WO2018173401A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2018173401A1
WO2018173401A1 PCT/JP2017/046266 JP2017046266W WO2018173401A1 WO 2018173401 A1 WO2018173401 A1 WO 2018173401A1 JP 2017046266 W JP2017046266 W JP 2017046266W WO 2018173401 A1 WO2018173401 A1 WO 2018173401A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
information processing
heart rate
energy consumption
exercise
Prior art date
Application number
PCT/JP2017/046266
Other languages
French (fr)
Japanese (ja)
Inventor
脇田 能宏
直也 佐塚
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201780087362.0A priority Critical patent/CN110381833B/en
Priority to EP17901981.5A priority patent/EP3598945B1/en
Priority to US16/486,236 priority patent/US20210282708A1/en
Priority to JP2019506944A priority patent/JP7024780B2/en
Publication of WO2018173401A1 publication Critical patent/WO2018173401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and a program.
  • the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of estimating energy consumption with high accuracy.
  • an acquisition unit that acquires a physical characteristic of a user, and an estimator based on a relationship between the number of beats and energy consumption, the estimator according to the physical characteristic of the user, There is provided an information processing apparatus that estimates energy consumption by an activity performed by a user from the number of beats of the user.
  • An information processing method including estimating energy consumption due to the activity.
  • the user based on the function of acquiring a user's physical characteristics and the relationship between the number of pulsations and energy consumption according to the user's physical characteristics, the user performs from the number of pulsations of the user. And a program for causing a computer to realize the function of estimating the energy consumed by the activity.
  • FIG. 2 is an explanatory diagram illustrating a configuration example of an information processing system 1 according to a first embodiment of the present disclosure.
  • FIG. It is a block diagram showing the composition of wearable device 10 concerning the embodiment.
  • 2 is an explanatory diagram illustrating an example of an appearance of a wearable device 10 according to the embodiment.
  • FIG. It is explanatory drawing which shows another example of the external appearance of the wearable device 10 which concerns on the embodiment.
  • It is a block diagram which shows the structure of the server 30 which concerns on the embodiment.
  • It is a block diagram showing the composition of user terminal 50 concerning the embodiment.
  • FIG. 11 is an explanatory diagram (No. 3) for explaining the operation of the likelihood estimator 236 according to the embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 820 according to Embodiment 1.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 822 according to Embodiment 1.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 824 according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 826 according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 828 according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 830 according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 820 according to Embodiment 1.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 822 according to Embodiment 1.
  • FIG. 10 is an explanatory diagram illustrating an example of a display screen 824 according to
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of an information processing apparatus 900 according to an embodiment of the present disclosure.
  • a plurality of constituent elements having substantially the same or similar functional configuration may be distinguished by attaching different numbers after the same reference numerals. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same or similar functional configuration, only the same reference numerals are given.
  • similar components in different embodiments may be distinguished by attaching different alphabets after the same reference numerals. However, if it is not necessary to distinguish each similar component, only the same reference numerals are given.
  • beat rate includes a heart rate and a pulse rate, and these heart rate and pulse rate can be measured by a heart rate sensor or a pulse sensor.
  • the present inventors examined a method for estimating energy consumption based on user activities. First, a method for measuring energy consumption will be described. There are two main methods for measuring energy consumption: direct calorimetry, which directly measures the generated heat, and indirect calorimetry, which indirectly measures heat from the consumption of oxygen used in the body. There are two types of measurement methods.
  • the energy consumed by the human body is dissipated as heat from the human body, so the energy consumption is measured by directly measuring the heat dissipated from the human body.
  • the measuring device used in the “direct thermal power measurement method” is very large and restricts the activity of the subject to be measured, the situation where energy consumption can be measured by the “direct thermal power measurement method” is limited.
  • the “indirect calorimetry” measures the oxygen concentration and carbon dioxide concentration in the user's breath and calculates the energy consumption from these measurement results.
  • Generation of energy in the human body is done by breaking down fats and sugars taken from food, etc., but in most cases, oxygen taken into the human body by breathing is necessary for such decomposition. Become. Therefore, the consumption amount of oxygen substantially corresponds to the consumed energy.
  • carbon dioxide is generated by such decomposition in the human body, and the generated carbon dioxide is discharged from the human body as part of exhalation. Therefore, it is possible to know the energy consumption by measuring the oxygen concentration and carbon dioxide concentration in the exhaled breath and determining the amount of oxygen consumed in the user's human body from these measured values.
  • the “indirect calorimetry” is not a method for directly measuring the amount of heat generated in the human body, but it is possible to grasp the energy consumption almost accurately by the above-described metabolic mechanism in the human body. Since the breath measurement device used in the “indirect calorimetry” is simpler than the device used in the “direct heat measurement method” described above, the “indirect calorimetry” is a method for measuring energy consumption. It is common to be used. In the following description, it is assumed that the actual measurement value of energy consumption is measured by the above-mentioned “indirect calorimetry”.
  • the “indirect calorimetry” it is necessary to measure the oxygen concentration and carbon dioxide concentration in the exhaled breath, so the subject wears a mask or the like. Therefore, although the “indirect calorimetry” is simpler than the “direct calorimetry”, it is difficult for a general user to easily perform the measurement. Therefore, the present inventors have made extensive studies on a method for obtaining energy consumption by using an easily measurable index.
  • the general user means a person who is not an expert such as a researcher, a doctor, or an athlete.
  • the present inventors know the energy consumption using the number of beats (specifically, heart rate or pulse rate) that is generally said to be highly correlated with the energy consumption.
  • the method was examined repeatedly. Specifically, in various parts of the body, metabolic activities are performed to supplement the consumed energy. At this time, oxygen is consumed and carbon dioxide is generated. It is known that the amount of oxygen consumed and the amount of carbon dioxide produced are not completely proportional but have a monotonic relationship that is almost proportional.
  • the heartbeat is the heart muscles contracting and expanding at a constant rhythm and pulsating.By the heartbeat, blood is sent to the whole body through the arteries, so that oxygen required for metabolism is supplied to each organ of the body. Supplied.
  • heart rate is known to increase or decrease depending on the need to enhance blood circulation in the body, but in relation to energy consumption, the mechanism is linked to the concentration of blood carbon dioxide. It is known that heart rate is controlled. In other words, the heart rate has a property that its numerical value increases or decreases according to the necessity of carbon dioxide excretion, which is one of the necessity for enhancing blood circulation in the body. Therefore, the heart rate has a strong correlation with the consumed energy via the carbon dioxide production amount, and is useful information for estimating the consumed energy.
  • the heart rate means the number of pulsations in the heart per unit time
  • the pulse rate is a change in pressure that occurs on the inner wall of the artery due to blood being sent to the whole body through the artery. This refers to the number of pulsations of an artery appearing on the body surface or the like in a unit time.
  • heart rate sensors that measure heart rate and pulse sensors that measure pulse rate have become compact, and these heart rate sensors and pulse sensors are worn on the user's body and do not limit the user's activities. It became possible to measure the number or pulse rate. For these reasons, the present inventors have studied a method for obtaining energy consumption using the number of beats (heart rate or pulse rate).
  • the heart rate of the user is measured by a heart rate sensor, and the consumed energy is estimated using linear regression or the like based on the measured heart rate.
  • the above-described method is high because, for example, when estimating energy consumption in training using a cardio bike type training device, the heart rate changes according to exercise intensity. It was found that the estimation accuracy can be obtained. However, according to the method described above, it has been found that the estimation accuracy is lowered when the energy consumption at rest is estimated. This is considered to be due to the fact that the heart rate fluctuates not only due to exercise intensity but also due to psychological factors such as tension and excitement.
  • the present inventors examined a method for improving the above-described method and estimating energy consumption using not only the heart rate by the heart rate sensor but also the exercise intensity detected by the acceleration sensor.
  • one of the methods examined by the present inventors is a method of adjusting the contribution rate of the exercise intensity in the linear regression equation for estimating the consumed energy from the heart rate based on the detected exercise intensity. is there. In this method, an attempt is made to improve the estimation accuracy of energy consumption by adjusting the contribution rate.
  • another one of the methods considered is based on the exercise intensity detected by the acceleration sensor, classifying the current user activity state into several types of activity patterns such as a resting state, a walking state, and a running state, This is a method of switching the regression equation to be used according to the classified activity pattern.
  • this method when there is a limit in estimation using a predetermined regression equation, an attempt is made to improve the estimation accuracy of energy consumption by using another regression equation that is optimal for the state.
  • the present inventors have repeatedly studied the above-described method, it has been found that there is a limit to improving the estimation accuracy of energy consumption. More specifically, the energy consumption estimated from the heart rate using the above-mentioned method depends on the user's activity content, etc., and tends to be higher than the actual energy consumption. It was found that it was difficult to improve the estimation accuracy. Furthermore, when estimating the total energy consumption of one user per day by the method described above, sufficient estimation accuracy can be obtained, but when estimating the energy consumption of individual short-term exercise, It was not possible to obtain sufficient estimation accuracy.
  • the relationship between the user's heart rate and energy consumption at a certain point in time is not determined only by the user's exercise intensity or activity state at that point, but depending on the user's physical characteristics. This is because it is influenced by the contents of the user's activities and fluctuates.
  • the regression equation is selected according to the exercise intensity at a certain point in time, the exercise intensity at that point is taken into consideration, but according to the physical characteristics of the user It does not consider the impact of user activity before that time.
  • the energy consumption estimated from the heart rate tends to be higher than the actual energy consumption, and there is a limit to improving the estimation accuracy.
  • the relationship between the user's heart rate and energy consumption varies depending on the user's physical characteristics and is influenced by the previous user's activity content.
  • FIG. 33 shows a time-dependent change 90 in energy consumption and a time-dependent change 92 in heart rate obtained by the above implementation.
  • the time-dependent change 90 in energy consumption increases to a specific value due to the exercise of the subject, but when the exercise ends, it decreases to the same level as the resting state before starting the exercise. I understand that.
  • the time-dependent change 92 of the heart rate also rises due to exercise, and falls as the exercise ends, as with the change 90 of energy consumption over time.
  • the time-dependent change 92 in the heart rate decreases when the exercise is completed, but does not decrease to the same extent as the resting state before the start of exercise.
  • the heart rate change 92 over time changes in the same way as the energy consumption change 92 over the first exercise, but gradually increases as the subject repeats the exercise. More specifically, as shown in FIG. 33, the change over time in the heart rate corresponding to the period in which the exercise is paused (the section 92a protruding downward in FIG. 33) repeats the exercise. Has risen according to. Further, the change over time in the heart rate corresponding to the period during which the exercise is performed (section 92b protruding upward in FIG. 33) also rises as the exercise is repeated.
  • the relationship between the heart rate and the energy consumption can be expressed by a certain regression equation before the separation occurs, but when the separation occurs, the regression is performed. It turns out that it can no longer be expressed by a formula.
  • the separation phenomenon is referred to as an increase phenomenon in the heart rate because only the heart rate increases.
  • the present inventors repeatedly performed the above measurement on a plurality of subjects, it was confirmed that the enhancement phenomenon has reproducibility.
  • the expression pattern of the enhancement phenomenon tends to differ depending on the subject.
  • the exercise exceeds a certain threshold (specifically, when the exercise intensity of the exercise performed exceeds a certain threshold, the number of exercises exceeds the certain threshold)
  • the exercise time of the exercise carried out exceeds a certain threshold value
  • the expression pattern of the enhancement phenomenon differs depending on the subject.
  • the enhancement phenomenon when the enhancement phenomenon is observed only during a period of high exercise intensity, when the enhancement phenomenon is observed only during a period of low exercise intensity such as during exercise pause, the high exercise intensity period and low exercise intensity There is a case where the enhancement phenomenon is observed in both the intensity periods, and the enhancement phenomenon is not observed.
  • the time constant when the enhancement phenomenon was alleviated with time and after the exercise was different from subject to subject.
  • the numerous measurement results obtained by the present inventors were examined, it was found that the expression pattern of the enhancement phenomenon could be classified into several groups according to the tendency of the expression pattern of the enhancement phenomenon.
  • expiratory borrowing is known as a phenomenon in which the heart rate does not decrease immediately when the exercise is finished and the patient moves to rest.
  • the amount of energy per unit time consumed by the human body increases, and the amount of metabolism increases to supply the increased energy consumption.
  • the increased amount of metabolism described above is usually covered by metabolism using oxygen, but when oxygen supply is not in time due to the limitation of cardiopulmonary function, energy is supplied by metabolism without using oxygen.
  • Metabolism that supplies energy without using oxygen in this way is called “expiratory borrowing” or “oxygen borrowing”. This is because metabolism without oxygen accumulates products such as lactic acid in the body, so it is necessary to metabolize those products later with oxygen.
  • metabolism of substances such as lactic acid produced by “exhalation” is a phenomenon accompanied by consumption of oxygen and generation of carbon dioxide, and an increase in the amount of heat consumption is observed by “indirect calorimetry”.
  • expiratory borrowing is a phenomenon in which both energy consumption and heart rate are increased, and it is impossible to explain the state in which the heart rate is increasing despite the energy consumption being reduced to a resting level.
  • the above-mentioned increase phenomenon is due to a factor in which an exercise physiology model has not been established such as “expiration borrowing”, and the heart rate is increased.
  • the present disclosure aims to avoid an estimation error in energy consumption caused by a phenomenon whose mechanism is not clarified.
  • the increase phenomenon is the part of the heart rate increase factor excluding the factor due to carbon dioxide, but the adjustment of the heart rate is done for the purpose of adjusting the blood flow, so the increase factor of the increase phenomenon is also some kind of adaptation in the body Presumed to be done for maintenance. Therefore, the tendency of the enhancement phenomenon is considered to be determined according to various body characteristics such as cardiopulmonary function. For example, when thinking about heat excretion, it is thought that the increase in the blood flow rate for heat transport will cause an increase in heart rate, but the increase in heart rate and the duration of the increase in heart rate are Affected by cardiopulmonary function, sweating function.
  • the cardiopulmonary function is enhanced or the sweating function is enhanced, the heat exhaust efficiency is increased, so that the amount of increase in heart rate is reduced and the duration is shortened. From these characteristics, it is presumed that when physical characteristics are improved by training, the enhancement phenomenon is generally suppressed, and when physical characteristics are temporarily deteriorated due to poor physical condition, it is normal. It is speculated that the phenomenon of enhancement appears stronger than sometimes.
  • the relationship between the heart rate and the energy consumption can be expressed by a predetermined regression equation within a certain range, but the above-mentioned regression is achieved within a range where the heart rate enhancement phenomenon appears. It turns out that it can no longer be expressed by a formula.
  • the above study revealed that the relationship between heart rate and energy consumption fluctuated. Further, it has been found that the fluctuation is caused by the influence of the user's activity content according to the expression pattern of the user's specific heart rate enhancement phenomenon, that is, the user's physical characteristics.
  • the present inventors have created an embodiment of the present disclosure that can estimate the energy consumption with high accuracy even from the heart rate by focusing on the above knowledge. . That is, according to the embodiment of the present disclosure described below, it is possible to estimate the energy consumption with high accuracy by considering the expression pattern of the heart rate enhancement phenomenon that the inventors have independently known. . For example, in the present embodiment, when a heart rate higher than the resting heart rate is detected after exercise of high exercise intensity, in this embodiment, the influence of the enhancement phenomenon on the heart rate is affected. Accurately grasp the contribution and estimate the energy consumption after excluding the contribution.
  • the information processing apparatus and the information processing method according to the embodiment of the present disclosure will be sequentially described in detail.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of an information processing system 1 according to the present embodiment.
  • the information processing system 1 includes a wearable device 10, a server 30, and a user terminal 50, which are connected to each other via a network 70 so as to communicate with each other.
  • the wearable device 10, the server 30, and the user terminal 50 are connected to the network 70 via a base station (not shown) or the like (for example, a mobile phone base station, a wireless LAN access point, or the like).
  • a base station not shown
  • any method can be applied to the network 70 regardless of whether it is wired or wireless, but it is desirable to use a communication method that can maintain stable operation.
  • Wearable device 10 can be a device that can be worn on a part of the user's body, or an implant device (implant terminal) inserted into the user's body. More specifically, the wearable device 10 has various methods such as HMD (Head Mounted Display) type, ear device type, anklet type, bracelet type, collar type, eyewear type, pad type, batch type, and clothing type. Wearable devices can be employed. Furthermore, the wearable device 10 incorporates sensors such as a heart rate sensor that detects a user's heart rate (or a pulse sensor that detects the user's pulse rate) and an acceleration sensor that detects exercise intensity due to the user's exercise. Details of the wearable device 10 will be described later.
  • HMD Head Mounted Display
  • the server 30 is configured by, for example, a computer.
  • the server 30 stores information used in the present embodiment, and distributes information provided by the present embodiment. Details of the server 30 will be described later.
  • the user terminal 50 is a terminal for outputting information provided by the present embodiment to a user or the like.
  • the user terminal 50 can be a device such as a tablet PC (Personal Computer), a smartphone, a mobile phone, a laptop PC, a notebook PC, or an HMD.
  • the information processing system 1 according to the present embodiment is illustrated as including one wearable device 10 and a user terminal 50, but is not limited to this in the present embodiment.
  • the information processing system 1 according to the present embodiment may include a plurality of wearable devices 10 and user terminals 50.
  • the information processing system 1 according to the present embodiment may include other communication devices such as a relay device for transmitting information from the wearable device 10 to the server 30.
  • the wearable device 10 may be used as a stand-alone device. In this case, at least some of the functions of the server 30 and the user terminal 50 are performed in the wearable device 10.
  • FIG. 2 is a block diagram illustrating a configuration of the wearable device 10 according to the present embodiment.
  • 3 and 4 are explanatory diagrams illustrating an example of the appearance of the wearable device 10 according to the present embodiment.
  • FIG. 5 is an explanatory diagram illustrating an example of a wearing state of the wearable device 10 according to the present embodiment.
  • the wearable device 10 includes an input unit (acquisition unit) 100, an output unit 110, a sensor unit (acquisition unit) 120, a control unit 130, a communication unit 140, and a storage unit 150.
  • acquisition unit acquisition unit
  • sensor unit acquisition unit
  • control unit 130 control unit
  • communication unit 140 communication unit
  • storage unit 150 storage unit
  • the input unit 100 receives input of data and commands to the wearable device 10. More specifically, the input unit 100 is realized by a touch panel, a button, a microphone, a drive, or the like.
  • the input unit 100 includes information (cluster information, heart rate fluctuation pattern data, consumption energy fluctuation pattern data, etc.) used for learning by a learning unit 132 described later, a classification unit 134 and an estimation unit 136 described later.
  • Information cluster information, heart rate fluctuation pattern data, energy consumption fluctuation pattern data, etc.
  • Information to be used for classification and estimation is input.
  • the output unit 110 is a device for presenting information to the user.
  • the output unit 110 outputs various types of information to the user by image, sound, light, vibration, or the like.
  • the output unit 110 serves as an instruction unit such as a screen or sound that prompts the user to perform a predetermined exercise Is output.
  • the output unit 110 outputs, as a notification unit, information related to energy consumption estimated by the control unit 130 described later, or outputs information for recommending a predetermined exercise based on the estimated energy consumption.
  • the output unit 110 is realized by a display, a speaker, an earphone, a light emitting element, a vibration module, or the like. Note that the function of the output unit 110 may be provided by the output unit 510 of the user terminal 50 described later.
  • the sensor unit 120 is provided in the wearable device 10 worn on the user's body, and includes a heart rate sensor (heart rate monitor) that detects the user's heart rate.
  • the heart rate sensor measures the heart rate of the user and outputs the measurement result to the control unit 130 described later.
  • the heart rate sensor may be a pulse sensor (pulse meter) that measures the user's pulse rate.
  • the sensor unit 120 may include a motion sensor for detecting the exercise intensity of the user.
  • the motion sensor includes at least an acceleration sensor (accelerometer), detects a change in acceleration caused by a user's operation, and outputs a detection result to the control unit 130 described later.
  • an acceleration change generated in accordance with a user's action is used as an index indicating exercise intensity. Since the acceleration can be measured by an acceleration sensor, and even an ordinary person can easily use the acceleration sensor, the acceleration change is used as an index indicating the exercise intensity here. That is, the sensor unit 120 includes information (heart rate variation pattern data and the like) used for learning by a learning unit 132 described later, and information (heart rate) used for classification and estimation by a classification unit 134 and an estimation unit 136 described later. Number variation pattern data, exercise intensity, etc.).
  • the motion sensor may include a gyro sensor, a geomagnetic sensor, and the like.
  • the sensor unit 120 may include various other sensors such as a GPS (Global Positioning System) receiver, an atmospheric pressure sensor, a temperature sensor, and a humidity sensor.
  • the sensor unit 120 may include a clock mechanism (not shown) that grasps an accurate time, and may associate the acquired time of the heart rate and the like with the acquired heart rate and acceleration change.
  • the control unit 130 is provided in the wearable device 10, and can control each block of the wearable device 10, or can perform calculation using the heart rate and acceleration change output from the sensor unit 120 described above.
  • the control unit 130 is realized by hardware such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). Note that the function of the control unit 130 may be provided by the control unit 330 of the server 30 or the control unit 530 of the user terminal 50 described later.
  • control unit 130 can also function as a learning unit (learning device) 132, a classification unit 134, and an estimation unit 136. That is, the control unit 130 estimates energy consumption based on the relationship between the heart rate and energy consumption. Classification can be performed to perform estimation or learning can be performed. Details of these functional units of the control unit 130 will be described later.
  • the communication unit 140 is provided in the wearable device 10 and can transmit and receive information to and from external devices such as the server 30 and the user terminal 50. In other words, it can be said that the communication unit 140 is a communication interface having a function of transmitting and receiving data.
  • the communication unit 140 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
  • the storage unit 150 is provided in the wearable device 10 and stores a program, information, and the like for the above-described control unit 130 to execute various processes and information obtained by the processes.
  • the storage unit 150 is realized by, for example, a non-volatile memory such as a flash memory.
  • the two sensors of the sensor unit 120, the heart rate sensor and the motion sensor may be provided in separate wearable devices 10.
  • the structure of each wearable device 10 can be made compact, it becomes possible to mount
  • the wearable device 10 can employ various types of wearable devices such as an eyewear type, an ear device type, a bracelet type, and an HMD type.
  • FIG. 3 an example of the external appearance of the wearable device 10 is shown.
  • the wearable device 10a shown in FIG. 3 is an ear device type wearable device worn on both ears of a user.
  • the wearable device 10a mainly includes left and right main body portions 12L and 12R, and a neckband 14 that connects the main body portions 12L and 12R.
  • the main body units 12L and 12R include, for example, at least a part of the input unit 100, the output unit 110, the sensor unit 120, the control unit 130, the communication unit 140, and the storage unit 150 illustrated in FIG.
  • the main body portions 12L and 12R incorporate an earphone (not shown) that functions as the output portion 110, and the user can listen to audio information and the like by wearing the earphone in both ears.
  • FIG. 4 shows another example of the appearance of the wearable device 10.
  • a wearable device 10b shown in FIG. 4 is a bracelet-type wearable device.
  • the wearable device 10b is a wearable terminal worn on a user's arm or wrist, and is also referred to as a wristwatch type wearable device.
  • the wearable device 10b is provided with a touch panel display 16 having functions as the input unit 100 and the output unit 110 in FIG.
  • the outer peripheral surface is provided with a speaker 18 having a sound output function as the output unit 110 and a microphone 20 having a sound collection function as the input unit 100.
  • one or a plurality of wearable devices 10 can be attached to various parts such as a user's head and wrist.
  • FIG. 6 is a block diagram illustrating a configuration of the server 30 according to the present embodiment.
  • the server 30 is configured by a computer, for example. As illustrated in FIG. 6, the server 30 mainly includes an input unit 300, an output unit 310, a control unit 330, a communication unit 340, and a storage unit 350. Below, the detail of each function part of the server 30 is demonstrated.
  • the input unit 300 receives input of data and commands to the server 30. More specifically, the input unit 300 is realized by a touch panel, a keyboard, or the like.
  • the output unit 310 includes, for example, a display, a speaker, a video output terminal, an audio output terminal, and the like, and outputs various types of information using an image or audio.
  • Control unit 330 The control unit 330 is provided in the server 30 and can control each block of the server 30.
  • the control unit 330 is realized by hardware such as a CPU, a ROM, and a RAM, for example. Note that the control unit 330 may execute a part of the functions of the control unit 130 of the wearable device 10.
  • the communication unit 340 is provided in the server 30 and can transmit and receive information to and from external devices such as the wearable device 10 and the user terminal 50.
  • the communication unit 340 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
  • the storage unit 350 is provided in the server 30 and stores a program for the control unit 320 described above to execute various processes and information obtained by the processes. More specifically, the storage unit 350 includes data such as heart rate and energy consumption acquired from the wearable device 10 worn by a plurality of users, map data provided to each user, and data used for estimating energy consumption. Etc. can be stored.
  • the storage unit 350 is realized by a magnetic recording medium such as a hard disk (HD), a nonvolatile memory, or the like, for example.
  • FIG. 7 is a block diagram illustrating a configuration of the user terminal 50 according to the present embodiment.
  • FIG. 8 is explanatory drawing which shows an example of the external appearance and usage type of the user terminal 50 which concerns on this embodiment.
  • the user terminal 50 can be a device such as a tablet PC or a smartphone. As illustrated in FIG. 7, the user terminal 50 mainly includes an input unit 500, an output unit 510, a control unit 530, and a communication unit 540. Below, the detail of each function part of the user terminal 50 is demonstrated.
  • the input unit 500 receives input of data and commands to the user terminal 50. More specifically, the input unit 500 is realized by a touch panel, a keyboard, or the like.
  • the output unit 510 includes, for example, a display, a speaker, a video output terminal, an audio output terminal, and the like, and outputs various types of information using an image or audio. Note that the output unit 510 can also function as the output unit 110 of the wearable device 10 as described above.
  • Control unit 530 is provided in the user terminal 50 and can control each block of the user terminal 50.
  • the control unit 530 is realized by hardware such as a CPU, a ROM, and a RAM, for example.
  • the communication unit 540 can exchange information with an external device such as the server 30.
  • the communication unit 540 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
  • a device such as a tablet PC or a smartphone can be employed as the user terminal 50.
  • a device such as a tablet PC or a smartphone
  • FIG. 8 an example of the external appearance of the user terminal 50a of a tablet-type PC is shown.
  • the user terminal 50a is mounted on the treadmill 52 using a mounting gear 54 for mounting the user terminal 50a.
  • a display as the output unit 510 of the user terminal 50 a can be visually recognized by a user who trains using the treadmill 52.
  • control unit 130 mainly includes three functional units, that is, a learning unit 132, a classification unit 134, and an estimation unit 136. Below, each function part which control part 130 has is explained.
  • the learning unit 132 For each cluster, the learning unit 132 performs machine learning using a heart rate fluctuation pattern due to a change in exercise intensity belonging to the cluster and a consumption energy fluctuation pattern measured simultaneously with the heart rate fluctuation pattern. And the learning part 132 acquires the relationship information which shows the relationship between the fluctuation pattern of the heart rate by the change of exercise intensity, and the fluctuation pattern of consumption energy by the said machine learning for every cluster.
  • a cluster refers to a group of data with a similar tendency that can be estimated using the same model.
  • the tendency of the fluctuation pattern of the heart rate due to the change of exercise intensity is similar, in other words, the tendency of the pattern in which the heart rate enhancement phenomenon appears is similar.
  • Time series data is handled as belonging to the same cluster. Since time series data of multiple heart rates belonging to the same cluster tend to be similar to each other, it is possible to estimate time series data of energy consumption from time series data of heart rates using a common model. It is considered possible.
  • the learning unit 132 is a model that takes into account the expression pattern of the heart rate enhancement phenomenon related to the corresponding cluster in each cluster, and the relationship between the fluctuation pattern of the heart rate due to the change in exercise intensity and the fluctuation pattern of the consumed energy.
  • the relationship information indicating is acquired.
  • Each acquired relationship information is used when estimation is performed in an estimator for each cluster included in the estimation unit 136 described later.
  • there is an estimator for each cluster and the learning unit 132 prepares the relationship information for each cluster for use in estimation of the estimator linked to the cluster.
  • the learning unit 132 can perform learning as follows. As shown in FIG. 9, the learning unit 132 receives a plurality of fluctuation patterns of heart rate due to a change in exercise intensity acquired by wearing the above-described wearable device 10 with respect to a plurality of users.
  • acceleration time-series data 400 indicating a change in exercise intensity and heart-rate time-series data 402 corresponding to the acceleration time-series data 400 are used as a heart rate fluctuation pattern due to a change in exercise intensity.
  • the input acceleration and heart rate time-series data 400 and 402 have clusters as labels 420.
  • the data input to the learning unit 132 is not limited to such acceleration and heart rate time-series data 400 and 402, and is, for example, a heart rate fluctuation pattern in a known exercise intensity change. May be.
  • the input heart rate time-series data 402 includes an expression pattern of an enhancement phenomenon.
  • the learning unit 132 extracts feature points and feature amounts of the time series data 400 and 402 in each cluster by using machine learning using a recurrent neural network or the like, and generates a classification database 234.
  • the classification database generated here can be used to search for clusters when estimating energy consumption. Furthermore, as shown in FIG.
  • the learning unit 132 includes time series data 400 and 402 of acceleration and heart rate belonging to the same cluster, and time series data 404 (energy consumption) of energy consumption acquired by breath measurement at the same time. Measured value).
  • the learning unit 132 performs supervised machine learning using a recurrent neural network or the like using the time series data 400, 402, and 404 as an input signal and a teacher signal, respectively.
  • the learning unit 132 acquires relation information indicating the relationship between the time series data 400 and 402 of acceleration and heart rate and the time series data 404 of energy consumption by the machine learning described above.
  • the learning unit 132 constructs an estimation database 240 that stores the acquired relation information for each cluster.
  • the estimation database 240 constructed for each cluster is used for estimation of energy consumption.
  • the learning unit 132 may perform machine learning using a semi-supervised learning device in order to omit labeling of some time series data 400 and 402 of acceleration and heart rate. In this case, the learning unit 132 compares the unlabeled acceleration and heart rate time series data 400 and 402 determined to be similar to the labeled acceleration and heart rate time series data 400 and 402. By learning to belong to the cluster, it is possible to improve the classification ability.
  • the learning unit 132 may perform weak teacher learning using, for example, a question relating to body characteristics to the user and using cluster information determined based on an answer to the question as a rough teacher signal.
  • the learning unit 132 may perform unsupervised learning that automatically performs cluster extraction using a large amount of data. In this case, the learning unit 132 automatically generates a cluster.
  • the learning unit 132 uses the time series data 400, 402, and 404 of acceleration, heart rate, and consumed energy belonging to the same cluster, and relationship information that indicates the relationship between the heart rate and consumed energy. Is getting. Since these time-series data 400, 402, and 404 belonging to the same cluster have similar tendencies, that is, similar expression patterns of heart rate enhancement phenomenon, specific relationship information is obtained from machine learning as described above. It is easy to find out.
  • time series data 400, 402, 404 obtained from at least several subjects.
  • the construction of the estimation database 240 in the present embodiment is not limited to using the time series data 400, 402, and 404 obtained by performing measurement on the subject.
  • a part of the time series data 400, 402, 404 used for constructing the database 240 may be dummy time series data that artificially reproduces the tendency in the corresponding cluster.
  • the learning method in the learning unit 132 is not limited to the method using machine learning described above, and other learning methods may be used.
  • the classification unit 134 classifies which of a plurality of clusters the input data belongs to before performing estimation by the estimation unit 136 described later. Further, the input data is input to an estimator related to the cluster to which the data belongs, and is used for estimation of energy consumption. Specifically, the classification unit 134 includes a heart rate fluctuation pattern (for example, heart rate time-series data) due to a change in input exercise intensity and a model (for example, a heart rate time series) associated with each cluster. Data) and a model having the smallest difference between the input fluctuation pattern and the model is searched based on the comparison result. Alternatively, the classification unit 134 searches for a model in which the variation pattern and the model are most similar.
  • a heart rate fluctuation pattern for example, heart rate time-series data
  • a model for example, a heart rate time series
  • the heart rate fluctuation pattern is classified as belonging to the cluster related to the searched model.
  • the classification unit 134 searches for a cluster corresponding to the expression pattern of the enhancement phenomenon having the same tendency based on the expression pattern of the enhancement phenomenon of the heart rate of each user.
  • the estimator associated with each cluster performs estimation taking into account the tendency of data belonging to each cluster, that is, the expression pattern of the heart rate enhancement phenomenon, so that the estimation accuracy is improved by using such an estimator. Can be made.
  • the classification unit 134 may use the classification database 234 generated by the learning unit 132. In this way, the classification unit 134 can search for a cluster to which a plurality of fluctuation patterns of heart rate due to changes in exercise intensity newly acquired for estimation belong.
  • the classification unit 134 may perform classification by estimating likelihood, for example.
  • the classification using the likelihood will be described with reference to FIGS.
  • Likelihood is an index that indicates the reliability or probability of estimation based on input data.
  • an estimator for estimating energy consumption for each cluster is prepared in advance. First, in each estimator, acceleration time-series data 400 indicating a change in exercise intensity, and heart rate time-series data 402 corresponding to the acceleration time-series data 400, as a heart rate fluctuation pattern due to a change in exercise intensity, Is input, and time series data 406 of energy consumption is estimated.
  • the estimated time series data 406 of the estimated consumed energy is used as the time series data 406 of the estimated consumed energy. Call it.
  • the classification unit 134 has a plurality of likelihood estimators 236 as shown in FIG.
  • the likelihood estimator 236 is provided so as to correspond to the estimator prepared for each cluster, and calculates the estimation likelihood by the corresponding estimator.
  • the likelihood estimator 236 includes the above-described acceleration time-series data 400, heart rate time-series data 402, time-series data 406 of estimated consumption energy by the corresponding estimator, and simultaneously by expiration measurement.
  • the acquired time series data 404 of consumed energy is input.
  • the likelihood estimator 236 calculates an estimated likelihood 408 using these input data.
  • the likelihood estimator 236 generates a likelihood estimation database 238 including the estimated likelihood 408 obtained in this way.
  • Each likelihood estimator 236 calculates the estimated likelihood 408 as described above.
  • the classification unit 134 compares the estimated likelihoods 408 calculated by the respective likelihood estimators 236.
  • High estimation likelihood 408 means that estimation is performed with high reliability using time series data 400 and 402 of acceleration and heart rate. Therefore, it can be said that the estimator and the cluster having the highest estimated likelihood 408 are the most suitable estimator and cluster for the time series data 400 and 402 of the acceleration and the heart rate. Therefore, the time series data 400 and 402 of acceleration and heart rate are classified as belonging to the cluster related to the estimator corresponding to the likelihood estimator 236 having the highest estimated likelihood 408. For example, in the example of FIG. 12, since the estimated likelihood 408b calculated by the likelihood estimator 236b of cluster 2 is the highest, the time series data 400a and 402a of acceleration and heart rate are classified as belonging to cluster 2. Is done.
  • each likelihood estimator 236 may search for a numerical value of the parameter 410 such that the calculated estimated likelihood 408 becomes higher as shown in FIG.
  • the classification unit 134 searches for a cluster to which the time series data 400a and 402a of acceleration and heart rate belong, using the estimated likelihood 408 obtained after optimizing the numerical value of the parameter 410.
  • the optimized parameter 410 may be used in estimation by the estimation unit 136 described later. By using the parameter 410 optimized in this way in estimation, the estimation accuracy of energy consumption can be further improved.
  • the parameter 410 can be, for example, a numerical value used for normalizing the time-series data 400 of the heart rate before being input to each estimator.
  • the energy consumption can be estimated with higher accuracy by normalizing the heart rate time-series data 400 with a predetermined value and inputting the normalized value into the estimator.
  • the parameter 410 can include a heart rate at a moderate exercise intensity (for example, a heart rate in running at about 9 km / h). It is known that when the heart rate time-series data 400 is normalized with such a heart rate and the consumed energy is estimated using the normalized heart rate time-series data 400, the estimation accuracy is improved. .
  • the likelihood estimator 236 slightly shakes a value with a standard heart rate (for example, an average value of heart rates measured from a large number of subjects) at a moderate exercise intensity as a central value.
  • the value of the parameter 410 that maximizes the estimated likelihood 408 can be searched (perturbation method).
  • the normalization parameter may be acquired by causing the user to perform an exercise corresponding to a moderate exercise intensity and measuring the heart rate.
  • Examples of other parameters 410 include numerical values used when normalizing acceleration time-series data, numerical values for correcting acceleration time-series data in accordance with the behavior of each user, etc. Can be mentioned.
  • acceleration is used as an index indicating exercise intensity.
  • the position of the portion where the acceleration sensor is attached and the user's movement habit (such as shaking a large arm portion even at low speeds) Etc. the relationship between exercise intensity and acceleration changes. Accordingly, the accuracy of estimation of energy consumption can be improved by correcting the time-series data of acceleration with an appropriate parameter 410 and inputting it to the estimator in accordance with the part where the acceleration sensor is mounted or the user's behavior.
  • the parameter 410 searched for in each likelihood estimator 236 is not limited to the above-described example, and any other parameter can be used as long as it can improve the estimation accuracy of energy consumption. It may be a parameter.
  • the classification method in the classification unit 134 is not limited to the method described above, and other methods may be used.
  • the estimation unit 136 is based on the relationship information stored in the estimation database 240 obtained by the learning unit 132 and newly acquired time series data 400 and 402 of the user's acceleration and heart rate. Thus, the time series data 406 of energy consumption is estimated. Since the estimation unit 136 performs estimation using the estimation database 240 prepared for each cluster, it can be said that the estimation unit 136 has a plurality of estimators prepared for each cluster. Specifically, the estimation unit 136 corresponds to the cluster to which the time series data 400 and 402 to which the time series data 400 and 402 searched by the above-described classifying unit 134 belongs is the newly acquired time series data 400 and 402 of the user's acceleration and heart rate.
  • the estimation unit 136 performs estimation based on relationship information prepared for each cluster having a similar heart rate fluctuation pattern, in other words, a similar heart rate enhancement phenomenon expression pattern. Do. Therefore, according to the present embodiment, since the estimation is performed in consideration of the enhancement phenomenon, the estimation accuracy of energy consumption can be improved.
  • the energy consumption estimated by the estimation unit 136 is output to the user by the output unit 110, stored in the storage unit 150, or transmitted to the server 30 and the user terminal 50.
  • the information processing method according to the present embodiment corresponds to a learning stage in which learning is performed to acquire relation information for estimating energy consumption, and a user's physical characteristics (such as an expression pattern of a user's heart rate enhancement phenomenon).
  • a learning stage in which learning is performed to acquire relation information for estimating energy consumption, and a user's physical characteristics (such as an expression pattern of a user's heart rate enhancement phenomenon).
  • a user's physical characteristics such as an expression pattern of a user's heart rate enhancement phenomenon
  • FIG. 15 is a flowchart for explaining an example of the learning stage of the information processing method according to the present embodiment.
  • the learning stage in the information processing method according to the present embodiment includes two steps, step S101 and step S103. Details of each step included in the learning stage of the information processing method according to the present embodiment will be described below.
  • Step S101 The instructor, the wearable device 10 or the user terminal 50 causes a plurality of users to repeatedly run, walk and rest on the treadmill every few minutes and repeatedly perform exercise with a predetermined exercise intensity.
  • the user may be caused to perform a predetermined exercise by giving an instruction to the user by the instructor, the wearable device 10 or the user terminal 50.
  • the predetermined exercise is an exercise that can grasp the expression pattern of the heart rate increase phenomenon of each user.
  • the wearable device 10 worn on a part of each user's body measures each user's heart rate.
  • the wearable device 10 measures the acceleration due to the user's movement using the built-in acceleration sensor.
  • the breath analysis apparatus worn on each user's face measures the oxygen concentration and the carbon dioxide concentration contained in each user's breath. By performing such measurement, it is possible to acquire time-series data including the expression pattern of the heart rate enhancement phenomenon that is used for learning by the learning unit 132.
  • Step S103 For each cluster, wearable device 10 performs machine learning using time series data 400 and 402 of acceleration and heart rate belonging to the cluster and time series data 404 of energy consumption measured simultaneously in step S101.
  • the wearable device 10 acquires relationship information indicating the relationship between the time series data 400 and 402 of acceleration and heart rate and the time series data 404 of energy consumption by the machine learning.
  • the wearable device 10 constructs an estimation database 240 storing the acquired relation information for each cluster. Since the details of the learning performed in step S103 have been described above, the description thereof is omitted here.
  • step S101 does not necessarily use a dedicated exercise device such as a treadmill, and may be, for example, jogging at a constant speed.
  • FIG. 16 is a flowchart for explaining an example of the estimation stage of the information processing method according to the present embodiment.
  • the estimation stage in the information processing method according to the present embodiment mainly includes a plurality of steps from step S201 to step S205. Details of each step included in the estimation stage of the information processing method according to the present embodiment will be described below.
  • Step S201 The wearable device 10 attached to a part of the user's body measures acceleration and heart rate.
  • Step S203 The wearable device 10 searches for a cluster to which the time series data 400 of the user's acceleration and the time series data 402 of the heart rate obtained in step S201 belong. Since the search method has been described above, the description thereof is omitted here. Further, the wearable device 10 refers to the past history information about the user, and determines the cluster classified in the past as the time series data 400 of the user's acceleration and the time series data 402 of the heart rate obtained in step S201. It may be a cluster to which and belong. Further, a cluster input from the user by the input unit 100 may be a cluster to which the user belongs. In this way, the cluster search can be omitted. Furthermore, it is possible to present an estimated value of energy consumption to the user in a short time.
  • Step S205 Wearable device 10 estimates energy consumption using time series data 400 and 402 of acceleration and heart rate acquired in step S201 by the estimator related to the cluster selected in step S203.
  • the acceleration measured by the acceleration sensor is used as an index for the exercise intensity.
  • the present embodiment is not limited to this.
  • exercise intensity is shown instead of acceleration.
  • the index may be input by the user.
  • the learning stage and the estimation stage have been described separately. However, these stages may be performed continuously or alternately.
  • the users are classified into clusters according to the tendency of fluctuation in the relationship between the energy consumption and the heart rate, that is, the expression pattern of the heart rate enhancement phenomenon. Since the trend of the relationship between the energy consumption and the heart rate of multiple users belonging to the same cluster is similar to each other, refer to the trend of the relationship change of a certain user in the cluster. It is also possible to grasp the tendency of other users to which the user belongs. Therefore, the energy consumption of other users in the same cluster can be estimated by using the tendency of change in the relationship of a certain user.
  • the estimation takes into account the tendency of fluctuations in the relationship between energy consumption and heart rate according to the user, that is, the expression pattern of the heart rate enhancement phenomenon, thus improving the estimation accuracy of energy consumption.
  • the tendency of the change in the relationship of a certain user to be referred to can be acquired in advance using breath measurement, so that the accuracy of estimation of energy consumption of other users in the same cluster can be improved.
  • energy consumption can be estimated for other users without performing exhalation measurement.
  • the construction of the estimation database 240 at the learning stage described above does not have to be performed in the wearable device 10, but is constructed in the server 30 or the like, and the database 240 is stored in the storage unit 150 when the wearable device 10 is manufactured or shipped. May be stored.
  • the measurement in step S101 or step S201 can be performed by instructing the user to perform a desired exercise by an instructor or the like, but is provided by the wearable device 10 or the like according to the present embodiment.
  • An exercise application may be used. More specifically, the exercise application can be performed by explicitly instructing the user to perform an exercise with a predetermined exercise intensity. In this case, since the exercise intensity of the exercise performed by the user is known, it is possible to omit the acceleration measurement built in the wearable device 10 or using an acceleration sensor.
  • FIGS. 17 to 20 are explanatory diagrams for explaining examples of display screens 800 to 806 used when acquiring time-series data.
  • the exercise application provided by the wearable device 10 or the user terminal 50 prompts the user to maintain a resting state in order to measure the heart rate of the user at rest. 800 is displayed.
  • the screen 800 has a phrase such as “Measure heart rate at rest. Sit down for a while.” To prompt the user to maintain a resting state. including.
  • a change over time of the measured heart rate is displayed.
  • the exercise application displays a screen 802 that prompts the user to perform exercise with a predetermined exercise intensity. For example, as shown in FIG. 18, in order to prompt the user to perform an exercise with a predetermined exercise intensity, a text such as “Measured heart rate at rest. Run at 9 km per hour.” including. Then, the user is prompted by such a screen 802 and performs a specified exercise using the treadmill 52 or the like.
  • the above exercise application maintains the end of exercise and the resting state for the user in order to obtain the expression pattern of the enhanced phenomenon in the heart rate after the end of the exercise after measuring the heart rate in the exercise of a predetermined exercise intensity.
  • a screen 804 that prompts the user to perform is displayed. As shown in FIG. 19, the screen 804 is used to prompt the user to end the exercise and maintain a resting state, such as “Please stop the treadmill and keep it standing.” including.
  • the exercise application displays a screen 806 for notifying the user of the end of the measurement after acquiring the expression pattern of the heart rate enhancement phenomenon.
  • the screen 806 includes a phrase such as “Exit exercise” in order to notify the user that the measurement is to be ended. Note that the screens 800 to 806 shown in FIGS. 17 to 20 described so far are merely examples, and the present embodiment is not limited to such screens.
  • the exercise application can cause the user to perform the exercise in step S201.
  • the description has been made on the assumption that the wearable device 10 has a display.
  • the user can be exercised in step S201.
  • FIG. 21 which is an explanatory diagram for explaining a method of inducing exercise for the user when acquiring time-series data
  • the wearable device 10 sends voice information to the user according to the exercise application. It may be output.
  • step S101 or step S201 is not limited to an explicit instruction from the exercise application as described above.
  • an acceleration sensor of the wearable device 10 is used to detect a change point and a stable interval of exercise intensity due to a user's action, and a time series including an expression pattern of a heart rate enhancement phenomenon Data may be acquired.
  • the acceleration sensor detects a stable section where the exercise intensity is constant, and acquires the heart rate measured at this time as the time-series data.
  • FIGS. 22 to 25 are explanatory diagrams for explaining examples of display screens 808 to 814 used in other methods when acquiring time-series data.
  • the wearable device 10 starts measuring the user's heart rate when detecting that the user is in a resting state for a predetermined time (for example, several minutes) or more. At that time, the wearable device 10 displays a screen 808 for notifying that the measurement is started, such as “Heart rate measurement has started” as shown in FIG.
  • the wearable device 10 detects that “exercise has been detected” as shown in FIG. 23 in order to notify that the measurement is started when an exercise of a predetermined exercise intensity or more by the user is detected.
  • a screen 810 including a phrase such as “” is displayed.
  • the wearable device 10 when an expression pattern of an increase phenomenon in the user's heart rate is detected, the wearable device 10 “measures the change in the heart rate after exercise, as shown in FIG. 25. And the like "are displayed. Note that the screens 808 to 814 shown in FIGS. 22 to 25 described so far are merely examples, and the present embodiment is not limited to such screens.
  • the acceleration sensor includes the expression pattern of the heart rate enhancement phenomenon by the user's daily activities and daily exercises without instructing the user to perform exercise of a predetermined exercise intensity.
  • Time series data can be acquired.
  • the wearable device 10 or the like has been described as having a display, but the wearable device 10 or the like is not limited to having a display.
  • FIG. 26 which is an explanatory diagram for explaining another method for inducing exercise to the user at the time of acquiring time series data, the wearable device 10 provides voice to the user in accordance with the exercise application. Information may be output.
  • step S201 is not necessarily performed using a dedicated exercise device such as a treadmill, and may be, for example, jogging at a constant speed.
  • Example according to this embodiment >> The details of the information processing method in the embodiment of the present disclosure have been described above. Furthermore, a specific example of an application that provides useful information to the user using the above-described embodiment will be described. In addition, the Example shown below is an example of the said application to the last, and the information processing which concerns on this embodiment is not limited to the following Example.
  • Example 1 The example described below relates to an application that provides useful information to the user because the above-described embodiment improves the estimation accuracy of energy consumption for each exercise. Such Example 1 is demonstrated with reference to FIG.27 and FIG.28. 27 and 28 are explanatory diagrams illustrating examples of the display screens 820 and 822 of Example 1 according to the present embodiment.
  • the estimation accuracy of the energy consumption of the exercise in each short time is improved, for example, the energy consumption of walking on a slope and walking on a flat road It is possible to grasp the difference. Therefore, using the estimation according to the present embodiment described above, the energy consumption in the daily activities of the user, which is a continuation of short-term exercise (micro exercise), is estimated with high accuracy, and it is beneficial based on the energy consumption estimated by the user Information can be provided. Such an embodiment will be described below.
  • Example 1A the estimated energy consumption for each micro exercise is notified to the user. For example, when a user's exercise (activity) over an integrated period (several minutes or more) in which energy consumption exceeding a predetermined threshold is estimated, the wearable device 10 uses the estimated energy consumption due to the exercise. Notify the user. At this time, the wearable device 10 can notify the user, for example, by displaying a screen 820 shown in FIG. Further, the wearable device 10 can acquire position information on which the user has performed the exercise by using a GPS receiver or the like built in the wearable device 10.
  • the wearable device 10 since the wearable device 10 includes a gyro sensor, a geomagnetic sensor, and the like in addition to the acceleration sensor, it acquires detailed information on the content of exercise performed by the user by analyzing sensing information obtained from these sensors. can do. Therefore, the wearable device 10 can notify the user not only the estimated energy consumption but also the position information where the user performed the exercise and the detailed information of the exercise content.
  • FIG. 27 shows a screen 820 that displays energy consumption when the user uses the stairs of the central ticket gate at AA station.
  • the wearable device 10 acquires the energy consumption estimated when the user uses the escalator on another day with reference to the past exercise history and the estimated energy consumption for the user.
  • the wearable device 10 calculates a difference between the estimated energy consumption when the stairs are used and the estimated energy consumption when the escalator is used, and notifies the user of the calculated difference as a point. For example, the notified point is displayed at the bottom of the screen 820 in FIG.
  • the point calculated as described above is that, when the user performs an exercise (activity) that places a greater load on the body, the amount of energy consumed is greater than when an exercise that does not put a load on the body is selected. It is shown in a format that can be easily understood by the user. Notifying the user of such points leads to the user feeling a little sense of accomplishment by performing an exercise that places a load on the body, and increases the motivation for the user to select an exercise that places a load on the body. be able to.
  • FIG. 28 shows a screen 822 that displays a list of estimated energy consumption for each exercise performed by a user and the points corresponding to the estimated energy to the user as an “exercise savings passbook”. Specifically, in the upper part of the screen 822, as in FIG. 27, the energy consumption when the user uses the staircase of the AA station and the above points are shown. Further, in the middle of the screen 822, energy consumed by the user walking fast in BB town (more specifically, walking faster than the standard walking speed) and the above points are shown.
  • the point in this case corresponds to, for example, a difference from the estimated consumption energy when the user walks at a standard walking speed at a distance equivalent to the fast walking.
  • a predetermined period for example, one day, one week, etc.
  • the estimated energy consumption by the micro-exercise detected individually and the points acquired by the micro-exercise are notified to the user like a savings passbook as shown in FIG.
  • the user may be recommended for exercise (micro exercise) that places a load on the body.
  • micro exercise micro exercise
  • the wearable device 10 is equal to or greater than the predetermined threshold. Recommend exercise to the user for estimated energy consumption.
  • the wearable device 10 detects that the user has arrived at a position (for example, a staircase) where estimated energy consumption equal to or greater than a predetermined threshold is acquired by the user's past motion by the built-in GPS receiver. If so, the total estimated energy consumption of the user on that day is referred to. As a result of the reference, when the sum of the estimated energy consumption of the user on the day is insufficient compared to the target value of the user's daily energy consumption, the wearable device 10 increases the estimated energy consumption to a predetermined threshold value or more. Such exercise (eg, “stair climbing”) is recommended to the user.
  • the vibration device provided as the output unit 310 of the wearable device 10 vibrates, and the above-described motion, that is, “step climb” is given to the user. May be recommended.
  • the wearable device 10 has a display as the output unit 310, by displaying “This is recommended” or the like at the position of the staircase on the map displayed on the display, May be recommended to the user.
  • the recommendation of the micro exercise which the wearable device 10 performs may be performed based on the target value of the user's daily energy consumption, or may be performed based on the number of points acquired as described above. Further, the wearable device 10 may determine whether or not to make a recommendation based on the past microexercise performance of the user. For example, the wearable device 10 refers to the past history, and when a specific tendency is observed with respect to the content of the micro exercise actually performed by the user due to the recommendation, the wearable device 10 adjusts the micro exercise according to the tendency. Make recommendations. Wearable device 10 may refer to other user's information accumulated in server 30, and may detect the position where the estimated consumption energy more than a predetermined threshold was acquired by the exercise of other users.
  • the estimation according to the present embodiment it is possible to estimate with high accuracy the energy consumed in exercise (motion) in daily life with low exercise intensity. Therefore, by using the estimation, in this embodiment, not a special exercise with high exercise intensity (for example, running) but an operation normally performed in daily life (for example, "step climbing"). Can also be recommended as a micro-exercise.
  • a special exercise with high exercise intensity for example, running
  • an operation normally performed in daily life for example, "step climbing”
  • Example 2> According to the estimation of the present embodiment described above, it is also possible to determine whether or not an increase phenomenon has occurred in the heart rate. In addition, by using the estimation according to the above-described embodiment, it is possible to estimate a condition (exercise intensity, etc.) or the like that causes a heart rate enhancement phenomenon in the user. Therefore, by using the above-described determination and estimation, it is possible to create an application that notifies the user that the enhancement phenomenon has occurred or recommends an exercise that causes the enhancement phenomenon. The embodiments described below relate to such applications. Such Example 2 will be described with reference to FIGS. 29 to 32. FIGS. 29 to 32 are explanatory diagrams illustrating examples of display screens 824 to 830 of Example 2 according to the present embodiment.
  • the wearable device 10 can estimate the energy consumption taking into account the enhanced state from the newly acquired time-series data 400 and 402 of the user's acceleration and heart rate by the estimation of the present embodiment.
  • the enhancement phenomenon is taken into consideration. Energy consumption can be estimated without doing so.
  • the wearable device 10 by detecting that the difference between the estimated value that takes into account the enhanced state and the estimated value that does not take into account the enhanced state exceeds a certain threshold, the wearable device 10 exhibits an enhanced phenomenon for the user. Can be notified.
  • the wearable device 10 detects the end of the user's exercise and determines whether or not a heart rate increase phenomenon has occurred when a decrease in the heart rate is observed thereafter. The determination result is notified to the user. Since the heart rate enhancement phenomenon occurs when a high load is applied to the user's body, by notifying that the heart rate enhancement phenomenon has occurred, the user can perform exercise that causes the enhancement phenomenon to occur. You can feel a sense of accomplishment. Furthermore, by performing such notification, it is possible to increase motivation for the user to perform an exercise that places a heavy load on the body.
  • the wearable device 10 uses the estimation according to the present embodiment described above to estimate the conditions (exercise intensity, etc.) that cause the heart rate increase phenomenon in the user. Can do. More specifically, the wearable device 10 refers to the user's past exercise intensity fluctuation pattern recording and the heart rate fluctuation pattern at that time, so that the exercise rate of the exercise intensity can be increased. Whether it is expressed (conditions) can be estimated. Therefore, the wearable device 10 can recommend an exercise in which the heart rate enhancement phenomenon appears to the user based on the exercise intensity in which the estimated heart rate enhancement phenomenon appears.
  • the wearable device 10 detects that the user is walking, and is compared with the estimated condition described above, and it is estimated that the heart rate enhancement phenomenon does not occur due to the detected walking. In some cases, it is recommended to the user that the heart rate increase phenomenon occurs. For example, as shown in FIG. 29, the wearable device 10 displays a screen 824 including words such as “Please increase the walking speed” and “Please maintain the current speed for 2 minutes”, so that the user can Induces the exercise of heart rate enhancement.
  • the recommendation of exercise is not limited to the screen display as described above, and the exercise may be recommended to the user by voice information, vibration, or the like. Such a recommendation can increase the opportunity for the user to perform exercise with exercise intensity that causes an increase in heart rate.
  • the wearable device 10 detects that the user is exercising, and is detected by comparison with the above-described estimated condition (exercise intensity in which an increase in heart rate occurs). If it is estimated that the increased heart rate phenomenon is caused by the exercise, it is determined whether the increased heart rate phenomenon is generated. The wearable device 10 notifies the user when it is determined that the heart rate enhancement phenomenon has not occurred. More specifically, as shown in FIG. 30, the wearable device 10 has words such as “the training result has been achieved” and “the heart rate has returned more smoothly than before”. The user is notified by displaying a screen 826 including.
  • the user When the user newly exercises with an exercise intensity that causes an increase in heart rate in the past, if the increase in heart rate does not occur, the user's physical ability (respiratory function, etc.) ) Is estimated to have improved. Based on such inference, in the present embodiment, the user can feel an improvement in his / her physical ability by the notification as described above.
  • Example 2D As described above, when a user's physical ability is improved, clusters belonging to a fluctuation pattern of heart rate due to a change in exercise intensity obtained from the user change, and energy consumption is estimated based on the fluctuation pattern. The estimator used for the switching is switched accordingly. Thus, an embodiment will be described below in which the user can feel an improvement in his / her physical ability by notifying when the cluster changes in this way.
  • the wearable device 10 extracts time series data 400 and 402 of a plurality of recent accelerations and heart rates related to the user. Furthermore, wearable device 10 performs estimation of cluster likelihood shown in FIG. 12 using extracted time-series data 400 and 402. The wearable device 10 notifies the user when the identified cluster having the highest likelihood can be considered as a cluster having higher physical ability than the past cluster. More specifically, as shown in FIG. 31, the wearable device 10 displays a screen 828 including a phrase such as “physical ability has improved and has been upgraded to class B1,” and the cluster is switched. Notify that the physical ability has been improved from the result. In the present embodiment, the notification as described above allows the user to feel an improvement in his / her physical ability.
  • the present invention is not limited to this, and the parameter 410 optimized at the time of classification may be noted.
  • the numerical value of the newly optimized parameter 410 has changed from the numerical value of the parameter 410 used for estimation in the past, it can be inferred that the user's physical ability has changed.
  • Example 2E In Example 2C described above, the presence or absence of the enhancement phenomenon changes in the exercise of the predetermined exercise intensity according to the physical ability of the user. However, the presence or absence of the enhancement phenomenon also depends on the physical condition of the user. change. Therefore, in this embodiment, based on such an idea, the user can be notified of information related to the user's physical condition.
  • the wearable device 10 refers to the user's past exercise intensity fluctuation pattern recording and the heart rate fluctuation pattern at that time, so that the exercise rate of the exercise intensity can be increased. It can be estimated whether it does not develop (conditions). Therefore, the wearable device 10 detects that the user is exercising, and increases the heart rate by the detected exercise as compared with the above-described estimated condition (exercise intensity that does not cause an increase in the heart rate). When it is estimated that the phenomenon does not occur, it is determined whether or not a heart rate enhancement phenomenon is occurring. When it is determined that the wearable device 10 is experiencing an increase in heart rate, the wearable device 10 is normally in a condition where the increase in the heart rate does not occur.
  • the user is notified that the enhancement phenomenon has occurred, and notifies the user. More specifically, as shown in FIG. 32, the wearable device 10 “has a possibility of poor physical condition. Let's stop training.” “Today, the recovery of the heart rate after exercise is not likely.
  • the screen 830 including words such as “” is displayed. By performing such notification, the user can grasp a physical condition that is not recognized by himself / herself and can avoid unreasonable training.
  • energy consumption can be estimated with high accuracy.
  • the estimation is performed in consideration of the tendency of fluctuation in the relationship between the energy consumption and the heart rate according to the user, that is, the expression pattern of the heart rate enhancement phenomenon, The energy estimation accuracy can be improved.
  • the estimation of energy consumption in the above-described embodiment may be performed by using learning by Deep Neural Network (DNN) using a large amount of data. Even in this case, since the estimation is performed in consideration of the expression pattern of the heart rate enhancement phenomenon according to the user, the estimation accuracy of energy consumption can be improved.
  • DNN Deep Neural Network
  • FIG. 34 is an explanatory diagram illustrating an example of a hardware configuration of the information processing apparatus 900 according to the present embodiment.
  • the information processing apparatus 900 shows an example of the hardware configuration of the wearable device 10 described above.
  • the information processing apparatus 900 includes, for example, a CPU 950, a ROM 952, a RAM 954, a recording medium 956, an input / output interface 958, and an operation input device 960. Further, the information processing apparatus 900 includes a display device 962, an audio output device 964, an audio input device 966, a communication interface 968, and a sensor 980. In addition, the information processing apparatus 900 connects each component with a bus 970 as a data transmission path, for example.
  • the CPU 950 includes, for example, one or more processors configured by an arithmetic circuit such as a CPU, various processing circuits, and the like, and a control unit that controls the entire information processing apparatus 900 (for example, the control unit 130 described above). Function as. Specifically, the CPU 950 functions in the information processing apparatus 900 such as the learning unit 132, the classification unit 134, and the estimation unit 136 described above.
  • the ROM 952 stores programs used by the CPU 950, control data such as calculation parameters, and the like.
  • the RAM 954 temporarily stores a program executed by the CPU 950, for example.
  • the recording medium 956 functions as the storage unit 150 described above, and stores various data such as data related to the information processing method according to the present embodiment and various applications.
  • examples of the recording medium 956 include a magnetic recording medium such as a hard disk and a nonvolatile memory such as a flash memory. Further, the recording medium 956 may be detachable from the information processing apparatus 900.
  • the input / output interface 958 connects, for example, an operation input device 960, a display device 962, and the like.
  • Examples of the input / output interface 958 include a USB (Universal Serial Bus) terminal, a DVI (Digital Visual Interface) terminal, an HDMI (High-Definition Multimedia Interface) (registered trademark) terminal, and various processing circuits.
  • the operation input device 960 functions as, for example, the input unit 100 described above, and is connected to the input / output interface 958 inside the information processing apparatus 900.
  • the display device 962 functions as, for example, the output unit 110 described above, is provided on the information processing apparatus 900, and is connected to the input / output interface 958 inside the information processing apparatus 900.
  • Examples of the display device 962 include a liquid crystal display and an organic EL display (Organic Electro-Luminescence Display).
  • the audio output device 964 functions as, for example, the output unit 110 described above, and is provided on the information processing apparatus 900 and connected to the input / output interface 958 inside the information processing apparatus 900, for example.
  • the voice input device 966 functions as, for example, the input unit 100 described above, and is provided on the information processing apparatus 900, for example, and is connected to the input / output interface 958 inside the information processing apparatus 900.
  • the input / output interface 958 can be connected to an external device such as an operation input device (for example, a keyboard or a mouse) external to the information processing apparatus 900 or an external display device.
  • an operation input device for example, a keyboard or a mouse
  • the input / output interface 958 may be connected to a drive (not shown).
  • the drive is a reader / writer for a removable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, and is built in or externally attached to the information processing apparatus 900.
  • the drive reads information recorded on the attached removable recording medium and outputs the information to the RAM 954.
  • the drive can also write a record to a removable recording medium that is installed.
  • the communication interface 968 functions as a communication unit 340 for performing wireless or wired communication with an external device such as the server 30 via, for example, the network 70 described above (or directly).
  • an external device such as the server 30 via, for example, the network 70 described above (or directly).
  • the communication interface 968 for example, a communication antenna and an RF (RADIO frequency) circuit (wireless communication), an IEEE 802.15.1 port and a transmission / reception circuit (wireless communication), an IEEE 802.11 port and a transmission / reception circuit (wireless communication).
  • a LAN Local Area Network
  • the sensor 980 functions as the sensor unit 120 described above. Further, the sensor 980 may include various sensors such as a pressure sensor.
  • each component described above may be configured by using a general-purpose member, or may be configured by hardware specialized for the function of each component. Such a configuration can be appropriately changed according to the technical level at the time of implementation.
  • the information processing apparatus 900 does not include the communication interface 968 when communicating with an external apparatus or the like via a connected external communication device, or when configured to perform stand-alone processing. Also good. Further, the communication interface 968 may have a configuration capable of communicating with one or more external devices by a plurality of communication methods. In addition, the information processing apparatus 900 may have a configuration that does not include, for example, the recording medium 956, the operation input device 960, the display device 962, and the like.
  • the information processing apparatus 900 according to the present embodiment may be applied to a system including a plurality of apparatuses based on a connection to a network (or communication between apparatuses) such as cloud computing. Good.
  • the information processing apparatus 900 according to the present embodiment described above can be realized as the information processing system 1 that performs processing according to the information processing method according to the present embodiment using a plurality of apparatuses, for example.
  • the embodiment of the present disclosure described above may include, for example, a program for causing a computer to function as the information processing apparatus according to the present embodiment, and a non-temporary tangible medium in which the program is recorded. Further, the program may be distributed via a communication line (including wireless communication) such as the Internet.
  • each step in the processing of each embodiment described above does not necessarily have to be processed in the order described.
  • the steps may be processed by changing the order as appropriate.
  • Each step may be processed in parallel or individually instead of being processed in time series.
  • the processing method of each step does not necessarily have to be processed according to the described method. For example, it may be processed by another function unit by another method.
  • An acquisition unit that acquires a user's physical characteristics, and an estimator based on the relationship between the number of beats and energy consumption, and according to the user's physical characteristics, the estimator An information processing apparatus that estimates energy consumption by activities performed by the user from the number of motions.
  • the information processing apparatus according to (1) wherein the energy consumption is estimated by the estimator according to a fluctuation pattern of the number of beats of the user due to a change in exercise intensity of an activity performed by the user. .
  • the information according to (1) including a plurality of the estimators, selecting one estimator according to the physical characteristics of the user, and estimating the energy consumption by the selected estimator. Processing equipment. (5) A variation pattern of the number of beats of the user due to a change in exercise intensity of the activity performed by the user, and a variation pattern of the number of beats due to a change in predetermined exercise intensity linked to each estimator.
  • the information processing apparatus according to (4) wherein the estimator is selected according to a comparison result.
  • a cluster to which the fluctuation pattern of the user's pulsation belongs is searched based on a fluctuation pattern of the user's pulsation due to a change in exercise intensity of the activity performed by the user, The information processing apparatus according to (4), wherein the attached estimator is selected.
  • the search for the cluster to which the fluctuation pattern of the user's pulsation belongs belongs to the fluctuation pattern of the user's pulsation due to a change in exercise intensity of the user's activity and the number of pulsations.
  • the information processing apparatus which is performed by calculating a degree and comparing the calculated estimated likelihoods.
  • (8) The information processing apparatus according to (7), wherein a parameter for increasing the estimated likelihood is searched.
  • (9) For each of the clusters, using the fluctuation pattern of the number of beats due to a change in predetermined exercise intensity belonging to the cluster, and the fluctuation pattern of the energy consumption corresponding to the fluctuation pattern of the number of beats, The information processing apparatus according to any one of (6) to (8), further including a learning device that performs machine learning on a relationship between the number and energy consumption.
  • (10) The information processing apparatus according to (2) or (3), wherein the change in exercise intensity is acquired by an accelerometer attached to the user.
  • the above (2) or (3) further includes an instruction unit that prompts the user to perform a predetermined exercise to acquire a fluctuation pattern of the user's pulsation rate due to a change in exercise intensity.
  • the information processing apparatus described.
  • the information processing apparatus according to any one of (1) to (11), further including a notification unit that notifies the user of the estimated energy consumption.
  • the information processing apparatus according to any one of (1) to (14), wherein the number of beats is acquired by a heart rate meter or a pulse meter attached to the user.
  • the information processing apparatus is any one of the above (1) to (15), which is either a wearable terminal attached to the user's body or an implant terminal inserted into the user's body. Information processing apparatus described in one.
  • (17) Obtaining the user's physical characteristics, and based on the relationship between the number of beats corresponding to the user's physical characteristics and the consumed energy, the energy consumed by the user's activities from the number of beats of the user Estimating an information processing method.

Abstract

[Problem] To provide an information processing device capable of accurately estimating energy expenditure. [Solution] Provided is an information processing device which is provided with an acquisition unit for acquiring body features of a user and a device for estimation based on a relationship between heart rate and energy expenditure. In accordance with the body features of the user, the device for estimation estimates the energy expended in an activity performed by the user on the basis of the heart rate of the user.

Description

情報処理装置、情報処理方法及びプログラムInformation processing apparatus, information processing method, and program
 本開示は、情報処理装置、情報処理方法及びプログラムに関する。 The present disclosure relates to an information processing apparatus, an information processing method, and a program.
 近年、健康維持、体力づくり、ダイエット等のために、日常活動やスポーツ等による消費エネルギーを気軽に把握することができる装置が求められている。このような装置の例としては、ユーザの心拍数又は脈拍数を測定し、測定された時点での運動強度に対応する心拍数等と消費エネルギーとの関係に基づいて、消費エネルギーを推定する装置を挙げることができる。また、他の例としては、ユーザの身長、体重、年齢、性別等の属性情報と、ユーザに装着された加速度計により、もしくは、ユーザの移動距離により求めた運動強度とに基づいて、消費エネルギーを推定する装置を挙げることができる。後者の一例としては、下記の特許文献1に開示されている携帯型健康管理装置を挙げることができる。下記特許文献1に開示されている装置は、ユーザの歩行による消費エネルギーを推定する場合には、高精度の推定が可能である。 In recent years, there has been a demand for a device that can easily grasp the energy consumed by daily activities and sports for health maintenance, physical fitness development, dieting and the like. As an example of such a device, a device that measures the user's heart rate or pulse rate and estimates the energy consumption based on the relationship between the heart rate corresponding to the exercise intensity at the time of measurement and the energy consumption. Can be mentioned. Further, as another example, energy consumption based on attribute information such as the user's height, weight, age, sex, etc. and the exercise intensity obtained by the accelerometer worn by the user or the user's moving distance An apparatus for estimating As an example of the latter, a portable health care device disclosed in Patent Document 1 below can be cited. The apparatus disclosed in the following Patent Document 1 can estimate with high accuracy when estimating the energy consumption by the user's walking.
特開2002-45352号公報JP 2002-45352 A
 しかしながら、上述した装置によれば、様々な短時間の運動の連なりである日常活動における消費エネルギーについては、高精度に推定することが難しかった。 However, according to the above-described apparatus, it has been difficult to estimate with high accuracy the energy consumed in daily activities, which is a series of various short-time exercises.
 そこで、本開示では、消費エネルギーを高い精度で推定することができる、新規且つ改良された情報処理装置、情報処理方法及びプログラムを提案する。 Therefore, the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of estimating energy consumption with high accuracy.
 本開示によれば、ユーザの身体特性を取得する取得部と、拍動数と消費エネルギーとの関係に基づく推定器と、を備え、前記ユーザの身体特性に応じて、前記推定器により、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する、情報処理装置が提供される。 According to the present disclosure, an acquisition unit that acquires a physical characteristic of a user, and an estimator based on a relationship between the number of beats and energy consumption, the estimator according to the physical characteristic of the user, There is provided an information processing apparatus that estimates energy consumption by an activity performed by a user from the number of beats of the user.
 また、本開示によれば、ユーザの身体特性を取得することと、前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定することと、を含む、情報処理方法が提供される。 Further, according to the present disclosure, based on the relationship between the user's body characteristics and the number of beats according to the user's body characteristics and the energy consumption, An information processing method is provided, including estimating energy consumption due to the activity.
 さらに、本開示によれば、ユーザの身体特性を取得する機能と、前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する機能と、を、コンピュータに実現させるためのプログラムが提供される。 Furthermore, according to the present disclosure, based on the function of acquiring a user's physical characteristics and the relationship between the number of pulsations and energy consumption according to the user's physical characteristics, the user performs from the number of pulsations of the user. And a program for causing a computer to realize the function of estimating the energy consumed by the activity.
 以上説明したように本開示によれば、消費エネルギーを高い精度で推定することができる、情報処理装置、情報処理方法及びプログラムを提供することができる。 As described above, according to the present disclosure, it is possible to provide an information processing apparatus, an information processing method, and a program that can estimate energy consumption with high accuracy.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の第1の実施形態に係る情報処理システム1の構成例を説明する説明図である。2 is an explanatory diagram illustrating a configuration example of an information processing system 1 according to a first embodiment of the present disclosure. FIG. 同実施形態に係るウエアラブルデバイス10の構成を示すブロック図である。It is a block diagram showing the composition of wearable device 10 concerning the embodiment. 同実施形態に係るウエアラブルデバイス10の外観の一例を示す説明図である。2 is an explanatory diagram illustrating an example of an appearance of a wearable device 10 according to the embodiment. FIG. 同実施形態に係るウエアラブルデバイス10の外観の他の一例を示す説明図である。It is explanatory drawing which shows another example of the external appearance of the wearable device 10 which concerns on the embodiment. 同実施形態に係るウエアラブルデバイス10の装着状態の一例を示す説明図である。It is explanatory drawing which shows an example of the mounting state of the wearable device 10 which concerns on the embodiment. 同実施形態に係るサーバ30の構成を示すブロック図である。It is a block diagram which shows the structure of the server 30 which concerns on the embodiment. 同実施形態に係るユーザ端末50の構成を示すブロック図である。It is a block diagram showing the composition of user terminal 50 concerning the embodiment. 同実施形態に係るユーザ端末50の外観及び使用形態の一例を示す説明図である。It is explanatory drawing which shows an example of the external appearance and usage pattern of the user terminal 50 which concerns on the embodiment. 同実施形態に係る学習部132の動作を説明するための説明図(その1)である。It is explanatory drawing (the 1) for demonstrating operation | movement of the learning part 132 which concerns on the embodiment. 同実施形態に係る学習部132の動作を説明するための説明図(その2)である。It is explanatory drawing (the 2) for demonstrating operation | movement of the learning part 132 which concerns on the same embodiment. 同実施形態に係る尤度推定器236の動作を説明するための説明図(その1)である。It is explanatory drawing (the 1) for demonstrating operation | movement of the likelihood estimator 236 which concerns on the embodiment. 同実施形態に係る尤度推定器236の動作を説明するための説明図(その2)である。It is explanatory drawing (the 2) for demonstrating operation | movement of the likelihood estimator 236 which concerns on the same embodiment. 同実施形態に係る尤度推定器236の動作を説明するための説明図(その3)である。FIG. 11 is an explanatory diagram (No. 3) for explaining the operation of the likelihood estimator 236 according to the embodiment. 同実施形態に係る推定部136の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the estimation part 136 which concerns on the same embodiment. 同実施形態に係る情報処理方法の学習段階の一例を説明するフロー図である。It is a flowchart explaining an example of the learning stage of the information processing method which concerns on the embodiment. 同実施形態に係る情報処理方法の推定段階の一例を説明するフロー図である。It is a flowchart explaining an example of the presumed stage of the information processing method concerning the embodiment. 時系列データの取得の際に用いられる表示画面800の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 800 used at the time of acquisition of time series data. 時系列データの取得の際に用いられる表示画面802の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 802 used at the time of acquisition of time series data. 時系列データの取得の際に用いられる表示画面804の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 804 used when acquiring time-sequential data. 時系列データの取得の際に用いられる表示画面806の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 806 used at the time of acquisition of time series data. 時系列データの取得の際にユーザに対して運動を誘導する方法を説明する説明図である。It is explanatory drawing explaining the method of guide | inducing exercise | movement with respect to a user in the time of acquisition of time series data. 他の方法による時系列データの取得の際に用いられる表示画面808の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 808 used at the time of acquisition of the time series data by another method. 他の方法による時系列データの取得の際に用いられる表示画面810の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 810 used in the time of acquisition of the time series data by another method. 他の方法による時系列データの取得の際に用いられる表示画面812の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 812 used when acquiring the time series data by another method. 他の方法による時系列データの取得の際に用いられる表示画面814の一例を説明する説明図である。It is explanatory drawing explaining an example of the display screen 814 used at the time of acquisition of the time series data by another method. 時系列データの取得の際にユーザに対して運動を誘導する他の方法を説明する説明図である。It is explanatory drawing explaining the other method of guide | inducing exercise | movement with respect to a user at the time of acquisition of time series data. 実施例1の表示画面820の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 820 according to Embodiment 1. FIG. 実施例1の表示画面822の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 822 according to Embodiment 1. FIG. 実施例2の表示画面824の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 824 according to Embodiment 2. FIG. 実施例2の表示画面826の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 826 according to Embodiment 2. FIG. 実施例2の表示画面828の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 828 according to Embodiment 2. FIG. 実施例2の表示画面830の一例を説明する説明図である。10 is an explanatory diagram illustrating an example of a display screen 830 according to Embodiment 2. FIG. 本発明者らの検討によって得られた消費エネルギーの実測値の経時変化90及び心拍数の経時変化92を示す説明図である。It is explanatory drawing which shows the time-dependent change 90 and the time-dependent change 92 of the heart rate obtained by examination of the present inventors. 本開示の一実施形態に係る情報処理装置900のハードウェア構成の一例を示したブロック図である。FIG. 3 is a block diagram illustrating an example of a hardware configuration of an information processing apparatus 900 according to an embodiment of the present disclosure.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、本明細書及び図面において、実質的に同一または類似の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合がある。ただし、実質的に同一または類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 In the present specification and drawings, a plurality of constituent elements having substantially the same or similar functional configuration may be distinguished by attaching different numbers after the same reference numerals. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same or similar functional configuration, only the same reference numerals are given. In addition, similar components in different embodiments may be distinguished by attaching different alphabets after the same reference numerals. However, if it is not necessary to distinguish each similar component, only the same reference numerals are given.
 なお、以下の説明においては、「拍動数」は心拍数及び脈拍数を含み、これら心拍数及び脈拍数は、心拍センサ又は脈拍センサにより測定することができるものとする。 In the following description, “beat rate” includes a heart rate and a pulse rate, and these heart rate and pulse rate can be measured by a heart rate sensor or a pulse sensor.
 また、説明は以下の順序で行うものとする。
 1.本開示に係る実施形態を創作するに至るまでの経緯
 2.本開示に係る実施形態
   2.1.本実施形態に係る情報処理システム1の概要
   2.2.本実施形態に係るウエアラブルデバイス10の構成
   2.3.本実施形態に係るサーバ30の構成
   2.4.本実施形態に係るユーザ端末50の構成
   2.5.本実施形態に係る制御部130の構成
   2.6.本実施形態に係る情報処理方法
 3.本実施形態に係る実施例
   3.1.実施例1
   3.2.実施例2
 4.まとめ
 5.ハードウェア構成について
 6.補足
The description will be made in the following order.
1. 1. Background to creation of an embodiment according to the present disclosure Embodiment according to the present disclosure 2.1. Overview of information processing system 1 according to the present embodiment 2.2. Configuration of wearable device 10 according to the present embodiment 2.3. Configuration of server 30 according to the present embodiment 2.4. Configuration of user terminal 50 according to the present embodiment 2.5. Configuration of control unit 130 according to the present embodiment 2.6. 2. Information processing method according to this embodiment Example according to this embodiment 3.1. Example 1
3.2. Example 2
4). Summary 5. 5. Hardware configuration Supplement
 <<1.本開示に係る実施形態を創作するに至るまでの経緯>>
 まずは、本開示に係る実施形態を説明する前に、本発明者らが本開示に係る実施形態を創作するに至る経緯、すなわち、本発明者らが行った検討について説明する。
<< 1. Background to the creation of an embodiment according to the present disclosure >>
First, before describing the embodiment according to the present disclosure, the background to the creation of the embodiment according to the present disclosure by the inventors, that is, the examination performed by the inventors will be described.
 本発明者らは、ユーザの活動による消費エネルギーの推定方法について検討を行った。まずは、消費エネルギーの測定方法について説明する。消費エネルギーの測定方法には、発生した熱を直接的に測定する「直接熱量測定法」と、体内で利用した酸素の消費量から間接的に熱量を測定する「間接熱量測定法」との主に2種類の測定法が存在する。 The present inventors examined a method for estimating energy consumption based on user activities. First, a method for measuring energy consumption will be described. There are two main methods for measuring energy consumption: direct calorimetry, which directly measures the generated heat, and indirect calorimetry, which indirectly measures heat from the consumption of oxygen used in the body. There are two types of measurement methods.
 「直接熱量測定法」は、人体で消費された消費エネルギーは人体から熱として放熱されるため、人体からの放熱量を直接的に測定することにより、消費エネルギーを測定する。しかしながら、「直接熱力測定法」で用いる測定装置は、非常に大きなものであり、測定される被験者の活動も制限することから、「直接熱力測定法」によって消費エネルギーを測定可能な状況は限定される。 In the “direct calorimetry”, the energy consumed by the human body is dissipated as heat from the human body, so the energy consumption is measured by directly measuring the heat dissipated from the human body. However, since the measuring device used in the “direct thermal power measurement method” is very large and restricts the activity of the subject to be measured, the situation where energy consumption can be measured by the “direct thermal power measurement method” is limited. The
 一方、「間接熱量測定法」は、ユーザの呼気中の酸素濃度及び二酸化炭素濃度を測定し、これら測定結果から消費エネルギーを算出する。人体におけるエネルギーの発生は、食物等から摂取した脂肪や糖を分解することにより行っているが、このような分解を行うためには、多くの場合、呼吸により人体内に取り込んだ酸素が必要となる。従って、酸素の消費量が、消費された消費エネルギーにほぼ相当することとなる。さらに、このような人体内での分解によって二酸化炭素が生成され、生成された二酸化炭素は人体から呼気の一部として排出される。従って、呼気中の酸素濃度及び二酸化炭素濃度を測定し、これらの測定値からユーザの人体における酸素の消費量を求めることにより、消費エネルギーを知ることが可能である。すなわち、「間接熱量測定法」は、直接的に人体で発生した熱量を測定する方法ではないものの、上述した人体内の代謝メカニズムにより、ほぼ正確に消費エネルギーを把握することが可能である。「間接熱量測定法」で用いられる呼気測定装置は、上述した「直接熱力測定法」で用いられる装置に比べて簡便であることから、消費エネルギーの測定方法としては、「間接熱量測定法」が用いられることが一般的である。なお、以下の説明においては、消費エネルギーの実測値は、上述の「間接熱量測定法」により測定されるものとする。 On the other hand, the “indirect calorimetry” measures the oxygen concentration and carbon dioxide concentration in the user's breath and calculates the energy consumption from these measurement results. Generation of energy in the human body is done by breaking down fats and sugars taken from food, etc., but in most cases, oxygen taken into the human body by breathing is necessary for such decomposition. Become. Therefore, the consumption amount of oxygen substantially corresponds to the consumed energy. Further, carbon dioxide is generated by such decomposition in the human body, and the generated carbon dioxide is discharged from the human body as part of exhalation. Therefore, it is possible to know the energy consumption by measuring the oxygen concentration and carbon dioxide concentration in the exhaled breath and determining the amount of oxygen consumed in the user's human body from these measured values. That is, the “indirect calorimetry” is not a method for directly measuring the amount of heat generated in the human body, but it is possible to grasp the energy consumption almost accurately by the above-described metabolic mechanism in the human body. Since the breath measurement device used in the “indirect calorimetry” is simpler than the device used in the “direct heat measurement method” described above, the “indirect calorimetry” is a method for measuring energy consumption. It is common to be used. In the following description, it is assumed that the actual measurement value of energy consumption is measured by the above-mentioned “indirect calorimetry”.
 しかしながら、「間接熱量測定法」では、呼気中の酸素濃度及び二酸化炭素濃度を測定する必要があることから、被験者はマスク等を装着することとなる。従って、「間接熱量測定法」は、「直接熱量測定法」に比べて簡便であるものの、一般的なユーザが気軽に測定を行うことは難しい。そこで、本発明者らは、気軽に測定可能な指標により消費エネルギーを知得する方法について、鋭意検討を進めた。なお、ここで、一般的なユーザとは、研究者、医者、又はアスリート等の専門家でない人を意味する。 However, in the “indirect calorimetry”, it is necessary to measure the oxygen concentration and carbon dioxide concentration in the exhaled breath, so the subject wears a mask or the like. Therefore, although the “indirect calorimetry” is simpler than the “direct calorimetry”, it is difficult for a general user to easily perform the measurement. Therefore, the present inventors have made extensive studies on a method for obtaining energy consumption by using an easily measurable index. Here, the general user means a person who is not an expert such as a researcher, a doctor, or an athlete.
 このような状況を踏まえ、本発明者らは、消費エネルギーと相関性が高いと一般的に言われている拍動数(詳細には、心拍数又は脈拍数)を用いて消費エネルギーを知得する方法について検討を重ねた。詳細には、身体の各所では、消費したエネルギーを補うために代謝活動が行われるが、その際に酸素が消費され二酸化炭素が生成される。消費される酸素量と生成される二酸化炭素量とは、完全には比例しないが、概ね比例に近い単調性をもった関係であることが知られている。心拍は、心臓の筋肉が一定のリズムで収縮、拡張して拍動することであり、心拍により、動脈を通じ全身に血液が送られることにより、身体の各器官に代謝に必要とされる酸素が供給される。また、代謝で生成された二酸化炭素は、血中に溶出し、静脈を経由して心臓に集まり、肺によるガス交換によって呼気に排出される。心拍数は、身体内の血液循環を亢進させる必要性に応じてその数値が上下することが知られているが、エネルギー消費との関係でいえば、血中二酸化炭素の濃度に連動する機構により心拍数が制御されることが知られている。言い換えると、心拍数は、身体内の血液循環を亢進させる必要性の一つである二酸化炭素排出の必要性に応じてその数値が上下する性質を持つ。従って、心拍数は、二酸化炭素生成量を介して、消費エネルギーとの間に強い相関を持ち、消費エネルギーを推定するための有力な情報となる。なお、以下の説明においては、心拍数は、単位時間の心臓における拍動回数を意味し、脈拍数は、心拍により、動脈を通じ全身に血液が送られることにより、動脈内壁に圧力の変化が生じ、体表面等に現れる動脈の拍動の単位時間における回数のことをいう。 Based on such a situation, the present inventors know the energy consumption using the number of beats (specifically, heart rate or pulse rate) that is generally said to be highly correlated with the energy consumption. The method was examined repeatedly. Specifically, in various parts of the body, metabolic activities are performed to supplement the consumed energy. At this time, oxygen is consumed and carbon dioxide is generated. It is known that the amount of oxygen consumed and the amount of carbon dioxide produced are not completely proportional but have a monotonic relationship that is almost proportional. The heartbeat is the heart muscles contracting and expanding at a constant rhythm and pulsating.By the heartbeat, blood is sent to the whole body through the arteries, so that oxygen required for metabolism is supplied to each organ of the body. Supplied. In addition, carbon dioxide produced by metabolism elutes in the blood, collects in the heart via veins, and is discharged into the exhalation by gas exchange by the lungs. The heart rate is known to increase or decrease depending on the need to enhance blood circulation in the body, but in relation to energy consumption, the mechanism is linked to the concentration of blood carbon dioxide. It is known that heart rate is controlled. In other words, the heart rate has a property that its numerical value increases or decreases according to the necessity of carbon dioxide excretion, which is one of the necessity for enhancing blood circulation in the body. Therefore, the heart rate has a strong correlation with the consumed energy via the carbon dioxide production amount, and is useful information for estimating the consumed energy. In the following description, the heart rate means the number of pulsations in the heart per unit time, and the pulse rate is a change in pressure that occurs on the inner wall of the artery due to blood being sent to the whole body through the artery. This refers to the number of pulsations of an artery appearing on the body surface or the like in a unit time.
 また、近年、心拍数を測定する心拍センサ及び脈拍数を測定する脈拍センサはコンパクトになり、これら心拍センサ及び脈拍センサは、ユーザの身体に装着され、ユーザの活動を制限することなくユーザの心拍数又は脈拍数を測定することが可能となった。このような理由から、本発明者らは、拍動数(心拍数又は脈拍数)を用いて消費エネルギーを知得する方法について検討を行った。 In recent years, heart rate sensors that measure heart rate and pulse sensors that measure pulse rate have become compact, and these heart rate sensors and pulse sensors are worn on the user's body and do not limit the user's activities. It became possible to measure the number or pulse rate. For these reasons, the present inventors have studied a method for obtaining energy consumption using the number of beats (heart rate or pulse rate).
 詳細には、本発明者らにより最初に検討された方法は、心拍センサによりユーザの心拍数を測定し、測定した心拍数に基づき、線形回帰等を用いて消費エネルギーを推定する。本発明者らの検討によれば、上述した方法は、例えばカーディオバイク型のトレーニング機器を用いたトレーニングにおける消費エネルギーを推定する場合には、心拍数が運動強度に応じて変化することから、高い推定精度が得られることが分かった。しかしながら、上述した方法によれば、安静時における消費エネルギーを推定する場合には、推定精度が低くなることが分かった。これは、心拍数が、運動強度だけでなく、緊張や興奮等の心理的な要因でも大きく変動することによるものと考えられる。 Specifically, in the method first examined by the present inventors, the heart rate of the user is measured by a heart rate sensor, and the consumed energy is estimated using linear regression or the like based on the measured heart rate. According to the study by the present inventors, the above-described method is high because, for example, when estimating energy consumption in training using a cardio bike type training device, the heart rate changes according to exercise intensity. It was found that the estimation accuracy can be obtained. However, according to the method described above, it has been found that the estimation accuracy is lowered when the energy consumption at rest is estimated. This is considered to be due to the fact that the heart rate fluctuates not only due to exercise intensity but also due to psychological factors such as tension and excitement.
 そこで、本発明者らは、上述の方法を改良した方法であって、心拍センサによる心拍数だけでなく、加速度センサによって検出した運動強度を用いて、消費エネルギーを推定する方法を検討した。詳細には、本発明者らによって検討された当該方法の1つは、検出した運動強度に基づいて、心拍数から消費エネルギーを推定する線形回帰式における運動強度の寄与率を調整するという方法である。この方法においては、上記寄与率を調整することによって、消費エネルギーの推定精度の向上を試みている。また、検討された方法の他の1つは、加速度センサによって検出された運動強度に基づいて、現状のユーザの活動状態を安静状態、歩行状態、走行状態等の数種類の活動パターンに分類し、分類された活動パターンに応じて、用いる回帰式を切り替える方法である。この方法においては、所定の回帰式を用いた推定に限界が生じた場合には当該状態に最適な他の回帰式を用いることによって、消費エネルギーの推定精度の向上を試みている。 Therefore, the present inventors examined a method for improving the above-described method and estimating energy consumption using not only the heart rate by the heart rate sensor but also the exercise intensity detected by the acceleration sensor. Specifically, one of the methods examined by the present inventors is a method of adjusting the contribution rate of the exercise intensity in the linear regression equation for estimating the consumed energy from the heart rate based on the detected exercise intensity. is there. In this method, an attempt is made to improve the estimation accuracy of energy consumption by adjusting the contribution rate. In addition, another one of the methods considered is based on the exercise intensity detected by the acceleration sensor, classifying the current user activity state into several types of activity patterns such as a resting state, a walking state, and a running state, This is a method of switching the regression equation to be used according to the classified activity pattern. In this method, when there is a limit in estimation using a predetermined regression equation, an attempt is made to improve the estimation accuracy of energy consumption by using another regression equation that is optimal for the state.
 しかしながら、本発明者らが上述の方法について検討を重ねたところ、消費エネルギーの推定精度を向上させることには限界があることが分かった。より具体的には、ユーザの活動内容等によって、上述の方法を用いて心拍数から推定された消費エネルギーは、実際の消費エネルギーに比べて高くなる傾向があり、このような傾向に起因して、推定精度を向上させることが難しいことが分かった。さらに、上述の方法によって、一人のユーザの一日における総消費エネルギーを推定した場合には、十分な推定精度を得ることができるが、個々の短時間の運動における消費エネルギーを推定した場合には、十分な推定精度を得ることができなかった。 However, when the present inventors have repeatedly studied the above-described method, it has been found that there is a limit to improving the estimation accuracy of energy consumption. More specifically, the energy consumption estimated from the heart rate using the above-mentioned method depends on the user's activity content, etc., and tends to be higher than the actual energy consumption. It was found that it was difficult to improve the estimation accuracy. Furthermore, when estimating the total energy consumption of one user per day by the method described above, sufficient estimation accuracy can be obtained, but when estimating the energy consumption of individual short-term exercise, It was not possible to obtain sufficient estimation accuracy.
 これは、ある時点でのユーザの心拍数と消費エネルギーとの関係は、当該時点でのユーザの運動強度又は活動状態だけで決定されるものではなく、ユーザの身体特性に応じて当該時点以前のユーザの活動内容から影響を受けて、変動するためである。上述の方法においては、ある時点での運動強度等に応じて回帰式を選択したりしていることから、当該時点での運動強度については考慮がされているものの、ユーザの身体特性に応じた当該時点以前のユーザの活動内容による影響については考慮していない。その結果、上述の方法においては、心拍数から推定された消費エネルギーは、実際の消費エネルギーに比べて高くなる傾向があり、推定精度を向上させることには限界があった。以下に、ユーザの心拍数と消費エネルギーとの関係が、ユーザの身体特性に応じて以前のユーザの活動内容から影響を受けて変動することについて、詳細に説明する。 This is because the relationship between the user's heart rate and energy consumption at a certain point in time is not determined only by the user's exercise intensity or activity state at that point, but depending on the user's physical characteristics. This is because it is influenced by the contents of the user's activities and fluctuates. In the above method, since the regression equation is selected according to the exercise intensity at a certain point in time, the exercise intensity at that point is taken into consideration, but according to the physical characteristics of the user It does not consider the impact of user activity before that time. As a result, in the method described above, the energy consumption estimated from the heart rate tends to be higher than the actual energy consumption, and there is a limit to improving the estimation accuracy. Hereinafter, it will be described in detail that the relationship between the user's heart rate and energy consumption varies depending on the user's physical characteristics and is influenced by the previous user's activity content.
 本発明者らは、被験者に断続的に所定の運動強度の運動を行わせ、上記被験者に対して、間接熱量測定法による消費エネルギーの測定と心拍数の測定とを実施した。図33には、上記実施により得られた消費エネルギーの経時変化90及び心拍数の経時変化92が示されている。図33に示されているように、消費エネルギーの経時変化90は、被験者の運動により特定の値まで上昇するものの、運動が終了すると、運動を開始する前の安静状態と同程度まで下降していることがわかる。一方、心拍数の経時変化92についても、消費エネルギーの経時変化90と同様に、運動により上昇し、運動の終了とともに下降している。しかしながら、心拍数の経時変化92は、消費エネルギーの経時変化90とは異なり、運動が終了すると下降するものの、運動開始前の安静状態と同程度にまで下降していない。また、心拍数の経時変化92は、最初の運動時においては消費エネルギーの経時変化92と同様に変化しているが、被験者が運動を繰り返すことに応じて、徐々に上昇している。より具体的には、図33に示されているように、運動を休止している期間に対応する心拍数の経時変化(図33中の下方に突出している区間92a)は、運動を繰り返すことに応じて上昇している。また、運動を実施している期間に対応する心拍数の経時変化(図33中の上方に突出している区間92b)についても、運動を繰り返すことに応じて上昇している。すなわち、心拍数の変動は、消費エネルギーの変動からかい離することがあることが明らかになった。言い換えると、本発明者らの検討によれば、心拍数と消費エネルギーとの関係は、上記かい離が生じる前にはある回帰式で示すことができても、かい離が生じた場合には上記回帰式で示すことができなくなることが分かった。なお、以下の説明においては、上記かい離現象を、心拍数だけが上昇することから、心拍数における亢進現象と呼ぶ。このような心拍数の亢進現象が発現した場合には、上記回帰式に当該心拍数を入力して推定された消費エネルギーは、実際の消費エネルギーに比べて高くなる。 The inventors of the present invention intermittently exercised a subject with a predetermined exercise intensity, and performed energy measurement and heart rate measurement on the subject using an indirect calorimetry method. FIG. 33 shows a time-dependent change 90 in energy consumption and a time-dependent change 92 in heart rate obtained by the above implementation. As shown in FIG. 33, the time-dependent change 90 in energy consumption increases to a specific value due to the exercise of the subject, but when the exercise ends, it decreases to the same level as the resting state before starting the exercise. I understand that. On the other hand, the time-dependent change 92 of the heart rate also rises due to exercise, and falls as the exercise ends, as with the change 90 of energy consumption over time. However, unlike the time-dependent change 90 in energy consumption, the time-dependent change 92 in the heart rate decreases when the exercise is completed, but does not decrease to the same extent as the resting state before the start of exercise. The heart rate change 92 over time changes in the same way as the energy consumption change 92 over the first exercise, but gradually increases as the subject repeats the exercise. More specifically, as shown in FIG. 33, the change over time in the heart rate corresponding to the period in which the exercise is paused (the section 92a protruding downward in FIG. 33) repeats the exercise. Has risen according to. Further, the change over time in the heart rate corresponding to the period during which the exercise is performed (section 92b protruding upward in FIG. 33) also rises as the exercise is repeated. In other words, it became clear that fluctuations in heart rate may deviate from fluctuations in energy consumption. In other words, according to the study by the present inventors, the relationship between the heart rate and the energy consumption can be expressed by a certain regression equation before the separation occurs, but when the separation occurs, the regression is performed. It turns out that it can no longer be expressed by a formula. In the following description, the separation phenomenon is referred to as an increase phenomenon in the heart rate because only the heart rate increases. When such an increase in heart rate occurs, the energy consumption estimated by inputting the heart rate into the regression equation is higher than the actual energy consumption.
 さらに、本発明者らが、上述のような測定を複数の被験者に対して繰り返し実施したところ、亢進現象には再現性があることが確認された。加えて、亢進現象の発現パターンについても、被験者によって異なる傾向があることが確認された。具体的には、同一の被験者で繰り返し実施したところ、運動がある閾値を超えた場合(詳細には、実施した運動の運動強度がある閾値を超えた場合、運動の実施回数がある閾値を超えた場合、実施した運動の運動時間がある閾値を超えた場合等)に、亢進現象が再現性を持って発現することが確認された。また、異なる被験者に対して同じ測定を行ったところ、被験者によって亢進現象の発現パターンが異なることが確認された。例えば、亢進現象の発現パターンとしては、高い運動強度の期間にのみ亢進現象が見られる場合、運動休止時等の低い運動強度の期間にのみ亢進現象が見られる場合、高運動強度期間及び低運動強度期間の両方で亢進現象が見られる場合、亢進現象が見られない場合等がある。また、運動終了後、時間と経過ともに亢進現象が緩和していく際の時定数は、被験者により異なることも確認された。さらに、本発明者らが得た多数の測定結果を精査したところ、亢進現象の発現パターンの傾向に応じて、亢進現象の発現パターンをいくつかのグループに分類することができることが分かった。 Furthermore, when the present inventors repeatedly performed the above measurement on a plurality of subjects, it was confirmed that the enhancement phenomenon has reproducibility. In addition, it was confirmed that the expression pattern of the enhancement phenomenon tends to differ depending on the subject. Specifically, when repeated exercises are performed on the same subject, when the exercise exceeds a certain threshold (specifically, when the exercise intensity of the exercise performed exceeds a certain threshold, the number of exercises exceeds the certain threshold) When the exercise time of the exercise carried out exceeds a certain threshold value), it was confirmed that the enhancement phenomenon appears reproducibly. Moreover, when the same measurement was performed with respect to different subjects, it was confirmed that the expression pattern of the enhancement phenomenon differs depending on the subject. For example, as an expression pattern of the enhancement phenomenon, when the enhancement phenomenon is observed only during a period of high exercise intensity, when the enhancement phenomenon is observed only during a period of low exercise intensity such as during exercise pause, the high exercise intensity period and low exercise intensity There is a case where the enhancement phenomenon is observed in both the intensity periods, and the enhancement phenomenon is not observed. In addition, it was confirmed that the time constant when the enhancement phenomenon was alleviated with time and after the exercise was different from subject to subject. Furthermore, when the numerous measurement results obtained by the present inventors were examined, it was found that the expression pattern of the enhancement phenomenon could be classified into several groups according to the tendency of the expression pattern of the enhancement phenomenon.
 ところで、運動を終了して安静に移行した際に心拍数が直ちには低下しない現象として、「呼気借」と呼ばれる現象が知られている。詳細には、運動を行った場合には、人体が消費する単位時間当たりのエネルギー量が増加し、増加した消費エネルギーを供給するために代謝量が上昇する。上述の代謝量の上昇分は、通常は酸素を用いた代謝によって賄われるが、心肺機能の限界により酸素の供給が間に合わない場合には、酸素を用いない代謝によりエネルギーが賄われる。このように酸素を用いずにエネルギーを供給する代謝は「呼気借」又は「酸素借」と呼ばれている。これは、酸素を用いない代謝は、乳酸等の生成物を体内に蓄積するため、後に酸素を用いてそれらの生成物を代謝する必要があり、いいかえると、酸素を用いない代謝は、将来の酸素供給を借財として消費していることに相当するからである。上述のように、「呼気借」が生じると乳酸等の物質が蓄積するため、運動後にも酸素を用いた代謝を行う必要が生じ、酸素の消費量及び二酸化炭素の生成量が安静時の水準には戻らず、心拍数の低下が妨げられる。このように、「呼気借」は運動後の心拍数の低下を妨げる現象ではあるが、本発明者らは、上述の亢進現象は「呼気借」によるものではないと推察している。詳細には、「呼気借」で生じた乳酸等の物質の代謝は酸素の消費及び二酸化炭素の生成を伴う現象であり、「間接熱量測定法」により消費熱量の増加が観測される。すなわち「呼気借」の解消は、消費エネルギーと心拍数との両方を上昇させる現象であり、消費エネルギーが安静レベルまで低下したにも関わらず心拍数が亢進している状態を説明することができない。上述の亢進現象は「呼気借」のように運動生理学上のモデルが確立していない要因により、心拍数が亢進していると考えられる。本開示は、このようにメカニズムが明らかにされていない現象に起因する消費エネルギーにおける推定の誤差が生じることを避けることを目的としている。亢進現象は、心拍数の上昇要因のうち二酸化炭素による要因を除いた部分にあたるが、心拍数の調整は血流の調整を目的に行われることから、亢進現象の上昇要因も何らかの身体内の適応維持のために行われていると推測される。そのため、亢進現象の傾向は、心肺機能等の様々な身体特性に応じて定まると考えられる。例えば、熱の排出について考えた場合、熱輸送のために血流量を増加させる必要が生じることにより心拍数の上昇を招くと考えられるが、心拍数の上昇量及び心拍数の上昇の持続時間は、心肺機能、発汗機能の影響を受ける。具体的には、心肺機能が強化されたり発汗機能が強化されたりすれば、排熱効率が高まるため、心拍数の上昇量は小さくなり、上記持続時間が短縮すると考えられる。このような特徴から、トレーニングによって身体特性が向上した場合には、全般的に亢進現象が抑制されてゆくことが推測され、また、体調不良により身体特性が一時的に悪化した場合には、平常時に比べて亢進現象が強く現れることが推測される。 By the way, a phenomenon called “expiratory borrowing” is known as a phenomenon in which the heart rate does not decrease immediately when the exercise is finished and the patient moves to rest. Specifically, when exercising, the amount of energy per unit time consumed by the human body increases, and the amount of metabolism increases to supply the increased energy consumption. The increased amount of metabolism described above is usually covered by metabolism using oxygen, but when oxygen supply is not in time due to the limitation of cardiopulmonary function, energy is supplied by metabolism without using oxygen. Metabolism that supplies energy without using oxygen in this way is called “expiratory borrowing” or “oxygen borrowing”. This is because metabolism without oxygen accumulates products such as lactic acid in the body, so it is necessary to metabolize those products later with oxygen. In other words, metabolism without oxygen This is because the oxygen supply is consumed as a loan. As mentioned above, when “expiratory borrowing” occurs, substances such as lactic acid accumulate, so it is necessary to carry out metabolism using oxygen even after exercise, and the amount of oxygen consumed and the amount of carbon dioxide produced are at a resting level. It does not return to and prevents a decrease in heart rate. Thus, although “expiration borrowing” is a phenomenon that prevents a decrease in the heart rate after exercise, the present inventors speculate that the above-described enhancement phenomenon is not due to “expiration borrowing”. Specifically, metabolism of substances such as lactic acid produced by “exhalation” is a phenomenon accompanied by consumption of oxygen and generation of carbon dioxide, and an increase in the amount of heat consumption is observed by “indirect calorimetry”. In other words, the elimination of “expiratory borrowing” is a phenomenon in which both energy consumption and heart rate are increased, and it is impossible to explain the state in which the heart rate is increasing despite the energy consumption being reduced to a resting level. . It is considered that the above-mentioned increase phenomenon is due to a factor in which an exercise physiology model has not been established such as “expiration borrowing”, and the heart rate is increased. The present disclosure aims to avoid an estimation error in energy consumption caused by a phenomenon whose mechanism is not clarified. The increase phenomenon is the part of the heart rate increase factor excluding the factor due to carbon dioxide, but the adjustment of the heart rate is done for the purpose of adjusting the blood flow, so the increase factor of the increase phenomenon is also some kind of adaptation in the body Presumed to be done for maintenance. Therefore, the tendency of the enhancement phenomenon is considered to be determined according to various body characteristics such as cardiopulmonary function. For example, when thinking about heat excretion, it is thought that the increase in the blood flow rate for heat transport will cause an increase in heart rate, but the increase in heart rate and the duration of the increase in heart rate are Affected by cardiopulmonary function, sweating function. Specifically, if the cardiopulmonary function is enhanced or the sweating function is enhanced, the heat exhaust efficiency is increased, so that the amount of increase in heart rate is reduced and the duration is shortened. From these characteristics, it is presumed that when physical characteristics are improved by training, the enhancement phenomenon is generally suppressed, and when physical characteristics are temporarily deteriorated due to poor physical condition, it is normal. It is speculated that the phenomenon of enhancement appears stronger than sometimes.
 すなわち、本発明者らの検討によれば、心拍数と消費エネルギーとの関係は、ある範囲においては所定の回帰式で示すことができるが、心拍数の亢進現象が発現する範囲においては上記回帰式で示すことができなくなることが分かった。言い換えると、上記検討により、心拍数と消費エネルギーとの関係は変動することがわかった。さらに、当該変動は、ユーザの特有の心拍数の亢進現象の発現パターン、すなわち、ユーザの身体特性に応じて以前のユーザの活動内容からの影響によって生じていることが分かった。従って、これまで本発明者らが検討してきた方法では、ある時点での運動強度については考慮がされているものの、ユーザの身体特性に応じた当該時点以前のユーザの活動内容による影響については考慮していないため、推定精度を向上させることができなかった。 That is, according to the study by the present inventors, the relationship between the heart rate and the energy consumption can be expressed by a predetermined regression equation within a certain range, but the above-mentioned regression is achieved within a range where the heart rate enhancement phenomenon appears. It turns out that it can no longer be expressed by a formula. In other words, the above study revealed that the relationship between heart rate and energy consumption fluctuated. Further, it has been found that the fluctuation is caused by the influence of the user's activity content according to the expression pattern of the user's specific heart rate enhancement phenomenon, that is, the user's physical characteristics. Therefore, in the methods that the present inventors have studied so far, although the exercise intensity at a certain time point is taken into consideration, the influence of the user's activity content before that time according to the user's physical characteristics is considered. As a result, the estimation accuracy could not be improved.
 そこで、本発明者らは、上記知得を一着眼点にすることにより、心拍数からであっても、消費エネルギーを高精度で推定することができる本開示の実施形態を創作するに至った。すなわち、以下に説明する本開示の実施形態によれば、本発明者らが独自に知得した心拍数の亢進現象の発現パターンを考慮することにより、消費エネルギーを高精度で推定することができる。例えば、本実施形態においては、高い運動強度の運動を実施した後に安静時の心拍数よりも高い心拍数が検出された際には、本実施形態においては、当該心拍数に対する亢進現象の影響の寄与を的確に把握し、当該寄与を除外した上で消費エネルギーの推定を行う。以下、このような本開示の実施形態に係る情報処理装置及び情報処理方法を順次詳細に説明する。 Therefore, the present inventors have created an embodiment of the present disclosure that can estimate the energy consumption with high accuracy even from the heart rate by focusing on the above knowledge. . That is, according to the embodiment of the present disclosure described below, it is possible to estimate the energy consumption with high accuracy by considering the expression pattern of the heart rate enhancement phenomenon that the inventors have independently known. . For example, in the present embodiment, when a heart rate higher than the resting heart rate is detected after exercise of high exercise intensity, in this embodiment, the influence of the enhancement phenomenon on the heart rate is affected. Accurately grasp the contribution and estimate the energy consumption after excluding the contribution. Hereinafter, the information processing apparatus and the information processing method according to the embodiment of the present disclosure will be sequentially described in detail.
 <<2.本開示に係る実施形態>>
 <2.1.本実施形態に係る情報処理システム1の概要>
 次に、本開示の実施形態に係る構成を説明する。まずは、本開示の実施形態に係る構成について、図1を参照して説明する。図1は、本実施形態に係る情報処理システム1の構成例を説明する説明図である。
<< 2. Embodiment according to the present disclosure >>
<2.1. Overview of Information Processing System 1 According to the Present Embodiment>
Next, a configuration according to an embodiment of the present disclosure will be described. First, a configuration according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating a configuration example of an information processing system 1 according to the present embodiment.
 図1に示すように、本実施形態に係る情報処理システム1は、ウエアラブルデバイス10、サーバ30、及びユーザ端末50を含み、これらは互いにネットワーク70を介して通信可能に接続される。詳細には、ウエアラブルデバイス10、サーバ30、及びユーザ端末50は、図示しない基地局等(例えば、携帯電話機の基地局、無線LANのアクセスポイント等)を介してネットワーク70に接続される。なお、ネットワーク70で用いられる通信方式は、有線又は無線を問わず任意の方式を適用することができるが、安定した動作を維持することができる通信方式を用いることが望ましい。 As shown in FIG. 1, the information processing system 1 according to the present embodiment includes a wearable device 10, a server 30, and a user terminal 50, which are connected to each other via a network 70 so as to communicate with each other. Specifically, the wearable device 10, the server 30, and the user terminal 50 are connected to the network 70 via a base station (not shown) or the like (for example, a mobile phone base station, a wireless LAN access point, or the like). Note that any method can be applied to the network 70 regardless of whether it is wired or wireless, but it is desirable to use a communication method that can maintain stable operation.
 ウエアラブルデバイス10は、ユーザの身体の一部に装着可能なデバイス、もしくは、ユーザの身体に挿入されたインプラントデバイス(インプラント端末)であることができる。より具体的には、ウエアラブルデバイス10は、HMD(Head Mounted Display)型、イヤーデバイス型、アンクレット型、腕輪型、首輪型、アイウェア型、パッド型、バッチ型、衣服型等の各種の方式のウエアラブルデバイスを採用することができる。さらに、ウエアラブルデバイス10は、ユーザの心拍数を検出する心拍センサ(もしくは、ユーザの脈拍数を検出する脈拍センサ)及びユーザの運動による運動強度を検出する加速度センサ等のセンサ類を内蔵する。なお、ウエアラブルデバイス10の詳細については後述する。 Wearable device 10 can be a device that can be worn on a part of the user's body, or an implant device (implant terminal) inserted into the user's body. More specifically, the wearable device 10 has various methods such as HMD (Head Mounted Display) type, ear device type, anklet type, bracelet type, collar type, eyewear type, pad type, batch type, and clothing type. Wearable devices can be employed. Furthermore, the wearable device 10 incorporates sensors such as a heart rate sensor that detects a user's heart rate (or a pulse sensor that detects the user's pulse rate) and an acceleration sensor that detects exercise intensity due to the user's exercise. Details of the wearable device 10 will be described later.
 サーバ30は、例えば、コンピュータ等により構成される。サーバ30は、例えば、本実施形態で用いられる情報を格納したり、本実施形態により提供される情報を配信したりする。なお、サーバ30の詳細については後述する。 The server 30 is configured by, for example, a computer. For example, the server 30 stores information used in the present embodiment, and distributes information provided by the present embodiment. Details of the server 30 will be described later.
 ユーザ端末50は、ユーザ等に本実施形態により提供される情報を出力するための端末である。例えば、ユーザ端末50は、タブレット型PC(Personal Computer)、スマートフォン、携帯電話、ラップトップ型PC、ノート型PC、HMD等のデバイスであることができる。 The user terminal 50 is a terminal for outputting information provided by the present embodiment to a user or the like. For example, the user terminal 50 can be a device such as a tablet PC (Personal Computer), a smartphone, a mobile phone, a laptop PC, a notebook PC, or an HMD.
 なお、図1においては、本実施形態に係る情報処理システム1は、1つのウエアラブルデバイス10及びユーザ端末50を含むものとして示されているが、本実施形態においてはこれに限定されるものではない。例えば、本実施形態に係る情報処理システム1は、複数のウエアラブルデバイス10及びユーザ端末50を含んでもよい。さらに、本実施形態に係る情報処理システム1は、例えば、ウエアラブルデバイス10からサーバ30へ情報を送信する際の中継装置のような他の通信装置等を含んでもよい。また、本実施形態においては、ウエアラブルデバイス10をスタンドアローン型の装置として使用してもよい。この場合、サーバ30及びユーザ端末50の機能の少なくとも一部が、ウエアラブルデバイス10において行われることとなる。 In FIG. 1, the information processing system 1 according to the present embodiment is illustrated as including one wearable device 10 and a user terminal 50, but is not limited to this in the present embodiment. . For example, the information processing system 1 according to the present embodiment may include a plurality of wearable devices 10 and user terminals 50. Furthermore, the information processing system 1 according to the present embodiment may include other communication devices such as a relay device for transmitting information from the wearable device 10 to the server 30. In the present embodiment, the wearable device 10 may be used as a stand-alone device. In this case, at least some of the functions of the server 30 and the user terminal 50 are performed in the wearable device 10.
 <2.2.本実施形態に係るウエアラブルデバイス10の構成>
 次に、本開示の実施形態に係るウエアラブルデバイス10の構成について、図2から図5を参照して説明する。図2は、本実施形態に係るウエアラブルデバイス10の構成を示すブロック図である。図3及び図4は、本実施形態に係るウエアラブルデバイス10の外観の一例を示す説明図である。図5は、本実施形態に係るウエアラブルデバイス10の装着状態の一例を示す説明図である。
<2.2. Configuration of Wearable Device 10 According to this Embodiment>
Next, the configuration of the wearable device 10 according to the embodiment of the present disclosure will be described with reference to FIGS. FIG. 2 is a block diagram illustrating a configuration of the wearable device 10 according to the present embodiment. 3 and 4 are explanatory diagrams illustrating an example of the appearance of the wearable device 10 according to the present embodiment. FIG. 5 is an explanatory diagram illustrating an example of a wearing state of the wearable device 10 according to the present embodiment.
 ウエアラブルデバイス10は、図2に示すように、入力部(取得部)100と、出力部110と、センサ部(取得部)120と、制御部130と、通信部140と、記憶部150とを主に有する。以下に、ウエアラブルデバイス10の各機能部の詳細について説明する。 As shown in FIG. 2, the wearable device 10 includes an input unit (acquisition unit) 100, an output unit 110, a sensor unit (acquisition unit) 120, a control unit 130, a communication unit 140, and a storage unit 150. Has mainly. Below, the detail of each function part of the wearable device 10 is demonstrated.
 (入力部100)
 入力部100は、ウエアラブルデバイス10へのデータ、コマンドの入力を受け付ける。より具体的には、当該入力部100は、タッチパネル、ボタン、マイクロフォン、ドライブ等により実現される。例えば、入力部100には、後述する学習部132の学習に供される情報(クラスタ情報、心拍数の変動パターンデータ、消費エネルギーの変動パターンデータ等)や、後述する分類部134及び推定部136の分類及び推定に供される情報(クラスタ情報、心拍数の変動パターンデータ、消費エネルギーの変動パターンデータ等)が入力される。
(Input unit 100)
The input unit 100 receives input of data and commands to the wearable device 10. More specifically, the input unit 100 is realized by a touch panel, a button, a microphone, a drive, or the like. For example, the input unit 100 includes information (cluster information, heart rate fluctuation pattern data, consumption energy fluctuation pattern data, etc.) used for learning by a learning unit 132 described later, a classification unit 134 and an estimation unit 136 described later. Information (cluster information, heart rate fluctuation pattern data, energy consumption fluctuation pattern data, etc.) to be used for classification and estimation is input.
 (出力部110)
 出力部110は、ユーザに対して情報を提示するためのデバイスであり、例えば、ユーザに向けて、画像、音声、光、又は、振動等により各種の情報を出力する。具体的には、所定の運動強度の変化における心拍数の変動パターンを取得するために、出力部110は、指示部として、ユーザに向けて所定の運動を実施するように促すような画面や音声を出力する。また、出力部110は、通知部として、後述する制御部130で推定した消費エネルギーに関する情報を出力したり、推定した消費エネルギーに基づいて、所定の運動を推奨するための情報を出力したりする。当該出力部110は、ディスプレイ、スピーカ、イヤフォン、発光素子、振動モジュール等により実現される。なお、出力部110の機能は、後述するユーザ端末50の出力部510により提供されてもよい。
(Output unit 110)
The output unit 110 is a device for presenting information to the user. For example, the output unit 110 outputs various types of information to the user by image, sound, light, vibration, or the like. Specifically, in order to acquire a fluctuation pattern of the heart rate at a change in a predetermined exercise intensity, the output unit 110 serves as an instruction unit such as a screen or sound that prompts the user to perform a predetermined exercise Is output. Further, the output unit 110 outputs, as a notification unit, information related to energy consumption estimated by the control unit 130 described later, or outputs information for recommending a predetermined exercise based on the estimated energy consumption. . The output unit 110 is realized by a display, a speaker, an earphone, a light emitting element, a vibration module, or the like. Note that the function of the output unit 110 may be provided by the output unit 510 of the user terminal 50 described later.
 (センサ部120)
 センサ部120は、ユーザの身体に装着されたウエアラブルデバイス10内に設けられ、ユーザの心拍数を検出する心拍センサ(心拍計)を有する。上記心拍センサは、ユーザの心拍数を測定し、測定した結果を後述する制御部130に出力する。なお、当該心拍センサは、ユーザの脈拍数を測定する脈拍センサ(脈拍計)であってもよい。また、センサ部120は、ユーザの運動強度を検出するためのモーションセンサを含んでもよい。上記モーションセンサは、少なくとも加速度センサ(加速度計)を含み、ユーザの動作に伴って発生する加速度の変化を検出して、検出結果を後述する制御部130に出力する。なお、以下に説明する実施形態においては、運動強度を示す指標として、ユーザの動作に伴って発生する加速度変化を用いる。加速度は加速度センサにより測定することが可能であり、加速度センサは一般の人々であっても気軽に利用することができるため、ここでは、運動強度を示す指標として加速度変化を用いている。すなわち、センサ部120は、後述する学習部132の学習に供される情報(心拍数の変動パターンデータ等)や、後述する分類部134及び推定部136の分類及び推定に供される情報(心拍数の変動パターンデータ、運動強度等)を取得する。
(Sensor unit 120)
The sensor unit 120 is provided in the wearable device 10 worn on the user's body, and includes a heart rate sensor (heart rate monitor) that detects the user's heart rate. The heart rate sensor measures the heart rate of the user and outputs the measurement result to the control unit 130 described later. The heart rate sensor may be a pulse sensor (pulse meter) that measures the user's pulse rate. The sensor unit 120 may include a motion sensor for detecting the exercise intensity of the user. The motion sensor includes at least an acceleration sensor (accelerometer), detects a change in acceleration caused by a user's operation, and outputs a detection result to the control unit 130 described later. In the embodiment described below, an acceleration change generated in accordance with a user's action is used as an index indicating exercise intensity. Since the acceleration can be measured by an acceleration sensor, and even an ordinary person can easily use the acceleration sensor, the acceleration change is used as an index indicating the exercise intensity here. That is, the sensor unit 120 includes information (heart rate variation pattern data and the like) used for learning by a learning unit 132 described later, and information (heart rate) used for classification and estimation by a classification unit 134 and an estimation unit 136 described later. Number variation pattern data, exercise intensity, etc.).
 なお、モーションセンサは、ジャイロセンサ、地磁気センサ等を含んでもよい。さらに、センサ部120は、GPS(Global Positioning System)受信機、気圧センサ、温度センサ、及び、湿度センサ等の他の各種センサを含んでもよい。さらに、センサ部120は、正確な時刻を把握する時計機構(図示省略)を内蔵し、取得した心拍数及び加速度変化等に、これら心拍数等を取得した時刻を紐づけてもよい。 Note that the motion sensor may include a gyro sensor, a geomagnetic sensor, and the like. Furthermore, the sensor unit 120 may include various other sensors such as a GPS (Global Positioning System) receiver, an atmospheric pressure sensor, a temperature sensor, and a humidity sensor. Further, the sensor unit 120 may include a clock mechanism (not shown) that grasps an accurate time, and may associate the acquired time of the heart rate and the like with the acquired heart rate and acceleration change.
 (制御部130)
 制御部130は、ウエアラブルデバイス10内に設けられ、ウエアラブルデバイス10の各ブロックを制御したり、上述したセンサ部120から出力された心拍数及び加速度変化を用いて演算等を行ったりすることができる。当該制御部130は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等のハードウェアにより実現される。なお、制御部130の機能は、後述するサーバ30の制御部330又はユーザ端末50の制御部530により提供されてもよい。
(Control unit 130)
The control unit 130 is provided in the wearable device 10, and can control each block of the wearable device 10, or can perform calculation using the heart rate and acceleration change output from the sensor unit 120 described above. . The control unit 130 is realized by hardware such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). Note that the function of the control unit 130 may be provided by the control unit 330 of the server 30 or the control unit 530 of the user terminal 50 described later.
 さらに、当該制御部130は、学習部(学習器)132、分類部134及び推定部136として機能することもでき、すなわち、心拍数と消費エネルギーとの関係に基づいて消費エネルギーの推定を行ったり、推定を行うために分類を行ったり、学習を行ったりすることができる。なお、当該制御部130のこれら機能部の詳細については後述する。 Furthermore, the control unit 130 can also function as a learning unit (learning device) 132, a classification unit 134, and an estimation unit 136. That is, the control unit 130 estimates energy consumption based on the relationship between the heart rate and energy consumption. Classification can be performed to perform estimation or learning can be performed. Details of these functional units of the control unit 130 will be described later.
 (通信部140)
 通信部140は、ウエアラブルデバイス10内に設けられ、サーバ30、ユーザ端末50等の外部装置との間で情報の送受信を行うことができる。言い換えると、通信部140は、データの送受信を行う機能を有する通信インタフェースと言える。なお、通信部140は、通信アンテナ、送受信回路やポート等の通信デバイスにより実現される。
(Communication unit 140)
The communication unit 140 is provided in the wearable device 10 and can transmit and receive information to and from external devices such as the server 30 and the user terminal 50. In other words, it can be said that the communication unit 140 is a communication interface having a function of transmitting and receiving data. The communication unit 140 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
 (記憶部150)
 記憶部150は、ウエアラブルデバイス10内に設けられ、上述した制御部130が各種処理を実行するためのプログラム、情報等や、処理によって得た情報を格納する。なお、記憶部150は、例えば、フラッシュメモリ(flash memory)等の不揮発性メモリ(nonvolatile memory)等により実現される。
(Storage unit 150)
The storage unit 150 is provided in the wearable device 10 and stores a program, information, and the like for the above-described control unit 130 to execute various processes and information obtained by the processes. The storage unit 150 is realized by, for example, a non-volatile memory such as a flash memory.
 なお、本実施形態においては、センサ部120の2つのセンサ、心拍センサとモーションセンサとを別個のウエアラブルデバイス10に設けてもよい。このようにすることで、各ウエアラブルデバイス10の構成をコンパクトにすることができることから、当該ウエアラブルデバイス10をユーザの身体の様々な部位に装着することが可能となる。 In the present embodiment, the two sensors of the sensor unit 120, the heart rate sensor and the motion sensor, may be provided in separate wearable devices 10. By doing in this way, since the structure of each wearable device 10 can be made compact, it becomes possible to mount | wear the said wearable device 10 to various site | parts of a user's body.
 先に説明したように、ウエアラブルデバイス10は、アイウェア型、イヤーデバイス型、腕輪型、HMD型等の各種の方式のウエアラブルデバイスを採用することができる。図3に、ウエアラブルデバイス10の外観の一例を示す。図3に示すウエアラブルデバイス10aは、ユーザの両耳に装着される、イヤーデバイス型のウエアラブルデバイスである。当該ウエアラブルデバイス10aは、左右の本体部12L及び12Rと、これら本体部12L、12Rを接続するネックバンド14とを主に有する。本体部12L、12Rは、例えば、図3に示される入力部100、出力部110、センサ部120、制御部130、通信部140、及び記憶部150のうちの少なくとも一部を内蔵する。また、本体部12L、12Rには、出力部110として機能するイヤフォン(図示省略)が内蔵され、ユーザは当該イヤフォンを両耳に装着することにより、音声情報等を聞くことができる。 As described above, the wearable device 10 can employ various types of wearable devices such as an eyewear type, an ear device type, a bracelet type, and an HMD type. In FIG. 3, an example of the external appearance of the wearable device 10 is shown. The wearable device 10a shown in FIG. 3 is an ear device type wearable device worn on both ears of a user. The wearable device 10a mainly includes left and right main body portions 12L and 12R, and a neckband 14 that connects the main body portions 12L and 12R. The main body units 12L and 12R include, for example, at least a part of the input unit 100, the output unit 110, the sensor unit 120, the control unit 130, the communication unit 140, and the storage unit 150 illustrated in FIG. In addition, the main body portions 12L and 12R incorporate an earphone (not shown) that functions as the output portion 110, and the user can listen to audio information and the like by wearing the earphone in both ears.
 さらに、図4に、ウエアラブルデバイス10の外観の別の一例を示す。図4に示すウエアラブルデバイス10bは、腕輪型のウエアラブルデバイスである。当該ウエアラブルデバイス10bは、ユーザの腕や手首に装着されるウェアラブル端末であって、腕時計型ウエアラブルデバイスとも称される。ウエアラブルデバイス10bには、その外周面に、図3の入力部100及び出力部110としての機能を有するタッチパネルディスプレイ16が設けられている。さらに、当該外周面には、出力部110として音声出力機能を有するスピーカ18と、入力部100として収音機能を有するマイクロフォン20とが設けられている。 Further, FIG. 4 shows another example of the appearance of the wearable device 10. A wearable device 10b shown in FIG. 4 is a bracelet-type wearable device. The wearable device 10b is a wearable terminal worn on a user's arm or wrist, and is also referred to as a wristwatch type wearable device. The wearable device 10b is provided with a touch panel display 16 having functions as the input unit 100 and the output unit 110 in FIG. Furthermore, the outer peripheral surface is provided with a speaker 18 having a sound output function as the output unit 110 and a microphone 20 having a sound collection function as the input unit 100.
 また、ウエアラブルデバイス10は、図5に示すように、ユーザの頭部、手首等の様々な部位に1つ又は複数装着されることができる。 Further, as shown in FIG. 5, one or a plurality of wearable devices 10 can be attached to various parts such as a user's head and wrist.
 <2.3.本実施形態に係るサーバ30の構成>
 次に、本開示の実施形態に係るサーバ30の構成について、図6を参照して説明する。図6は、本実施形態に係るサーバ30の構成を示すブロック図である。
<2.3. Configuration of Server 30 According to this Embodiment>
Next, the configuration of the server 30 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 6 is a block diagram illustrating a configuration of the server 30 according to the present embodiment.
 先に説明したように、サーバ30は、例えば、コンピュータ等により構成される。図6に示すように、サーバ30は、入力部300と、出力部310と、制御部330と、通信部340と、記憶部350とを主に有する。以下に、サーバ30の各機能部の詳細について説明する。 As described above, the server 30 is configured by a computer, for example. As illustrated in FIG. 6, the server 30 mainly includes an input unit 300, an output unit 310, a control unit 330, a communication unit 340, and a storage unit 350. Below, the detail of each function part of the server 30 is demonstrated.
 (入力部300)
 入力部300は、サーバ30へのデータ、コマンドの入力を受け付ける。より具体的には、当該入力部300は、タッチパネル、キーボード等により実現される。
(Input unit 300)
The input unit 300 receives input of data and commands to the server 30. More specifically, the input unit 300 is realized by a touch panel, a keyboard, or the like.
 (出力部310)
 出力部310は、例えば、ディスプレイ、スピーカ、映像出力端子、音声出力端子等により構成され、画像又は音声等により各種の情報を出力する。
(Output unit 310)
The output unit 310 includes, for example, a display, a speaker, a video output terminal, an audio output terminal, and the like, and outputs various types of information using an image or audio.
 (制御部330)
 制御部330は、サーバ30内に設けられ、サーバ30の各ブロックを制御することができる。当該制御部330は、例えば、CPU、ROM、RAM等のハードウェアにより実現される。なお、制御部330は、ウエアラブルデバイス10の制御部130の機能の一部を実行してもよい。
(Control unit 330)
The control unit 330 is provided in the server 30 and can control each block of the server 30. The control unit 330 is realized by hardware such as a CPU, a ROM, and a RAM, for example. Note that the control unit 330 may execute a part of the functions of the control unit 130 of the wearable device 10.
 (通信部340)
 通信部340は、サーバ30内に設けられ、ウエアラブルデバイス10やユーザ端末50等の外部装置との間で情報の送受信を行うことができる。なお、通信部340は、通信アンテナ、送受信回路やポート等の通信デバイスにより実現される。
(Communication unit 340)
The communication unit 340 is provided in the server 30 and can transmit and receive information to and from external devices such as the wearable device 10 and the user terminal 50. Note that the communication unit 340 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
 (記憶部350)
 記憶部350は、サーバ30内に設けられ、上述した制御部320が各種処理を実行するためのプログラム等や、処理によって得た情報を格納する。より具体的には、記憶部350は、複数のユーザに装着されたウエアラブルデバイス10から取得された心拍数や消費エネルギー等のデータ、各ユーザに提供される地図データ、消費エネルギーの推定で用いるデータ等を格納することができる。なお、記憶部350は、例えば、ハードディスク(Hard Disk:HD)等の磁気記録媒体や、不揮発性メモリ等により実現される。
(Storage unit 350)
The storage unit 350 is provided in the server 30 and stores a program for the control unit 320 described above to execute various processes and information obtained by the processes. More specifically, the storage unit 350 includes data such as heart rate and energy consumption acquired from the wearable device 10 worn by a plurality of users, map data provided to each user, and data used for estimating energy consumption. Etc. can be stored. The storage unit 350 is realized by a magnetic recording medium such as a hard disk (HD), a nonvolatile memory, or the like, for example.
 <2.4.本実施形態に係るユーザ端末50の構成>
 次に、本開示の実施形態に係るユーザ端末50の構成について、図7及び図8を参照して説明する。図7は、本実施形態に係るユーザ端末50の構成を示すブロック図である。また、図8は、本実施形態に係るユーザ端末50の外観及び使用形態の一例を示す説明図である。
<2.4. Configuration of User Terminal 50 According to the Present Embodiment>
Next, the configuration of the user terminal 50 according to the embodiment of the present disclosure will be described with reference to FIGS. 7 and 8. FIG. 7 is a block diagram illustrating a configuration of the user terminal 50 according to the present embodiment. Moreover, FIG. 8 is explanatory drawing which shows an example of the external appearance and usage type of the user terminal 50 which concerns on this embodiment.
 先に説明したように、ユーザ端末50は、タブレット型PC、スマートフォン等のデバイスであることができる。図7に示すように、ユーザ端末50は、入力部500と、出力部510と、制御部530と、通信部540とを主に有する。以下に、ユーザ端末50の各機能部の詳細について説明する。 As described above, the user terminal 50 can be a device such as a tablet PC or a smartphone. As illustrated in FIG. 7, the user terminal 50 mainly includes an input unit 500, an output unit 510, a control unit 530, and a communication unit 540. Below, the detail of each function part of the user terminal 50 is demonstrated.
 (入力部500)
 入力部500は、ユーザ端末50へのデータ、コマンドの入力を受け付ける。より具体的には、当該入力部500は、タッチパネル、キーボード等により実現される。
(Input unit 500)
The input unit 500 receives input of data and commands to the user terminal 50. More specifically, the input unit 500 is realized by a touch panel, a keyboard, or the like.
 (出力部510)
 出力部510は、例えば、ディスプレイ、スピーカ、映像出力端子、音声出力端子等により構成され、画像又は音声等により各種の情報を出力する。なお、当該出力部510は、先に説明したように、ウエアラブルデバイス10の出力部110として機能することもできる。
(Output unit 510)
The output unit 510 includes, for example, a display, a speaker, a video output terminal, an audio output terminal, and the like, and outputs various types of information using an image or audio. Note that the output unit 510 can also function as the output unit 110 of the wearable device 10 as described above.
 (制御部530)
 制御部530は、ユーザ端末50内に設けられ、ユーザ端末50の各ブロックを制御することができる。当該制御部530は、例えば、CPU、ROM、RAM等のハードウェアにより実現される。
(Control unit 530)
The control unit 530 is provided in the user terminal 50 and can control each block of the user terminal 50. The control unit 530 is realized by hardware such as a CPU, a ROM, and a RAM, for example.
 (通信部540)
 通信部540は、サーバ30等の外部装置との間で情報の送受信を行うことができる。なお、通信部540は、通信アンテナ、送受信回路やポート等の通信デバイスにより実現される。
(Communication unit 540)
The communication unit 540 can exchange information with an external device such as the server 30. The communication unit 540 is realized by a communication device such as a communication antenna, a transmission / reception circuit, or a port.
 先に説明したように、ユーザ端末50としては、タブレット型PC、スマートフォン等のデバイスを採用することができる。図8に、タブレット型PCのユーザ端末50aの外観の一例を示す。ユーザ端末50aは、例えば、図8の左側に示すように、ユーザ端末50aを装着するための装着ギア54を用いてトレッドミル52に装着される。図8のように、ユーザ端末50aが装着されることにより、トレッドミル52を用いてトレーニングするユーザからユーザ端末50aの出力部510としてのディスプレイを視認することができる。 As described above, as the user terminal 50, a device such as a tablet PC or a smartphone can be employed. In FIG. 8, an example of the external appearance of the user terminal 50a of a tablet-type PC is shown. For example, as shown on the left side of FIG. 8, the user terminal 50a is mounted on the treadmill 52 using a mounting gear 54 for mounting the user terminal 50a. As shown in FIG. 8, when the user terminal 50 a is mounted, a display as the output unit 510 of the user terminal 50 a can be visually recognized by a user who trains using the treadmill 52.
 <2.5 本実施形態に係る制御部130の構成>
 以下に、本実施形態に係る制御部130の構成について、図9から図14を参照して説明する。図9及び図10は、本実施形態に係る学習部132の動作を説明するための説明図である。図11から図13は、本実施形態に係る尤度推定器236の動作を説明するための説明図である。さらに、図14は、本実施形態に係る推定部136の動作を説明するための説明図である。先に説明したように、制御部130は、学習部132、分類部134及び推定部136の3つの機能部を主に有する。以下に、制御部130の有する各機能部について説明する。
<2.5 Configuration of Control Unit 130 According to the Present Embodiment>
Below, the structure of the control part 130 which concerns on this embodiment is demonstrated with reference to FIGS. 9-14. 9 and 10 are explanatory diagrams for explaining the operation of the learning unit 132 according to the present embodiment. 11 to 13 are explanatory diagrams for explaining the operation of the likelihood estimator 236 according to the present embodiment. Further, FIG. 14 is an explanatory diagram for explaining the operation of the estimation unit 136 according to the present embodiment. As described above, the control unit 130 mainly includes three functional units, that is, a learning unit 132, a classification unit 134, and an estimation unit 136. Below, each function part which control part 130 has is explained.
 (学習部132)
 学習部132は、クラスタごとに、当該クラスタに属する運動強度の変化による心拍数の変動パターンと、当該心拍数の変動パターンと同時に測定された消費エネルギーの変動パターンとを用いて機械学習を行う。そして、学習部132は、クラスタごとに、当該機械学習により、運動強度の変化による心拍数の変動パターンと消費エネルギーの変動パターンとの関係を示す関係情報を取得する。
(Learning unit 132)
For each cluster, the learning unit 132 performs machine learning using a heart rate fluctuation pattern due to a change in exercise intensity belonging to the cluster and a consumption energy fluctuation pattern measured simultaneously with the heart rate fluctuation pattern. And the learning part 132 acquires the relationship information which shows the relationship between the fluctuation pattern of the heart rate by the change of exercise intensity, and the fluctuation pattern of consumption energy by the said machine learning for every cluster.
 ここで、クラスタとは、同一のモデルを用いて推定することができる、類似の傾向を持ったデータ群のことをいう。具体的には、本実施形態においては、運動強度の変化による心拍数の変動パターンの傾向が類似する、言い換えると、心拍数の亢進現象が発現するパターンの傾向が類似する、複数の心拍数の時系列データを同一のクラスタに属するものとして取り扱うこととする。同じクラスタに属する複数の心拍数の時系列データは、互いに類似する傾向を持っていることから、共通するモデルを用いて、心拍数の時系列データから消費エネルギーの時系列データを推定することができると考えられる。そこで、学習部132は、各クラスタにおいて、該当するクラスタに係る心拍数の亢進現象の発現パターンを考慮したモデルである、運動強度の変化による心拍数の変動パターンと消費エネルギーの変動パターンとの関係を示す関係情報を取得する。取得した各関係情報は、後述する推定部136が有するクラスタごとの推定器において推定を行う際に用いられる。言い換えると、本実施形態においては、クラスタごとに推定器が存在し、クラスタに紐づけられた推定器の推定で用いるために、学習部132により、クラスタごとに上記関係情報が準備される。 Here, a cluster refers to a group of data with a similar tendency that can be estimated using the same model. Specifically, in this embodiment, the tendency of the fluctuation pattern of the heart rate due to the change of exercise intensity is similar, in other words, the tendency of the pattern in which the heart rate enhancement phenomenon appears is similar. Time series data is handled as belonging to the same cluster. Since time series data of multiple heart rates belonging to the same cluster tend to be similar to each other, it is possible to estimate time series data of energy consumption from time series data of heart rates using a common model. It is considered possible. Therefore, the learning unit 132 is a model that takes into account the expression pattern of the heart rate enhancement phenomenon related to the corresponding cluster in each cluster, and the relationship between the fluctuation pattern of the heart rate due to the change in exercise intensity and the fluctuation pattern of the consumed energy. The relationship information indicating is acquired. Each acquired relationship information is used when estimation is performed in an estimator for each cluster included in the estimation unit 136 described later. In other words, in this embodiment, there is an estimator for each cluster, and the learning unit 132 prepares the relationship information for each cluster for use in estimation of the estimator linked to the cluster.
 より具体的には、学習部132は、以下のようにして学習を行うことができる。図9に示すように、学習部132は、複数のユーザに対して上述のウエアラブルデバイス10を装着することにより取得された運動強度の変化による複数の心拍数の変動パターンが入力される。ここでは、運動強度の変化による心拍数の変動パターンとして、運動強度の変化を示す加速度の時系列データ400と、加速度の時系列データ400に対応する心拍数の時系列データ402とが用いられている。また、入力される加速度及び心拍数の時系列データ400、402には、ラベル420としてクラスタが付されている。なお、学習部132に入力されるデータは、このような加速度及び心拍数の時系列データ400、402に限定されるものではなく、例えば、既知の運動強度の変化における心拍数の変動パターンであってもよい。さらに、入力される心拍数の時系列データ402には、亢進現象の発現パターンが含まれている。そして、学習部132は、リカレントニューラルネットワーク等による機械学習を利用して、各クラスタにおける時系列データ400、402の特徴点、特徴量を抽出し、分類データベース234を生成する。ここで生成された分類データベースは、消費エネルギーを推定する際のクラスタの探索に用いることができる。さらに、学習部132には、図10に示すように、同一のクラスタに属する加速度及び心拍数の時系列データ400、402と、同時に呼気測定により取得された消費エネルギーの時系列データ404(消費エネルギーの実測値)とが入力される。学習部132は、これら時系列データ400、402、404をそれぞれ入力信号及び教師信号として、リカレントニューラルネットワーク等による教師付き機械学習を行う。そして、学習部132は、上述の機械学習により、加速度及び心拍数の時系列データ400、402と消費エネルギーの時系列データ404との関係を示す関係情報を取得する。当該学習部132は、取得した関係情報を格納した推定データベース240をクラスタごとに構築する。クラスタごとに構築された推定データベース240は、消費エネルギーの推定で利用されることとなる。 More specifically, the learning unit 132 can perform learning as follows. As shown in FIG. 9, the learning unit 132 receives a plurality of fluctuation patterns of heart rate due to a change in exercise intensity acquired by wearing the above-described wearable device 10 with respect to a plurality of users. Here, acceleration time-series data 400 indicating a change in exercise intensity and heart-rate time-series data 402 corresponding to the acceleration time-series data 400 are used as a heart rate fluctuation pattern due to a change in exercise intensity. Yes. The input acceleration and heart rate time-series data 400 and 402 have clusters as labels 420. Note that the data input to the learning unit 132 is not limited to such acceleration and heart rate time-series data 400 and 402, and is, for example, a heart rate fluctuation pattern in a known exercise intensity change. May be. Furthermore, the input heart rate time-series data 402 includes an expression pattern of an enhancement phenomenon. Then, the learning unit 132 extracts feature points and feature amounts of the time series data 400 and 402 in each cluster by using machine learning using a recurrent neural network or the like, and generates a classification database 234. The classification database generated here can be used to search for clusters when estimating energy consumption. Furthermore, as shown in FIG. 10, the learning unit 132 includes time series data 400 and 402 of acceleration and heart rate belonging to the same cluster, and time series data 404 (energy consumption) of energy consumption acquired by breath measurement at the same time. Measured value). The learning unit 132 performs supervised machine learning using a recurrent neural network or the like using the time series data 400, 402, and 404 as an input signal and a teacher signal, respectively. The learning unit 132 acquires relation information indicating the relationship between the time series data 400 and 402 of acceleration and heart rate and the time series data 404 of energy consumption by the machine learning described above. The learning unit 132 constructs an estimation database 240 that stores the acquired relation information for each cluster. The estimation database 240 constructed for each cluster is used for estimation of energy consumption.
 なお、学習部132は、一部の加速度及び心拍数の時系列データ400、402へのラベル付けを省略するために半教師付き学習器による機械学習を行ってもよい。この場合、学習部132は、ラベルが付された加速度及び心拍数の時系列データ400、402と比較して、類似すると判断されるラベル無しの加速度及び心拍数の時系列データ400、402を同一のクラスタに属するよう学習させることで、分類能力を高めてゆくことができる。また、学習部132は、例えばユーザへ身体特性等に係る質問を行い、当該質問に対する回答に基づいて決定したクラスタ情報を大まかな教師信号として利用した、弱教師学習を行ってもよい。もしくは、学習部132は、大量のデータを用いてクラスタの抽出そのものを自動で行う、教師なし学習を行っても良い。この場合、学習部132により、クラスタが自動的に生成されることとなる。 Note that the learning unit 132 may perform machine learning using a semi-supervised learning device in order to omit labeling of some time series data 400 and 402 of acceleration and heart rate. In this case, the learning unit 132 compares the unlabeled acceleration and heart rate time series data 400 and 402 determined to be similar to the labeled acceleration and heart rate time series data 400 and 402. By learning to belong to the cluster, it is possible to improve the classification ability. The learning unit 132 may perform weak teacher learning using, for example, a question relating to body characteristics to the user and using cluster information determined based on an answer to the question as a rough teacher signal. Alternatively, the learning unit 132 may perform unsupervised learning that automatically performs cluster extraction using a large amount of data. In this case, the learning unit 132 automatically generates a cluster.
 なお、本実施形態においては、学習部132は、同一のクラスタに属する加速度、心拍数及び消費エネルギーの時系列データ400、402、404を用いて、心拍数と消費エネルギーとの関係を示す関係情報を取得している。同一のクラスタに属するこれら時系列データ400、402、404には類似する傾向、すなわち、類似する心拍数の亢進現象の発現パターンを持っているため、上述のような機械学習から特定の関係情報を見つけ出すことは容易である。なお、1つのクラスタに係る推定データベース240を構築するためには、少なくとも数名の被験者から得られた時系列データ400、402、404を用いることが好ましい。しかしながら、本実施形態における推定データベース240の構築は、被験者に対して測定を行うことにより得られた時系列データ400、402、404を用いることに限定されるものではない。例えば、上記データベース240の構築に用いる時系列データ400、402、404の一部を、該当するクラスタにおける傾向を人為的に再現したダミーの時系列データとしてもよい。また、本実施形態においては、学習部132における学習方法は、上述した機械学習を利用した方法に限定されるものではなく他の学習方法を用いてもよい。 In the present embodiment, the learning unit 132 uses the time series data 400, 402, and 404 of acceleration, heart rate, and consumed energy belonging to the same cluster, and relationship information that indicates the relationship between the heart rate and consumed energy. Is getting. Since these time-series data 400, 402, and 404 belonging to the same cluster have similar tendencies, that is, similar expression patterns of heart rate enhancement phenomenon, specific relationship information is obtained from machine learning as described above. It is easy to find out. In order to construct the estimation database 240 related to one cluster, it is preferable to use time series data 400, 402, 404 obtained from at least several subjects. However, the construction of the estimation database 240 in the present embodiment is not limited to using the time series data 400, 402, and 404 obtained by performing measurement on the subject. For example, a part of the time series data 400, 402, 404 used for constructing the database 240 may be dummy time series data that artificially reproduces the tendency in the corresponding cluster. In the present embodiment, the learning method in the learning unit 132 is not limited to the method using machine learning described above, and other learning methods may be used.
 (分類部134)
 分類部134は、後述する推定部136により推定を行う前に、入力されたデータが複数あるクラスタのうちのどのクラスタに属するのかを分類する。さらに、入力されたデータは、データが属するクラスタに係る推定器に入力され、消費エネルギーの推定に供される。詳細には、分類部134は、入力された運動強度の変化による心拍数の変動パターン(例えば、心拍数の時系列データ)と、各クラスタに紐づけられたモデル(例えば、心拍数の時系列データ)とを比較し、比較結果に基づいて、入力された変動パターンとモデルとの差が最も小さいモデルを探索する。もしくは、分類部134は、変動パターンとモデルとが最も類似する、モデルを探索する。そして、探索されたモデルに係るクラスタに当該心拍数の変動パターンが属するものとして、分類される。言い換えると、分類部134は、各ユーザの心拍数の亢進現象の発現パターンに基づいて、同じ傾向を持つ亢進現象の発現パターンに該当するクラスタを探索する。各クラスタに係る推定器は、各クラスタに属するデータの傾向、すなわち、心拍数の亢進現象の発現パターンが考慮されて推定を行うことから、このような推定器を用いることにより、推定精度を向上させることができる。
(Classification part 134)
The classification unit 134 classifies which of a plurality of clusters the input data belongs to before performing estimation by the estimation unit 136 described later. Further, the input data is input to an estimator related to the cluster to which the data belongs, and is used for estimation of energy consumption. Specifically, the classification unit 134 includes a heart rate fluctuation pattern (for example, heart rate time-series data) due to a change in input exercise intensity and a model (for example, a heart rate time series) associated with each cluster. Data) and a model having the smallest difference between the input fluctuation pattern and the model is searched based on the comparison result. Alternatively, the classification unit 134 searches for a model in which the variation pattern and the model are most similar. Then, the heart rate fluctuation pattern is classified as belonging to the cluster related to the searched model. In other words, the classification unit 134 searches for a cluster corresponding to the expression pattern of the enhancement phenomenon having the same tendency based on the expression pattern of the enhancement phenomenon of the heart rate of each user. The estimator associated with each cluster performs estimation taking into account the tendency of data belonging to each cluster, that is, the expression pattern of the heart rate enhancement phenomenon, so that the estimation accuracy is improved by using such an estimator. Can be made.
 より具体的には、分類部134は、学習部132が生成した分類データベース234を利用してもよい。このようにすることで、分類部134は、推定のために新たに取得された運動強度の変化による複数の心拍数の変動パターンが属するクラスタを探索することができる。 More specifically, the classification unit 134 may use the classification database 234 generated by the learning unit 132. In this way, the classification unit 134 can search for a cluster to which a plurality of fluctuation patterns of heart rate due to changes in exercise intensity newly acquired for estimation belong.
 また、分類部134は、例えば、尤度を推定することにより分類を行ってもよい。尤度を利用した分類について、図11から図13を参照して説明する。尤度とは、入力されたデータによる推定の信頼度あるいは確からしさを示す指標のことである。この場合、予めクラスタごとに消費エネルギーを推定するための推定器が準備されている。まず、各推定器に、運動強度の変化による心拍数の変動パターンとして、運動強度の変化を示す加速度の時系列データ400と、加速度の時系列データ400に対応する心拍数の時系列データ402とが入力され、消費エネルギーの時系列データ406が推定される。なお、ここでは、呼気測定により取得された消費エネルギーの時系列データ404(消費エネルギーの実測値)と区別するために、推定された消費エネルギーの時系列データ406を推定消費エネルギーの時系列データ406と呼ぶ。 Further, the classification unit 134 may perform classification by estimating likelihood, for example. The classification using the likelihood will be described with reference to FIGS. Likelihood is an index that indicates the reliability or probability of estimation based on input data. In this case, an estimator for estimating energy consumption for each cluster is prepared in advance. First, in each estimator, acceleration time-series data 400 indicating a change in exercise intensity, and heart rate time-series data 402 corresponding to the acceleration time-series data 400, as a heart rate fluctuation pattern due to a change in exercise intensity, Is input, and time series data 406 of energy consumption is estimated. Here, in order to distinguish from the time series data 404 (consumed energy consumption value) of the consumed energy acquired by the exhalation measurement, the estimated time series data 406 of the estimated consumed energy is used as the time series data 406 of the estimated consumed energy. Call it.
 また、分類部134は、図11に示すような尤度推定器236を複数個有する。尤度推定器236は、クラスタごとに準備された推定器に対応するように設けられ、対応する推定器による推定尤度を算出する。詳細には、尤度推定器236には、上述の加速度の時系列データ400と、心拍数の時系列データ402と、対応する推定器による推定消費エネルギーの時系列データ406と、同時に呼気測定により取得された消費エネルギーの時系列データ404とが入力される。そして、尤度推定器236は、これら入力されたデータを用いて、推定尤度408を算出する。尤度推定器236は、このようして得られた推定尤度408を含む尤度推定データベース238を生成する。各尤度推定器236は、それぞれ上述のような推定尤度408の算出を行う。 Further, the classification unit 134 has a plurality of likelihood estimators 236 as shown in FIG. The likelihood estimator 236 is provided so as to correspond to the estimator prepared for each cluster, and calculates the estimation likelihood by the corresponding estimator. Specifically, the likelihood estimator 236 includes the above-described acceleration time-series data 400, heart rate time-series data 402, time-series data 406 of estimated consumption energy by the corresponding estimator, and simultaneously by expiration measurement. The acquired time series data 404 of consumed energy is input. Then, the likelihood estimator 236 calculates an estimated likelihood 408 using these input data. The likelihood estimator 236 generates a likelihood estimation database 238 including the estimated likelihood 408 obtained in this way. Each likelihood estimator 236 calculates the estimated likelihood 408 as described above.
 さらに、図12に示すように、分類部134は、各尤度推定器236により算出された各推定尤度408を比較する。推定尤度408が高いことは、加速度及び心拍数の時系列データ400、402を用いて、高い信頼度を持って推定が行われていることを意味している。従って、推定尤度408が最も推定器及びクラスタが、当該加速度及び心拍数の時系列データ400、402に最適な推定器及びクラスタであると言える。そこで、加速度及び心拍数の時系列データ400、402は、最も推定尤度408が高い尤度推定器236に対応する推定器に係るクラスタに属するものとして分類される。例えば、図12の例では、クラスタ2の尤度推定器236bにより算出された推定尤度408bが最も高いことから、加速度及び心拍数の時系列データ400a、402aは、クラスタ2に属するものとして分類される。 Furthermore, as shown in FIG. 12, the classification unit 134 compares the estimated likelihoods 408 calculated by the respective likelihood estimators 236. High estimation likelihood 408 means that estimation is performed with high reliability using time series data 400 and 402 of acceleration and heart rate. Therefore, it can be said that the estimator and the cluster having the highest estimated likelihood 408 are the most suitable estimator and cluster for the time series data 400 and 402 of the acceleration and the heart rate. Therefore, the time series data 400 and 402 of acceleration and heart rate are classified as belonging to the cluster related to the estimator corresponding to the likelihood estimator 236 having the highest estimated likelihood 408. For example, in the example of FIG. 12, since the estimated likelihood 408b calculated by the likelihood estimator 236b of cluster 2 is the highest, the time series data 400a and 402a of acceleration and heart rate are classified as belonging to cluster 2. Is done.
 この際、各尤度推定器236は、図13に示すように、算出される推定尤度408がさらに高くなるようなパラメータ410の数値を探索してもよい。この場合、分類部134は、パラメータ410の数値を最適化した後に得られた推定尤度408を用いて、加速度及び心拍数の時系列データ400a、402aの属するクラスタを探索する。また、最適化されたパラメータ410を後述する推定部136での推定において用いてもよい。このように最適化されたパラメータ410を推定において用いることにより、より消費エネルギーの推定精度を向上させることができる。 At this time, each likelihood estimator 236 may search for a numerical value of the parameter 410 such that the calculated estimated likelihood 408 becomes higher as shown in FIG. In this case, the classification unit 134 searches for a cluster to which the time series data 400a and 402a of acceleration and heart rate belong, using the estimated likelihood 408 obtained after optimizing the numerical value of the parameter 410. Further, the optimized parameter 410 may be used in estimation by the estimation unit 136 described later. By using the parameter 410 optimized in this way in estimation, the estimation accuracy of energy consumption can be further improved.
 ここでパラメータ410とは、例えば、各推定器に入力する前に、心拍数の時系列データ400を正規化するために用いる数値であることができる。心拍数の時系列データ400を所定の値により正規化して推定器に入力することにより、消費エネルギーをより高精度で推定することができる場合がある。より具体的には、パラメータ410としては、中程度の運動強度における心拍数を挙げることができる(例えば、時速9km程度の走行における心拍数)。このような心拍数によって心拍数の時系列データ400を正規化し、正規化した心拍数の時系列データ400を用いて消費エネルギーを推定した場合には、推定精度が向上することが知られている。そこで、例えば、尤度推定器236は、中程度の運動強度における標準的な心拍数(例えば、多数の被験者から測定された心拍数の平均値)を中心値にして値を微小に振ることにより、推定尤度408が最大となるパラメータ410の値を探索することができる(摂動法)。なお、摂動法による探索を行う代わりに、ユーザに対して中程度の運動強度にあたる運動を実施させて心拍数を測定することにより正規化パラメータを取得してもよい。 Here, the parameter 410 can be, for example, a numerical value used for normalizing the time-series data 400 of the heart rate before being input to each estimator. In some cases, the energy consumption can be estimated with higher accuracy by normalizing the heart rate time-series data 400 with a predetermined value and inputting the normalized value into the estimator. More specifically, the parameter 410 can include a heart rate at a moderate exercise intensity (for example, a heart rate in running at about 9 km / h). It is known that when the heart rate time-series data 400 is normalized with such a heart rate and the consumed energy is estimated using the normalized heart rate time-series data 400, the estimation accuracy is improved. . Therefore, for example, the likelihood estimator 236 slightly shakes a value with a standard heart rate (for example, an average value of heart rates measured from a large number of subjects) at a moderate exercise intensity as a central value. The value of the parameter 410 that maximizes the estimated likelihood 408 can be searched (perturbation method). Instead of performing the search by the perturbation method, the normalization parameter may be acquired by causing the user to perform an exercise corresponding to a moderate exercise intensity and measuring the heart rate.
 また、他のパラメータ410の例としては、加速度の時系列データを正規化する際に用いる数値等や、加速度の時系列データをユーザごとの動作の癖等に合わせて補正を行うための数値等を挙げることができる。具体的には、本実施形態においては、運動強度を示す指標として加速度を用いているが、加速度センサの装着部位の位置や、ユーザの動作の癖(低速走行においても腕部を大きく振る等)等により、運動強度と加速度との関係が変化する。そこで、加速度センサの装着部位やユーザの動作の癖に合わせて、加速度の時系列データを適切なパラメータ410により補正して推定器に入力することにより、消費エネルギーの推定精度を向上させることができる。なお、本実施形態においては、各尤度推定器236において探索されるパラメータ410は、上述する例に限定されるものではなく、消費エネルギーの推定精度を向上させることができるパラメータであれば、他のパラメータであってもよい。 Examples of other parameters 410 include numerical values used when normalizing acceleration time-series data, numerical values for correcting acceleration time-series data in accordance with the behavior of each user, etc. Can be mentioned. Specifically, in the present embodiment, acceleration is used as an index indicating exercise intensity. However, the position of the portion where the acceleration sensor is attached and the user's movement habit (such as shaking a large arm portion even at low speeds) Etc., the relationship between exercise intensity and acceleration changes. Accordingly, the accuracy of estimation of energy consumption can be improved by correcting the time-series data of acceleration with an appropriate parameter 410 and inputting it to the estimator in accordance with the part where the acceleration sensor is mounted or the user's behavior. . In the present embodiment, the parameter 410 searched for in each likelihood estimator 236 is not limited to the above-described example, and any other parameter can be used as long as it can improve the estimation accuracy of energy consumption. It may be a parameter.
 なお、本実施形態においては、分類部134における分類方法は、上述した方法に限定されるものではなく、他の方法を用いてもよい。 In the present embodiment, the classification method in the classification unit 134 is not limited to the method described above, and other methods may be used.
 (推定部136)
 推定部136は、図14に示すように、学習部132によって得られた推定データベース240に格納された関係情報に基づいて、新たに取得されたユーザの加速度及び心拍数の時系列データ400、402により、消費エネルギーの時系列データ406を推定する。推定部136は、クラスタごとに準備された推定データベース240を用いて推定を行うことから、クラスタごとに準備された複数の推定器を持っているともいえる。詳細には、推定部136は、新たに取得されたユーザの加速度及び心拍数の時系列データ400、402を、上述の分類部134によって探索された時系列データ400、402の属するクラスタに対応する推定器(推定データベース240)に入力して、推定を行う。本実施形態においては、推定部136は、類似する心拍数の変動パターンを持った、言い換えると、類似する心拍数の亢進現象の発現パターン持ったクラスタごとに準備された関係情報に基づいて推定を行う。従って、本実施形態によれば、上記亢進現象を考慮した上で推定が行われることから、消費エネルギーの推定精度を向上させることができる。また、推定部136により推定された消費エネルギーは、出力部110によりユーザに対して出力されたり、記憶部150に格納されたり、サーバ30及びユーザ端末50に送信されたりする。
(Estimation unit 136)
As shown in FIG. 14, the estimation unit 136 is based on the relationship information stored in the estimation database 240 obtained by the learning unit 132 and newly acquired time series data 400 and 402 of the user's acceleration and heart rate. Thus, the time series data 406 of energy consumption is estimated. Since the estimation unit 136 performs estimation using the estimation database 240 prepared for each cluster, it can be said that the estimation unit 136 has a plurality of estimators prepared for each cluster. Specifically, the estimation unit 136 corresponds to the cluster to which the time series data 400 and 402 to which the time series data 400 and 402 searched by the above-described classifying unit 134 belongs is the newly acquired time series data 400 and 402 of the user's acceleration and heart rate. Input to the estimator (estimation database 240) to perform estimation. In this embodiment, the estimation unit 136 performs estimation based on relationship information prepared for each cluster having a similar heart rate fluctuation pattern, in other words, a similar heart rate enhancement phenomenon expression pattern. Do. Therefore, according to the present embodiment, since the estimation is performed in consideration of the enhancement phenomenon, the estimation accuracy of energy consumption can be improved. The energy consumption estimated by the estimation unit 136 is output to the user by the output unit 110, stored in the storage unit 150, or transmitted to the server 30 and the user terminal 50.
 <2.6.本実施形態に係る情報処理方法>
 以上、本実施形態に係る情報処理システム1、及び当該情報処理システム1に含まれる、ウエアラブルデバイス10、サーバ30、及びユーザ端末50の構成について詳細に説明した。次に、本実施形態に係る情報処理方法について説明する。本実施形態に係る情報処理方法は、消費エネルギーを推定するための関係情報を取得するための学習を行う学習段階と、ユーザの身体特性(ユーザの心拍数の亢進現象の発現パターン等)に応じて、消費エネルギーの推定を行う推定段階との2つの段階に分けることができる。
<2.6. Information Processing Method According to this Embodiment>
Heretofore, the configurations of the information processing system 1 according to the present embodiment and the wearable device 10, the server 30, and the user terminal 50 included in the information processing system 1 have been described in detail. Next, an information processing method according to the present embodiment will be described. The information processing method according to the present embodiment corresponds to a learning stage in which learning is performed to acquire relation information for estimating energy consumption, and a user's physical characteristics (such as an expression pattern of a user's heart rate enhancement phenomenon). Thus, it can be divided into two stages: an estimation stage for estimating energy consumption.
 (学習段階)
 まずは、図15を参照して、学習段階を説明する。図15は、本実施形態に係る情報処理方法の学習段階の一例を説明するフロー図である。図15に示すように、本実施形態に係る情報処理方法における学習段階には、ステップS101及びステップS103の2つのステップが含まれている。以下に、本実施形態に係る情報処理方法の学習段階に含まれる各ステップの詳細を説明する。
(Learning stage)
First, the learning stage will be described with reference to FIG. FIG. 15 is a flowchart for explaining an example of the learning stage of the information processing method according to the present embodiment. As shown in FIG. 15, the learning stage in the information processing method according to the present embodiment includes two steps, step S101 and step S103. Details of each step included in the learning stage of the information processing method according to the present embodiment will be described below.
 (ステップS101)
 指示者、ウエアラブルデバイス10又はユーザ端末50は、複数のユーザに、トレッドミル上で数分ごとに走行、歩行及び安静を繰り返させて、所定の運動強度の運動を繰り返し実施させる。この際、指示者、ウエアラブルデバイス10又はユーザ端末50によってユーザに指示を与えることにより、所定の運動をユーザに実施させてもよい。所定の運動とは、各ユーザの心拍数の亢進現象の発現パターンを把握することができるような運動であるものとする。上記運動の実施の間、各ユーザの身体の一部に装着されたウエアラブルデバイス10は、各ユーザの心拍数を測定する。さらに、ウエアラブルデバイス10は、内蔵された加速度センサを用いて、ユーザの運動による加速度を測定する。また、各ユーザの顔に装着された呼気分析装置は、各ユーザの呼気に含まれる酸素濃度及び二酸化炭素濃度を測定する。このような測定を行うことにより、学習部132の学習に供される、心拍数の亢進現象の発現パターンを含む時系列データを取得することができる。
(Step S101)
The instructor, the wearable device 10 or the user terminal 50 causes a plurality of users to repeatedly run, walk and rest on the treadmill every few minutes and repeatedly perform exercise with a predetermined exercise intensity. At this time, the user may be caused to perform a predetermined exercise by giving an instruction to the user by the instructor, the wearable device 10 or the user terminal 50. It is assumed that the predetermined exercise is an exercise that can grasp the expression pattern of the heart rate increase phenomenon of each user. During the exercise, the wearable device 10 worn on a part of each user's body measures each user's heart rate. Furthermore, the wearable device 10 measures the acceleration due to the user's movement using the built-in acceleration sensor. Moreover, the breath analysis apparatus worn on each user's face measures the oxygen concentration and the carbon dioxide concentration contained in each user's breath. By performing such measurement, it is possible to acquire time-series data including the expression pattern of the heart rate enhancement phenomenon that is used for learning by the learning unit 132.
 (ステップS103)
 ウエアラブルデバイス10は、クラスタごとに、クラスタに属する加速度及び心拍数の時系列データ400、402と、ステップS101にて同時に測定された消費エネルギーの時系列データ404とを用いて機械学習を行う。ウエアラブルデバイス10は、当該機械学習により、加速度及び心拍数の時系列データ400、402と消費エネルギーの時系列データ404との関係を示す関係情報を取得する。さらに、ウエアラブルデバイス10は、取得した関係情報を格納した推定データベース240をクラスタごとに構築する。なお、当該ステップS103で行われる学習の詳細については上述したため、ここでは説明を省略する。
(Step S103)
For each cluster, wearable device 10 performs machine learning using time series data 400 and 402 of acceleration and heart rate belonging to the cluster and time series data 404 of energy consumption measured simultaneously in step S101. The wearable device 10 acquires relationship information indicating the relationship between the time series data 400 and 402 of acceleration and heart rate and the time series data 404 of energy consumption by the machine learning. Furthermore, the wearable device 10 constructs an estimation database 240 storing the acquired relation information for each cluster. Since the details of the learning performed in step S103 have been described above, the description thereof is omitted here.
 なお、ステップS101での運動は、必ずしもトレッドミル等の専用の運動装置を用いる必要はなく、例えば、一定の速度でのジョギング等であってもよい。 Note that the exercise in step S101 does not necessarily use a dedicated exercise device such as a treadmill, and may be, for example, jogging at a constant speed.
 (推定段階)
 次に、図16を参照して、推定段階を説明する。図16は、本実施形態に係る情報処理方法の推定段階の一例を説明するフロー図である。図16に示すように、本実施形態に係る情報処理方法における推定段階には、ステップS201からステップS205までの複数のステップが主に含まれている。以下に、本実施形態に係る情報処理方法の推定段階に含まれる各ステップの詳細を説明する。
(Estimation stage)
Next, the estimation stage will be described with reference to FIG. FIG. 16 is a flowchart for explaining an example of the estimation stage of the information processing method according to the present embodiment. As shown in FIG. 16, the estimation stage in the information processing method according to the present embodiment mainly includes a plurality of steps from step S201 to step S205. Details of each step included in the estimation stage of the information processing method according to the present embodiment will be described below.
 (ステップS201)
 ユーザの身体の一部に装着されたウエアラブルデバイス10は、加速度及び心拍数を測定する。
(Step S201)
The wearable device 10 attached to a part of the user's body measures acceleration and heart rate.
 (ステップS203)
 ウエアラブルデバイス10は、ステップS201で得られたユーザの加速度の時系列データ400と心拍数の時系列データ402とが属するクラスタを探索する。なお、探索の方法については、先に説明したため、ここでは説明を省略する。また、ウエアラブルデバイス10は、当該ユーザについての過去の履歴情報を参照して、過去に分類されたクラスタを、ステップS201で得られたユーザの加速度の時系列データ400と心拍数の時系列データ402とが属するクラスタとしてもよい。また、入力部100によりユーザから入力されたクラスタを、ユーザが属するクラスタとしてもよい。このようにすることで、クラスタの探索を省略することができる。さらに、短時間でユーザに対して消費エネルギーの推定値を提示することが可能となる。
(Step S203)
The wearable device 10 searches for a cluster to which the time series data 400 of the user's acceleration and the time series data 402 of the heart rate obtained in step S201 belong. Since the search method has been described above, the description thereof is omitted here. Further, the wearable device 10 refers to the past history information about the user, and determines the cluster classified in the past as the time series data 400 of the user's acceleration and the time series data 402 of the heart rate obtained in step S201. It may be a cluster to which and belong. Further, a cluster input from the user by the input unit 100 may be a cluster to which the user belongs. In this way, the cluster search can be omitted. Furthermore, it is possible to present an estimated value of energy consumption to the user in a short time.
 (ステップS205)
 ウエアラブルデバイス10は、ステップS203で選択されたクラスタに係る推定器により、ステップS201で取得された加速度及び心拍数の時系列データ400、402を用いて、消費エネルギーを推定する。
(Step S205)
Wearable device 10 estimates energy consumption using time series data 400 and 402 of acceleration and heart rate acquired in step S201 by the estimator related to the cluster selected in step S203.
 なお、上述した例においては、運動強度については加速度センサにより測定された加速度を指標としたが、本実施形態においては、これに限定されるものではなく、例えば、加速度の代わりに運動強度を示す指標をユーザに入力させてもよい。また、上述の説明においては、学習段階と推定段階と2つに分けて説明したが、これら段階は、連続して行われてもよく、交互に繰り返し行われてもよい。 In the example described above, the acceleration measured by the acceleration sensor is used as an index for the exercise intensity. However, the present embodiment is not limited to this. For example, exercise intensity is shown instead of acceleration. The index may be input by the user. In the above description, the learning stage and the estimation stage have been described separately. However, these stages may be performed continuously or alternately.
 以上のように、本実施形態によれば、消費エネルギーを高い精度で推定することができる。詳細には、本実施形態においては、消費エネルギーと心拍数の関係性の変動の傾向、すなわち、心拍数の亢進現象の発現パターンに応じて、ユーザをクラスタ分類する。同一のクラスタに属する複数のユーザにおける消費エネルギーと心拍数の関係性の変動の傾向は互いに類似することから、クラスタ内のあるユーザの関係性の変動の傾向を参照することにより、同一のクラスタに属する他のユーザの傾向も把握することが可能である。従って、あるユーザの関係性の変動の傾向を用いることで、同一のクラスタ内の他のユーザの消費エネルギーを推定することができる。さらに、当該推定においては、ユーザに応じた、消費エネルギーと心拍数の関係性の変動の傾向、すなわち、心拍数の亢進現象の発現パターンを考慮していることから、消費エネルギーの推定精度を向上させることができる。なお、参照される、あるユーザの関係性の変動の傾向は、呼気測定を用いて予め取得しておくことで、同じクラスタ内の他のユーザの消費エネルギーの推定の精度を高めることができる。言い換えると、本実施形態においては、他のユーザについては、呼気測定を行うことなく、消費エネルギーを推定することができる。 As described above, according to the present embodiment, energy consumption can be estimated with high accuracy. Specifically, in the present embodiment, the users are classified into clusters according to the tendency of fluctuation in the relationship between the energy consumption and the heart rate, that is, the expression pattern of the heart rate enhancement phenomenon. Since the trend of the relationship between the energy consumption and the heart rate of multiple users belonging to the same cluster is similar to each other, refer to the trend of the relationship change of a certain user in the cluster. It is also possible to grasp the tendency of other users to which the user belongs. Therefore, the energy consumption of other users in the same cluster can be estimated by using the tendency of change in the relationship of a certain user. Furthermore, the estimation takes into account the tendency of fluctuations in the relationship between energy consumption and heart rate according to the user, that is, the expression pattern of the heart rate enhancement phenomenon, thus improving the estimation accuracy of energy consumption. Can be made. Note that the tendency of the change in the relationship of a certain user to be referred to can be acquired in advance using breath measurement, so that the accuracy of estimation of energy consumption of other users in the same cluster can be improved. In other words, in this embodiment, energy consumption can be estimated for other users without performing exhalation measurement.
 特に、これまで本発明者らが検討してきた装置では難しかった、個々の短い時間における運動における消費エネルギーや、運動強度の低い日常生活における運動(動作)における消費エネルギーについても、本実施形態により高い精度で推定することが可能となる。 In particular, according to the present embodiment, energy consumption in exercise in a short time and exercise (motion) in daily life with low exercise intensity is also high according to this embodiment, which has been difficult with the devices that the inventors have studied so far. It is possible to estimate with accuracy.
 なお、上述の学習段階における推定データベース240の構築は、ウエアラブルデバイス10において実施しなくてもよく、サーバ30等において構築し、ウエアラブルデバイス10の製造や出荷時等に、当該データベース240を記憶部150に格納してもよい。 Note that the construction of the estimation database 240 at the learning stage described above does not have to be performed in the wearable device 10, but is constructed in the server 30 or the like, and the database 240 is stored in the storage unit 150 when the wearable device 10 is manufactured or shipped. May be stored.
 なお、ステップS101或いはステップS201における測定の実施は、指示者等によってユーザに対して所望する運動を行うように指示することにより行うこともできるが、本実施形態に係るウエアラブルデバイス10等によって提供するエクササイズアプリケーションを用いてもよい。詳細には、上記エクササイズアプリケーションによって、明示的にユーザに対して所定の運動強度の運動を行うように指示することにより行うことができる。この場合、ユーザの行う運動の運動強度が既知であることから、ウエアラブルデバイス10に内蔵されや加速度センサによる加速度測定を省略することができる。以下に、このようなエクササイズアプリケーションを、図17から図20を参照して説明する。図17から図20は、時系列データの取得の際に用いられる表示画面800~806の一例を説明する説明図である。 The measurement in step S101 or step S201 can be performed by instructing the user to perform a desired exercise by an instructor or the like, but is provided by the wearable device 10 or the like according to the present embodiment. An exercise application may be used. More specifically, the exercise application can be performed by explicitly instructing the user to perform an exercise with a predetermined exercise intensity. In this case, since the exercise intensity of the exercise performed by the user is known, it is possible to omit the acceleration measurement built in the wearable device 10 or using an acceleration sensor. Hereinafter, such an exercise application will be described with reference to FIGS. FIGS. 17 to 20 are explanatory diagrams for explaining examples of display screens 800 to 806 used when acquiring time-series data.
 詳細には、本実施形態に係るウエアラブルデバイス10又はユーザ端末50によって提供されるエクササイズアプリケーションは、安静時のユーザの心拍数の測定するために、ユーザに対して安静状態を維持するように促す画面800を表示する。例えば、図17に示すように、画面800は、ユーザに対して安静状態を維持するように促すために、「安静時の心拍数を測定します。しばらく座って過ごしてください。」等の文言を含む。また、当該画面800の上段には、測定された心拍数の経時変化等が表示されている。 Specifically, the exercise application provided by the wearable device 10 or the user terminal 50 according to the present embodiment prompts the user to maintain a resting state in order to measure the heart rate of the user at rest. 800 is displayed. For example, as shown in FIG. 17, the screen 800 has a phrase such as “Measure heart rate at rest. Sit down for a while.” To prompt the user to maintain a resting state. including. In the upper part of the screen 800, a change over time of the measured heart rate is displayed.
 次に、上記エクササイズアプリケーションは、安静時のユーザの心拍数の測定が完了した場合には、所定の運動強度の運動の実施をユーザに促す画面802を表示する。例えば、図18に示すように、画面802は、所定の運動強度の運動の実施をユーザに促すために、「安静時の心拍数を測定しました。時速9kmで走ってください。」等の文言を含む。そして、ユーザは、このような画面802に促されて、トレッドミル52等を用いて指定された運動を行う。 Next, when the measurement of the heart rate of the user at rest is completed, the exercise application displays a screen 802 that prompts the user to perform exercise with a predetermined exercise intensity. For example, as shown in FIG. 18, in order to prompt the user to perform an exercise with a predetermined exercise intensity, a text such as “Measured heart rate at rest. Run at 9 km per hour.” including. Then, the user is prompted by such a screen 802 and performs a specified exercise using the treadmill 52 or the like.
 さらに、上記エクササイズアプリケーションは、所定の運動強度の運動における心拍数を測定後、運動終了後の心拍数における亢進現象の発現パターンを取得するために、ユーザに対して運動の終了及び安静状態を維持することを促す画面804を表示する。図19に示すように、画面804は、ユーザに対して運動の終了及び安静状態を維持することを促すために、「トレッドミルを停止して、立ったまま安静にしてください。」等の文言を含む。 Furthermore, the above exercise application maintains the end of exercise and the resting state for the user in order to obtain the expression pattern of the enhanced phenomenon in the heart rate after the end of the exercise after measuring the heart rate in the exercise of a predetermined exercise intensity. A screen 804 that prompts the user to perform is displayed. As shown in FIG. 19, the screen 804 is used to prompt the user to end the exercise and maintain a resting state, such as “Please stop the treadmill and keep it standing.” including.
 次に、上記エクササイズアプリケーションは、心拍数の亢進現象の発現パターンを取得した後に、ユーザに対して測定を終了することを通知する画面806を表示する。図20に示すように、画面806は、ユーザに対して測定を終了することを通知するために、「エクササイズを終了します。」等の文言を含む。なお、これまで説明した図17から図20に示される画面800~806は、あくまでも一例であり、本実施形態においては、このような画面に限定されるものではない。 Next, the exercise application displays a screen 806 for notifying the user of the end of the measurement after acquiring the expression pattern of the heart rate enhancement phenomenon. As illustrated in FIG. 20, the screen 806 includes a phrase such as “Exit exercise” in order to notify the user that the measurement is to be ended. Note that the screens 800 to 806 shown in FIGS. 17 to 20 described so far are merely examples, and the present embodiment is not limited to such screens.
 このようにすることで、上記エクササイズアプリケーションは、ユーザに対して、ステップS201における運動を実施させることができる。なお、上述の説明においては、ウエアラブルデバイス10等にディスプレイがあることを前提として説明したが、ディスプレイがない場合であっても、ユーザに対して、ステップS201における運動を実施させることができる。例えば、時系列データの取得の際のユーザに対して運動を誘導する方法を説明する説明図である図21に示すように、ウエアラブルデバイス10は、上記エクササイズアプリケーションに従って、ユーザに対して音声情報を出力してもよい。 In this way, the exercise application can cause the user to perform the exercise in step S201. In the above description, the description has been made on the assumption that the wearable device 10 has a display. However, even when there is no display, the user can be exercised in step S201. For example, as shown in FIG. 21, which is an explanatory diagram for explaining a method of inducing exercise for the user when acquiring time-series data, the wearable device 10 sends voice information to the user according to the exercise application. It may be output.
 また、ステップS101或いはステップS201における測定の実施は、上述のようなエクササイズアプリケーションによる明示的な指示によるものに限定されない。例えば、明示的な指示の代わりに、ウエアラブルデバイス10の加速度センサを用いて、ユーザの動作による運動強度の変化点と安定区間とを検出して、心拍数の亢進現象の発現パターンを含む時系列データを取得してもよい。この場合、上記加速度センサが、運動強度が一定である安定区間を検出し、この際に測定された心拍数を上記時系列データとして取得する。以下に、このような方法を、図22から図25を参照して説明する。図22から図25は、時系列データの取得の際の他の方法で用いられる表示画面808~814の一例を説明する説明図である。 In addition, the implementation of the measurement in step S101 or step S201 is not limited to an explicit instruction from the exercise application as described above. For example, instead of an explicit instruction, an acceleration sensor of the wearable device 10 is used to detect a change point and a stable interval of exercise intensity due to a user's action, and a time series including an expression pattern of a heart rate enhancement phenomenon Data may be acquired. In this case, the acceleration sensor detects a stable section where the exercise intensity is constant, and acquires the heart rate measured at this time as the time-series data. Hereinafter, such a method will be described with reference to FIGS. FIGS. 22 to 25 are explanatory diagrams for explaining examples of display screens 808 to 814 used in other methods when acquiring time-series data.
 詳細には、ウエアラブルデバイス10は、ユーザが所定の時間(例えば、数分)以上の間、安静状態にあることを検出した場合には、ユーザの心拍数の測定を開始する。その際、ウエアラブルデバイス10は、図22に示すように、「心拍数の測定を開始しました。」等、測定を開始している旨を通知する画面808をユーザに表示する。 Specifically, the wearable device 10 starts measuring the user's heart rate when detecting that the user is in a resting state for a predetermined time (for example, several minutes) or more. At that time, the wearable device 10 displays a screen 808 for notifying that the measurement is started, such as “Heart rate measurement has started” as shown in FIG.
 さらに、ウエアラブルデバイス10は、ユーザによる所定の運動強度以上の運動が検出された場合には、測定を開始している旨を通知するために、図23の示すように「エクササイズを検出しました。」等の文言を含む画面810を表示する。 Further, the wearable device 10 detects that “exercise has been detected” as shown in FIG. 23 in order to notify that the measurement is started when an exercise of a predetermined exercise intensity or more by the user is detected. A screen 810 including a phrase such as “” is displayed.
 次に、ウエアラブルデバイス10は、ユーザが運動を終了し、安静状態にあることを検出した場合には、図24に示すように、「安静状態を検出しました。」等の文言を含む画面812の表示を行い、運動終了後のユーザの心拍数における亢進現象を測定する。 Next, when the wearable device 10 detects that the user has finished exercising and is in a resting state, as shown in FIG. 24, a screen 812 including words such as “the resting state has been detected”. And an increase phenomenon in the heart rate of the user after the exercise is measured.
 さらに、上述した一連の測定において、ユーザの心拍数における亢進現象の発現パターンが検出された場合には、ウエアラブルデバイス10は、図25に示すように、「エクササイズ後の心拍数の変化を測定しました。」等の画面814と表示する。なお、これまで説明した図22から図25に示される画面808~814は、あくまでも一例であり、本実施形態においては、このような画面に限定されるものではない。 Further, in the above-described series of measurements, when an expression pattern of an increase phenomenon in the user's heart rate is detected, the wearable device 10 “measures the change in the heart rate after exercise, as shown in FIG. 25. And the like "are displayed. Note that the screens 808 to 814 shown in FIGS. 22 to 25 described so far are merely examples, and the present embodiment is not limited to such screens.
 このように、加速度センサを用いることにより、ユーザに対して所定の運動強度の運動を行うように指示することなく、ユーザの日常活動や日常のエクササイズによって、心拍数の亢進現象の発現パターンを含む時系列データを取得することができる。なお、上述の説明においては、ウエアラブルデバイス10等にディスプレイがあることを前提として説明したが、ウエアラブルデバイス10等にディスプレイがあることに限定されるものではない。例えば、時系列データの取得の際のユーザに対して運動を誘導する他の方法を説明する説明図である図26に示すように、ウエアラブルデバイス10は、上記エクササイズアプリケーションに従って、ユーザに対して音声情報を出力してもよい。 In this way, by using the acceleration sensor, it includes the expression pattern of the heart rate enhancement phenomenon by the user's daily activities and daily exercises without instructing the user to perform exercise of a predetermined exercise intensity. Time series data can be acquired. In the above description, the wearable device 10 or the like has been described as having a display, but the wearable device 10 or the like is not limited to having a display. For example, as shown in FIG. 26, which is an explanatory diagram for explaining another method for inducing exercise to the user at the time of acquiring time series data, the wearable device 10 provides voice to the user in accordance with the exercise application. Information may be output.
 なお、ステップS201での運動は、必ずしもトレッドミル等の専用の運動装置を用いる必要はなく、例えば、一定の速度でのジョギング等であってもよい。 Note that the exercise in step S201 is not necessarily performed using a dedicated exercise device such as a treadmill, and may be, for example, jogging at a constant speed.
 <<3.本実施形態に係る実施例>>
 以上、本開示の実施形態における情報処理方法の詳細について説明した。さらに、上述した本実施形態を利用してユーザに対して有益な情報を提供するアプリケーションの具体的な例について説明する。なお、以下に示す実施例は、上記アプリケーションのあくまでも一例であって、本実施形態に係る情報処理が下記の実施例に限定されるものではない。
<< 3. Example according to this embodiment >>
The details of the information processing method in the embodiment of the present disclosure have been described above. Furthermore, a specific example of an application that provides useful information to the user using the above-described embodiment will be described. In addition, the Example shown below is an example of the said application to the last, and the information processing which concerns on this embodiment is not limited to the following Example.
 <3.1.実施例1>
 以下に説明する実施例は、上述の本実施形態により各運動に対する消費エネルギーの推定精度が高まることから、ユーザに有益な情報を提供するアプリケーションに関するものである。図27及び図28を参照して、このような実施例1を説明する。図27及び図28は、本実施形態に係る実施例1の表示画面820、822の一例を説明する説明図である。
<3.1. Example 1>
The example described below relates to an application that provides useful information to the user because the above-described embodiment improves the estimation accuracy of energy consumption for each exercise. Such Example 1 is demonstrated with reference to FIG.27 and FIG.28. 27 and 28 are explanatory diagrams illustrating examples of the display screens 820 and 822 of Example 1 according to the present embodiment.
 本実施形態においては、先に説明したように、個々の短い時間での運動の消費エネルギーの推定精度が向上することから、例えば、坂道の歩行と、平坦な道での歩行とにおける消費エネルギーの差等を把握することが可能である。従って、上述した本実施形態による推定を用いて、短時間の運動(マイクロエクササイズ)の連続であるユーザの日常活動における消費エネルギーを高い精度で推定し、ユーザに推定した消費エネルギーに基づいて有益な情報を提供することができる。以下に、このような実施例について説明する。 In this embodiment, as described above, since the estimation accuracy of the energy consumption of the exercise in each short time is improved, for example, the energy consumption of walking on a slope and walking on a flat road It is possible to grasp the difference. Therefore, using the estimation according to the present embodiment described above, the energy consumption in the daily activities of the user, which is a continuation of short-term exercise (micro exercise), is estimated with high accuracy, and it is beneficial based on the energy consumption estimated by the user Information can be provided. Such an embodiment will be described below.
 (実施例1A)
 本実施例においては、推定したマイクロエクササイズごとの消費エネルギーをユーザに通知する。例えば、所定の閾値以上の消費エネルギーが推定される一体期間(数分以上)に亘るユーザの運動(活動)が検出された場合には、ウエアラブルデバイス10は、当該運動による推定された消費エネルギーをユーザに通知する。この際、ウエアラブルデバイス10は、例えば、図27に示す画面820を表示することにより、ユーザに通知することができる。また、ウエアラブルデバイス10は、ウエアラブルデバイス10に内蔵されたGPS受信機等を利用することにより、ユーザが上記運動を行った位置情報を取得することが可能である。さらに、ウエアラブルデバイス10は、加速度センサ以外にも、ジャイロセンサ、地磁気センサ等を含むことから、これらのセンサから得られたセンシング情報を解析することにより、ユーザの行った運動内容の詳細情報を取得することができる。従って、ウエアラブルデバイス10は、推定した消費エネルギーだけでなく、ユーザが上記運動を行った位置情報や、運動内容の詳細情報をユーザに通知することも可能である。
Example 1A
In this embodiment, the estimated energy consumption for each micro exercise is notified to the user. For example, when a user's exercise (activity) over an integrated period (several minutes or more) in which energy consumption exceeding a predetermined threshold is estimated, the wearable device 10 uses the estimated energy consumption due to the exercise. Notify the user. At this time, the wearable device 10 can notify the user, for example, by displaying a screen 820 shown in FIG. Further, the wearable device 10 can acquire position information on which the user has performed the exercise by using a GPS receiver or the like built in the wearable device 10. Furthermore, since the wearable device 10 includes a gyro sensor, a geomagnetic sensor, and the like in addition to the acceleration sensor, it acquires detailed information on the content of exercise performed by the user by analyzing sensing information obtained from these sensors. can do. Therefore, the wearable device 10 can notify the user not only the estimated energy consumption but also the position information where the user performed the exercise and the detailed information of the exercise content.
 より具体的には、図27には、ユーザがAA駅の中央改札の階段を利用した際の消費エネルギーを表示する画面820が示されている。なお、ここでは、当該階段にはエスカレーターが併設されているものとする。そこで、ウエアラブルデバイス10は、当該ユーザについての過去の運動履歴及び推定された消費エネルギーを参照して、別の日に、ユーザが上記エスカレーターを利用した際に推定された消費エネルギーを取得する。そして、ウエアラブルデバイス10は、上記階段の利用した際の推定消費エネルギーと、上記エスカレーターを利用した際の推定消費エネルギーの差分を算出し、算出した差分をポイントとしてユーザに通知する。例えば、通知されたポイントは、図27の画面820の一番下に表示されている。上述のように算出されたポイントは、ユーザがよりその身体に負荷がかかる運動(活動)を行った場合、身体に負荷がかからない運動を選択した場合に比べてどの程度エネルギーをより多く消費することができたかを、ユーザに理解しやすい形式で示している。このようなポイントをユーザに対して通知することは、ユーザがその身体に負荷がかかる運動を行うことによって小さな達成感を感じることにつながり、ユーザが身体に負荷のかかる運動を選択するモチベーションを高めることができる。 More specifically, FIG. 27 shows a screen 820 that displays energy consumption when the user uses the stairs of the central ticket gate at AA station. Here, it is assumed that an escalator is attached to the stairs. Therefore, the wearable device 10 acquires the energy consumption estimated when the user uses the escalator on another day with reference to the past exercise history and the estimated energy consumption for the user. The wearable device 10 calculates a difference between the estimated energy consumption when the stairs are used and the estimated energy consumption when the escalator is used, and notifies the user of the calculated difference as a point. For example, the notified point is displayed at the bottom of the screen 820 in FIG. The point calculated as described above is that, when the user performs an exercise (activity) that places a greater load on the body, the amount of energy consumed is greater than when an exercise that does not put a load on the body is selected. It is shown in a format that can be easily understood by the user. Notifying the user of such points leads to the user feeling a little sense of accomplishment by performing an exercise that places a load on the body, and increases the motivation for the user to select an exercise that places a load on the body. be able to.
 (実施例1B)
 次に、上述したようなポイントを「エクササイズ貯金通帳」としてユーザに通知する実施例を、図28を参照して説明する。図28には、あるユーザが行った個々の運動についての推定消費エネルギーと、当該推定エネルギーに対応する上記ポイントとの一覧を「エクササイズ貯金通帳」としてユーザに表示する画面822が示されている。詳細には、画面822の上段には、図27と同様に、ユーザがAA駅の階段を利用した際の消費エネルギーと、それによる上記ポイントとが示されている。また、画面822の中段には、ユーザによるBB町での速歩(より具体的には、標準的な歩行速度よりも速い歩行)による消費エネルギーと、それによる上記ポイントとが示されている。この場合のポイントは、例えば、ユーザが、上記速歩と同等の距離を標準的な歩行速度で歩行した際の推定消費エネルギーとの差分にあたる。さらに、画面822の一番下には、所定の期間(例えば、1日、1週間等)において、ユーザが取得した上記ポイントの総和が示されている。すなわち、本実施例においては、個別に検出されたマイクロエクササイズによる推定消費エネルギーと、当該マイクロエクササイズによって取得したポイントとを、図28に示すように貯金通帳のようにユーザへ通知する。このようにポイントを通知することにより、ユーザがよりポイントを多く獲得しようと考えるようになることから、ユーザをその身体に負荷のかかる運動(マイクロエクササイズ)を自然と実施するように誘導することができる。
(Example 1B)
Next, an embodiment for notifying the user of the above points as an “exercise savings passbook” will be described with reference to FIG. FIG. 28 shows a screen 822 that displays a list of estimated energy consumption for each exercise performed by a user and the points corresponding to the estimated energy to the user as an “exercise savings passbook”. Specifically, in the upper part of the screen 822, as in FIG. 27, the energy consumption when the user uses the staircase of the AA station and the above points are shown. Further, in the middle of the screen 822, energy consumed by the user walking fast in BB town (more specifically, walking faster than the standard walking speed) and the above points are shown. The point in this case corresponds to, for example, a difference from the estimated consumption energy when the user walks at a standard walking speed at a distance equivalent to the fast walking. Furthermore, at the bottom of the screen 822, the sum of the points acquired by the user in a predetermined period (for example, one day, one week, etc.) is shown. That is, in the present embodiment, the estimated energy consumption by the micro-exercise detected individually and the points acquired by the micro-exercise are notified to the user like a savings passbook as shown in FIG. By notifying the points in this way, the user will think that he wants to acquire more points, so the user can be guided to naturally perform exercises (micro exercises) that put a load on the body. it can.
 さらには、本実施形態に係る消費エネルギーの推定を利用して、ユーザに対して、身体に負荷がかかる運動(マイクロエクササイズ)の推奨を行ってもよい。例えば、本実施例においては、ユーザの過去の運動によって所定の閾値以上の推定消費エネルギーが取得された位置にユーザが到達したことを検出した場合には、ウエアラブルデバイス10は、所定の閾値以上の推定消費エネルギーに係る運動をユーザに推奨する。 Furthermore, using the estimation of energy consumption according to the present embodiment, the user may be recommended for exercise (micro exercise) that places a load on the body. For example, in this embodiment, when it is detected that the user has reached a position where estimated energy consumption equal to or greater than a predetermined threshold is acquired by the user's past exercise, the wearable device 10 is equal to or greater than the predetermined threshold. Recommend exercise to the user for estimated energy consumption.
 より具体的には、ウエアラブルデバイス10は、内蔵するGPS受信機により、ユーザの過去の運動によって所定の閾値以上の推定消費エネルギーが取得された位置(例えば、階段)にユーザが到達したことを検出した場合には、当日のユーザの推定消費エネルギーの総和を参照する。参照した結果、当日のユーザの推定消費エネルギーの総和が、ユーザの1日の消費エネルギーの目標値に比べて不足している場合には、ウエアラブルデバイス10は、所定の閾値以上の推定消費エネルギーに係る運動(例えば、「階段のぼり」)をユーザに推奨する。より具体的には、ウエアラブルデバイス10が腕輪型のデバイスであった場合には、ウエアラブルデバイス10の出力部310として設けられた振動デバイスが振動して、上記運動、すなわち「階段のぼり」をユーザに推奨してもよい。また、ウエアラブルデバイス10が出力部310としてディスプレイを有していた場合には、当該ディスプレイに表示された地図上の上記階段の位置に「こっちがおすすめ」等の表示の行うことにより、「階段のぼり」をユーザに推奨してもよい。 More specifically, the wearable device 10 detects that the user has arrived at a position (for example, a staircase) where estimated energy consumption equal to or greater than a predetermined threshold is acquired by the user's past motion by the built-in GPS receiver. If so, the total estimated energy consumption of the user on that day is referred to. As a result of the reference, when the sum of the estimated energy consumption of the user on the day is insufficient compared to the target value of the user's daily energy consumption, the wearable device 10 increases the estimated energy consumption to a predetermined threshold value or more. Such exercise (eg, “stair climbing”) is recommended to the user. More specifically, when the wearable device 10 is a bracelet type device, the vibration device provided as the output unit 310 of the wearable device 10 vibrates, and the above-described motion, that is, “step climb” is given to the user. May be recommended. In addition, when the wearable device 10 has a display as the output unit 310, by displaying “This is recommended” or the like at the position of the staircase on the map displayed on the display, May be recommended to the user.
 なお、ウエアラブルデバイス10が行うマイクロエクササイズの推奨は、例えば、ユーザの1日の消費エネルギーの目標値に基づいて行ってもよく、もしくは、上述したポイントの取得数に基づいて行ってもよい。また、ウエアラブルデバイス10は、過去のユーザのマイクロエクササイズの実施実績に基づいて、推奨を行うか否かを判断してもよい。例えば、ウエアラブルデバイス10は、過去の履歴を参照して、推奨されたことによりユーザが実際の実行したマイクロエクササイズの内容について特定の傾向が見られる場合には、当該傾向に合わせて、マイクロエクササイズの推奨を行う。また、ウエアラブルデバイス10は、サーバ30に集積された他のユーザの情報を参照して、他のユーザの運動により所定の閾値以上の推定消費エネルギーが取得された位置を検出してもよい。 In addition, the recommendation of the micro exercise which the wearable device 10 performs may be performed based on the target value of the user's daily energy consumption, or may be performed based on the number of points acquired as described above. Further, the wearable device 10 may determine whether or not to make a recommendation based on the past microexercise performance of the user. For example, the wearable device 10 refers to the past history, and when a specific tendency is observed with respect to the content of the micro exercise actually performed by the user due to the recommendation, the wearable device 10 adjusts the micro exercise according to the tendency. Make recommendations. Wearable device 10 may refer to other user's information accumulated in server 30, and may detect the position where the estimated consumption energy more than a predetermined threshold was acquired by the exercise of other users.
 上述したように、本実施形態に係る推定によれば、運動強度の低い日常生活における運動(動作)における消費エネルギーについても、高い精度で推定することが可能となる。従って、当該推定を利用することにより、本実施例においては、運動強度の高い特別な運動(例えば、ランニング等)ではなく、日常生活において普通に行われる動作(例えば、「階段のぼり」等)についても、マイクロエクササイズとして推奨することが可能となる。 As described above, according to the estimation according to the present embodiment, it is possible to estimate with high accuracy the energy consumed in exercise (motion) in daily life with low exercise intensity. Therefore, by using the estimation, in this embodiment, not a special exercise with high exercise intensity (for example, running) but an operation normally performed in daily life (for example, "step climbing"). Can also be recommended as a micro-exercise.
 <3.2.実施例2>
 上述した本実施形態の推定によれば、心拍数において亢進現象が発現しているか否かを判断することも可能である。また、上述した本実施形態に係る推定を利用することにより、当該ユーザにおいて心拍数の亢進現象が発現する条件(運動強度等)等を推定したりすることができる。従って、上述の判断や推定を利用することにより、ユーザに対して亢進現象が発現したことを通知したり、亢進現象が発現するような運動を推奨したりするアプリケーションを作成することができる。以下に説明する実施例は、このようなアプリケーションに関するものである。図29から図32を参照して、このような実施例2を説明する。図29から図32は、本実施形態に係る実施例2の表示画面824~830の一例を説明する説明図である。
<3.2. Example 2>
According to the estimation of the present embodiment described above, it is also possible to determine whether or not an increase phenomenon has occurred in the heart rate. In addition, by using the estimation according to the above-described embodiment, it is possible to estimate a condition (exercise intensity, etc.) or the like that causes a heart rate enhancement phenomenon in the user. Therefore, by using the above-described determination and estimation, it is possible to create an application that notifies the user that the enhancement phenomenon has occurred or recommends an exercise that causes the enhancement phenomenon. The embodiments described below relate to such applications. Such Example 2 will be described with reference to FIGS. 29 to 32. FIGS. 29 to 32 are explanatory diagrams illustrating examples of display screens 824 to 830 of Example 2 according to the present embodiment.
 (実施例2A)
 例えば、ウエアラブルデバイス10は、新たに取得されたユーザの加速度及び心拍数の時系列データ400、402から、本実施形態の推定により、亢進状態を加味した消費エネルギーを推定することができる。一方、新たに取得されたユーザの加速度及び心拍数の時系列データ400、402に、これまで本発明者らが検討を行ってきた従来技術による消費エネルギー推定を適用することで、亢進現象を加味せずに消費エネルギーを推定することができる。そこで、例えば、亢進状態を加味した推定値と亢進状態を加味しない推定値との差が一定の閾値を超えたことを検出することで、ウエアラブルデバイス10は、ユーザに対して亢進現象が発現したことを通知したりすることができる。
(Example 2A)
For example, the wearable device 10 can estimate the energy consumption taking into account the enhanced state from the newly acquired time-series data 400 and 402 of the user's acceleration and heart rate by the estimation of the present embodiment. On the other hand, by applying the energy consumption estimation according to the prior art, which has been studied by the present inventors, to the time series data 400 and 402 of the newly acquired acceleration and heart rate of the user, the enhancement phenomenon is taken into consideration. Energy consumption can be estimated without doing so. Thus, for example, by detecting that the difference between the estimated value that takes into account the enhanced state and the estimated value that does not take into account the enhanced state exceeds a certain threshold, the wearable device 10 exhibits an enhanced phenomenon for the user. Can be notified.
 そこで、本実施例においては、ウエアラブルデバイス10は、ユーザの運動の終了を検知し、その後に心拍数の低下が見られた場合に、心拍数の亢進現象が発現されているかを判断し、当該判断結果をユーザに通知する。心拍数の亢進現象は、ユーザの身体に高い負荷がかかることによって生じることから、心拍数の亢進現象が発現されている旨の通知を行うことにより、ユーザは、亢進現象が発現するような運動を実施することができたという達成感を感じることができる。さらに、このような通知を行うことにより、ユーザが身体に負荷のかかる運動を実施するモチベーションを高めることができる。 Therefore, in the present embodiment, the wearable device 10 detects the end of the user's exercise and determines whether or not a heart rate increase phenomenon has occurred when a decrease in the heart rate is observed thereafter. The determination result is notified to the user. Since the heart rate enhancement phenomenon occurs when a high load is applied to the user's body, by notifying that the heart rate enhancement phenomenon has occurred, the user can perform exercise that causes the enhancement phenomenon to occur. You can feel a sense of accomplishment. Furthermore, by performing such notification, it is possible to increase motivation for the user to perform an exercise that places a heavy load on the body.
 (実施例2B)
 また、先に説明したように、ウエアラブルデバイス10は、上述した本実施形態に係る推定を利用することにより、当該ユーザにおいて心拍数の亢進現象が発現する条件(運動強度等)等を推定することができる。詳細には、ウエアラブルデバイス10は、ユーザの過去の運動強度の変動パターンの記録とその際の心拍数の変動パターンとを参照することにより、どの程度の運動強度の運動で心拍数の亢進現象が発現するか(条件)を推定することができる。従って、ウエアラブルデバイス10は、推定した心拍数の亢進現象が発現する運動強度に基づいて、心拍数の亢進現象が発現する運動をユーザに対して推奨することができる。
(Example 2B)
In addition, as described above, the wearable device 10 uses the estimation according to the present embodiment described above to estimate the conditions (exercise intensity, etc.) that cause the heart rate increase phenomenon in the user. Can do. More specifically, the wearable device 10 refers to the user's past exercise intensity fluctuation pattern recording and the heart rate fluctuation pattern at that time, so that the exercise rate of the exercise intensity can be increased. Whether it is expressed (conditions) can be estimated. Therefore, the wearable device 10 can recommend an exercise in which the heart rate enhancement phenomenon appears to the user based on the exercise intensity in which the estimated heart rate enhancement phenomenon appears.
 本実施例においては、ウエアラブルデバイス10は、ユーザが歩行していることを検出し、上述の推定された条件と比較して、検出された歩行により心拍数の亢進現象が発現しないと推定される場合には、心拍数の亢進現象が発現する運動をユーザに対して推奨する。例えば、ウエアラブルデバイス10は、図29に示すように、「歩くスピードを上げてください。」、「現在のスピードを2分間維持してください。」等の文言を含む画面824の表示を行い、ユーザに対して心拍数の亢進現象が発現する運動の実施を誘導する。また、本実施例においては、運動の推奨は、上述したように画面の表示によるものに限定されるものではなく、音声情報や振動等によりユーザに対して運動を推奨してもよい。このような推奨により、ユーザが心拍数の亢進現象が発現するような運動強度を持つ運動の実施を行う機会を増やすことができる。 In the present embodiment, the wearable device 10 detects that the user is walking, and is compared with the estimated condition described above, and it is estimated that the heart rate enhancement phenomenon does not occur due to the detected walking. In some cases, it is recommended to the user that the heart rate increase phenomenon occurs. For example, as shown in FIG. 29, the wearable device 10 displays a screen 824 including words such as “Please increase the walking speed” and “Please maintain the current speed for 2 minutes”, so that the user can Induces the exercise of heart rate enhancement. In the present embodiment, the recommendation of exercise is not limited to the screen display as described above, and the exercise may be recommended to the user by voice information, vibration, or the like. Such a recommendation can increase the opportunity for the user to perform exercise with exercise intensity that causes an increase in heart rate.
 (実施例2C)
 また、次の実施例においては、ウエアラブルデバイス10は、ユーザが運動していることを検出し、上述の推定された条件(心拍数の亢進現象が発現する運動強度)と比較して、検出された運動により心拍数の亢進現象が発現すると推定される場合には、心拍数の亢進現象が発現しているか否かを判断する。そして、ウエアラブルデバイス10は、心拍数の亢進現象が発現していないと判断された場合には、ユーザに通知を行う。より具体的には、ウエアラブルデバイス10は、図30に示すように、「トレーニングの成果が出ています。」、「以前に比べて心拍数がスムーズに戻るようになりました。」等の文言を含む画面826の表示を行うことで、ユーザに通知を行う。
(Example 2C)
In the following embodiment, the wearable device 10 detects that the user is exercising, and is detected by comparison with the above-described estimated condition (exercise intensity in which an increase in heart rate occurs). If it is estimated that the increased heart rate phenomenon is caused by the exercise, it is determined whether the increased heart rate phenomenon is generated. The wearable device 10 notifies the user when it is determined that the heart rate enhancement phenomenon has not occurred. More specifically, as shown in FIG. 30, the wearable device 10 has words such as “the training result has been achieved” and “the heart rate has returned more smoothly than before”. The user is notified by displaying a screen 826 including.
 ユーザが、過去に心拍数の亢進現象が発現する程度の運動強度の運動を新たに実施した際に、心拍数の亢進現象が発現しなかった場合には、ユーザの身体能力(呼吸器機能等)が向上したことが推察される。このような推察に基づき、本実施例においては、上述したような通知により、ユーザは自身の身体能力の向上を実感することができる。 When the user newly exercises with an exercise intensity that causes an increase in heart rate in the past, if the increase in heart rate does not occur, the user's physical ability (respiratory function, etc.) ) Is estimated to have improved. Based on such inference, in the present embodiment, the user can feel an improvement in his / her physical ability by the notification as described above.
 (実施例2D)
 また、上述したように、ユーザの身体能力が向上した場合には、当該ユーザから得られた運動強度の変化による心拍数の変動パターンに属するクラスタが変化し、当該変動パターンにより消費エネルギーを推定するために用いる推定器をそれに合わせて切替える。そこで、このようにクラスタが変化した場合に通知を行うことにより、ユーザは自身の身体能力の向上を実感することができる実施例を以下に説明する。
(Example 2D)
As described above, when a user's physical ability is improved, clusters belonging to a fluctuation pattern of heart rate due to a change in exercise intensity obtained from the user change, and energy consumption is estimated based on the fluctuation pattern. The estimator used for the switching is switched accordingly. Thus, an embodiment will be described below in which the user can feel an improvement in his / her physical ability by notifying when the cluster changes in this way.
 より具体的には、ウエアラブルデバイス10は、ユーザに係る直近の複数の加速度及び心拍数の時系列データ400、402を抽出する。さらに、ウエアラブルデバイス10は、抽出した時系列データ400、402を用いて、図12で示したクラスタ尤度の推定を実行する。そして、ウエアラブルデバイス10は、特定された最も尤度が高いクラスタが、過去のクラスタに比べて身体能力が高いクラスタと考えることができた場合には、ユーザに対して通知を行う。より具体的には、ウエアラブルデバイス10は、図31に示すように、「身体能力が向上してクラスB1にレベルアップしました。」等の文言を含む画面828の表示を行い、クラスタが切り替えられ、その結果から身体能力が向上したと推測されることを通知する。本実施例においては、上述したような通知により、ユーザは自身の身体能力の向上を実感することができる。 More specifically, the wearable device 10 extracts time series data 400 and 402 of a plurality of recent accelerations and heart rates related to the user. Furthermore, wearable device 10 performs estimation of cluster likelihood shown in FIG. 12 using extracted time-series data 400 and 402. The wearable device 10 notifies the user when the identified cluster having the highest likelihood can be considered as a cluster having higher physical ability than the past cluster. More specifically, as shown in FIG. 31, the wearable device 10 displays a screen 828 including a phrase such as “physical ability has improved and has been upgraded to class B1,” and the cluster is switched. Notify that the physical ability has been improved from the result. In the present embodiment, the notification as described above allows the user to feel an improvement in his / her physical ability.
 なお、上述の説明においては、クラスタに着目した例を説明したが、本実施例においては、これに限定されるものではなく、分類の際に最適化されたパラメータ410に着目してもよい。この場合、過去に推定に用いたパラメータ410の数値から、新たに最適化したパラメータ410の数値が変化していた場合には、ユーザの身体能力が変化したと推察することができる。 In the above description, an example in which attention is paid to the cluster has been described. However, in the present embodiment, the present invention is not limited to this, and the parameter 410 optimized at the time of classification may be noted. In this case, when the numerical value of the newly optimized parameter 410 has changed from the numerical value of the parameter 410 used for estimation in the past, it can be inferred that the user's physical ability has changed.
 (実施例2E)
 上述の実施例2Cにおいては、ユーザの身体能力に応じて、所定の運動強度の運動において亢進現象の発現の有無が変わるとしたが、ユーザの体調に応じても、亢進現象の発現の有無が変わる。そこで、本実施例においては、このような考えに基づき、ユーザの体調に関する情報をユーザに通知することができる。
(Example 2E)
In Example 2C described above, the presence or absence of the enhancement phenomenon changes in the exercise of the predetermined exercise intensity according to the physical ability of the user. However, the presence or absence of the enhancement phenomenon also depends on the physical condition of the user. change. Therefore, in this embodiment, based on such an idea, the user can be notified of information related to the user's physical condition.
 詳細には、ウエアラブルデバイス10は、ユーザの過去の運動強度の変動パターンの記録とその際の心拍数の変動パターンとを参照することにより、どの程度の運動強度の運動で心拍数の亢進現象が発現しないか(条件)を推定することができる。そこで、ウエアラブルデバイス10は、ユーザが運動していることを検出し、上述の推定された条件(心拍数の亢進現象が発現しない運動強度)と比較して、検出された運動により心拍数の亢進現象が発現しないと推定される場合には、心拍数の亢進現象が発現しているか否かを判断する。そして、ウエアラブルデバイス10は、心拍数の亢進現象が発現していると判断された場合には、通常ならば心拍数の亢進現象が発現しない条件下であっても、ユーザの体調が悪いために、亢進現象が発現したと推測し、ユーザに対して通知を行う。より具体的には、ウエアラブルデバイス10は、図32に示すように、「体調不良の可能性があります。トレーニングを打ち切りましょう。」、「今日は、運動後の心拍数の回復が思わしくありません。」等の文言を含む画面830の表示を行う。このような通知に行うことにより、ユーザは、自身で認知していない体調不良を把握し、無理なトレーニングの実施を避けることができる。 More specifically, the wearable device 10 refers to the user's past exercise intensity fluctuation pattern recording and the heart rate fluctuation pattern at that time, so that the exercise rate of the exercise intensity can be increased. It can be estimated whether it does not develop (conditions). Therefore, the wearable device 10 detects that the user is exercising, and increases the heart rate by the detected exercise as compared with the above-described estimated condition (exercise intensity that does not cause an increase in the heart rate). When it is estimated that the phenomenon does not occur, it is determined whether or not a heart rate enhancement phenomenon is occurring. When it is determined that the wearable device 10 is experiencing an increase in heart rate, the wearable device 10 is normally in a condition where the increase in the heart rate does not occur. The user is notified that the enhancement phenomenon has occurred, and notifies the user. More specifically, as shown in FIG. 32, the wearable device 10 “has a possibility of poor physical condition. Let's stop training.” “Today, the recovery of the heart rate after exercise is not likely. The screen 830 including words such as “” is displayed. By performing such notification, the user can grasp a physical condition that is not recognized by himself / herself and can avoid unreasonable training.
 <<4.まとめ>>
 以上説明したように、本実施形態によれば、消費エネルギーを高い精度で推定することができる。詳細には、本実施形態においては、ユーザに応じた、消費エネルギーと心拍数との関係性の変動の傾向、すなわち、心拍数の亢進現象の発現パターンを考慮して推定を行うことから、消費エネルギーの推定精度を向上させることができる。
<< 4. Summary >>
As described above, according to the present embodiment, energy consumption can be estimated with high accuracy. Specifically, in the present embodiment, since the estimation is performed in consideration of the tendency of fluctuation in the relationship between the energy consumption and the heart rate according to the user, that is, the expression pattern of the heart rate enhancement phenomenon, The energy estimation accuracy can be improved.
 上述の実施形態における消費エネルギーの推定は、大量のデータを用いたDeep Neural Network(DNN)等による学習を利用して行われてもよい。この場合であっても、上記推定は、ユーザに応じた心拍数の亢進現象の発現パターンを考慮して行われることから、消費エネルギーの推定精度を向上させることができる。 The estimation of energy consumption in the above-described embodiment may be performed by using learning by Deep Neural Network (DNN) using a large amount of data. Even in this case, since the estimation is performed in consideration of the expression pattern of the heart rate enhancement phenomenon according to the user, the estimation accuracy of energy consumption can be improved.
 <<5. ハードウェア構成について>>
 図34は、本実施形態に係る情報処理装置900のハードウェア構成の一例を示す説明図である。図34では、情報処理装置900は、上述のウエアラブルデバイス10のハードウェア構成の一例を示している。
<< 5. Hardware configuration >>
FIG. 34 is an explanatory diagram illustrating an example of a hardware configuration of the information processing apparatus 900 according to the present embodiment. In FIG. 34, the information processing apparatus 900 shows an example of the hardware configuration of the wearable device 10 described above.
 情報処理装置900は、例えば、CPU950と、ROM952と、RAM954と、記録媒体956と、入出力インタフェース958と、操作入力デバイス960とを有する。さらに、情報処理装置900は、表示デバイス962と、音声出力デバイス964と、音声入力デバイス966と、通信インタフェース968と、センサ980とを有する。また、情報処理装置900は、例えば、データの伝送路としてのバス970で各構成要素間を接続する。 The information processing apparatus 900 includes, for example, a CPU 950, a ROM 952, a RAM 954, a recording medium 956, an input / output interface 958, and an operation input device 960. Further, the information processing apparatus 900 includes a display device 962, an audio output device 964, an audio input device 966, a communication interface 968, and a sensor 980. In addition, the information processing apparatus 900 connects each component with a bus 970 as a data transmission path, for example.
 (CPU950)
 CPU950は、例えば、CPU等の演算回路で構成される、1または2以上のプロセッサや、各種処理回路等で構成され、情報処理装置900全体を制御する制御部(例えば、上述の制御部130)として機能する。具体的には、CPU950は、情報処理装置900において、例えば、上述の学習部132、分類部134及び推定部136等の機能を果たす。
(CPU950)
The CPU 950 includes, for example, one or more processors configured by an arithmetic circuit such as a CPU, various processing circuits, and the like, and a control unit that controls the entire information processing apparatus 900 (for example, the control unit 130 described above). Function as. Specifically, the CPU 950 functions in the information processing apparatus 900 such as the learning unit 132, the classification unit 134, and the estimation unit 136 described above.
 (ROM952及びRAM954)
 ROM952は、CPU950が使用するプログラムや演算パラメータ等の制御用データ等を記憶する。RAM954は、例えば、CPU950により実行されるプログラム等を一時的に記憶する。
(ROM 952 and RAM 954)
The ROM 952 stores programs used by the CPU 950, control data such as calculation parameters, and the like. The RAM 954 temporarily stores a program executed by the CPU 950, for example.
 (記録媒体956)
 記録媒体956は、上述の記憶部150として機能し、例えば、本実施形態に係る情報処理方法に係るデータや、各種アプリケーション等様々なデータを記憶する。ここで、記録媒体956としては、例えば、ハードディスク等の磁気記録媒体や、フラッシュメモリ等の不揮発性メモリが挙げられる。また、記録媒体956は、情報処理装置900から着脱可能であってもよい。
(Recording medium 956)
The recording medium 956 functions as the storage unit 150 described above, and stores various data such as data related to the information processing method according to the present embodiment and various applications. Here, examples of the recording medium 956 include a magnetic recording medium such as a hard disk and a nonvolatile memory such as a flash memory. Further, the recording medium 956 may be detachable from the information processing apparatus 900.
 (入出力インタフェース958、操作入力デバイス960、表示デバイス962、音声出力デバイス964、及び音声入力デバイス966)
 入出力インタフェース958は、例えば、操作入力デバイス960や、表示デバイス962等を接続する。入出力インタフェース958としては、例えば、USB(Universal Serial Bus)端子や、DVI(Digital Visual Interface)端子、HDMI(High-Definition Multimedia Interface)(登録商標)端子、各種処理回路等が挙げられる。
(Input / output interface 958, operation input device 960, display device 962, audio output device 964, and audio input device 966)
The input / output interface 958 connects, for example, an operation input device 960, a display device 962, and the like. Examples of the input / output interface 958 include a USB (Universal Serial Bus) terminal, a DVI (Digital Visual Interface) terminal, an HDMI (High-Definition Multimedia Interface) (registered trademark) terminal, and various processing circuits.
 操作入力デバイス960は、例えば上述の入力部100として機能し、情報処理装置900の内部で入出力インタフェース958と接続される。 The operation input device 960 functions as, for example, the input unit 100 described above, and is connected to the input / output interface 958 inside the information processing apparatus 900.
 表示デバイス962は、例えば上述の出力部110として機能し、情報処理装置900上に備えられ、情報処理装置900の内部で入出力インタフェース958と接続される。表示デバイス962としては、例えば、液晶ディスプレイや有機ELディスプレイ(Organic Electro-Luminescence Display)等が挙げられる。 The display device 962 functions as, for example, the output unit 110 described above, is provided on the information processing apparatus 900, and is connected to the input / output interface 958 inside the information processing apparatus 900. Examples of the display device 962 include a liquid crystal display and an organic EL display (Organic Electro-Luminescence Display).
 音声出力デバイス964は、例えば上述の出力部110として機能し、例えば、情報処理装置900上に備えられ、情報処理装置900の内部で入出力インタフェース958と接続される。音声入力デバイス966は、例えば上述の入力部100として機能し、例えば、情報処理装置900上に備えられ、情報処理装置900の内部で入出力インタフェース958と接続される。 The audio output device 964 functions as, for example, the output unit 110 described above, and is provided on the information processing apparatus 900 and connected to the input / output interface 958 inside the information processing apparatus 900, for example. The voice input device 966 functions as, for example, the input unit 100 described above, and is provided on the information processing apparatus 900, for example, and is connected to the input / output interface 958 inside the information processing apparatus 900.
 なお、入出力インタフェース958が、情報処理装置900の外部の操作入力デバイス(例えば、キーボードやマウス等)や外部の表示デバイス等の、外部デバイスと接続することも可能であることは、言うまでもない。 It goes without saying that the input / output interface 958 can be connected to an external device such as an operation input device (for example, a keyboard or a mouse) external to the information processing apparatus 900 or an external display device.
 また、入出力インタフェース958は、ドライブ(図示省略)と接続されていてもよい。当該ドライブは、磁気ディスク、光ディスク、又は半導体メモリなどのリムーバブル記録媒体のためのリーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。当該ドライブは、装着されているリムーバブル記録媒体に記録されている情報を読み出して、RAM954に出力する。また、当該ドライブは、装着されているリムーバブル記録媒体に記録を書き込むこともできる。 Further, the input / output interface 958 may be connected to a drive (not shown). The drive is a reader / writer for a removable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, and is built in or externally attached to the information processing apparatus 900. The drive reads information recorded on the attached removable recording medium and outputs the information to the RAM 954. The drive can also write a record to a removable recording medium that is installed.
 (通信インタフェース968)
 通信インタフェース968は、例えば上述のネットワーク70を介して(あるいは、直接的に)、サーバ30等の外部装置と、無線または有線で通信を行うための通信部340として機能する。ここで、通信インタフェース968としては、例えば、通信アンテナ及びRF(RADIO frequency)回路(無線通信)や、IEEE802.15.1ポート及び送受信回路(無線通信)、IEEE802.11ポート及び送受信回路(無線通信)、あるいはLAN(Local Area Network)端子及び送受信回路(有線通信)等が挙げられる。
(Communication interface 968)
The communication interface 968 functions as a communication unit 340 for performing wireless or wired communication with an external device such as the server 30 via, for example, the network 70 described above (or directly). Here, as the communication interface 968, for example, a communication antenna and an RF (RADIO frequency) circuit (wireless communication), an IEEE 802.15.1 port and a transmission / reception circuit (wireless communication), an IEEE 802.11 port and a transmission / reception circuit (wireless communication). ), Or a LAN (Local Area Network) terminal and a transmission / reception circuit (wired communication).
 (センサ980)
 センサ980は、上述のセンサ部120として機能する。さらに、センサ980は、圧力センサ等の各種のセンサを含んでもよい。
(Sensor 980)
The sensor 980 functions as the sensor unit 120 described above. Further, the sensor 980 may include various sensors such as a pressure sensor.
 以上、情報処理装置900のハードウェア構成の一例を示した。なお、情報処理装置900のハードウェア構成は、図34に示す構成に限られない。詳細には、上記の各構成要素は、汎用的な部材を用いて構成してもよいし、各構成要素の機能に特化したハードウェアにより構成してもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更されうる。 Heretofore, an example of the hardware configuration of the information processing apparatus 900 has been shown. Note that the hardware configuration of the information processing apparatus 900 is not limited to the configuration shown in FIG. Specifically, each component described above may be configured by using a general-purpose member, or may be configured by hardware specialized for the function of each component. Such a configuration can be appropriately changed according to the technical level at the time of implementation.
 例えば、情報処理装置900は、接続されている外部の通信デバイスを介して外部装置等と通信を行う場合や、スタンドアローンで処理を行う構成である場合には、通信インタフェース968を備えていなくてもよい。また、通信インタフェース968は、複数の通信方式によって、1または2以上の外部装置と通信を行うことが可能な構成を有していてもよい。また、情報処理装置900は、例えば、記録媒体956や、操作入力デバイス960、表示デバイス962等を備えない構成をとることも可能である。 For example, the information processing apparatus 900 does not include the communication interface 968 when communicating with an external apparatus or the like via a connected external communication device, or when configured to perform stand-alone processing. Also good. Further, the communication interface 968 may have a configuration capable of communicating with one or more external devices by a plurality of communication methods. In addition, the information processing apparatus 900 may have a configuration that does not include, for example, the recording medium 956, the operation input device 960, the display device 962, and the like.
 また、本実施形態に係る情報処理装置900は、例えばクラウドコンピューティング等のように、ネットワークへの接続(または各装置間の通信)を前提とした、複数の装置からなるシステムに適用されてもよい。つまり、上述した本実施形態に係る情報処理装置900は、例えば、複数の装置により本実施形態に係る情報処理方法に係る処理を行う情報処理システム1として実現することも可能である。 In addition, the information processing apparatus 900 according to the present embodiment may be applied to a system including a plurality of apparatuses based on a connection to a network (or communication between apparatuses) such as cloud computing. Good. In other words, the information processing apparatus 900 according to the present embodiment described above can be realized as the information processing system 1 that performs processing according to the information processing method according to the present embodiment using a plurality of apparatuses, for example.
 <<6.補足>>
 なお、先に説明した本開示の実施形態は、例えば、コンピュータを本実施形態に係る情報処理装置として機能させるためのプログラム、及びプログラムが記録された一時的でない有形の媒体を含みうる。また、プログラムをインターネット等の通信回線(無線通信も含む)を介して頒布してもよい。
<< 6. Supplement >>
The embodiment of the present disclosure described above may include, for example, a program for causing a computer to function as the information processing apparatus according to the present embodiment, and a non-temporary tangible medium in which the program is recorded. Further, the program may be distributed via a communication line (including wireless communication) such as the Internet.
 また、上述した各実施形態の処理における各ステップは、必ずしも記載された順序に沿って処理されなくてもよい。例えば、各ステップは、適宜順序が変更されて処理されてもよい。また、各ステップは、時系列的に処理される代わりに、一部並列的に又は個別的に処理されてもよい。さらに、各ステップの処理方法についても、必ずしも記載された方法に沿って処理されなくてもよく、例えば、他の機能部によって他の方法で処理されていてもよい。 In addition, each step in the processing of each embodiment described above does not necessarily have to be processed in the order described. For example, the steps may be processed by changing the order as appropriate. Each step may be processed in parallel or individually instead of being processed in time series. Furthermore, the processing method of each step does not necessarily have to be processed according to the described method. For example, it may be processed by another function unit by another method.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)ユーザの身体特性を取得する取得部と、拍動数と消費エネルギーとの関係に基づく推定器と、を備え、前記ユーザの身体特性に応じて、前記推定器により、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する、情報処理装置。
(2)前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンに応じて、前記推定器により、前記消費エネルギーを推定する、上記(1)に記載の情報処理装置。
(3)前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の亢進現象のパターンに応じて、前記推定器により、前記消費エネルギーを推定する、上記(2)に記載の情報処理装置。
(4)複数の前記推定器を備え、前記ユーザの身体特性に応じて1つの前記推定器を選択し、選択した前記推定器により、前記消費エネルギーを推定する、上記(1)に記載の情報処理装置。
(5)前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンと、前記各推定器に紐づけられた所定の運動強度の変化による拍動数の変動パターンとの比較結果に応じて、前記推定器を選択する、上記(4)に記載の情報処理装置。
(6)前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンに基づいて、前記ユーザの拍動数の変動パターンの属するクラスタを探索し、探索した前記クラスタに紐づけられた前記推定器を選択する、上記(4)に記載の情報処理装置。
(7)前記ユーザの拍動数の変動パターンの属するクラスタの探索は、前記ユーザの、前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンと、当該拍動数の変動パターンに対応する消費エネルギーの変動パターンと、前記各推定器に前記拍動数の変動パターンを入力して推定された消費エネルギーの変動パターンとを用いて、前記各推定器における各推定尤度を算出し、算出した前記推定尤度を比較することにより行われる、上記(6)に記載の情報処理装置。
(8)前記推定尤度を高めるパラメータを探索する、上記(7)に記載の情報処理装置。
(9)前記クラスタごとに、当該クラスタに属する所定の運動強度の変化による拍動数の変動パターンと、当該拍動数の変動パターンに対応する消費エネルギーの変動パターンとを用いて、前記拍動数と消費エネルギーとの関係を機械学習する学習器をさらに備える、上記(6)~(8)のいずれか1つに記載の情報処理装置。
(10)前記運動強度の変化は、前記ユーザに装着された加速度計により取得される、上記(2)又は(3)に記載の情報処理装置。
(11)運動強度の変化による前記ユーザの拍動数の変動パターンを取得するために、前記ユーザに対して所定の運動の実施を促す指示部をさらに有する、上記(2)又は(3)に記載の情報処理装置。
(12)推定した前記消費エネルギーを前記ユーザに通知する通知部をさらに備える、上記(1)~(11)のいずれか1つに記載の情報処理装置。
(13)前記通知部は、前記推定した消費エネルギーに基づいて、前記ユーザに所定の運動を推奨する通知を行う、上記(12)に記載の情報処理装置。
(14)前記ユーザの身体特性に応じて、過去に選択した前記推定器以外の前記推定器を選択した場合に、前記ユーザに対して通知を行う通知部をさらに備える、上記(4)に記載の情報処理装置。
(15)前記拍動数は、前記ユーザに装着された心拍計又は脈拍計により取得される、上記(1)~(14)のいずれか1つに記載の情報処理装置。
(16)前記情報処理装置は、前記ユーザの身体に装着されたウェアラブル端末、又は、前記ユーザの身体に挿入されたインプラント端末のいずれかである、上記(1)~(15)のいずれか1つに記載の情報処理装置。
(17)ユーザの身体特性を取得することと、前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定することと、を含む、情報処理方法。
(18)ユーザの身体特性を取得する機能と、前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する機能と、を、コンピュータに実現させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1) An acquisition unit that acquires a user's physical characteristics, and an estimator based on the relationship between the number of beats and energy consumption, and according to the user's physical characteristics, the estimator An information processing apparatus that estimates energy consumption by activities performed by the user from the number of motions.
(2) The information processing apparatus according to (1), wherein the energy consumption is estimated by the estimator according to a fluctuation pattern of the number of beats of the user due to a change in exercise intensity of an activity performed by the user. .
(3) The information according to (2), wherein the energy consumption is estimated by the estimator according to a pattern of an increase in the number of beats of the user due to a change in exercise intensity of an activity performed by the user. Processing equipment.
(4) The information according to (1), including a plurality of the estimators, selecting one estimator according to the physical characteristics of the user, and estimating the energy consumption by the selected estimator. Processing equipment.
(5) A variation pattern of the number of beats of the user due to a change in exercise intensity of the activity performed by the user, and a variation pattern of the number of beats due to a change in predetermined exercise intensity linked to each estimator. The information processing apparatus according to (4), wherein the estimator is selected according to a comparison result.
(6) A cluster to which the fluctuation pattern of the user's pulsation belongs is searched based on a fluctuation pattern of the user's pulsation due to a change in exercise intensity of the activity performed by the user, The information processing apparatus according to (4), wherein the attached estimator is selected.
(7) The search for the cluster to which the fluctuation pattern of the user's pulsation belongs belongs to the fluctuation pattern of the user's pulsation due to a change in exercise intensity of the user's activity and the number of pulsations. Each estimated likelihood in each estimator using the variation pattern of the energy consumption corresponding to the variation pattern of the energy consumption and the variation pattern of the energy consumption estimated by inputting the variation pattern of the number of beats to each estimator. The information processing apparatus according to (6), which is performed by calculating a degree and comparing the calculated estimated likelihoods.
(8) The information processing apparatus according to (7), wherein a parameter for increasing the estimated likelihood is searched.
(9) For each of the clusters, using the fluctuation pattern of the number of beats due to a change in predetermined exercise intensity belonging to the cluster, and the fluctuation pattern of the energy consumption corresponding to the fluctuation pattern of the number of beats, The information processing apparatus according to any one of (6) to (8), further including a learning device that performs machine learning on a relationship between the number and energy consumption.
(10) The information processing apparatus according to (2) or (3), wherein the change in exercise intensity is acquired by an accelerometer attached to the user.
(11) The above (2) or (3) further includes an instruction unit that prompts the user to perform a predetermined exercise to acquire a fluctuation pattern of the user's pulsation rate due to a change in exercise intensity. The information processing apparatus described.
(12) The information processing apparatus according to any one of (1) to (11), further including a notification unit that notifies the user of the estimated energy consumption.
(13) The information processing apparatus according to (12), wherein the notification unit performs notification that recommends a predetermined exercise to the user based on the estimated energy consumption.
(14) The apparatus according to (4), further including a notification unit that notifies the user when the estimator other than the estimator selected in the past is selected according to the physical characteristics of the user. Information processing device.
(15) The information processing apparatus according to any one of (1) to (14), wherein the number of beats is acquired by a heart rate meter or a pulse meter attached to the user.
(16) The information processing apparatus is any one of the above (1) to (15), which is either a wearable terminal attached to the user's body or an implant terminal inserted into the user's body. Information processing apparatus described in one.
(17) Obtaining the user's physical characteristics, and based on the relationship between the number of beats corresponding to the user's physical characteristics and the consumed energy, the energy consumed by the user's activities from the number of beats of the user Estimating an information processing method.
(18) Based on the function of acquiring a user's physical characteristics and the relationship between the number of beats corresponding to the user's physical characteristics and the consumed energy, the energy consumed by the user's activities based on the number of beats of the user A program for causing a computer to realize a function for estimating
  1  情報処理システム
  10、10a、10b  ウエアラブルデバイス
  12L,12R  本体部
  14  ネックバンド
  16  タッチパネルディスプレイ
  18  スピーカ
  20  マイクロフォン
  30  サーバ
  50、50a  ユーザ端末
  52  トレッドミル
  54  装着ギア
  70  ネットワーク
  90、92  経時変化
  92a、92b  区間
  100、300、500  入力部
  110、310、510  出力部
  120  センサ部
  130、330、530  制御部
  132  学習部
  134  分類部
  136  推定部
  140、340、540  通信部
  150、350  記憶部
  234、238、240  DB
  236  尤度推定器
  400、402、404、406  時系列データ
  408  推定尤度
  410  パラメータ
  420  ラベル
  800、802、804、806、808、810、812、814、820、822、824、826、828、830  画面
  900  情報処理装置
  950  CPU
  952  ROM
  954  RAM
  956  記録媒体
  958  入出力インタフェース
  960  操作入力デバイス
  962  表示デバイス
  964  音声出力デバイス
  966  音声入力デバイス
  968  通信インタフェース
  970  バス
  980  センサ
DESCRIPTION OF SYMBOLS 1 Information processing system 10, 10a, 10b Wearable device 12L, 12R Main part 14 Neckband 16 Touch panel display 18 Speaker 20 Microphone 30 Server 50, 50a User terminal 52 Treadmill 54 Wearing gear 70 Network 90, 92 Change with time 92a, 92b Section 100, 300, 500 Input unit 110, 310, 510 Output unit 120 Sensor unit 130, 330, 530 Control unit 132 Learning unit 134 Classification unit 136 Estimation unit 140, 340, 540 Communication unit 150, 350 Storage unit 234, 238, 240 DB
236 Likelihood estimator 400, 402, 404, 406 Time series data 408 Estimated likelihood 410 Parameter 420 Label 800, 802, 804, 806, 808, 810, 812, 814, 820, 822, 824, 826, 828, 830 Screen 900 Information processing device 950 CPU
952 ROM
954 RAM
956 Recording medium 958 Input / output interface 960 Operation input device 962 Display device 964 Audio output device 966 Audio input device 968 Communication interface 970 Bus 980 Sensor

Claims (18)

  1.  ユーザの身体特性を取得する取得部と、
     拍動数と消費エネルギーとの関係に基づく推定器と、
     を備え、
     前記ユーザの身体特性に応じて、前記推定器により、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する、
     情報処理装置。
    An acquisition unit for acquiring the physical characteristics of the user;
    An estimator based on the relationship between the number of beats and energy consumption;
    With
    According to the physical characteristics of the user, the estimator estimates energy consumption due to the activity performed by the user from the number of beats of the user.
    Information processing device.
  2.  前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンに応じて、前記推定器により、前記消費エネルギーを推定する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the energy consumption is estimated by the estimator according to a fluctuation pattern of the number of beats of the user due to a change in exercise intensity of an activity performed by the user.
  3.  前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の亢進現象のパターンに応じて、前記推定器により、前記消費エネルギーを推定する、請求項2に記載の情報処理装置。 3. The information processing apparatus according to claim 2, wherein the energy consumption is estimated by the estimator according to a pattern of an increase phenomenon of the number of pulsations of the user due to a change in exercise intensity of an activity performed by the user.
  4.  複数の前記推定器を備え、
     前記ユーザの身体特性に応じて1つの前記推定器を選択し、選択した前記推定器により、前記消費エネルギーを推定する、
     請求項1に記載の情報処理装置。
    Comprising a plurality of the estimators;
    Selecting one of the estimators according to the physical characteristics of the user, and estimating the energy consumption by the selected estimators;
    The information processing apparatus according to claim 1.
  5.  前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンと、前記各推定器に紐づけられた所定の運動強度の変化による拍動数の変動パターンとの比較結果に応じて、前記推定器を選択する、請求項4に記載の情報処理装置。 The comparison result of the fluctuation pattern of the user's pulsation rate due to the change in the exercise intensity of the activity performed by the user and the fluctuation pattern of the pulsation rate due to the change of the predetermined exercise intensity associated with each estimator. The information processing apparatus according to claim 4, wherein the estimator is selected in response.
  6.  前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンに基づいて、前記ユーザの拍動数の変動パターンの属するクラスタを探索し、探索した前記クラスタに紐づけられた前記推定器を選択する、請求項4に記載の情報処理装置。 Based on the fluctuation pattern of the user's pulsation rate due to the change in exercise intensity of the activity performed by the user, a cluster to which the fluctuation pattern of the user's pulsation belongs belongs and is linked to the searched cluster. The information processing apparatus according to claim 4, wherein the estimator is selected.
  7.  前記ユーザの拍動数の変動パターンの属するクラスタの探索は、前記ユーザの、前記ユーザの実施した活動の運動強度の変化による前記ユーザの拍動数の変動パターンと、当該拍動数の変動パターンに対応する消費エネルギーの変動パターンと、前記各推定器に前記拍動数の変動パターンを入力して推定された消費エネルギーの変動パターンとを用いて、前記各推定器における各推定尤度を算出し、算出した前記推定尤度を比較することにより行われる、請求項6に記載の情報処理装置。 The search for the cluster to which the fluctuation pattern of the user's pulsation belongs belongs to the fluctuation pattern of the pulsation of the user and the fluctuation pattern of the pulsation due to a change in exercise intensity of the activity of the user performed by the user. The estimated likelihood in each estimator is calculated using the variation pattern of the consumed energy corresponding to and the variation pattern of the consumed energy estimated by inputting the pulsation number variation pattern to each estimator. The information processing apparatus according to claim 6, wherein the information processing apparatus is performed by comparing the calculated estimated likelihoods.
  8.  前記推定尤度を高めるパラメータを探索する、請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein a parameter that increases the estimated likelihood is searched.
  9.  前記クラスタごとに、当該クラスタに属する所定の運動強度の変化による拍動数の変動パターンと、当該拍動数の変動パターンに対応する消費エネルギーの変動パターンとを用いて、前記拍動数と消費エネルギーとの関係を機械学習する学習器をさらに備える、請求項6に記載の情報処理装置。 For each cluster, using the fluctuation pattern of the number of beats due to a change in predetermined exercise intensity belonging to the cluster and the fluctuation pattern of the energy consumption corresponding to the fluctuation pattern of the number of beats, the number of beats and consumption The information processing apparatus according to claim 6, further comprising a learning device that performs machine learning on a relationship with energy.
  10.  前記運動強度の変化は、前記ユーザに装着された加速度計により取得される、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the change in exercise intensity is acquired by an accelerometer attached to the user.
  11.  運動強度の変化による前記ユーザの拍動数の変動パターンを取得するために、前記ユーザに対して所定の運動の実施を促す指示部をさらに有する、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, further comprising: an instruction unit that prompts the user to perform a predetermined exercise in order to acquire a fluctuation pattern of the number of beats of the user due to a change in exercise intensity.
  12.  推定した前記消費エネルギーを前記ユーザに通知する通知部をさらに備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising a notification unit that notifies the user of the estimated energy consumption.
  13.  前記通知部は、前記推定した消費エネルギーに基づいて、前記ユーザに所定の運動を推奨する通知を行う、請求項12に記載の情報処理装置。 The information processing apparatus according to claim 12, wherein the notification unit notifies the user of a predetermined exercise based on the estimated energy consumption.
  14.  前記ユーザの身体特性に応じて、過去に選択した前記推定器以外の前記推定器を選択した場合に、前記ユーザに対して通知を行う通知部をさらに備える、請求項4に記載の情報処理装置。 The information processing apparatus according to claim 4, further comprising: a notification unit configured to notify the user when the estimator other than the estimator selected in the past is selected according to the physical characteristics of the user. .
  15.  前記拍動数は、前記ユーザに装着された心拍計又は脈拍計により取得される、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the number of beats is acquired by a heart rate meter or a pulse meter attached to the user.
  16.  前記情報処理装置は、前記ユーザの身体に装着されたウェアラブル端末、又は、前記ユーザの身体に挿入されたインプラント端末のいずれかである、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the information processing apparatus is either a wearable terminal attached to the user's body or an implant terminal inserted into the user's body.
  17.  ユーザの身体特性を取得することと、
     前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定することと、
     を含む、情報処理方法。
    Obtaining the user's physical characteristics;
    Based on the relationship between the number of pulsations according to the user's physical characteristics and the consumed energy, estimating the consumed energy due to the activity performed by the user from the number of pulsations of the user;
    Including an information processing method.
  18.  ユーザの身体特性を取得する機能と、
     前記ユーザの身体特性に応じた拍動数と消費エネルギーとの関係に基づいて、前記ユーザの拍動数から当該ユーザの行った活動による消費エネルギーを推定する機能と、
     を、コンピュータに実現させるためのプログラム。
    The ability to acquire the user's physical characteristics;
    Based on the relationship between the number of beats according to the user's physical characteristics and the consumed energy, the function of estimating the consumed energy due to the activity performed by the user from the number of beats of the user;
    Is a program that makes a computer realize this.
PCT/JP2017/046266 2017-03-21 2017-12-22 Information processing device, information processing method, and program WO2018173401A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780087362.0A CN110381833B (en) 2017-03-21 2017-12-22 Information processing apparatus, information processing method, and program
EP17901981.5A EP3598945B1 (en) 2017-03-21 2017-12-22 Information processing device, information processing method, and program
US16/486,236 US20210282708A1 (en) 2017-03-21 2017-12-22 Information processing apparatus, information processing method, and program
JP2019506944A JP7024780B2 (en) 2017-03-21 2017-12-22 Information processing equipment, information processing methods and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054056 2017-03-21
JP2017-054056 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173401A1 true WO2018173401A1 (en) 2018-09-27

Family

ID=63584214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046266 WO2018173401A1 (en) 2017-03-21 2017-12-22 Information processing device, information processing method, and program

Country Status (5)

Country Link
US (1) US20210282708A1 (en)
EP (1) EP3598945B1 (en)
JP (1) JP7024780B2 (en)
CN (1) CN110381833B (en)
WO (1) WO2018173401A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058663A (en) * 2018-10-11 2020-04-16 ファミリーイナダ株式会社 Terminal device, control system, and computer program
WO2022124276A1 (en) * 2020-12-07 2022-06-16 ダイキン工業株式会社 Indoor air quality prediction method and indoor air quality detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114795161A (en) * 2022-04-13 2022-07-29 中国农业大学 Prediction method and device for maintaining net energy demand and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149128A (en) * 1983-02-15 1984-08-27 ミカエル・ルベル Cardiac pulse monitor apparatus and method
JP2002045352A (en) 2000-08-02 2002-02-12 Sony Corp Portable health control system
JP2002330933A (en) * 2001-04-25 2002-11-19 Sonfun An Instrument for measuring quantity of motion
JP2005230340A (en) * 2004-02-20 2005-09-02 Intelligent Cosmos Research Institute Energy consumption estimation apparatus, energy consumption estimation system, and database
JP2008104758A (en) * 2006-10-27 2008-05-08 Omron Healthcare Co Ltd Exercise support device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516357B2 (en) * 1994-08-10 2004-04-05 株式会社タニタ Calorie consumption meter
JPH08317912A (en) * 1995-03-23 1996-12-03 Seiko Instr Inc Pulse rate meter
JP3600312B2 (en) * 1995-05-29 2004-12-15 田中 宏暁 Energy consumption measuring device
FI115289B (en) * 2000-02-23 2005-04-15 Polar Electro Oy Measurement of an organism's energy metabolism and glucose levels
JP4521755B2 (en) 2004-09-07 2010-08-11 株式会社タニタ Activity amount measuring device
US8504145B2 (en) * 2006-12-11 2013-08-06 Seiko Epson Corporation Biometric information processing device, biometric information processing method, and control program
CN102740933B (en) * 2009-12-09 2015-11-25 耐克创新有限合伙公司 Use the athletic performance monitoring of heart rate information
JP5923857B2 (en) 2011-03-01 2016-05-25 オムロンヘルスケア株式会社 Activity meter
CN104994779A (en) 2012-12-19 2015-10-21 捷通国际有限公司 Systems and methods for determining caloric intake using a personal correlation factor
US10335636B2 (en) * 2013-09-13 2019-07-02 Polar Electro Oy System for monitoring physical activity
JP2016536050A (en) * 2013-10-14 2016-11-24 ナイキ イノベイト シーブイ Calculation of pace and energy consumption from athletic exercise attributes
WO2016162519A1 (en) * 2015-04-09 2016-10-13 Koninklijke Philips N.V. Vital signs monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149128A (en) * 1983-02-15 1984-08-27 ミカエル・ルベル Cardiac pulse monitor apparatus and method
JP2002045352A (en) 2000-08-02 2002-02-12 Sony Corp Portable health control system
JP2002330933A (en) * 2001-04-25 2002-11-19 Sonfun An Instrument for measuring quantity of motion
JP2005230340A (en) * 2004-02-20 2005-09-02 Intelligent Cosmos Research Institute Energy consumption estimation apparatus, energy consumption estimation system, and database
JP2008104758A (en) * 2006-10-27 2008-05-08 Omron Healthcare Co Ltd Exercise support device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598945A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058663A (en) * 2018-10-11 2020-04-16 ファミリーイナダ株式会社 Terminal device, control system, and computer program
WO2022124276A1 (en) * 2020-12-07 2022-06-16 ダイキン工業株式会社 Indoor air quality prediction method and indoor air quality detection system

Also Published As

Publication number Publication date
EP3598945B1 (en) 2022-06-01
CN110381833B (en) 2022-09-30
CN110381833A (en) 2019-10-25
JP7024780B2 (en) 2022-02-24
US20210282708A1 (en) 2021-09-16
EP3598945A1 (en) 2020-01-29
EP3598945A4 (en) 2020-02-12
JPWO2018173401A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US11375948B2 (en) Methods and systems for providing a preferred fitness state of a user
US11596350B2 (en) System and method for estimating cardiovascular fitness of a person
US11839473B2 (en) Systems and methods for estimating and predicting emotional states and affects and providing real time feedback
EP3283990B1 (en) Activity monitoring device with assessment of exercise intensity
EP3302729B1 (en) Activity monitoring device with assessment of exercise intensity
US20160081620A1 (en) Method and apparatus for health care
US20160089033A1 (en) Determining timing and context for cardiovascular measurements
JP7015812B2 (en) Calculation of energy consumption using data from multiple devices
US9731184B2 (en) Exercise assistive device
CN110785120A (en) Information processing apparatus, information processing method, and program
US20150250417A1 (en) Stamina monitoring method and device
US20150282759A1 (en) Method of measuring signals for wearable electronic device and wearable electronic device using the same
US10765328B2 (en) Method and system to determine anaerobic threshold of a person non-invasively from freely performed exercise and to provide feedback on training intensity
US9693727B1 (en) Method and system to determine anaerobic threshold of a person non-invasively from freely performed exercise and to provide feedback on training intensity
JP2017158999A (en) Method for real-time monitoring maximal oxygen consumption
US11317862B2 (en) Method and an apparatus for determining training status
US20240099622A1 (en) Systems and methods for estimating and predicting emotional states and affects and providing real time feedback
WO2018173401A1 (en) Information processing device, information processing method, and program
CN110366387A (en) Measurement and assessment sleep quality
EP3391809A1 (en) Fitness level prediction device, system and method
KR20160034199A (en) Method and apparatus for health care
US20140371886A1 (en) Method and system for managing performance of an athlete
US20220199244A1 (en) Method for predicting maximal oxygen uptake in wearable devices
Miguel-Ruiz et al. Measurement of Physical Activity Energy Expenditure Using Inertial Sensors
US20240081689A1 (en) Method and system for respiration and movement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901981

Country of ref document: EP

Effective date: 20191021