WO2018173461A1 - 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体 - Google Patents

基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2018173461A1
WO2018173461A1 PCT/JP2018/002038 JP2018002038W WO2018173461A1 WO 2018173461 A1 WO2018173461 A1 WO 2018173461A1 JP 2018002038 W JP2018002038 W JP 2018002038W WO 2018173461 A1 WO2018173461 A1 WO 2018173461A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
denb
information
relay station
station
Prior art date
Application number
PCT/JP2018/002038
Other languages
English (en)
French (fr)
Inventor
晃 亀井
山田 徹
恭二 平田
芹沢 昌宏
祐美子 奥山
政志 下間
長谷川 聡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019507387A priority Critical patent/JPWO2018173461A1/ja
Priority to US16/496,120 priority patent/US10873874B2/en
Publication of WO2018173461A1 publication Critical patent/WO2018173461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to a base station, a radio relay station, a communication method, and a program.
  • 3GPP 3rd Generation Partnership Project
  • relay technology should be supported to expand the area covered by a base station.
  • Non-Patent Document 1 describes a configuration for realizing the relay technology. Specifically, a configuration is described in which a radio relay station RN (Relay Node) relays a radio signal transmitted between a base station DeNB (Donor evolved Node B) and a communication terminal UE (User Equipment). .
  • the radio relay station RN has a part of the function of the base station eNB, and performs radio communication with the communication terminal UE using the function. Furthermore, the radio relay station RN has a part of the function of the communication terminal UE, and connects to the base station DeNB using this function.
  • the radio relay station RN is usually installed at a predetermined location without assuming movement. For this reason, the radio relay station RN does not have a function for executing handover between cells, which is a technique based on movement.
  • the base station DeNB and the radio relay station RN will communicate with a large number of IoT terminals. For this reason, the base station DeNB needs to secure not only the communication terminal UE or IoT terminal that directly communicates but also the communication resources related to the communication terminal UE or IoT terminal that communicate via the relay station RN. However, since the communication resources of the base station DeNB are limited, when the number of IoT terminals increases, the base station DeNB becomes in a high load state, and the communication terminal UE or the IoT terminal cannot communicate with the base station DeNB. The problem occurs.
  • An object of the present disclosure is to provide a base station, a radio relay station, a communication method, and a program that can prevent communication from being disabled when the base station is in a high load state. .
  • the base station is a base station that communicates with a communication terminal via a radio relay station, and detects that the own apparatus is in an overload state exceeding a predetermined load. And when the control unit detects that the wireless relay station is in an overload state, the wireless relay station transmits information on the other base station in order to connect the wireless relay station to another base station that is not in the overload state.
  • a communication unit for transmitting to the relay station is provided.
  • a radio relay station is a radio relay station that relays communication between a base station and a communication terminal, and is in an overload state exceeding a predetermined load.
  • the connection with the first base station is canceled and the connection with the second base station is cancelled.
  • a communication unit is provided.
  • a communication method is a communication method executed in a base station that communicates with a communication terminal via a radio relay station, wherein the base station exceeds a predetermined load. In order to connect the radio relay station to another base station that is not overloaded, information on the other base station is transmitted to the radio relay station.
  • a program according to a fourth aspect of the present disclosure is a program that is executed by a computer that is a base station that communicates with a communication terminal via a wireless relay station, and the base station exceeds an overload state that is determined in advance. And transmits to the wireless relay station information related to the other base station to connect the wireless relay station to another base station that is not overloaded.
  • a base station a radio relay station, a communication method, and a program that can prevent communication from being disabled when the base station is in a high load state.
  • FIG. 1 is a configuration diagram of a communication system according to a first exemplary embodiment
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment. It is a block diagram of DeNB concerning Embodiment 2.
  • FIG. FIG. 6 is a configuration diagram of a relay node according to a second exemplary embodiment. It is a figure which shows the flow of the process at the time of the overload detection in DeNB concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the process at the time of the overload detection in DeNB concerning Embodiment 2.
  • FIG. FIG. 6 is a configuration diagram of a communication system according to a third exemplary embodiment. It is a figure which shows the flow of the process at the time of the overload detection in DeNB concerning Embodiment 3.
  • FIG. It is a figure which shows the flow of the process at the time of the overload detection in DeNB concerning Embodiment 3.
  • FIG. It is a figure which shows the flow of the process at the time of the
  • the communication system in FIG. 1 includes a base station 10, a radio relay station 20, and a communication terminal 30.
  • the base station 10, the radio relay station 20, and the communication terminal 30 may be computer devices that operate by a processor executing a program stored in a memory.
  • the processor may be, for example, a microprocessor, an MPU (Micro Processing Unit), or a CPU (Central Processing Unit).
  • the memory may be a volatile memory or a nonvolatile memory, and may be configured by a combination of a volatile memory and a nonvolatile memory.
  • the processor executes one or more programs including a group of instructions for causing a computer to execute an algorithm described with reference to the following drawings.
  • the base station 10 communicates with the communication terminal 30 via the radio relay station 20.
  • the base station 10 may be a DeNB whose specifications are defined in 3GPP.
  • the radio relay station 20 may be an RN whose specifications are defined in 3GPP.
  • the communication terminal 30 may be a UE whose specifications are defined in 3GPP.
  • the radio relay station 20 performs radio communication with the base station 10 and the communication terminal 30.
  • the base station 10 includes a control unit 11 and a communication unit 12.
  • the control unit 11 and the communication unit 12 may be software or modules that execute processing when the processor executes a program stored in a memory.
  • the control unit 11 and the communication unit 12 may be hardware such as a circuit or a chip.
  • the control unit 11 measures the load state of the base station 10 and detects that the base station 10 is in an overload state exceeding a predetermined load.
  • the load is, for example, the number of radio relay stations 20 and communication terminals 30 that communicate with the base station 10, the amount of data processed by the base station 10, the CPU (Central Processor Unit) usage rate of the base station 10, or the memory of the base station 10 It may be a usage rate or the like. Even if the control unit 11 detects that the load value such as the number of the radio relay stations 20 and the communication terminals 30 communicating with the base station 10 exceeds a predetermined threshold, it is in an overload state. Good. Alternatively, the control unit 11 may detect that the base station 10 is in an overload state when notified by another device that the base station 10 is in an overload state.
  • the communication unit 12 When the control unit 11 detects that the base station 10 is overloaded, the communication unit 12 relates to another base station in order to connect the radio relay station 20 to another base station that is not overloaded. Information is transmitted to the radio relay station 20.
  • the other base station may be a DeNB having a function or an interface that can be connected to a radio relay station, for example.
  • the other base station may be a base station that does not exceed a predetermined load.
  • the information regarding the other base station may be identification information for identifying the other base station, for example. Specifically, the identification information may be an IP (Internet Protocol) address or the like.
  • the radio relay station 20 may determine that the base station 10 is overloaded by receiving information on other base stations. In this case, since the radio relay station 20 has received information on other base stations, the radio relay station 20 can cancel the connection with the base station 10 and newly connect to another base station. That is, the base station 10 can prompt the wireless relay station 20 to connect to another base station by transmitting information related to the other base station to the wireless relay station 20.
  • the base station 10 in FIG. 1 when the base station 10 in FIG. 1 is in an overload state, the base station 10 transmits information related to other base stations in order to connect to the connected radio relay station 20 to other base stations. be able to. As a result, the overloaded base station 10 can reduce the number of communicating devices, and thus can eliminate the overloaded state. As a result, the base station 10 can prevent quality degradation such as communication stoppage due to an overload state.
  • the communication system of FIG. 2 shows a mobile communication system defined in 3GPP.
  • the communication system of FIG. 2 includes an RN 41, a DeNB 42, a DeNB 43, an eNB 44, an eNB 45, an MME (Mobility Management Entity) 46, an SGW (Serving Gateway) 47, and a UE 48.
  • the RN 41 corresponds to the radio relay station 20 in FIG.
  • the DeNB 42 and DeNB 43 correspond to the base station 10 in FIG.
  • the UE 48 corresponds to the communication terminal 30 in FIG.
  • the MME 46 and the SGW 47 are nodes constituting the core network, and may be referred to as a core network node.
  • the MME 46 performs bearer or connection control related to the RN 41 and the UE 48.
  • the SGW 47 processes user data transmitted or received by the RN 41 or the UE 48. Specifically, the SGW 47 performs user data transfer processing and the like.
  • the eNB 44 and the eNB 45 are base stations that support LTE (Long Termination Evolution) as a wireless communication scheme.
  • the DeNB 42 and DeNB 43 are also base stations that support LTE as a wireless communication method.
  • the DeNB 42 and DeNB 43 are base stations that are connected to the RN 41 and control the RN 41, but the eNB 44 and the eNB 45 are not connected to the RN 41.
  • the DeNB 42 being connected to the RN 41 may be a state in which the DeNB 42 can perform wireless communication with the RN 41, for example.
  • the RN 41 performs radio communication with the DeNB 42. Further, the RN 41 relays user data transmitted between the DeNB 42 and the UE 48. Moreover, the dotted line between RN41 and DeNB43 has shown that RN41 can change a connecting point from DeNB42 to DeNB43. The DeNB change process in the RN 41 will be described in detail later.
  • DeNB42 can relay the X2 signaling message transmitted between eNB44 and RN41 by setting X2 interface with eNB44 and RN41.
  • the DeNB 42 has an X2 proxy function.
  • the X2 signaling message is a control message transmitted in the X2 interface.
  • the X2 proxy function also includes relaying user data transmitted between the eNB 44 and the RN 41.
  • the user data may be, for example, GTP (GPRS (General Packet Radio Service) Tunneling Protocol) data.
  • the DeNB 42 can relay the S1 message between the RN 41 and the MME 46 and between the RN 41 and the SGW 47 by setting the S1 interface with the MME 46, the SGW 47, and the RN 41.
  • the DeNB 42 has an S1 proxy function (S1 proxy proxy functionality).
  • the S1 interface may be referred to as an S1-MME interface between the DeNB 42 and the MME 46, and may be referred to as an S1-U interface between the DeNB 42 and the SGW 47.
  • the DeNB 42 terminates the radio line with the RN 41 and sets the Un interface.
  • Setting the Un interface may be paraphrased as setting RRC (Radio Resource Control) Connection, for example.
  • the RN 41 terminates the X2 interface, the S1 interface, and the Un interface.
  • the RN 41 terminates the radio line with the UE 48 and sets the Uu interface.
  • An X2 interface is also set between the eNB 44 and the eNB 45.
  • the DeNB 43 is also set with various interfaces in the same manner as the DeNB 42.
  • a configuration example of the DeNB 42 according to the second embodiment will be described with reference to FIG.
  • a management unit 13 is added to the base station 10 of FIG.
  • the management unit 13 having a configuration different from that in FIG. 1 will be mainly described.
  • the management unit 13 manages the load state of the own device and other DeNBs, for example, the DeNB 42 and the DeNB 43. Furthermore, the management unit 13 may manage the load states of the eNB 44 and the eNB 45. For example, the management unit 13 manages information related to the load state of the own device measured by the control unit 11. Furthermore, the management unit 13 manages information regarding the load state of the DeNB 43 transmitted from the DeNB 43. For example, the DeNB 42 may receive information regarding the load state of the DeNB 43 via the MME 46, and may receive information regarding the load state of the DeNB 43 via the eNB 45 and the eNB 44. Furthermore, the management unit 13 may manage information regarding the load state of the eNB 44 and the eNB 45 transmitted from the eNB 44 and the eNB 45.
  • the management unit 13 may acquire the load state of the DeNB 42 and DeNB 43 from an operation system that manages the load state of the devices constituting the network.
  • the management unit 13 may acquire load states such as the DeNB 42 and the DeNB 43 from the core network node.
  • the management unit 13 may acquire load states of the DeNB 42 and DeNB 43 from the MME 46 that is the core network via the S1 interface.
  • the control unit 11 When the control unit 11 detects that the DeNB 42 is in an overload state, the control unit 11 selects a DeNB that is not in an overload state from the DeNBs managed in the management unit 13. Moreover, the control part 11 may select DeNB with the lowest load, when there exists two or more DeNB which is not an overload state. When the control unit 11 detects that the DeNB 42 is in an overload state, the control unit 11 transmits the identification information of the selected DeNB to the RN 41 via the communication unit 12.
  • the RN 41 includes a control unit 51 and a communication unit 52.
  • the components constituting the RN 41 such as the control unit 51 and the communication unit 52 may be software or modules that execute processing when the processor executes a program stored in the memory.
  • the component which comprises RN41 may be hardware, such as a circuit or a chip
  • the communication unit 52 communicates with the DeNB 42 or DeNB 43.
  • a Un interface, an X2 interface, and an S1 interface are set between the communication unit 52 and the connected DeNB 42 or DeNB 43.
  • the communication unit 52 receives the identification information of the other DeNB from the connected DeNB.
  • the communication unit 52 receives identification information related to the DeNB 43 from the DeNB 42 when the DeNB 42 is connected to the DeNB 42 and the DeNB 42 is overloaded.
  • control unit 51 When the control unit 51 receives the identification information of another DeNB from the connected DeNB via the communication unit 52, the control unit 51 determines to cancel the connection with the connected DeNB. Furthermore, the control part 51 determines connecting with another DeNB using the received identification information.
  • the communication unit 52 cancels the connection with the connected DeNB 42 based on the determination in the control unit 51, for example. Furthermore, the communication unit 52 connects to the DeNB 43 using the identification information of the DeNB 43 transmitted from the DeNB 42.
  • the communication unit 52 communicates with the DeNB 42 or DeNB 43 and also communicates with the UE 48.
  • the DeNB 42 detects that its own device is in an overload state (S11).
  • the DeNB 42 transmits an Overload Indication message to the RN 41 (S12).
  • the DeNB 42 may transmit an Overload Indication message to the RN 41 via the Un interface.
  • the DeNB 42 may transmit an Overload Indication message to all connected RNs.
  • the DeNB 42 may transmit an Overload Indication message to an arbitrary number of RNs from the connected RNs.
  • the DeNB 42 may measure the data processing amount for each RN, select an RN with a large data processing amount or an RN with a small data processing amount, and transmit an Overload Indication message.
  • the Overload Indication message is used to notify the RN 41 that the DeNB 42 is in an overload state.
  • the Overload Indication message includes identification information of the DeNB 43 that is not in an overload state.
  • the RN 41 transmits a connection request message to the DeNB 43 using the identification information of the DeNB 43 included in the Overload Indication message (S13).
  • the connection request message includes identification information regarding the currently connected DeNB 42.
  • the DeNB 43 transmits an RN information request message to the DeNB 42 to which the RN 41 is connected via the eNB 45 and the eNB 44 (S14). Or DeNB43 may transmit a RN connection information request message to DeNB42 via MME46.
  • the DeNB 42 transmits an RN information response message to the DeNB 43 via the eNB 44 and the eNB 45 as a response message to the RN information request message (S15).
  • the RN information response message may include information necessary for the DeNB 43 to establish a session with the RN 41.
  • the RN information response message may include address information assigned to the RN 41, security parameters related to the RN 41, and the like.
  • the DeNB 42 may transmit the RN information response message to the DeNB 43 via the MME 46.
  • the DeNB 43 sets an Un interface with the RN 41 (S16).
  • the DeNB 43 sets the S1-MME interface with the RN 41 and with the MME 46 (S17).
  • the DeNB 43 sets the S1-U interface with the RN 41 and with the SGW 47 (S17).
  • the DeNB 43 sets the X2 interface with the RN 41 and with the eNB 45 (S18). Further, the RN 41 cancels the connection with the DeNB 42 at an arbitrary timing after receiving the Overload / Indication message in Step S12 and after setting the X2 interface in Step S18. To cancel the connection may be to cancel the settings of the Un interface, the X2 interface, and the S1 interface that are set between the RN 41 and the DeNB 42.
  • the DeNB 42 detects that its own device is in an overload state (S21).
  • the DeNB 42 transmits an Overload Indication message to the DeNB 43 via the eNB 44 and the eNB 45 (S22).
  • the Overload Indication message is used to notify the DeNB 43 that the DeNB 42 is in an overload state.
  • the Overload Indication message may include information for identifying the RN 41 being connected.
  • the DeNB 42 may transmit an Overload Indication message to the DeNB 43 via the MME 46.
  • the DeNB 42 manages the load state of surrounding DeNBs, and selects, for example, a DeNB that is not in an overload state or a DeNB that has the lowest load state.
  • the DeNB 42 transmits an Overload Indication message to the selected DeNB 43.
  • the DeNB 43 transmits an RN information request message to the DeNB 42 via the eNB 45 and the eNB 44 (S23). Or DeNB43 may transmit a RN connection information request message to DeNB42 via MME46. The DeNB 43 may transmit an RN information request message in which the identification information of the RN 41 is set to the DeNB 42 in order to request information regarding the RN 41.
  • the DeNB 42 transmits an RN information response message to the DeNB 43 via the eNB 44 and the eNB 45 as a response message to the RN information request message (S24). Or DeNB42 may transmit a RN information response message to DeNB43 via MME46.
  • the DeNB 42 may include information necessary for establishing a session with the RN 41 in the RN information response message.
  • the DeNB 42 may include information necessary for establishing a session with each RN connected to the DeNB 42 in the RN information response message.
  • the DeNB 43 transmits a connection request message to each RN using information included in the RN information response message (S25).
  • FIG. 6 shows that the DeNB 43 transmits a connection request message to the RN 41.
  • steps S26 to S28 are the same as steps S16 to S18, detailed description thereof is omitted.
  • the DeNB transmits, to the RN, the identification information of the DeNB different from the own device. be able to.
  • the RN can change the connection destination from the connected DeNB to another designated DeNB. Thereby, UE connected to RN41 and RN41 can perform communication even when DeNB is in an overloaded state.
  • FIG. 7 shows that the RN 41 communicates with the DeNB 43 via the RN 61.
  • the other configurations in FIG. 7 are the same as those in FIG.
  • a dotted line between RN41 and RN61 in FIG. 7 indicates that RN41 first communicates with DeNB42 and then changes the connection destination from DeNB42 to RN61.
  • RN41 may set a Uu interface with RN61 when connecting to RN61. Further, when the UE 48 and the Uu interface are set, the RN 41 executes the Uu proxy function. Alternatively, the RN 41 may be connected to the UE 48 using near field communication such as Bluetooth (registered trademark) or may be connected using wireless LAN communication. Alternatively, the RN 41 may communicate with the UE 48 using ProSe (Proximity Service) which is a communication method defined for performing D2D (Device-to-Device) communication in 3GPP.
  • ProSe Proximity Service
  • the DeNB 42 detects that its own device is in an overload state (S31). Next, the DeNB 42 transmits an Overload Indication message to the RN 41 (S32).
  • the Overload Indication message is used to notify the RN 41 that the DeNB 42 is in an overload state.
  • the Overload Indication message includes the identification information of the RN 61 that is connected to the DeNB 43 that is not in the overload state.
  • the DeNB 42 may also receive the identification information of the RN connected to each DeNB.
  • the RN 41 transmits a connection request message to the RN 61 using the identification information of the RN 61 included in the Overload Indication message (S33).
  • the connection request message includes identification information regarding the currently connected DeNB 42.
  • the RN 61 transmits an RN information request message to the DeNB 42 to which the RN 41 is connected via the DeNB 43, the eNB 45, and the eNB 44 (S34).
  • the RN 61 may transmit an RN information request message to the DeNB 42 via the DeNB 43 and the MME 46.
  • the DeNB 42 transmits an RN information response message to the RN 61 via the eNB 44, the eNB 45, and the DeNB 43 as a response message to the RN information request message (S35).
  • DeNB42 may transmit a RN information response message to RN61 via MME46 and DeNB43.
  • the RN information response message may include information necessary for the RN 61 to establish a session with the RN 41.
  • the RN information response message may include address information assigned to the RN 41, security parameters related to the RN 41, and the like.
  • the RN 61 sets a Uu interface with the RN 41 (S36).
  • the DeNB 43 updates the setting of the Un interface with the RN 61 when the RN 41 and the RN 61 are connected (S37). Further, the DeNB 43 updates the setting of the S1-MME interface with the RN 61 and with the MME 46 in accordance with the connection between the RN 41 and the RN 61 (S38). Further, the DeNB 43 updates the setting of the S1-U interface with the RN 61 and with the SGW 47 in accordance with the connection between the RN 41 and the RN 61 (S38).
  • the DeNB 43 updates the setting of the X2 interface with the RN 61 and with the eNB 45 as the RN 41 and the RN 61 are connected (S39).
  • the DeNB 42 detects that its own device is in an overload state (S41).
  • the DeNB 42 transmits an Overload Indication message to the RN 61 via the eNB 44, the eNB 45, and the DeNB 43 (S42).
  • the DeNB 42 may transmit an Overload Indication message to the RN 61 via the MME 46 and the DeNB 43.
  • the Overload Indication message is used to notify the RN 61 that the DeNB 42 is in an overload state.
  • the Overload Indication message may include information for identifying the RN 41 being connected.
  • the DeNB 42 may also receive the identification information of the RN connected to each DeNB.
  • the RN 61 transmits an RN information request message to the DeNB 42 via the DeNB 43, eNB 45, and eNB 44 (S43).
  • the RN 61 may transmit an RN information request message to the DeNB 42 via the DeNB 43 and the MME 46.
  • the RN 61 may transmit an RN information request message in which the identification information of the RN 41 is set to the DeNB 42 in order to request information regarding the RN 41.
  • the DeNB 42 transmits an RN information response message to the RN 61 via the eNB 44, the eNB 45, and the DeNB 43 as a response message to the RN information request message (S44). Or DeNB42 may transmit a RN information response message to RN61 via MME46 and DeNB43.
  • the DeNB 42 may include information necessary for establishing a session with the RN 41 in the RN information response message.
  • the DeNB 42 may include information necessary for establishing a session with each RN connected to the DeNB 42 in the RN information response message.
  • the RN 61 transmits a connection request message to each RN using the information included in the RN information response message (S45).
  • FIG. 9 shows that the RN 61 transmits a connection request message to the RN 41.
  • steps S46 to S49 are the same as steps S36 to S39, detailed description thereof is omitted.
  • the RN 41 communicates with the DeNB 43 that is not overloaded via the RN 61. Can do. Thereby, UE connected to RN41 and RN41 can perform communication even when DeNB is in an overloaded state.
  • the above-described embodiment has been described as an example configured with hardware, but is not limited thereto.
  • the present disclosure can also realize processing in a communication terminal, a radio relay station, and a base station by causing a CPU (Central Processing Unit) to execute a computer program.
  • a CPU Central Processing Unit
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a management unit for managing the load status of other base stations is further provided, The communication unit is The base station according to appendix 1, wherein information on the other base station that is not in an overload state is transmitted to the radio relay station.
  • the management unit Managing the load status of the own device together with the load status of the other base station, The communication unit is When the management unit detects that the own device is in an overload state, it indicates to the radio relay station using the Un interface that the information about the other base station and the own device are in an overload state.
  • the communication unit is The base station according to appendix 2, wherein when the management unit detects that the own device is in an overload state, the management unit transmits information indicating that the own device is in an overload state to the other base station. .
  • (Appendix 5) A wireless relay station that relays communication between a base station and a communication terminal, When receiving information about a second base station different from the first base station being connected from the first base station in an overload state exceeding a predetermined load, the first base station A wireless relay station comprising a communication unit that cancels connection with the second base station.
  • the communication unit is The radio relay station according to appendix 5, wherein an RRC connection is established with the second base station, and an S1 interface and an X2 interface are set.
  • the communication unit is 7.
  • (Appendix 8) The communication unit is 7.
  • the radio relay station according to appendix 6, wherein the wireless relay station receives information related to the second base station by receiving a connection request message transmitted from the second base station.
  • Appendix 9 A communication method executed in a base station that communicates with a communication terminal via a wireless relay station, Detecting whether the base station is in an overload condition exceeding a predetermined load; A communication method for transmitting information on the other base station to the radio relay station in order to connect the radio relay station to another base station that is not in an overload state.
  • (Appendix 10) A communication method executed in a radio relay station that relays communication between a base station and a communication terminal, Receiving information on a second base station different from the first base station being connected from the first base station in an overload state exceeding a predetermined load; A communication method for canceling connection with the first base station and connecting with the second base station based on the received information.
  • (Appendix 11) A program that is executed by a computer that is a base station that communicates with a communication terminal via a wireless relay station, Detecting whether the base station is in an overload condition exceeding a predetermined load; A program for causing a computer to transmit information on the other base station to the radio relay station in order to connect the radio relay station to another base station that is not overloaded.
  • Appendix 12 A program to be executed by a computer that is a wireless relay station that relays communication between a base station and a communication terminal, Receiving information on a second base station different from the first base station being connected from the first base station in an overload state exceeding a predetermined load; A program for causing a computer to execute a connection with the second base station by canceling the connection with the first base station based on the received information.

Abstract

基地局が高負荷状態になった場合に、通信を行うことができなくなることを防止することができる基地局を提供することを目的とする。本開示にかかる基地局(10)は、無線中継局(20)を介して通信端末(30)と通信する基地局(10)であって、自装置が予め定められた負荷を超える過負荷状態であることを検出する制御部(11)と、制御部(11)において過負荷状態であることが検出された場合に、無線中継局(20)を過負荷状態ではない他の基地局へ接続させるために、他の基地局に関する情報を無線中継局(20)へ送信する通信部(12)を備える。

Description

基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
 本開示は基地局、無線中継局、通信方法、及びプログラムに関する。
 移動通信技術に関する標準規格を規定する3GPP(3rd Generation Partnership Project)において、基地局がカバーするエリアを拡張するためにリレー技術をサポートすることが定められている。
 非特許文献1には、リレー技術を実現するための構成が記載されている。具体的には、無線中継局RN(Relay Node)が、基地局DeNB(Donor evolved Node B)と通信端末UE(User Equipment)との間において送信される無線信号を中継する構成が記載されている。無線中継局RNは、基地局eNBの機能の一部を有しており、その機能を用いて通信端末UEと無線通信を行う。さらに、無線中継局RNは、通信端末UEの機能の一部を有しており、その機能を用いて、基地局DeNBと接続する。
 また、無線中継局RNは、通常、移動を前提とせず、予め定められた場所に設置される。そのため、無線中継局RNは、移動を前提とした技術である、セル間のハンドオーバを実行するための機能を有していない。
3GPP TS36.300 V14.1.0 (2016-12)
 今後、IoT(Internet Of Things)端末が普及してくると、基地局DeNB及び無線中継局RNは、大量のIoT端末と通信を行うことになる。そのため、基地局DeNBは、直接通信する通信端末UEもしくはIoT端末だけではなく、中継局RNを介して通信を行う通信端末UEもしくはIoT端末に関する通信リソースを確保する必要がある。しかし、基地局DeNBが有する通信リソースは有限であるため、IoT端末が増加した場合、基地局DeNBが高負荷状態となり、通信端末UEもしくはIoT端末は、基地局DeNBと通信を行うことができなくなるという問題が発生する。
 本開示の目的は、基地局が高負荷状態になった場合に、通信を行うことができなくなることを防止することができる基地局、無線中継局、通信方法、及びプログラムを提供することにある。
 本開示の第1の態様にかかる基地局は、無線中継局を介して通信端末と通信する基地局であって、自装置が予め定められた負荷を超える過負荷状態であることを検出する制御部と、前記制御部において過負荷状態であることが検出された場合に、前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する通信部を備える。
 本開示の第2の態様にかかる無線中継局は、基地局と通信端末との間の通信を中継する無線中継局であって、予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信した場合、前記第1の基地局との接続を解消し、前記第2の基地局と接続する通信部を備える。
 本開示の第3の態様にかかる通信方法は、無線中継局を介して通信端末と通信する基地局において実行される通信方法であって、前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する。
 本開示の第4の態様にかかるプログラムは、無線中継局を介して通信端末と通信する基地局であるコンピュータに実行させるプログラムであって、前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する、ことをコンピュータに実行させる。
 本開示により、基地局が高負荷状態になった場合に、通信を行うことができなくなることを防止することができる基地局、無線中継局、通信方法、及びプログラムを提供することができる。
実施の形態1にかかる通信システムの構成図である。 実施の形態2にかかる通信システムの構成図である。 実施の形態2にかかるDeNBの構成図である。 実施の形態2にかかるリレーノードの構成図である。 実施の形態2にかかるDeNBにおける過負荷検出時の処理の流れを示す図である。 実施の形態2にかかるDeNBにおける過負荷検出時の処理の流れを示す図である。 実施の形態3にかかる通信システムの構成図である。 実施の形態3にかかるDeNBにおける過負荷検出時の処理の流れを示す図である。 実施の形態3にかかるDeNBにおける過負荷検出時の処理の流れを示す図である。
 (実施の形態1)
 以下、図面を参照して本開示の実施の形態について説明する。はじめに、図1を用いて本開示の実施の形態1にかかる通信システムの構成例について説明する。図1の通信システムは、基地局10、無線中継局20、及び通信端末30を有している。基地局10、無線中継局20、及び通信端末30は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。プロセッサは、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、もしくはCPU(Central Processing Unit)であってもよい。メモリは、揮発性メモリもしくは不揮発性メモリであってもよく、揮発性メモリ及び不揮発性メモリの組み合わせによって構成されてもよい。プロセッサは、以降の図面を用いて説明されるアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 基地局10は、無線中継局20を介して通信端末30と通信する。基地局10は、3GPPにおいて仕様が規定されているDeNBであってもよい。また、無線中継局20は、3GPPにおいて仕様が規定されているRNであってもよい。また、通信端末30は、3GPPにおいて仕様が規定されているUEであってもよい。無線中継局20は、基地局10及び通信端末30と無線通信する。
 続いて、基地局10の構成例について説明する。基地局10は、制御部11及び通信部12を有している。制御部11及び通信部12は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、制御部11及び通信部12は、回路もしくはチップ等のハードウェアであってもよい。
 制御部11は、基地局10の負荷状態を測定し、基地局10が予め定められた負荷を超える過負荷状態であることを検出する。負荷は、例えば、基地局10と通信する無線中継局20及び通信端末30の数、基地局10が処理するデータ量、基地局10のCPU(Central Processor Unit)使用率、もしくは基地局10のメモリ使用率等であってもよい。制御部11は、基地局10と通信する無線中継局20及び通信端末30の数等の負荷の値が、予め定められた閾値を超えた場合に、過負荷状態であることを検出してもよい。もしくは、制御部11は、他の装置から基地局10が過負荷状態であることを通知された場合に、基地局10が過負荷状態であることを検出してもよい。
 通信部12は、制御部11において基地局10が過負荷状態であることが検出された場合、無線中継局20を過負荷状態ではない他の基地局へ接続させるために、他の基地局に関する情報を無線中継局20へ送信する。他の基地局は、例えば、無線中継局と接続可能な機能もしくはインタフェースを有するDeNBであってもよい。また、他の基地局は、予め定められた負荷を超えていない基地局であってもよい。他の基地局に関する情報は、例えば、他の基地局を識別する識別情報であってもよい。具体的には、識別情報は、IP(Internet Protocol)アドレス等であってもよい。
 無線中継局20は、他の基地局に関する情報を受信することによって、基地局10が過負荷状態であると判定してもよい。この場合、無線中継局20は、他の基地局に関する情報を受信しているため、基地局10との接続を解消し、他の基地局と新たに接続することができる。つまり、基地局10は、無線中継局20へ他の基地局に関する情報を送信することによって、無線中継局20が他の基地局へ接続するように促すことができる。
 以上説明したように、図1の基地局10は、過負荷状態である場合に、接続中の無線中継局20へ、他の基地局へ接続させるために、他の基地局に関する情報を送信することができる。これによって、過負荷状態の基地局10は、通信する装置の数を減少させることができるため、過負荷状態を解消することができる。その結果、基地局10は、過負荷状態による通信停止等の品質低下を防止することができる。
 (実施の形態2)
 続いて、図2を用いて本開示の実施の形態2にかかる通信システムの構成例について説明する。図2の通信システムは、3GPPにおいて規定されている移動通信システムを示している。図2の通信システムは、RN41、DeNB42、DeNB43、eNB44、eNB45、MME(Mobility Management Entity)46、SGW(Serving Gateway)47、及びUE48を有している。RN41は、図1の無線中継局20に相当する。DeNB42及びDeNB43は、図1の基地局10に相当する。UE48は、図1の通信端末30に相当する。
 MME46及びSGW47は、コアネットワークを構成するノードであり、コアネットワークノードと称されてもよい。MME46は、RN41及びUE48に関するベアラもしくはコネクションの制御等を行う。SGW47は、RN41もしくはUE48が送信もしくは受信するユーザデータを処理する。具体的には、SGW47は、ユーザデータの転送処理等を行う。
 eNB44及びeNB45は、無線通信方式としてLTE(Long Term Evolution)をサポートする基地局である。また、DeNB42及びDeNB43も、無線通信方式としてLTEをサポートする基地局である。DeNB42及びDeNB43は、RN41と接続し、RN41を制御する基地局であるが、eNB44及びeNB45は、RN41と接続しない。DeNB42がRN41と接続するとは、例えば、DeNB42がRN41との間において無線通信を行うことができる状態であってもよい。
 RN41は、DeNB42と無線通信を行う。また、RN41は、DeNB42とUE48との間において伝送されるユーザデータを中継する。また、RN41と、DeNB43との間の点線は、RN41が、接続先をDeNB42からDeNB43へ変更することができることを示している。RN41におけるDeNBの変更処理については後に詳述する。
 DeNB42は、eNB44及びRN41とX2インタフェースを設定することによって、eNB44とRN41との間において伝送されるX2シグナリングメッセージを中継することができる。言い換えると、DeNB42は、X2プロキシ機能(X2 proxy functionality)を有する。X2シグナリングメッセージは、X2インタフェースにおいて伝送される制御メッセージである。また、X2プロキシ機能は、eNB44とRN41との間において伝送されるユーザデータを中継することも含む。ユーザデータは、例えば、GTP(GPRS(General Packet Radio Service) Tunneling Protocol)データであってもよい。
 さらに、DeNB42は、MME46、SGW47、及びRN41とS1インタフェースを設定することによって、RN41とMME46との間、さらに、RN41とSGW47との間においてS1メッセージを中継することができる。言い換えると、DeNB42は、S1プロキシ機能(S1 proxy functionality)を有する。S1インタフェースは、具体的には、DeNB42とMME46との間は、S1-MMEインタフェースと称され、DeNB42とSGW47との間は、S1-Uインタフェースと称されてもよい。
 さらに、DeNB42は、RN41との間において無線回線を終端し、Unインタフェースを設定する。Unインタフェースを設定することは、例えば、RRC(Radio Resource Control) Connectionを設定すると言い換えられてもよい。RN41は、X2インタフェース、S1インタフェース、及びUnインタフェースを終端する。
 また、RN41は、UE48との間において無線回線を終端し、Uuインタフェースを設定する。また、eNB44及びeNB45の間にも、X2インタフェースが設定される。また、DeNB43も、DeNB42と同様に各種インタフェースが設定される。
 続いて、図3を用いて実施の形態2にかかるDeNB42の構成例について説明する。DeNB42は、図1の基地局10に管理部13が追加されている。図3においては、図1と異なる構成である管理部13について主に説明する。
 管理部13は、自装置及び他のDeNB、例えば、DeNB42及びDeNB43の負荷状態を管理する。さらに、管理部13は、eNB44及びeNB45の負荷状態を管理してもよい。例えば、管理部13は、制御部11において測定された自装置の負荷状態に関する情報を管理する。さらに、管理部13は、DeNB43から送信されたDeNB43の負荷状態に関する情報を管理する。例えば、DeNB42は、MME46を介してDeNB43の負荷状態に関する情報を受信してもよく、eNB45及びeNB44を介してDeNB43の負荷状態に関する情報を受信してもよい。さらに、管理部13は、eNB44及びeNB45から送信されたeNB44及びeNB45の負荷状態に関する情報を管理してもよい。
 また、管理部13は、DeNB42及びDeNB43等の負荷状態を、ネットワークを構成する装置の負荷状態を管理するオペレーションシステム等から取得してもよい。また、管理部13は、コアネットワークノードからDeNB42及びDeNB43等の負荷状態を取得してもよい。例えば、管理部13は、S1インタフェースを介してコアネットワークであるMME46からDeNB42及びDeNB43等の負荷状態を取得してもよい。
 制御部11は、DeNB42が過負荷状態であることを検出した場合、管理部13において管理されているDeNBの中から、過負荷状態ではないDeNBを選択する。また、制御部11は、過負荷状態ではないDeNBが複数存在する場合、負荷が最も低いDeNBを選択してもよい。制御部11は、DeNB42が過負荷状態であることを検出した場合、通信部12を介して、選択したDeNBの識別情報をRN41へ送信する。
 続いて、図4を用いて実施の形態2にかかるRN41の構成例について説明する。RN41は、制御部51及び通信部52を有している。制御部51及び通信部52等のRN41を構成する構成要素は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、RN41を構成する構成要素は、回路もしくはチップ等のハードウェアであってもよい。
 通信部52は、DeNB42もしくはDeNB43と通信を行う。通信部52と、接続中のDeNB42もしくはDeNB43との間は、Unインタフェース、X2インタフェース、及びS1インタフェースが設定される。通信部52は、接続中のDeNBが過負荷状態になった場合、接続中のDeNBから、他のDeNBの識別情報を受信する。例えば、通信部52は、DeNB42と接続中である場合であって、DeNB42が過負荷状態となった場合に、DeNB42から、DeNB43に関する識別情報を受信する。
 制御部51は、通信部52を介して接続中のDeNBから他のDeNBの識別情報を受信した場合、接続中のDeNBとの接続を解消することを決定する。さらに、制御部51は、受信した識別情報を用いて、他のDeNBと接続することを決定する。
 通信部52は、制御部51における決定に基づいて、例えば、接続中のDeNB42との接続を解消する。さらに、通信部52は、DeNB42から送信されたDeNB43の識別情報を用いて、DeNB43と接続する。
 通信部52は、DeNB42もしくはDeNB43と通信するとともに、UE48とも通信する。
 続いて、図5を用いて実施の形態2にかかるDeNBにおける過負荷検出時の処理の流れについて説明する。図5においては、RN41は、DeNB42と接続中であることを前提とする。さらに、DeNB43が過負荷状態ではないことを前提とする。
 はじめに、DeNB42は、自装置が過負荷状態であることを検出する(S11)。次に、DeNB42は、Overload IndicationメッセージをRN41へ送信する(S12)。例えば、DeNB42は、Unインタフェースを介してOverload IndicationメッセージをRN41へ送信してもよい。DeNB42は、接続中の全てのRNへOverload Indicationメッセージを送信してもよい。もしくは、DeNB42は、接続中のRNの中から、任意の数のRNへOverload Indicationメッセージを送信してもよい。例えば、DeNB42は、RN毎のデータ処理量を測定し、データ処理量が多いRNもしくはデータ処理量が少ないRNを選択し、Overload Indicationメッセージを送信してもよい。
 Overload Indicationメッセージは、RN41へDeNB42が過負荷状態であることを通知するために用いられる。Overload Indicationメッセージは、過負荷状態ではないDeNB43の識別情報を含む。
 次に、RN41は、Overload Indicationメッセージに含まれるDeNB43の識別情報を用いて、DeNB43へ接続要求メッセージを送信する(S13)。接続要求メッセージは、現在接続中のDeNB42に関する識別情報を含む。
 次に、DeNB43は、RN41が接続中のDeNB42へRN情報要求メッセージを、eNB45及びeNB44を介して送信する(S14)。もしくは、DeNB43は、MME46を介してDeNB42へRN接続情報要求メッセージを送信してもよい。
 次に、DeNB42は、RN情報要求メッセージに対する応答メッセージとして、RN情報応答メッセージをeNB44及びeNB45を介してDeNB43へ送信する(S15)。RN情報応答メッセージは、DeNB43がRN41とセッションを確立するために必要な情報を含んでもよい。例えば、RN情報応答メッセージは、RN41に割り当てられているアドレス情報、RN41に関するセキュリティパラメータ等を含んでもよい。また、DeNB42は、RN情報応答メッセージをMME46を介してDeNB43へ送信してもよい。
 次に、DeNB43は、RN41との間にUnインタフェースを設定する(S16)。次に、DeNB43は、RN41との間、及び、MME46との間にS1-MMEインタフェースを設定する(S17)。さらに、DeNB43は、RN41との間、及びSGW47との間にS1-Uインタフェースを設定する(S17)。
 次に、DeNB43は、RN41との間、及び、eNB45との間にX2インタフェースを設定する(S18)。また、RN41は、ステップS12においてOverload Indicationメッセージを受信した後から、ステップS18においてX2インタフェースを設定した後までの任意のタイミングに、DeNB42との間の接続を解消する。接続を解消するとは、RN41とDeNB42との間に設定された、Unインタフェース、X2インタフェース、及びS1インタフェースの設定を解除することであってもよい。
 続いて、図6を用いて、図5とは異なるDeNBにおける過負荷検出時の処理の流れについて説明する。はじめに、DeNB42は、自装置が過負荷状態であることを検出する(S21)。次に、DeNB42は、Overload Indicationメッセージを、eNB44及びeNB45を介して、DeNB43へ送信する(S22)。Overload IndicationメッセージはDeNB43へDeNB42が過負荷状態であることを通知するために用いられる。Overload Indicationメッセージは、接続中のRN41を識別する情報を含んでもよい。また、DeNB42は、MME46を介してOverload IndicationメッセージをDeNB43へ送信してもよい。
 DeNB42は、周囲のDeNBの負荷状態を管理しており、例えば、過負荷状態ではないDeNBもしくは負荷状態が最も低いDeNBを選択する。DeNB42は、選択したDeNB43へ、Overload Indicationメッセージを送信する。
 次に、DeNB43は、DeNB42へRN情報要求メッセージを、eNB45及びeNB44を介して送信する(S23)。もしくは、DeNB43は、MME46を介してDeNB42へRN接続情報要求メッセージを送信してもよい。DeNB43は、RN41に関する情報を要求するために、RN41の識別情報を設定したRN情報要求メッセージをDeNB42へ送信してもよい。
 次に、DeNB42は、RN情報要求メッセージに対する応答メッセージとして、RN情報応答メッセージを、eNB44及びeNB45を介して、DeNB43へ送信する(S24)。もしくは、DeNB42は、MME46を介してRN情報応答メッセージをDeNB43へ送信してもよい。DeNB42は、RN情報要求メッセージに、特定のRN、例えば、RN41の識別情報が設定されている場合、RN41とセッションを確立するために必要な情報をRN情報応答メッセージに含めてもよい。もしくは、DeNB42は、RN情報要求メッセージに、特定のRNが設定されていない場合、DeNB42と接続中のそれぞれのRNとセッションを確立するために必要な情報をRN情報応答メッセージに含めてもよい。
 次に、DeNB43は、RN情報応答メッセージに含まれる情報を用いて、それぞれのRNに対して、接続要求メッセージを送信する(S25)。図6においては、DeNB43が、RN41へ接続要求メッセージを送信することを示している。
 ステップS26~S28は、ステップS16~S18と同様であるため詳細な説明を省略する。
 以上説明したように、実施の形態2にかかる通信システムを用いることにより、DeNBが過負荷状態となった場合に、DeNBは、RNに対して、自装置とは異なるDeNBの識別情報を送信することができる。RNは、接続中のDeNBから、他のDeNBの識別情報を受信した場合、接続中のDeNBから指定された他のDeNBへ、接続先を変更することができる。これによって、RN41及びRN41に接続しているUEは、DeNBが過負荷状態となった場合であっても、通信を行うことができる。
 (実施の形態3)
 続いて、図7を用いて、実施の形態3にかかる通信システムの構成例について説明する。図7の通信システムは、RN41が、RN61を介してDeNB43と通信を行うことが示されている。図7におけるその他の構成は、図2と同様であるため詳細な説明を省略する。図7におけるRN41とRN61との間の点線は、RN41が、はじめにDeNB42と通信を行っており、その後、接続先をDeNB42からRN61へ変更することを示している。
 RN41は、RN61へ接続する際に、RN61との間にUuインタフェースを設定してもよい。また、RN41は、UE48とUuインタフェースを設定している場合、Uuプロキシ機能を実行する。もしくは、RN41は、UE48と、Bluetooth(登録商標)等の近距離無線通信を用いて接続してもよく、無線LAN通信を用いて接続してもよい。もしくは、RN41は、3GPPにおいてD2D(Device to Device)通信を行うために定めれられている通信方式であるProSe(Proximity Service)を用いてUE48と通信を行ってもよい。
 続いて、図8を用いて実施の形態3にかかるDeNBにおける過負荷検出時の処理の流れについて説明する。図8においては、RN41は、DeNB42と接続中であることを前提とする。また、DeNB43は、過負荷状態ではないことを前提とする。
 はじめに、DeNB42は、自装置が過負荷状態であることを検出する(S31)。次に、DeNB42は、Overload IndicationメッセージをRN41へ送信する(S32)。
 Overload Indicationメッセージは、RN41へDeNB42が過負荷状態であることを通知するために用いられる。Overload Indicationメッセージは、過負荷状態ではないDeNB43と接続中のRN61の識別情報を含む。DeNB42は、他のDeNBの負荷状態に関する情報を受信する時に、併せて、それぞれのDeNBと接続中のRNの識別情報も受信していてもよい。
 次に、RN41は、Overload Indicationメッセージに含まれるRN61の識別情報を用いて、RN61へ接続要求メッセージを送信する(S33)。接続要求メッセージは、現在接続中のDeNB42に関する識別情報を含む。
 次に、RN61は、RN41が接続中のDeNB42へRN情報要求メッセージを、DeNB43、eNB45、及びeNB44を介して送信する(S34)。もしくは、RN61は、DeNB43及びMME46を介してDeNB42へRN情報要求メッセージを送信してもよい。
 次に、DeNB42は、RN情報要求メッセージに対する応答メッセージとして、RN情報応答メッセージを、eNB44、eNB45、及びDeNB43を介してRN61へ送信する(S35)。もしくは、DeNB42は、MME46及びDeNB43を介して、RN情報応答メッセージをRN61へ送信してもよい。RN情報応答メッセージは、RN61がRN41とセッションを確立するために必要な情報を含んでもよい。例えば、RN情報応答メッセージは、RN41に割り当てられているアドレス情報、RN41に関するセキュリティパラメータ等を含んでもよい。
 次に、RN61は、RN41との間にUuインタフェースを設定する(S36)。次に、DeNB43は、RN41とRN61とが接続したことに伴い、RN61との間のUnインタフェースの設定を更新する(S37)。さらに、DeNB43は、RN41とRN61とが接続したことに伴い、RN61との間、及び、MME46との間のS1-MMEインタフェースの設定を更新する(S38)。さらに、DeNB43は、RN41とRN61とが接続したことに伴い、RN61との間、及び、SGW47との間のS1-Uインタフェースの設定を更新する(S38)。
 次に、DeNB43は、RN41とRN61とが接続したことに伴い、RN61との間、及び、eNB45との間のX2インタフェースの設定を更新する(S39)。
 続いて、図9を用いて、図8とは異なる、DeNBにおける過負荷検出時の処理の流れについて説明する。はじめに、DeNB42は、自装置が過負荷状態であることを検出する(S41)。次に、DeNB42は、Overload Indicationメッセージを、eNB44、eNB45、及びDeNB43を介して、RN61へ送信する(S42)。もしくは、DeNB42は、Overload Indicationメッセージを、MME46及びDeNB43を介して、RN61へ送信してもよい。Overload Indicationメッセージは、RN61へDeNB42が過負荷状態であることを通知するために用いられる。Overload Indicationメッセージは、接続中のRN41を識別する情報を含んでもよい。DeNB42は、他のDeNBの負荷状態に関する情報を受信する時に、併せて、それぞれのDeNBと接続中のRNの識別情報も受信していてもよい。
 次に、RN61は、DeNB42へRN情報要求メッセージを、DeNB43、eNB45及びeNB44を介して送信する(S43)。もしくは、RN61は、DeNB43及びMME46を介してDeNB42へRN情報要求メッセージを送信してもよい。RN61は、RN41に関する情報を要求するために、RN41の識別情報を設定したRN情報要求メッセージをDeNB42へ送信してもよい。
 次に、DeNB42は、RN情報要求メッセージに対する応答メッセージとして、RN情報応答メッセージを、eNB44、eNB45、及びDeNB43を介して、RN61へ送信する(S44)。もしくは、DeNB42は、MME46及びDeNB43を介して、RN情報応答メッセージをRN61へ送信してもよい。DeNB42は、RN情報要求メッセージに、特定のRN、例えば、RN41の識別情報が設定されている場合、RN41とセッションを確立するために必要な情報をRN情報応答メッセージに含めてもよい。もしくは、DeNB42は、RN情報要求メッセージに、特定のRNが設定されていない場合、DeNB42と接続中のそれぞれのRNとセッションを確立するために必要な情報をRN情報応答メッセージに含めてもよい。
 次に、RN61は、RN情報応答メッセージに含まれる情報を用いて、それぞれのRNに対して、接続要求メッセージを送信する(S45)。図9においては、RN61が、RN41へ接続要求メッセージを送信することを示している。
 ステップS46~S49は、ステップS36~S39と同様であるため詳細な説明を省略する。
 以上説明したように、実施の形態3にかかる通信システムを用いることによって、RN41は、DeNB42が過負荷状態となった場合に、RN61を介して、過負荷状態となっていないDeNB43と通信することができる。これによって、RN41及びRN41に接続しているUEは、DeNBが過負荷状態となった場合であっても、通信を行うことができる。
 上述の実施の形態は、ハードウェアで構成される例として説明したが、これに限定されるものではない。本開示は、通信端末、無線中継局、及び基地局における処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年3月23日に出願された日本出願特願2017-056954を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 無線中継局を介して通信端末と通信する基地局であって、
 自装置が予め定められた負荷を超える過負荷状態であることを検出する制御部と、
 前記制御部において過負荷状態であることが検出された場合に、前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する通信部を備える基地局。
 (付記2)
 他の基地局の負荷状態を管理する管理部をさらに備え、
 前記通信部は、
 過負荷状態ではない前記他の基地局に関する情報を前記無線中継局へ送信する、付記1に記載の基地局。
 (付記3)
 前記管理部は、
 前記他の基地局の負荷状態とともに自装置の負荷状態を管理し、
 前記通信部は、
 前記管理部において、自装置が過負荷状態であることが検出された場合、Unインタフェースを用いて前記無線中継局へ、前記他の基地局に関する情報及び自装置が過負荷状態であることを示す情報を送信する、付記2に記載の基地局。
 (付記4)
 前記管理部は、
 前記他の基地局の負荷状態とともに自装置の負荷状態を管理し、
 前記通信部は、
 前記管理部において、自装置が過負荷状態であることが検出された場合、前記他の基地局へ、自装置が過負荷状態であることを示す情報を送信する、付記2に記載の基地局。
 (付記5)
 基地局と通信端末との間の通信を中継する無線中継局であって、
 予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信した場合、前記第1の基地局との接続を解消し、前記第2の基地局と接続する通信部を備える無線中継局。
 (付記6)
 前記通信部は、
 前記第2の基地局との間において、RRC connectionを確立し、さらに、S1インタフェース及びX2インタフェースを設定する、付記5に記載の無線中継局。
 (付記7)
 前記通信部は、
 Unインタフェースを介して前記第2の基地局に関する情報を受信する、付記6に記載の無線中継局。
 (付記8)
 前記通信部は、
 前記第2の基地局から送信される接続要求メッセージを受信することによって、前記第2の基地局に関する情報を受信する、付記6に記載の無線中継局。
 (付記9)
 無線中継局を介して通信端末と通信する基地局において実行される通信方法であって、
 前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、
 前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する、通信方法。
 (付記10)
 基地局と通信端末との間の通信を中継する無線中継局において実行される通信方法であって、
 予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信し、
 受信した前記情報に基づいて、前記第1の基地局との接続を解消し、前記第2の基地局と接続する、通信方法。
 (付記11)
 無線中継局を介して通信端末と通信する基地局であるコンピュータに実行させるプログラムであって、
 前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、
 前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する、ことをコンピュータに実行させるプログラム。
 (付記12)
 基地局と通信端末との間の通信を中継する無線中継局であるコンピュータに実行させるプログラムであって、
 予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信し、
 受信した前記情報に基づいて、前記第1の基地局との接続を解消し、前記第2の基地局と接続する、ことをコンピュータに実行させるプログラム。
 10 基地局
 11 制御部
 12 通信部
 13 管理部
 20 無線中継局
 30 通信端末
 41 RN
 42 DeNB
 43 DeNB
 44 eNB
 45 eNB
 46 MME
 47 SGW
 48 UE
 51 制御部
 52 通信部
 61 RN

Claims (12)

  1.  無線中継局を介して通信端末と通信する基地局であって、
     自装置が予め定められた負荷を超える過負荷状態であることを検出する制御手段と、
     前記制御手段において過負荷状態であることが検出された場合に、前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する通信手段を備える基地局。
  2.  他の基地局の負荷状態を管理する管理手段をさらに備え、
     前記通信手段は、
     過負荷状態ではない前記他の基地局に関する情報を前記無線中継局へ送信する、請求項1に記載の基地局。
  3.  前記管理手段は、
     前記他の基地局の負荷状態とともに自装置の負荷状態を管理し、
     前記通信手段は、
     前記管理手段において、自装置が過負荷状態であることが検出された場合、Unインタフェースを用いて前記無線中継局へ、前記他の基地局に関する情報及び自装置が過負荷状態であることを示す情報を送信する、請求項2に記載の基地局。
  4.  前記管理手段は、
     前記他の基地局の負荷状態とともに自装置の負荷状態を管理し、
     前記通信手段は、
     前記管理手段において、自装置が過負荷状態であることが検出された場合、前記他の基地局へ、自装置が過負荷状態であることを示す情報を送信する、請求項2に記載の基地局。
  5.  基地局と通信端末との間の通信を中継する無線中継局であって、
     予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信した場合、前記第1の基地局との接続を解消し、前記第2の基地局と接続する通信手段を備える無線中継局。
  6.  前記通信手段は、
     前記第2の基地局との間において、RRC connectionを確立し、さらに、S1インタフェース及びX2インタフェースを設定する、請求項5に記載の無線中継局。
  7.  前記通信手段は、
     Unインタフェースを介して前記第2の基地局に関する情報を受信する、請求項6に記載の無線中継局。
  8.  前記通信手段は、
     前記第2の基地局から送信される接続要求メッセージを受信することによって、前記第2の基地局に関する情報を受信する、請求項6に記載の無線中継局。
  9.  無線中継局を介して通信端末と通信する基地局において実行される通信方法であって、
     前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、
     前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する、通信方法。
  10.  基地局と通信端末との間の通信を中継する無線中継局において実行される通信方法であって、
     予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信し、
     受信した前記情報に基づいて、前記第1の基地局との接続を解消し、前記第2の基地局と接続する、通信方法。
  11.  無線中継局を介して通信端末と通信する基地局であるコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体であって、
     前記基地局が予め定められた負荷を超える過負荷状態であるか否かを検出し、
     前記無線中継局を過負荷状態ではない他の基地局へ接続させるために、前記他の基地局に関する情報を前記無線中継局へ送信する、ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
  12.  基地局と通信端末との間の通信を中継する無線中継局であるコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体であって、
     予め定められた負荷を超える過負荷状態である第1の基地局から、接続中である前記第1の基地局とは異なる第2の基地局に関する情報を受信し、
     受信した前記情報に基づいて、前記第1の基地局との接続を解消し、前記第2の基地局と接続する、ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2018/002038 2017-03-23 2018-01-24 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体 WO2018173461A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019507387A JPWO2018173461A1 (ja) 2017-03-23 2018-01-24 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
US16/496,120 US10873874B2 (en) 2017-03-23 2018-01-24 Base station, radio relay station, and communication method for cancelling a connection to a base station during an overload condition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056954 2017-03-23
JP2017-056954 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173461A1 true WO2018173461A1 (ja) 2018-09-27

Family

ID=63586005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002038 WO2018173461A1 (ja) 2017-03-23 2018-01-24 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体

Country Status (3)

Country Link
US (1) US10873874B2 (ja)
JP (1) JPWO2018173461A1 (ja)
WO (1) WO2018173461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185942A1 (ja) * 2021-03-02 2022-09-09 株式会社デンソー リレーノード及び基地局

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534899A (ja) * 2006-04-19 2009-09-24 ノキア コーポレイション 第1の基地局から第2の基地局への複数の移動局のハンドオーバ
WO2011030836A1 (ja) * 2009-09-09 2011-03-17 京セラ株式会社 無線通信システム、無線基地局、無線中継局及びハンドオーバ制御方法
WO2016163546A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 ユーザ端末

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521836B1 (ko) * 2008-07-25 2015-05-20 알까뗄 루슨트 네트워크들의 토폴로지를 재구성하기 위해 라디오 중계 네트워크들에서 이용된 방법 및 디바이스
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
JP5225191B2 (ja) * 2009-04-28 2013-07-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
WO2011111214A1 (ja) * 2010-03-11 2011-09-15 富士通株式会社 中継局、基地局、移動局、通信システムおよび通信方法
GB2482716A (en) * 2010-08-12 2012-02-15 Nec Corp Resolving MME overload in a LTE-advanced communication system having relay nodes
BR112013013477A2 (pt) * 2010-12-01 2016-10-11 Nec Corp estação radiobase, método de controle de operação, estação base relé, terminal móvel, sistema de comunicação móvel e método de distribuição de carga
EP2575393A2 (en) * 2011-10-01 2013-04-03 Institute for Imformation Industry Base station and transmission path creation method thereof
CN103918343B (zh) * 2011-11-04 2018-11-09 三菱电机株式会社 移动通信系统
WO2013109008A1 (en) * 2012-01-19 2013-07-25 Lg Electronics Inc. The method and apparatus for indicating handover in wireless communication system including mobile relay node
WO2014167767A1 (ja) * 2013-04-10 2014-10-16 日本電気株式会社 無線通信システム、基地局及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534899A (ja) * 2006-04-19 2009-09-24 ノキア コーポレイション 第1の基地局から第2の基地局への複数の移動局のハンドオーバ
WO2011030836A1 (ja) * 2009-09-09 2011-03-17 京セラ株式会社 無線通信システム、無線基地局、無線中継局及びハンドオーバ制御方法
WO2016163546A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 ユーザ端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project: Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UIRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; Overall description; Stage 2 (Release 14)", 3GPP TS 36.300 V14.1.0, December 2016 (2016-12-01), pages 39 - 47, XP055542319 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185942A1 (ja) * 2021-03-02 2022-09-09 株式会社デンソー リレーノード及び基地局

Also Published As

Publication number Publication date
US20200037202A1 (en) 2020-01-30
US10873874B2 (en) 2020-12-22
JPWO2018173461A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5579874B2 (ja) 通信ネットワークにおける中継ノードの特定
KR102293786B1 (ko) 릴레이 가능 사용자 장비(ue)를 통하여 원격 ue 및 통신 네트워크 사이의 접속을 확립하는 방법 및 시스템
JP6399117B2 (ja) モバイル通信システム、及びその方法
JP5795809B2 (ja) バックホール選択をサポートする方法及び装置
JP2021078144A (ja) 制御プレーンCIoT EPS最適化による負荷制御
KR102132062B1 (ko) X2-게이트웨이를 이용한 전송 네트워크 계층 주소 발견
KR20130041996A (ko) 기지국 사이의 핸드오버를 관리하기 위한 방법 및 장치
JP6601495B2 (ja) 無線端末装置、d2dコントローラ、及び方法
US20180092019A1 (en) User equipment apparatus
US20180077610A1 (en) Communication system, base station, access point managing device, terminal, communication method, relay method, and non-transitory computer readable medium
JP2016086282A (ja) 無線端末、ネットワーク装置、及びこれらの方法
US9860792B2 (en) Network device for supporting gateway change in mobile communication system, and method for operating same
CN113661736A (zh) 基站装置、终端装置、无线通信系统以及连接变更方法
WO2018173461A1 (ja) 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
CN109804708B (zh) 控制通信的方法、无线通信设备、接入点和无线通信系统
WO2018173460A1 (ja) 基地局、無線中継局、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
US9351238B2 (en) Method of offloading wireless data in core network using femtocell
JP7405531B2 (ja) 経路指定された信号を転送する中継装置、制御方法、及びプログラム
US20230337085A1 (en) Communication apparatus, control method of communication apparatus, and computer-readable storage medium
JP5831333B2 (ja) 無線通信システム、無線端末、無線基地局及び通信制御方法
WO2016152072A1 (ja) 基地局装置、通信システム、呼処理制御装置、通信方法、呼処理方法及び非一時的なコンピュータ可読媒体
JP6230130B2 (ja) 通信端末、通信システム、通信方法及びプログラム
KR20150101214A (ko) Lte 펨토셀에서 이동통신 단말기의 ip 주소 획득 방법
JP2021029023A (ja) 経路指定された信号を転送する中継装置、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772217

Country of ref document: EP

Kind code of ref document: A1