WO2018177224A1 - 一种上行传输方法和装置 - Google Patents

一种上行传输方法和装置 Download PDF

Info

Publication number
WO2018177224A1
WO2018177224A1 PCT/CN2018/080335 CN2018080335W WO2018177224A1 WO 2018177224 A1 WO2018177224 A1 WO 2018177224A1 CN 2018080335 W CN2018080335 W CN 2018080335W WO 2018177224 A1 WO2018177224 A1 WO 2018177224A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
quality
quality criterion
event
current
Prior art date
Application number
PCT/CN2018/080335
Other languages
English (en)
French (fr)
Inventor
任毅
刘建琴
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18778103.4A priority Critical patent/EP3595351B1/en
Publication of WO2018177224A1 publication Critical patent/WO2018177224A1/zh
Priority to US16/585,890 priority patent/US11121916B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink transmission method and apparatus.
  • the user side can also form a more concentrated receive beam to increase the receive gain. Therefore, the 5G communication system is high. Frequency communication needs to consider a beam-centric design. Further, since both the transmitting and receiving sides of the high-frequency system tend to use narrow beams for communication, the matching of the narrow beams is particularly important.
  • a receive beam for narrow beam communication is called a Beam Pair Link (BPL); at the same time, due to the characteristics of the high frequency channel, the signal is difficult to be diffracted, and a relatively strong reflection effect is replaced. Low diffraction and high reflection make the high frequency channel exhibit significant features of spatial sparseness and local correlation.
  • BPL Beam Pair Link
  • the matching of the transmit and receive beams is more important in high frequency communication.
  • the transmitting and receiving parties must perform beam scanning before performing high-rate data communication to determine a pair of optimal BPLs for communication.
  • the user equipment is highly likely to move and rotate during communication; or, in communication, there is an obstruction such as a vehicle, a pedestrian, or the like on the path through which the optimal BPL passes. The above situation will make the original optimal transmit-to-light beam quality worse, and even directly lead to user loss of connection.
  • the design of high frequency based communication system requires special attention to the problem of robust transmission, that is, it is necessary to design a corresponding mechanism to support the user in moving, rotating, In the case of frequent occlusion, the connection can be quickly restored to ensure the quality of the communication link.
  • LTE Long Term Evolution
  • the base station After receiving the information reported by the user, the base station performs operations such as beam switching, transmit diversity, and restarting the beam training process to restore the connection with the current user.
  • the fine tracking and coarse tracking of the beams are periodically performed between the base station and the user to ensure the quality of the communication link.
  • the BPL has a mismatch caused by movement, rotation, occlusion, etc.
  • the user needs to wait until the next fine tracking or coarse tracking comes to re-beam scan to restore the connection. Since the time distribution of the movement, the rotation, and the occlusion is random, the prior art cannot guarantee that the link can be recovered in time.
  • frequent beam scanning may result in a decrease in communication efficiency, resulting in a decrease in overall system throughput.
  • the second technique in the prior art uses a threshold triggering method to ensure the quality of the communication link, that is, the user continuously monitors the communication quality of the BPL itself, once the quality of the receiving beam is less than a certain With a threshold, the user initiates the escalation process.
  • the single-threshold trigger reporting makes it impossible for the user to distinguish whether the current link quality degradation is caused by the fast fading of the channel or by the movement, rotation, or occlusion, so that frequent triggering of the report may occur, which may increase uselessness.
  • Signaling overhead which reduces the communication efficiency of the entire system.
  • the embodiment of the present application provides an uplink transmission method and apparatus to solve the problem that the system has low communication efficiency in solving the problem of robust transmission of wireless communication in the prior art.
  • an uplink transmission method including:
  • the first device sends a quality criterion event of the link between the at least one and the second device to the second device, where at least one parameter is included in the quality criterion event of each link;
  • the first device receives the report information determined by the second device according to the at least one link quality criterion and a parameter in a quality criterion event of each link.
  • the second device can accurately determine the quality of the current link under the configuration of the first device, and perform corresponding quality according to the configured rules. Triggering and reporting of criteria events.
  • the signaling can be flexibly configured with different sets of quality criteria events, different thresholds and time parameters to serve different types of second devices, and the first device can reasonably allocate resources of the entire network to ensure the first device.
  • the communication quality and communication efficiency with the second device further improve the performance of the entire network.
  • the method further includes:
  • the first device receives the report information reported by the second device according to the reporting rule and the feedback format.
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or other links monitored by the second device.
  • the first device flexibly configures different quality criterion events for the second device, and the second device performs feedback according to the determined event, and the first device triggers the specific behavior according to the feedback of the second device, based on the event feedback.
  • the mode can effectively avoid the misconfiguration of the first device due to the fact that the second device side is not clear.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time Or the moment after the current moment.
  • the first device flexibly configures different quality criterion events for the second device, and the second device performs feedback according to the determined event, and the first device triggers the specific behavior according to the feedback of the second device, based on the event feedback.
  • the mode can effectively avoid the misconfiguration of the first device due to the fact that the second device side is not clear.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the reporting information includes an event type triggered by the second device according to a quality criterion event of the link, and a recommended operation and recommendation recommended by the first device. Any combination of resources.
  • the second device can not only feed back the information of the quality criterion event itself (such as the quality criterion event ID) when the quality criterion event is triggered, but also simultaneously from the second Device angle, feedback on the current channel quality, channel changes, what kind of operation is reasonable.
  • the first device base station
  • the first device can indirectly determine the emergency of the user reply link according to the user's report information, such as recommended operation.
  • the degree so that resources are more evenly distributed from the perspective of the entire network, and the sequential connection recovery work is carried out.
  • the recommended resource or the recommended beam fed back by the second device can help the first device perform beam switching, space diversity, and the like more quickly and efficiently, thereby improving the working efficiency of the entire system.
  • the first device receives the reporting information that is determined by the second device according to the at least one link quality criterion and a parameter in a quality criterion event of each link Thereafter, the method further includes:
  • the first device performs a selection of a transmission mode and/or a transmission resource and/or a transmission port and/or a beamforming and/or a transmission reference signal and/or a measurement process based on the reported information.
  • the method further includes:
  • the first device configures a communication parameter set to the second device for each quality criterion event, and after any one of the quality criterion events is triggered, the first device and the second device adopt The communication parameters in the corresponding communication parameter set configured by the any quality criterion event are communicated, and the communication parameter set is a total arbitrary combination of subcarrier spacing, slot length, and cyclic prefix type.
  • the first device may use the high-level signaling to configure the first device and the second device with different communication parameter sets triggered by different quality criterion events.
  • the first device and the first device The two devices communicate using the corresponding set of communication parameters, so that the recovery of the link can be performed more quickly, reducing the waiting time for link recovery.
  • an uplink transmission method including:
  • the second device sends the report information to the first device.
  • the second device can accurately determine the quality of the current link according to the multiple quality criterion events configured by the first device, and perform triggering and reporting of the corresponding quality criterion event according to the configured rule, so that the first device passes Reasonable planning enables the resources of the entire network to be allocated reasonably, thereby ensuring the communication quality and communication efficiency between the first device and the second device, and further improving the performance of the entire network.
  • the method further includes:
  • the second device reports the report information to the first device according to the reporting rule and the feedback format.
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or other links monitored by the second device.
  • the first device flexibly configures different quality criterion events for the second device, and the second device performs feedback according to the determined event, and the first device triggers the specific behavior according to the feedback of the second device, based on the event feedback.
  • the mode can effectively avoid the misconfiguration of the first device due to the fact that the second device side is not clear.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time Or the moment after the current moment.
  • the first device flexibly configures different quality criterion events for the second device, and the second device performs feedback according to the determined event, and the first device triggers the specific behavior according to the feedback of the second device, based on the event feedback.
  • the mode can effectively avoid the misconfiguration of the first device due to the fact that the second device side is not clear.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the reporting information includes an event type triggered by the second device according to a quality criterion event of the link, and a recommended operation and recommendation recommended by the first device. Any combination of resources.
  • the second device can not only feed back the information of the quality criterion event itself (such as the quality criterion event ID) when the quality criterion event is triggered, but also simultaneously from the second Device angle, feedback on the current channel quality, channel changes, what kind of operation is reasonable.
  • the first device base station
  • the first device can indirectly determine the emergency of the user reply link according to the user's report information, such as recommended operation.
  • the degree so that resources are more evenly distributed from the perspective of the entire network, and the sequential connection recovery work is carried out.
  • the recommended resource or the recommended beam fed back by the second device can help the first device perform beam switching, space diversity, and the like more quickly and efficiently, thereby improving the working efficiency of the entire system.
  • the method further includes:
  • the second device and the first A device communicates with communication parameters in a corresponding set of communication parameters configured for any of the quality criteria events, the set of communication parameters being any combination of subcarrier spacing, slot length, and cyclic prefix type.
  • the first device configures the second device with different communication parameter sets triggered by different quality criterion events, when the specific quality criterion event is triggered, the second device and the first device use the corresponding communication parameters.
  • the set communicates so that the link recovery can be performed more quickly, reducing the latency of link recovery.
  • an uplink transmission apparatus which is applied to a first device, and includes:
  • a processing unit configured to configure a quality criterion event of the link between the at least one device and the second device
  • a sending unit configured to send, to the second device, a quality criterion event of the link between the at least one device and the second device, where the quality criterion event of each link includes at least one parameter;
  • a receiving unit configured to receive, by the second device, the reporting information determined according to the at least one link quality criterion and a parameter in a quality criterion event of each link.
  • the sending unit is further configured to:
  • the receiving unit is further configured to receive the report information reported by the second device according to the reporting rule and the feedback format.
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or other links monitored by the second device.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time Or the moment after the current moment.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the reporting information includes an event type triggered by the second device according to a quality criterion event of the link, and a recommended operation and recommendation recommended by the first device. Any combination of resources.
  • the processing unit is further configured to:
  • the processing unit is further configured to:
  • a communication parameter set is sent by the sending unit to the second device, and when any one of the quality criterion events is triggered, the second device is used with the second device.
  • the communication parameters in the corresponding communication parameter set configured by the quality criterion event are communicated, and the communication parameter set is any combination of subcarrier spacing, slot length, and cyclic prefix type.
  • the uplink transmission device solves the problem
  • the implementation of each of the above possible uplink transmission methods of the first aspect and the first aspect will not be repeated.
  • an uplink transmission apparatus which is applied to a second device, and includes:
  • a receiving unit configured to receive a quality criterion event of the at least one link sent by the first device, where the quality criterion event of each link includes at least one parameter
  • a processing unit configured to determine report information according to the at least one link quality criterion and a parameter in a quality criterion event of each link;
  • a sending unit configured to send the report information to the first device.
  • the receiving unit is further configured to:
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or other links monitored by the second device.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time Or the moment after the current moment.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the reporting information includes an event type triggered by the second device according to a quality criterion event of the link, and a recommended operation and recommendation recommended by the first device. Any combination of resources.
  • the processing unit is further configured to:
  • the communication parameters in the corresponding communication parameter set configured by any of the quality criterion events are communicated, and the communication parameter set is any combination of subcarrier spacing, slot length, and cyclic prefix type.
  • the uplink transmission device solves the problem
  • an embodiment of the present application provides a first device, where the first device includes a processor, a memory, a receiver, and a transmitter, where the memory stores a computer readable program, and the processor runs The program in the memory controls the receiver and the transmitter to implement an uplink transmission method related to the first aspect.
  • the implementation of the first device may Referring to the implementation of the various possible related methods of the first aspect and the first aspect above, the repetitive details are not described again.
  • the embodiment of the present application provides a second device, where the second device includes a processor, a memory, a receiver, and a transmitter, where the memory stores a computer readable program, and the processor runs The program in the memory controls the receiver and the transmitter to implement an uplink transmission method related to the second aspect.
  • the second device device solves the problem and the beneficial effects can be seen in the embodiments of the foregoing second aspect and the second aspect of the related method for maintaining the association and the beneficial effects
  • the implementation of the second device may Referring to the implementation of the various possible related methods of the second aspect and the second aspect above, the repetitive details are not described again.
  • an embodiment of the present application provides a computer storage medium, where the storage medium is a computer readable storage medium, where the computer readable storage medium stores a program, where the program includes instructions, when the instruction is The method of causing the electronic device to perform the uplink transmission of the first aspect and the first possible implementation of the first aspect when the electronic device is executed.
  • an embodiment of the present application provides a computer storage medium, where the storage medium is a computer readable storage medium, where the computer readable storage medium stores a program, where the program includes instructions, when the instruction is The method of causing the network device to perform uplink transmission of each of the possible implementations of the second aspect and the second aspect when the network device executes.
  • the first device sends the quality criterion event of the link between the at least one and the second device to the second device, where the quality criterion event of each link includes at least one parameter; And causing, by the second device, to determine, according to the at least one link quality criterion and a parameter in a quality criterion event of each link, feedback information of the link quality is fed back to the first device, compared to the prior art.
  • the second device in the present application can quickly feedback the quality of the communication link with the first device according to the quality criterion event configured by the first device, so that the first device can trigger the specific behavior to ensure the link quality. Improve communication efficiency.
  • FIG. 1 is a flowchart of an event-based uplink transmission method in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an uplink transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of relationship between BPL quality and user measurement time points according to an embodiment of the present application.
  • 4A and 4B are schematic diagrams showing a process of configuring a communication parameter set in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an uplink transmission apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an uplink transmission apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station in an embodiment of the present application.
  • the plurality referred to in the present application means two or more.
  • the uplink transmission method is mainly directed to a process of data transmission between a terminal and a network device in a radio access network.
  • the terminal may also be a user terminal, and may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user devices (User Equipment, UE), mobile station (MS), terminal equipment (Terminal Equipment), relay equipment, and so on.
  • the network device may include various devices that provide communication functions for the terminal in the radio access network, such as a base station, which may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In a system using different radio access technologies, the name of the base station may be different. For example, in a Long Term Evolution (LTE) network, an evolved NodeB (evolved NodeB, eNB or eNodeB for short) In the third generation 3G network, it is called Node B and so on.
  • LTE Long
  • the technology described in this embodiment of the present application may be applicable to an LTE system, or other wireless communication systems using various radio access technologies, for example, using code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, A system of access technologies such as single carrier frequency division multiple access.
  • it can also be applied to the subsequent evolution system using the LTE system, such as the fifth generation 5G system and the like.
  • the first device in the embodiment of the present application may be a network device, such as a base station or a relay device, and the second device may be a user terminal.
  • the embodiment of the present application provides an uplink transmission method and apparatus, which solves the problem that the system has low communication efficiency in solving the problem of robust transmission of wireless communication in the prior art, especially a high frequency communication scenario in wireless communication.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • This application is applied in a beam-based wireless communication scenario. It does not limit the carrier frequency of the communication, nor does it limit the topology of the communication network. However, since the problem of the present application itself comes from the problem of beam mismatch caused by narrowing of the beam in the wireless communication scenario, and the occlusion problem caused by high reflection of the high frequency channel and low diffraction, the present application is more suitable for application. In high frequency scenes.
  • FIG. 1 is a flowchart of an event-based uplink transmission method in an embodiment of the present application.
  • the application mainly provides definitions of two types of quality criteria events, A and B.
  • the quality criterion event is also used in this application. Can be referred to as an event.
  • a series of decision criteria are defined in the two types of events, which enable the second device to initially determine the channel quality change on the second device side according to the quality of the link between the first device and the quality of the link between the first device.
  • the event feedback is performed according to the specified reporting format and reporting rules. Based on these feedbacks, the first device can better understand what is happening in the current link quality, and thus adopt the most appropriate strategy to restore the link quality.
  • the Class A quality criterion event is used to describe the relationship between the quality of the current link and the quality of other links, such as describing the relationship between the current BPL and other BPLs (such as the BPL being monitored by the second device). . This relationship is similar to the relationship between the current serving cell and the neighboring cell.
  • the Class B quality criterion event is used to describe the relationship between the quality of the link at different times, for example, describing the relationship between the current BPL and itself at different times, mainly reflecting the change of the service BPL in the event dimension. Such events can reflect unexpected events such as user rotation, movement, and occlusion on the channel path.
  • the second device will notify the first device after the occurrence of these emergencies, and the first device is recommended to take specific measures. It should be noted that other BPLs described in the present invention may be from different first devices or other second devices, or may be different antenna arrays from the same first device, or may be from the same antenna of the same first device. Array.
  • FIG. 2 is a schematic flowchart of an uplink transmission method provided by an embodiment of the present application, where the process may be implemented by hardware, software programming, or a combination of hardware and software.
  • the process specifically includes the following processes:
  • Step 21 The first device sends a quality criterion event of the link between the at least one and the second device to the second device, where at least one parameter is included in the quality criterion event of each link.
  • the first device and the second device are connected by a high frequency or a low frequency, and the parameters include a bias type parameter and a threshold type parameter.
  • the link in this application may be a BPL or a port pair, and the link quality may be Reference Signal Receiving Power (RSRP), Channel Quality Indicator (CQI), and the like.
  • RSRP Reference Signal Receiving Power
  • CQI Channel Quality Indicator
  • Step 22 The second device determines the reporting information according to the at least one link quality criterion and a parameter in a quality criterion event of each link.
  • Step 23 The second device sends the determined report information to the first device.
  • the first device configures a quality criterion event of the link for the second device, and when there are multiple links between the first device and the second device, the first The device performs a packet configuration for the quality criteria event of the second device link.
  • the link may be multiple routing paths, or may be different antenna arrays from the first device, or may be from different first devices or Different second devices.
  • the first device separately configures quality criterion events for different links. For example, when there is a N (N>1 and a positive integer) strip in use or monitoring between the first device and the second device, the first device configures a quality criterion event for the N links respectively.
  • the second device reports the link recovery request.
  • the quality criterion event configured by the first device for the second device will act on all the links. relative devices. That is, when a device in the link determines that the event is triggered, it needs to report to the first device according to the format of the second device.
  • the class A quality criterion event in the embodiment of the present application is a setting relationship between the quality of the current link and the first reference object or between the quality of the other link monitored by the second device and the second reference object. Setting a relationship, the first reference object is a set threshold or a quality of other links monitored by the second device, and the second reference object is a set threshold or a quality of a current link. .
  • Class A events mainly describe the quality relationship between the current BPL and other BPLs, and the relationship between the current BPL and specific thresholds. .
  • Class A events namely A1, A2, A3 and A4.
  • A1 Service BPL quality is compared to a specific threshold.
  • A1-1 selection condition: M_s-Hys>Thresh
  • M_s is the link quality of the current BPL, which is measured by the user.
  • Hys is the hysteresis parameter configured by the base station, and Thresh is the threshold parameter configured by the base station.
  • the current BPL is considered to be of good service quality and continues to use the current BPL. If A1-2 is satisfied, the current BPL quality is not good, and the base station can select beam fine tracking to reselect the optimal BPL.
  • A2 Service BPL quality is compared to other BPL quality.
  • A2-1 selection condition: M_n+Ofn+Obn-Hys>M_s+Ofs+Obs
  • M_n is the link quality of other BPLs. It is measured by the user.
  • Obn, Ofs, and Obs are offset-type parameters configured by the base station, which respectively represent frequency-specific offsets and beam-specific parameters in other BPLs. The offset and frequency-specific offset, beam-specific offset in the serving BPL.
  • the current BPL is considered to be the optimal BPL within the monitoring range, and the current BPL continues to be used. If A2-2 is satisfied, there is a better BPL in the monitoring range, and the base station can choose to perform beam switching and select a new BPL.
  • A3 Other BPL quality is compared to a specific threshold.
  • A3-1 selection condition: M_n-Hys>Thresh
  • the base station can record a good BPL, which is utilized when triggering beam switching or transmit diversity mode. If A3-2 is satisfied, the quality of the other BPLs monitored is poor. The base station can ask the user to monitor other BPLs when configuring measurement feedback.
  • A4 Relationship between other BPL quality, current BPL quality, and specific thresholds.
  • A4-1 (Selection Condition 1): M_n+Hys ⁇ Thresh1
  • A4-2 (Selection Condition 2): M_s+Ofn+Obn-Hys>Thresh2
  • A4-3 (out of condition 1): M_n-Hys>Thresh1
  • A4-4 (out of condition 2): M_s+Ofn+Obn+Hys ⁇ Thresh2
  • the base station may choose not to switch the BPL.
  • the base station may propose to switch the BPL.
  • the A4 event can be seen as a combination of the other events mentioned above.
  • the base station flexibly configures different quality criterion events for the user, and since the base station is configured with parameters such as hysteresis coefficient and offset coefficient, the user avoids the rapid fading caused by the current and monitoring BPL. The result of the determination changes frequently, thereby reducing the possibility of ping-pong switching.
  • the user performs feedback according to the determined event, and the base station performs triggering of a specific behavior according to the feedback of the user, such as performing beam switching, transmit diversity, and beam training.
  • the mode based on user event feedback can effectively avoid misconfiguration of the base station due to unclear actual situation on the user side.
  • the class B quality criterion event in the embodiment of the present application is a setting relationship between the current time and the set time of the quality of the link, and the set time is a time before the current time or a time after the current time.
  • the Class B event mainly describes the relationship between the current BPL and the BPL past measurement record, and the current BPL quality and a waiting period. The relationship of the BPL quality is measured again after time, and the relationship between the current BPL and a specific threshold.
  • FIG. 3 is a schematic diagram showing the relationship between the current BPL quality and the user measurement time point.
  • B1 The quality of the service BPL is getting better than before the BPL.
  • M s (n) is the link quality of the current BPL
  • M s (n-1) is the link quality of the BPL that the user last measured, which is measured by the user
  • M aver is the time configured by the user at the base station. The average quality of the BPL link is observed in the window
  • Hys is the hysteresis parameter configured by the base station
  • Thresh is the threshold parameter configured by the base station
  • T is the time between the two measurements, configured by the base station.
  • B2 The quality of the service BPL is getting worse than before the BPL.
  • M s (n) is the link quality of the current BPL
  • M s (n-1) is the link quality of the BPL that the user last measured, which is measured by the user
  • M aver is the time configured by the user at the base station. The average quality of the BPL link is observed in the window
  • Hys is the hysteresis parameter configured by the base station
  • Thresh1, Thresh2, Thresh3 is the threshold parameter configured by the base station
  • T is the time between the two measurements, configured by the base station.
  • the B2 event describes the case where the quality of the service BPL deteriorates: B2-1 describes the case where the quality of the current BPL is in a certain range compared with the previous measurement; B1-2 describes The current BPL quality is lower than the previous average, and the channel quality degradation rate is within a certain range; B2-3 describes that the current BPL is faster than the previous measurement (the previous average). In a certain threshold case; B2-4 describes that the current BPL has a faster rate of channel degradation than a certain threshold compared to the previous average.
  • the event window T aver involved in M aver can be configured by the base station.
  • B2-5 describes that the current quality of service is already below a certain threshold.
  • the quality criterion events of the B2 series can jointly determine the severity of the current BPL loss.
  • B2-4 and B2-5 are triggered at the same time, which means that the current BPL may decay at a very fast speed and eventually lose the connection.
  • the user can judge the disconnected scene as an emergency event, thereby quickly performing reporting and link recovery work.
  • B2-1 or B2-2 is triggered together with B2-6, the user can think that the current BPL is slowly degraded, and the link quality can still maintain communication.
  • the user can judge that the scenario is a non-emergency mismatch. Therefore, it is recommended that the base station serve the user by means of fine tracking or widening the beam.
  • B3 The quality of the service BPL is getting worse than after the BPL.
  • B3-1 selection condition, triggered by B2: M scheck -Hys>Thresh
  • M scheck is the link quality measured by the current BPL after a period of time T check , as shown in Figure 3.
  • the B3 event is generally triggered by the B2 event, that is, when the user finds that the current BPL quality begins to decline, there is a probability that the user is rotated, in which case the transmit beam in the optimal BPL may not need to be changed.
  • the user may try to perform link recovery by using a widened beam or receiving in multiple directions at the same time, or by using the user's own sensor for beamforming angle compensation.
  • the time that the base station leaves the user with the link recovery is T check . After the user attempts to restore the operation, the user needs to measure the link quality again. If the link quality is still poor, the user judges that the link cannot be recovered through its own operation, and then reports the base station to allow the base station to adopt a new beam recovery. Processes such as beam training.
  • the Class B quality criteria event is referenced to the current measurement of the quality of the serving BPL, and the user can compare it to the average of the previous BPL or a previous time period.
  • the Class B quality criteria event also uses the speed of BPL quality degradation to classify the urgency of the event, so that the base station can coordinate different users according to different urgency levels.
  • the Class B quality criteria event also defines a comparison of the current measured value of the serving BPL with the measured value after a period of time.
  • the interval T check is configured by the base station.
  • the base station can also be configured by signaling to a combination of quality criteria events that the user terminal complies with. Further, the base station needs to configure some parameters in the corresponding quality criterion event of the user terminal by signaling.
  • the user's feedback may include a determination result of the quality criterion event, a behavior suggested by the base station, such as one or more of beam switching, transmit diversity, receive beam training, beam fine tracking, and alternate beam number.
  • the parameters that need to be configured for the downlink configuration of the base station in the class A quality criterion event and the class B quality criterion event in the embodiment of the present application are summarized below. These parameters may be indicated by Radio Resource Control (RRC Signaling), MAC Control Element (MAC-CE) signaling, or Downlink Control Information (DCI) signaling.
  • RRC Signaling Radio Resource Control
  • MAC-CE MAC Control Element
  • DCI Downlink Control Information
  • Tables 1 and 2 respectively list a series of parameters that the base station needs to indicate to the user in the present application.
  • the base station needs to first configure the user terminal to enter the monitoring state through the high-level signaling, and the base station configures an appropriate quality criterion event set and a feedback format for the user according to the service level of the user terminal (VIP user, active user, cell center/edge user, etc.).
  • the event set that needs to be judged by the user is configured by the Event field, and the feedback format and the reporting rule are configured by the Reporting field, and the possible combinations in the configured quality criteria event set need to be reduced.
  • Table 1 Indicator parameters involved in Class A quality criteria events
  • the first device when the first device sends the quality criterion event of the link between the at least one and the second device to the second device, sending the reporting and reporting rule and the feedback format to the second The device receives the report information reported by the second device according to the reporting rule and the feedback format.
  • the embodiment of the present application provides an interface for configuring quality criteria events and a series of reporting rules between the first device (ie, the base station) and the second device (ie, the user terminal).
  • the reporting rules allow the user terminal to accurately determine the current BPL status under the configuration of the base station, and perform triggering and reporting of the corresponding quality criterion event according to the configured rules.
  • Different sets of quality criteria events, different thresholds and time parameters can be flexibly configured by signaling to serve different types of second devices.
  • the cell center user and the cell edge user can adopt different quality criterion event combinations and different thresholds, and the base station can reasonably allocate the resources of the entire network to ensure the performance of the entire network.
  • the Hys hysteresis parameter in the parameter is to prevent the adjacent BPL from frequently triggering the handover and prevent the ping-pong effect.
  • the multi-threshold parameter setting method is more flexible than the method using the hysteresis parameter, and a certain threshold can be separately configured to cope with the changed scene.
  • the average time window T aver for setting the past BPL quality in the class B quality criterion event is to compare the quality of the current BPL with the average quality of the BPL in the past, thereby avoiding the misjudgment caused by the fast fading of the channel, and setting a certain
  • the length of time waiting for the side measurement T check can be used as the waiting time for user switching (such as multiple users competing to report certain events at the same time).
  • the first device configures a series of events and related parameters to the second device (ie, the user terminal) through signaling, and the user terminal performs measurement according to the configuration.
  • the parameters are periodically monitored for channel quality.
  • the channel quality monitoring can be performed by different reference signals, such as a data demodulation reference signal (DMRS).
  • DMRS data demodulation reference signal
  • the user terminal judges the quality of the current BPL through the current reference signal and records past measurements for the BPL.
  • the user sends a report request to initiate the escalation process.
  • the reporting process may be a process similar to an uplink sounding signal or a mechanism similar to random access.
  • the specific uplink mode is not limited in this application.
  • the content of the report information reported by the user terminal is also specified in the present application, and the format and rules of the report are configured by the base station by using the Reporting field described in Tables 1 and 2 above.
  • the user terminal can have the following reporting formats:
  • the quality criterion event ID refers to which quality criterion event in the set of configured quality criteria events is triggered by the report.
  • the recommended operation refers to the recommended operation including link switching, transmit diversity, or measurement reporting, which may be open loop, half open loop, or closed loop transmit diversity.
  • the first device may repeatedly transmit the multiple measurement reference signals by using the same transmitting port. The number of repetitions can be determined by the feedback of the second device.
  • the first device may repeatedly or separately transmit the plurality of measurement reference signals with different ports. The number of repetitions and the port group in which the transmitting port is used can be determined based on the feedback of the second device.
  • the target link in the link switch may be determined by the first device according to the recommendation of the second device.
  • the diversity link used in the transmit diversity may be determined by the first device according to the recommendation of the second device.
  • the parameters involved in the recommended operation are reported, such as the number of repetitions of the reference signal that the base station needs to send when starting the beam training.
  • the recommended resource refers to the measurement of the second device and the reporting of the transmit beam or the transmit resource used by the first device (base station), which is involved in recommended operations such as spatial diversity and beam switching.
  • the reporting format of the reported information is not limited to the above, and the quality criterion event ID may implicitly indicate the urgency of the current user's quality criterion event, for example, the quality criterion events B2-4 and B2-5 are simultaneously When triggered, it means that the current BPL quality is decaying below the threshold at a very fast speed. At this time, the first device (base station) should urgently handle this event to ensure the connection of the user terminal.
  • the service priority level, location information, and the like of the user terminal may be specified by the base station or reported by the user terminal.
  • the user terminal can not only feed back the information of the quality criterion event itself (such as the quality criterion event ID) when the quality criterion event is triggered, but also simultaneously From the perspective of the user terminal, it is reasonable to take care of the current channel quality and channel changes.
  • the first device base station
  • the first device can utilize the information fed back by the user to better serve different users.
  • the first device base station
  • the first device can indirectly determine the urgency of the user replying to the link according to the reported information of the user, such as a recommended operation.
  • the resources are more evenly distributed from the perspective of the entire network, and the sequential connection recovery work is performed.
  • the recommended resources or recommended beams fed back by the user terminal can help the first device (base station) to perform beam switching, space diversity, and the like more quickly and efficiently, thereby improving the working efficiency of the entire system.
  • the first device may further configure, by using the high layer signaling, different communication parameter sets triggered by different quality criterion events for the first device and the second device, where the first device and the second device are triggered after the specific quality criterion event is triggered.
  • the corresponding communication parameter set is used for communication.
  • the set of communication parameters is a corpus or subset of ⁇ subcarrier spacing, slot length, cyclic prefix type ⁇ .
  • the first device is configured to use a small subcarrier interval, a normal time slot length, and a normal cyclic prefix to communicate when the quality criterion event of the BPL mismatch is not triggered.
  • FIG. 4A and FIG. 4B show schematic diagrams of a configuration process of a specific communication parameter set, and FIG. 4B describes different communication parameter sets configured for a second device before and after the quality criterion event is triggered.
  • the uplink transmission method can enable the user terminal to trigger different information reporting according to the quality of the BPL currently served by the user, and indicate the user by defining multiple quality criterion events in the upper layer protocol.
  • the terminal evaluates the results of the current measurement, and triggers a combination of certain quality criteria events or quality criteria events when the measurement results of the user terminal satisfy certain conditions. Then, the user terminal will perform corresponding uplink reporting after the triggering of certain quality criterion events according to the configuration of the base station, and the content reported by the uplink is also pre-configured by the base station.
  • the high-level quality criterion events may include parameters such as thresholds and number that can be dynamically configured.
  • the feedback format of the user terminal such as the feedback carries the quality criterion event type, and the connected beam, etc., these parameters can be in the lower layer. Instructions are given in the order.
  • the user can continuously monitor the RSRP of the current serving BPL under the configuration of the base station.
  • the user terminal finds that the RSRP is lower than a pre-configured threshold of the base station, the user terminal needs to measure the RSRP again after a certain waiting time, if still lower than Threshold, the beam mismatch event of the user terminal is triggered.
  • This mismatch event may be caused by the presence of occlusion on the BPL beam path.
  • the user terminal needs to report the event and the related other parameters (such as the proposed base station to perform the diversity operation) according to the configuration of the base station, thereby completing the beam recovery process of the user terminal.
  • FIG. 5 is a schematic structural diagram of an apparatus 500 according to an embodiment of the present application.
  • the apparatus 500 includes a sending unit 501, a processing unit 502, and a receiving unit 503, where:
  • the processing unit 502 is configured to configure a quality criterion event of the link between the at least one device and the second device.
  • the sending unit 501 is configured to send, to the second device, a quality criterion event of the link between the at least one device and the second device, where the quality criterion event of each link includes at least one parameter;
  • the receiving unit 503 is configured to receive, by the second device, the reporting information determined according to the at least one link quality criterion and a parameter in a quality criterion event of each link.
  • the sending unit 501 is further configured to:
  • the receiving unit 503 is further configured to receive the report information reported by the second device according to the reporting rule and the feedback format.
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or between the quality of the other link monitored by the second device and the second reference object.
  • the first reference object is a set threshold or a quality of other links monitored by the second device
  • the second reference object is a set threshold or a current link quality.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time or a time after the current time.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the report information includes any combination of the event type triggered by the second device according to the quality criterion event of the link, the recommended operation taken by the first device, and the recommended resource.
  • processing unit 502 is further configured to:
  • processing unit 502 is further configured to:
  • Configuring a communication parameter set for each quality criterion event is sent to the second device by the sending unit 501, and when any of the quality criterion events is triggered, the second device is used for the
  • the communication parameters in the corresponding communication parameter set configured by a quality criterion event are communicated, and the communication parameter set is a total arbitrary combination of subcarrier spacing, slot length, and cyclic prefix type.
  • each unit in the above apparatus 500 is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • each of the above units may be a separate processing element, or may be integrated in a chip of the base station, or may be stored in a storage element of the base station in the form of a program code, and is called by a processing element of the base station. And perform the functions of each unit above.
  • the individual units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific) Integrated Circuit (ASIC), or one or more digital singal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASIC Application Specific
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • FIG. 6 is a schematic structural diagram of a first device 600 according to an embodiment of the present application, as shown in FIG. 6.
  • the first device 600 includes a processor 601, a memory 602, a receiver 603, and a transmitter 604.
  • the program code for carrying out the inventive arrangements is stored in the memory 602 and controlled by the processor 601 for execution.
  • the program stored in the memory 602 is used by the instruction processor 601 to perform an uplink transmission method, including: configuring a quality criterion event of at least one link with the second device; and quality of a link between the at least one and the second device
  • the criteria event is sent to the second device, wherein the quality criterion event of each link includes at least one parameter; and the second device is received according to the at least one link quality criterion and a quality criterion event of each link thereof
  • the reported information determined by the parameters in is used by the instruction processor 601 to perform an uplink transmission method, including: configuring a quality criterion event of at least one link with the second device; and quality of a link between the at least one and the second device
  • the criteria event is sent to the second device, wherein the quality criterion event of each link includes at least one parameter; and the second device is received according to the at least one link quality criterion and a quality criterion event of each link thereof
  • the processor 601 is further configured to:
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or between the quality of the other link monitored by the second device and the second reference object.
  • the first reference object is a set threshold or a quality of other links monitored by the second device
  • the second reference object is a set threshold or a current link quality.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time or a time after the current time.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the report information includes any combination of the event type triggered by the second device according to the quality criterion event of the link, the recommended operation taken by the first device, and the recommended resource.
  • the processor 601 is further configured to:
  • the processor 601 is further configured to:
  • the second device Configuring a communication parameter set for each quality criteria event to be sent by the transmitter 604 to the second device, and when any of the quality criteria events are triggered, the second device is employed with the second device
  • the communication parameters in the corresponding communication parameter set configured by a quality criterion event are communicated, and the communication parameter set is a total arbitrary combination of subcarrier spacing, slot length, and cyclic prefix type.
  • first device 600 of the present embodiment may be used to implement all the functions related to the first device or the base station in the foregoing method embodiments, and the specific implementation process may refer to the first two devices or the base station executing method in the foregoing method embodiment. Related descriptions are not described here.
  • the processor 601 involved in the foregoing apparatus 600 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more.
  • One or more memories included in the computer system which may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or Other types of dynamic storage devices that store information and instructions may also be disk storage. These memories are connected to the processor via a bus.
  • Receiver 603 and transmitter 604 can perform their functions through a transceiver, which can be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory 602 such as a RAM, holds an operating system and a program for executing the inventive arrangements.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • These memories 602, transmitters 604, and receivers 603 may be coupled to the processor 601 via a bus, or may be coupled to the processor 601 via dedicated connection lines, respectively.
  • the code corresponding to the method shown below is solidified into the chip, so that the chip can execute the execution process of the first device or the base station in the method shown in FIG. 1 to FIG. 4B during operation. .
  • the embodiment of the present application provides an uplink transmission apparatus 700, where the apparatus 700 is applied to a second device, and the second device may be a terminal, and FIG. 7
  • the schematic diagram of the device 700 provided by the embodiment of the present application is shown in FIG. 7.
  • the device 700 includes a receiving unit 701, a processing unit 702, and a sending unit 703, where:
  • the receiving unit 701 is configured to receive a quality criterion event of the at least one link sent by the first device, where the quality criterion event of each link includes at least one parameter.
  • the processing unit 702 is configured to determine, according to the at least one link quality criterion and a parameter in a quality criterion event of each link, the reporting information;
  • the sending unit 703 is configured to send the report information to the first device.
  • the receiving unit 701 is further configured to:
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or between the quality of the other link monitored by the second device and the second reference object.
  • the first reference object is a set threshold or a quality of other links monitored by the second device
  • the second reference object is a set threshold or a current link quality.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time or a time after the current time.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the report information includes any combination of the event type triggered by the second device according to the quality criterion event of the link, the recommended operation taken by the first device, and the recommended resource.
  • processing unit 702 is further configured to:
  • a communication parameter set configured by the first device for each quality criterion event and when any one of the quality criterion events is triggered, using, by the first device,
  • the communication parameters in the corresponding communication parameter set configured by the any quality criterion event are communicated, and the communication parameter set is a total arbitrary combination of subcarrier spacing, slot length, and cyclic prefix type.
  • each unit in the above apparatus 700 is only a division of a logical function, and may be integrated into one physical entity in whole or in part, or may be physically separated.
  • each of the above units may be a separate processing element, or may be integrated in one of the terminals of the terminal, or may be stored in the storage element of the terminal in the form of program code, and is called by a processing element of the terminal. And perform the functions of each unit above.
  • the individual units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific) Integrated Circuit (ASIC), or one or more digital singal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU central processing unit
  • ASIC Application Specific
  • DSP digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the embodiment of the present application further provides a second device 800, which may be a terminal or other device located on the terminal, and FIG. 8 is a schematic structural diagram of the second device 800 provided by the embodiment of the present application, such as As shown in FIG. 8, the second device 800 includes a processor 801, a memory 802, a receiver 803, and a transmitter 804. Program code for carrying out the inventive scheme is stored in the memory 802 and controlled by the processor 801 for execution.
  • the program stored in the memory 802 is used by the instruction processor 801 to perform an uplink transmission method, including: receiving a quality criterion event of at least one link sent by the first device; wherein at least one parameter is included in a quality criterion event of each link And determining report information according to the at least one link quality criterion and a parameter in a quality criterion event of each link; and sending the report information to the first device.
  • the processor 801 is further configured to:
  • the quality criterion event of the link is a setting relationship between the quality of the current link and the first reference object or between the quality of the other link monitored by the second device and the second reference object.
  • the first reference object is a set threshold or a quality of other links monitored by the second device
  • the second reference object is a set threshold or a current link quality.
  • the quality criterion event of the link is a setting relationship between a current time and a set time of the quality of the link, where the set time is a time before the current time or a time after the current time.
  • the parameters include a bias type parameter and a threshold type parameter.
  • the report information includes any combination of the event type triggered by the second device according to the quality criterion event of the link, the recommended operation taken by the first device, and the recommended resource.
  • the processor 801 is further configured to:
  • a communication parameter set configured by the first device for each quality criterion event and when any one of the quality criterion events is triggered, using, by the first device,
  • the communication parameters in the corresponding communication parameter set configured by the any quality criterion event are communicated, and the communication parameter set is a total arbitrary combination of subcarrier spacing, slot length, and cyclic prefix type.
  • the second device 800 of the present embodiment may be used to implement all the functions related to the second device or the terminal in the foregoing method embodiments, and the specific implementation process may refer to the foregoing method embodiment. Description, no longer repeat here.
  • the processor 801 involved in the foregoing apparatus 800 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more.
  • One or more memories included in the computer system which may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or Other types of dynamic storage devices that store information and instructions may also be disk storage. These memories are connected to the processor via a bus.
  • Receiver 803 and transmitter 804 can perform their functions through a transceiver, which can be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory 802 such as a RAM, holds an operating system and a program for executing the inventive arrangements.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • These memories 802, transmitters 804, and receivers 803 may be coupled to the processor 801 via a bus, or may be coupled to the processor 801 via dedicated connection lines, respectively.
  • the code corresponding to the method shown below is solidified into the chip, so that the chip can execute the execution process of the second device in the method shown in FIGS. 1 to 4B during operation.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal includes a processor 910, a storage component 920, and a transceiver 930.
  • the transceiver 930 can be coupled to an antenna.
  • the transceiver 930 receives the information sent by the base station through the antenna, and sends the information to the processor 910 for processing.
  • the processor 910 processes the data of the terminal and transmits it to the base station through the transceiver 930.
  • the storage element 920 is configured to store program code for implementing the foregoing method embodiments, or the respective units of the embodiment shown in FIG. 7, and the processor 910 calls the program code to perform the operations of the foregoing method embodiments to implement the various modes shown in FIG. unit.
  • the storage element 920 is configured to store program code that instructs the processor 910 to perform an uplink transmission method.
  • the processor 910 is configured to invoke the program code stored in the storage component 920, and execute: receiving a quality criterion event of the at least one link sent by the first device; wherein the quality criterion event of each link includes At least one parameter; determining report information according to the at least one link quality criterion and a parameter in a quality criterion event of each link; and transmitting the report information to the first device.
  • Some or all of the above units may also be implemented by being embedded in a chip of the terminal in the form of a Field Programmable Gate Array (FPGA). And they can be implemented separately or integrated.
  • FPGA Field Programmable Gate Array
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • the storage element can be a storage device or a collective name for a plurality of storage elements.
  • a plurality of interfaces may be disposed on the processor for respectively connecting peripheral devices or interface circuits connected to the peripheral devices.
  • peripheral devices for example, an interface for connecting a display screen, an interface for connecting to a camera, an interface for connecting an audio processing element, and the like.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes an antenna 1010, a radio frequency device 1020, and a baseband device 1030.
  • the antenna 1010 is connected to the radio frequency device 1020.
  • the radio frequency device 1020 receives the information transmitted by the terminal through the antenna 1010, and transmits the information sent by the terminal to the baseband device 1030 for processing.
  • the baseband device 1030 processes the information of the terminal and sends the information to the radio frequency device 1020.
  • the radio frequency device 1020 processes the information of the terminal and sends the information to the terminal through the antenna 1010.
  • the above device 500 can be located in the baseband device 1030, including the processing component 1031 and the storage component 1032.
  • the baseband device 1030 may, for example, comprise at least one baseband board having a plurality of chips disposed thereon, as shown in FIG. 10, one of which is, for example, a processing component 1031, coupled to the storage component 1032 to invoke a program in the storage component 1032 The operations shown in the above method embodiments are performed.
  • the baseband device 1030 may further include an interface 1033 for interacting with the radio frequency device 1020, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processing unit 502 in FIG. 5 above may be implemented in one chip of the baseband device 1030, the transmitting unit 501 is implemented by another chip of the baseband device 1030, or they are integrated together through one chip of the baseband device 1030. Or, their functions are stored in the storage element of the baseband device 1030 in the form of program code, and are implemented by one processing element of the baseband device 1030. The implementation of other units is similar.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the principle and the beneficial effects of the uplink transmission device or device for solving the problem provided by some embodiments of the present application can be referred to the foregoing embodiment of the method shown in FIG. 2 and the beneficial effects thereof.
  • the implementation reference may be made to the implementation of the above method embodiments, and the repeated description is not repeated.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, twisted pair, or fiber optic) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., an optical disk), or a semiconductor medium (e.g., a solid state hard disk) or the like.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请公开了一种上行传输方法和装置,以解决现有技术在解决无线通信的鲁棒传输问题中出现的系统通信效率低的问题。该方法为,第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息,这样,第二设备能够根据第一设备配置的质量准则事件快速反馈通信链路的质量,提高通信质量和通信效率。

Description

一种上行传输方法和装置
本申请要求在2017年03月28日提交中国专利局、申请号为201710193485.4、发明名称为“一种上行传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行传输方法和装置。
背景技术
在5G通信系统中,频率大于6GHz的高频通信越来越受到学界和业界的重视。然而由于高频信号在空间中能量衰减快,穿透能力弱,因此高频频段的信号路损远远大于低频场景,因此需要利用天线侧的增益来补偿这一部分损失,从而保证高频系统的覆盖。此外,由于在高频场景下,信号的波长更短,天线的体积更小,大规模多输入多输出(Massive Multiple Input Multiple Output,Massive-MIMO)技术更适合于应用在高频场景。利用Massive-MIMO技术,基站侧可以用数字和模拟的方式形成能量更集中的发射波束来保证系统覆盖,用户侧同样可以形成能量更集中的接收波束增加接收增益,因此,5G通信系统中的高频通信需要考虑以波束为中心的设计。进一步的,由于高频系统中收发双方都倾向于利用窄波束进行通信,窄波束的相互匹配显得尤为重要。这里将进行窄波束通信的一收一发波束称为波束对(Beam Pair Link,BPL);同时,由于高频信道的特性,信号难以进行绕射,取而代之的是比较强的反射效应。低绕射和高反射使得高频信道呈现出空间稀疏与局部相关的显著特征。
由于使用了窄波束通信,加上信道的空间稀疏与局部相关特征的存在,收发波束的匹配在高频通信中显得更为重要。简单而言,收发双方必须在进行高速率的数据通信前进行波束的扫描,从而确定一对最佳的BPL来进行通信。然而,由于用户的行为不可预测,用户设备极有可能在通信时发生移动,旋转;或者在通信时,最佳的BPL所经过的路径上存在着如车辆,行人等的遮挡物。上述情况都会使得原本最优的收-发波束质量变差,甚至直接导致用户失联。因此,在传统长期演进(Long Term Evolution,LTE)系统设计的基础上,基于高频的通信系统设计需要格外重视鲁棒传输的问题,即需要设计出相应的机制来支持用户在移动、旋转、遮挡频繁发生的情况下也可以快速的恢复连接,保证通信链路的质量。
经研究发现针对鲁棒传输的波束切换过程,用户可以监测到当前服务波束对的链路质量,并且在链路质量发生急剧变化时启动相应的应急上报过程。基站在收到用户上报的信息后采取波束切换、发射分集、重启波束训练过程等操作恢复与当前用户的连接。
针对于高频场景的鲁棒传输问题,现有技术一中利用基站和用户之间周期性的进行波束的精跟踪和粗跟踪来保证通信链路的质量。当BPL出现了因移动、旋转、遮挡等引起的失配后,用户需要等到下一个精跟踪或粗跟踪到来时重新进行波束扫描从而恢复连接。由于发生移动、旋转、遮挡的时刻分布随机,现有技术一无法保证链路可以及时的恢复。虽然通过减小波束扫描的周期可以一定程度的避免上述问题,然而频繁的波束扫描会造成通信效率的降低,使得系统整体的吞吐量降低。
针对于高频场景的鲁棒传输问题,现有技术二中采用的是基于门限触发的方式来保证 通信链路的质量,即用户不断监测自身的BPL的通信质量,一旦接收波束的质量小于某个门限,用户即启动上报过程。但是,利用单门限的触发上报使得用户无法区分当前链路质量的下降究竟是由信道的快衰落引起的还是由移动、旋转、遮挡引起的,从而可能出现频繁触发上报的情况,会加大无用的信令开销,从而降低整个系统的通信效率。
发明内容
本申请实施例提供了一种上行传输方法和装置,以解决现有技术在解决无线通信的鲁棒传输问题中出现的系统通信效率低的问题。
本申请实施例提供的具体技术方案如下:
第一方面,本申请实施例提供一种上行传输方法,包括:
第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;
所述第一设备接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
由于在第一设备为第二设备配置了多个质量准则事件,从而可以让第二设备在第一设备的配置下准确地判断当前链路的质量情况,并根据所配置的规则进行相应的质量准则事件的触发和上报。通过信令可以灵活配置不同的质量准则事件集合,不同的门限和时间参数以服务不同种类的第二设备,第一设备通过合理的规划使得整个网络的资源得到合理的分配,从而保证第一设备与第二设备间的通信质量和通信效率,进一步提高整个网络的性能。
结合第一方面,一种可能的设计中,所述方法还包括:
所述第一设备将所述上报信息的上报规则和反馈格式发送至所述第二设备;
所述第一设备接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
结合第一方面,一种可能的设计中,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
上述设计中,第一设备灵活配置给第二设备不同的质量准则事件,第二设备根据所判断出的事件进行反馈,第一设备根据第二设备的反馈来进行特定行为的触发,基于事件反馈的模式可以有效避免第一设备由于不清楚第二设备侧实际情况而进行的误配置。
结合第一方面,一种可能的设计中,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
上述设计中,第一设备灵活配置给第二设备不同的质量准则事件,第二设备根据所判断出的事件进行反馈,第一设备根据第二设备的反馈来进行特定行为的触发,基于事件反馈的模式可以有效避免第一设备由于不清楚第二设备侧实际情况而进行的误配置。
结合第一方面,一种可能的设计中,所述参数包括偏置类参数和门限类参数。
结合第一方面,一种可能的设计中,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
通过规定第二设备对于质量准则事件的反馈格式和上报内容,第二设备不仅仅可以在质量准则事件被触发时反馈质量准则事件本身的信息(如质量准则事件ID),也可以同时从第二设备角度,反馈当前的信道质量、信道变化情况下,采取怎样的操作是合理的。第一设备(基站)可以利用用户反馈的信息更好的服务不同的用户。同时,在第二设二比数量表很多,且触发的质量准则的上报事件数量很多的情况下,第一设备可以根据用户的上报信息,如推荐操作等间接的判断该用户回复链路的紧急程度,从而从整个网络的角度更均衡的分配资源,进行依序的连接恢复工作。此外,第二设备侧反馈的推荐资源或推荐波束可以帮助第一设备更快速更有效的进行波束切换,空间分集等操作,进而提升整个系统的工作效率。
结合第一方面,一种可能的设计中,所述第一设备接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息之后,所述方法还包括:
所述第一设备基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
结合第一方面,一种可能的设计中,所述方法还包括:
所述第一设备针对每个质量准则事件配置通信参数集合给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,所述第一设备与所述第二设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
这种设计中,第一设备可以利用高层信令为第一设备和第二设备配置针对不同质量准则事件触发后的不同的通信参数集合,当特定的质量准则事件触发后,第一设备和第二设备会使用对应的通信参数集合进行通信,从而使得链路的恢复工作可以更快速的进行,减少链路恢复的等待时间。
第二方面,本申请实施例提供一种上行传输方法,包括:
第二设备接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;
所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;
所述第二设备将所述上报信息发送至所述第一设备。
由于第二设备能够根据第一设备配置的多个质量准则事件,准确地判断当前链路的质量情况,并根据所配置的规则进行相应的质量准则事件的触发和上报,从而使得第一设备通过合理的规划使得整个网络的资源得到合理的分配,从而保证第一设备与第二设备间的通信质量和通信效率,进一步提高整个网络的性能。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第二设备接收所述第一设备发送的所述上报信息的上报规则和反馈格式;
所述第二设备按照所述上报规则和反馈格式向所述第一设备上报所述上报信息。
结合第二方面,一种可能的设计中,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
上述设计中,第一设备灵活配置给第二设备不同的质量准则事件,第二设备根据所判断出的事件进行反馈,第一设备根据第二设备的反馈来进行特定行为的触发,基于事件反馈的模式可以有效避免第一设备由于不清楚第二设备侧实际情况而进行的误配置。
结合第二方面,一种可能的设计中,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
上述设计中,第一设备灵活配置给第二设备不同的质量准则事件,第二设备根据所判断出的事件进行反馈,第一设备根据第二设备的反馈来进行特定行为的触发,基于事件反馈的模式可以有效避免第一设备由于不清楚第二设备侧实际情况而进行的误配置。
结合第二方面,一种可能的设计中,所述参数包括偏置类参数和门限类参数。
结合第二方面,一种可能的设计中,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
通过规定第二设备对于质量准则事件的反馈格式和上报内容,第二设备不仅仅可以在质量准则事件被触发时反馈质量准则事件本身的信息(如质量准则事件ID),也可以同时从第二设备角度,反馈当前的信道质量、信道变化情况下,采取怎样的操作是合理的。第一设备(基站)可以利用用户反馈的信息更好的服务不同的用户。同时,在第二设二比数量表很多,且触发的质量准则的上报事件数量很多的情况下,第一设备可以根据用户的上报信息,如推荐操作等间接的判断该用户回复链路的紧急程度,从而从整个网络的角度更均衡的分配资源,进行依序的连接恢复工作。此外,第二设备侧反馈的推荐资源或推荐波束可以帮助第一设备更快速更有效的进行波束切换,空间分集等操作,进而提升整个系统的工作效率。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第二设备接收所述第一设备配置的针对每个质量准则事件的通信参数集合,当所述质量准则事件中的任一质量准则事件被触发后,所述第二设备与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
这种设计中,由于第一设备为第二设备配置针对不同质量准则事件触发后的不同的通信参数集合,当特定的质量准则事件触发后,第二设备和第一设备会使用对应的通信参数集合进行通信,从而使得链路的恢复工作可以更快速的进行,减少链路恢复的等待时间。
第三方面,本申请实施例提供一种上行传输装置,应用于第一设备,,包括:
处理单元,用于配置至少一个与第二设备之间的链路的质量准则事件;
发送单元,用于将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;
接收单元,用于接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
结合第三方面,一种可能的设计中,所述发送单元还用于:
将所述上报信息的上报规则和反馈格式发送至所述第二设备;
所述接收单元,还用于接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
结合第三方面,一种可能的设计中,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
结合第三方面,一种可能的设计中,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
结合第三方面,一种可能的设计中,所述参数包括偏置类参数和门限类参数。
结合第三方面,一种可能的设计中,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
结合第三方面,一种可能的设计中,所述处理单元还用于:
基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
结合第三方面,一种可能的设计中,所述处理单元还用于:
针对每个质量准则事件配置通信参数集合通过所述发送单元发送给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,与所述第二设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
由于该上行传输装置解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的上行传输的方法的实施方式以及所带来的有益效果,因此该上行传输装置的实施可以参见上述第一方面和第一方面的各可能的上行传输方法的实施,重复之处不再赘述。
第四方面,本申请实施例提供一种上行传输装置,应用于第二设备,包括:
接收单元,用于接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;
处理单元,用于根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;
发送单元,用于将所述上报信息发送至所述第一设备。
结合第四方面,一种可能的设计中,所述接收单元还用于:
接收所述第一设备发送的所述上报信息的上报规则和反馈格式;
按照所述上报规则和反馈格式向所述第一设备上报所述上报信息。
结合第四方面,一种可能的设计中,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
结合第四方面,一种可能的设计中,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
结合第四方面,一种可能的设计中,所述参数包括偏置类参数和门限类参数。
结合第四方面,一种可能的设计中,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
结合第四方面,一种可能的设计中,所述处理单元还用于:
通过所述接收单元接收所述第一设备配置的针对每个质量准则事件的通信参数集合,当所述质量准则事件中的任一质量准则事件被触发后,与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
由于该上行传输装置解决问题的原理以及有益效果可以参见上述第二方面和第二方面的各可能的上行传输的方法的实施方式以及所带来的有益效果,因此该上行传输装置的实施可以参见上述第二方面和第二方面的各可能的上行传输方法的实施,重复之处不再赘述。
第五方面,本申请实施例提供一种第一设备,该第一设备包括处理器、存储器、接收器和发射器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述接收器和所述发射器,实现第一方面涉及的上行传输方法。
由于该第一设备设备解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的保持关联的方法的实施方式以及所带来的有益效果,因此该第一设备的实施可以参见上述第一方面和第一方面的各可能的保持关联的方法的实施,重复之处不再赘述。
第六方面,本申请实施例提供一种第二设备,该第二设备包括处理器、存储器、接收器和发射器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述接收器和所述发射器,实现第二方面涉及的上行传输方法。
由于该第二设备设备解决问题的原理以及有益效果可以参见上述第二方面和第二方面的各可能的保持关联的方法的实施方式以及所带来的有益效果,因此该第二设备的实施可以参见上述第二方面和第二方面的各可能的保持关联的方法的实施,重复之处不再赘述。
第七方面,本申请实施例提供一种计算机存储介质,所述存储介质为计算机可读存储介质,所述计算机可读存储介质存储有程序,程序包括指令,所述指令当被具有处理器的电子设备执行时使所述电子设备执行上述第一方面和第一方面的各可能实现方式的上行传输的方法。
第八方面,本申请实施例提供一种计算机存储介质,所述存储介质为计算机可读存储介质,所述计算机可读存储介质存储有程序,程序包括指令,所述指令当被具有处理器的网络设备执行时使所述网络设备执行上述第二方面和第二方面的各可能实现方式的上行传输的方法。
可见,在以上各个方面,第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;从而使所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数来确定链路质量的上报信息反馈至第一设备,相比于现有技术中的上行传输方案,本申请中第二设备能够根据第一设备配置的质量准则事件快速反馈与第一设备间的通信链路的质量,从而方便第一设备进行特定行为的触发来保证链路质量,提高通信效率。
附图说明
图1为本申请实施例中基于事件的上行传输方法的流程图;
图2为本申请实施例的上行传输方法流程示意图;
图3为本申请实施例的BPL质量与用户测量时间点的关系示意图;
图4A、图4B为本申请实施例中的通信参数集合的配置过程示意图;
图5为本申请实施例的上行传输装置结构示意图;
图6为本申请实施例的第一设备结构示意图;
图7为本申请实施例的上行传输装置结构示意图;
图8为本申请实施例的第二设备结构示意图;
图9为本申请实施例中的终端结构示意图;
图10为本申请实施例中的基站结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例涉及的上行传输方法,主要针对终端与无线接入网中的网络设备进行数据传输的过程。所述终端,也可以成为用户终端,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端设备(Terminal Equipment)、中继设备等等。所述网络设备可以包括各种在无线接入网中为终端提供通信功能的装置,例如可以是基站,该基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)网络中,称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。
本申请实施例描述的技术可以适用于LTE系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
需要说明的是,本申请实施例中的第一设备可以是网络设备例如基站或中继设备,第二设备可以是用户终端。
本申请实施例提供一种上行传输方法和装置,以解决现有技术在解决无线通信的鲁棒传输问题中出现的系统通信效率低的问题,尤其是无线通信中的高频通信场景。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请应用在基于波束的无线通信场景中。并不限制通信的载波频率,也不限制通信网络的拓扑结构。但由于本申请的问题本身来自于无线通信场景中,波束变窄而引起的波 束失配问题,以及由高频信道的高反射,低绕射所引起的遮挡问题,本申请更适合于应用在高频场景中。
如图1所示为本申请实施例中基于事件的上行传输方法的流程图,本申请主要提供了A、B两类质量准则事件的定义,为了描述方便,在本申请中将质量准则事件也可简称为事件。在这两类事件中规定了一系列的判定准则,能够让第二设备根据自身对于与第一设备间的链路的质量的好坏,变化程度来初步判断第二设备侧的信道质量变化,并且按照规定的上报格式和上报规则进行事件的反馈。基于这些反馈,第一设备可以更好的了解当前链路质量发生了怎样的情况,从而采取最为合适的策略来恢复链路质量。
其中,A类质量准则事件用于描述当前链路的质量与其他链路的质量之间的优劣关系,例如描述当前BPL和其他BPL(如第二设备正在监测中的BPL)之间的关系。这种关系类似于当前服务小区和相邻小区间的关系。B类质量准则事件用于描述链路的质量在不同时刻的优劣关系,例如描述当前BPL和自身在不同时刻时的关系,主要体现事件维度上服务BPL的变化。此类事件可以体现出因用户旋转,移动,信道路径上出现遮挡等突发事件。第二设备将在这些突发事件发生后启动上报过程告知第一设备,建议第一设备采取特定的措施。应注意本发明中所述的其他BPL可以是来自于不同的第一设备或其他第二设备,也可以是来自同一个第一设备的不同天线阵列,也可以来自同一个第一设备的同一天线阵列。
图2示出了本申请实施例提供的上行传输方法流程示意图,该流程具体可通过硬件、软件编程或软硬件的结合来实现。
如图2所示,该流程具体包括有以下处理过程:
步骤21:第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数。
其中,所述第一设备与所述第二设备为高频连接或低频连接,所述参数包括偏置类参数和门限类参数。
本申请中的链路可以是BPL或者端口对,而链路质量可以是参考信号接收功率(Reference Signal Receiving Power,RSRP),信道质量指示(Channel Quality Indicator,CQI)等等。
步骤22:所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息。
步骤23:所述第二设备将确定的上报信息发送至第一设备。
需要说明的是,第一设备在执行步骤21之前,所述第一设备为第二设备配置链路的质量准则事件,当第一设备和第二设备之间存在多个链路时,第一设备针对第二设备链路的质量准则事件执行分组配置。当第一设备和第二设备之间有多个链路存在时,该链路可是多条路由路径,也可以是来自第一设备的不同天线阵列,也可以是来自于不同的第一设备或不同的第二设备。第一设备为不同的链路分别配置质量准则事件。例如第一设备与第二设备间存在N(N>1且为正整数)条正在使用或监测中的链路时,第一设备分别为这N条链路配置质量准则事件。同时第一设备为第二设备配置参数M(M<=N)当N条链路中有大于等于M个链路的事件被触发时,第二设备才上报链路恢复请求。当第一设备与第二设备之间的某一条链路存在着多个设备时(例如多跳路由场景),第一设备为第二设备所配置的质量准则事件将作用于链路上的所有相关设备。也即当链路中的某个设备判断事件 触发后需要按照第二设备的格式上报给第一设备。
本申请实施例中的A类质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
以下列举了本申请中涉及的所有A类事件,可选的,一种可能的实施方式中,A类事件主要描述当前BPL与其他BPL之间的质量关系,当前BPL与特定门限之间的关系。以下列举了4个A类事件,分别是A1,A2,A3和A4。
A1:服务BPL质量与某特定门限相比。
A1-1(选择条件):M_s-Hys>Thresh
A1-2(离开条件):M_s+Hys<Thresh
其中M_s是当前BPL的链路质量,由用户测量得出,Hys是由基站配置的磁滞参数,Thresh是由基站配置的门限类参数。
若满足A1-1,当前BPL被认为服务质量良好,继续使用当前BPL。若满足A1-2,当前BPL质量不好,基站可以选择进行波束精跟踪来重新选择最优BPL。
A2:服务BPL质量与其他BPL质量相比。
A2-1(选择条件):M_n+Ofn+Obn-Hys>M_s+Ofs+Obs
A2-2(离开条件):M_n+Ofn+Obn+Hys<M_s+Ofs+Obs
其中M_n是其他BPL的链路质量,由用户测量得出,Ofn,Obn,Ofs,Obs是由基站配置的偏置类参数,分别代表在其他BPL中频率特定的偏置、波束(beam)特定的偏置和在服务BPL中频率特定的偏置、beam特定的偏置。
若满足A2-1,当前BPL被认为是在监测范围内的最优BPL,继续使用当前BPL。若满足A2-2,在监测范围内存在着更优的BPL,基站可以选择进行波束切换,选择新的BPL。
A3:其他BPL质量与特定门限相比。
A3-1(选择条件):M_n-Hys>Thresh
A3-2(离开条件):M_n+Hys<Thresh
若满足A3-1,则其他BPL的链路质量良好,基站可以记录下良好的BPL,在触发波束切换或发射分集模式时利用该波束。若满足A3-2,则所监测的其他BPL的链路质量较差,基站可以在配置测量反馈时要求用户监测其他的BPL。
A4:其他BPL质量、当前BPL质量、特定门限之间的关系。
A4-1(选择条件1):M_n+Hys<Thresh1
A4-2(选择条件2):M_s+Ofn+Obn-Hys>Thresh2
A4-3(离开条件1):M_n-Hys>Thresh1
A4-4(离开条件2):M_s+Ofn+Obn+Hys<Thresh2
当用户满足A4-1和A4-2时,也即当前BPL的链路质量好到一定程度且其他BPL的链路质量差到一定程度,基站可以选择建议不切换BPL。当用户满足A4-3或A4-4时,也即当前BPL的链路质量差到一定程度或其他BPL的链路质量好到一定程度时,基站可以建议切换BPL。A4事件可以看做上述其他事件的组合。
由此可以看出,基站灵活配置给用户不同的质量准则事件,并且由于基站配置了磁滞系数,偏移系数等参数,用户在对当前和监测中BPL的判断时会避免由于快速衰落所引起 的判定结果频繁变化,从而减少乒乓切换的可能性。此外,用户根据所判断出的事件进行反馈,基站根据用户的反馈来进行特定行为的触发,如进行波束切换、发射分集、波束训练等过程。相比于基站直接配置这些过程,基于用户事件反馈的模式可以有效避免基站由于不清楚用户侧实际情况而进行的误配置。
本申请实施例中的B类质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
以下列举了本申请中涉及的所有B类事件,可选的,一种可能的实施方式中,B类事件主要描述当前BPL与该BPL过去测量记录之间的关系,当前BPL质量与经过一段等待时间后再次测量该BPL质量的关系,以及当前BPL与特定门限之间的关系。以下列举了3个B类事件,分别是B1,B2,B3。
如图3示出了当前BPL质量与用户测量时间点的关系示意图。
B1:服务BPL的质量与该BPL之前相比正逐渐变好。
B1-1(选择条件):M s(n)-M s(n-1)>Thresh·T
B1-2(选择条件):M s(n)-M aver>Thresh·T
B1-3(选择条件):M s(n)-Hys>Thresh·T
其中M s(n)是当前BPL的链路质量,M s(n-1)是用户上一次测量该BPL的链路质量,均由用户测量得出;M aver是用户在基站所配置的时间窗内观测到该BPL链路的平均质量;Hys是由基站配置的磁滞参数;Thresh是由基站配置的门限参数;T是两次测量之间的时间,由基站配置。当满足B1-1、B1-2、B1-3中的任何一种条件时,当前BPL是可用的,且当前BPL存在着优化空间,用户可以建议基站启动波束精跟踪过程。
B2:服务BPL的质量与该BPL之前相比正变差。
B2-1(上报条件):Thresh1·T<M s(n-1)-M s(n)<Thresh2·T
B2-2(上报条件):Thresh1·T<M aver-M s(n)<Thresh2·T
B2-3(上报条件):M s(n-1)-M s(n)<Thresh3·T
B2-4(上报条件):M aver-M s(n)<Thresh3·T
B2-5(上报条件):M s(n)+Hys<Thresh
B2-6(上报条件):M s(n)-Hys>Thresh
其中M s(n)是当前BPL的链路质量,M s(n-1)是用户上一次测量该BPL的链路质量,均由用户测量得出;M aver是用户在基站所配置的时间窗内观测到该BPL链路的平均质量;Hys是由基站配置的磁滞参数;Thresh1,Thresh2,Thresh3是由基站配置的门限参数;T是两次测量之间的时间,由基站配置。B2事件所描述的都是服务BPL质量变差的情形:其中B2-1描述了当前BPL的质量与前一次测量相比,信道质量下降的速率处于某一个范围内的情况;B1-2描述了当前BPL的质量与前几次平均相比,信道质量下降的速率处于某一个范围内的情况;B2-3则描述当前BPL与前一次测量(前几次平均)相比,信道质量下降速率快于某个门限情况;B2-4则描述当前BPL与前几次平均相比,信道质量下降速率快于某个门限情况。其中M aver所涉及的事件窗T aver可以由基站进行配置。B2-5描述了当前服务质量已经低于某门限。B2系列的质量准则事件可以共同决定当前BPL失联的情况的严重程度,例如遮挡发生时,B2-4和B2-5同时触发,这意味着当前BPL可能以很快的速度衰减并最终失联,此时用户可以判断失联场景为紧急事件,从而迅速的进行上报和链路恢复工作。而当B2-1或B2-2与B2-6一同触发时,用户可以认为当前BPL正缓缓变 差,且链路质量尚且可以维持通信,此时用户可以判断场景为非紧急失配情况,从而建议基站利用精跟踪或变宽波束等方式来服务用户。
B3:服务BPL的质量与该BPL之后相比正变差。
B3-1(选择条件,由B2触发):M scheck-Hys>Thresh
B3-2(上报条件,由B2触发):M scheck+Hys<Thresh
其中M scheck是当前BPL在一段时间T check之后,再次测量的链路质量,如图3所示。B3事件一般由B2事件触发,也即当用户发现当前BPL质量开始下降时,有概率判断为用户旋转,在这种情况下,最优BPL中的发射波束可能不需要改变。此时,用户会采用变宽波束或同时在多个方向收,或通过用户自身的传感器进行波束赋形的角度补偿等方法尝试进行链路恢复。基站留给用户自行链路恢复的时间即为T check。在用户尝试恢复的操作完成后,用户需要再次测量链路质量,如果此时链路质量仍然很差,则用户判断无法通过自身的操作进行链路恢复,进而上报基站让基站采取新的波束恢复过程,如波束训练。
由此可以看出,B类质量准则事件以服务BPL的质量的当前测量值为参考,用户可以将其与同一BPL前一时刻或前一段时间的平均进行比较。B类质量准则事件中还利用BPL质量下降的快慢来对事件的紧急程度进行了划分,从而可以让基站根据不同的紧急程度来协调不同的用户。
此外,B类质量准则事件还定义了服务BPL当前测量值和一段时间后的测量值的比较。间隔时间T check由基站配置。这样的好处是可以给用户利用自身的一些实现行为先行尝试恢复链路的可能,当用户自身无法恢复链路时,再进行上报,基站再进行波束训练,切换,分集等操作。这种操作可以减少用户上报的概率,降低基站处理的业务量,但一定程度上增加了用户的负担。然而从网络侧角度而言,这种模式在用户数量增多,信道条件整体较差的情况下是有较大增益的。
此外,基站还可以由信令配置给用户终端所遵从的质量准则事件组合。进一步的,基站需要由信令配置用户终端相应质量准则事件中的某些参数。用户的反馈可以包含质量准则事件的判定结果、建议基站启动的行为,例如波束切换、发射分集、收波束训练,波束精跟踪、备用波束号中的一种或多种。
下面归纳了本申请实施例中A类质量准则事件和B类质量准则事件中所有出现的需要基站下行配置的参数。这些参数可以通过无线资源控制(Radio Resource Control,RRC信令)、MAC控制元素(MAC-CE)信令或下行控制信息(Downlink Control Information,DCI)信令进行指示。表1和表2分别列举了出现在本申请中,基站需要指示用户的一系列参数。基站需要先通过高层信令配置用户终端进入监测状态,基站根据用户终端的服务等级(VIP用户,活跃用户,小区中心/边缘用户等)为用户配置合适的质量准则事件集合以及反馈格式。
具体的,需要用户判断的事件集合由Event字段配置,反馈格式和上报规则由Reporting字段配置,所配置的质量准则事件集合中可能的组合需要精简设计。
表1:A类质量准则事件中涉及的指示参数
Figure PCTCN2018080335-appb-000001
Figure PCTCN2018080335-appb-000002
表2:B类质量准则事件中涉及的指示参数
Figure PCTCN2018080335-appb-000003
值得一提的是,本申请中并未对每个具体参数的比特数,可能取值以及事件的映射关系做特别的限定。
可选的,所述第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备时,将所述上报信息的和上报规则和反馈格式发送至所述第二设备;所述第一设备接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
具体的,本申请实施例在第一设备(即基站)和第二设备(即用户终端)之间提供了质量准则事件配置的接口和一系列上报规则。这些上报规则可以让用户终端在基站的配置下准确地判断当前BPL的情况,并根据所配置的规则进行相应的质量准则事件的触发和上报。通过信令可以灵活配置不同的质量准则事件集合,不同的门限和时间参数以服务不同种类的第二设备。如小区中心用户和小区边缘用户相比可以采用不同的质量准则事件组合和不同的门限,基站通过合理的规划使得整个网络的资源得到合理的分配,从而保证整个网络的性能。
具体而言,参数中的Hys磁滞参数是为了避免出现相邻BPL频繁触发切换,防止乒乓效应。而多门限的参数设置方式比使用磁滞参数的方式而言灵活度更高,可以单独配置某个门限,以应对变化的场景。在B类质量准则事件中设置过去BPL质量的平均时间窗T aver是为了让当前BPL的质量与过去该BPL的平均质量作对比,以此来规避由信道快衰落引起的误判,而设置某侧测量后等待的时间长度T check一方面可以用做用户切换的等待时间(如同时有多个用户竞争上报某些事件),一方面可以供一些高级接收机在发生波束失配时首先利用用户侧波束恢复机制:如变换宽波束,通过传感器的角度补偿来重新计算接收波束等。这样的好处是不必在最优BPL中发射波束不需要转变的情况下通知基站,从而减少了整个网络的负担。同时,用户自行启动波束恢复机制有可能更快的恢复连接。
针对在不同的质量准则事件触发下,上报信息的反馈格式,第一设备(即基站)通过信令配置给第二设备(即用户终端)一系列的事件以及相关参数,用户终端按照配置的测量参数进行周期性的信道质量监测。该信道质量监测可以由不同的参考信号来完成,例如数据解调参考信号(DMRS)等。用户终端通过当前的参考信号判断当前BPL的质量,并记录过去的对于该BPL的测量。当特定质量准则事件被触发,用户发送上报请求,启动上报过程。该上报过程可以是类似于上行参考(sounding)信号的流程,也可以是类似于随机接入的机制。本申请中并不对具体的上行方式做限定。
此外,本申请中还规定了用户终端上报的上报信息的内容,而上报的格式和规则是由基站通过上述表1和表2所述描述的Reporting字段所配置的。
例如,用户终端可以有如下几种上报格式:
一、质量准则事件ID。
质量准则事件ID,指的是上报触发的是所配置质量准则事件集合中的哪个质量准则事件。
二、质量准则事件ID+推荐操作。
质量准则事件ID,同上。
推荐操作,指的是推荐采取的操作包括链路切换、发射分集或测量上报过程,所述发射分集可以是开环、半开环或闭环发射分集。所述测量上报过程中第一设备可以采用相同的发射端口重复发射多次测量参考信号。重复次数可以由第二设备的反馈决定。所述上报过程中第一设备可以用不同的端口重复或单次发射多次测量参考信号。重复次数和所用的 发射端口所在的端口组可以根据第二设备的反馈决定。
所述链路切换中的目标链路可以是第一设备根据第二设备的推荐确定。
所述发射分集中采用的分集链路可以是第一设备根据第二设备的推荐确定。
三、质量准则事件ID+推荐操作+对应参数。
质量准则事件ID和推荐操作,同上。
同时上报推荐操作中所涉及的参数,如启动收波束训练时要求基站发送的参考信号的重复次数。
四、质量准则事件ID+推荐操作+推荐资源。
质量准则事件ID和推荐操作,同上。
推荐资源,指的是根据第二设备的测量,同时上报推荐第一设备(基站)所使用的发射波束或发射资源,这在空间分集,波束切换等推荐操作中涉及。
需要说明的是,上报信息的上报格式不限于以上几种,同时,质量准则事件ID可以隐含的指示当前用户的质量准则事件的紧急程度,例如质量准则事件B2-4和B2-5被同时触发时,意味着当前BPL质量正在以很快的速度衰减到门限之下,此时第一设备(基站)应紧急处理这个事件,保证用户终端的连接。
此外,用户终端的服务优先等级,位置信息等(如小区边缘/中心)可以由基站规定,也可以由用户终端上报。
通过规定第二设备如用户终端对于质量准则事件的反馈格式和上报内容,用户终端不仅仅可以在质量准则事件被触发时反馈质量准则事件本身的信息(如质量准则事件ID),也可以同时从用户终端角度,反馈当前的信道质量、信道变化情况下,采取怎样的操作是合理的。第一设备(基站)可以利用用户反馈的信息更好的服务不同的用户。同时,在用户数量表很多,且触发的质量准则的上报事件数量很多的情况下,第一设备(基站)可以根据用户的上报信息,如推荐操作等间接的判断该用户回复链路的紧急程度,从而从整个网络的角度更均衡的分配资源,进行依序的连接恢复工作。此外,用户终端侧反馈的推荐资源或推荐波束可以帮助第一设备(基站)更快速更有效的进行波束切换,空间分集等操作,进而提升整个系统的工作效率。
此外,第一设备还可以利用高层信令为第一设备和第二设备配置针对不同质量准则事件触发后的不同的通信参数集合,当特定的质量准则事件触发后,第一设备和第二设备会使用对应的通信参数集合进行通信。该通信参数集合为{子载波间隔,时隙长度,循环前缀类型}的全集或子集。例如在一次第一设备与第二设备之间的无线通信过程中,第一设备配置了当BPL失配的质量准则事件未触发时采用小子载波间隔,正常时隙长度,正常循环前缀进行通信,而当与BPL失配相关的质量准则事件被判定触发后采用大子载波间隔,短时隙长度,增强循环前缀进行通信,从而使得链路的恢复工作可以更快速的进行,减少链路恢复的等待时间。具体的,图4A和图4B给出了具体的通信参数集合的配置过程示意图,图4B中描述了质量准则事件触发前后的为第二设备配置的不同的通信参数集合。
综上所述,本申请实施例提供的上行传输方法,可以使用户终端可以根据自身当前服务的BPL的质量情况来触发不同的信息上报,通过在高层协议中定义多种质量准则事件来指示用户终端对当前测量的结果进行评估,当用户终端的测量结果满足某些条件时便会触发某些质量准则事件或质量准则事件的组合。随后用户终端将按照基站的配置,在某些质量准则事件触发后进行相应的上行上报,上行上报的内容也是由基站预先配置的。高层规 定的质量准则事件可能包含一些如门限、个数等可以动态配置的参数;此外用户终端的反馈格式,如反馈中携带质量准则事件类型,尚且能连通的波束等,这些参数可以在底层信令中进行指示。
例如,用户可以在基站的配置下不断监测当前服务BPL的RSRP,当用户终端发现RSRP低于基站预先配置的某个门限时,用户终端需要在一定的等待时间后再次测量RSRP,若仍然低于门限,用户终端的波束失配事件被触发。该失配事件可能是由BPL束路径上存在遮挡所引起的。在触发这种事件后,用户终端需要按照基站的配置对该事件,以及相关的其他参数(如建议基站进行发分集操作)一同进行上报,从而完成用户终端的波束恢复过程。
基于上述实施例提供的上行传输方法,请参见图5所示,本申请实施例提供一种上行传输装置500,该装置500应用于第一设备,所述第一设备可以为基站或其他的网络设备,图5所示为本申请实施例提供的装置500的结构示意图,如图5所示,该装置500包括发送单元501、处理单元502和接收单元503,其中:
处理单元502,用于配置至少一个与第二设备之间的链路的质量准则事件;
发送单元501,用于将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;
接收单元503,用于接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
可选的,所述发送单元501还用于:
将所述上报信息的上报规则和反馈格式发送至所述第二设备;
所述接收单元503,还用于接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
可选的,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
可选的,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
可选的,所述参数包括偏置类参数和门限类参数。
可选的,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
可选的,所述处理单元502还用于:
基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
可选的,所述处理单元502还用于:
针对每个质量准则事件配置通信参数集合通过所述发送单元501发送给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,与所述第二设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
应理解以上装置500中的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可 以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序代码的形式存储于基站的存储元件中,由基站的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
需要说明的是,本申请实施例中的装置500的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
本申请实施例还提供一种第一设备600,该第一设备600可以为基站,或为其他网络设备,图6所示为本申请实施例提供的第一设备600的结构示意图,如图6所示,第一设备600包括处理器601,存储器602、接收器603和发射器604,执行本发明方案的程序代码保存在存储器602中,并由处理器601来控制执行。
存储器602中存储的程序用于指令处理器601执行上行传输方法,包括:配置至少一个与第二设备之间的链路的质量准则事件;将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
可选的,所述处理器601还用于:
通过所述发射器604将所述上报信息的上报规则和反馈格式发送至所述第二设备;通过所述接收接收器603接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
可选的,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
可选的,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
可选的,所述参数包括偏置类参数和门限类参数。
可选的,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
可选的,所述处理器601还用于:
基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
可选的,所述处理器601还用于:
针对每个质量准则事件配置通信参数集合通过所述发射器604发送给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,与所述第二设备采用针对所述任一质量 准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
可以理解的是,本实施例的第一设备600可用于实现上述方法实施例中涉及第一设备或基站的所有功能,其具体实现过程可以参照上述方法实施例第一二设备或基站执行方法的相关描述,此处不再赘述。
可以理解的是,本申请实施例上述设备600中涉及的处理器601可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路application-specific integrated circuit(ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是只读存储器read-only memory(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器random access memory(RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
接收器603和发射器604可以通过收发器实现其功能,所述收发器可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器602,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器602、发射器604和接收器603可以通过总线与处理器601相连接,或者也可以通过专门的连接线分别与处理器601连接。
通过对处理器601进行设计编程,将下面所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图1~图4B所示的方法中第一设备或基站的执行过程。
基于上述实施例提供的上行传输方法,请参见图7所示,本申请实施例提供一种上行传输装置700,该装置700应用于第二设备,所述第二设备可以为终端,图7所示为本申请实施例提供的装置700的结构示意图,如图7所示,该装置700包括接收单元701、处理单元702和发送单元703,其中:
接收单元701,用于接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;
处理单元702,用于根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;
发送单元703,用于将所述上报信息发送至所述第一设备。
可选的,所述接收单元701还用于:
接收所述第一设备发送的所述上报信息的上报规则和反馈格式;
按照所述上报规则和反馈格式向所述第一设备上报所述上报信息。
可选的,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
可选的,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
可选的,所述参数包括偏置类参数和门限类参数。
可选的,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
可选的,所述处理单元702还用于:
通过所述接收单元701接收所述第一设备配置的针对每个质量准则事件的通信参数集合,当所述质量准则事件中的任一质量准则事件被触发后,与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
应理解以上装置700中的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序代码的形式存储于终端的存储元件中,由终端的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
需要说明的是,本申请实施例中的装置700的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
本申请实施例还提供一种第二设备800,该第二设备400可以为终端,或位于终端上的其他设备,图8所示为本申请实施例提供的第二设备800的结构示意图,如图8所示,第二设备800包括处理器801,存储器802、接收器803和发射器804,执行本发明方案的程序代码保存在存储器802中,并由处理器801来控制执行。
存储器802中存储的程序用于指令处理器801执行上行传输方法,包括:接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;将所述上报信息发送至所述第一设备。
可选的,所述处理器801还用于:
通过所述接收器803接收所述第一设备发送的所述上报信息的上报规则和反馈格式;按照所述上报规则和反馈格式通过所述发射器804向所述第一设备上报所述上报信息。
可选的,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
可选的,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
可选的,所述参数包括偏置类参数和门限类参数。
可选的,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
可选的,所述处理器801还用于:
通过所述接收器803接收所述第一设备配置的针对每个质量准则事件的通信参数集 合,当所述质量准则事件中的任一质量准则事件被触发后,与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
可以理解的是,本实施例的第二设备800可用于实现上述方法实施例中涉及第二设备或终端的所有功能,其具体实现过程可以参照上述方法实施例第二设备或终端执行方法的相关描述,此处不再赘述。
可以理解的是,本申请实施例上述设备800中涉及的处理器801可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路application-specific integrated circuit(ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是只读存储器read-only memory(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器random access memory(RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
接收器803和发射器804可以通过收发器实现其功能,所述收发器可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器802,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器802、发射器804和接收器803可以通过总线与处理器801相连接,或者也可以通过专门的连接线分别与处理器801连接。
通过对处理器801进行设计编程,将下面所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图1~图4B所示的方法中第二设备的执行过程。
请参见图9,图9为本申请实施例提供的一种终端的结构示意图。如图9所示,该终端包括:处理器910、存储元件920、收发装置930。收发装置930可以与天线连接。在下行方向上,收发装置930通过天线接收基站发送的信息,并将信息发送给处理器910进行处理。在上行方向上,处理器910对终端的数据进行处理,并通过收发装置930发送给基站。
该存储元件920用于存储实现以上方法实施例,或者图7所示实施例各个单元的程序代码,处理器910调用该程序代码,执行以上方法实施例的操作,以实现图7所示的各个单元。
例如,所述存储元件920,用于存储指令处理器910执行上行传输方法的程序代码。
所述处理器910,用于调用所述存储元件920中存储的程序代码,执行:接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;将所述上报信息发送至所述第一设备。
以上各个单元的部分或全部也可以通过现场可编程门阵列(Field Programmable Gate Array,FPGA)的形式内嵌于该终端的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable  Gate Array,FPGA)等。存储元件可以是一个存储装置,也可以是多个存储元件的统称。
另外,该处理器上可以设置多个接口,分别用于连接外围设备或与外围设备连接的接口电路。例如,用于连接显示屏的接口,用于连接摄像头的接口,用于连接音频处理元件的接口等。
请参见图10,图10为本申请实施例提供的一种基站的结构示意图。如图10所示,该基站包括:天线1010、射频装置1020、基带装置1030。天线1010与射频装置1020连接。在上行方向上,射频装置1020通过天线1010接收终端发送的信息,将终端发送的信息发送给基带装置1030进行处理。在下行方向上,基带装置1030对终端的信息进行处理,并发送给射频装置1020,射频装置1020对终端的信息进行处理后经过天线1010发送给终端。
以上装置500可以位于基带装置1030,包括处理元件1031和存储元件1032。基带装置1030例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理元件1031,与存储元件1032连接,以调用存储元件1032中的程序,执行以上方法实施例中所示的操作。该基带装置1030还可以包括接口1033,用于与射频装置1020交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
再如,以上图5中的处理单元502可以通过基带装置1030的一个芯片中实现,发送单元501通过基带装置1030的另一个芯片实现,或者,将它们集成在一起,通过基带装置1030的一个芯片实现;或者,将它们的功能通过程序代码的形式存储于基带装置1030的存储元件中,通过基带装置1030的一个处理元件调度实现。其它单元的实现与之类似。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
基于相同的技术构思,本申请一些实施例所提供的上行传输装置或设备解决问题的原理以及有益效果可以参见上述图2所示方法的实施方式以及所带来的有益效果,该装置或设备的实施可以参见上述方法实施例的实施,重复之处不再赘述。
上述实施例可以全部或部分地通过软件、硬件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、双绞线或光纤)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如光盘)、或者半 导体介质(例如固态硬盘)等。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种上行传输方法,其特征在于,包括:
    第一设备将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;
    所述第一设备接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备将所述上报信息的上报规则和反馈格式发送至所述第二设备;
    所述第一设备接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
  4. 如权利要求1或2所述的方法,其特征在于,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述参数包括偏置类参数和门限类参数。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
  7. 如权利要求6所述的方法,其特征在于,所述第一设备接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息之后,所述方法还包括:
    所述第一设备基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备针对每个质量准则事件配置通信参数集合给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,所述第一设备与所述第二设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
  9. 一种上行传输方法,其特征在于,包括:
    第二设备接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;
    所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;
    所述第二设备将所述上报信息发送至所述第一设备。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的所述上报信息的上报规则和反馈格式;
    所述第二设备按照所述上报规则和反馈格式向所述第一设备上报所述上报信息。
  11. 如权利要求9或10所述的方法,其特征在于,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
  12. 如权利要求9或10所述的方法,其特征在于,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述参数包括偏置类参数和门限类参数。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
  15. 如权利要求9-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备配置的针对每个质量准则事件的通信参数集合,当所述质量准则事件中的任一质量准则事件被触发后,所述第二设备与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
  16. 一种上行传输装置,应用于第一设备,其特征在于,包括:
    处理单元,用于配置至少一个与第二设备之间的链路的质量准则事件;
    发送单元,用于将至少一个与第二设备之间的链路的质量准则事件发送至第二设备,其中,每个链路的质量准则事件中都包括至少一个参数;
    接收单元,用于接收所述第二设备根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数所确定的上报信息。
  17. 如权利要求16所述的装置,其特征在于,所述发送单元还用于:
    将所述上报信息的上报规则和反馈格式发送至所述第二设备;
    所述接收单元,还用于接收所述第二设备按照所述上报规则和反馈格式上报的所述上报信息。
  18. 如权利要求16或17所述的装置,其特征在于,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
  19. 如权利要求16或17所述的装置,其特征在于,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
  20. 如权利要求16-19任一项所述的装置,其特征在于,所述参数包括偏置类参数和门限类参数。
  21. 如权利要求16-20任一项所述的装置,其特征在于,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
  22. 如权利要求21所述的装置,其特征在于,所述处理单元还用于:
    基于所述上报信息进行发射方式和/或发射资源和/或发射端口和/或波束赋形和/或发射参考信号和/或测量过程的选择。
  23. 如权利要求16-22任一项所述的装置,其特征在于,所述处理单元还用于:
    针对每个质量准则事件配置通信参数集合通过所述发送单元发送给第二设备,当所述质量准则事件中的任一质量准则事件被触发后,与所述第二设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
  24. 一种上行传输装置,应用于第二设备,其特征在于,包括:
    接收单元,用于接收第一设备发送的至少一个链路的质量准则事件;其中,每个链路的质量准则事件中都包括至少一个参数;
    处理单元,用于根据所述至少一个链路质量准则及其每个链路的质量准则事件中的参数确定上报信息;
    发送单元,用于将所述上报信息发送至所述第一设备。
  25. 如权利要求24所述的装置,其特征在于,所述接收单元还用于:
    接收所述第一设备发送的所述上报信息的上报规则和反馈格式;
    按照所述上报规则和反馈格式向所述第一设备上报所述上报信息。
  26. 如权利要求24或25所述的装置,其特征在于,所述链路的质量准则事件为当前链路的质量与第一参考对象之间的设定关系或为所述第二设备监测的其他链路的质量与第二参考对象之间的设定关系,所述第一参考对象为设定门限值或为所述第二设备监测的其他链路的质量,所述第二参考对象为设定门限值或为当前链路的质量。
  27. 如权利要求24或25所述的装置,其特征在于,所述链路的质量准则事件为链路的质量在当前时刻与设定时刻之间的设定关系,所述设定时刻为当前时刻之前的时刻或为当前时刻之后的时刻。
  28. 如权利要求24-27任一项所述的装置,其特征在于,所述参数包括偏置类参数和门限类参数。
  29. 如权利要求24-28任一项所述的装置,其特征在于,所述上报信息包括所述第二设备根据所述链路的质量准则事件所触发的事件类型、建议所述第一设备所采取的推荐操作和推荐资源中的任意种组合。
  30. 如权利要求24-29任一项所述的装置,其特征在于,所述处理单元还用于:
    通过所述接收单元接收所述第一设备配置的针对每个质量准则事件的通信参数集合,当所述质量准则事件中的任一质量准则事件被触发后,与所述第一设备采用针对所述任一质量准则事件所配置的对应的通信参数集合中的通信参数进行通信,所述通信参数集合为子载波间隔,时隙长度,循环前缀类型中的全任意种组合。
PCT/CN2018/080335 2017-03-28 2018-03-23 一种上行传输方法和装置 WO2018177224A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18778103.4A EP3595351B1 (en) 2017-03-28 2018-03-23 Uplink transmission method and device
US16/585,890 US11121916B2 (en) 2017-03-28 2019-09-27 Uplink transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710193485.4A CN108668372B (zh) 2017-03-28 2017-03-28 一种上行传输方法和装置
CN201710193485.4 2017-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/585,890 Continuation US11121916B2 (en) 2017-03-28 2019-09-27 Uplink transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018177224A1 true WO2018177224A1 (zh) 2018-10-04

Family

ID=63675167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080335 WO2018177224A1 (zh) 2017-03-28 2018-03-23 一种上行传输方法和装置

Country Status (4)

Country Link
US (1) US11121916B2 (zh)
EP (1) EP3595351B1 (zh)
CN (1) CN108668372B (zh)
WO (1) WO2018177224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683106B2 (en) * 2019-03-13 2023-06-20 Apple Inc. Dynamic antenna selection and beam steering

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264063A (zh) * 2019-06-20 2019-09-20 北京凌壹世纪科技有限公司 一体化实战指挥方法及系统
CN110266685A (zh) * 2019-06-20 2019-09-20 北京凌壹世纪科技有限公司 一种多媒体融合通信异构通信方法及系统
CN110505664B (zh) * 2019-07-22 2022-03-08 维沃移动通信有限公司 一种参数调整方法、装置、终端和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761901A (zh) * 2011-04-29 2012-10-31 中国移动通信集团公司 一种测量上报方法和设备
CN103200610A (zh) * 2013-03-19 2013-07-10 华为技术有限公司 定位测量的触发方法及装置、系统
WO2016175690A1 (en) * 2015-04-30 2016-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Relaxed measurement reporting with control plane dual connectivity

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049772B1 (ko) 2013-01-15 2019-11-28 삼성전자 주식회사 빔포밍 시스템에서 신호 측정 방법 및 장치
KR102187855B1 (ko) * 2014-07-31 2020-12-07 삼성전자 주식회사 빔포밍 시스템에서 셀 측정 방법 및 장치
WO2016127403A1 (en) 2015-02-13 2016-08-18 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
US20160302096A1 (en) * 2015-04-08 2016-10-13 Amalavoyal Chari Access Point and Extender Link Analysis, Data Stream Analysis, and Recommendations
CN106470062B (zh) 2015-08-14 2021-11-16 中兴通讯股份有限公司 一种数据传输方法及系统
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
WO2018143851A1 (en) * 2017-02-02 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node and methods therein for handling beamformed communication links in a wireless communications network
EP3579465B1 (en) * 2017-02-05 2022-03-02 LG Electronics Inc. Method for determining modulation and coding scheme in wireless communication system, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761901A (zh) * 2011-04-29 2012-10-31 中国移动通信集团公司 一种测量上报方法和设备
CN103200610A (zh) * 2013-03-19 2013-07-10 华为技术有限公司 定位测量的触发方法及装置、系统
WO2016175690A1 (en) * 2015-04-30 2016-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Relaxed measurement reporting with control plane dual connectivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on link recovery procedure for beam blo- ckage", 3GPP TSG RAN WG1 NR AD HOC MEETING,, no. R1-1700041, 16 January 2017 (2017-01-16), XP051202467 *
See also references of EP3595351A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683106B2 (en) * 2019-03-13 2023-06-20 Apple Inc. Dynamic antenna selection and beam steering

Also Published As

Publication number Publication date
EP3595351A1 (en) 2020-01-15
CN108668372B (zh) 2020-05-08
US11121916B2 (en) 2021-09-14
EP3595351B1 (en) 2023-07-26
US20200028742A1 (en) 2020-01-23
CN108668372A (zh) 2018-10-16
EP3595351A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP7450661B2 (ja) 無線デバイスのための分散型モビリティ
JP7010928B2 (ja) 端末、無線通信方法、基地局及びシステム
US9503232B2 (en) Methods and apparatus for inter-cell interference coordination with protected subframes
EP2705718B1 (en) Methods and arrangements in a wireless communication system
US9386594B2 (en) Downlink transmission coordinated scheduling
JP6962519B2 (ja) 無線通信方法および機器
JP5418929B2 (ja) 伝送モードを決定する方法、装置、および端末
WO2018177224A1 (zh) 一种上行传输方法和装置
CN110740471B (zh) 一种通信方法、装置和系统以及计算机可读存储介质
EP3689034B1 (en) Access-point discovery of wireless-network topology
US20220417938A1 (en) Adjusting a physical uplink control channel (pucch) format in a wireless communication network
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
WO2017206910A1 (zh) 信息反馈方法、装置及系统
JP6446303B2 (ja) 無線通信装置および通信制御方法
AU2016327704A1 (en) Communication terminal, radio network node and methods therein
KR20200059531A (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
JP2023515337A (ja) 一つのdciに基づくm-trp urllc送信のためのビーム障害回復
WO2018054341A1 (zh) 一种无线网络中的数据传输方法及装置
WO2020011264A1 (zh) 一种信道质量通知方法、接收方法和装置
CN111742498A (zh) 用于无线电收发机设备的波束管理
CN112470410B (zh) 处理设备及其方法
WO2021012802A1 (zh) 一种通信节点的协作方法和系统、存储介质和电子设备
JP2022517647A (ja) ビーム障害の回復方法、装置、ue、基地局及び可読記憶媒体
US20220302994A1 (en) Multi transmission reception point (trp) system and method thereof
CN116420334A (zh) 用于通过无线网络进行通信的用户设备和用于将用户设备连接到无线网络的无线网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018778103

Country of ref document: EP

Effective date: 20191007