WO2018178405A1 - Procedimiento de control adaptativo para sistemas de refrigeración - Google Patents

Procedimiento de control adaptativo para sistemas de refrigeración Download PDF

Info

Publication number
WO2018178405A1
WO2018178405A1 PCT/ES2017/070178 ES2017070178W WO2018178405A1 WO 2018178405 A1 WO2018178405 A1 WO 2018178405A1 ES 2017070178 W ES2017070178 W ES 2017070178W WO 2018178405 A1 WO2018178405 A1 WO 2018178405A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
ice
stage
frost
coefficient
Prior art date
Application number
PCT/ES2017/070178
Other languages
English (en)
French (fr)
Inventor
Xavier ALBETS CHICO
Pere MORENO ARGILES
Miguel Angel GONZALEZ SANCHEZ
Luisa F. CABEZA FABRA
Jose Miguel MALDONADO JIMENEZ
Gabriel ZSEMBINSZKI
Alvaro DE GRACIA CUESTA
Original Assignee
Universitat De Lleida
Ako Electromecanica, S.A.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Lleida, Ako Electromecanica, S.A.L filed Critical Universitat De Lleida
Priority to PCT/ES2017/070178 priority Critical patent/WO2018178405A1/es
Priority to PCT/ES2018/070246 priority patent/WO2018178465A1/es
Priority to ES18776380T priority patent/ES2928140T3/es
Priority to EP18776380.0A priority patent/EP3534095B1/en
Priority to US16/498,934 priority patent/US11073318B2/en
Publication of WO2018178405A1 publication Critical patent/WO2018178405A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/173Speeds of the evaporator fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the invention refers to an adaptive control procedure for refrigeration systems, which provides advantages and features, which will be described in detail below, which imply an improvement in the current state of the technique within its field of application.
  • the object of the invention focuses on a control procedure for cooling systems, adaptive based on the evaporator ice level, for which it monitors the cooling system and manages the fans and defrost processes as a function of of the frost level in the evaporator, which gives remarkable energy savings to the cooling system.
  • the level of frost in the evaporator is detected by a new calculation method that is valid for any type of system and is based on an NTU rate method (number of Transfer Units, number of transfer units) .
  • the field of application of the present invention is part of the industry sector dedicated to the manufacture of refrigeration appliances, focusing more specifically on the operating control systems thereof.
  • the efficiency of the cooling systems can be reduced by the formation of ice (frost) in the circuit of the heat exchanger (evaporator) of the refrigerated space (evaporator). If excess frost is not avoided, it could even stop the evaporator [1].
  • defrost methods There are various defrost methods; some of them require large amounts of energy to eliminate such frost [2] of up to 25 percent of the total energy consumption of the cooling system [3]. It is known in the
  • defrost processes are scheduled at certain times, typically every 6 or 8 hours, without any information on the evaporator status, which causes, on the one hand, possible unnecessary defrost processes, and on the other, periods where there is excessive frost .
  • the evaporator fan can be managed in different ways depending on the level of frost in the evaporator, in order to reduce the energy consumption of the cooling system [5].
  • the objective of the present invention is to develop an improved control system for cooling systems based, firstly, on a new method for detecting the level of frost in the evaporator, secondly, in adaptive management. of the evaporator fan to combine different modes of operation and, finally, an adaptive criterion to decide the most appropriate defrosting time.
  • said new method for the detection of the frost level is based on the well-known NTU method (Number o ⁇ Transfer Units, number of transfer units) that is used to calculate the heat transfer rate in heat exchangers. heat (especially countercurrent exchangers) when there is not enough information to calculate the mean log temperature difference (LMTD).
  • NTU method Number of Transfer Units, number of transfer units
  • heat especially countercurrent exchangers
  • LMTD mean log temperature difference
  • an adaptive control procedure based on the evaporator ice level for cooling systems which monitors the cooling system and manages the fans and defrost processes based on the level of frost in the evaporator, which confers significant energy savings to the cooling system, essentially comprising a new method for detecting the level of frost in the evaporator, an adaptive management of the evaporator fan that intelligently combines different modes of operation and, finally, an adaptive criterion to decide the most appropriate defrosting time.
  • the frost level of the evaporator is detected by a new method of calculation of NTU rate which, advantageously, is valid for any type of system.
  • the control procedure thus combines different modes of evaporator fan management depending on the frost level of the evaporator, which in turn is determined by said NTU rate method, causing the cooling system to work in different operating modes:
  • the adaptive control method of the invention contemplates the calculation of the NTU rate at the beginning, when the evaporator is dry (without any frost). This level is used as a reference.
  • the adaptive control procedure contemplates the calculation of the NTU rate with a variable frequency (which in turn depends on the performance of the evaporator or ice level in it), and its comparison with the reference .
  • the value obtained is a dimensionless coefficient that reports the level of frost in the evaporator (fe).
  • the strategy (mode) of operation of the evaporator fan is decided and it is decided whether a defrost process is necessary in real time.
  • the coefficient faith is compared with respect to a dimensionless value of reference performance (fs) which in turn adapts with respect to the time required to perform the defrost (the first fs being a default value).
  • the defrost activation value is adapted until a level of frost is achieved in the evaporator that allows obtaining the optimum (most efficient) level of operation of the cooling system.
  • the procedure contemplates the existence of a safety indicator that can stop the refrigeration system and activate the defrosting process, in case this is the cause of dysfunction.
  • the procedure contemplates that the evaporator drain heating system be connected only when necessary (before defrosting) while standing still during periods when defrost is not in operation or not planned in the short term, which increases the potential savings that this adaptive procedure confers on the cooling system.
  • the fan strategy (operating mode) depends on the frost level in the evaporator There are several modes of operation depending on the level of frost.
  • the defrost process is activated depending on an NTU rate in the evaporator, which reduces the amount of defrosts to be performed.
  • the relative level of frost (NTU rate) to activate defrost is adapted to the duration of the defrost process, which may also be related to the time that the refrigerated space is out of range.
  • NTU rate frost
  • the procedure includes the detection of the frost level in the evaporator by means of an NTU rate calculation method, which allows defining a) the most appropriate defrosting time, b) the energization of the drain resistors and c) the management adaptive of the evaporator fan combining different modes of operation, comprising an ice-free mode where only the refrigerant's cooling capacity is used and different modes with ice where the latent heat stored in the ice is used to produce energy savings, depending on the level of frost in the evaporator; in which, for the calculation of the NTU rate, the evaporator is used when it is dry at the beginning, and when the cooling system is in operation, it performs the calculation of the NTU rate with a specific and precise fan management mode, taking carried out with a frequency not constant, but variable depending on the performance of the evaporator or the level of ice in it and its comparison with the aforementioned reference.
  • Figure number 1 Shows a flow chart of the adaptive control procedure for refrigeration systems, object of the invention, where the steps it comprises are observed. PREFERRED EMBODIMENT OF THE INVENTION
  • step (10) in which the appropriate ice mode of operation is executed depending on said faith coefficient, that is, one of the different modes with ice is selected, in which the latent heat stored in the ice of the frost to produce energy savings, then returning to step (7) in which, again, the calculation of the NTU rate is performed to obtain the new faith coefficient of frost level;
  • the adaptive control procedure contemplates the entry into the system of the following parameters: - Evaporator temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

Procedimiento de control adaptativo para sistemas de refrigeración que comprende la detección del nivel de escarcha en el evaporador mediante un método de cálculo de tasa NTU, permitiendo definir: el momento de desescarche más adecuado, la energización de las resistencias de drenaje y la gestión adaptativa del ventilador del evaporador combinando diferentes modos de funcionamiento. Un modo sin hielo que utiliza únicamente la capacidad frigorífica del refrigerante, y distintos modos con hielo que aprovechan el calor latente almacenado en el hielo para producir ahorros energéticos, dependiendo del nivel de escarcha en el evaporador. Para el cálculo de la tasa NTU utiliza como referencia el evaporador cuando está seco al inicio, y cuando el sistema de refrigeración está en funcionamiento, efectúa el cálculo de la tasa NTU con un modo de funcionamiento con frecuencia variable dependiendo del rendimiento del evaporador o nivel de hielo y su comparación con la citada referencia.

Description

DESCRIPCIÓN
PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un procedimiento de control adaptativo para sistemas de refrigeración, el cual aporta ventajas y características, que se describirán en detalle más adelante, que suponen una mejora del estado actual de la técnica dentro de su campo de aplicación.
Más en particular, el objeto de la invención se centra en un procedimiento de control para sistemas de refrigeración, adaptativo en base al nivel de hielo del evaporador, para lo cual monitorea el sistema de refrigeración y gestiona los ventiladores y los procesos de desescarche en función del nivel de escarcha en el evaporador, lo que confiere ahorros de energía notables al sistema de refrigeración. Además, el nivel de escarcha en el evaporador se detecta mediante un nuevo método de cálculo que es válido para cualquier tipología de sistema y que se basa en un método de tasa NTU (siglas del inglés Number of Transfer Units, número de unidades de transferencia).
CAMPO DE APLICACIÓN DE LA INVENCIÓN
El campo de aplicación de la presente invención se enmarca dentro del sector de la industria dedicada a la fabricación de aparatos de refrigeración, centrándose más concretamente en los sistemas de control de funcionamiento de los mismos.
ANTECEDENTES DE LA INVENCIÓN
Como es sabido, la eficiencia de los sistemas de refrigeración puede verse reducida por la formación de hielo (escarcha) en el circuito del intercambiador de calor (evaporador) del espacio refrigerado (evaporador). Si no se evita el exceso de escarcha, ésta podría incluso parar el evaporador [1 ]. Existen diversos métodos de desescarche; algunos de ellos requieren grandes cantidades de energía para eliminar dicha escarcha [2] de hasta el 25 por ciento del total del consumo energético del sistema de refrigeración [3]. Es conocido en el
i sector que la disminución de la frecuencia de desescarche puede mejorar el rendimiento del sistema frigorífico, ya que reduce su consumo energético.
Es por ello que los procesos de desescarche deben, generalmente, mantenerse en una cantidad mínima necesaria.
Generalmente, los procesos de desescarche se programan a tiempos determinados, típicamente cada 6 u 8 horas, sin ninguna información del estado del evaporador, lo que provoca, por un lado, posibles procesos de desescarche innecesarios, y por otro, períodos donde existe excesiva escarcha.
El ventilador del evaporador puede ser gestionado de distintos modos dependiendo del nivel de escarcha en el evaporador, con el objetivo de reducir el consumo energético del sistema de refrigeración [5].
Por todo ello, el objetivo de la presente invención es desarrollar un procedimiento mejorado de control de los sistemas de refrigeración basado, en primer lugar, un nuevo método para la detección del nivel de escarcha en el evaporador, en segundo lugar, en una gestión adaptativa del ventilador del evaporador para que combine diferentes modos de funcionamiento y, finalmente, un criterio adaptativo para decidir el momento de desescarche más adecuado.
Cabe mencionar que, dicho nuevo método para la detección del nivel de escarcha, se basa en el ya conocido método NTU (Number oí Transfer Units, número de unidades de transferencia) que se utiliza para calcular la tasa de transferencia de calor en los intercambiadores de calor (especialmente intercambiadores contracorriente) cuando no hay suficiente información para calcular la diferencia de temperatura media logarítmica (LMTD). En el análisis de intercambiador de calor, si se especifican las temperaturas de entrada y de salida de fluido o pueden ser determinadas por el balance de energía simple, puede ser utilizado dicho método LMTD; pero cuando estas temperaturas no están disponibles se utiliza el método NTU.
Por otra parte, y como referencia al estado actual de la técnica, cabe señalar que, si bien se conocen sistemas de control del funcionamiento de los ventiladores en los aparatos de refrigeración para optimizar su funcionamiento, al menos por parte del solicitante, se desconoce la existencia de ningún procedimiento que presente unas características iguales o semejantes a las que concretamente presenta el que aquí se preconiza, según se reivindica.
En dicho sentido, se conoce la existencia de los documentos EP0.328152 fde 1992 y US4949548 de 1990, [5,6] referidos a una patente que hace referencia al control de los ventiladores del evaporador de modo que se utilice la capacidad frigorífica almacenada en el hielo del evaporador, fundiendo el mismo y asegurando que el frío es efectivamente transferido al especio refrigerado, sin embargo, el método utilizado presenta diferencias notables. De hecho, en dicho documento se utiliza un control basado en la diferencia de temperaturas entre evaporador y espacio refrigerado para cuantificar el nivel de escarcha en el evaporador y así programar (decidir) el inicio del proceso de desescarche. Esta aproximación al problema es válida, aunque limita su aplicación únicamente a sistemas refrigerados autónomos (es decir, con una unidad condensadora dedicada al evaporador en cuestión). En la invención aquí presente, el método de cuantificacion (NTU-rate) es distinto y precisamente permite que dicho control sea válido tanto para sistemas autónomos como para aquellos que cuentan con unidades condensadoras centralizadas mediante racks de compresores múltiples, lo cual supone una importante ventaja.
Referencias
1 . Cláudio Meló Fernando T. Knabben, Paula V. Pereira. An experimental study on defrost heaters applied to frost-free household refrigerators. Applied Thermal Engineering 51 (2013) 239-245.
2. J.M.W. Lawrence, J.A. Evans, Refrigerant flow instability as a means to predict the need for defrosting the evaporator in a retail display freezer cabinet. International Journal of Refrigeration 31 (2008) 107-1 12.
3. Kazachi G. Project progress meeting in discussion of display case warm liquid defrosting test at EPA. Raleigh: 2001 .
4. Diogo L. da Silva, Christian J.L. Hermes, Claudio Meló. Experimental study of frost accumulation on fan-supplied tube-fin evaporators. Applied Thermal Engineering 31 (201 1 ) 1013-1020
5. Friedhelm Meyer, (1990). Process for controlling the operation of a refrigerating unit. US4949548. 6. Friedhelm Meter, (1992). Verfahren zum Steuern des Betriebs eines Kühlaggregats. EP0.328152B1 .
EXPLICACIÓN DE LA INVENCIÓN
El procedimiento de control adaptativo para sistemas de refrigeración que la invención propone se configura, pues, como una novedad dentro de su campo de aplicación, estando los detalles caracterizadores que lo distinguen, convenientemente recogidos en las reivindicaciones finales que acompañan a la presente descripción.
Como se ha apuntado anteriormente, lo que la invención propone es un procedimiento de control adaptativo en base al nivel de hielo del evaporador para sistemas de refrigeración, que monitorea el sistema de refrigeración y gestiona los ventiladores y los procesos de desescarche en función del nivel de escarcha en el evaporador, lo que confiere ahorros de energía notables al sistema de refrigeración, comprendiendo para ello, esencialmente, un nuevo método para la detección del nivel de escarcha en el evaporador, una gestión adaptativa del ventilador del evaporador que inteligentemente combina diferentes modos de funcionamiento y, finalmente, un criterio adaptativo para decidir el momento de desescarche más adecuado.
En concreto, el nivel de escarcha del evaporador se detecta mediante un nuevo método de cálculo de tasa NTU que, ventajosamente, es válido para cualquier tipología de sistema.
El procedimiento de control combina, pues, distintos modos de gestión del ventilador del evaporador en función del nivel de escarcha del evaporador, que a su vez se determina por dicho método NTU rate, haciendo que el sistema de refrigeración trabaje en diferentes modos de funcionamiento:
- Modo sin hielo; se utiliza únicamente la capacidad frigorífica del refrigerante.
- Modo de medida; este modo permite una medida de NTU rate precisa.
- Distintos modos con hielo; los modos con hielo aprovechan el calor latente almacenado en el hielo para producir ahorros energéticos, dependiendo del nivel de escarcha en el evaporador. El procedimiento de control adaptativo de la invención contempla el cálculo de la tasa NTU al inicio, cuando el evaporador está seco (sin escarcha alguna). Dicho nivel se utiliza como referencia. Cuando el sistema de refrigeración está en funcionamiento, el procedimiento de control adaptativo contempla el cálculo el NTU rate con una frecuencia variable (la cual depende a su vez del rendimiento del evaporador o nivel de hielo en el mismo), y su comparación con la referencia. El valor que se obtiene es un coeficiente adimensional que informa sobre el nivel de escarcha en el evaporador (fe). Dependiendo del coeficiente fe, se decide la estrategia (modo) de funcionamiento del ventilador del evaporador y se decide si un proceso de desescarche es necesario en tiempo real.
Para ello, el coeficiente fe se compara respecto a un valor adimensional de rendimiento de referencia (fs) el cual a su vez se adapta respecto al tiempo necesario para realizar el desescarche (siendo el primer fs un valor por defecto). De este modo, se adapta el valor de activación de desescarche hasta conseguir un nivel de escarcha en el evaporador que permite obtener el nivel óptimo (más eficiente) de funcionamiento del sistema de refrigeración.
Preferentemente, el procedimiento contempla la existencia de un indicador de seguridad que puede parar el sistema de refrigeración y activar el proceso de desescarche, en el caso que éste sea el motivo de disfunción.
Adicionalmente, y gracias a la capacidad de predecir el momento de desescarche en base a la evolución temporal del coeficiente fe, el procedimiento contempla que el sistema de calentamiento del drenaje del evaporador se conecte únicamente cuando es necesario (antes del desescarche) mientras se mantiene parado durante los períodos en los que el desescarche no está en funcionamiento o no está previsto a corto plazo, lo que aumenta el potencial ahorro que este procedimiento adaptativo confiere al sistema de refrigeración.
La invención presenta las principales ventajas y características innovadoras que proporciona el procedimiento de la invención son:
- La tasa NTU para cuantificar el nivel de escarcha en el evaporador.
- La estrategia de los ventiladores (modo de funcionamiento) depende del nivel de escarcha en el evaporador. Existen varios modos de operación en función del nivel de escarcha.
- El proceso de desescarche es activado dependiendo de una tasa NTU en el evaporador, lo que reduce la cantidad de desescarches a realizar.
- El nivel relativo de escarcha (tasa NTU) para hacer activar el desescarche se adapta a la duración del proceso de desescarche, el cual también puede estar relacionado con el tiempo que el espacio refrigerado se encuentra fuera de rango. - En base a la evolución temporal de la tasa NTU, el sistema calefactor del drenaje se energiza únicamente cuando es necesario, aumentando así los ahorros potenciales de energía para el sistema.
En definitiva, el procedimiento comprende la detección del nivel de escarcha en el evaporador mediante un método de cálculo de tasa NTU, el cual permite definir a) el momento de desescarche más adecuado, b) la energización de las resistencias de drenaje y c) la gestión adaptativa del ventilador del evaporador combinando diferentes modos de funcionamiento, comprendiendo un modo sin hielo donde se utiliza únicamente la capacidad frigorífica del refrigerante y distintos modos con hielo donde se aprovecha el calor latente almacenado en el hielo para producir ahorros energéticos, dependiendo del nivel de escarcha en el evaporador; en que, para el cálculo de la tasa NTU utiliza como referencia el evaporador cuando está seco al inicio, y cuando el sistema de refrigeración está en funcionamiento, efectúa el cálculo de la tasa NTU con un modo de gestión del ventilador específico y preciso, llevándose a cabo con una frecuencia no constante, sino variable dependiendo del rendimiento del evaporador o del nivel de hielo en el mismo y su comparación con la citada referencia.
Visto lo que antecede, se constata que el descrito procedimiento de control adaptativo para sistemas de refrigeración representa una innovación de características desconocidas hasta ahora para el fin a que se destina, razones que unidas a su utilidad práctica, la dotan de fundamento suficiente para obtener el privilegio de exclusividad que se solicita.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, de un plano, en que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1 .- Muestra un diagrama de flujo del procedimiento de control adaptativo para sistemas de refrigeración, objeto de la invención, donde se observan las etapas que comprende. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de la descrita figura 1 y única, y de acuerdo con la numeración adoptada, se puede apreciar cómo el método de control adaptativo para sistemas de refrigeración de la invención contempla las siguientes etapas en el orden que se señala:
- Una primera etapa (1 ) en que se procede a predeterminar el coeficiente fs y predeterminar el tiempo máximo de desescarche (tmax);
- Una segunda etapa (2) en que se procede a descongelar el evaporador;
- Una tercera etapa (3) en que se ejecuta el modo estándar de funcionamiento del ventilador (durante el tiempo preestablecido);
- Una cuarta etapa (4) en que se ejecuta el modo de funcionamiento de medida (durante el tiempo preestablecido);
- Una quinta etapa (5) en que se efectúa el cálculo de la referencia de la tasa NTU con el evaporador seco, sin escarcha;
- Una sexta etapa (6) en que se ejecuta el modo de funcionamiento sin hielo del sistema de refrigeración inicial/después de desescarche, en que utiliza únicamente la capacidad frigorífica del refrigerante;
- Una séptima etapa (7) en que se efectúa el cálculo de la tasa de NTU para obtener el coeficiente fe de nivel de escarcha;
- Una octava etapa (8) en que se efectúa el cálculo de dicho coeficiente fe; con tres posibles opciones de etapa siguiente:
- Una novena etapa (9), en que se ejecuta el modo sin hielo recurrente, es decir, utilizando únicamente la capacidad frigorífica del refrigerante; volviendo luego a la etapa (7) en que, de nuevo, se efectúa el cálculo de la tasa de NTU para obtener el nuevo coeficiente fe de nivel de escarcha.
- Una décima etapa (10) en que se ejecuta el modo de funcionamiento con hielo apropiado dependiendo de dicho coeficiente fe, es decir, se selecciona uno de los distintos modos con hielo, en que se aprovechan el calor latente almacenado en el hielo de la escarcha para producir ahorro energético, volviendo luego a la etapa (7) en que, de nuevo, se efectúa el cálculo de la tasa de NTU para obtener el nuevo coeficiente fe de nivel de escarcha;
- Una undécima etapa (1 1 ) de descongelado del evaporador; y
- Una duodécima etapa (12) de adaptación del coeficiente fs de nivel de escarcha, tras la que se vuelve a la etapa (6) en que se ejecuta el modo de funcionamiento sin hielo del ventilador inicial/después de desescarche.
Cabe señalar que, para llevar a cabo dichas etapas de funcionamiento, el procedimiento de control adaptativo contempla la entrada al sistema de los siguientes parámetros: - Temperatura del evaporador
- Temperatura del espacio refrigerado
- Tiempo real (Real Time Clock)
- Señal de compressor ON/OFF
- Señal de solenoide ON/OFF
- Señal de desescarche ON/OFF
- Máximo tiempo de desescarche permitido
- Coeficiente de activación a desescarche inicial (fs)
- Tiempo de seguridad sin desescarche
- Histéresis ligada a la consigna de temperatura del espacio refrigerado
- Máximo tiempo permitido fuera de consigna
Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, no se considera necesario hacer más extensa su explicación para que cualquier experto en la materia comprenda su alcance y las ventajas que de ella se derivan, haciéndose constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a título de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba siempre que no se altere, cambie o modifique su principio fundamental.

Claims

R E I V I N D I C A C I O N E S
1 . - PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN que, siendo del tipo que gestiona los ventiladores en función del nivel de escarcha en el evaporador, está caracterizado por comprender la detección del nivel de escarcha en el evaporador mediante un método de cálculo de tasa NTU, y la gestión adaptativa del ventilador del evaporador combinando diferentes modos de funcionamiento, comprendiendo un modo sin hielo donde se utiliza únicamente la capacidad frigorífica del refrigerante, y distintos modos con hielo donde se aprovecha el calor latente almacenado en el hielo para producir ahorros energéticos, dependiendo del nivel de escarcha en el evaporador.
2. - PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN, según la reivindicación 1 , caracterizado porque para el cálculo de la tasa NTU se utiliza como referencia el evaporador cuando está seco al inicio, y cuando el sistema de refrigeración está en funcionamiento, el cálculo de la tasa NTU se efectúa utilizando un modo de gestión del ventilador, llevándose a cabo dicho cálculo con una frecuencia no constante y que varía dependiendo del rendimiento del evaporador o del nivel de hielo en el mismo, y su comparación con la citada referencia, obteniéndose un coeficiente del nivel de escarcha en el evaporador fe.
3. - PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN, según la reivindicación 2, caracterizado porque, para decidir modo de funcionamiento y si un proceso de desescarche es necesario en tiempo real, el coeficiente fe se compara respecto a un valor adimensional de rendimiento de referencia fs, el cual a su vez se adapta respecto al tiempo necesario para realizar el desescarche, siendo el primer fs un valor por defecto.
4. - PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN, según la reivindicación 3, caracterizado porque contempla la existencia de un indicador de seguridad para parar el sistema de refrigeración y activar el proceso de desescarche, en el caso que éste sea el motivo de disfunción.
5. - PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN, según la reivindicación 3 ó 4, caracterizado porque, gracias a la capacidad de predecir el momento de desescarche en base a la evolución temporal del coeficiente fe, se contempla que el sistema de calentamiento del drenaje del evaporador se conecte únicamente antes del desescarche, mientras se mantiene parado durante los períodos en los que el desescarche no está en funcionamiento o no está previsto a corto plazo.
6.- PROCEDIMIENTO DE CONTROL ADAPTATIVO PARA SISTEMAS DE REFRIGERACIÓN, según las reivindicaciones anteriores, caracterizado por comprender las siguientes etapas:
- Una primera etapa (1 ) en que se procede a predeterminar el coeficiente fs y predeterminar el tiempo máximo de desescarche (tmax);
- Una segunda etapa (2) en que se procede a descongelar el evaporador;
- Una tercera etapa (3) en que se ejecuta el modo estándar de funcionamiento del ventilador (durante el tiempo preestablecido);
- Una cuarta etapa (4) en que se ejecuta el modo de funcionamiento de medida (durante el tiempo preestablecido);
- Una quinta etapa (5) en que se efectúa el cálculo de la referencia de la tasa NTU con el evaporador seco, sin escarcha;
- Una sexta etapa (6) en que se ejecuta el modo de funcionamiento sin hielo del sistema de refrigeración inicial/después de desescarche, en que utiliza únicamente la capacidad frigorífica del refrigerante;
- Una séptima etapa (7) en que se efectúa el cálculo de la tasa de NTU para obtener el coeficiente fe de nivel de escarcha;
- Una octava etapa (8) en que se efectúa el cálculo de dicho coeficiente fe; con tres posibles opciones de etapa siguiente:
- Una novena etapa (9), en que se ejecuta el modo sin hielo recurrente, es decir, utilizando únicamente la capacidad frigorífica del refrigerante; volviendo luego a la etapa (7) en que, de nuevo, se efectúa el cálculo de la tasa de NTU para obtener el nuevo coeficiente fe de nivel de escarcha.
- Una décima etapa (10) en que se ejecuta el modo de funcionamiento con hielo apropiado dependiendo de dicho coeficiente fe, es decir, se selecciona uno de los distintos modos con hielo, en que se aprovechan el calor latente almacenado en el hielo de la escarcha para producir ahorro energético, volviendo luego a la etapa (7) en que, de nuevo, se efectúa el cálculo de la tasa de NTU para obtener el nuevo coeficiente fe de nivel de escarcha;
- Una undécima etapa (1 1 ) de descongelado del evaporador; y
- Una duodécima etapa (12) de adaptación del coeficiente fs de nivel de escarcha, tras la que se vuelve a la etapa (6) en que se ejecuta el modo de funcionamiento sin hielo del ventilador inicial/después de desescarche.
PCT/ES2017/070178 2017-03-28 2017-03-28 Procedimiento de control adaptativo para sistemas de refrigeración WO2018178405A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/ES2017/070178 WO2018178405A1 (es) 2017-03-28 2017-03-28 Procedimiento de control adaptativo para sistemas de refrigeración
PCT/ES2018/070246 WO2018178465A1 (es) 2017-03-28 2018-03-27 Procedimiento de control adaptativo para sistemas de refrigeración
ES18776380T ES2928140T3 (es) 2017-03-28 2018-03-27 Procedimiento de control adaptativo para sistemas de refrigeración
EP18776380.0A EP3534095B1 (en) 2017-03-28 2018-03-27 Adaptive control method for refrigeration systems
US16/498,934 US11073318B2 (en) 2017-03-28 2018-03-27 Adaptive control method for refrigeration systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070178 WO2018178405A1 (es) 2017-03-28 2017-03-28 Procedimiento de control adaptativo para sistemas de refrigeración

Publications (1)

Publication Number Publication Date
WO2018178405A1 true WO2018178405A1 (es) 2018-10-04

Family

ID=63674308

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2017/070178 WO2018178405A1 (es) 2017-03-28 2017-03-28 Procedimiento de control adaptativo para sistemas de refrigeración
PCT/ES2018/070246 WO2018178465A1 (es) 2017-03-28 2018-03-27 Procedimiento de control adaptativo para sistemas de refrigeración

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070246 WO2018178465A1 (es) 2017-03-28 2018-03-27 Procedimiento de control adaptativo para sistemas de refrigeración

Country Status (4)

Country Link
US (1) US11073318B2 (es)
EP (1) EP3534095B1 (es)
ES (1) ES2928140T3 (es)
WO (2) WO2018178405A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900005938A1 (it) 2019-04-17 2020-10-17 Ali Group S R L Procedimento di controllo del ghiacciamento dell’evaporatore, in un abbattitore di temperatura
IT202100000890A1 (it) 2021-01-19 2022-07-19 Ali Group S R L Abbattitore di temperatura polivalente con ciclo invertibile, ad elevata efficienza

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178405A1 (es) 2017-03-28 2018-10-04 Universitat De Lleida Procedimiento de control adaptativo para sistemas de refrigeración
US11221173B2 (en) * 2019-11-13 2022-01-11 Lineage Logistics, LLC Controlled defrost for chilled environments
CN113503684B (zh) * 2021-07-21 2022-10-28 珠海格力电器股份有限公司 冰箱节能控制方法、冰箱及计算机可读存储介质
DE102023200198A1 (de) 2023-01-12 2024-07-18 BSH Hausgeräte GmbH Bestimmen eines Abtauzeitpunkts eines Verdampfers eines Haushalts-Kältegeräts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949548A (en) * 1988-02-11 1990-08-21 Friedhelm Meyer Process for controlling the operation of a refrigerating unit
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
US20050132730A1 (en) * 2003-12-18 2005-06-23 Lg Electronics Inc. Apparatus and method for controlling operation of blower fan of refrigerator
US20070204635A1 (en) * 2005-02-24 2007-09-06 Mitsubishi Denki Kabushiki Kaisha Air Conditioning Apparatus
US20100106302A1 (en) * 2008-10-24 2010-04-29 Ole Thogersen Controlling frozen state of a cargo

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564281A (en) * 1993-01-08 1996-10-15 Engelhard/Icc Method of operating hybrid air-conditioning system with fast condensing start-up
US6145588A (en) * 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field
WO2018178405A1 (es) 2017-03-28 2018-10-04 Universitat De Lleida Procedimiento de control adaptativo para sistemas de refrigeración

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949548A (en) * 1988-02-11 1990-08-21 Friedhelm Meyer Process for controlling the operation of a refrigerating unit
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
US20050132730A1 (en) * 2003-12-18 2005-06-23 Lg Electronics Inc. Apparatus and method for controlling operation of blower fan of refrigerator
US20070204635A1 (en) * 2005-02-24 2007-09-06 Mitsubishi Denki Kabushiki Kaisha Air Conditioning Apparatus
US20100106302A1 (en) * 2008-10-24 2010-04-29 Ole Thogersen Controlling frozen state of a cargo

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900005938A1 (it) 2019-04-17 2020-10-17 Ali Group S R L Procedimento di controllo del ghiacciamento dell’evaporatore, in un abbattitore di temperatura
EP3726167A1 (en) 2019-04-17 2020-10-21 Ali Group S.r.l. Control process for controlling the icing of the evaporator in a blast chiller
IT202100000890A1 (it) 2021-01-19 2022-07-19 Ali Group S R L Abbattitore di temperatura polivalente con ciclo invertibile, ad elevata efficienza
EP4030125A1 (en) 2021-01-19 2022-07-20 Ali Group S.r.l. Multipurpose blast chiller with reversible cycle, with high efficiency

Also Published As

Publication number Publication date
ES2928140T3 (es) 2022-11-15
EP3534095A4 (en) 2020-11-04
US20200049393A1 (en) 2020-02-13
EP3534095B1 (en) 2022-07-06
EP3534095A1 (en) 2019-09-04
WO2018178465A1 (es) 2018-10-04
US11073318B2 (en) 2021-07-27
WO2018178465A8 (es) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018178405A1 (es) Procedimiento de control adaptativo para sistemas de refrigeración
US5406805A (en) Tandem refrigeration system
EP2217872B1 (en) Control method of refrigerator
US10823482B2 (en) Systems and methods for free and positive defrost
ES2762238T3 (es) Desescarchado a demanda con saturación de refrigerante del evaporador
RU96116157A (ru) Размораживающее устройство для холодильников и способ управления таким устройством
JP2008514895A (ja) 逆ペルチェ除霜システム
WO1995013510A9 (en) Tandem refrigeration system
JP2008304137A (ja) 冷凍装置
EP2719976B1 (en) Refrigeration apparatus
JP2013104606A (ja) 冷凍サイクル装置及び温水生成装置
JP2009144951A (ja) 冷凍冷蔵装置のデフロスト運転制御装置及び方法
JP2002062026A (ja) 電気冷蔵庫の除霜制御方法
JP2009092371A (ja) 冷却庫
CN102331121A (zh) 一种空调器及其控制方法
JP5975379B2 (ja) 冷却貯蔵庫
KR20110086345A (ko) 2개의 증발기를 구비하는 냉장고의 운전 제어방법
JP2013170747A (ja) 冷媒漏れ検知装置及び冷凍装置
JP2014190641A (ja) 空気調和機
KR20190026288A (ko) 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
JP2005257164A (ja) 冷却装置
Foster et al. A novel passive defrost system for a frozen retail display cabinet with a low evaporator
CN203893476U (zh) 用于冰箱的制冷系统及冰箱
JP2019054983A (ja) 冷凍・冷蔵ショーケース
Rainwater Five defrost methods for commercial refrigeration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902916

Country of ref document: EP

Kind code of ref document: A1