WO2018177183A1 - 一种获取、反馈发送波束信息的方法及装置 - Google Patents

一种获取、反馈发送波束信息的方法及装置 Download PDF

Info

Publication number
WO2018177183A1
WO2018177183A1 PCT/CN2018/079889 CN2018079889W WO2018177183A1 WO 2018177183 A1 WO2018177183 A1 WO 2018177183A1 CN 2018079889 W CN2018079889 W CN 2018079889W WO 2018177183 A1 WO2018177183 A1 WO 2018177183A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal
base station
downlink transmit
downlink
Prior art date
Application number
PCT/CN2018/079889
Other languages
English (en)
French (fr)
Inventor
高秋彬
陈润华
拉盖施
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP18774828.0A priority Critical patent/EP3605869A4/en
Priority to KR1020217040444A priority patent/KR20210153159A/ko
Priority to JP2019553933A priority patent/JP7097385B2/ja
Priority to KR1020197032213A priority patent/KR20190133237A/ko
Priority to US16/499,260 priority patent/US10804979B2/en
Publication of WO2018177183A1 publication Critical patent/WO2018177183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for acquiring and feeding back beam information.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the radio access technology standards are all based on MIMO+OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • MIMO+OFDM Orthogonal Frequency Division Multiplexing
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • Rel-8 up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on MU-MIMO (Multi-User MIMO) technology, and TM (Transmission Mode)-8 MU-MIMO transmission can support up to 4 downlink data layers.
  • Rel-10 introduces support for 8 antenna ports to further improve the spatial resolution of channel state information, and further expands the transmission capability of SU-MIMO (Single-User MIMO) to up to 8 data layers.
  • Rel-13 and Rel-14 introduce FD-MIMO (Full Dimensional MIMO) technology to support 32-port, full-dimensional and vertical beamforming.
  • large-scale antenna technology is introduced in mobile communication systems.
  • fully digital large-scale antennas can have up to 128/256/512 antenna elements, and up to 128/256/512 transceiver units, one for each antenna unit.
  • the terminal measures channel state information and feeds back by transmitting pilot signals up to 128/256/512 antenna ports.
  • antenna arrays of up to 32/64 antenna elements can also be configured.
  • FIG. 1 is a schematic diagram of analog beamforming for weighted shaping of an intermediate frequency signal
  • FIG. 2 is an analog beam for weighting shaping of a radio frequency signal. Schematic diagram of the shape, as shown in Figure 1 and Figure 2.
  • the main feature of analog beamforming is the weighted shaping of the intermediate frequency ( Figure 1) or the RF signal ( Figure 2) by a phase shifter.
  • Figure 1 the intermediate frequency
  • Figure 2 the RF signal
  • the advantage is that all transmit (receive) antennas have only one transceiver unit, which is simple to implement, reducing cost, size and power consumption.
  • FIG. 3 is a schematic diagram of digital-to-analog hybrid beamforming, as shown in FIG. And the receiving end respectively with Transceiver unit, number of antenna units at the transmitting end , the number of antenna units at the receiving end.
  • the maximum number of parallel transport streams supported by beamforming is min.
  • the hybrid beamforming structure of Figure 3 balances the flexibility of digital beamforming and the low complexity of analog beamforming, with the ability to support multiple data streams and simultaneous shaping of multiple users, while also complexity. Control is within reasonable limits.
  • Both analog beamforming and digital-to-analog hybrid beamforming require adjustment of the analog beamforming weights at both ends of the transceiver so that the resulting beam can be aligned with the opposite end of the communication.
  • the beam shaping weights sent by the base station side and the beam shaping weights received by the terminal side need to be adjusted.
  • the beam shaping weights sent by the terminal side and received by the base station side need to be adjusted.
  • the weight of beamforming is usually obtained by sending a training signal.
  • the base station sends a downlink beam training signal
  • the terminal measures the downlink beam training signal, selects the best base station transmit beam, and feeds the beam related information to the base station, and selects the corresponding optimal receive beam, and saves it locally.
  • a disadvantage of the prior art is that the beam-related information of the current feedback is not accurate.
  • the embodiments of the present invention provide a method and a device for acquiring and feeding back beam information, which are used to solve the problem of determining and reporting beam information, so that the terminal and the base station obtain more accurate beam combination information, and better support multi-beam transmission.
  • a method for acquiring transmit beam information including:
  • the base station sends a reference signal to the terminal by using the downlink transmit beam, where the base station transmits a reference signal for each downlink transmit beam, and the reference signal of each beam is shaped by using the beam shaping weight corresponding to the beam, and will be used.
  • the reference signal sent by the downlink transmit beam of one beam group is divided into a reference signal set; the base station sends the related information of the reference signal set to the terminal; the base station receives the downlink transmit beam combination reported by the terminal; and the base station according to the downlink transmit beam combination Determining a downlink transmit beam that transmits data to the terminal.
  • the base station when the base station simultaneously transmits the reference signal to the terminal by using the downlink transmit beams belonging to different beam groups:
  • the downlink transmit beam sent from the same TRP is a beam group; or the downlink transmit beam sent from a transceiver unit is a beam group.
  • the base station transmits a reference signal for each downlink transmit beam, including one of the following methods:
  • a reference signal of a downlink transmit beam is mapped to at least one port of at least one transmission opportunity of a reference signal resource for transmission.
  • the base station when the base station configures H reference signal resource sets for the terminal, if the hth reference signal resource set in the H reference signal resource sets includes Nh reference signal resources, all transmission opportunities of one reference signal resource When all the ports are used to transmit the reference signal of one beam, the base station notifies the terminal of the configuration information of the reference signal set division by notifying the configuration information of the reference signal resource set.
  • the base station configures F reference signal resource sets for the terminal, if the fth reference signal resource set in the F reference signal resource sets includes N f reference signal resources, one reference signal resource has N p antenna ports, and each When one antenna port of the reference signal resource is used to transmit the reference signal of one beam, the base station notifies the terminal of the configuration information of the reference signal set division by notifying the reference signal resource set configuration information and the antenna port.
  • the base station when the base station receives the downlink transmit beam combination reported by the terminal, the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs are received.
  • the method further includes: receiving, by the base station, reference signal group information sent by the terminal;
  • the base station determines, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal, including one of the following manners:
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beam corresponding to the reference signal in the same reference signal group is the downlink transmission.
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beams corresponding to the reference signals in the different reference signal packets is the downlink transmit beam. combination.
  • the method further includes: receiving an overall reception quality of the reference signal packet reported by the terminal.
  • a method for feeding back beam information including:
  • a reference signal sent by the downlink transmit beam to the terminal where the base station transmits a reference signal for each downlink transmit beam, and the reference signal of each beam is shaped by using a beam shaping weight corresponding to the beam, and
  • the reference signal transmitted by the downlink transmit beam of the same beam group is divided into a reference signal set;
  • the terminal selects Q reference signals from the received reference signals according to the reception quality, and determines a receive beam of each reference signal;
  • the terminal receives the base station And the related information divided by the reference signal set sent by the terminal, and the terminal selects the downlink transmit beam combination and reports the base station according to the related information divided by the reference signal set.
  • determining the receive beam of each reference signal includes: assuming that the terminal has a common Receive beams, each receive beam corresponding to a set of beamforming weights; for a reference signal, the terminal separately receives each receive beam, and selects the receive beam with the strongest received signal as the receive beam of the reference signal .
  • the reference signals of different beams in the downlink transmit beam combination belong to different reference signal sets.
  • the downlink transmit beam combination is selected, including one of the following ways:
  • the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs are reported.
  • the method further includes: reporting, to the base station, an overall reception quality of the reference signal packet.
  • an apparatus for acquiring transmit beam information including:
  • a reference signal sending module configured to send a reference signal to the terminal by using a downlink transmit beam, where a reference signal is transmitted for each downlink transmit beam, and a reference signal of each beam is shaped by using a beam shaping weight corresponding to the beam.
  • the reference signal sent by the downlink transmit beam of the same beam group is divided into a reference signal set; the related information divided by the reference signal set is sent to the terminal; and the report receiving module is configured to receive the downlink transmit beam combination reported by the terminal
  • a beam determining module configured to determine, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal.
  • the reference signal sending module is further configured to: when transmitting the reference signal to the terminal by using the downlink transmit beams belonging to different beam groups: the downlink transmit beam sent from the same TRP is a beam group; or
  • the downlink transmit beam sent from a transceiver unit is a beam group.
  • the reference signal sending module is further configured to: when transmitting one reference signal for each downlink transmit beam, including one of the following methods:
  • a reference signal of a downlink transmit beam is mapped to at least one port of at least one transmission opportunity of a reference signal resource for transmission.
  • the reference signal sending module is further configured to: when the H reference signal resource set is configured for the terminal, if the hth reference signal resource set includes N h reference signal resources, all ports of all the transmission opportunities of one reference signal resource are used.
  • the related information that is sent to the terminal by the reference signal set is configured to notify the configuration information of the reference signal set by notifying the configuration information of the reference signal resource set; or, when configuring the F reference signal resource sets for the terminal If the fth reference signal resource set includes Nf reference signal resources, one reference signal resource has Np antenna ports, and one antenna port of each reference signal resource is used to transmit a reference signal of one beam,
  • the related information of the terminal transmission reference signal set division is configuration information for notifying the reference signal set division by notifying the reference signal resource set configuration information and the antenna port.
  • the report receiving module is further configured to: when receiving the downlink transmit beam combination reported by the terminal, receive the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs.
  • the beam determining module is further configured to: when receiving the reference signal group information sent by the terminal, the base station determines, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal, including one of the following manners:
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beam corresponding to the reference signal in the same reference signal group is the downlink transmission.
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beams corresponding to the reference signals in the different reference signal packets is the downlink transmit beam. combination.
  • the report receiving module is further configured to receive an overall receiving quality of the reference signal packet reported by the terminal.
  • an apparatus for feeding back beam information including: a receiving module, configured to receive a reference signal sent by a base station to a terminal by using a downlink transmit beam, where the base station transmits for each downlink transmit beam a reference signal, the reference signal of each beam is shaped by the beamforming weight corresponding to the beam, and the reference signal transmitted by the downlink transmitting beam of the same beam group is classified into a reference signal set; And a determining module, configured to select Q reference signals from the received reference signals according to the receiving quality, and determine a receiving beam of each reference signal; and a reporting module, configured to use the reference signal according to the reference signal The relevant information of the set partition is selected, and the downlink transmit beam combination is selected and reported to the base station.
  • the determining module is further configured to: when determining the receive beam of each reference signal, including: assuming that the terminal has a common Receive beams, each receive beam corresponding to a set of beamforming weights; for a reference signal, each receive beam is used to receive it, and the receive beam with the strongest received signal power is selected as the receive beam of the reference signal.
  • the reference signals of different beams in the downlink transmit beam combination belong to different reference signal sets.
  • the reporting module is further configured to: when selecting the downlink transmit beam combination, include one of the following methods:
  • the reporting module is further configured to: when the downlink transmit beam combination is selected and reported to the base station, report information of the Q reference signals selected by the terminal and reference signal packet related information to which each reference signal belongs.
  • the reporting module is further configured to report the overall reception quality of the reference signal packet to the base station.
  • a fifth aspect provides a base station, the apparatus comprising: a processor, a transceiver, and a memory; the transceiver, configured to receive and transmit data under control of the processor, the processor, configured to read The program in the memory performs the method of any of the above first aspects.
  • a sixth aspect provides a terminal, the device comprising: a processor, a transceiver, and a memory; the transceiver, configured to receive and transmit data under control of the processor, the processor, for reading The program in the memory performs the method of any of the above second aspects.
  • a seventh aspect a computer readable storage medium storing computer executable instructions for causing the computer to perform any of the first aspect described above Methods.
  • a computer readable storage medium storing computer executable instructions for causing the computer to perform any of the second aspect described above Methods.
  • the base station sends a reference signal to the terminal by using the downlink transmission beam, and the base station sends the related information of the reference signal set to the terminal, and the terminal side according to the reference signal and the reference signal set.
  • the related information is divided, and the downlink transmit beam combination is selected as the downlink transmit beam combination used by the recommended base station and reported to the base station.
  • the base station since the base station transmits a reference signal for each downlink transmit beam, the reference signal of each beam is sent after the beamforming weight corresponding to the beam is formed, and the reference of the downlink transmit beam of the same beam group is used for transmission.
  • the signal is divided into a reference signal set; thus, by configuring the reference signal set, the terminal can accurately determine which downlink beams can be used simultaneously, thereby enabling the terminal and the base station to obtain more accurate beam combining information and supporting multi-beam transmission.
  • 1 is a schematic diagram of simulated beamforming for weighted shaping of an intermediate frequency signal in the background art
  • FIG. 2 is a schematic diagram of analog beamforming for weighting a radio frequency signal in the background art
  • FIG. 3 is a schematic diagram of digital-to-analog hybrid beamforming in the background art
  • FIG. 4 is a schematic flowchart of a method for acquiring a transmit beam information by a base station side according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for implementing feedback of beam information by a terminal side according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an example of base station beam grouping according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing an example 2 of a base station beam grouping according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a configuration of a periodic reference signal resource according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a non-periodic reference signal resource configuration according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a configuration example of a reference signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a second example of configuration of a reference signal according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a third example of configuration of a reference signal according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a fourth example of configuration of a reference signal according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an apparatus for acquiring transmit beam information by a base station side according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an apparatus for feeding back beam information by a terminal side according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • a solution for acquiring the transmit beam information and the feedback transmit beam information is provided to solve the problem of determining and reporting the beam information, so that the terminal and the base station obtain more accurate beam combination information, and better support multi-beam transmission.
  • FIG. 4 is a schematic flowchart of a method for implementing a method for acquiring transmit beam information on a base station side, as shown in the figure, which may include:
  • Step 401 The base station sends a reference signal to the terminal by using a downlink transmit beam, where the base station transmits a reference signal for each downlink transmit beam, and the reference signal of each beam is shaped by using a beam shaping weight corresponding to the beam, and Dividing a reference signal transmitted by a downlink transmit beam of the same beam group into a reference signal set;
  • Step 402 The base station sends related information that is divided by the reference signal set to the terminal.
  • Step 403 The base station receives a downlink transmit beam combination reported by the terminal.
  • Step 404 The base station determines, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal.
  • FIG. 5 is a schematic flowchart of a method for implementing feedback of beam information on a terminal side, as shown in the figure, which may include:
  • Step 501 The terminal receives a reference signal that is sent by the base station to the terminal by using a downlink transmission beam, where the base station transmits a reference signal for each downlink transmission beam, and the reference signal of each beam is shaped by using a beam shaping weight corresponding to the beam. Is issued, and divides the reference signal transmitted by the downlink transmit beam of the same beam group into a reference signal set;
  • Step 502 The terminal selects Q reference signals from the received reference signals according to the receiving quality, and determines a receiving beam of each reference signal, where Q is an integer greater than or equal to 1;
  • Step 503 The terminal receives the related information of the reference signal set that is sent by the base station to the terminal, and the terminal selects the downlink transmit beam combination and reports the base station according to the related information divided by the reference signal set.
  • each downlink beam corresponding to a set of beamforming weights, and the transmit beam shaping weight of the nth beam
  • K is the number of beam-formed antenna elements, which may be smaller than the number of antenna units of the base station, for example, one downlink beam is only sent from K antenna units connected by one transceiver unit.
  • the base station sends a reference signal to the terminal by using a downlink transmit beam, where the base station transmits a reference signal for each downlink transmit beam, and the reference signal of each beam is shaped by the beamforming weight corresponding to the beam. Is issued, and the reference signal transmitted by the downlink transmit beam of the same beam group is classified into a reference signal set.
  • the base station groups the candidate downlink transmit beams, and assumes that they are divided into G beam groups, and G is an integer greater than or equal to 1.
  • An optional basis for the packet is that the base station can simultaneously transmit signals to the terminal by using downlink transmit beams belonging to different beam groups, that is, the base station can simultaneously use downlink transmissions belonging to different beam groups at one time (for example, within one OFDM symbol).
  • the beam sends a signal to the terminal.
  • the base station can simultaneously transmit signals to the terminal with downlink transmit beams belonging to the same beam group.
  • the base station groups the candidate downlink transmit beams, and further divides the beams in each group into subgroups, and the downlink transmit beams in each subgroup can simultaneously send signals to the terminal, and different subgroups in one group cannot simultaneously Send a signal to the terminal.
  • the downlink transmit beams in each subgroup may not simultaneously send signals to the terminal, and the downlink transmit beams in different subgroups in one group may simultaneously send signals to the terminal.
  • the system can notify the UE of the information about the packet (including subgroups) by signaling.
  • the base station transmits a downlink reference signal.
  • the base station transmits a reference signal for each candidate downlink transmit beam.
  • the base station can send Reference signals.
  • This The reference signals may be TDM (Time Division Multiplexing), FDM (Frequency Division Mutiplexing), CDM (Code Division Multiplexing) multiplexing, or various multiplexing methods. combination.
  • Reference signals can be occupied OFDM symbols, each reference signal occupies 1 OFDM symbol, and the reference signals are TDM multiplexed. It is also possible to transmit reference signals of multiple beams in one OFDM symbol, with FDM multiplexing or CDM multiplexing between them.
  • the reference signal of each beam is shaped by the beamforming weight corresponding to the beam.
  • the reference signal is sent periodically or aperiodically.
  • a reference signal referred to herein may refer to a reference signal transmitted by a reference signal within a transmission opportunity, or may be a reference signal transmitted within a plurality of transmission opportunities.
  • each reference signal corresponds to one downlink transmit beam.
  • the base station uses the downlink transmit beams belonging to different beam groups to simultaneously transmit the reference signals to the terminal: the downlink transmit beams sent from the same TRP are one beam group; and the downlink transmit beams sent from one transceiver unit are one beam group.
  • FIG. 6 is a schematic diagram of a base station beam grouping. If a base station is composed of multiple TRPs (Transmission/Reception Point), the downlink transmission beams sent from the same TRP can be grouped into one group. As shown in FIG. 6, there are two TRPs, TRP1 and TRP2. The beam from TRP1 is divided into packet 1, and the beam from TRP2 is divided into packet 2.
  • TRPs Transmission/Reception Point
  • FIG. 7 is a schematic diagram of a second example of a base station beam grouping. If a TRP antenna array of a base station has multiple transceiver units (for example, multiple panels), the downlink transmission beam sent from one transceiver unit can be divided into two. A group. As shown in FIG. 7, there is one TRP having two antenna panels, the beam emitted from the panel 1 is divided into packets 1, and the beam emitted from the panel 2 is divided into packets 2.
  • the base station may simultaneously transmit signals to the terminal through multiple beams in one beam group.
  • one reference signal is a reference signal transmitted within one transmission opportunity, or a reference signal transmitted within multiple transmission opportunities.
  • a reference signal referred to herein may refer to a reference signal transmitted by a reference signal within one transmission opportunity, or may be a reference signal transmitted within multiple transmission opportunities.
  • the base station sends a reference signal to the terminal by using the downlink transmit beam, and the base station transmits a reference signal for each downlink transmit beam, including one of the following methods:
  • a reference signal of a downlink transmit beam is mapped to at least one port of at least one transmission opportunity of a reference signal resource for transmission.
  • a reference signal resource includes a number of time-frequency resources, for example, including a plurality of REs (Resource Elements) within one OFDM symbol.
  • the reference signal resources may be repeated in the time domain, for example, repeated in a certain period, and may appear multiple times in one cycle. Each occurrence of a reference signal resource in the time domain is called a transmission opportunity.
  • FIG. 8 is a schematic diagram of periodic reference signal resource configuration. As shown in FIG. 8, the base station configures two reference signal resources for the terminal, and each reference signal resource periodically appears. In one cycle, each reference signal resource is repeated. Times, that is, there are 4 transmission opportunities in each cycle.
  • FIG. 9 is a schematic diagram of a non-periodic reference signal resource configuration.
  • the base station configures two reference signal resources for the terminal, which are non-periodic reference signal resources, and triggers reference signal resources by using aperiodic trigger signaling each time.
  • the reference signal resource appears 4 times, that is, 4 transmission opportunities of the reference signal resource are triggered each time.
  • mapping and transmission manner of the reference signal may be as follows:
  • a reference signal of a downlink transmit beam is mapped to all ports of all transmission opportunities of a reference signal resource for transmission.
  • the reference signal of one beam is mapped to all ports of a transmission opportunity of a reference signal resource (for example, a CSI-RS (channel state information reference signal) resource). That is to say, the reference signals transmitted on the reference signal resources are all transmitted using the same beam.
  • a reference signal resource for example, a CSI-RS (channel state information reference signal) resource.
  • the reference signal of one beam is mapped to all ports (which may be one) of the reference signal resources (for example, CSI-RS resources) to be transmitted on all ports.
  • the reference signal resources for example, CSI-RS resources
  • Different transmission opportunities of a reference signal resource can transmit reference signals of different beams.
  • the reference signal of one beam is mapped to several (may be one) transmission opportunities of several (may be one) transmission opportunities of one reference signal resource (for example, CSI-RS resource).
  • one reference signal resource for example, CSI-RS resource.
  • Different ports of a transmission opportunity of a reference signal resource can transmit reference signals of different beams.
  • the base station divides the downlink reference signal into G reference signal sets.
  • the basis for the division is the downlink transmission beam for transmitting the reference signal: the reference signals transmitted by the downlink transmission beam of the same beam group are grouped into one set.
  • the base station sends the related information of the reference signal set division to the terminal, which may be implemented as follows:
  • the base station configures H reference signal resource sets for the terminal, if the hth reference signal resource set includes Nh reference signal resources, all ports of all the transmission opportunities of one reference signal resource are used to transmit a reference signal of one beam.
  • the base station notifies the terminal of the configuration information of the reference signal set division by notifying the configuration information of the reference signal resource set.
  • the base station configures H reference signal resource sets for the terminal.
  • the hth reference signal resource set includes Nh reference signal resources. All ports of all transmission opportunities of a reference signal resource are used to transmit a reference signal of one beam.
  • the base station may notify the configuration information of the reference signal set by notifying the configuration information of the reference signal resource set.
  • the base station when the base station configures F reference signal resource sets for the terminal, if the fth reference signal resource set includes N f reference signal resources, one reference signal resource has N p antenna ports, and each reference signal resource is 1
  • the base station notifies the terminal of the configuration information of the reference signal set division by notifying the reference signal resource set configuration information and the antenna port.
  • the base station configures F reference signal resource sets for the terminal.
  • the fth reference signal resource set includes N f reference signal resources.
  • One reference signal resource has N p antenna ports, and one antenna port of each reference signal resource is used to transmit a reference signal of one beam.
  • the base station may notify the configuration information of the reference signal set by notifying the reference signal resource set configuration information and the manner of the antenna port.
  • the terminal receives the reference signal sent by the base station to the terminal by using the downlink transmission beam, where the base station transmits a reference signal for each downlink transmission beam, and the reference signal of each beam uses the reference signal.
  • the beamforming weight corresponding to the beam is shaped and then transmitted, and the reference signal transmitted by the downlink transmitting beam of the same beam group is classified into a reference signal set.
  • the terminal selects Q reference signals from the received reference signals according to the receiving quality, and specifically, the terminal receives the reference signal sent by the base station, and Q reference signals are selected among the reference signals.
  • the terminal receives the reference signal sent by the base station, and determines the reference signal to determine The reception quality of the reference signals and the reception beam that receives each reference signal.
  • the reception quality of the reference signal can be characterized by RSRP (Reference Signal Received Power), or it can be characterized by other measurement quantities.
  • the terminal selects the reference signal according to the reception quality of the reference signal, for example, selects the Q reference signals with the highest reception quality, or selects the Q reference signals whose reception quality is higher than a certain threshold.
  • the method may include: for a reference signal, the terminal respectively attempts to use each receiving The beam receives it and selects the receiving beam with the strongest received signal power as the receiving beam of the reference signal.
  • the terminal determines a receive beam that receives the reference signal.
  • the receive beam of the terminal may be selected from candidate receive beams. Assume the terminal has a total Receive beams, each receive beam corresponding to a set of beamforming weights, and the receive beam shaping weight of the nth beam Where L is the number of beam-formed antenna elements, which may be smaller than the number of antenna elements of the terminal. For example, the signals received by the L antenna elements are weighted by beamforming weights and combined and sent to one transceiver unit.
  • the terminal can receive each of the receive beams separately, and select the receive beam with the strongest received signal power as the receive beam of the reference signal.
  • the terminal selects a downlink transmit beam combination according to the related information divided by the reference signal set, where the combination is a downlink transmit beam combination that the terminal proposes to use simultaneously by the base station.
  • the terminal selects a downlink transmit beam combination (represented by the reference signal) that is recommended to be used by the base station according to the reference signal set information, thereby determining the reference signal packet.
  • a downlink transmit beam combination represented by the reference signal
  • the terminal suggests that simultaneous use means that the terminal can receive at the same time.
  • the reference signal set is obtained by collecting and dividing the reference signal by the base station side, and the reference signal group is obtained by grouping the reference signal according to the measurement result by the terminal side.
  • the transceiver unit of the terminal can be divided into R groups (R is an integer greater than or equal to 1), at least one transceiver unit in each group, and the transceiver unit in each group is connected to several antenna units.
  • the transceiver unit in different transceiver unit groups can independently beamform the received signal and send it to the baseband processing unit for subsequent calculation.
  • the terminal may receive at least R beams from different directions by using R transceiver groups respectively. Therefore, there may be R downlink transmission beams in a downlink transmission beam combination suggested by the terminal, or less than R or more than R.
  • the reference signals of different beams in the downlink transmit beam combination belong to different reference signal sets.
  • the reference signals of different beams in the downlink transmit beam combination that can be used simultaneously by the terminal should belong to different reference signal sets.
  • step 503 when the downlink transmit beam combination is selected, that is, when the terminal determines the reference signal packet, one of the following modes may be included:
  • the reference signal belonging to the same reference signal set among the reference signals is a reference signal group, which is composed of downlink transmission beams corresponding to reference signals in different reference signal packets.
  • the downlink transmit beam combination is the downlink transmit beam combination.
  • the reference signals belonging to the same reference signal set among the Q reference signals are one reference signal group.
  • the downlink transmission beams represented by the reference signals in different reference signal packets can be used simultaneously.
  • FIG. 10 is a schematic diagram of a reference signal configuration example. As shown in FIG. 10, a reference signal transmitted by a base station belongs to four reference signal sets, and a terminal selects a reference signal, which is divided into two reference signal packets, wherein the reference signal in the reference signal packet 1 It belongs to the reference signal set 1, and the reference signal in the reference signal group 2 belongs to the reference signal set 3.
  • Manner 2 selecting a reference signal belonging to a plurality of reference signal sets among the Q reference signals as a reference signal group, and combining downlink transmission beams formed by downlink transmission beams corresponding to reference signals in different reference signal packets into the downlink transmission beam combination.
  • the reference signals belonging to the plurality of reference signal sets among the Q reference signals are grouped as one reference signal.
  • the downlink transmission beams represented by the reference signals in different reference signal packets can be used simultaneously.
  • any two reference signals belonging to different reference signal packets necessarily belong to different reference signal sets.
  • FIG. 11 is a schematic diagram of a second example of a reference signal configuration.
  • a reference signal transmitted by a base station belongs to four reference signal sets, and a terminal selects a reference signal, which is divided into two reference signal packets, wherein the reference signal in the reference signal packet 1
  • the reference signal 1 and the reference signal set 2 belong to the reference signal set 3 and the reference signal set 4.
  • Manner 3 selecting a reference signal belonging to a different reference signal set among the Q reference signals as one reference signal group, and any two reference signals of the same reference signal group do not belong to the same reference signal set, and the same reference signal group
  • the combination of the downlink transmit beam corresponding to the reference signal is the downlink transmit beam combination.
  • the terminal selects a reference signal belonging to a different reference signal set among the Q reference signals as a reference signal group. Any two reference signals of the same reference signal group do not belong to the same reference signal set. At this time, the downlink transmission beams represented by the reference signals in the same reference signal group can be used simultaneously.
  • FIG. 12 is a schematic diagram of a reference signal configuration example.
  • a reference signal transmitted by a base station belongs to four reference signal sets, a terminal has two transceiver unit groups, and a terminal selects a reference signal, and is divided into four reference signal groups, wherein
  • the reference signal in the reference signal packet 1 selects one reference signal (RS1, RS6) from each of the reference set 1 and the reference signal set 2, and the reference signal in the reference signal packet 2 selects each of the reference signal set 1 and the reference signal set 2 Select a reference signal (RS2, RS7).
  • the reference signal in the reference signal group 3 selects one reference signal (RS9, RS14) from each of the reference set 3 and the reference signal set 4, and the reference signal in the reference signal packet 4 selects each of the reference signal set 3 and the reference signal set 4 Select a reference signal (RS11, RS16).
  • the reference signal transmitted by the base station belongs to four reference signal sets, the terminal has two transceiver unit groups, and the terminal selects the reference signal and is divided into two reference signal groups, wherein
  • the reference signal in the reference signal packet 1 selects one reference signal (RS1, RS6, RS10) from each of the reference set 1, the reference signal set 2, and the reference signal set 3, and the reference signal in the reference signal packet 2 is from the reference signal set 1.
  • Each of the reference signal set 2 and the reference signal set 4 is selected to select one reference signal (RS2, RS7, RS14).
  • the foregoing three manners may be that the base station selects and notifies the terminal, or the terminal selects which manner to use. Then, if the terminal selects, the information reported by the terminal may further include indication information of the grouping manner; if the base station selects, The base station can send indication information of the terminal grouping mode.
  • step 503 when the downlink transmit beam combination is selected and reported to the base station, the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs are reported.
  • the terminal may report the identification information of the selected Q reference signals and the reference signal group related information to which each reference signal belongs.
  • the identification information of the reference signal may be, for example, a resource index, a sequence index, a time index, a port index, a combination form therebetween, or the like.
  • the reported information can be in the form of the following triples:
  • the reference signal identifier may be a reference signal selected by the terminal and sent by the base station Identification of reference signal range, such as number; reference signal reception quality: may be RSRP, or other index value; reference signal group identification: after the terminal groups the reference signal, for example, it is divided into L groups, which can be used 1, 2, ... And L respectively identify L reference signal packets, and for the selected reference signal, include, in the report information, an identifier of the reference signal packet to which it belongs.
  • one reference signal may belong to multiple different reference signal packets at the same time, and the reference signal reception quality may be different when it belongs to different reference signal packets.
  • step 403 when the base station receives the downlink transmit beam combination reported by the terminal, the identifier information of the Q reference signals selected by the terminal and the reference signal to which each reference signal belongs are received. Group related information.
  • the method further includes: the terminal reporting the overall reception quality of the reference signal packet to the base station.
  • the base station side may further include: the base station receiving the overall reception quality of the reference signal packet reported by the terminal.
  • the terminal may also report the overall reception quality of a reference signal packet, for example, an average value of the reception quality of all reference signals in the reference signal packet, or a beam represented by all reference signals in the reference signal packet.
  • step 404 if the base station receives the reference signal packet information sent by the terminal;
  • the base station determines, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal, including one of the following manners:
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beam corresponding to the reference signal in the same reference signal group is the downlink transmission.
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beams corresponding to the reference signals in the different reference signal packets is the downlink transmit beam. combination.
  • the base station receives the identification information of the Q reference signals reported by the terminal, and the reference signal to which each reference signal belongs belongs to the related information.
  • the base station can determine which downlink transmit beams can be used simultaneously to transmit data to the terminal. According to the manner adopted in step 503, the specific manner of determining may be:
  • the downlink transmit beams of the two reference signals can be used simultaneously.
  • the downlink transmit beams of the two reference signals can be used simultaneously.
  • the base station selects a corresponding transmission mode according to this, for example, spatially multiplexing multiplexing by simultaneously transmitting a plurality of parallel data streams by using multiple downlink transmission beams, or simultaneously transmitting one data stream through multiple downlink transmission beams to implement spatial diversity transmission.
  • the embodiment of the present invention further provides an apparatus for acquiring transmit beam information, a device for feeding back transmit beam information, a principle for solving the problem by the device, and a method for acquiring transmit beam information,
  • the method of feeding back the beam information is similar, so the implementation of these devices can be referred to the implementation of the method, and the repeated description will not be repeated.
  • FIG. 14 is a schematic structural diagram of an apparatus for acquiring transmit beam information on a base station side, as shown in the figure, which may include:
  • the reference signal sending module 1401 is configured to send a reference signal to the terminal by using a downlink transmit beam, where a reference signal is transmitted for each downlink transmit beam, and the reference signal of each beam is shaped by using a beamforming weight corresponding to the beam. Issuance, and classifying the reference signal transmitted by the downlink transmit beam of the same beam group into a reference signal set; transmitting relevant information of the reference signal set division to the terminal;
  • the report receiving module 1402 is configured to receive a downlink transmit beam combination reported by the terminal;
  • the beam determining module 1403 is configured to determine, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal.
  • the reference signal sending module is further configured to: when transmitting the reference signal to the terminal simultaneously by using the downlink transmit beams belonging to different beam groups:
  • the downlink transmit beam sent from the same TRP is a beam group
  • the downlink transmit beam sent from a transceiver unit is a beam group.
  • the reference signal sending module is further configured to: when transmitting one reference signal for each downlink transmit beam, including one of the following methods:
  • a reference signal of a downlink transmit beam is mapped to at least one port of at least one transmission opportunity of a reference signal resource for transmission.
  • the reference signal sending module is further configured to: when the H reference signal resource set is configured for the terminal, if the hth reference signal resource set includes N h reference signal resources, all ports of all the transmission opportunities of one reference signal resource are used. When the reference signal of one beam is transmitted, the related information that is divided by the reference signal set is sent to the terminal to notify the configuration information of the reference signal set division by notifying the configuration information of the reference signal resource set; or
  • the fth reference signal resource set includes N f reference signal resources, one reference signal resource has N p antenna ports, and one antenna port of each reference signal resource is used.
  • the related information that is transmitted to the terminal by the reference signal set is configured to notify the reference signal set by the notification reference signal resource set configuration information and the antenna port.
  • the report receiving module is further configured to: when receiving the downlink transmit beam combination reported by the terminal, receive the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs.
  • the beam determining module is further configured to: when receiving the reference signal group information sent by the terminal, determine, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal, including one of the following manners:
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beam corresponding to the reference signal in the same reference signal group is the downlink transmission.
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beams corresponding to the reference signals in the different reference signal packets is the downlink transmit beam. combination.
  • the report receiving module is further configured to receive an overall receiving quality of the reference signal packet reported by the terminal.
  • FIG. 15 is a schematic structural diagram of an apparatus for feeding back beam information on a terminal side, as shown in the figure, which may include:
  • the receiving module 1501 is configured to receive a reference signal that is sent by the base station to the terminal by using a downlink transmit beam, where the base station sends a reference signal for each downlink transmit beam, and the reference signal of each beam uses the beam shaping weight corresponding to the beam. After the shape is sent, and the reference signal sent by the downlink transmit beam of the same beam group is divided into a reference signal set; and the related information of the reference signal set divided by the base station to the terminal is received;
  • a determining module 1502 configured to select Q reference signals from the received reference signals according to the receiving quality, and determine a receiving beam of each reference signal
  • the reporting module 1503 is configured to select a downlink transmit beam combination and report the base station according to the related information divided by the reference signal set.
  • the determining module is further configured to: when determining the receive beam of each reference signal, including: assuming that the terminal has a common Receive beams, each receive beam corresponding to a set of beamforming weights; for a reference signal, each receive beam is used to receive it, and the receive beam with the strongest received signal power is selected as the receive beam of the reference signal.
  • the reference signals of different beams in the downlink transmit beam combination belong to different reference signal sets.
  • the reporting module is further configured to: when selecting the downlink transmit beam combination, include one of the following manners: selecting a reference signal belonging to the same reference signal set among the Q reference signals as a reference signal group, grouped by different reference signals
  • the downlink transmit beam combination formed by the downlink transmit beam corresponding to the reference signal in the reference signal is the downlink transmit beam combination; or, the reference signal belonging to the plurality of reference signal sets among the Q reference signals is selected as a reference signal packet, by different reference signals
  • the downlink transmit beam combination formed by the downlink transmit beam corresponding to the reference signal in the packet is the downlink transmit beam combination; or, the reference signals belonging to different reference signal sets among the Q reference signals are selected as one reference signal packet, and the same reference signal Any combination of the reference signal of the packet does not belong to the same reference signal set, and the combination of the downlink transmit beams corresponding to the reference signal in the same reference signal packet is the downlink transmit beam combination.
  • the reporting module is further configured to: when the downlink transmit beam combination is selected and reported to the base station, report information of the Q reference signals selected by the terminal and reference signal packet related information to which each reference signal belongs.
  • the reporting module is further configured to report the overall reception quality of the reference signal packet to the base station.
  • FIG. 16 is a schematic structural diagram of a base station, as shown in the figure, the base station includes:
  • the processor 1600 is configured to read a program in the memory 1620, and perform the following process: determining, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal;
  • the transceiver 1610 is configured to receive and transmit data under the control of the processor 1600, and perform the following process: transmitting a reference signal to the terminal by using a downlink transmit beam, where a reference signal is transmitted for each downlink transmit beam, and a reference of each beam is used.
  • the signal is sent after the beamforming weight corresponding to the beam is formed, and the reference signal sent by the downlink transmitting beam of the same beam group is divided into a reference signal set; the related information of the reference signal set is transmitted to the terminal; The downlink transmit beam combination reported by the terminal.
  • the base station uses the downlink transmit beams belonging to different beam groups to simultaneously transmit the reference signals to the terminal: the downlink transmit beam sent from the same TRP is a beam group; or the downlink transmit beam sent from one transceiver unit is a beam. group.
  • the base station transmits a reference signal for each downlink transmit beam, including one of the following methods: mapping a reference signal of a downlink transmit beam to all ports of all transmission opportunities of a reference signal resource; and transmitting a downlink transmit beam
  • mapping a reference signal of a downlink transmit beam to all ports of all transmission opportunities of a reference signal resource; and transmitting a downlink transmit beam
  • the reference signal is mapped to all ports of at least one transmission opportunity of a reference signal resource; the reference signal of a downlink transmission beam is mapped to at least one port of at least one transmission opportunity of a reference signal resource for transmission.
  • the base station when the base station configures H reference signal resource sets for the terminal, if the hth reference signal resource set includes Nh reference signal resources, all ports of all the transmission opportunities of one reference signal resource are used to transmit a reference signal of one beam. And transmitting, by the base station, the related information that is divided by the reference signal set to the terminal, by using the configuration information of the notification reference signal resource set to notify the configuration information of the reference signal set division; or, when the base station configures the F reference signal resource sets for the terminal, if the f The reference signal resource set includes N f reference signal resources, and one reference signal resource has N p antenna ports, and when one antenna port of each reference signal resource is used to transmit a reference signal of one beam, the base station sends a reference to the terminal.
  • the related information of the signal set division is configuration information that notifies the reference signal set division by notifying the reference signal resource set configuration information and the antenna port.
  • the base station when the base station receives the downlink transmit beam combination reported by the terminal, the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs are received.
  • the implementation further includes: the base station receiving the reference signal packet information sent by the terminal; and the base station determining, according to the downlink transmit beam combination, a downlink transmit beam that sends data to the terminal, including one of the following manners:
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beam corresponding to the reference signal in the same reference signal group is the downlink transmission.
  • the downlink transmit beams of the two reference signals can be used simultaneously, wherein the combination of the downlink transmit beams corresponding to the reference signals in the different reference signal packets is the downlink transmit beam. combination.
  • the method further includes: receiving an overall reception quality of the reference signal packet reported by the terminal.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1600 and various circuits of memory represented by memory 1620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus interface 1630 provides an interface.
  • the transceiver 1610 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1600 is responsible for managing the bus architecture and general processing, and the memory 1620 can store data used by the processor 1600 in performing operations.
  • the terminal includes:
  • the processor 1700 is configured to read a program in the memory 1720, and perform the following process: selecting Q reference signals from the received reference signals according to the receiving quality, and determining a receiving beam of each reference signal; dividing according to the reference signal set Related information, selecting the downlink transmit beam combination;
  • the transceiver 1710 is configured to receive and send data under the control of the processor 1700, and perform the following process: receiving a reference signal sent by the base station to the terminal by using a downlink transmit beam, where the base station transmits a reference signal for each downlink transmit beam, where The reference signals of the beams are shaped by the beamforming weights corresponding to the beams, and the reference signals transmitted by the downlink transmitting beams of the same beam group are classified into a reference signal set;
  • determining the receive beam of each reference signal includes: assuming that the terminal has a common Receive beams, each receive beam corresponding to a set of beamforming weights; for a reference signal, the terminal separately receives each receive beam, and selects the receive beam with the strongest received signal as the receive beam of the reference signal .
  • the reference signals of different beams in the downlink transmit beam combination belong to different reference signal sets.
  • the downlink transmit beam combination is selected, including one of the following ways:
  • the identifier information of the Q reference signals selected by the terminal and the reference signal packet related information to which each reference signal belongs are reported.
  • the method further includes: reporting, to the base station, an overall reception quality of the reference signal packet.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1700 and various circuits of memory represented by memory 1720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus interface 1740 provides an interface.
  • Transceiver 1710 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1730 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1700 is responsible for managing the bus architecture and general processing, and the memory 1720 can store data used by the processor 1700 in performing operations.
  • the terminal by configuring the reference signal set, the terminal can accurately determine which downlink beams can be used at the same time, so that the terminal and the base station can obtain more accurate beam combination information, and support more. Beam transmission.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种获取、反馈发送波束信息的方法及装置,包括:基站用下行发送波束向终端发送参考信号以及参考信号集合划分的相关信息,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;终端根据接收质量从接收到的参考信号中选择Q个参考信号,以及参考信号集合划分的相关信息,选择下行发送波束组合并上报基站;基站根据建议确定向终端发送数据的下行发送波束。本发明可以使终端和基站获得更准确的波束组合信息,支持多波束传输。

Description

一种获取、反馈发送波束信息的方法及装置
本申请要求在2017年3月31日提交中国专利局、申请号为201710210708.3、发明名称为“一种获取、反馈发送波束信息的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种获取、反馈发送波束信息的方法及装置。
背景技术
鉴于MIMO(Multiple Input Multiple Output,多入多出)技术对于提高峰值速率与系统频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,长期演进升级)等无线接入技术标准都是以MIMO+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对MU-MIMO(Multi-User MIMO,多用户MIMO)技术进行了增强,TM(Transmission Mode,传输模式)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将SU-MIMO(Single-User MIMO,单用户MIMO)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了FD-MIMO(Full dimension MIMO,全维度MIMO)技术支持到32端口,实现全维度以及垂直方向的波束赋形。
为了进一步提升MIMO技术,移动通信系统中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线单元,以及高达128/256/512个收发单元,每个天线单元连接一个收发单元。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对于终端,也可以配置高达32/64个天线单元的天线阵列。通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
全数字天线阵列,每个天线单元都有独立的收发单元,将会使得设备的尺寸、成本和 功耗大幅度上升。特别是对于收发单元的ADC(Analog-Digital Converter,模数转换器)和DAC(Digital Analog Converter,数模转换器),近十年来,其功耗只降低了1/10左右,性能提升也比较有限。为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出,图1为对中频信号加权赋形的模拟波束赋形示意图,图2为对射频信号加权赋形的模拟波束赋形示意图,如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。优点在于所有发射(接收)天线只有一个收发单元,实现简单,降低了成本、尺寸和功耗。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形(数模混合波束赋形)收发架构方案被提出,图3为数模混合波束赋形示意图,如图3所示,发送端和接收端分别有
Figure PCTCN2018079889-appb-000001
Figure PCTCN2018079889-appb-000002
个收发单元,发送端天线单元数
Figure PCTCN2018079889-appb-000003
,接收端天线单元数
Figure PCTCN2018079889-appb-000004
;波束赋形支持的最大并行传输流数量为min
Figure PCTCN2018079889-appb-000005
图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡,具有支撑多个数据流和多个用户同时赋形的能力,同时,复杂度也控制在合理范围内。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端。对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输,需要调整终端侧发送的和基站侧接收的波束赋形权值。波束赋形的权值通常通过发送训练信号获得。下行方向,基站发送下行波束训练信号,终端测量下行波束训练信号,选择出最佳的基站发送波束,并将波束相关的信息反馈给基站,同时选择出对应的最佳接收波束,保存在本地。
现有技术的不足在于:当前反馈的波束相关的信息并不准确。
发明内容
本发明实施例提供了一种获取、反馈发送波束信息的方法及装置,用以解决波束信息的确定和上报问题,使终端和基站获得更准确的波束组合信息,更好的支持多波束传输。
第一方面,本发明实施例中提供了一种获取发送波束信息的方法,包括:
基站用下行发送波束向终端发送参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;基站向终端发送参考信号集合划分的相关信息;基站接收终端上报的所述下行发送波束组合;基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
实施中,在基站用属于不同波束组的下行发送波束同时向终端发送参考信号时:
从同一个TRP发出的下行发送波束为一个波束组;或者,从一个收发单元发出的下行发送波束为一个波束组。
实施中,基站为每个下行发送波束发射一个参考信号,包括如下方式之一:
将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
实施中,当基站为终端配置H个参考信号资源集合,若所述H个参考信号资源集合中的第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合的配置信息来向终端通知参考信号集合划分的配置信息。
当基站为终端配置F个参考信号资源集合,若所述F个参考信号资源集合中的第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合配置信息以及天线端口来向终端通知参考信号集合划分的配置信息。
实施中,在基站接收终端上报的所述下行发送波束组合时,接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,进一步包括:基站接收终端发送的参考信号分组信息;
则基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,进一步包括:接收终端上报的参考信号分组的整体接收质量。
第二方面,本发明实施例中提供了一种反馈发送波束信息的方法,包括:
接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发 射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;终端根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束;终端接收基站向终端发送的参考信号集合划分的相关信息,终端根据参考信号集合划分的相关信息,选择所述下行发送波束组合并上报基站。
实施中,确定每个参考信号的接收波束,包括:假设终端共有
Figure PCTCN2018079889-appb-000006
个接收波束,每个接收波束对应一组波束赋形权值;对于一个参考信号,终端分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
实施中,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
实施中,选择所述下行发送波束组合,包括以下方式之一:
选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,在选择所述下行发送波束组合并上报基站时,上报的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,进一步包括:向基站上报参考信号分组的整体接收质量。
第三方面,本发明实施例中提供了一种获取发送波束信息的装置,包括:
参考信号发送模块,用于用下行发送波束向终端发送参考信号,其中,为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;向终端发送参考信号集合划分的相关信息;上报接收模块,用于接收终端上报的所述下行发送波束组合;波束确定模块,用于根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
实施中,参考信号发送模块进一步用于在用属于不同波束组的下行发送波束同时向终端发送参考信号时:从同一个TRP发出的下行发送波束为一个波束组;或者,
从一个收发单元发出的下行发送波束为一个波束组。
实施中,参考信号发送模块进一步用于在为每个下行发送波束发射一个参考信号时,包括如下方式之一:
将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
实施中,参考信号发送模块进一步用于当为终端配置H个参考信号资源集合,若第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合的配置信息来通知参考信号集合划分的配置信息;或,当为终端配置F个参考信号资源集合,若第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合配置信息以及天线端口来通知参考信号集合划分的配置信息。
实施中,上报接收模块进一步用于在接收终端上报的所述下行发送波束组合时,接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,波束确定模块进一步用于在接收终端发送的参考信号分组信息时,则基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,上报接收模块进一步用于接收终端上报的参考信号分组的整体接收质量。
第四方面,本发明实施例中提供了一种反馈发送波束信息的装置,包括:接收模块,用于接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发 射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;接收基站向终端发送的参考信号集合划分的相关信息;确定模块,用于根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束;上报模块,用于根据参考信号集合划分的相关信息,选择所述下行发送波束组合并上报基站。
实施中,确定模块进一步用于在确定每个参考信号的接收波束时,包括:假设终端共有
Figure PCTCN2018079889-appb-000007
个接收波束,每个接收波束对应一组波束赋形权值;对于一个参考信号,分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
实施中,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
实施中,上报模块进一步用于在选择所述下行发送波束组合时,包括以下方式之一:
选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,上报模块进一步用于在选择所述下行发送波束组合并上报基站时,上报的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,上报模块进一步用于向基站上报参考信号分组的整体接收质量。
第五方面,提供一种基站,该装置包括:处理器、收发机和存储器;所述收发机,用于在所述处理器的控制下接收和发送数据,所述处理器,用于读取所述存储器中的程序,执行上述第一方面中任一项所述的方法。
第六方面,提供一种终端,该装置包括:处理器、收发机和存储器;所述收发机,用于在所述处理器的控制下接收和发送数据,所述处理器,用于读取所述存储器中的程序,执行上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一项所述的方 法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第二方面中任一项所述的方法。
在本发明实施例提供的技术方案中,在基站侧,基站用下行发送波束向终端发送参考信号,并且基站向终端发送参考信号集合划分的相关信息;而终端侧则根据参考信号以及参考信号集合划分的相关信息,选择下行发送波束组合作为建议基站同时使用的下行发送波束组合并上报基站。
其中,由于基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;这样,通过配置参考信号集合,使得终端可以准确的判断哪些下行波束可以同时使用,从而可以使终端和基站获得更准确的波束组合信息,支持多波束传输。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为背景技术中对中频信号加权赋形的模拟波束赋形示意图;
图2为背景技术中对射频信号加权赋形的模拟波束赋形示意图;
图3为背景技术中数模混合波束赋形示意图;
图4为本发明实施例中基站侧获取发送波束信息的方法实施流程示意图;
图5为本发明实施例中终端侧反馈发送波束信息的方法实施流程示意图;
图6为本发明实施例中基站波束分组示例一示意图;
图7为本发明实施例中基站波束分组示例二示意图;
图8为本发明实施例中周期性参考信号资源配置示意图;
图9为本发明实施例中非周期性参考信号资源配置示意图;
图10为本发明实施例中参考信号配置示例一示意图;
图11为本发明实施例中参考信号配置示例二示意图;
图12为本发明实施例中参考信号配置示例三示意图;
图13为本发明实施例中参考信号配置示例四示意图;
图14为本发明实施例中基站侧获取发送波束信息的装置结构示意图;
图15为本发明实施例中终端侧反馈发送波束信息的装置结构示意图;
图16为本发明实施例中基站结构示意图;
图17为本发明实施例中终端结构示意图。
具体实施方式
本发明实施例中将提供获取发送波束信息、反馈发送波束信息的方案,用以解决波束信息的确定和上报问题,使终端和基站获得更准确的波束组合信息,更好的支持多波束传输。下面结合附图对本发明的具体实施方式进行说明。
在说明过程中,将分别从终端与基站侧的实施进行说明,然后还将给出二者配合的实施说明以更好地理解本发明实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当终端与基站分开实施时,其也各自解决终端侧、基站侧的问题,而二者结合使用时,会获得更好的技术效果。
图4为基站侧获取发送波束信息的方法实施流程示意图,如图所示,可以包括:
步骤401、基站用下行发送波束向终端发送参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;
步骤402、基站向终端发送参考信号集合划分的相关信息;
步骤403、基站接收终端上报的下行发送波束组合;
步骤404、基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
图5为终端侧反馈发送波束信息的方法实施流程示意图,如图所示,可以包括:
步骤501、终端接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;
步骤502、终端根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束,Q为大于或等于1的整数;
步骤503、终端接收基站向终端发送的参考信号集合划分的相关信息,终端根据参考信号集合划分的相关信息,选择下行发送波束组合并上报基站。
下面以基站与终端的结合实施进行说明。
假设基站侧共有
Figure PCTCN2018079889-appb-000008
个候选的下行发送波束,每个下行波束对应一组波束赋形权值, 第n个波束的发送波束赋形权值为
Figure PCTCN2018079889-appb-000009
其中K是波束赋形的天线单元数,可以小于基站的天线单元数,例如一个下行波束仅从一个收发单元连接的K个天线单元发出。
对于步骤401的实施,基站用下行发送波束向终端发送参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合。
具体的,基站对候选的下行发送波束进行分组,假设分为G个波束组,G为大于或等于1的整数。
分组的一种可选的依据是:基站可以用属于不同波束组的下行发送波束同时向终端发送信号,即基站可以在一个时刻(例如一个OFDM符号之内)同时使用属于不同波束组的下行发送波束向终端发送信号。
或者,分组的另外一种可选的依据是:基站可以用属于相同波束组的下行发送波束同时向终端发送信号。
或者,基站对候选的下行发送波束进行分组,并将每组之内的波束进一步分为子组,每个子组内的下行发送波束可以同时向终端发送信号,一个组内的不同子组不可同时向终端发送信号。
或者,每个子组内的下行发送波束不可以同时向终端发送信号,一个组内的不同子组内的下行发送波束可以同时向终端发送信号。
相应的,系统可以通过信令将关于分组(包括子组)方式的信息通知给UE。
基站发送下行参考信号。基站为每个候选的下行发送波束发射一个参考信号。例如对于
Figure PCTCN2018079889-appb-000010
个下行发送波束,基站可以发送
Figure PCTCN2018079889-appb-000011
个参考信号。这
Figure PCTCN2018079889-appb-000012
个参考信号之间可以TDM(Time Division Multiplexing,时分复用)、FDM(Frequency Division Mutiplexing,频分复用)、CDM(Code Division Multiplexing,码分复用)复用,或者各种复用方式的组合。例如,在以OFDM为基础的系统中,
Figure PCTCN2018079889-appb-000013
个参考信号可以占用
Figure PCTCN2018079889-appb-000014
个OFDM符号,每个参考信号占用1个OFDM符号,参考信号之间为TDM复用。也可以在一个OFDM符号中发射多个波束的参考信号,他们之间是FDM复用,或者CDM复用。
每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
参考信号是周期性发送,或者非周期性发送。
这里所说的一个参考信号可以是指参考信号在一个发送机会内发送的参考信号,也可 以是指在多个发送机会内发送的参考信号。
这里每个参考信号对应一个下行发送波束。
实施中,在基站用属于不同波束组的下行发送波束同时向终端发送参考信号时:从同一个TRP发出的下行发送波束为一个波束组;从一个收发单元发出的下行发送波束为一个波束组。
具体的可以按照如下方式分组:
A)图6为基站波束分组示例一示意图,如果一个基站由多个TRP(Transmission/Reception Point,发送和接收节点)构成,则从同一个TRP发出的下行发送波束可以分为一组。如图6所示,有2个TRP,TRP1和TRP2,从TRP1发出的波束分为分组1,从TRP2发出的波束分为分组2。
B)图7为基站波束分组示例二示意图,如果一个基站的一个TRP的天线阵列有多个收发单元(例如有多个面板(panel)),则从一个收发单元发出的下行发送波束可以分为一组。如图7所示,有1个TRP,该TRP有2个天线面板,从面板1发出的波束分为分组1,从面板2发出的波束分为分组2。
需要说明的是,基站也有可能通过一个波束组内的多个波束同时向终端发送信号。
实施中,一个参考信号为在一个发送机会内发送的参考信号,或在多个发送机会内发送的参考信号。
具体的,这里所说的一个参考信号可以是指参考信号在一个发送机会内发送的参考信号,也可以是指在多个发送机会内发送的参考信号。
实施中,基站用下行发送波束向终端发送参考信号,基站为每个下行发送波束发射一个参考信号,包括如下方式之一:
将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
一个参考信号资源包括若干时频资源,例如包括一个OFDM符号内的若干个RE(Resource Element,资源单元)。参考信号资源在时域内可以重复出现,例如按照一定的周期重复出现,在一个周期内也可以出现多次。一个参考信号资源在时域内的每次出现称为一个发送机会。
图8为周期性参考信号资源配置示意图,如图8所示,基站为终端配置2个参考信号资源,每个参考信号资源都是周期性出现,在一个周期内,每个参考信号资源重复4次,即有每个周期内4个发送机会。
图9为非周期性参考信号资源配置示意图,如图9所示,基站为终端配置2个参考信号资源,均为非周期性参考信号资源,每次通过非周期触发信令触发参考信号资源。图9的例子中,每次触发后,参考信号资源出现4次,即每次触发该参考信号资源的4个发送机会。
具体实施中,参考信号的映射和传输方式可以如下:
A)将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送。
具体的,一个波束的参考信号映射到一个参考信号资源(例如CSI-RS(channel state information reference signal,信道状态信息参考信号)资源)的所有发送机会的所有端口上发送。也就是说该在参考信号资源上发送的参考信号都使用相同的波束进行传输。
B)将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送。
具体的,一个波束的参考信号映射到一个参考信号资源(例如CSI-RS资源)的若干个(可以是1个)发送机会的所有端口上发送。一个参考信号资源的不同发送机会可以传输不同的波束的参考信号。
C)将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
具体的,一个波束的参考信号映射到一个参考信号资源(例如CSI-RS资源)的若干个(可以是1个)发送机会的若干个(可以是1个)端口上发送。一个参考信号资源的一个发送机会的不同的端口可以传输不同的波束的参考信号。
基站将下行参考信号分为G个参考信号集合。划分的依据是发送参考信号的下行发送波束:用同一个波束组的下行发送波束发送的参考信号划为一个集合。
则,对于步骤402,基站向终端发送参考信号集合划分的相关信息,在实施时可以如下:
A)当基站为终端配置H个参考信号资源集合,若其中第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合的配置信息来向终端通知参考信号集合划分的配置信息。其中,H和h均为大于或等于1的整数,h<=H。
具体的,基站为终端配置H个参考信号资源集合。其中第h个参考信号资源集合包括N h个参考信号资源。一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号。此时,基站可以通过通知参考信号资源集合的配置信息的方式通知参考信号集合的配置信息。
B)当基站为终端配置F个参考信号资源集合,若其中第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合配置信息以及天线端口来向终端通知参考信号集合划分的配置信息。其中,F和f均为大于或等于1的整数,f<=F。
具体的,基站为终端配置F个参考信号资源集合。其中第f个参考信号资源集合包括N f个参考信号资源。一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号。此时,基站可以通过通知参考信号资源集合配置信息以及天线端口的方式通知参考信号集合的配置信息。
相应的,在终端侧步骤501的实施中则为:终端接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合。
对于步骤502的实施,终端根据接收质量从接收到的参考信号中选择Q个参考信号,具体可以是:终端接收基站发送的参考信号,从
Figure PCTCN2018079889-appb-000015
个参考信号中选择Q个参考信号。
终端接收基站发送的参考信号,通过对参考信号的测量,确定
Figure PCTCN2018079889-appb-000016
个参考信号的接收质量,并确定接收每个参考信号的接收波束。
参考信号的接收质量可以通过RSRP(Reference Signal Received Power,参考信号接收功率)表征,也可以用其他的测量量表征。终端根据参考信号的接收质量选择参考信号,例如选择接收质量最高的Q个参考信号,或者选择接收质量高于一定门限的Q个参考信号。
假设终端共有
Figure PCTCN2018079889-appb-000017
个接收波束,每个接收波束对应一组波束赋形权值,则对于步骤502的实施,在确定每个参考信号的接收波束时,可以包括:对于一个参考信号,终端分别尝试使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
具体的,针对一个参考信号,终端确定接收该参考信号的接收波束。
终端的接收波束可以是从候选的接收波束中选择得到。假设终端共有
Figure PCTCN2018079889-appb-000018
个接收波 束,每个接收波束对应一组波束赋形权值,第n个波束的接收波束赋形权值为
Figure PCTCN2018079889-appb-000019
其中L是波束赋形的天线单元数,可以小于终端的天线单元数,例如L个天线单元接收到的信号经波束赋形权值加权后合并送到一个收发单元。
对于一个参考信号,终端可以分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
对于步骤503的实施,终端根据参考信号集合划分的相关信息,选择下行发送波束组合,该组合是终端建议基站同时使用的下行发送波束组合。
具体的,终端根据参考信号集合信息,选择建议基站同时使用的下行发送波束组合(由参考信号代表),从而确定参考信号分组。
终端建议同时使用意味着终端可以同时接收。其中,参考信号集合是基站侧对参考信号进行集合划分得到的;参考信号分组是终端侧根据测量结果对参考信号进行分组得到的。
假设终端的收发单元可以分为R组(R为大于或等于1的整数),每组内至少一个收发单元,每组内的收发单元连接到若干个天线单元。不同收发单元组内的收发单元可以独立的对接收到的信号进行波束赋形,并送到基带处理单元进行后续计算。
终端可以用R个收发单元组分别接收至少R个来自不同方向的波束。因此终端建议的一个下行发送波束组合中可以有R个下行发送波束,也可以少于R个或者多于R个。
对于步骤503的实施,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
具体的,终端建议的可以同时使用的下行发送波束组合中不同波束的参考信号应该属于不同的参考信号集合。
对于步骤503的实施,在选择所述下行发送波束组合时,也即在终端确定参考信号分组时可以包括以下方式之一:
方式一:选择Q个(Q为大于或等于1的整数)参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合。
具体的,Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组。此时,不同参考信号分组内的参考信号所代表的下行发送波束是可以同时使用的。
图10为参考信号配置示例一示意图,如图10所示,基站发送的参考信号属于4个参考信号集合,终端选择参考信号,分为2个参考信号分组,其中参考信号分组1中的参考信号属于参考信号集合1,参考信号分组2中的参考信号属于参考信号集合3。
方式二:选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合。
具体的,Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组。此时,不同参考信号分组内的参考信号所代表的下行发送波束是可以同时使用的。
方式一和方式二中,任意两个属于不同参考信号分组的参考信号必然属于不同的参考信号集合。
图11为参考信号配置示例二示意图,如图11所示,基站发送的参考信号属于4个参考信号集合,终端选择参考信号,分为2个参考信号分组,其中参考信号分组1中的参考信号属于参考集合1和参考信号集合2,参考信号分组2中的参考信号属于参考信号集合3和参考信号集合4。
方式三:选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
具体的,终端选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组。同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合。此时,同一个参考信号分组内的参考信号所代表的下行发送波束是可以同时使用的。
图12为参考信号配置示例三示意图,如图12所示,基站发送的参考信号属于4个参考信号集合,终端有2个收发单元组,终端选择参考信号,分为4个参考信号分组,其中参考信号分组1中的参考信号从参考集合1和参考信号集合2中各选取一个参考信号(RS1,RS6),参考信号分组2中的参考信号从参考信号集合1和参考信号集合2中选取各选取一个参考信号(RS2,RS7)。参考信号分组3中的参考信号从参考集合3和参考信号集合4中各选取一个参考信号(RS9,RS14),参考信号分组4中的参考信号从参考信号集合3和参考信号集合4中选取各选取一个参考信号(RS11,RS16)。
图13为参考信号配置示例四示意图,如图13所示,基站发送的参考信号属于4个参考信号集合,终端有2个收发单元组,终端选择参考信号,分为2个参考信号分组,其中参考信号分组1中的参考信号从参考集合1、参考信号集合2和参考信号集合3中各选取一个参考信号(RS1,RS6,RS10),参考信号分组2中的参考信号从参考信号集合1、参考信号集合2和参考信号集合4中选取各选取一个参考信号(RS2,RS7,RS14)。
具体实施中,上述三种方式可以是基站选择并通知终端,或者终端选择用哪个方式,那么:如果是终端选择的话,终端上报的信息还可以包括分组方式的指示信息;如果是基 站选择的话,基站可以发给终端分组方式的指示信息。
对于步骤503的实施,在选择所述下行发送波束组合并上报基站时,上报的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
具体实施中可以为:终端上报选择的Q个参考信号的标识信息,以及每个参考信号所归属的参考信号分组相关信息。参考信号的标识信息可以是如资源索引、序列索引、时间索引、端口索引,以及它们之间的组合形式等。
对于每个参考信号,上报的信息可以采用如下三元组的形式:
{参考信号标识,参考信号接收质量,参考信号分组标识}
其中,参考信号标识:可以是终端所选择的参考信号在基站发送的
Figure PCTCN2018079889-appb-000020
个参考信号范围的标识,如编号;参考信号接收质量:可以是RSRP,或者其他的指标值;参考信号分组标识:终端对参考信号分组后,例如分为L组,可以用1,2,…,L分别对L个参考信号分组进行标识,对于所选择的参考信号则在上报信息中包括其所属的参考信号分组的标识。
需要说明的是,一个参考信号可以同时属于多个不同的参考信号分组,且其属于不同的参考信号分组时的参考信号接收质量可能不同。
相应的,在上报后,对于步骤403的实施,在基站接收终端上报的所述下行发送波束组合时,接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,还可以进一步包括:终端向基站上报参考信号分组的整体接收质量。
相应的,在基站侧则还可以进一步包括:基站接收终端上报的参考信号分组的整体接收质量。
具体实施中,终端还可以上报一个参考信号分组的整体接收质量,例如是该参考信号分组内的所有参考信号接收质量的平均值,或者是通过该参考信号分组内的所有参考信号所代表的波束向终端进行数据传输的吞吐量预测值、信道容量预测值等。
相应的,在上报后,对于步骤404的实施,如果基站接收终端发送的参考信号分组信息;
则基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
具体的,基站接收终端上报的Q个参考信号的标识信息,每个参考信号所归属的参考信号分组相关信息。
根据接收到的信息,基站可以判断可以同时使用哪些下行发送波束向终端发送数据。根据步骤503中采用的方式,具体判断方式可以为:
1、如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用。
2、如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用。
基站据此选择相应的传输方式,例如通过多个下行发送波束同时发送多个并行数据流实现空分复用,或者将一个数据流通过多个下行发送波束同时发送,实现空间分集传输。
基于同一发明构思,本发明实施例中还提供了一种获取发送波束信息的装置、一种反馈发送波束信息的装置,由于这些装置解决问题的原理与一种获取发送波束信息的方法、一种反馈发送波束信息的方法相似,因此这些装置的实施可以参见方法的实施,重复之处不再赘述。
图14为基站侧获取发送波束信息的装置结构示意图,如图所示,可以包括:
参考信号发送模块1401,用于用下行发送波束向终端发送参考信号,其中,为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;向终端发送参考信号集合划分的相关信息;
上报接收模块1402,用于接收终端上报的下行发送波束组合;
波束确定模块1403,用于根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
实施中,参考信号发送模块进一步用于在用属于不同波束组的下行发送波束同时向终端发送参考信号时:
从同一个TRP发出的下行发送波束为一个波束组;或者,
从一个收发单元发出的下行发送波束为一个波束组。
实施中,参考信号发送模块进一步用于在为每个下行发送波束发射一个参考信号时,包括如下方式之一:
将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
实施中,参考信号发送模块进一步用于当为终端配置H个参考信号资源集合,若第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合的配置信息来通知参考信号集合划分的配置信息;或,
当为终端配置F个参考信号资源集合,若第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合配置信息以及天线端口来通知参考信号集合划分的配置信息。
实施中,上报接收模块进一步用于在接收终端上报的所述下行发送波束组合时,接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,波束确定模块进一步用于在接收终端发送的参考信号分组信息时,根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,上报接收模块进一步用于接收终端上报的参考信号分组的整体接收质量。
图15为终端侧反馈发送波束信息的装置结构示意图,如图所示,可以包括:
接收模块1501,用于接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;接收基站向终端发送的参考信号集合划分的相关信息;
确定模块1502,用于根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束;
上报模块1503,用于根据参考信号集合划分的相关信息,选择下行发送波束组合并上报基站。
实施中,确定模块进一步用于在确定每个参考信号的接收波束时,包括:假设终端共有
Figure PCTCN2018079889-appb-000021
个接收波束,每个接收波束对应一组波束赋形权值;对于一个参考信号,分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
实施中,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
实施中,上报模块进一步用于在选择所述下行发送波束组合时,包括以下方式之一:选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,上报模块进一步用于在选择所述下行发送波束组合并上报基站时,上报的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,上报模块进一步用于向基站上报参考信号分组的整体接收质量。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本发明时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本发明实施例提供的技术方案时,可以按如下方式实施。
图16为基站结构示意图,如图所示,基站中包括:
处理器1600,用于读取存储器1620中的程序,执行下列过程:根据所述下行发送波束组合确定向终端发送数据的下行发送波束;
收发机1610,用于在处理器1600的控制下接收和发送数据,执行下列过程:用下行发送波束向终端发送参考信号,其中,为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;向终端发送参考信号集合划分的相关信 息;接收终端上报的所述下行发送波束组合。
实施中,在基站用属于不同波束组的下行发送波束同时向终端发送参考信号时:从同一个TRP发出的下行发送波束为一个波束组;或者,从一个收发单元发出的下行发送波束为一个波束组。
实施中,基站为每个下行发送波束发射一个参考信号,包括如下方式之一:将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
实施中,当基站为终端配置H个参考信号资源集合,若第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,基站向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合的配置信息来通知参考信号集合划分的配置信息;或,当基站为终端配置F个参考信号资源集合,若第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,基站向终端发送参考信号集合划分的相关信息为通过通知参考信号资源集合配置信息以及天线端口来通知参考信号集合划分的配置信息。
实施中,在基站接收终端上报的所述下行发送波束组合时,接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,进一步包括:基站接收终端发送的参考信号分组信息;则基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,进一步包括:接收终端上报的参考信号分组的整体接收质量。
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1600代表的一个或多个处理器和存储器1620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些 都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1630提供接口。收发机1610可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1600负责管理总线架构和通常的处理,存储器1620可以存储处理器1600在执行操作时所使用的数据。
图17为终端结构示意图,如图所示,终端包括:
处理器1700,用于读取存储器1720中的程序,执行下列过程:根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束;根据参考信号集合划分的相关信息,选择所述下行发送波束组合;
收发机1710,用于在处理器1700的控制下接收和发送数据,执行下列过程:接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;
接收基站向终端发送的参考信号集合划分的相关信息;上报基站下行发送波束组合。
实施中,确定每个参考信号的接收波束,包括:假设终端共有
Figure PCTCN2018079889-appb-000022
个接收波束,每个接收波束对应一组波束赋形权值;对于一个参考信号,终端分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
实施中,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
实施中,选择所述下行发送波束组合,包括以下方式之一:
选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合;或,
选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
实施中,在选择所述下行发送波束组合并上报基站时,上报的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息。
实施中,进一步包括:向基站上报参考信号分组的整体接收质量。
其中,在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1700 代表的一个或多个处理器和存储器1720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1740提供接口。收发机1710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1700负责管理总线架构和通常的处理,存储器1720可以存储处理器1700在执行操作时所使用的数据。
综上所述,在本发明实施例提供的技术方案中,通过配置参考信号集合,使得终端可以准确的判断哪些下行波束可以同时使用,可以使终端和基站获得更准确的波束组合信息,支持多波束传输。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (41)

  1. 一种获取发送波束信息的方法,其特征在于,包括:
    基站用下行发送波束向终端发送参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;
    基站向终端发送参考信号集合划分的相关信息;
    基站接收终端上报的下行发送波束组合;
    基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
  2. 如权利要求1所述的方法,其特征在于,在基站用属于不同波束组的下行发送波束同时向终端发送参考信号时:
    从同一个发送和接收节点TRP发出的下行发送波束为一个波束组;或者,
    从一个收发单元发出的下行发送波束为一个波束组。
  3. 如权利要求1所述的方法,其特征在于,所述基站用下行发送波束向终端发送参考信号,包括如下方式之一:
    将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
  4. 如权利要求1所述的方法,其特征在于,所述基站向终端发送参考信号集合划分的相关信息,包括:
    当基站为终端配置H个参考信号资源集合,若所述H个参考信号资源集合中的第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合的配置信息来向所述终端通知参考信号集合划分的配置信息,H和h均为大于或等于1的整数,h<=H;或,
    当基站为终端配置F个参考信号资源集合,若所述F个参考信号资源集合中的第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合配置信息以及天线端口来向所述终端通知参考信号集合划分的配置信息,F和f均 为大于或等于1的整数,f<=F。
  5. 如权利要求1所述的方法,其特征在于,所述基站接收到的所述下行发送波束组合,是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息,Q为大于或等于1的整数。
  6. 如权利要求1所述的方法,其特征在于,进一步包括:所述基站接收终端发送的参考信号分组信息;
    所述基站根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
    如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
    如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
  7. 如权利要求1至6任一所述的方法,其特征在于,进一步包括:
    所述基站接收终端上报的参考信号分组的整体接收质量。
  8. 一种反馈发送波束信息的方法,其特征在于,包括:
    终端接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;
    所述终端根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束,Q为大于或等于1的整数;
    所述终端接收所述基站发送的参考信号集合划分的相关信息,根据参考信号集合划分的相关信息,选择所述下行发送波束组合并上报给所述基站。
  9. 如权利要求8所述的方法,其特征在于,每个接收波束对应一组波束赋形权值;
    所述确定每个参考信号的接收波束,包括:
    对于一个参考信号,所述终端分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
  10. 如权利要求8所述的方法,其特征在于,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
  11. 如权利要求8所述的方法,其特征在于,所述选择Q个参考信号,并确定每个参 考信号的接收波束,包括:
    选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合,Q为大于或等于1的整数。
  12. 如权利要求8所述的方法,其特征在于,所述上报给所述基站,包括:
    所述终端将选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息上报给所述基站,Q为大于或等于1的整数。
  13. 如权利要求8至12任一所述的方法,其特征在于,进一步包括:
    所述终端向基站上报参考信号分组的整体接收质量。
  14. 一种获取发送波束信息的装置,其特征在于,包括:
    参考信号发送模块,用于用下行发送波束向终端发送参考信号,其中,为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;向终端发送参考信号集合划分的相关信息;
    上报接收模块,用于接收终端上报的所述下行发送波束组合;
    波束确定模块,用于根据所述下行发送波束组合确定向终端发送数据的下行发送波束。
  15. 如权利要求14所述的装置,其特征在于,参考信号发送模块进一步用于在用属于不同波束组的下行发送波束同时向终端发送参考信号时:
    从同一个发送和接收节点TRP发出的下行发送波束为一个波束组;或者,
    从一个收发单元发出的下行发送波束为一个波束组。
  16. 如权利要求14所述的装置,其特征在于,所述参考信号发送模块,进一步用于:在为每个下行发送波束发射一个参考信号时,包括如下方式之一:
    将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端 口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
  17. 如权利要求14所述的装置,其特征在于,所述参考信号发送模块,进一步用于:
    当为终端配置H个参考信号资源集合,若所述H个参考信号资源集合中的第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,通过通知参考信号资源集合的配置信息来向所述终端通知参考信号集合划分的配置信息,H和h均为大于或等于1的整数,h<=H;或,
    当为终端配置F个参考信号资源集合,若所述F个参考信号资源集合中的第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,通过通知参考信号资源集合配置信息以及天线端口来向所述终端通知参考信号集合划分的配置信息,F和f均为大于或等于1的整数,f<=F。
  18. 如权利要求14所述的装置,其特征在于,所述上报接收模块接收的是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息,Q为大于或等于1的整数。
  19. 如权利要求14所述的装置,其特征在于,所述波束确定模块,进一步用于:接收终端发送的参考信号分组信息时,根据所述下行发送波束组合确定向终端发送数据的下行发送波束,包括以下方式之一:
    如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
    如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
  20. 如权利要求14至19任一所述的装置,其特征在于,所述上报接收模块,进一步用于:接收终端上报的参考信号分组的整体接收质量。
  21. 一种反馈发送波束信息的装置,其特征在于,包括:
    接收模块,用于接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个 下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;接收基站向终端发送的参考信号集合划分的相关信息;
    确定模块,用于根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束,Q为大于或等于1的整数;
    上报模块,用于根据参考信号集合划分的相关信息,选择所述下行发送波束组合并上报给所述基站。
  22. 如权利要求21所述的装置,其特征在于,每个接收波束对应一组波束赋形权值;
    所述确定模块,具体用于:对于一个参考信号,分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
  23. 如权利要求21所述的装置,其特征在于,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
  24. 如权利要求21所述的装置,其特征在于,所述上报模块,具体用于:
    选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合,Q为大于或等于1的整数。
  25. 如权利要求21所述的装置,其特征在于,所述上报模块,具体用于:
    将终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息上报给所述基站,Q为大于或等于1的整数。
  26. 如权利要求21至25任一所述的装置,其特征在于,所述上报模块,进一步用于:
    向基站上报参考信号分组的整体接收质量。
  27. 一种基站,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:用下行发送波束通过所述收发机向终端发送参考信号,其中,为每个下行发送波束发射一个参考信号,每个波束 的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;通过所述收发机向终端发送参考信号集合划分的相关信息;通过所述收发机接收终端上报的下行发送波束组合;以及,根据所述下行发送波束组合确定向终端发送数据的下行发送波束;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  28. 如权利要求27所述的基站,其特征在于,所述处理器,具体用于:
    在用属于不同波束组的下行发送波束,通过所述收发机同时向终端发送参考信号时:
    从同一个发送和接收节点TRP发出的下行发送波束为一个波束组;或者,
    从一个收发单元发出的下行发送波束为一个波束组。
  29. 如权利要求27所述的基站,其特征在于,所述处理器,具体用于:
    用下行发送波束向终端发送参考信号,包括如下方式之一:
    将一个下行发送波束的参考信号映射到一个参考信号资源的所有发送机会的所有端口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的所有端口上发送;
    将一个下行发送波束的参考信号映射到一个参考信号资源的至少一个发送机会的至少一个端口上发送。
  30. 如权利要求27所述的基站,其特征在于,所述处理器,具体用于:
    通过所述收发机向终端发送参考信号集合划分的相关信息时:
    当为终端配置H个参考信号资源集合,若所述H个参考信号资源集合中的第h个参考信号资源集合包括N h个参考信号资源,一个参考信号资源的所有发送机会的所有端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合的配置信息来向所述终端通知参考信号集合划分的配置信息,H和h均为大于或等于1的整数,h<=H;或,
    当为终端配置F个参考信号资源集合,若所述F个参考信号资源集合中的第f个参考信号资源集合包括N f个参考信号资源,一个参考信号资源有N p个天线端口,每个参考信号资源所的1个天线端口用于发送一个波束的参考信号时,基站通过通知参考信号资源集合配置信息以及天线端口来向所述终端通知参考信号集合划分的配置信息,F和f均为大于或等于1的整数,f<=F。
  31. 如权利要求27所述的基站,其特征在于,所述接收到的所述下行发送波束组合,是终端选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息,Q为大于或等于1的整数。
  32. 如权利要求27所述的基站,其特征在于,所述处理器,进一步用于:
    通过所述收发机接收终端发送的参考信号分组信息;
    所述处理器,具体用于:根据所述下行发送波束组合确定向终端发送数据的下行发送波束时,包括以下方式之一:
    如果两个参考信号属于同一个参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合;
    如果两个参考信号属于不同参考信号分组,则这两个参考信号的下行发送波束可以同时使用,其中,由不同参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合。
  33. 如权利要求27至32任一所述的基站,其特征在于,所述处理器,进一步用于:
    通过所述收发机接收终端上报的参考信号分组的整体接收质量。
  34. 一种终端,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:通过所述收发机接收基站用下行发送波束向终端发送的参考信号,其中,基站为每个下行发送波束发射一个参考信号,每个波束的参考信号用该波束对应的波束赋形权值赋形之后发出,并且将用同一个波束组的下行发送波束发送的参考信号划为一个参考信号集合;根据接收质量从接收到的参考信号中选择Q个参考信号,并确定每个参考信号的接收波束,Q为大于或等于1的整数;以及,通过所述收发机接收所述基站发送的参考信号集合划分的相关信息,根据参考信号集合划分的相关信息,选择所述下行发送波束组合并上报给所述基站;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  35. 如权利要求34所述的终端,其特征在于,每个接收波束对应一组波束赋形权值;
    所述处理器,具体用于:对于一个参考信号,分别使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该参考信号的接收波束。
  36. 如权利要求34所述的终端,其特征在于,所述下行发送波束组合中不同波束的参考信号属于不同的参考信号集合。
  37. 如权利要求34所述的终端,其特征在于,所述处理器,具体用于:
    选择Q个参考信号中属于同一个参考信号集合的参考信号为一个参考信号分组,由不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于若干个参考信号集合的参考信号作为一个参考信号分组,由 不同参考信号分组中的参考信号对应的下行发送波束构成的下行发送波束组合为所述下行发送波束组合,Q为大于或等于1的整数;或,
    选择Q个参考信号中属于不同参考信号集合的参考信号作为一个参考信号分组,同一个参考信号分组的参考信号任意两个均不属于同一个参考信号集合,同一个参考信号分组中的参考信号对应的下行发送波束构成的组合为所述下行发送波束组合,Q为大于或等于1的整数。
  38. 如权利要求34所述的终端,其特征在于,所述处理器,具体用于:通过所述收发机将选择的Q个参考信号的标识信息以及每个参考信号所归属的参考信号分组相关信息上报给所述基站,Q为大于或等于1的整数。
  39. 如权利要求34至38任一所述的终端,其特征在于,所述处理器,进一步用于:
    通过所述收发机向基站上报参考信号分组的整体接收质量。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1-7任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求8-13任一项所述的方法。
PCT/CN2018/079889 2017-03-31 2018-03-21 一种获取、反馈发送波束信息的方法及装置 WO2018177183A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18774828.0A EP3605869A4 (en) 2017-03-31 2018-03-21 TRANSMISSION BEAM INFORMATION ACQUISITION AND RETURN METHOD
KR1020217040444A KR20210153159A (ko) 2017-03-31 2018-03-21 빔 정보를 획득하기 위한 방법 및 장치 및 빔 정보를 피드백하기 위한 방법 및 장치
JP2019553933A JP7097385B2 (ja) 2017-03-31 2018-03-21 送信ビーム情報を取得する方法と装置、および送信ビーム情報をフィードバックする方法と装置
KR1020197032213A KR20190133237A (ko) 2017-03-31 2018-03-21 빔 정보를 획득하기 위한 방법 및 장치 및 빔 정보를 피드백하기 위한 방법 및 장치
US16/499,260 US10804979B2 (en) 2017-03-31 2018-03-21 Method and device for acquiring and feeding back transmission beam information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210708.3 2017-03-31
CN201710210708.3A CN108667496B (zh) 2017-03-31 2017-03-31 一种获取、反馈发送波束信息的方法及装置

Publications (1)

Publication Number Publication Date
WO2018177183A1 true WO2018177183A1 (zh) 2018-10-04

Family

ID=63675131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079889 WO2018177183A1 (zh) 2017-03-31 2018-03-21 一种获取、反馈发送波束信息的方法及装置

Country Status (7)

Country Link
US (1) US10804979B2 (zh)
EP (1) EP3605869A4 (zh)
JP (1) JP7097385B2 (zh)
KR (2) KR20210153159A (zh)
CN (1) CN108667496B (zh)
TW (1) TWI681680B (zh)
WO (1) WO2018177183A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476559B2 (en) * 2017-05-19 2019-11-12 Micron Technology, Inc. Apparatuses and methods for adaptive spatial diversity in a MIMO-based system
CN111132322B (zh) * 2018-11-01 2022-09-27 北京紫光展锐通信技术有限公司 天线面板确定方法及用户终端、计算机可读存储介质
CN111200872A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 波束上报的方法和通信装置
CN111314952B (zh) * 2018-12-11 2021-11-09 成都华为技术有限公司 一种测量上报的方法及装置
US11800507B2 (en) * 2019-04-03 2023-10-24 Qualcomm Incorporated UE feedback for beam combinations for transmission reception points
CN111132183B (zh) * 2019-12-20 2022-06-07 大唐移动通信设备有限公司 一种波束管理方法和装置
CN111212478B (zh) * 2019-12-30 2022-12-20 达闼机器人股份有限公司 确定通信资源的方法、装置、存储介质及电子设备
CN115226117B (zh) * 2020-02-07 2024-07-02 维沃移动通信有限公司 波束指示方法、装置、设备及介质
CN114071735A (zh) * 2020-08-06 2022-02-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11909493B2 (en) 2021-11-26 2024-02-20 Samsung Electronics Co., Ltd. Wireless communication apparatus for receiving data from multiple transmission and reception points and operating method of the same
CN114885344B (zh) * 2022-07-07 2022-11-18 深圳市中兴微电子技术有限公司 基于mtrp的信号传输方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170033856A1 (en) * 2014-04-23 2017-02-02 China Academy Of Telecommunications Technology Method, system and device for measuring channel state information
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024852A1 (ja) * 2011-08-15 2013-02-21 株式会社エヌ・ティ・ティ・ドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
US9137698B2 (en) * 2012-02-24 2015-09-15 Samsung Electronics Co., Ltd. Beam management for wireless communication
KR101655924B1 (ko) * 2012-03-07 2016-09-08 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
CN103475397B (zh) * 2012-06-08 2018-03-23 中兴通讯股份有限公司 一种三维波束赋形的方法、通信站及移动站
KR101772040B1 (ko) * 2013-01-02 2017-08-29 삼성전자주식회사 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치
EP3080927B1 (en) * 2013-12-13 2021-08-25 Telefonaktiebolaget LM Ericsson (publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
KR102169662B1 (ko) * 2014-03-10 2020-10-23 삼성전자주식회사 무선 통신 시스템에서 빔 결정 장치 및 방법
EP3123802B1 (en) 2014-03-25 2018-10-03 Telefonaktiebolaget LM Ericsson (publ) System and method for beam-based physical random-access
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端
EP3275092B1 (en) 2015-03-27 2019-10-23 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170033856A1 (en) * 2014-04-23 2017-02-02 China Academy Of Telecommunications Technology Method, system and device for measuring channel state information
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on Beam Reporting", 3GPP TSG RAN WG1 MEETING #88, R1-1702077, 17 February 2017 (2017-02-17), XP051209238 *
HUAWEI ET AL.: "Discussion on Downlink Beam Measurement and LJE Reporting Procedure", 3GPP TSG RAN WG1 NR AD HOC MEETING, R1-1700039, 20 January 2017 (2017-01-20), XP051207581 *
ITRI: "Procedure of Beam Management and CSI Acquisition", 3GPP TSG RAN WG1 MEETING #88, R1-1702387, 17 February 2017 (2017-02-17), XP051209541 *
See also references of EP3605869A4 *

Also Published As

Publication number Publication date
US10804979B2 (en) 2020-10-13
KR20210153159A (ko) 2021-12-16
US20200028547A1 (en) 2020-01-23
KR20190133237A (ko) 2019-12-02
TWI681680B (zh) 2020-01-01
JP2020516189A (ja) 2020-05-28
EP3605869A1 (en) 2020-02-05
JP7097385B2 (ja) 2022-07-07
EP3605869A4 (en) 2020-03-11
CN108667496B (zh) 2021-10-26
TW201838440A (zh) 2018-10-16
CN108667496A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018177183A1 (zh) 一种获取、反馈发送波束信息的方法及装置
CN110071749B (zh) 一种天线选择指示方法、装置和系统
TWI673964B (zh) 一種波束處理方法、基地台及移動終端
CN108633006B (zh) 一种上行发送波束确定方法和装置
JP7297052B2 (ja) 信号伝送方法、装置、端末及びネットワーク側機器
US11664876B2 (en) Method and device for training downlink beams
CN108400852B (zh) 一种大尺度信道参数的指示、确定方法、基站及终端
EP3637713B1 (en) Nr uplink codebook configuration method and related device
WO2018059112A1 (zh) 一种天线波束管理方法及相关设备
CN110838862B (zh) 一种波束处理方法、装置、终端及网络侧设备
CN107733505B (zh) 一种波束赋形训练方法、终端和基站
JP2021534674A (ja) データ伝送方法、端末及びネットワーク機器
CN108259071B (zh) 一种被用于多天线传输的ue、基站中的方法和装置
TWI679857B (zh) 一種波束訓練方法、終端及基地台
US11044002B2 (en) Beam control method, base station and user equipment
CN107528616B (zh) 一种大尺度mimo的传输方法和装置
WO2018109562A1 (zh) 多入多出系统中的波束成型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032213

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018774828

Country of ref document: EP

Effective date: 20191031