display unit 25.
 また、この際に図6に示したように、生体測定機構6(電極パッド62)にて測定された心電位信号Sc2が、引き続き、心電計4等を介さずに電源装置2の入力端子Tin2に直接入力され、演算処理部24へと供給される。そして、この心電位信号Sc2は、演算処理部24内のゲイン調整部242においてゲイン調整がなされ、ゲイン調整後の心電位信号Sc2’に基づく心電位波形が、引き続き、表示部25にて表示される。一方、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1についても、引き続き、心電計4を介して心電図表示装置5へと出力される。そして、この心電位信号Sc1に基づく心電位波形が、引き続き、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 6, the electrocardiogram signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) is continuously input to the input terminal of the power supply device 2 without passing through the electrocardiograph 4 or the like. Directly input to Tin 2 and supplied to the arithmetic processing unit 24. The cardiac potential signal Sc2 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc2 ′ after gain adjustment is continuously displayed on the display unit 25. The On the other hand, the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is also continuously output to the electrocardiogram display device 5 via the electrocardiograph 4. The electrocardiographic waveform based on the electrocardiographic signal Sc1 is subsequently displayed on the electrocardiogram display device 5.
 なお、この際に図6に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bもまた、引き続き、電源装置2の入力端子Tin3および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、この心電位信号Sc0bは心電計4から心電図表示装置5へと出力され、心電位信号Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 6, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to the input terminal Tin3 of the power supply device 2 and The output is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). The electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
 次いで、電源装置2内の演算処理部24は、このようにして得られた抵抗値Rが、所定の閾値Rth1,Rth2により規定される所定の範囲内に収まっているのか否か(Rth2>R>Rth1を満たすのか否か)について、判定を行う(ステップS17)。ここで、抵抗値Rが所定の範囲内に収まっていない(R≧Rth2またはRth1≧Rに該当する)と判定された場合(ステップS17:N)、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位(例えば、冠状静脈の管壁や、右心房の内壁など)に、確実に当接されていないことを意味する。したがって、この場合には、前述したステップS12へと戻り、再び、X線画像等を用いて各電極(リング状電極111,112,113)の位置が確認されることになる。このようにして、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位に確実に当接されている場合にのみ、これ以降の除細動が実行されるようになっているため、効果的な除細動治療を行うことが可能である。 Next, the arithmetic processing unit 24 in the power supply device 2 determines whether or not the resistance value R obtained in this way is within a predetermined range defined by predetermined threshold values Rth1 and Rth2 (Rth2> R > Whether or not Rth1 is satisfied is determined (step S17). Here, when it is determined that the resistance value R is not within the predetermined range (corresponding to R ≧ Rth2 or Rth1 ≧ R) (step S17: N), the electrode groups 111G and 112G of the defibrillation catheter 1 are determined. This means that it is not reliably brought into contact with a predetermined part (for example, a coronary vein tube wall or a right atrial inner wall) in the body of the patient 9. Therefore, in this case, the process returns to step S12 described above, and the position of each electrode (ring-shaped electrodes 111, 112, 113) is confirmed again using an X-ray image or the like. In this way, the subsequent defibrillation is executed only when the electrode groups 111G and 112G of the defibrillation catheter 1 are reliably brought into contact with a predetermined site in the body of the patient 9. Therefore, it is possible to perform an effective defibrillation treatment.
 一方、抵抗値Rが所定の範囲内に収まっている(Rth2>R>Rth1を満たす)と判定された場合(ステップS17:Y)、上記したように、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位に確実に当接されていることを意味している。したがって、この場合には次に、電源装置2の操作者(技師等)による入力部21への操作(例えば印加エネルギー設定スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、除細動の際の印加エネルギーの設定がなされる(ステップS18)。具体的には、印加エネルギーとして、例えば1J(ジュール)から30Jまでの範囲内で、1J刻みで設定する。 On the other hand, when it is determined that the resistance value R is within a predetermined range (Rth2> R> Rth1 is satisfied) (step S17: Y), as described above, the electrode group 111G, This means that 112G is reliably in contact with a predetermined part in the body of the patient 9. Therefore, in this case, the input signal Sin is then supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the applied energy setting switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. As a result, the applied energy at the time of defibrillation is set (step S18). Specifically, the applied energy is set in increments of 1 J, for example, within a range from 1 J (joule) to 30 J.
 続いて、電源装置2の操作者(技師等)による入力部21への操作(例えば充電スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、電源部22内のコンデンサに、除細動のためのエネルギー(電荷)が充電される(ステップS19)。 Subsequently, an input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the charging switch) on the input unit 21 by an operator (engineer or the like) of the power supply device 2, whereby the power supply unit 22. The inner capacitor is charged with energy (electric charge) for defibrillation (step S19).
 そして、このようなエネルギー充電の完了後、除細動の実行が開始される(ステップS20)。具体的には、電源装置2の操作者(技師等)による入力部21への操作(例えばエネルギー印加スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、以下説明する「除細動モード」が実行される。なお、以下の図7にて説明する「除細動モード(除細動モードA)」は、前述した「心電位測定モードA」が設定(選択)されている場合に行われる除細動モードに対応している。 Then, after completion of such energy charging, execution of defibrillation is started (step S20). Specifically, an input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the energy application switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. The “defibrillation mode” described below is executed. The “defibrillation mode (defibrillation mode A)” described in FIG. 7 below is a defibrillation mode performed when the above-described “cardiac potential measurement mode A” is set (selected). It corresponds to.
 この「除細動モード(除細動モードA)」では、例えば図7に示したようにして、除細動カテーテル1における電極群111G,112G間に、電気エネルギーとしての直流電圧Vdcが印加されることで、患者9の体内での除細動が行われる。 In this “defibrillation mode (defibrillation mode A)”, for example, as shown in FIG. 7, a DC voltage Vdc as electric energy is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. Thus, defibrillation in the body of the patient 9 is performed.
 具体的には、図7に示したように、電源装置2内の電源部22から出力された直流電圧Vdcが、演算処理部24内の出力回路241、切替部23および出力端子Tout1をこの順に経由して、除細動カテーテル1における電極群111G,112G間に印加される。このとき、前述したように、これらの電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、電源装置2内の出力回路241から直流電圧Vdcが出力される。 Specifically, as illustrated in FIG. 7, the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 causes the output circuit 241, the switching unit 23, and the output terminal Tout1 in the arithmetic processing unit 24 to be in this order. Via, it is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. At this time, as described above, the electrode groups 111G and 112G have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode). A DC voltage Vdc is output from the output circuit 241.
 また、この際に図7に示したように、生体測定機構6(電極パッド62)にて測定された心電位信号Sc2が、引き続き、心電計4等を介さずに電源装置2の入力端子Tin2に直接入力され、演算処理部24へと供給される。そして、この心電位信号Sc2は、演算処理部24内のゲイン調整部242においてゲイン調整がなされ、ゲイン調整後の心電位信号Sc2’に基づく心電位波形が、引き続き、表示部25にて表示される。一方、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1についても、引き続き、心電計4を介して心電図表示装置5へと出力される。そして、この心電位信号Sc1に基づく心電位波形が、引き続き、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 7, the electrocardiogram signal Sc2 measured by the biological measurement mechanism 6 (electrode pad 62) is continuously input to the input terminal of the power supply device 2 without passing through the electrocardiograph 4 or the like. Directly input to Tin 2 and supplied to the arithmetic processing unit 24. The cardiac potential signal Sc2 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc2 ′ after gain adjustment is continuously displayed on the display unit 25. The On the other hand, the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is also continuously output to the electrocardiogram display device 5 via the electrocardiograph 4. The electrocardiographic waveform based on the electrocardiographic signal Sc1 is subsequently displayed on the electrocardiogram display device 5.
 なお、この際に図7に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bもまた、引き続き、電源装置2の入力端子Tin3および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、この心電位信号Sc0bは心電計4から心電図表示装置5へと出力され、心電位信号Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 7, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be applied to the input terminal Tin3 of the power supply device 2 and The output is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). The electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
 また、この際に演算処理部24は、上記した経路にて供給された心電位信号Sc2に同期して直流電圧Vdcが印加されるように、電源部22に対して動作制御を行う。具体的には、演算処理部24は、まず、逐次入力される心電位信号Sc2の心電位波形において、1つのR波(最大ピーク)を検知して、そのピーク高さを求める。そして、演算処理部24は、求められたピーク高さに対して80%の高さ(トリガーレベル)に電位差が到達した時点(次のR波が立ち上がり時)から、所定時間(例えば、R波のピーク幅の1/10程度の極めて短い時間)の経過後に、直流電圧Vdcの印加を開始させる。このようにして、演算処理部24に入力された心電位波形(最大ピークであるR波)に同期をとって直流電圧Vdcが印加されることで、効果的な除細動治療を行うことが可能となる。 At this time, the arithmetic processing unit 24 controls the operation of the power supply unit 22 so that the DC voltage Vdc is applied in synchronization with the cardiac potential signal Sc2 supplied through the above-described path. Specifically, the arithmetic processing unit 24 first detects one R wave (maximum peak) in the electrocardiogram waveform of the sequentially inputted electrocardiogram signal Sc2, and obtains the peak height. Then, the arithmetic processing unit 24 starts the predetermined time (for example, the R wave) from the time when the potential difference reaches the height (trigger level) of 80% with respect to the obtained peak height (when the next R wave rises). Application of the DC voltage Vdc is started after the elapse of a very short time of about 1/10 of the peak width of the current. Thus, effective defibrillation treatment can be performed by applying the DC voltage Vdc in synchronization with the cardiac potential waveform (the R wave which is the maximum peak) input to the arithmetic processing unit 24. It becomes possible.
 ここで、図8は、図7に示した除細動実行の際に測定される心電位波形の一例(例えば、エネルギーの設定出力=10Jの場合)を、模式的に表したものである。具体的には、除細動実行の際の測定電位のタイミング波形の一例を示している。 Here, FIG. 8 schematically shows an example of an electrocardiographic waveform (for example, when the energy setting output = 10 J) measured during the defibrillation shown in FIG. Specifically, an example of the timing waveform of the measured potential when performing defibrillation is shown.
 この例では、まず、心電位信号Sc2の心電位波形における電位差が上記したトリガーレベルに到達した時点(タイミングt0)から、所定時間の経過後(タイミングt1)、電極群111Gが-極(負極)、電極群112Gが+極(正極)となるように、直流電圧Vdcが印加される。すると、このような電気エネルギーが供給されることで、測定電位が立ち上がる(図8中のタイミングt1時点での破線の矢印を参照)。そして、このタイミングt1から所定時間の経過後(タイミングt2)、電極群111Gが+極、電極群112Gが-極となるよう、極性が反転した直流電圧Vdcが印加される。すると、このような電気エネルギーが供給されることで、測定電位が逆方向に立ち上がる(図8中のタイミングt3時点での破線の矢印を参照)。 In this example, first, after a lapse of a predetermined time (timing t1) from when the potential difference in the cardiac potential waveform of the cardiac potential signal Sc2 reaches the trigger level described above (timing t0), the electrode group 111G is negative (negative electrode). The DC voltage Vdc is applied so that the electrode group 112G becomes a positive electrode (positive electrode). Then, by supplying such electric energy, the measurement potential rises (see the broken arrow at the timing t1 in FIG. 8). Then, after a lapse of a predetermined time from the timing t1 (timing t2), the DC voltage Vdc whose polarity is inverted is applied so that the electrode group 111G becomes a positive pole and the electrode group 112G becomes a negative pole. Then, by supplying such electric energy, the measurement potential rises in the opposite direction (see the broken arrow at the timing t3 in FIG. 8).
 次に、上記したタイミングt0から所定時間の経過後(タイミングt4)、演算処理部24が電源部22からの直流電圧Vdcの出力を停止させることで、患者9の体内での除細動の実行が停止される(ステップS21)。 Next, after a predetermined time has elapsed from the above-described timing t0 (timing t4), the arithmetic processing unit 24 stops the output of the DC voltage Vdc from the power supply unit 22, thereby executing defibrillation in the body of the patient 9. Is stopped (step S21).
 続いて、除細動時の印加記録(例えば図8に示したような心電位波形の記録)が、電源装置2の表示部25にて、一時的(例えば5秒間)に表示される(ステップS22)。 Subsequently, an application record at the time of defibrillation (for example, recording of a cardiac potential waveform as shown in FIG. 8) is temporarily (for example, 5 seconds) displayed on the display unit 25 of the power supply device 2 (step 5). S22).
 次いで、この例では、前述した「心電位測定モードA」(ステップS13,図5参照)に再び設定される。これにより、ゲイン調整後の心電位信号Sc2’に基づく心電位波形が、電源装置2の表示部25に再び表示されると共に、心電位信号Sc1,Sc0a,Sc0bに基づく心電位波形が、心電図表示装置5に再び表示される。つまり、上記した除細動が実行された後の心電位波形が表示される(ステップS23)。 Next, in this example, the above-described “cardiac potential measurement mode A” (step S13, see FIG. 5) is set again. As a result, the electrocardiographic waveform based on the electrocardiographic signal Sc2 ′ after gain adjustment is displayed again on the display unit 25 of the power supply device 2, and the electrocardiographic waveforms based on the electrocardiographic signals Sc1, Sc0a, Sc0b are displayed on the electrocardiogram. It is displayed again on the device 5. That is, the electrocardiographic waveform after the above defibrillation is executed is displayed (step S23).
 そして、このような除細動後の心電位波形が観察され、正常であるのか否かが判定される(ステップS24)。正常ではない(心房細動が治まっていない)と判定された場合(ステップS24:N)には、前述したステップS15へと戻り、再度の除細動へと進むことになる。一方、正常であると判定された場合(ステップS24:Y)には、図4に示した一連の除細動処理が終了となる。 Then, the electrocardiographic waveform after such defibrillation is observed to determine whether or not it is normal (step S24). If it is determined that the condition is not normal (atrial fibrillation has not subsided) (step S24: N), the process returns to step S15 described above and proceeds to defibrillation again. On the other hand, if it is determined to be normal (step S24: Y), the series of defibrillation processes shown in FIG. 4 ends.
(B-2.比較例の除細動処理)
 ここで、図9は、比較例に係る除細動カテーテルシステム(除細動カテーテルシステム103)の構成および動作状態例を、模式的にブロック図で表したものである。
(B-2. Defibrillation processing of comparative example)
Here, FIG. 9 is a block diagram schematically illustrating a configuration and an operation state example of a defibrillation catheter system (defibrillation catheter system 103) according to a comparative example.
 この比較例の除細動カテーテルシステム103は、図9に示したように、除細動カテーテル1および電源装置102を備えている。すなわち、この除細動カテーテルシステム103は、図1に示した本実施の形態の除細動カテーテルシステム3において、実施の形態に係る電源装置2の代わりに、比較例に係る電源装置102を設けたものに対応している。また、この除細動カテーテルシステム103を用いた除細動の際には、本実施の形態の除細動カテーテルシステム3と同様に、心電計4、心電図表示装置5および生体測定機構106についても、適宜、用いられるようになっている。ただし、この比較例に係る生体測定機構106は、実施の形態の生体測定機構6とは異なり、1種類の電極パッド(複数の電極パッド61)のみを用いて構成されており、複数(例えば2個)の電極パッド62は設けられていないようになっている。 The defibrillation catheter system 103 of this comparative example includes a defibrillation catheter 1 and a power supply device 102 as shown in FIG. That is, this defibrillation catheter system 103 is provided with a power supply device 102 according to a comparative example instead of the power supply device 2 according to the embodiment in the defibrillation catheter system 3 of the present embodiment shown in FIG. It corresponds to the thing. Further, in the case of defibrillation using the defibrillation catheter system 103, the electrocardiograph 4, the electrocardiogram display device 5, and the biometric mechanism 106 are similar to the defibrillation catheter system 3 of the present embodiment. Are also used appropriately. However, unlike the biometric mechanism 6 of the embodiment, the biometric mechanism 106 according to this comparative example is configured using only one type of electrode pad (a plurality of electrode pads 61). ) Electrode pads 62 are not provided.
 比較例の電源装置102は、図9に示したように、本実施の形態の電源装置2において、入力端子Tin2を設けないようにした(省いた)と共に、演算処理部24の代わりに、比較例に係る演算処理部204を設けたものに対応している。また、この比較例の演算処理部204は、実施の形態の演算処理部24において、ゲイン調整部242を設けないようにしたものに対応している。 As shown in FIG. 9, the power supply apparatus 102 of the comparative example is not provided (omitted) with the input terminal Tin <b> 2 in the power supply apparatus 2 of the present embodiment, and is compared with the arithmetic processing unit 24. This corresponds to the one provided with the arithmetic processing unit 204 according to the example. Further, the arithmetic processing unit 204 of this comparative example corresponds to the arithmetic processing unit 24 of the embodiment in which the gain adjusting unit 242 is not provided.
 このような比較例の除細動カテーテルシステム103では、例えば図9に示したように、心電位の測定処理の際に、以下の経路にて、心電位信号Sc1が電源装置102内の演算処理部204へと供給されるようになっている。 In such a defibrillation catheter system 103 of the comparative example, for example, as shown in FIG. 9, during the measurement process of the cardiac potential, the cardiac potential signal Sc <b> 1 is calculated in the power supply apparatus 102 through the following path. The unit 204 is supplied.
 すなわち、まず、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、心電計4を介して心電図表示装置5へと供給されると共に、心電計4および電源装置102の入力端子Tin1を介して演算処理部204へと供給される。そして、心電図表示装置5において、この心電位信号Sc1に基づく心電位波形が表示されると共に、電源装置102の表示部25において、この心電位信号Sc1に基づく心電位波形が表示される。 That is, first, the electrocardiogram signal Sc1 measured by the living body measurement mechanism 6 (electrode pad 61) is supplied to the electrocardiogram display device 5 via the electrocardiograph 4, and the electrocardiograph 4 and the power supply device 102. To the arithmetic processing unit 204 via the input terminal Tin1. The electrocardiogram display device 5 displays a cardiac potential waveform based on the cardiac potential signal Sc1, and the display unit 25 of the power supply apparatus 102 displays the cardiac potential waveform based on the cardiac potential signal Sc1.
 また、除細動カテーテル1の電極群111G,112G(リング状電極111,112)にて測定された心電位信号Sc0aは、電源装置102の入力端子Tin3、切替部23および出力端子Tout2をこの順に経由して、心電計4へと供給される。一方、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bは、電源装置102の入力端子Tin3および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、このようにして心電計4へ供給された心電位信号Sc0a,Sc0bはそれぞれ、心電図表示装置5へと出力され、これらの心電位信号Sc0a,Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 Further, the cardiac potential signal Sc0a measured by the electrode groups 111G and 112G (ring electrodes 111 and 112) of the defibrillation catheter 1 is supplied to the input terminal Tin3, the switching unit 23, and the output terminal Tout2 of the power supply device 102 in this order. Via, it is supplied to the electrocardiograph 4. On the other hand, the cardiac potential signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 passes through the input terminal Tin3 and the output terminal Tout2 of the power supply apparatus 102 in this order (through the switching unit 23). (Without going through), it is supplied to the electrocardiograph 4. The electrocardiogram signals Sc0a and Sc0b thus supplied to the electrocardiograph 4 are respectively output to the electrocardiogram display device 5, and the electrocardiogram waveforms based on these electrocardiogram signals Sc0a and Sc0b are displayed on the electrocardiogram. Displayed on the device 5.
 ところが、このような比較例の除細動カテーテルシステム103では、例えば以下説明するように、使用する際の環境条件に対応しにくくなるおそれがある。 However, in the defibrillation catheter system 103 of such a comparative example, as described below, for example, it may be difficult to cope with environmental conditions when used.
 すなわち、まず、この比較例では上記したように、測定により得られた心電位信号Sc1が、心電計4を介して表示部25および心電図表示装置5へと供給されることで、心電位波形の表示がなされている。このため、心電計4の装置構成の影響を受け易くなっており、例えば心電計4に心電位信号の出力機能が無い(心電位信号の出力端子が設けられていない)ようなケースでは、除細動に必要な波形情報(心電位信号Sc1)を、電源装置102へ供給できないことになってしまう。 That is, first, in this comparative example, as described above, the electrocardiogram signal Sc1 obtained by measurement is supplied to the display unit 25 and the electrocardiogram display device 5 via the electrocardiograph 4, so that the electrocardiogram waveform. Is displayed. For this reason, it is easily affected by the device configuration of the electrocardiograph 4, for example, in a case where the electrocardiograph 4 does not have an electrocardiogram signal output function (no electrocardiogram signal output terminal is provided). Therefore, waveform information (cardiac potential signal Sc1) necessary for defibrillation cannot be supplied to the power supply apparatus 102.
 また、この比較例では、心電位信号Sc1が心電計4へ入力されるため、この心電計4内においてフィルタ処理(ゲイン調整)が適宜なされるようになっている。すなわち、本実施の形態とは異なり、演算処理部204内では、ゲイン調整はなされない(ゲイン調整部242が設けられていない)。ところが、この心電計4内での心電位信号Sc1に対する共通のゲイン調整では、例えば、電源装置102の表示部25において観察するには(除細動を実行するには)適さない心電位波形が生成されるケースが生じ得る。具体的には、心電図表示装置5では、観察者(医師)にとっては、できるだけ波高値の大きな心電位波形の表示が望まれる。一方で、電源装置102の表示部25では、観察者(技師等)にとっては、心電位波形の波高値が大きすぎると、除細動実行のタイミング調整等がしにくくなるケースがある。 In this comparative example, since the electrocardiogram signal Sc1 is input to the electrocardiograph 4, filter processing (gain adjustment) is appropriately performed in the electrocardiograph 4. That is, unlike the present embodiment, gain adjustment is not performed in the arithmetic processing unit 204 (the gain adjusting unit 242 is not provided). However, in the common gain adjustment for the electrocardiogram signal Sc1 in the electrocardiograph 4, for example, an electrocardiogram waveform that is not suitable for observation on the display unit 25 of the power supply apparatus 102 (to perform defibrillation). May be generated. Specifically, in the electrocardiogram display device 5, it is desired for the observer (physician) to display an electrocardiographic waveform having a peak value as large as possible. On the other hand, in the display unit 25 of the power supply apparatus 102, there are cases where it is difficult for an observer (such as an engineer) to adjust the timing of defibrillation if the peak value of the electrocardiographic waveform is too large.
 更に、この比較例では、上記した心電計4内におけるフィルタ処理(ゲイン調整)に起因して、心電位信号Sc1が電源装置102の表示部25に表示されるまでに、多少のタイムラグ(時間的な遅延)が生じるおそれがある。 Further, in this comparative example, due to the filtering process (gain adjustment) in the electrocardiograph 4 described above, there is a slight time lag (time) until the electrocardiogram signal Sc1 is displayed on the display unit 25 of the power supply device 102. Delay) may occur.
 このようにして比較例では、除細動カテーテルシステム103を使用する際の環境条件に対応しにくくなるケースが生じる結果、使用する際の利便性が損なわれるおそれがあると言える。 As described above, in the comparative example, it may be difficult to cope with the environmental conditions when the defibrillation catheter system 103 is used.
(B-3.作用・効果)
 そこで本実施の形態の除細動カテーテルシステム3では、上記比較例の除細動カテーテルシステム103とは異なり、以下のようになっている。すなわち、図1等に示したように、生体測定機構6(電極パッド62)にて測定された心電位信号Sc2が、心電計4等の他の機器を介さずに、電源装置2の入力端子Tin2へと直接入力されるようになっている。換言すると、除細動カテーテルシステム3における電源装置2では、除細動カテーテルシステム103における電源装置102とは異なり、このような心電位信号Sc2を(心電計4等を介さずに)直接入力するための、入力端子Tin2が設けられている。
(B-3. Action and effect)
Therefore, the defibrillation catheter system 3 of the present embodiment is as follows, unlike the defibrillation catheter system 103 of the comparative example. That is, as shown in FIG. 1 and the like, the electrocardiographic signal Sc2 measured by the biometric mechanism 6 (electrode pad 62) is input to the power supply device 2 without passing through other devices such as the electrocardiograph 4. Direct input is made to the terminal Tin2. In other words, unlike the power supply device 102 in the defibrillation catheter system 103, the power supply device 2 in the defibrillation catheter system 3 directly inputs such a cardiac potential signal Sc2 (without passing through the electrocardiograph 4 or the like). An input terminal Tin2 is provided for this purpose.
 これにより本実施の形態では、上記比較例と比べ、例えば心電計4の装置構成等の影響を受けにくくなり、除細動カテーテルシステム3を使用する際の環境条件に対応し易くなる。具体的には、例えば前述したように、心電計4に心電位信号の出力機能が無い(心電位信号の出力端子が設けられていない)ようなケースであっても、例えば図5~図7等に示したように、除細動に必要な波形情報(心電位信号Sc2)を、入力端子Tin2を介して電源装置2へ供給できることになる。 Thus, in this embodiment, compared to the comparative example, for example, it is less affected by the device configuration of the electrocardiograph 4 and can easily cope with environmental conditions when the defibrillation catheter system 3 is used. Specifically, for example, as described above, even in the case where the electrocardiograph 4 does not have an electrocardiographic signal output function (no electrocardiographic signal output terminal is provided), for example, FIG. As shown in FIG. 7 and the like, waveform information (cardiac potential signal Sc2) necessary for defibrillation can be supplied to the power supply device 2 via the input terminal Tin2.
 また、本実施の形態では、上記比較例とは異なり、心電計4内でのゲイン調整と、電源装置2内でのゲイン調整(ゲイン調整部242によるゲイン調整)とが、別個に実施できるようになっているため、これらのゲイン調整同士で、波高値を個別に設定可能となっている。 In the present embodiment, unlike the comparative example described above, gain adjustment in the electrocardiograph 4 and gain adjustment in the power supply device 2 (gain adjustment by the gain adjustment unit 242) can be performed separately. Therefore, the peak value can be individually set between these gain adjustments.
 具体的には、例えば心電図表示装置5において、前述したようにできるだけ波高値の大きな心電位波形が表示されるように、心電計4内でゲイン調整が行われる。一方、電源装置2の表示部25において、電源装置2内で利用し易くなる(前述したように除細動実行のタイミング調整がし易くなる)ように、ゲイン調整部242による任意のゲイン調整がなされる。つまり、表示部25において心電位波形を監視する際に、見易くなって利便性の更なる向上が図られるようにゲイン調整がなされた後の心電位信号Sc2’等が利用される。 Specifically, for example, in the electrocardiogram display device 5, gain adjustment is performed in the electrocardiograph 4 so that an electrocardiographic waveform having a peak value as large as possible is displayed as described above. On the other hand, in the display unit 25 of the power supply device 2, an arbitrary gain adjustment by the gain adjustment unit 242 is performed so that it can be easily used in the power supply device 2 (as described above, it is easy to adjust the timing of defibrillation execution). Made. That is, when the electrocardiographic waveform is monitored on the display unit 25, the electrocardiographic signal Sc2 'or the like after gain adjustment is made so that it is easy to see and the convenience is further improved.
 更に、本実施の形態では、上記比較例とは異なり、心電位信号Sc2が心電計4を経由せずに電源装置2へ入力されることから、以下のことも言える。すなわち、前述した比較例の場合とは異なり、心電位信号Sc2が表示部25に表示されるまでの間の、心電計4内におけるフィルタ処理(ゲイン調整)に起因したタイムラグの発生が、回避される。 Furthermore, in the present embodiment, unlike the comparative example described above, since the electrocardiographic signal Sc2 is input to the power supply device 2 without passing through the electrocardiograph 4, the following can also be said. That is, unlike the comparative example described above, the occurrence of a time lag due to the filtering process (gain adjustment) in the electrocardiograph 4 until the electrocardiogram signal Sc2 is displayed on the display unit 25 is avoided. Is done.
 このようにして本実施の形態では、上記比較例の場合と比べ、除細動カテーテルシステム3を使用する際の環境条件に対応し易くなる結果、使用する際の利便性が向上することになる。 Thus, in this embodiment, as compared with the case of the comparative example, it becomes easier to cope with the environmental conditions when using the defibrillation catheter system 3, and as a result, the convenience in use is improved. .
 また、本実施の形態の電源装置2では、前述した「心電位測定モードA(図5参照)」と、後述する「心電位測定モードB(図13参照)」)と、前述した「除細動モード(図7,図14参照)」との複数種類のモードが、切り替え可能となっている。加えて、本実施の形態では、入力端子Tin2を介した心電位信号Sc2(図5~図7等参照)と、入力端子Tin1を介した心電位信号Sc1(後述する図13参照)とのうちのいずれか一方が、選択的に入力されるようになっている。具体的には、このような複数種類のモード間での切り替え処理、および、入力端子Tin1(心電位信号Sc1)と入力端子Tin2(心電位信号Sc2)とのうちの一方の選択処理はそれぞれ、例えば、電源装置2の操作者(技師等)による操作に応じて入力部21を介して行われる。このようなモードや心電位信号の選択処理がなされることで、本実施の形態では、例えば用途や状況等に応じて、上記した複数種類のモードのうちの1つを択一的に利用可能になると共に、上記した2種類の心電位信号Sc1,Sc2のうちの一方を択一的に利用可能となる。したがって、利便性の更なる向上が図られる。 In the power supply device 2 of the present embodiment, the above-described “cardiac potential measurement mode A (see FIG. 5)”, “cardiac potential measurement mode B (see FIG. 13)” described later), A plurality of types of modes such as “motion mode (see FIGS. 7 and 14)” can be switched. In addition, in the present embodiment, the cardiac potential signal Sc2 (see FIGS. 5 to 7 and the like) via the input terminal Tin2 and the cardiac potential signal Sc1 (see FIG. 13 described later) via the input terminal Tin1. Any one of these is selectively input. Specifically, the switching process between the plurality of types of modes and the selection process of one of the input terminal Tin1 (cardiac potential signal Sc1) and the input terminal Tin2 (cardiac potential signal Sc2) are respectively For example, it is performed via the input unit 21 according to an operation by an operator (engineer or the like) of the power supply device 2. By performing such a mode or electrocardiographic signal selection process, in this embodiment, for example, one of the above-described multiple types of modes can be used alternatively depending on the application, situation, etc. At the same time, one of the two types of electrocardiogram signals Sc1 and Sc2 can be used alternatively. Therefore, the convenience can be further improved.
 更に、本実施の形態では、電極群111G,112Gにおいて測定される心電位信号Sc0aに加え、電極群113Gにおいて測定される心電位信号Sc0bについても、利用可能となっている。これにより、例えば、電極群111G,112Gが心電位の測定処理以外の処理(例えば、図6に示した抵抗値Rの測定処理や、図7に示した直流電圧Vdcの印加処理など)に利用されている場合であっても、心電位信号(心電位信号Sc0b)を除細動カテーテル1から取得できるようになる。つまり、そのような場合であっても、心電位信号Sc0bを心電図表示装置5上に表示して監視しながら、除細動治療を行うことができるため、利便性の更なる向上が図られる。 Furthermore, in the present embodiment, in addition to the cardiac potential signal Sc0a measured in the electrode groups 111G and 112G, the cardiac potential signal Sc0b measured in the electrode group 113G can be used. Thereby, for example, the electrode groups 111G and 112G are used for processes other than the measurement process of the cardiac potential (for example, the measurement process of the resistance value R shown in FIG. 6 and the application process of the DC voltage Vdc shown in FIG. 7). Even if it is performed, an electrocardiogram signal (cardiac potential signal Sc0b) can be acquired from the defibrillation catheter 1. That is, even in such a case, defibrillation treatment can be performed while displaying and monitoring the electrocardiogram signal Sc0b on the electrocardiogram display device 5, so that the convenience can be further improved.
(C.筋電位の測定処理)
 ここで、本実施の形態の除細動カテーテルシステム3にはまた、例えば以下説明するような、筋電位の測定機能(筋電位信号の取得機能)が設けられている。なお、このような筋電位信号としては、例えば、患者9の横隔膜付近の部位において得られる、複合筋活動電位(CMAP)を示す信号が挙げられる。
(C. Myoelectric potential measurement process)
Here, the defibrillation catheter system 3 of the present embodiment is also provided with a myoelectric potential measurement function (myoelectric potential signal acquisition function) as described below, for example. Examples of such a myoelectric potential signal include a signal indicating a composite muscle action potential (CMAP) obtained in a region near the diaphragm of the patient 9.
 図10は、このような除細動カテーテルシステム3における筋電位測定の際の動作状態例を、模式的にブロック図で表したものである。 FIG. 10 is a block diagram schematically showing an example of the operation state when measuring the myoelectric potential in the defibrillation catheter system 3 as described above.
 この筋電位測定の際には、例えば図10に示したように、生体測定機構6(電極パッド62)において測定された筋電位信号Smが、前述した心電位信号Sc2と同様に、心電計4等の他の機器を介さずに、電源装置2の入力端子Tin2に直接入力されるようになっている。換言すると、本実施の形態の電源装置2には、心電位信号Sc2に加えてこのような筋電位信号Smを(心電計4等を介さずに)直接入力するための、入力端子Tin2が設けられている。なお、このようにして電源装置2へ入力された筋電位信号Smは、演算処理部24へと供給される。そして、この演算処理部24内のゲイン調整部242にて波高値のゲイン調整がなされることで、そのようなゲイン調整後の筋電位信号Sm’に基づく筋電位波形が、表示部25にて表示されるようになっている。 At the time of this myoelectric potential measurement, as shown in FIG. 10, for example, the myoelectric potential signal Sm measured by the living body measurement mechanism 6 (electrode pad 62) is an electrocardiograph as with the above-described electrocardiographic signal Sc2. It is directly input to the input terminal Tin2 of the power supply device 2 without passing through other devices such as 4. In other words, the power supply device 2 of the present embodiment has an input terminal Tin2 for directly inputting such a myoelectric potential signal Sm (not via the electrocardiograph 4 or the like) in addition to the electrocardiographic signal Sc2. Is provided. The myoelectric potential signal Sm input to the power supply device 2 in this way is supplied to the arithmetic processing unit 24. Then, the gain adjustment unit 242 in the arithmetic processing unit 24 performs gain adjustment of the peak value, so that the myoelectric potential waveform based on the myoelectric potential signal Sm ′ after such gain adjustment is displayed on the display unit 25. It is displayed.
 ここで、図11は、このような筋電位測定の際の電極パッドの配置例(前述したCMAPを示す筋電位信号Smの場合の例)を、模式図で表したものである。この図11に示した例では、生体測定機構6における2つの電極パッド62(電極パッド62a,62bと称する)がそれぞれ、患者9における横隔膜付近の部位(図11中の領域Ad参照)に装着されている。そして、これらの電極パッド62a,62bにおいて、CMAPを示す筋電位信号Smが得られるようになっている。ちなみに、電極パッド62aの装着位置としては、例えば図11に示したように、剣状突起から若干上方の位置が挙げられる。また、電極パッド62bの装着位置としては、例えば図11に示したように、右下肋骨付近の位置が挙げられる。 Here, FIG. 11 is a schematic diagram showing an arrangement example of the electrode pads at the time of such myoelectric potential measurement (an example in the case of the above-described myoelectric potential signal Sm indicating CMAP). In the example shown in FIG. 11, two electrode pads 62 (referred to as electrode pads 62 a and 62 b) in the biometric mechanism 6 are respectively attached to portions near the diaphragm in the patient 9 (see the region Ad in FIG. 11). ing. Then, a myoelectric potential signal Sm indicating CMAP is obtained at these electrode pads 62a and 62b. Incidentally, as a mounting position of the electrode pad 62a, for example, as shown in FIG. Moreover, as a mounting position of the electrode pad 62b, for example, as shown in FIG. 11, a position near the lower right rib can be mentioned.
 このようにして本実施の形態では、心電位の測定機能に加えて筋電位の測定機能が設けられている(電源装置2の入力端子Tin2に、心電位信号Sc2に加えて筋電位信号Smの取得機能が設けられている)ことにより、以下のようになる。すなわち、生体測定機構6(電極パッド62)において得られた心電位信号Sc2に加え、この生体測定機構6(電極パッド62)において得られた筋電位信号Smについても、電源装置2内で利用できるようになる。その結果、利便性の更なる向上が図られる。 In this way, in the present embodiment, a function for measuring myoelectric potential is provided in addition to the function for measuring cardiac potential (the input terminal Tin2 of the power supply device 2 receives the myoelectric potential signal Sm in addition to the cardiac potential signal Sc2. (Acquisition function is provided). That is, in addition to the cardiac potential signal Sc2 obtained in the biometric mechanism 6 (electrode pad 62), the myoelectric potential signal Sm obtained in the biometric mechanism 6 (electrode pad 62) can also be used in the power supply device 2. It becomes like this. As a result, the convenience can be further improved.
 ここで、心房細動に対するアブレーション治療(クライオバルーンアブレーションを用いた治療も含む)では、一般に、合併症が発生するおそれがある。その中でも重篤なものとして、例えば、横隔神経麻痺が含まれる。具体的には、呼吸筋の1つである横隔膜を動かす神経が横隔神経であり、右の横隔神経は、頚髄から下降し、ちょうど上大静脈のすぐ横に位置している。心房細動に対するアブレーション治療では、この横隔神経を傷つけるケースがあり、多くの場合では一時的で回復するが、まれに、横隔神経麻痺が持続する場合がある。そして、そのほとんどの場合は無症状であるが、呼吸困難感等が出現することもあり得る。 Here, in ablation treatment for atrial fibrillation (including treatment using cryoballoon ablation), there is generally a risk of complications. Among these, for example, phrenic nerve palsy is included as a serious one. Specifically, the nerve that moves the diaphragm, which is one of the respiratory muscles, is the phrenic nerve, and the right phrenic nerve descends from the cervical spinal cord and is located just beside the superior vena cava. Ablation treatment for atrial fibrillation may injure the phrenic nerve, and in many cases is temporary and recovers, but in rare cases, phrenic nerve palsy may persist. In most cases, the symptoms are asymptomatic, but a dyspnea may appear.
 そこで、このような横隔神経麻痺を事前に予測するため、心房細動に対するアブレーション治療の際に、触診に加え、上記したCMAPを示す信号の観察が行われるケースがある。本実施の形態では、そのようなCMAPを示す信号の取得が、除細動治療の際に利用される生体測定機構6(電極パッド62)および電源装置2の入力端子Tin2を利用して、簡易に実現可能となる。 Therefore, in order to predict such phrenic nerve palsy in advance, in the case of ablation treatment for atrial fibrillation, in addition to palpation, a signal indicating the above-mentioned CMAP may be observed. In the present embodiment, such a signal indicating CMAP can be easily obtained using the biometric mechanism 6 (electrode pad 62) used in the defibrillation treatment and the input terminal Tin2 of the power supply device 2. It becomes feasible.
 また、本実施の形態では、前述したように、このようにして得られた筋電位信号Smが、電源装置2内の演算処理部24へ供給され、表示部25において筋電位波形の表示が行われるようになっている。具体的には、図10に示したように、演算処理部24内のゲイン調整部242において、筋電位信号Smの波高値のゲイン調整が行われ、そのようなゲイン調整後の筋電位信号Sm’に基づく筋電位波形が、表示部25にて表示される。これにより本実施の形態では、生体測定機構6(電極パッド62)において測定された筋電位信号Smを、電源装置2内の表示部25において、随時監視できるようになる。その結果、利便性の更なる向上が図られる。 In the present embodiment, as described above, the myoelectric potential signal Sm obtained in this way is supplied to the arithmetic processing unit 24 in the power supply device 2, and the myoelectric potential waveform is displayed on the display unit 25. It has come to be. Specifically, as shown in FIG. 10, the gain adjustment unit 242 in the arithmetic processing unit 24 performs gain adjustment of the peak value of the myoelectric potential signal Sm, and the myoelectric potential signal Sm after such gain adjustment. A myoelectric potential waveform based on 'is displayed on the display unit 25. Thereby, in this Embodiment, the myoelectric potential signal Sm measured in the biological measurement mechanism 6 (electrode pad 62) can be monitored at any time on the display unit 25 in the power supply device 2. As a result, the convenience can be further improved.
 更に、本実施の形態では、心電位信号Sc2(図5~図7等参照)または筋電位信号Sm(図10参照)のいずれか一方が、電源装置2の入力端子Tin2に対して、選択的に入力されるようになっている。具体的には、このような心電位信号Sc2と筋電位信号Smとのうちの一方の選択処理は、例えば、電源装置2の操作者(技師等)による操作に応じて入力部21を介して行われる。なお、このようにして入力端子Tin2へ入力された心電位信号Sc2または筋電位信号Smはそれぞれ、演算処理部24へと供給されるようになっている。このような選択処理がなされることで本実施の形態では、例えば用途や状況等に応じて、これら2種類の生体信号(心電位信号Sc2および筋電位信号Sm)のうちの一方を、択一的に利用可能となる。したがって、利便性の更なる向上が図られる。 Further, in the present embodiment, one of the electrocardiogram signal Sc2 (see FIGS. 5 to 7 and the like) and the myoelectric signal Sm (see FIG. 10) is selectively applied to the input terminal Tin2 of the power supply device 2. To be input. Specifically, the selection process of one of the cardiac potential signal Sc2 and the myoelectric potential signal Sm is performed via the input unit 21 in accordance with an operation by an operator (engineer or the like) of the power supply device 2, for example. Done. The cardiac potential signal Sc2 or the myoelectric potential signal Sm input to the input terminal Tin2 in this way is supplied to the arithmetic processing unit 24, respectively. By performing such selection processing, in the present embodiment, for example, one of these two types of biological signals (cardiac potential signal Sc2 and myoelectric potential signal Sm) is selected according to the application or situation. Available. Therefore, the convenience can be further improved.
 加えて、例えば図10中に「×(バツ)」印で示したように、この入力端子Tin2に対して筋電位信号Smが入力されている期間(筋電位測定の期間)においては、除細動カテーテルシステム3において、除細動の実行が停止される(実行不可とされる)ようになっている。具体的には、電源装置2内の演算処理部24は、このような筋電位測定の期間においては、電源部22からの除細動のための電力供給(直流電圧Vdcの出力)が停止されるように、動作制御を行う。このようにして、筋電位測定の期間では、電源部22からの直流電圧Vdcの出力が停止されることで、以下のようになる。すなわち、例えば、筋電位信号Smの測定処理を行っていて、除細動は必要とされていないような場合に、除細動のための電力供給が(操作者による誤操作等により)誤って実行されてしまうことが、防止される。その結果、利便性の更なる向上が図られる。 In addition, as indicated by, for example, “× (X)” in FIG. 10, during the period in which the myoelectric potential signal Sm is input to the input terminal Tin 2 (the period of myoelectric potential measurement) In the arterial catheter system 3, the defibrillation is stopped (cannot be performed). Specifically, the arithmetic processing unit 24 in the power supply device 2 stops power supply (output of the DC voltage Vdc) for defibrillation from the power supply unit 22 during such myoelectric potential measurement period. As described above, operation control is performed. In this way, during the myoelectric potential measurement period, the output of the DC voltage Vdc from the power supply unit 22 is stopped, and the following occurs. That is, for example, when the measurement process of the myoelectric potential signal Sm is performed and defibrillation is not required, power supply for defibrillation is erroneously executed (due to an erroneous operation by the operator). It is prevented that it is done. As a result, the convenience can be further improved.
 図12は、本実施の形態の筋電位測定により得られる筋電位波形の一例を、模式図で表したものある。具体的には、測定により得られた筋電位信号Sm(またはゲイン調整後の筋電位信号Sm’)に基づく筋電位波形例を、電源装置2内の表示部25に表示した場合で示している。なお、図12中に示した最大値Smaxは、この筋電位波形における波高値の最大値を示している。また、最小閾値Sminは、例えば最大値Smaxの70%の波高値(Smin=Smax×0.7)に対応しており、例えば以下説明する警告動作の際に利用されるようになっている。なお、これらの最大値Smaxおよび最小閾値Sminについては、図示の便宜上、縦軸の正(+)側にのみ示している。 FIG. 12 is a schematic diagram showing an example of the myoelectric waveform obtained by the myoelectric potential measurement of the present embodiment. Specifically, an example of a myoelectric potential waveform based on the myoelectric potential signal Sm (or the myoelectric potential signal Sm ′ after gain adjustment) obtained by the measurement is displayed on the display unit 25 in the power supply device 2. . Note that the maximum value Smax shown in FIG. 12 indicates the maximum value of the crest value in this myoelectric waveform. Further, the minimum threshold value Smin corresponds to, for example, a crest value 70% of the maximum value Smax (Smin = Smax × 0.7), and is used, for example, in a warning operation described below. The maximum value Smax and the minimum threshold value Smin are shown only on the positive (+) side of the vertical axis for convenience of illustration.
 ここで、本実施の形態の電源装置2では、例えば図12中の破線の矢印d3で示したように、筋電位波形において所定の限度以上の減衰が生じた場合には、外部への警告動作を行う機能が設けられている。具体的には、電源装置2における演算処理部24は、入力された筋電位信号Smにおける波高値が閾値(最小閾値Smin)以下であると判定された場合には、外部への警告を行うようになっている。このような警告動作としては、例えば、表示部25上に所定の警告表示を行ったり、音声出力部26を用いて所定の警告音を出力したりする動作等が挙げられる。このような警告動作が行われることで、本実施の形態では、例えば、筋電位信号Smの過度の減衰状態が即座に把握できるようになり、操作者(技師等)によって迅速な対応をとることが可能となる。その結果、利便性の更なる向上が図られる。 Here, in the power supply device 2 of the present embodiment, for example, as shown by the dashed arrow d3 in FIG. 12, when the myoelectric potential waveform is attenuated beyond a predetermined limit, a warning operation to the outside is performed. There is a function to do this. Specifically, the arithmetic processing unit 24 in the power supply device 2 issues a warning to the outside when it is determined that the crest value in the input myoelectric potential signal Sm is equal to or less than a threshold value (minimum threshold value Smin). It has become. Examples of such a warning operation include an operation of performing a predetermined warning display on the display unit 25 and outputting a predetermined warning sound using the audio output unit 26. By performing such a warning operation, in this embodiment, for example, an excessive attenuation state of the myoelectric potential signal Sm can be immediately grasped, and an operator (such as an engineer) can take a quick response. Is possible. As a result, the convenience can be further improved.
 以上のように本実施の形態では、除細動カテーテル1に対して除細動の際の電力供給を行う電源装置2に、生体測定機構6において測定された心電位信号Sc2等が心電計4を介さずに直接入力される、入力端子Tin2が設けられている。このようにして、心電位信号Sc2が心電計4を介さずに電源装置2へ直接入力されることから、例えば心電計4の装置構成等の影響を受けにくくなり、除細動カテーテルシステム3を使用する際の環境条件に対応し易くなる。また、電源装置2において、前述した複数種類のモード(「心電位測定モードA」,「心電位測定モードB」,「除細動モード」)が切り替え可能になっていると共に、心電位信号Sc1または心電位信号Sc2を選択的に入力可能としたので、以下のようになる。すなわち、例えば用途や状況等に応じて、上記した複数種類のモードのうちの1つや、上記した2種類の心電位信号のうちの一方を、択一的に利用することができる。よって、本実施の形態では、利便性を向上させることが可能となる。 As described above, in the present embodiment, the electrocardiographic signal Sc2 measured by the biometric mechanism 6 and the like are supplied to the power supply device 2 that supplies power to the defibrillation catheter 1 at the time of defibrillation. 4 is provided with an input terminal Tin <b> 2 that is directly input without going through 4. In this way, since the electrocardiogram signal Sc2 is directly input to the power supply device 2 without going through the electrocardiograph 4, the defibrillation catheter system is less affected by the device configuration of the electrocardiograph 4, for example. It becomes easy to cope with the environmental conditions when using 3. In the power supply device 2, the above-described plural types of modes (“cardiac potential measurement mode A”, “cardiac potential measurement mode B”, “defibrillation mode”) can be switched, and the cardiac potential signal Sc 1. Alternatively, since the electrocardiogram signal Sc2 can be selectively input, the following is obtained. That is, for example, one of the above-described plural types of modes or one of the above-described two types of electrocardiogram signals can be alternatively used according to the application or situation. Therefore, in this embodiment, convenience can be improved.
 また、本実施の形態では、心電位の測定機能に加えて筋電位の測定機能が設けられている(電源装置2の入力端子Tin2に、心電位信号Sc2に加えて筋電位信号Smの取得機能が設けられている)ようにしたので、以下の効果も得られる。すなわち、生体測定機構6において得られた心電位信号Sc2に加え、この生体測定機構6において得られた筋電位信号Smについても、電源装置2内で利用できるようになる。その結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, a myoelectric potential measuring function is provided in addition to the cardiac potential measuring function (the function of acquiring the myoelectric potential signal Sm in addition to the cardiac potential signal Sc2 at the input terminal Tin2 of the power supply device 2). The following effects can also be obtained. That is, in addition to the electrocardiogram signal Sc2 obtained in the biometric mechanism 6, the myoelectric signal Sm obtained in the biometric mechanism 6 can be used in the power supply device 2. As a result, it is possible to further improve convenience.
(D.その他の心電位測定処理,除細動処理:心電位測定モードB,除細動モードB)
 ここで、本実施の形態ではまた、例えば図13に示したような心電位の測定処理が利用可能となっている。すなわち、前述した「心電位測定モードA」による心電位の測定処理に加え、図13に示した「心電位測定モードB」による心電位の測定処理が利用可能となっている。これは、前述した図4のステップS11において、「心電位測定モードA」の代わりに、「心電位測定モードB」が選択された場合に対応している。
(D. Other cardiac potential measurement processing and defibrillation processing: cardiac potential measurement mode B, defibrillation mode B)
Here, in the present embodiment, for example, a cardiac potential measurement process as shown in FIG. 13 can be used. That is, in addition to the above-described electrocardiogram measurement process in “cardiac potential measurement mode A”, the electrocardiogram measurement process in “cardiac potential measurement mode B” shown in FIG. 13 can be used. This corresponds to the case where “cardiac potential measurement mode B” is selected instead of “cardiac potential measurement mode A” in step S11 of FIG.
 この「心電位測定モードB」による心電位の測定処理では、具体的には図13に示したように、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、以下の経路で電源装置2へ入力されるようになっている。すなわち、このようにして得られた心電位信号Sc1が、心電計4を経由して、電源装置2の入力端子Tin1に入力されるようになっている。そして、電源装置2へ入力された心電位信号Sc1は、前述したゲイン調整がなされて心電位信号Sc1’となり、この心電位信号Sc1’に基づく心電位波形が表示部25にて表示される。また、心電計4に入力された心電位信号Sc1に基づく心電位波形が、心電図表示装置5にて表示されるようになっている。更に、この際に、除細動カテーテル1における電極群111G,112Gにて測定された心電位信号Sc0aについても、電源装置2(入力端子Tin3、切替部23、出力端子Tout2)および心電計4をこの順に経由して、心電図表示装置5にて表示されるようにしてもよい。また、同様に、除細動カテーテル1における電極群113Gにて測定された心電位信号Sc0bについても、電源装置2(入力端子Tin3、出力端子Tout2)および心電計4をこの順に経由して、心電図表示装置5にて表示されるようにしてもよい。 In the electrocardiogram measurement process in the “cardiac potential measurement mode B”, specifically, as shown in FIG. 13, the electrocardiogram signal Sc1 measured by the biological measurement mechanism 6 (electrode pad 61) is expressed as follows. The signal is input to the power supply device 2 through a route. That is, the electrocardiogram signal Sc1 obtained in this way is input to the input terminal Tin1 of the power supply device 2 via the electrocardiograph 4. Then, the cardiac potential signal Sc1 input to the power supply device 2 is subjected to the gain adjustment described above to become a cardiac potential signal Sc1 ', and a cardiac potential waveform based on this cardiac potential signal Sc1' is displayed on the display unit 25. An electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5. Further, at this time, regarding the electrocardiogram signal Sc0a measured by the electrode groups 111G and 112G in the defibrillation catheter 1, the power supply device 2 (input terminal Tin3, switching unit 23, output terminal Tout2) and the electrocardiograph 4 These may be displayed on the electrocardiogram display device 5 in this order. Similarly, the electrocardiographic signal Sc0b measured by the electrode group 113G in the defibrillation catheter 1 also passes through the power supply device 2 (input terminal Tin3, output terminal Tout2) and the electrocardiograph 4 in this order. It may be displayed on the electrocardiogram display device 5.
 このような「心電位測定モードB」による心電位の測定処理では、生体測定機構6(電極パッド61)において得られた心電位信号Sc1を、心電計4および電源装置2内で利用することができるようになる。したがって、利便性の更なる向上を図ることが可能となる。 In such an electrocardiogram measurement process in the “cardiac potential measurement mode B”, the electrocardiogram signal Sc1 obtained in the living body measurement mechanism 6 (electrode pad 61) is used in the electrocardiograph 4 and the power supply device 2. Will be able to. Therefore, it is possible to further improve convenience.
 ここで、図14は、このような「心電位測定モードB」が設定(選択)されている場合に行われる、「除細動モード(除細動モードB)」の際の動作状態例を、模式的にブロック図で表したものである。この「除細動モードB」では、入力端子Tin2(心電位信号Sc2)の代わりに入力端子Tin1(心電位信号Sc1)が使用される点を除き、基本的には、前述した「除細動モードA」(図7参照)の場合と同様にして、除細動処理が行われる。 Here, FIG. 14 shows an example of an operation state in the “defibrillation mode (defibrillation mode B)” performed when such “cardiac potential measurement mode B” is set (selected). It is schematically represented by a block diagram. In the “defibrillation mode B”, basically, the “defibrillation mode” described above is basically used except that the input terminal Tin1 (cardiac potential signal Sc1) is used instead of the input terminal Tin2 (cardiac potential signal Sc2). The defibrillation process is performed in the same manner as in “Mode A” (see FIG. 7).
 すなわち、具体的には図14に示したように、電源装置2内の電源部22から出力された直流電圧Vdcが、演算処理部24内の出力回路241、切替部23および出力端子Tout1をこの順に経由して、除細動カテーテル1における電極群111G,112G間に印加される。このとき、前述したように、これらの電極群111G,112Gが互いに異なる極性となるように、電源装置2内の出力回路241から直流電圧Vdcが出力される。 Specifically, as shown in FIG. 14, the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 is connected to the output circuit 241, the switching unit 23, and the output terminal Tout1 in the arithmetic processing unit 24. The electrodes are applied between the electrode groups 111G and 112G in the defibrillation catheter 1 in order. At this time, as described above, the DC voltage Vdc is output from the output circuit 241 in the power supply device 2 so that these electrode groups 111G and 112G have different polarities.
 また、この際に図14に示したように、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、上記した「心電位測定モードB」の際から引き続き、心電計4を介して電源装置2の入力端子Tin1に入力され、演算処理部24へと供給される。そして、この心電位信号Sc1は、演算処理部24内のゲイン調整部242においてゲイン調整がなされ、ゲイン調整後の心電位信号Sc1’に基づく心電位波形が、表示部25にて表示される。また、心電計4に入力された心電位信号Sc1に基づく心電位波形が、心電図表示装置5にて表示される。 Further, at this time, as shown in FIG. 14, the electrocardiograph Sc1 measured by the biomeasuring mechanism 6 (electrode pad 61) continues from the above “cardiac potential measurement mode B”. 4 is input to the input terminal Tin 1 of the power supply device 2 through the power supply device 2 and supplied to the arithmetic processing unit 24. The cardiac potential signal Sc1 is gain-adjusted by the gain adjustment unit 242 in the arithmetic processing unit 24, and the cardiac potential waveform based on the cardiac potential signal Sc1 'after gain adjustment is displayed on the display unit 25. An electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5.
 なお、この際に図14に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bが、電源装置2の入力端子Tin3および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、この心電位信号Sc0bは心電計4から心電図表示装置5へと出力され、心電位信号Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 14, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring electrode 113) of the defibrillation catheter 1 is input to the input terminal Tin3 and the output terminal Tout2 of the power supply device 2. In this order (without passing through the switching unit 23), and supplied to the electrocardiograph 4. The electrocardiogram signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiogram waveform based on the electrocardiogram signal Sc0b is displayed on the electrocardiogram display device 5.
 また、この際に演算処理部24は、上記した経路にて供給された心電位信号Sc1に同期して直流電圧Vdcが印加されるように、電源部22に対して動作制御を行う。このようにして、「除細動モードB」による除細動処理が行われる。 At this time, the arithmetic processing unit 24 controls the operation of the power source unit 22 so that the DC voltage Vdc is applied in synchronization with the cardiac potential signal Sc1 supplied through the above-described path. In this way, the defibrillation process by the “defibrillation mode B” is performed.
 このようにして図14に示した「除細動モードB」では、前述した比較例に係る除細動カテーテルシステム103(図9参照)の場合と同様にして、除細動処理が行われることになる。つまり、この「除細動モードB」(および上記した「心電位測定モードB」)の場合、前述した「除細動モードA(図7参照)」(および前述した「心電位測定モードA(図5参照)」)の場合とは異なり、仮に電極パッド62が患者9に貼られていたとしても、除細動処理や心電位の測定処理には利用されないことになる。したがって、例えば、従来の除細動カテーテルシステムと同様の条件が必要な場合や、電極パッド62を使用しないで処理(除細動処理や心電位の測定処理)を行いたい場合などに、これらの「除細動モードB」や「心電位測定モードB」が好適に利用可能であり、利便性の更なる向上が図られることになる。 Thus, in the “defibrillation mode B” shown in FIG. 14, the defibrillation process is performed in the same manner as in the case of the defibrillation catheter system 103 (see FIG. 9) according to the comparative example described above. become. That is, in the case of the “defibrillation mode B” (and the “cardiac potential measurement mode B” described above), the “defibrillation mode A (see FIG. 7)” described above (and the “cardiac potential measurement mode A ( Unlike FIG. 5)))), even if the electrode pad 62 is affixed to the patient 9, it is not used for the defibrillation process or the cardiac potential measurement process. Therefore, for example, when conditions similar to those of a conventional defibrillation catheter system are necessary, or when processing (defibrillation processing or cardiac potential measurement processing) is desired without using the electrode pad 62, these “Defibrillation mode B” and “cardiac potential measurement mode B” can be suitably used, and the convenience is further improved.
<変形例>
 以上、実施の形態を挙げて本発明を説明したが、本発明はこの実施の形態に限定されず、種々の変形が可能である。
<Modification>
While the present invention has been described with reference to the embodiment, the present invention is not limited to this embodiment, and various modifications can be made.
 例えば、上記実施の形態において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態では、除細動カテーテル1の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。具体的には、例えばシャフト11の内部に、首振り部材として、撓み方向に変形可能な板バネが設けられているようにしてもよい。また、シャフト11における電極の構成(リング状電極および先端電極の配置や形状、個数等)は、上記実施の形態で挙げたものには限られない。更に、除細動カテーテル1における各部材の構成(形状、配置、材料、個数等)については、上記実施の形態で説明したものには限られず、他の形状や配置、材料、個数等であってもよい。加えて、上記実施の形態で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態で説明したものには限られず、他の値や範囲、大小関係等であってもよい。 For example, the material of each member described in the above embodiment is not limited, and other materials may be used. Moreover, in the said embodiment, although the structure of the defibrillation catheter 1 was mentioned concretely and demonstrated, it is not necessary to necessarily provide all the members, and you may further provide other members. Specifically, for example, a leaf spring that can be deformed in the bending direction may be provided inside the shaft 11 as a swinging member. Further, the configuration of the electrodes in the shaft 11 (arrangement, shape, number, etc. of the ring-shaped electrode and the tip electrode) is not limited to that described in the above embodiment. Furthermore, the configuration (shape, arrangement, material, number, etc.) of each member in the defibrillation catheter 1 is not limited to that described in the above embodiment, and other shapes, arrangements, materials, numbers, etc. May be. In addition, the values, ranges, magnitude relationships, and the like of various parameters described in the above embodiments are not limited to those described in the above embodiments, and may be other values, ranges, magnitude relationships, and the like. .
 また、上記実施の形態では、シャフト11における先端領域P1付近の形状が、ハンドル12での操作に応じて片方向に変化するタイプの除細動カテーテルを例に挙げて説明したが、これには限られない。すなわち、本発明は、例えば、シャフト11における先端領域P1付近の形状がハンドル12での操作に応じて両方向に変化するタイプの除細動カテーテルにも適用することが可能であり、この場合には操作用ワイヤを複数本用いることとなる。また、本発明は、シャフト11における先端領域P1付近の形状が固定となっているタイプの除細動カテーテルにも適用することが可能であり、この場合には、操作用ワイヤや回転板122等が不要となる。すなわち、ハンドル本体121のみでハンドルが構成されることになる。 In the above embodiment, the defibrillation catheter of the type in which the shape of the shaft 11 near the tip region P1 changes in one direction according to the operation with the handle 12 has been described as an example. Not limited. That is, the present invention can also be applied to, for example, a defibrillation catheter in which the shape of the shaft 11 near the distal end region P1 changes in both directions according to the operation with the handle 12. A plurality of operation wires are used. The present invention can also be applied to a defibrillation catheter of the type in which the shape near the distal end region P1 of the shaft 11 is fixed. In this case, the operation wire, the rotary plate 122, etc. Is no longer necessary. That is, the handle is composed of only the handle main body 121.
 更に、上記実施の形態では、生体測定機構6が複数の電極パッド(電極パッド61,62)を用いて構成されている場合の例を挙げて説明したが、この例には限られない。すなわち、例えば、除細動カテーテル1とは異なる別の電極カテーテル(患者9の心腔内に挿入されたもの)等を、生体測定機構として用いるようにしてもよい。 Furthermore, in the said embodiment, although the biometric mechanism 6 demonstrated and demonstrated the example in the case where it was comprised using the several electrode pad (electrode pad 61, 62), it is not restricted to this example. That is, for example, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used as the biometric mechanism.
 加えて、上記実施の形態では、電源装置2のブロック構成を具体的に挙げて説明したが、上記実施の形態で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、除細動カテーテルシステム3全体としても、上記実施の形態で説明した各装置に加えて、他の装置を更に備えていてもよい。具体的には、例えば、場合によっては、心電計4や生体測定機構6(電極パッド61,62)等を、除細動カテーテルシステムに含めて構成するようにしてもよい。 In addition, in the above embodiment, the block configuration of the power supply device 2 has been specifically described, but it is not always necessary to include all the blocks described in the above embodiment, and further includes other blocks. It may be. The defibrillation catheter system 3 as a whole may further include other devices in addition to the devices described in the above embodiment. Specifically, for example, in some cases, the electrocardiograph 4 and the biological measurement mechanism 6 (electrode pads 61 and 62) may be included in the defibrillation catheter system.
 また、上記実施の形態で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。 In addition, the series of processing described in the above embodiment may be performed by hardware (circuit) or software (program). When performed by software, the software is composed of a group of programs for causing each function to be executed by a computer. Each program may be used by being incorporated in advance in the computer, for example, or may be used by being installed in the computer from a network or a recording medium.
 更に、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。 Furthermore, the various examples described so far may be applied in any combination.

Claims (7)

  1.  心腔内に挿入されて除細動を行う除細動カテーテルと、
     前記除細動カテーテルに対して、前記除細動の際の電力供給を行う電源装置と
     を備え、
     前記電源装置は、
     前記除細動の際の前記電力供給を行う電源部と、
     心電計から出力される第1の心電位信号を入力するための第1の入力端子と、
     生体測定機構において測定された第2の心電位信号が、前記心電計を介さずに直接入力される第2の入力端子と
     を有しており、
     前記電源装置では、
     前記第2の入力端子から前記第2の心電位信号が取得される第1の心電位測定モードと、前記第1の入力端子から前記第1の心電位信号が取得される第2の心電位測定モードと、前記除細動が行われる除細動モードとが、切り替え可能になっていると共に、
     前記第1または第2の心電位信号が、選択的に入力可能となっている
     除細動カテーテルシステム。
    A defibrillation catheter inserted into the heart chamber for defibrillation,
    A power supply device that supplies power to the defibrillation catheter during the defibrillation, and
    The power supply device
    A power supply for supplying the power during the defibrillation;
    A first input terminal for inputting a first electrocardiographic signal output from the electrocardiograph;
    The second electrocardiographic signal measured in the biometric mechanism has a second input terminal that is directly input without passing through the electrocardiograph;
    In the power supply device,
    A first cardiac potential measurement mode in which the second cardiac potential signal is acquired from the second input terminal; and a second cardiac potential in which the first cardiac potential signal is acquired from the first input terminal. The measurement mode and the defibrillation mode in which the defibrillation is performed can be switched,
    A defibrillation catheter system in which the first or second electrocardiographic signal can be selectively input.
  2.  前記電源装置は、
     入力された前記第1または第2の心電位信号における波高値のゲイン調整を行う演算処理部と、
     前記ゲイン調整が行われた後の前記第1または第2の心電位信号に基づいて心電位波形を表示する表示部と
     を更に有する
     請求項1に記載の除細動カテーテルシステム。
    The power supply device
    An arithmetic processing unit for performing gain adjustment of a peak value in the input first or second electrocardiographic signal;
    The defibrillation catheter system according to claim 1, further comprising: a display unit that displays a cardiac potential waveform based on the first or second cardiac potential signal after the gain adjustment is performed.
  3.  前記第2の入力端子には更に、前記生体測定機構において測定された筋電位信号が、前記心電計を介さずに直接入力可能となっている
     請求項1または請求項2に記載の除細動カテーテルシステム。
    The defibrillation according to claim 1 or 2, wherein a myoelectric potential signal measured by the biometric mechanism can be directly input to the second input terminal without using the electrocardiograph. Arterial catheter system.
  4.  前記第2の入力端子は、前記第2の心電位信号または前記筋電位信号を選択的に入力可能に構成されており、
     前記電源装置は、入力された前記筋電位信号に基づいて筋電位波形を表示する表示部を更に有する
     請求項3に記載の除細動カテーテルシステム。
    The second input terminal is configured to selectively input the second cardiac potential signal or the myoelectric potential signal,
    The defibrillation catheter system according to claim 3, wherein the power supply device further includes a display unit that displays a myoelectric potential waveform based on the input myoelectric potential signal.
  5.  前記第2の入力端子に対して前記筋電位信号が入力されている期間においては、
     前記電源部は、前記除細動のための前記電力供給を停止する
     請求項3または請求項4に記載の除細動カテーテルシステム。
    In a period in which the myoelectric potential signal is input to the second input terminal,
    The defibrillation catheter system according to claim 3 or 4, wherein the power supply unit stops the power supply for the defibrillation.
  6.  前記電源装置は、入力された前記筋電位信号における波高値が閾値以下であると判定された場合、外部への警告を行う
     請求項3ないし請求項5のいずれか1項に記載の除細動カテーテルシステム。
    The defibrillation according to any one of claims 3 to 5, wherein the power supply device issues a warning to the outside when it is determined that a peak value in the input myoelectric potential signal is equal to or less than a threshold value. Catheter system.
  7.  前記生体測定機構が、少なくとも2つの電極パッドを用いて構成されている
     請求項1ないし請求項6のいずれか1項に記載の除細動カテーテルシステム。
    The defibrillation catheter system according to any one of claims 1 to 6, wherein the biometric mechanism is configured using at least two electrode pads.
PCT/JP2017/013609 2017-03-31 2017-03-31 Defibrillation catheter system WO2018179339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780084967.4A CN110234393B (en) 2017-03-31 2017-03-31 Defibrillation catheter system
KR1020197027891A KR102045714B1 (en) 2017-03-31 2017-03-31 Defibrillation catheter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069812A JP6560288B2 (en) 2017-03-31 2017-03-31 Defibrillation catheter system
JP2017-069812 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018179339A1 true WO2018179339A1 (en) 2018-10-04

Family

ID=63674471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013609 WO2018179339A1 (en) 2017-03-31 2017-03-31 Defibrillation catheter system

Country Status (5)

Country Link
JP (1) JP6560288B2 (en)
KR (1) KR102045714B1 (en)
CN (1) CN110234393B (en)
MY (1) MY176709A (en)
WO (1) WO2018179339A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259872A (en) * 1988-04-11 1989-10-17 Fukuda Denshi Co Ltd Electrode for defibrillator
JP2016508767A (en) * 2013-01-22 2016-03-24 デューク ユニバーシティ System and method for optimizing cardiac resynchronization therapy (CRT)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738667B2 (en) * 2000-12-28 2004-05-18 Medtronic, Inc. Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation
US9037239B2 (en) * 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9301698B2 (en) * 2008-10-31 2016-04-05 Medtronic, Inc. Method and apparatus to detect ischemia with a pressure sensor
CN102223912B (en) * 2008-12-12 2014-02-12 日本来富恩株式会社 Intracardiac defibrillation catheter
JP4545216B1 (en) 2009-03-23 2010-09-15 日本ライフライン株式会社 Intracardiac defibrillation catheter system
JP4672801B1 (en) * 2010-02-19 2011-04-20 日本ライフライン株式会社 Intracardiac defibrillation catheter system
JP4672802B1 (en) * 2010-03-25 2011-04-20 日本ライフライン株式会社 Intracardiac defibrillation catheter system
JP4937391B2 (en) * 2010-09-01 2012-05-23 日本ライフライン株式会社 Intracardiac defibrillation catheter
JP2012192124A (en) * 2011-03-18 2012-10-11 Japan Lifeline Co Ltd Intracardiac defibrillation catheter
JP5900974B2 (en) * 2013-05-10 2016-04-06 日本ライフライン株式会社 Intracardiac defibrillation catheter system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259872A (en) * 1988-04-11 1989-10-17 Fukuda Denshi Co Ltd Electrode for defibrillator
JP2016508767A (en) * 2013-01-22 2016-03-24 デューク ユニバーシティ System and method for optimizing cardiac resynchronization therapy (CRT)

Also Published As

Publication number Publication date
CN110234393A (en) 2019-09-13
MY176709A (en) 2020-08-19
JP2018171138A (en) 2018-11-08
KR20190116507A (en) 2019-10-14
JP6560288B2 (en) 2019-08-14
KR102045714B1 (en) 2019-11-15
CN110234393B (en) 2020-10-23

Similar Documents

Publication Publication Date Title
JP4545216B1 (en) Intracardiac defibrillation catheter system
JP4672802B1 (en) Intracardiac defibrillation catheter system
JP5900974B2 (en) Intracardiac defibrillation catheter system
WO2018083842A1 (en) Intracardiac defibrillation catheter system
JP6560288B2 (en) Defibrillation catheter system
US20230211154A1 (en) Intracardiac defibrillation catheter system
JP4672801B1 (en) Intracardiac defibrillation catheter system
JP6900297B2 (en) Defibrillation system
WO2021171540A1 (en) Defibrillation catheter system
WO2021171531A1 (en) Medical device system
JP2023143343A (en) Defibrillation system, power supply device, switching equipment, and control method of defibrillation system
WO2022195644A1 (en) Intracardiac defibrillation catheter system
JP2019150526A (en) Intracardiac defibrillation catheter
WO2016038713A1 (en) Nerve stimulation device, nerve stimulation system and nerve stimulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904146

Country of ref document: EP

Kind code of ref document: A1