WO2018173212A1 - Light source device, method for controlling light source device, program, and projection-type display device - Google Patents

Light source device, method for controlling light source device, program, and projection-type display device Download PDF

Info

Publication number
WO2018173212A1
WO2018173212A1 PCT/JP2017/011809 JP2017011809W WO2018173212A1 WO 2018173212 A1 WO2018173212 A1 WO 2018173212A1 JP 2017011809 W JP2017011809 W JP 2017011809W WO 2018173212 A1 WO2018173212 A1 WO 2018173212A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
polarized
blue
dichroic mirror
Prior art date
Application number
PCT/JP2017/011809
Other languages
French (fr)
Japanese (ja)
Inventor
慎一郎 近久
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2017/011809 priority Critical patent/WO2018173212A1/en
Priority to CN201790001562.5U priority patent/CN212031908U/en
Publication of WO2018173212A1 publication Critical patent/WO2018173212A1/en

Links

Images

Definitions

  • the present invention relates to a light source device, a light source device control method, a program, and a projection display device, and more particularly, a light source device including a plurality of light sources each emitting light of a different color, a light source device control method, and a program.
  • the present invention also relates to a projection display device.
  • a projection method of a projection display device (hereinafter also referred to as a projector) that projects an image on a screen
  • a liquid crystal method or a DLP (registered trademark) method is known.
  • a light source of a projector having these methods a technique using a laser in addition to an LED (Light Emitting Diode) and a lamp is attracting attention.
  • lasers are attracting attention as light sources that replace lamps because they have a longer life than lamps and have high reliability.
  • Patent Document 1 discloses the following technology.
  • the light emitted from the light source section passes through the integrator lens composed of the first lens array and the second lens array so as to maintain the brightness to the end of the display image, and then passes through the polarization conversion element and the condenser lens. And separated for each wavelength region.
  • Some recent projectors use a plurality of light sources LD (Laser Diodes) in the light source section to use the light sources LD for excitation light and blue light of a yellow phosphor.
  • the projection method of the projector is a liquid crystal method, it is necessary to align the polarization of light irradiated to the liquid crystal using a polarization conversion element. In this case, it is required to efficiently obtain the light amount in consideration of the polarization efficiency.
  • Patent Document 1 when the light in the blue wavelength region is reflected on the surface of the wheel, a function of rotating or disturbing the polarization is provided so that the light is efficiently reflected by the first dichroic mirror.
  • no consideration is given to the polarization of light emitted from the first light source or the second light source. Therefore, there is a problem that the amount of light cannot be obtained efficiently when the polarized light is aligned using the polarization conversion element after the light emitted from the light source unit is generated.
  • An object of the present invention is to provide a light source device, a light source device control method, a program, and a projection display device that can solve the problem of efficiently obtaining a light quantity in consideration of polarization efficiency.
  • the light source device of the present invention includes an excitation light source that emits excitation light, a phosphor that emits non-polarized fluorescence when irradiated with the excitation light, a blue light source that emits linearly polarized blue light, and the excitation Reflecting the excitation light emitted from a light source and irradiating the phosphor toward the phosphor, transmitting the unpolarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and irradiating from the blue light source
  • the dichroic mirror that reflects the linearly polarized blue light in the same direction as the non-polarized fluorescent light is transmitted, and the non-polarized fluorescent light that has passed through the dichroic mirror is the linearly polarized blue light.
  • Polarization conversion means for converting into the same polarization and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror.
  • a projection display device of the present invention includes the light source device.
  • control method of the light source device of the present invention includes an excitation light source that irradiates excitation light, a phosphor that emits non-polarized fluorescence when irradiated with the excitation light, and a blue color that irradiates linearly polarized blue light.
  • a dichroic mirror that reflects the linearly polarized blue light emitted from the blue light source in the same direction as the non-polarized fluorescence is transmitted. Converting the transmitted polarization of the non-polarized fluorescence into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror.
  • the amount of light can be obtained efficiently in consideration of the polarization efficiency.
  • FIG. 1 is a schematic diagram illustrating a configuration of a light source device according to the first embodiment.
  • the light source device 40 according to the present embodiment includes a fluorescence excitation optical system 1, a blue light path 2, and a fluorescence / blue common light path 3.
  • the fluorescence excitation optical system 1 includes a blue LD array 1a, a blue LD collimator lens 1b, lenses 1c, 1d and 1e, a diffusion plate 1f, a dichroic mirror 1g, lenses 1h and 1i, and a phosphor wheel 1j. have.
  • the blue optical path 2 includes a blue LD array 2a, a blue LD collimator lens 2b, a diffusion plate 2c, and lenses 2d and 2e.
  • the fluorescence / blue common optical path 3 includes lenses 3a and 3b, integrators 3c and 3d, and a polarization conversion element 3e.
  • the elements constituting the fluorescence excitation optical system 1, the blue light path 2, and the fluorescence / blue common light path 3 forming the light source device 40 according to the present embodiment will be described below.
  • the blue LD array 1a of the fluorescence excitation optical system 1 has excitation light sources arranged in an array.
  • the blue LD collimator lens 1b corrects the aberration so that the light beam emitted from the blue LD array 1a as the light source becomes parallel light at the focal point.
  • the lenses 1c, 1d, and 1e collect the excitation light that has been aberration-corrected into parallel light by the blue LD collimator lens 1b.
  • the diffusion plate 1f diffuses the excitation light collected by the lenses 1c, 1d, and 1e.
  • the dichroic mirror 1g reflects the excitation light diffused by the diffusion plate 1f in the direction of the phosphor wheel 1j.
  • the lenses 1h and 1i collect the excitation light reflected by the dichroic mirror 1g on the phosphor wheel 1j.
  • the lenses 1h and 1i make yellow fluorescence emitted from the phosphor wheel 1j incident on the dichroic mirror 1g.
  • the phosphor wheel 1j is a disk-shaped wheel in which a yellow phosphor region that emits yellow fluorescence when excited by excitation light is formed in an annular shape. The configuration of the phosphor wheel 1j will be described later.
  • the blue LD array 2a in the blue light path 2 has blue light sources arranged in an array.
  • the blue LD collimator lens 2b corrects the aberration so that the light beam emitted from the blue LD array 2a as the light source becomes parallel light at the focal point.
  • the diffusion plate 2c diffuses the blue LD light whose aberration is corrected by the blue LD collimator lens 2b.
  • the lenses 2d and 2e collect the blue LD light diffused by the diffusion plate 2c.
  • the dichroic mirror 1 g reflects the blue LD light collected by the lenses 2 d and 2 e in the direction of the fluorescence / blue common optical path 3.
  • the dichroic mirror 1 g in the fluorescence / blue common optical path 3 synthesizes the yellow fluorescence emitted from the phosphor wheel 1 j and the blue LD light reflected in the direction of the fluorescence / blue common optical path 3.
  • the lenses 3a and 3b collect the synthesized yellow fluorescence and blue LD light.
  • the integrators 3c and 3d make the light intensity of the combined light of the yellow fluorescent light and the blue LD light collected by the lenses 3a and 3b uniform.
  • the polarization conversion element 3e aligns the polarization of the combined light of the yellow fluorescent light and the blue LD light whose light intensity is uniform by the integrators 3c and 3d in a certain polarization direction. The polarization conversion element 3e will be described later.
  • the operation of the optical system of the light source device will be specifically described.
  • the polarization of the light beam emitted from the blue LD array 1a in which blue LDs (excitation light sources) are arranged in an array is linear polarization perpendicular to the paper surface of FIG.
  • the reason why the light beam emitted from the blue LD array 1a is linearly polarized light perpendicular to the paper surface of FIG. 1 will be described later.
  • FIG. 2A is a schematic diagram illustrating a light source image irradiated with no diffusion plate on the phosphor wheel
  • FIG. 2B is a schematic diagram illustrating a light source image irradiated with a diffusion plate on the phosphor wheel.
  • the light source image has a condensing shape with a certain width as shown in FIG. 2B.
  • a homogenizer, a light tunnel, a rod integrator, or the like which is an optical element that generates a laser beam with a uniform light intensity distribution, can be substituted.
  • the laser light emitted from the blue LD array 1a becomes parallel light by passing through the blue LD collimator lens 1b.
  • the excitation light that has become parallel by passing through the collimator lens 1b is collected by using the lens groups 1c, 1d, and 1e.
  • the excitation light condensed by the lens groups 1c, 1d, and 1e is diffused by using the diffusion plate 1f described above.
  • the diffused excitation light is reflected in the direction of the phosphor wheel 1j by using the dichroic mirror 1g.
  • the dichroic mirror 1g has a characteristic of reflecting blue light and transmitting yellow light.
  • an adjustment mechanism is provided in the lens 1e in order to absorb an attachment error of a lens or the like disposed between the blue LD array 1a and the phosphor wheel 1j.
  • an adjustment mechanism also in the optical axis direction of the phosphor wheel 1j.
  • FIG. 3 is a schematic diagram showing an example of a phosphor wheel used in the light source device shown in FIG.
  • the phosphor wheel 1j has a hollow disk shape when viewed from a direction perpendicular to the rotation surface. And the area
  • the center of the motor shaft 7 of the phosphor wheel 1j is attached to a rotation shaft of a motor (not shown).
  • the phosphor wheel 1j rotates about the center of the motor shaft 7 to which the rotation shaft of a motor (not shown) is attached. By rotating the phosphor wheel 1j, it is possible to mitigate the temperature rise caused by the excitation light being applied to the region of the yellow phosphor 6. When the phosphor wheel 1j has a sufficient cooling function, the phosphor wheel 1j may not be rotated.
  • the yellow fluorescence emitted from the phosphor wheel 1j is Lambert diffused light having ideal diffuse reflection properties.
  • Lumbard diffused light is natural light with no polarization characteristics.
  • S-polarized light which is polarized light perpendicular to the plane of incidence on the optical element, has better reflection characteristics and angle dependency than P-polarized light, which is polarized parallel to the plane of incidence on the optical element.
  • the polarization characteristic is used. This point will be described with reference to FIGS.
  • FIG. 4 shows the P-polarized spectral reflection characteristic of the dichroic mirror
  • FIG. 5 shows the S-polarized spectral reflection characteristic of the dichroic mirror. Comparing FIG. 4 and FIG. 5, it can be seen that the reflectance of S-polarized light is closer to 100% than that of P-polarized light in the blue wavelength range of 420 nm to 500 nm.
  • the transmittance of the dichroic mirror 1g in the range of 570 nm to 590 nm, which is the wavelength of yellow fluorescence, is approximately 100% as shown in FIG.
  • FIG. 6 shows the spectral transmission characteristics of the dichroic mirror. Accordingly, the yellow fluorescent light is transmitted through the dichroic mirror 1g and condensed using the lenses 3a and 3b. Thereafter, the yellow fluorescent light is made uniform in the light intensity of the light flux in the integrators 3c and 3d and is incident on the polarization conversion element 3e.
  • the polarization of the light emitted from the blue LD array 2a in which the blue LDs are arranged in an array is also the same for the S-polarized light than the P-polarized light, as described above with reference to FIGS. It is linearly polarized light perpendicular to the paper surface of FIG. 1 by utilizing the property on polarization that the reflection property and the angle dependency are good.
  • the light emitted from the blue LD array 2a is (1) incident as s-polarized light on the dichroic mirror 1g and reflected.
  • the light beam emitted from the blue LD array 2a is incident and reflected as S-polarized light on a polarization separation film 51 (2) of the polarization conversion element 3e described later.
  • Diffusion plate 2c and lenses 2d and 2e which are dedicated parts for blue optical path 2, emit blue LD efficiently by applying a coating specialized for S-polarized light in the wavelength region (frequency band) of blue LD used. can do.
  • An example of the coating includes an anti-reflection (AR) film.
  • AR anti-reflection
  • emitting the light beam of the blue LD as it is is that the coherent light (light having the same phase) is directly irradiated to the outside. If it does so, it may affect a human eye etc., and there is a problem in safety.
  • the blue LD is scattered by a random medium, a bright and dark speckle pattern (speckle) is generated, and when speckle spots become large, the image quality of the projector may be affected.
  • a diffuser plate 2c is disposed in the blue optical path 2 to spatially relieve coherency and ensure safety, and to improve speckle spots.
  • disposing a diffusion plate in the fluorescence / blue common optical path 3 leads to a reduction in the amount of yellow fluorescence emitted from the phosphor wheel 1j. Therefore, the diffusing plate 2c is preferably disposed between the blue LD array 2a and the dichroic mirror 1g.
  • a plurality of diffusion plates 2c are arranged, or the diffusion plate 2c is physically moved by vibrating or rotating to reduce the coherency. You may make it do.
  • an adjustment mechanism is provided in the blue LD collimator lens 2d in order to absorb attachment errors of members disposed between the blue LD array 2a and the lens 3b.
  • FIG. 7 is a schematic block diagram illustrating the configuration of the polarization conversion element of the light source device.
  • the light source device 40 illustrated in FIG. 7 includes a light emitting element 41, a collimator lens 42, and a polarization conversion element 3e.
  • the polarization conversion element 3e includes a transparent member 53 provided with a polarization separation film 51 and a reflection film 52, and a ⁇ / 2 phase difference plate 56.
  • the light emitting element 41 emits non-polarized light (101).
  • the collimator lens 42 collimates the light from the light emitting element 41 as much as possible.
  • Non-polarized light (101) from the collimator lens 42 enters the transparent member 53, and is converted into P-polarized light (102) traveling straight in the polarization separation film 51 and S-polarized light (103) reflected in the orthogonal direction. To be separated.
  • the optical path of the S-polarized light (103) is bent by the reflective film 52, and the traveling direction becomes parallel to the P-polarized light (102).
  • the P-polarized light (102) transmitted through the polarization separation film 51 of the transparent member 53 is rotated by 90 ° by the ⁇ / 2 phase difference plate 56, and the S-polarized light emitted from the reflective film 52 of the transparent member 53 ( 103) and S-polarized light (103) having the same polarization direction.
  • the non-polarized light (101) emitted from the light emitting element 41 is aligned with the S-polarized linearly polarized light (103) using the polarization conversion element 3e.
  • a brighter light source device 40 can be configured.
  • FIG. 8 is a schematic cross-sectional view for explaining the operation of the polarization conversion element.
  • the polarization conversion element 3 e includes a plurality of polarization separation films 51, a plurality of reflection films 52, and a transparent member 53 that is formed in a rectangular flat plate shape with the polarization separation films 51 and the reflection films 52 formed thereon.
  • a plurality of ⁇ / 2 retardation films 56 provided with a ⁇ / 2 retardation film.
  • the polarization separation film 51 and the reflection film 52 form one set, and the polarization separation film 51 is arranged to be inclined with respect to the incident light, and separates the incident light beam into two types of linearly polarized light beams.
  • the reflection film 52 is arranged in parallel to the reflected light side of the polarization separation film 51 and reflects one polarized light beam separated and reflected by the polarization separation film 51.
  • the ⁇ / 2 retardation film of the ⁇ / 2 retardation film 56 is provided on the light beam exit side of the transparent member 53, converts the polarization axis of one of the polarized light beams, and aligns it with the polarization axis of the other polarized light beam.
  • the polarization separation films 51 and the reflection films 52 are arranged so that the polarization separation films 51 and the reflection films 52 are symmetrically positioned on both sides of the center line of the polarization conversion element 3e.
  • a light beam of non-polarized light from a light source collimated as incident light enters from the incident surface 4 side of the polarization conversion element 3e and reaches the polarization separation film 51.
  • the polarization separation film 51 is configured to transmit the P-polarized linearly polarized light beam and reflect the S-polarized linearly polarized light beam.
  • the optical path of the S-polarized light reflected by the polarization separation film 51 is bent by the reflective film 52, and the traveling direction becomes parallel to the P-polarized light.
  • the P-polarized linearly polarized light beam transmitted through the polarization separation film 51 is converted into S-polarized light by passing through the ⁇ / 2 phase difference plate 56. That is, the unpolarized light incident from the incident surface 4 is aligned with the S-polarized linearly polarized light using the polarization conversion element 3e.
  • the blue LD reflected by the dichroic mirror 1g is combined with the yellow fluorescence emitted from the phosphor wheel 1j and transmitted through the dichroic mirror 1g.
  • the synthesized light is also referred to as synthesized light.
  • the polarization of the light beam of the blue LD emitted from the blue LD array 2a as the light source is linearly polarized light perpendicular to the paper surface of FIG.
  • the blue LD light beam is incident on the dichroic mirror 1g as S-polarized light, and is reflected by the dichroic mirror 1g with S-polarized light.
  • the blue LD reflected by the dichroic mirror 1g enters the lens 3a, the lens 3b, and the integrators 3c and 3d in the S-polarized state in the direction of the fluorescence / blue common optical path 3.
  • the blue LD is condensed using the lenses 3a and 3b, and then the light intensity of the light beam is made uniform in the integrators 3c and 3d, and is incident on the polarization conversion element 3e.
  • the blue LD is incident on the polarization separation film 51 constituting the polarization conversion element 3e as S-polarized light and reflected.
  • the blue LD is reflected by the polarization separation film 51 constituting the polarization conversion element 3e, and further reflected by the reflection film 52 constituting the polarization conversion element 3e. At this time, the polarization of the blue LD is not converted, and the state of S polarization is maintained.
  • yellow fluorescence is incident on the polarization separation film 51 constituting the polarization conversion element 3e as polarized light having both an S-polarized component and a P-polarized component. Of the yellow fluorescence, the S-polarized component is not converted in polarization as in the case of the blue LD, and maintains the S-polarized state.
  • the P-polarized component is transmitted through the polarization separation film 51, and the polarized light is converted by the ⁇ / 2 phase difference plate 56 constituting the polarization conversion element 3e. That is, the P-polarized component of the yellow fluorescence is polarized and converted to S-polarized light. As a result, the blue LD and yellow fluorescence polarized light emitted from the polarization conversion element 3e become the same linearly polarized light (S-polarized light) over the entire spectrum.
  • the polarized light of the blue LD incident on the polarization separation film 51 of the polarization conversion element 3e is at least S-polarized light.
  • the loss of light amount is caused by the absorption of the blue LD by the polarization separation film 51 when passing through the polarization separation film 51. appear.
  • a loss of light amount occurs when the light passes through the ⁇ / 2 phase difference plate 56. Therefore, when the polarization of the blue LD is S-polarized light, a light source device with low transmission loss and high transmission efficiency can be realized.
  • the blue LD light beam is also incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light and is reflected.
  • the diffusing plate 2c is provided in the blue optical path 2
  • the incident angle has a width of about several degrees to several tens of degrees.
  • FIG. 9 shows spectral transmission characteristics of the polarization conversion element with respect to S-polarized input light.
  • the transmittance of S-polarized light is higher than that of P-polarized light in the wavelength region of blue LD (in the range of 420 nm to 500 nm) and in the wavelength region of yellow fluorescence (in the range of 570 nm to 590 nm). It can be seen that it exceeds 90%. Therefore, when a light beam is incident as P-polarized light on the polarization separation film 51 of the polarization conversion element 3e, it is affected by the angle dependency of the polarization conversion element 3e. Therefore, a light source device with higher transmission efficiency can be obtained by making it incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light.
  • FIG. 11 is a flowchart showing the operation of the light source device according to the first embodiment.
  • the blue LD array 1a of the fluorescence excitation optical system 1 emits excitation light.
  • the blue LD array 2a in the blue optical path 2 irradiates the incident surface of the dichroic mirror 1g with blue LD that is linearly polarized light perpendicular to the paper surface of FIG.
  • the dichroic mirror 1g reflects the excitation light in the direction of the phosphor wheel 1j.
  • the dichroic mirror 1g transmits yellow fluorescence emitted from the phosphor wheel 1j.
  • the dichroic mirror 1g reflects the blue LD incident as S-polarized light on the incident surface of the dichroic mirror 1g in the same direction as the direction in which the yellow fluorescence is transmitted.
  • the yellow fluorescent light and the blue LD are collected by the lenses 3a and 3b, and the light intensity of the light beam is made uniform by the integrators 3c and 3d.
  • the polarization conversion element 3e reflects the blue LD incident as S-polarized light on the incident surface of the polarization separation film 51 constituting the polarization conversion element 3e by the polarization separation film 51 and reflects it by the reflection film 52. To do.
  • the polarization conversion element 3 e reflects the S-polarized component of yellow fluorescence by the polarization separation film 51 and reflects it by the reflection film 52.
  • the P-polarized component of yellow fluorescence is transmitted through the polarization conversion film 51 and converted into S-polarized light by the ⁇ / 2 phase difference plate 56.
  • S-polarized blue LD and S-polarized yellow fluorescence are output from the polarization conversion element 3e, and the process ends.
  • the excitation light source and the blue light source are separately provided.
  • the polarization of the light beam emitted from at least the blue light source is linearly polarized light perpendicular to the paper surface of FIG.
  • a light beam emitted from the blue light source is incident on the dichroic mirror 1g as S-polarized light and reflected.
  • the polarization separation film 51 of the polarization conversion element 3e is also incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light and reflected. That is, S-polarized light having better reflection characteristics and angle characteristics than P-polarized light is used.
  • S-polarized light having better reflection characteristics and angle characteristics than P-polarized light is used.
  • the diffusion plate 2c and the lenses 2d and 2e which are dedicated components of the blue optical path 2, are coated in the wavelength region of the blue LD so that the blue LD can be efficiently emitted.
  • An example of the coating includes an anti-reflection (AR) film.
  • the light source for excitation and the light source for blue are separately provided, it is possible to select a wavelength according to each light source. That is, the light source for excitation light selects a high-power and short-wavelength LD to excite the phosphor wheel 1j, and the blue light source is each member (light path, polarizing plate, and liquid crystal) constituting the light source device 40.
  • the long-wavelength LD can be selected according to the life requirement.
  • FIG. 12 is a schematic configuration diagram illustrating an example of a projection display device including the light source device according to the first embodiment.
  • the projection display apparatus 100 according to the present embodiment collects light from a light source device 40 that emits light, emits light from a projection lens through a device that displays an image, and projects an image on a display surface such as a screen S. An example of the configuration is shown.
  • a projection display apparatus 100 shown in FIG. 12 is a configuration example of a projector using a 3LCD (Liquid Crystal Display) as a micro display.
  • 3LCD Liquid Crystal Display
  • the light polarized from the light source device 40 and perpendicular to the incident surface of the condenser lens 30 passes through the condenser lens 30 and is separated for each wavelength range.
  • the light that has passed through the condensing lens 30 is incident on the first reflective dichroic mirror 12a that reflects only light in the red wavelength region and passes light in other wavelength regions.
  • the light in the red wavelength region is reflected by the first reflection dichroic mirror 12a and travels toward the reflection mirror 11a.
  • the light in the red wavelength region is further reflected by the reflection mirror 11a and enters the red liquid crystal panel 60a.
  • the light in the other wavelength region that has passed through the first reflective dichroic mirror 12a is incident on the second reflective dichroic mirror 12b.
  • the second reflective dichroic mirror 12b reflects only light in the green wavelength range, and transmits light in other wavelength ranges, that is, light in the blue wavelength range.
  • the light in the green wavelength region reflected by the second reflective dichroic mirror 12b is incident on the green liquid crystal panel 60b.
  • the light in the blue wavelength band that has passed through the second reflecting dichroic mirror 12b is reflected by the reflecting mirrors 11b and 11c and then enters the blue liquid crystal panel 60c.
  • the liquid crystal panels 60a to 60c for the respective colors modulate the incident light according to the input image signal, and generate the signal light of the image corresponding to RGB.
  • a transmissive liquid crystal element using a high temperature polysilicon TFT Thin Film Transistor
  • the signal light modulated by the liquid crystal panels 60a to 60c is incident on the dichroic prism 70 and synthesized.
  • the dichroic prism 70 is formed in a rectangular parallelepiped shape in which four triangular prisms are combined so as to reflect red signal light and blue signal light and transmit green signal light.
  • the signal light of each color synthesized by the dichroic prism 70 enters the projection lens 80 and is projected as an image on a display surface such as the screen S.
  • the liquid crystal panels 60a to 60c and the dichroic prism 70 function as a light modulation / synthesis system that modulates and combines incident light.
  • the condenser lens 30, the reflective dichroic mirrors 12a and 12b, and the reflective mirrors 11a to 11c function as an illumination optical system that guides light from the light source device 40 to the liquid crystal panels 60a to 60c constituting the light modulation / synthesis system. is there.
  • the projection lens 80 functions as a projection optical system that projects the image emitted from the dichroic prism 70.
  • FIG. 13 is an example of a block diagram illustrating a schematic configuration of the light source device of the second embodiment.
  • the light source device 40 includes an excitation light source 43, a phosphor 44, a blue light source 45, a dichroic mirror 1g, and a polarization conversion unit 46.
  • the excitation light source 43 emits excitation light 47.
  • the phosphor 44 emits non-polarized fluorescence 49 when the excitation light 47 is irradiated.
  • the blue light source 45 emits linearly polarized blue light 48.
  • the dichroic mirror 1 g reflects the excitation light 47 emitted from the excitation light source 43 and irradiates it toward the phosphor 44.
  • the dichroic mirror 1 g transmits the non-polarized fluorescence 49 emitted from the phosphor 44 based on the irradiation of the excitation light 47.
  • the dichroic mirror 1g reflects the linearly polarized blue light 48 emitted from the blue light source 45 in the same direction as the direction through which the non-polarized fluorescence 49 is transmitted.
  • the polarization conversion unit 46 converts the polarization of the non-polarized fluorescence 49 transmitted through the dichroic mirror 1g into the same polarization as the linearly polarized blue light 48.
  • the polarization conversion unit 46 does not convert the polarization of the linearly polarized blue light 48 reflected by the dichroic mirror 1g.
  • the computer program stored in the storage unit (not shown) of the light source device 40 may be provided as a recording medium, or may be provided via a network such as the Internet.
  • the recording medium includes a computer-usable medium or a computer-readable medium and can record or read information using magnetism, light, electronic, electromagnetic, infrared, or the like. Examples of such media include semiconductor memory, semiconductor or solid-state storage devices, magnetic tape, removable computer diskettes, random access memory (RAM (Random Access Memory)), read only memory (ROM (Read Only Memory)). , Magnetic disks, optical disks, magneto-optical disks, and the like.
  • the polarization conversion means includes a transparent member provided with a polarization separation film and a reflection film, and a retardation plate, The light source device according to appendix 1, wherein the linearly polarized blue light is reflected by the polarization separation film and the reflection film and does not pass through the retardation plate.
  • the light source device according to appendix 3 The light source device according to appendix 2, wherein the polarized light of the blue light incident on the polarization separation film is S-polarized light.
  • Appendix 4 4. The light source device according to appendix 2 or 3, wherein the blue light incident on the dichroic mirror is S-polarized light.
  • the dichroic mirror is A first surface that reflects the excitation light emitted from the excitation light source in a direction perpendicular to the incident direction of the excitation light and irradiates the excitation light toward the phosphor; A second surface that transmits non-polarized fluorescence emitted from the phosphor and reflects linearly polarized blue light incident from the blue light source in the same direction as the non-polarized fluorescence is transmitted;
  • the light source device according to any one of appendices 1 to 5, provided with: [Appendix 7] The light source device according to appendix 6, wherein the excitation light source and the blue light source are provided to face each other via the first surface and the second surface of the dichroic mirror.
  • Appendix 8 The light source device according to any one of appendices 1 to 7, wherein a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
  • Appendix 9 9. The light source device according to any one of appendices 1 to 8, wherein a diffusing member that diffuses the linearly polarized blue light is provided between the blue light source and the dichroic mirror.
  • Appendix 10 10. The light source device according to any one of appendices 1 to 9, wherein the fluorescence is yellow light.
  • An excitation light source that emits excitation light; A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and A blue light source that emits linearly polarized blue light; Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source
  • a dichroic mirror that reflects the linearly polarized blue light emitted from the non-polarized fluorescence in the same direction as the transmitted light; Polarization conversion means for converting the polarization of the non-polarized fluorescence transmitted through the dichroic mirror into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror;
  • a projection display device including the light source device.
  • the polarization conversion means includes a transparent member provided with a polarization separation film and a reflection film, and a retardation plate, The projection display device according to appendix 11, wherein the linearly polarized blue light is reflected by the polarization separation film and the reflection film and does not pass through the retardation plate.
  • the projection display device according to appendix 12 wherein the polarized light of the blue light incident on the polarization separation film is S-polarized light.
  • the dichroic mirror is A first surface that reflects the excitation light emitted from the excitation light source in a direction perpendicular to the incident direction of the excitation light and irradiates the excitation light toward the phosphor; A second surface that transmits non-polarized fluorescence emitted from the phosphor and reflects linearly polarized blue light incident from the blue light source in the same direction as the non-polarized fluorescence is transmitted;
  • the projection display device according to any one of appendices 11 to 15, comprising: [Appendix 17] The projection display device according to appendix 16, wherein the excitation light source and the blue light source are provided to face each other through the first surface and the second surface of the dichroic mirror. [Appendix 18] 18.
  • the projection display device according to any one of appendices 11 to 17, wherein a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
  • a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
  • a diffusing member for diffusing the linearly polarized blue light is provided between the blue light source and the dichroic mirror.
  • Appendix 20 20.
  • the projection display device according to any one of appendices 11 to 19, wherein the fluorescence is yellow light.
  • a dichroic mirror that reflects the linearly polarized blue light emitted from the dichroic mirror in the same direction as the non-polarized fluorescence is transmitted, Converting the non-polarized fluorescence polarized light transmitted through the dichroic mirror into the same polarized light as the linearly polarized blue light, and not converting the linearly polarized blue light polarized light reflected by the dichroic mirror.
  • a control method of a projection display device provided.

Abstract

The purpose of the present invention is to efficiently obtain the light amount taking polarization efficiency into account. This invention is provided with: an excitation light source (43) for emitting excitation light; a phosphor (44) for releasing unpolarized fluorescent light when irradiated with the excitation light; a blue light source (45) for emitting linearly polarized blue light; a dichroic mirror (1g) for reflecting the excitation light emitted from the excitation light source and emitting the excitation light towards the phosphor, transmitting the unpolarized fluorescent light released from the phosphor on the basis of emission of the excitation light, and reflecting the linearly polarized blue light emitted from the blue light source in the same direction as that in which the unpolarized fluorescent light is transmitted; and a polarization conversion part (46), which converts the polarization of the unpolarized fluorescent light transmitted through the dichroic mirror to the same polarization as that of the linearly polarized blue light, and which does not convert the polarization of the linearly polarized blue light reflected by the dichroic mirror.

Description

光源装置、光源装置の制御方法、及びプログラム並びに投写型表示装置Light source device, light source device control method, program, and projection display device
 本発明は、光源装置、光源装置の制御方法、及びプログラム並びに投写型表示装置に関し、特に、各々が異なる色の光を出射する複数の光源を備えた光源装置、光源装置の制御方法、及びプログラム並びに投写型表示装置に関する。 The present invention relates to a light source device, a light source device control method, a program, and a projection display device, and more particularly, a light source device including a plurality of light sources each emitting light of a different color, a light source device control method, and a program. The present invention also relates to a projection display device.
 スクリーンに画像を投写する投写型表示装置(以下、プロジェクタともいう。)の投写方式として、液晶方式やDLP(登録商標)方式が知られている。そして、これらの方式を有するプロジェクタの光源として、LED(Light Emitting Diode)やランプに加えて、レーザーを用いる技術が注目されている。特に、レーザーは、ランプと比較して長寿命であり、信頼性が高いことから、ランプに代わる光源として注目されている。 As a projection method of a projection display device (hereinafter also referred to as a projector) that projects an image on a screen, a liquid crystal method or a DLP (registered trademark) method is known. As a light source of a projector having these methods, a technique using a laser in addition to an LED (Light Emitting Diode) and a lamp is attracting attention. In particular, lasers are attracting attention as light sources that replace lamps because they have a longer life than lamps and have high reliability.
 特許文献1には、次の技術が開示されている。光源部から出射された光を、表示画像の端部まで明るさを維持するように第1レンズアレイ及び第2レンズアレイからなるインテグレータレンズを通過させた後に、偏光変換素子、集光レンズを通過させ、波長域毎に分離させている。 Patent Document 1 discloses the following technology. The light emitted from the light source section passes through the integrator lens composed of the first lens array and the second lens array so as to maintain the brightness to the end of the display image, and then passes through the polarization conversion element and the condenser lens. And separated for each wavelength region.
特開2014-186115号公報JP 2014-186115 A
 最近のプロジェクタの中には、光源部において光源LD(Laser Diode)を複数個用いることで、光源LDを、黄色蛍光体の励起光と青色光とに利用するものが提案されている。プロジェクタの投写方式が液晶方式である場合、液晶に対して照射する光を、偏光変換素子を用いて偏光を揃える必要がある。この場合、偏光効率を考慮して、効率的に光量を得ることが求められている。 Some recent projectors use a plurality of light sources LD (Laser Diodes) in the light source section to use the light sources LD for excitation light and blue light of a yellow phosphor. When the projection method of the projector is a liquid crystal method, it is necessary to align the polarization of light irradiated to the liquid crystal using a polarization conversion element. In this case, it is required to efficiently obtain the light amount in consideration of the polarization efficiency.
 特許文献1では、ホイールの表面での青色波長域の光の反射の際に、偏光を回転させる若しくは乱す機能を設けることにより、効率よく第1のダイクロイックミラーで反射することとしている。しかしながら、第1の光源又は第2の光源から出射される光の偏光については何ら考慮されていない。そのため、光源部から出射され光が生成された後に、偏光変換素子を用いて偏光を揃えた場合、効率的に光量を得ることができないという問題がある。 In Patent Document 1, when the light in the blue wavelength region is reflected on the surface of the wheel, a function of rotating or disturbing the polarization is provided so that the light is efficiently reflected by the first dichroic mirror. However, no consideration is given to the polarization of light emitted from the first light source or the second light source. Therefore, there is a problem that the amount of light cannot be obtained efficiently when the polarized light is aligned using the polarization conversion element after the light emitted from the light source unit is generated.
 本発明の目的は、偏光効率を考慮して、効率的に光量を得るという課題を解決可能な光源装置、光源装置の制御方法、及びプログラム並びに投写型表示装置を提供することである。 An object of the present invention is to provide a light source device, a light source device control method, a program, and a projection display device that can solve the problem of efficiently obtaining a light quantity in consideration of polarization efficiency.
 本発明の光源装置は、励起光を照射する励起光源と、前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、直線偏光の青色光を照射する青色光源と、前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換し、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない偏光変換手段と、を備える。 The light source device of the present invention includes an excitation light source that emits excitation light, a phosphor that emits non-polarized fluorescence when irradiated with the excitation light, a blue light source that emits linearly polarized blue light, and the excitation Reflecting the excitation light emitted from a light source and irradiating the phosphor toward the phosphor, transmitting the unpolarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and irradiating from the blue light source The dichroic mirror that reflects the linearly polarized blue light in the same direction as the non-polarized fluorescent light is transmitted, and the non-polarized fluorescent light that has passed through the dichroic mirror is the linearly polarized blue light. Polarization conversion means for converting into the same polarization and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror.
 また、本発明の投写型表示装置は、上記光源装置を備える。 Also, a projection display device of the present invention includes the light source device.
 さらに、本発明の光源装置の制御方法は、励起光を照射する励起光源と、前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、直線偏光の青色光を照射する青色光源と、前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、を備えた光源装置の制御方法であって、前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換する工程と、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない工程と、を備える。 Furthermore, the control method of the light source device of the present invention includes an excitation light source that irradiates excitation light, a phosphor that emits non-polarized fluorescence when irradiated with the excitation light, and a blue color that irradiates linearly polarized blue light. Reflecting the excitation light emitted from the light source and the excitation light source toward the phosphor and transmitting the unpolarized fluorescence emitted from the phosphor based on the irradiation of the excitation light; And a dichroic mirror that reflects the linearly polarized blue light emitted from the blue light source in the same direction as the non-polarized fluorescence is transmitted. Converting the transmitted polarization of the non-polarized fluorescence into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror.
 本発明によれば、偏光効率を考慮して、効率的に光量を得ることができる。 According to the present invention, the amount of light can be obtained efficiently in consideration of the polarization efficiency.
本発明の第1実施形態による光源装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the light source device by 1st Embodiment of this invention. 第1実施形態の蛍光励起光学系に拡散板がない状態で照射される光源像を示す模式図である。It is a schematic diagram which shows the light source image irradiated in the state which does not have a diffusion plate in the fluorescence excitation optical system of 1st Embodiment. 第1実施形態の蛍光励起光学系に拡散板がある状態で照射される光源像を示す模式図である。It is a schematic diagram which shows the light source image irradiated in the state which has a diffusion plate in the fluorescence excitation optical system of 1st Embodiment. 図1に示す光源装置に用いられる蛍光体ホイールの一例を示す模式図である。It is a schematic diagram which shows an example of the phosphor wheel used for the light source device shown in FIG. ダイクロイックミラーのP偏光の分光反射特性を示す特性図である。It is a characteristic view which shows the spectral reflection characteristic of P polarized light of a dichroic mirror. ダイクロイックミラーのS偏光の分光反射特性を示す特性図である。It is a characteristic view which shows the spectral reflection characteristic of S polarization of a dichroic mirror. ダイクロイックミラーの分光透過特性を示す特性図である。It is a characteristic view which shows the spectral transmission characteristic of a dichroic mirror. 光源装置の偏光変換素子の構成を示す模式的ブロック図である。It is a typical block diagram which shows the structure of the polarization conversion element of a light source device. 偏光変換素子の動作を説明するための模式的断面図である。It is a typical sectional view for explaining operation of a polarization conversion element. 偏光変換素子のS偏光入力光に対する分光透過特性を示す特性図である。It is a characteristic view which shows the spectral transmission characteristic with respect to S polarization input light of a polarization conversion element. 偏光変換素子のP偏光入力光に対する分光透過特性を示す特性図である。It is a characteristic view which shows the spectral transmission characteristic with respect to P polarization input light of a polarization conversion element. 第1実施形態による光源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the light source device by 1st Embodiment. 第1実施形態による光源装置を備える投写型表示装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a projection type display apparatus provided with the light source device by 1st Embodiment. 本発明の第2実施形態による光源装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the light source device by 2nd Embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下説明する図における一方向性の矢印は、ある信号(データ)の流れを端的に示したもので、双方向性を排除するものではない。
 (第1実施形態)
 初めに、本発明の第1実施形態による光源装置の概略構成を説明する。
 図1は、第1実施形態による光源装置の構成を示す模式図である。
 図1に示すように、本実施形態による光源装置40は、蛍光励起光学系1と、青色用光路2と、蛍光・青色共通光路3とを有している。
 蛍光励起光学系1は、青色LDアレイ1aと、青色LD用コリメータレンズ1bと、レンズ1c、1d、1eと、拡散板1fと、ダイクロイックミラー1gと、レンズ1h、1iと、蛍光体ホイール1jとを有している。
 青色用光路2は、青色LDアレイ2aと、青色LD用コリメータレンズ2bと、拡散板2cと、レンズ2d、2eとを有している。
 蛍光・青色共通光路3は、レンズ3a、3bと、インテグレータ3c、3dと、偏光変換素子3eとを有している。
Embodiments of the present invention will be described below with reference to the drawings. In addition, the unidirectional arrow in the figure demonstrated below shows the flow of a certain signal (data) simply, and does not exclude bidirectionality.
(First embodiment)
First, a schematic configuration of the light source device according to the first embodiment of the present invention will be described.
FIG. 1 is a schematic diagram illustrating a configuration of a light source device according to the first embodiment.
As shown in FIG. 1, the light source device 40 according to the present embodiment includes a fluorescence excitation optical system 1, a blue light path 2, and a fluorescence / blue common light path 3.
The fluorescence excitation optical system 1 includes a blue LD array 1a, a blue LD collimator lens 1b, lenses 1c, 1d and 1e, a diffusion plate 1f, a dichroic mirror 1g, lenses 1h and 1i, and a phosphor wheel 1j. have.
The blue optical path 2 includes a blue LD array 2a, a blue LD collimator lens 2b, a diffusion plate 2c, and lenses 2d and 2e.
The fluorescence / blue common optical path 3 includes lenses 3a and 3b, integrators 3c and 3d, and a polarization conversion element 3e.
 本実施形態による光源装置40を形成する蛍光励起光学系1、青色用光路2、及び蛍光・青色共通光路3を構成する各要素について以下説明する。
 蛍光励起光学系1の青色LDアレイ1aは、励起光源がアレイ状に配置されている。青色LD用コリメータレンズ1bは、光源である青色LDアレイ1aから照射された光線が焦点において平行光となるよう収差補正する。レンズ1c、1d、1eは、青色LD用コリメータレンズ1bで平行光に収差補正された励起光を集光する。拡散板1fは、レンズ1c、1d、1eで集光された励起光を拡散する。ダイクロイックミラー1gは、拡散板1fで拡散された励起光を蛍光体ホイール1jの方向に反射する。レンズ1h、1iは、ダイクロイックミラー1gで反射された励起光を蛍光体ホイール1jに集光する。また、レンズ1h、1iは、蛍光体ホイール1jから放出された黄色蛍光をダイクロイックミラー1gに入射する。蛍光体ホイール1jは、励起光で励起されると黄色蛍光を放出する黄色蛍光体領域が環状に形成された円盤状のホイールである。蛍光体ホイール1jの構成については後述する。
The elements constituting the fluorescence excitation optical system 1, the blue light path 2, and the fluorescence / blue common light path 3 forming the light source device 40 according to the present embodiment will be described below.
The blue LD array 1a of the fluorescence excitation optical system 1 has excitation light sources arranged in an array. The blue LD collimator lens 1b corrects the aberration so that the light beam emitted from the blue LD array 1a as the light source becomes parallel light at the focal point. The lenses 1c, 1d, and 1e collect the excitation light that has been aberration-corrected into parallel light by the blue LD collimator lens 1b. The diffusion plate 1f diffuses the excitation light collected by the lenses 1c, 1d, and 1e. The dichroic mirror 1g reflects the excitation light diffused by the diffusion plate 1f in the direction of the phosphor wheel 1j. The lenses 1h and 1i collect the excitation light reflected by the dichroic mirror 1g on the phosphor wheel 1j. In addition, the lenses 1h and 1i make yellow fluorescence emitted from the phosphor wheel 1j incident on the dichroic mirror 1g. The phosphor wheel 1j is a disk-shaped wheel in which a yellow phosphor region that emits yellow fluorescence when excited by excitation light is formed in an annular shape. The configuration of the phosphor wheel 1j will be described later.
 青色用光路2の青色LDアレイ2aは、青色用の光源がアレイ状に配置されている。青色LD用コリメータレンズ2bは、光源である青色LDアレイ2aから照射された光線が焦点において平行光となるよう収差補正する。拡散板2cは、青色LD用コリメータレンズ2bで収差補正された青色LD光を拡散する。レンズ2d、2eは、拡散板2cで拡散された青色LD光を集光する。ダイクロイックミラー1gは、レンズ2d、2eで集光された青色LD光を、蛍光・青色共通光路3の方向に反射する。
 蛍光・青色共通光路3のダイクロイックミラー1gは、蛍光体ホイール1jから放出された黄色蛍光と蛍光・青色共通光路3の方向に反射された青色LD光とを合成する。レンズ3a、3bは、合成された黄色蛍光と青色LD光とを集光する。インテグレータ3c、3dは、レンズ3a、3bで集光された黄色蛍光と青色LD光との合成光の光束の光強度を均一化する。偏光変換素子3eは、インテグレータ3c、3dで光束の光強度が均一性された黄色蛍光と青色LD光との合成光の偏光を、一定の偏光方向に揃える。この偏光変換素子3eについては、後述する。
The blue LD array 2a in the blue light path 2 has blue light sources arranged in an array. The blue LD collimator lens 2b corrects the aberration so that the light beam emitted from the blue LD array 2a as the light source becomes parallel light at the focal point. The diffusion plate 2c diffuses the blue LD light whose aberration is corrected by the blue LD collimator lens 2b. The lenses 2d and 2e collect the blue LD light diffused by the diffusion plate 2c. The dichroic mirror 1 g reflects the blue LD light collected by the lenses 2 d and 2 e in the direction of the fluorescence / blue common optical path 3.
The dichroic mirror 1 g in the fluorescence / blue common optical path 3 synthesizes the yellow fluorescence emitted from the phosphor wheel 1 j and the blue LD light reflected in the direction of the fluorescence / blue common optical path 3. The lenses 3a and 3b collect the synthesized yellow fluorescence and blue LD light. The integrators 3c and 3d make the light intensity of the combined light of the yellow fluorescent light and the blue LD light collected by the lenses 3a and 3b uniform. The polarization conversion element 3e aligns the polarization of the combined light of the yellow fluorescent light and the blue LD light whose light intensity is uniform by the integrators 3c and 3d in a certain polarization direction. The polarization conversion element 3e will be described later.
 次に、本実施形態による光源装置の光学系の動作について具体的に説明する。蛍光励起光学系1において、青色LD(励起光源)をアレイ状に配置した青色LDアレイ1aから出射される光線の偏光は、図1の紙面に対して垂直な直線偏光である。青色LDアレイ1aから出射される光線の偏光が、図1の紙面に対して垂直な直線偏光である理由は後述する。青色LDアレイ1aから出射される光線を蛍光励起光学系1の光路の蛍光体ホイール1jに集光させる場合、励起光の照射による蛍光体ホイール1jの温度上昇を抑制する必要がある。このため、拡散板1fを用いることで蛍光体ホイール1jに照射される励起光の強度分布を均一な状態にする。この点について図2を参照して説明する。図2Aは、蛍光体ホイール上に拡散板がない状態で照射される光源像を示す模式図であり、図2Bは、蛍光体ホイール上に拡散板がある状態で照射される光源像を示す模式図である。
 図2Aに示すような光源像が一点に集中するような照射状態を避け、拡散板1fを介することで、図2Bに示すように光源像がある程度幅をもった集光形状になるようにする。なお、拡散板1fと同様の効果を得るために、均一な光強度分布のレーザービームをつくる光学素子であるホモジナイザー、ライトトンネル、ロッドインテグレータなどで代用することも可能である。
Next, the operation of the optical system of the light source device according to the present embodiment will be specifically described. In the fluorescence excitation optical system 1, the polarization of the light beam emitted from the blue LD array 1a in which blue LDs (excitation light sources) are arranged in an array is linear polarization perpendicular to the paper surface of FIG. The reason why the light beam emitted from the blue LD array 1a is linearly polarized light perpendicular to the paper surface of FIG. 1 will be described later. When the light beam emitted from the blue LD array 1a is condensed on the phosphor wheel 1j in the optical path of the fluorescence excitation optical system 1, it is necessary to suppress the temperature rise of the phosphor wheel 1j due to the irradiation of the excitation light. For this reason, the intensity distribution of the excitation light irradiated to the phosphor wheel 1j is made uniform by using the diffusion plate 1f. This point will be described with reference to FIG. FIG. 2A is a schematic diagram illustrating a light source image irradiated with no diffusion plate on the phosphor wheel, and FIG. 2B is a schematic diagram illustrating a light source image irradiated with a diffusion plate on the phosphor wheel. FIG.
By avoiding the irradiation state where the light source image as shown in FIG. 2A is concentrated at one point and through the diffuser plate 1f, the light source image has a condensing shape with a certain width as shown in FIG. 2B. . In order to obtain the same effect as that of the diffusing plate 1f, a homogenizer, a light tunnel, a rod integrator, or the like, which is an optical element that generates a laser beam with a uniform light intensity distribution, can be substituted.
 青色LDアレイ1aから出射されたレーザー光は、青色LD用コリメータレンズ1bを通ることで平行光になる。コリメータレンズ1bを通ることで平行になった励起光は、レンズ群1c、1d、1eを用いることで集光される。レンズ群1c、1d、1eで集光された励起光は、上記した拡散板1fを用いることで拡散される。そして、拡散された励起光は、ダイクロイックミラー1gを用いることで蛍光体ホイール1jの方向に反射される。ダイクロイックミラー1gは、青色光を反射し、黄色光を透過する特性を有している。 The laser light emitted from the blue LD array 1a becomes parallel light by passing through the blue LD collimator lens 1b. The excitation light that has become parallel by passing through the collimator lens 1b is collected by using the lens groups 1c, 1d, and 1e. The excitation light condensed by the lens groups 1c, 1d, and 1e is diffused by using the diffusion plate 1f described above. The diffused excitation light is reflected in the direction of the phosphor wheel 1j by using the dichroic mirror 1g. The dichroic mirror 1g has a characteristic of reflecting blue light and transmitting yellow light.
 本実施形態では、青色LDアレイ1aから蛍光体ホイール1jまでの間に配置されるレンズ等の取り付け誤差を吸収するため、レンズ1eに調整機構を設けることとしている。また、機構制約上の問題がない場合には、蛍光体ホイール1jの光軸方向にも調整機構を設けることが好ましい。レンズ1eの調整機構を用いることで、蛍光体ホイール1jから放出される黄色蛍光の発光位置を調整することができる。また、蛍光体ホイール1jの光軸方向に設けられた調整機構を用いることで、蛍光体ホイール1jから放出される黄色蛍光の光量を調整することもできる。これにより、安定的かつ高効率の光源装置を得ることができる。 In the present embodiment, an adjustment mechanism is provided in the lens 1e in order to absorb an attachment error of a lens or the like disposed between the blue LD array 1a and the phosphor wheel 1j. In addition, when there is no problem in terms of mechanism restrictions, it is preferable to provide an adjustment mechanism also in the optical axis direction of the phosphor wheel 1j. By using the adjustment mechanism of the lens 1e, the light emission position of yellow fluorescence emitted from the phosphor wheel 1j can be adjusted. Further, the amount of yellow fluorescent light emitted from the phosphor wheel 1j can be adjusted by using an adjusting mechanism provided in the optical axis direction of the phosphor wheel 1j. Thereby, a stable and highly efficient light source device can be obtained.
 青色LDアレイ1aから出射されたレーザー光は、図示しない蛍光体ホイール用コリメートレンズを通って蛍光体ホイール1jに集光される。ここで、蛍光体ホイール1jについて図3を参照しつつ説明する。図3は、図1に示す光源装置に用いられる蛍光体ホイールの一例を示す模式図である。
 蛍光体ホイール1jは、回転面に垂直な方向から見た場合、中空円盤状の形状を有している。そして、環状に黄色蛍光体6の領域が形成されている。蛍光体ホイール1jのモーター軸7の中心は、図示しないモーターの回転軸に取り付けられている。蛍光体ホイール1jは、図示しないモーターの回転軸が取り付けられているモーター軸7の中心を回転軸として回転する。蛍光体ホイール1jが回転することで、黄色蛍光体6の領域に励起光が照射されることによって生じる温度上昇を緩和することができる。蛍光体ホイール1jが十分な冷却機能を備えている場合には、蛍光体ホイール1jを回転させなくてもよい。
The laser beam emitted from the blue LD array 1a is condensed on the phosphor wheel 1j through a phosphor wheel collimator lens (not shown). Here, the phosphor wheel 1j will be described with reference to FIG. FIG. 3 is a schematic diagram showing an example of a phosphor wheel used in the light source device shown in FIG.
The phosphor wheel 1j has a hollow disk shape when viewed from a direction perpendicular to the rotation surface. And the area | region of the yellow fluorescent substance 6 is formed cyclically | annularly. The center of the motor shaft 7 of the phosphor wheel 1j is attached to a rotation shaft of a motor (not shown). The phosphor wheel 1j rotates about the center of the motor shaft 7 to which the rotation shaft of a motor (not shown) is attached. By rotating the phosphor wheel 1j, it is possible to mitigate the temperature rise caused by the excitation light being applied to the region of the yellow phosphor 6. When the phosphor wheel 1j has a sufficient cooling function, the phosphor wheel 1j may not be rotated.
 励起光が蛍光体ホイール1jに入射し、かつ、黄色蛍光体6の領域に入射すると、蛍光体ホイール1jから黄色蛍光が放出される。黄色蛍光は、レンズ1i、1hを通り、ダイクロイックミラー1gに入射される。蛍光体ホイール1jから放出される黄色蛍光は、理想的な拡散反射性質を有するランバート拡散光である。ランバード拡散光は、偏光特性のない自然光である。ここで、光学素子等への入射面に対して垂直な偏光であるS偏光の方が光学素子等への入射面に対して平行な偏光であるP偏光よりも反射特性及び角度依存性が良いという偏光上の特性を利用する。この点について図4及び図5を用いて説明する。図4は、ダイクロイックミラーのP偏光の分光反射特性を示し、図5は、ダイクロイックミラーのS偏光の分光反射特性を示している。
 図4と図5とを比較すると、青色波長域である420nmから500nmの範囲において、P偏光よりもS偏光のほうが、反射率が100%に近いことがわかる。
 そして、黄色蛍光の波長である570nmから590nmの範囲におけるダイクロイックミラー1gの透過率は、図6に示すように略100%である。図6は、ダイクロイックミラーの分光透過特性を示している。
 したがって、黄色蛍光はダイクロイックミラー1gを透過して、レンズ3a、3bを用いて集光される。その後、黄色蛍光は、インテグレータ3c、3dにおいて光束の光強度が均一化され、偏光変換素子3eに入射される。
When the excitation light enters the phosphor wheel 1j and enters the yellow phosphor 6 region, yellow fluorescence is emitted from the phosphor wheel 1j. The yellow fluorescent light passes through the lenses 1i and 1h and enters the dichroic mirror 1g. The yellow fluorescence emitted from the phosphor wheel 1j is Lambert diffused light having ideal diffuse reflection properties. Lumbard diffused light is natural light with no polarization characteristics. Here, S-polarized light, which is polarized light perpendicular to the plane of incidence on the optical element, has better reflection characteristics and angle dependency than P-polarized light, which is polarized parallel to the plane of incidence on the optical element. The polarization characteristic is used. This point will be described with reference to FIGS. 4 shows the P-polarized spectral reflection characteristic of the dichroic mirror, and FIG. 5 shows the S-polarized spectral reflection characteristic of the dichroic mirror.
Comparing FIG. 4 and FIG. 5, it can be seen that the reflectance of S-polarized light is closer to 100% than that of P-polarized light in the blue wavelength range of 420 nm to 500 nm.
The transmittance of the dichroic mirror 1g in the range of 570 nm to 590 nm, which is the wavelength of yellow fluorescence, is approximately 100% as shown in FIG. FIG. 6 shows the spectral transmission characteristics of the dichroic mirror.
Accordingly, the yellow fluorescent light is transmitted through the dichroic mirror 1g and condensed using the lenses 3a and 3b. Thereafter, the yellow fluorescent light is made uniform in the light intensity of the light flux in the integrators 3c and 3d and is incident on the polarization conversion element 3e.
 一方、青色用光路2において、青色LDをアレイ状に配置した青色LDアレイ2aから出射される光線の偏光も、上記図4及び図5で説明したように、S偏光の方がP偏光よりも反射特性及び角度依存性が良いという偏光上の特性を利用して、図1の紙面に対して垂直な直線偏光である。また、青色LDアレイ2aから出射される光線は、(1)ダイクロイックミラー1gに対してS偏光として入射し、反射されるものである。さらに、青色LDアレイ2aから出射される光線は、(2)偏光変換素子3eの後述する偏光分離膜51に対してもS偏光として入射し、反射されるものである。
 青色用光路2の専用部品である拡散板2c、レンズ2d、2eは、使用する青色LDの波長領域(周波数帯域)において、S偏光に特化したコーティングを施すことで、青色LDを効率よく放出することができる。コーティングの一例としては、アンチリフレクション(AR)フィルムなどが挙げられる。
 青色用光路2において、青色LDの光線をそのまま放出することは、コヒーレント光(位相が揃っている光)が直接外部に照射されることになる。そうすると、人体の目などに影響を及ぼす可能性があり安全面において問題がある。また、青色LDがランダムな媒質によって散乱されることで生じる明暗の斑点模様(スペックル)が発生すると共に、スペックルの斑が大きくなると、プロジェクタの画質に影響を与えかねない。
On the other hand, in the blue optical path 2, the polarization of the light emitted from the blue LD array 2a in which the blue LDs are arranged in an array is also the same for the S-polarized light than the P-polarized light, as described above with reference to FIGS. It is linearly polarized light perpendicular to the paper surface of FIG. 1 by utilizing the property on polarization that the reflection property and the angle dependency are good. The light emitted from the blue LD array 2a is (1) incident as s-polarized light on the dichroic mirror 1g and reflected. Further, the light beam emitted from the blue LD array 2a is incident and reflected as S-polarized light on a polarization separation film 51 (2) of the polarization conversion element 3e described later.
Diffusion plate 2c and lenses 2d and 2e, which are dedicated parts for blue optical path 2, emit blue LD efficiently by applying a coating specialized for S-polarized light in the wavelength region (frequency band) of blue LD used. can do. An example of the coating includes an anti-reflection (AR) film.
In the blue light path 2, emitting the light beam of the blue LD as it is is that the coherent light (light having the same phase) is directly irradiated to the outside. If it does so, it may affect a human eye etc., and there is a problem in safety. In addition, when the blue LD is scattered by a random medium, a bright and dark speckle pattern (speckle) is generated, and when speckle spots become large, the image quality of the projector may be affected.
 これらの問題を解決するため、青色用光路2に拡散板2cを配置して、空間的にコヒーレント性を緩和して安全性を確保すると共に、スペックルの斑を改善する。なお、蛍光・青色共通光路3に拡散板を配置することは、蛍光体ホイール1jから放出される黄色蛍光の光量を低下させることに繋がる。したがって、拡散板2cは、青色LDアレイ2aとダイクロイックミラー1gとの間に配置されることが好ましい。なお、プロジェクタに要求される画質に応じて、拡散板2cを複数枚配置したり、拡散板2cを振動させたり回転させたりすることで物理的に動かすことを行って、上記したコヒーレント性を緩和するようにしてもよい。本実施形態では、青色LDアレイ2aからレンズ3bまでの間に配置される部材の取り付け誤差を吸収するため、青色LD用コリメータレンズ2dに調整機構を設けることとしている。
 このように、蛍光励起光学系1と青色用光路2とのそれぞれの光路に調整機構を設けることで、光線を効率的に伝送すると共に、蛍光励起光学系1と青色用光路2との間の光路差によって生じる輝度斑を緩和することができる。
In order to solve these problems, a diffuser plate 2c is disposed in the blue optical path 2 to spatially relieve coherency and ensure safety, and to improve speckle spots. In addition, disposing a diffusion plate in the fluorescence / blue common optical path 3 leads to a reduction in the amount of yellow fluorescence emitted from the phosphor wheel 1j. Therefore, the diffusing plate 2c is preferably disposed between the blue LD array 2a and the dichroic mirror 1g. Depending on the image quality required for the projector, a plurality of diffusion plates 2c are arranged, or the diffusion plate 2c is physically moved by vibrating or rotating to reduce the coherency. You may make it do. In the present embodiment, an adjustment mechanism is provided in the blue LD collimator lens 2d in order to absorb attachment errors of members disposed between the blue LD array 2a and the lens 3b.
Thus, by providing an adjustment mechanism in each optical path of the fluorescence excitation optical system 1 and the blue light path 2, the light beam is efficiently transmitted, and between the fluorescence excitation optical system 1 and the blue light path 2. Luminance spots caused by the optical path difference can be reduced.
 次に、偏光変換素子について、図7及び図8を用いて説明する。
 まず、光源装置の偏光変換素子の構成について図7を参照して説明する。図7は、光源装置の偏光変換素子の構成を示す模式的ブロック図である。図7に示す光源装置40は、発光素子41と、コリメータレンズ42と、偏光変換素子3eとを有する。偏光変換素子3eは、偏光分離膜51と反射膜52とが設けられた透明部材53と、λ/2位相差板56とを有する。
 発光素子41は無偏光の光(101)を発光する。コリメータレンズ42は発光素子41からの光をなるべく平行にする。透明部材53にはコリメータレンズ42からの無偏光な光(101)が入射して、偏光分離膜51において直進するP偏光光(102)と直交方向に反射されるS偏光光(103)とに分離される。このS偏光光(103)は、反射膜52によって光路を曲げられ、進行方向がP偏光光(102)と平行になる。透明部材53の偏光分離膜51を透過したP偏光光(102)は、λ/2位相差板56によって偏光方向を90°回転させられ、透明部材53の反射膜52から射出したS偏光光(103)と同じ偏光方向のS偏光光(103)となる。すなわち、発光素子41から発光された無偏光の光(101)は、偏光変換素子3eを用いてS偏光の直線偏光光(103)に揃えられる。図7に示す偏光変換素子3eを多数並べることで、より明るい光源装置40を構成することができる。
Next, the polarization conversion element will be described with reference to FIGS.
First, the configuration of the polarization conversion element of the light source device will be described with reference to FIG. FIG. 7 is a schematic block diagram illustrating the configuration of the polarization conversion element of the light source device. The light source device 40 illustrated in FIG. 7 includes a light emitting element 41, a collimator lens 42, and a polarization conversion element 3e. The polarization conversion element 3e includes a transparent member 53 provided with a polarization separation film 51 and a reflection film 52, and a λ / 2 phase difference plate 56.
The light emitting element 41 emits non-polarized light (101). The collimator lens 42 collimates the light from the light emitting element 41 as much as possible. Non-polarized light (101) from the collimator lens 42 enters the transparent member 53, and is converted into P-polarized light (102) traveling straight in the polarization separation film 51 and S-polarized light (103) reflected in the orthogonal direction. To be separated. The optical path of the S-polarized light (103) is bent by the reflective film 52, and the traveling direction becomes parallel to the P-polarized light (102). The P-polarized light (102) transmitted through the polarization separation film 51 of the transparent member 53 is rotated by 90 ° by the λ / 2 phase difference plate 56, and the S-polarized light emitted from the reflective film 52 of the transparent member 53 ( 103) and S-polarized light (103) having the same polarization direction. That is, the non-polarized light (101) emitted from the light emitting element 41 is aligned with the S-polarized linearly polarized light (103) using the polarization conversion element 3e. By arranging a large number of polarization conversion elements 3e shown in FIG. 7, a brighter light source device 40 can be configured.
 図8は、偏光変換素子の動作を説明するための模式的断面図である。偏光変換素子3eは、図8に示すように、複数の偏光分離膜51と複数の反射膜52と、偏光分離膜51及び反射膜52が形成され長方形の平板状に構成された透明部材53と、λ/2位相差膜が設けられた複数のλ/2位相差板56とを有する。
 偏光分離膜51と反射膜52とは1組となっており、偏光分離膜51は、入射光に対して傾斜して配置され、入射光束を2種類の直線偏光光束に分離する。反射膜52は偏光分離膜51の反射光側に平行に配置され、偏光分離膜51で分離されて反射された一方の偏光光束を反射する。
 λ/2位相差板56のλ/2位相差膜は、透明部材53の光束出射側に設けられ、何れか一方の偏光光束の偏光軸を変換し、他方の偏光光束の偏光軸と揃える。
FIG. 8 is a schematic cross-sectional view for explaining the operation of the polarization conversion element. As shown in FIG. 8, the polarization conversion element 3 e includes a plurality of polarization separation films 51, a plurality of reflection films 52, and a transparent member 53 that is formed in a rectangular flat plate shape with the polarization separation films 51 and the reflection films 52 formed thereon. , And a plurality of λ / 2 retardation films 56 provided with a λ / 2 retardation film.
The polarization separation film 51 and the reflection film 52 form one set, and the polarization separation film 51 is arranged to be inclined with respect to the incident light, and separates the incident light beam into two types of linearly polarized light beams. The reflection film 52 is arranged in parallel to the reflected light side of the polarization separation film 51 and reflects one polarized light beam separated and reflected by the polarization separation film 51.
The λ / 2 retardation film of the λ / 2 retardation film 56 is provided on the light beam exit side of the transparent member 53, converts the polarization axis of one of the polarized light beams, and aligns it with the polarization axis of the other polarized light beam.
 偏光変換素子3eにおいては、それぞれの偏光分離膜51及び反射膜52が偏光変換素子3eの中心線の両側で互いの偏光分離膜51と反射膜52とが対称の位置になるように配置されている。
 図8において、入射光として平行化された光源からの非偏光光の光束が、偏光変換素子3eの入射面4側から入射し、偏光分離膜51に到達する。この場合、偏光分離膜51ではP偏光の直線偏光光束が透過し、S偏光の直線偏光光束が反射される構成となっている。偏光分離膜51で反射されたS偏光は、反射膜52によって光路を曲げられ、進行方向がP偏光と平行になる。偏光分離膜51を透過したP偏光の直線偏光光束は、λ/2位相差板56を通ることでS偏光に変換される。すなわち、入射面4から入射された非偏光光は、偏光変換素子3eを用いてS偏光の直線偏光光に揃えられる。
In the polarization conversion element 3e, the polarization separation films 51 and the reflection films 52 are arranged so that the polarization separation films 51 and the reflection films 52 are symmetrically positioned on both sides of the center line of the polarization conversion element 3e. Yes.
In FIG. 8, a light beam of non-polarized light from a light source collimated as incident light enters from the incident surface 4 side of the polarization conversion element 3e and reaches the polarization separation film 51. In this case, the polarization separation film 51 is configured to transmit the P-polarized linearly polarized light beam and reflect the S-polarized linearly polarized light beam. The optical path of the S-polarized light reflected by the polarization separation film 51 is bent by the reflective film 52, and the traveling direction becomes parallel to the P-polarized light. The P-polarized linearly polarized light beam transmitted through the polarization separation film 51 is converted into S-polarized light by passing through the λ / 2 phase difference plate 56. That is, the unpolarized light incident from the incident surface 4 is aligned with the S-polarized linearly polarized light using the polarization conversion element 3e.
 図1に戻り、ダイクロイックミラー1gで反射された青色LDは、蛍光体ホイール1jから放出されダイクロイックミラー1gを透過した黄色蛍光と合成される。以下、この合成された光を、合成光ともいう。
 光源である青色LDアレイ2aから照射された青色LDの光線の偏光は、図1の紙面に対して垂直な直線偏光である。そして、青色LDの光線は、ダイクロイックミラー1gに対してS偏光として入射し、ダイクロイックミラー1gにおいてS偏光で反射される。そして、ダイクロイックミラー1gで反射された青色LDは、蛍光・青色共通光路3の方向にS偏光の状態でレンズ3a、レンズ3b及びインテグレータ3c、3dに入射する。
 青色LDは、レンズ3a、3bを用いて集光され、その後、インテグレータ3c、3dにおいて光束の光強度が均一化され、偏光変換素子3eに入射される。そして、青色LDは、偏光変換素子3eを構成する偏光分離膜51に対してS偏光として入射し、反射される。さらに、青色LDは、偏光変換素子3eを構成する偏光分離膜51で反射された後、偏光変換素子3eを構成する反射膜52でさらに反射される。このとき、青色LDの偏光は変換されず、S偏光の状態を維持する。
 一方、黄色蛍光は、偏光変換素子3eを構成する偏光分離膜51に対して、S偏光の成分とP偏光の成分とのどちらも有する偏光光として入射する。黄色蛍光のうち、S偏光の成分は、青色LDと同様に偏光は変換されず、S偏光の状態を維持する。黄色蛍光のうち、P偏光の成分は、偏光分離膜51を透過し、偏光変換素子3eを構成するλ/2位相差板56で偏光が変換される。すなわち、黄色蛍光のうち、P偏光の成分は、S偏光に偏光変換される。
 その結果、偏光変換素子3eから出射される青色LD及び黄色蛍光の偏光は、スペクトル全域にわたって同じ直線偏光(S偏光)となる。
Returning to FIG. 1, the blue LD reflected by the dichroic mirror 1g is combined with the yellow fluorescence emitted from the phosphor wheel 1j and transmitted through the dichroic mirror 1g. Hereinafter, the synthesized light is also referred to as synthesized light.
The polarization of the light beam of the blue LD emitted from the blue LD array 2a as the light source is linearly polarized light perpendicular to the paper surface of FIG. The blue LD light beam is incident on the dichroic mirror 1g as S-polarized light, and is reflected by the dichroic mirror 1g with S-polarized light. Then, the blue LD reflected by the dichroic mirror 1g enters the lens 3a, the lens 3b, and the integrators 3c and 3d in the S-polarized state in the direction of the fluorescence / blue common optical path 3.
The blue LD is condensed using the lenses 3a and 3b, and then the light intensity of the light beam is made uniform in the integrators 3c and 3d, and is incident on the polarization conversion element 3e. Then, the blue LD is incident on the polarization separation film 51 constituting the polarization conversion element 3e as S-polarized light and reflected. Further, the blue LD is reflected by the polarization separation film 51 constituting the polarization conversion element 3e, and further reflected by the reflection film 52 constituting the polarization conversion element 3e. At this time, the polarization of the blue LD is not converted, and the state of S polarization is maintained.
On the other hand, yellow fluorescence is incident on the polarization separation film 51 constituting the polarization conversion element 3e as polarized light having both an S-polarized component and a P-polarized component. Of the yellow fluorescence, the S-polarized component is not converted in polarization as in the case of the blue LD, and maintains the S-polarized state. Among the yellow fluorescent light, the P-polarized component is transmitted through the polarization separation film 51, and the polarized light is converted by the λ / 2 phase difference plate 56 constituting the polarization conversion element 3e. That is, the P-polarized component of the yellow fluorescence is polarized and converted to S-polarized light.
As a result, the blue LD and yellow fluorescence polarized light emitted from the polarization conversion element 3e become the same linearly polarized light (S-polarized light) over the entire spectrum.
 このように、偏光変換素子3eの偏光分離膜51に入射する青色LDの偏光は、少なくともS偏光であることが好ましい。例えば、偏光変換素子3eの偏光分離膜51に入射する青色LDの偏光がP偏光であったとすると、偏光分離膜51を透過する際の偏光分離膜51による青色LDの吸収により、光量の損失が発生する。また、λ/2位相差板56を透過する際にも光量の損失は発生する。そのため、青色LDの偏光をS偏光とした方が、偏光変換素子3eによる損失が低く、伝送効率の高い光源装置を実現することができる。
 また、角度依存性についてもS偏光の方が有利であるので、青色LDの光線が、偏光変換素子3eの偏光分離膜51に対してもS偏光として入射し、反射されるように配置することで、より伝送効率の高い光源装置を得ることができる。青色用光路2には拡散板2cが設けられているので、入射角度として、数度から十数度程度の幅を有している。ここで、図9及び図10を用いて、偏光変換素子のS偏光とP偏光とにおける分光透過特性について説明する。図9は、偏光変換素子のS偏光入力光に対する分光透過特性である。図10は、偏光変換素子のP偏光入力光に対する分光透過特性である。
 図9及び図10に示すように、P偏光よりもS偏光の方が、青色LDの波長領域(420nmから500nmの範囲)及び黄色蛍光の波長領域(570nmから590nmの範囲)において、透過率が90%を超えていることが分かる。したがって、光線が、偏光変換素子3eの偏光分離膜51に対してP偏光として入射すると、偏光変換素子3eの角度依存性の影響を受けてしまう。そのため、偏光変換素子3eの偏光分離膜51に対してS偏光として入射させる方がより伝送効率の高い光源装置を得ることができる。
Thus, it is preferable that the polarized light of the blue LD incident on the polarization separation film 51 of the polarization conversion element 3e is at least S-polarized light. For example, if the polarization of the blue LD incident on the polarization separation film 51 of the polarization conversion element 3e is P-polarization, the loss of light amount is caused by the absorption of the blue LD by the polarization separation film 51 when passing through the polarization separation film 51. appear. Further, a loss of light amount occurs when the light passes through the λ / 2 phase difference plate 56. Therefore, when the polarization of the blue LD is S-polarized light, a light source device with low transmission loss and high transmission efficiency can be realized.
Further, since the S-polarized light is more advantageous in terms of the angle dependency, the blue LD light beam is also incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light and is reflected. Thus, a light source device with higher transmission efficiency can be obtained. Since the diffusing plate 2c is provided in the blue optical path 2, the incident angle has a width of about several degrees to several tens of degrees. Here, the spectral transmission characteristics of the S-polarized light and the P-polarized light of the polarization conversion element will be described with reference to FIGS. 9 and 10. FIG. 9 shows spectral transmission characteristics of the polarization conversion element with respect to S-polarized input light. FIG. 10 shows spectral transmission characteristics of the polarization conversion element with respect to P-polarized input light.
As shown in FIGS. 9 and 10, the transmittance of S-polarized light is higher than that of P-polarized light in the wavelength region of blue LD (in the range of 420 nm to 500 nm) and in the wavelength region of yellow fluorescence (in the range of 570 nm to 590 nm). It can be seen that it exceeds 90%. Therefore, when a light beam is incident as P-polarized light on the polarization separation film 51 of the polarization conversion element 3e, it is affected by the angle dependency of the polarization conversion element 3e. Therefore, a light source device with higher transmission efficiency can be obtained by making it incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light.
 次に、第1実施形態による光源装置の動作について説明する。図11は、第1実施形態による光源装置の動作を示すフローチャートである。
 ステップS121の処理において、蛍光励起光学系1の青色LDアレイ1aは、励起光を照射する。青色用光路2の青色LDアレイ2aは、ダイクロイックミラー1gの入射面に対して、図1の紙面に対して垂直な直線偏光である青色LDを照射する。
 ステップS122の処理において、ダイクロイックミラー1gは、励起光を蛍光体ホイール1jの方向に反射する。ダイクロイックミラー1gは、蛍光体ホイール1jから放出された黄色蛍光を透過する。ダイクロイックミラー1gは、ダイクロイックミラー1gの入射面に対してS偏光として入射した青色LDを、黄色蛍光が透過された方向と同一方向に反射する。
 ステップS123の処理において、黄色蛍光と青色LDとは、レンズ3a、3bで集光され、インテグレータ3c、3dで、光束の光強度が均一化される。
 ステップS124の処理において、偏光変換素子3eは、偏光変換素子3eを構成する偏光分離膜51の入射面に対してS偏光として入射した青色LDを偏光分離膜51で反射し、反射膜52で反射する。偏光変換素子3eは、黄色蛍光のS偏光の成分を偏光分離膜51で反射し、反射膜52で反射する。黄色蛍光のP偏光の成分は、偏光変換膜51を透過し、λ/2位相差板56でS偏光に変換される。
 ステップS125の処理において、S偏光の青色LDと、S偏光の黄色蛍光とが、偏光変換素子3eから出力され、処理を終了する。
Next, the operation of the light source device according to the first embodiment will be described. FIG. 11 is a flowchart showing the operation of the light source device according to the first embodiment.
In the process of step S121, the blue LD array 1a of the fluorescence excitation optical system 1 emits excitation light. The blue LD array 2a in the blue optical path 2 irradiates the incident surface of the dichroic mirror 1g with blue LD that is linearly polarized light perpendicular to the paper surface of FIG.
In the process of step S122, the dichroic mirror 1g reflects the excitation light in the direction of the phosphor wheel 1j. The dichroic mirror 1g transmits yellow fluorescence emitted from the phosphor wheel 1j. The dichroic mirror 1g reflects the blue LD incident as S-polarized light on the incident surface of the dichroic mirror 1g in the same direction as the direction in which the yellow fluorescence is transmitted.
In the process of step S123, the yellow fluorescent light and the blue LD are collected by the lenses 3a and 3b, and the light intensity of the light beam is made uniform by the integrators 3c and 3d.
In the process of step S124, the polarization conversion element 3e reflects the blue LD incident as S-polarized light on the incident surface of the polarization separation film 51 constituting the polarization conversion element 3e by the polarization separation film 51 and reflects it by the reflection film 52. To do. The polarization conversion element 3 e reflects the S-polarized component of yellow fluorescence by the polarization separation film 51 and reflects it by the reflection film 52. The P-polarized component of yellow fluorescence is transmitted through the polarization conversion film 51 and converted into S-polarized light by the λ / 2 phase difference plate 56.
In the process of step S125, S-polarized blue LD and S-polarized yellow fluorescence are output from the polarization conversion element 3e, and the process ends.
 このように、本実施形態では、光源装置の構成として、励起用の光源と青色用の光源とを別個に設けている。そして、少なくとも青色用の光源から出射される光線の偏光を、図1の紙面に対して垂直な直線偏光としている。また、青色用の光源から出射される光線はダイクロイックミラー1gに対してS偏光として入射し、反射される。さらに、偏光変換素子3eの偏光分離膜51に対してもS偏光として入射し、反射される。すなわち、P偏光よりも反射特性及び角度特性がよいS偏光を使用している。
 これにより、偏光効率を考慮して、効率的に光量を得ることができると共に、光量損失の少ない光学装置を得ることができることができる。また、青色用光路2の専用部品である拡散板2c、レンズ2d、2eを、青色LDの波長領域において、S偏光に特化したコーティングを施すことで、青色LDを効率よく放出することができる。コーティングの一例としては、アンチリフレクション(AR)フィルムなどが挙げられる。
As described above, in the present embodiment, as the configuration of the light source device, the excitation light source and the blue light source are separately provided. The polarization of the light beam emitted from at least the blue light source is linearly polarized light perpendicular to the paper surface of FIG. A light beam emitted from the blue light source is incident on the dichroic mirror 1g as S-polarized light and reflected. Furthermore, it is also incident on the polarization separation film 51 of the polarization conversion element 3e as S-polarized light and reflected. That is, S-polarized light having better reflection characteristics and angle characteristics than P-polarized light is used.
Thereby, in consideration of polarization efficiency, it is possible to efficiently obtain a light amount and to obtain an optical device with little light amount loss. In addition, the diffusion plate 2c and the lenses 2d and 2e, which are dedicated components of the blue optical path 2, are coated in the wavelength region of the blue LD so that the blue LD can be efficiently emitted. . An example of the coating includes an anti-reflection (AR) film.
 また、励起用の光源と青色用の光源とを別個に設ける構成を採っているため、それぞれの光源に応じた波長を選択することも可能である。すなわち、励起光の光源は、蛍光体ホイール1jを励起させるために高出力で短波長のLDを選択し、青色光の光源は、光源装置40を構成する各部材(光路、偏光板、及び液晶)の寿命の要求に応じて長波長のLDを選択することもできる。 Further, since the light source for excitation and the light source for blue are separately provided, it is possible to select a wavelength according to each light source. That is, the light source for excitation light selects a high-power and short-wavelength LD to excite the phosphor wheel 1j, and the blue light source is each member (light path, polarizing plate, and liquid crystal) constituting the light source device 40. The long-wavelength LD can be selected according to the life requirement.
 次に、第1の実施形態に係る光源装置40を備える投写型表示装置100の概略構成について説明する。図12は、第1実施形態による光源装置を備える投写型表示装置の一例を示す概略構成図である。
 本実施形態に係る投写型表示装置100は、光を発する光源装置40からの光を集め、画像を表示させるデバイスを通して投写レンズから光を出射し、スクリーンS等の表示面に画像を投写するプロジェクタの一構成例を示している。図12に示す投写型表示装置100は、マイクロディスプレイとして3LCD(Liquid Crystal Display)を用いたプロジェクタの一構成例である。
Next, a schematic configuration of the projection display device 100 including the light source device 40 according to the first embodiment will be described. FIG. 12 is a schematic configuration diagram illustrating an example of a projection display device including the light source device according to the first embodiment.
The projection display apparatus 100 according to the present embodiment collects light from a light source device 40 that emits light, emits light from a projection lens through a device that displays an image, and projects an image on a display surface such as a screen S. An example of the configuration is shown. A projection display apparatus 100 shown in FIG. 12 is a configuration example of a projector using a 3LCD (Liquid Crystal Display) as a micro display.
 光源装置40から出射された集光レンズ30の入射面に対して垂直な偏光の光は、集光レンズ30を通過し、波長域毎に分離される。集光レンズ30を通過した光は、赤色の波長域の光のみを反射し、その他の波長域の光を通過させる第1反射ダイクロイックミラー12aに入射する。これにより、赤色の波長域の光は、第1反射ダイクロイックミラー12aにより反射されて反射ミラー11a側へ進行する。赤色の波長域の光は、反射ミラー11aによりさらに反射されて赤色用液晶パネル60aに入射する。
 第1反射ダイクロイックミラー12aを通過したその他の波長域の光は第2反射ダイクロイックミラー12bへ入射する。第2反射ダイクロイックミラー12bは、緑色の波長域の光のみを反射し、その他の波長域の光、すなわち青色の波長域の光を通過させる。第2反射ダイクロイックミラー12bにより反射された緑色の波長域の光は、緑色用液晶パネル60bに入射する。また、第2反射ダイクロイックミラー12bを通過した青色の波長域の光は、反射ミラー11b、11cにより反射された後、青色用液晶パネル60cへ入射する。
The light polarized from the light source device 40 and perpendicular to the incident surface of the condenser lens 30 passes through the condenser lens 30 and is separated for each wavelength range. The light that has passed through the condensing lens 30 is incident on the first reflective dichroic mirror 12a that reflects only light in the red wavelength region and passes light in other wavelength regions. Thereby, the light in the red wavelength region is reflected by the first reflection dichroic mirror 12a and travels toward the reflection mirror 11a. The light in the red wavelength region is further reflected by the reflection mirror 11a and enters the red liquid crystal panel 60a.
The light in the other wavelength region that has passed through the first reflective dichroic mirror 12a is incident on the second reflective dichroic mirror 12b. The second reflective dichroic mirror 12b reflects only light in the green wavelength range, and transmits light in other wavelength ranges, that is, light in the blue wavelength range. The light in the green wavelength region reflected by the second reflective dichroic mirror 12b is incident on the green liquid crystal panel 60b. The light in the blue wavelength band that has passed through the second reflecting dichroic mirror 12b is reflected by the reflecting mirrors 11b and 11c and then enters the blue liquid crystal panel 60c.
 各色用の液晶パネル60aから60cは、入力画像信号に応じてそれぞれに入射した光を変調し、RGBに対応する画像の信号光を生成する。液晶パネル60aから60cには、例えば高温ポリシリコンTFT(Thin Film Transistor)を用いた透過型液晶素子を使用してもよい。各液晶パネル60aから60cにより変調された信号光は、ダイクロイックプリズム70に入射され、合成される。ダイクロイックプリズム70は、赤色の信号光及び青色の信号光を反射し、緑色の信号光を透過させるように、4つの三角柱を組み合わせた直方体状に形成されている。ダイクロイックプリズム70により合成された各色の信号光は、投写レンズ80へ入射されて、スクリーンS等の表示面に画像として投写される。
 投写型表示装置100において、液晶パネル60aから60c及びダイクロイックプリズム70は、入射された光を変調して合成する光変調合成系として機能するものである。また、集光レンズ30、反射ダイクロイックミラー12a、12b、反射ミラー11aから11cは、光変調合成系を構成する液晶パネル60aから60cに光源装置40からの光を導く照明光学系として機能するものである。そして、投写レンズ80は、ダイクロイックプリズム70から出射された画像を投写する投写光学系として機能するものである。
The liquid crystal panels 60a to 60c for the respective colors modulate the incident light according to the input image signal, and generate the signal light of the image corresponding to RGB. For the liquid crystal panels 60a to 60c, for example, a transmissive liquid crystal element using a high temperature polysilicon TFT (Thin Film Transistor) may be used. The signal light modulated by the liquid crystal panels 60a to 60c is incident on the dichroic prism 70 and synthesized. The dichroic prism 70 is formed in a rectangular parallelepiped shape in which four triangular prisms are combined so as to reflect red signal light and blue signal light and transmit green signal light. The signal light of each color synthesized by the dichroic prism 70 enters the projection lens 80 and is projected as an image on a display surface such as the screen S.
In the projection display device 100, the liquid crystal panels 60a to 60c and the dichroic prism 70 function as a light modulation / synthesis system that modulates and combines incident light. The condenser lens 30, the reflective dichroic mirrors 12a and 12b, and the reflective mirrors 11a to 11c function as an illumination optical system that guides light from the light source device 40 to the liquid crystal panels 60a to 60c constituting the light modulation / synthesis system. is there. The projection lens 80 functions as a projection optical system that projects the image emitted from the dichroic prism 70.
 (第2実施形態)
 次に、本発明の第2実施形態によるプロジェクタの概略構成を説明する。
 図13は、第2実施形態の光源装置の概略構成を示すブロック図の一例である。
 図13を参照すると、光源装置40は、励起光源43と、蛍光体44と、青色光源45と、ダイクロイックミラー1gと、偏光変換部46とを有している。
(Second Embodiment)
Next, a schematic configuration of the projector according to the second embodiment of the invention will be described.
FIG. 13 is an example of a block diagram illustrating a schematic configuration of the light source device of the second embodiment.
Referring to FIG. 13, the light source device 40 includes an excitation light source 43, a phosphor 44, a blue light source 45, a dichroic mirror 1g, and a polarization conversion unit 46.
 励起光源43は、励起光47を照射する。蛍光体44は、励起光47が照射されると、無偏光の蛍光49を放出する。青色光源45は、直線偏光の青色光48を照射する。ダイクロイックミラー1gは、励起光源43から照射される励起光47を反射して蛍光体44へ向けて照射する。ダイクロイックミラー1gは、励起光47の照射に基づいて蛍光体44から放出される無偏光の蛍光49を透過する。ダイクロイックミラー1gは、青色光源45から照射される直線偏光の青色光48を無偏光の蛍光49が透過された方向と同一方向に反射する。偏光変換部46は、ダイクロイックミラー1gを透過した無偏光の蛍光49の偏光を直線偏光の青色光48と同じ偏光に変換する。偏光変換部46は、ダイクロイックミラー1gで反射した直線偏光の青色光48の偏光を変換しない。 The excitation light source 43 emits excitation light 47. The phosphor 44 emits non-polarized fluorescence 49 when the excitation light 47 is irradiated. The blue light source 45 emits linearly polarized blue light 48. The dichroic mirror 1 g reflects the excitation light 47 emitted from the excitation light source 43 and irradiates it toward the phosphor 44. The dichroic mirror 1 g transmits the non-polarized fluorescence 49 emitted from the phosphor 44 based on the irradiation of the excitation light 47. The dichroic mirror 1g reflects the linearly polarized blue light 48 emitted from the blue light source 45 in the same direction as the direction through which the non-polarized fluorescence 49 is transmitted. The polarization conversion unit 46 converts the polarization of the non-polarized fluorescence 49 transmitted through the dichroic mirror 1g into the same polarization as the linearly polarized blue light 48. The polarization conversion unit 46 does not convert the polarization of the linearly polarized blue light 48 reflected by the dichroic mirror 1g.
 なお、光源装置40の図示しない記憶部に格納されているコンピュータプログラムは、記録媒体で提供されてもよく、また、インターネット等のネットワークを介して提供されてもよい。記録媒体は、コンピュータ使用可能媒体又はコンピュータ可読媒体であって、磁気、光、電子、電磁気、赤外線などを用いて情報の記録又は読み取りが可能な媒体を含む。そのような媒体として、例えば、半導体メモリ、半導体または固体の記憶装置、磁気テープ、取外し可能なコンピュータディスケット、ランダムアクセスメモリ(RAM(Random Access Memory))、読出し専用メモリ(ROM(Read Only Memory))、磁気ディスク、光ディスク、光磁気ディスクなどがある。 Note that the computer program stored in the storage unit (not shown) of the light source device 40 may be provided as a recording medium, or may be provided via a network such as the Internet. The recording medium includes a computer-usable medium or a computer-readable medium and can record or read information using magnetism, light, electronic, electromagnetic, infrared, or the like. Examples of such media include semiconductor memory, semiconductor or solid-state storage devices, magnetic tape, removable computer diskettes, random access memory (RAM (Random Access Memory)), read only memory (ROM (Read Only Memory)). , Magnetic disks, optical disks, magneto-optical disks, and the like.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
 励起光を照射する励起光源と、
 前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、
 直線偏光の青色光を照射する青色光源と、
 前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、
 前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換し、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない偏光変換手段と、を備える光源装置。
[付記2]
 前記偏光変換手段は、偏光分離膜と反射膜とを備えた透明部材と、位相差板とを有し、
 前記直線偏光の青色光は、前記偏光分離膜と前記反射膜とにおいて反射され、前記位相差板を透過しない、付記1に記載の光源装置。
[付記3]
 前記偏光分離膜に入射する前記青色光の偏光はS偏光である、付記2に記載の光源装置。
[付記4]
 前記ダイクロイックミラーに入射する前記青色光の偏光はS偏光である、付記2又は3に記載の光源装置。
[付記5]
 前記無偏光の蛍光は、前記偏光分離膜において、偏光特性がP偏光の蛍光とS偏光の蛍光とに分離され、前記P偏光の蛍光は、前記偏光分離膜を透過して前記位相差板においてS偏光に変換される、付記2から4の何れか1項に記載の光源装置。
[付記6]
 前記ダイクロイックミラーは、
 前記励起光源から照射される励起光を、前記励起光の入射方向と直交する方向に反射して前記励起光を前記蛍光体へ向けて照射する第一面と、
 前記蛍光体から放出された無偏光の蛍光を透過し、前記青色光源から入射された直線偏光の青色光を、前記無偏光の蛍光が透過される方向と同一方向に反射する第二面と、と備える、付記1から5の何れか1項に記載の光源装置。
[付記7]
 前記励起光源と前記青色光源とは、前記ダイクロイックミラーの前記第一面及び前記第二面を介して対向して設けられている、付記6に記載の光源装置。
[付記8]
 前記励起光源と前記ダイクロイックミラーとの間に、前記励起光を拡散する拡散部材が設けられている、付記1から7の何れか1項に記載の光源装置。
[付記9]
 前記青色光源と前記ダイクロイックミラーとの間に、前記直線偏光の青色光を拡散する拡散部材が設けられている、付記1から8の何れか1項に記載の光源装置。
[付記10]
 前記蛍光は黄色光である、付記1から9の何れか1項に記載の光源装置。
[付記11]
 励起光を照射する励起光源と、
 前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、
 直線偏光の青色光を照射する青色光源と、
 前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、
 前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換し、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない偏光変換手段と、を有する光源装置を備えた投写型表示装置。
[付記12]
 前記偏光変換手段は、偏光分離膜と反射膜とを備えた透明部材と、位相差板とを有し、
 前記直線偏光の青色光は、前記偏光分離膜と前記反射膜とにおいて反射され、前記位相差板を透過しない、付記11に記載の投写型表示装置。
[付記13]
 前記偏光分離膜に入射する前記青色光の偏光はS偏光である、付記12に記載の投写型表示装置。
[付記14]
 前記ダイクロイックミラーに入射する前記青色光の偏光はS偏光である、付記12又は13に記載の投写型表示装置。
[付記15]
 前記無偏光の蛍光は、前記偏光分離膜において、偏光特性がP偏光の蛍光とS偏光の蛍光とに分離され、前記P偏光の蛍光は、前記偏光分離膜を透過して前記位相差板においてS偏光に変換される、付記12から14の何れか1項に記載の投写型表示装置。
[付記16]
 前記ダイクロイックミラーは、
 前記励起光源から照射される励起光を、前記励起光の入射方向と直交する方向に反射して前記励起光を前記蛍光体へ向けて照射する第一面と、
 前記蛍光体から放出された無偏光の蛍光を透過し、前記青色光源から入射された直線偏光の青色光を、前記無偏光の蛍光が透過される方向と同一方向に反射する第二面と、と備える、付記11から15の何れか1項に記載の投写型表示装置。
[付記17]
 前記励起光源と前記青色光源とは、前記ダイクロイックミラーの前記第一面及び前記第二面を介して対向して設けられている、付記16に記載の投写型表示装置。
[付記18]
 前記励起光源と前記ダイクロイックミラーとの間に、前記励起光を拡散する拡散部材が設けられている、付記11から17の何れか1項に記載の投写型表示装置。
[付記19]
 前記青色光源と前記ダイクロイックミラーとの間に、前記直線偏光の青色光を拡散する拡散部材が設けられている、付記11から18の何れか1項に記載の投写型表示装置。
[付記20]
 前記蛍光は黄色光である、付記11から19の何れか1項に記載の投写型表示装置。
[付記21]
 励起光を照射する励起光源と、
 前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、
 直線偏光の青色光を照射する青色光源と、
 前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、を備えた光源装置の制御方法であって、
 前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換する工程と、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない工程と、を備える投写型表示装置の制御方法。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
[Appendix 1]
An excitation light source that emits excitation light;
A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and
A blue light source that emits linearly polarized blue light;
Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source A dichroic mirror that reflects the linearly polarized blue light emitted from the non-polarized fluorescence in the same direction as the transmitted light;
Polarization conversion means for converting the polarization of the non-polarized fluorescence transmitted through the dichroic mirror into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror; A light source device provided.
[Appendix 2]
The polarization conversion means includes a transparent member provided with a polarization separation film and a reflection film, and a retardation plate,
The light source device according to appendix 1, wherein the linearly polarized blue light is reflected by the polarization separation film and the reflection film and does not pass through the retardation plate.
[Appendix 3]
The light source device according to appendix 2, wherein the polarized light of the blue light incident on the polarization separation film is S-polarized light.
[Appendix 4]
4. The light source device according to appendix 2 or 3, wherein the blue light incident on the dichroic mirror is S-polarized light.
[Appendix 5]
The non-polarized fluorescence is separated into P-polarized fluorescence and S-polarized fluorescence in the polarization separation film, and the P-polarized fluorescence is transmitted through the polarization separation film in the retardation plate. 5. The light source device according to any one of appendices 2 to 4, wherein the light source device is converted to S-polarized light.
[Appendix 6]
The dichroic mirror is
A first surface that reflects the excitation light emitted from the excitation light source in a direction perpendicular to the incident direction of the excitation light and irradiates the excitation light toward the phosphor;
A second surface that transmits non-polarized fluorescence emitted from the phosphor and reflects linearly polarized blue light incident from the blue light source in the same direction as the non-polarized fluorescence is transmitted; The light source device according to any one of appendices 1 to 5, provided with:
[Appendix 7]
The light source device according to appendix 6, wherein the excitation light source and the blue light source are provided to face each other via the first surface and the second surface of the dichroic mirror.
[Appendix 8]
The light source device according to any one of appendices 1 to 7, wherein a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
[Appendix 9]
9. The light source device according to any one of appendices 1 to 8, wherein a diffusing member that diffuses the linearly polarized blue light is provided between the blue light source and the dichroic mirror.
[Appendix 10]
10. The light source device according to any one of appendices 1 to 9, wherein the fluorescence is yellow light.
[Appendix 11]
An excitation light source that emits excitation light;
A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and
A blue light source that emits linearly polarized blue light;
Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source A dichroic mirror that reflects the linearly polarized blue light emitted from the non-polarized fluorescence in the same direction as the transmitted light;
Polarization conversion means for converting the polarization of the non-polarized fluorescence transmitted through the dichroic mirror into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror; A projection display device including the light source device.
[Appendix 12]
The polarization conversion means includes a transparent member provided with a polarization separation film and a reflection film, and a retardation plate,
The projection display device according to appendix 11, wherein the linearly polarized blue light is reflected by the polarization separation film and the reflection film and does not pass through the retardation plate.
[Appendix 13]
The projection display device according to appendix 12, wherein the polarized light of the blue light incident on the polarization separation film is S-polarized light.
[Appendix 14]
14. The projection display device according to appendix 12 or 13, wherein the polarized light of the blue light incident on the dichroic mirror is S-polarized light.
[Appendix 15]
The non-polarized fluorescence is separated into P-polarized fluorescence and S-polarized fluorescence in the polarization separation film, and the P-polarized fluorescence is transmitted through the polarization separation film in the retardation plate. 15. The projection display device according to any one of appendices 12 to 14, which is converted to S-polarized light.
[Appendix 16]
The dichroic mirror is
A first surface that reflects the excitation light emitted from the excitation light source in a direction perpendicular to the incident direction of the excitation light and irradiates the excitation light toward the phosphor;
A second surface that transmits non-polarized fluorescence emitted from the phosphor and reflects linearly polarized blue light incident from the blue light source in the same direction as the non-polarized fluorescence is transmitted; The projection display device according to any one of appendices 11 to 15, comprising:
[Appendix 17]
The projection display device according to appendix 16, wherein the excitation light source and the blue light source are provided to face each other through the first surface and the second surface of the dichroic mirror.
[Appendix 18]
18. The projection display device according to any one of appendices 11 to 17, wherein a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
[Appendix 19]
The projection display device according to any one of appendices 11 to 18, wherein a diffusing member for diffusing the linearly polarized blue light is provided between the blue light source and the dichroic mirror.
[Appendix 20]
20. The projection display device according to any one of appendices 11 to 19, wherein the fluorescence is yellow light.
[Appendix 21]
An excitation light source that emits excitation light;
A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and
A blue light source that emits linearly polarized blue light;
Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source A dichroic mirror that reflects the linearly polarized blue light emitted from the dichroic mirror in the same direction as the non-polarized fluorescence is transmitted,
Converting the non-polarized fluorescence polarized light transmitted through the dichroic mirror into the same polarized light as the linearly polarized blue light, and not converting the linearly polarized blue light polarized light reflected by the dichroic mirror. A control method of a projection display device provided.
 1  蛍光励起光学系
 1a、2a  青色LDアレイ
 1b、2b  青色LD用コリメータレンズ
 1c、1d、1e、1h、1i、2d、2e、3a、3b  レンズ
 1f、2c  拡散板
 1g  ダイクロイックミラー
 1j  蛍光体ホイール
 2  青色用光路
 3  蛍光・青色共通光路
 3c、3d  インテグレータ
 3e  偏光変換素子
 4  入射面
 5  出射面
 6  黄色蛍光体
 7  モーター軸
 11a、11b、11c  反射ミラー
 12a  第1反射ダイクロイックミラー
 12b  第2反射ダイクロイックミラー
 30  集光レンズ
 40  光源装置
 41  発光素子
 42  コリメータレンズ
 43  励起光源
 44  蛍光体
 45  青色光源
 46  偏光変換部
 47  励起光
 48  直線偏光の青色光
 49  無偏光の蛍光
 51  偏光分離膜
 52  反射膜
 53  透明部材
 56  λ/2位相差板
 60a、60b、60c  液晶パネル
 70  ダイクロイックプリズム
 80  投写レンズ
 100  投写型表示装置
 101  無偏光光
 102  P偏光光
 103  S偏光光
 S  スクリーン
 
DESCRIPTION OF SYMBOLS 1 Fluorescence excitation optical system 1a, 2a Blue LD array 1b, 2b Blue LD collimator lens 1c, 1d, 1e, 1h, 1i, 2d, 2e, 3a, 3b Lens 1f, 2c Diffusion plate 1g Dichroic mirror 1j Phosphor wheel 2 Blue optical path 3 Fluorescent / blue common optical path 3c, 3d integrator 3e Polarization conversion element 4 Entrance surface 5 Exit surface 6 Yellow phosphor 7 Motor shaft 11a, 11b, 11c Reflective mirror 12a First reflective dichroic mirror 12b Second reflective dichroic mirror 30 Condensing lens 40 Light source device 41 Light emitting element 42 Collimator lens 43 Excitation light source 44 Phosphor 45 Blue light source 46 Polarization conversion unit 47 Excitation light 48 Linearly polarized blue light 49 Unpolarized fluorescence 51 Polarization separation film 52 Reflection film 53 Transparent member 56 λ / 2 Phase difference plate 60a, 60b, 60c Liquid crystal panel 70 Dichroic prism 80 Projection lens 100 Projection display device 101 Non-polarized light 102 P-polarized light 103 S-polarized light S Screen

Claims (12)

  1.  励起光を照射する励起光源と、
     前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、
     直線偏光の青色光を照射する青色光源と、
     前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、
     前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換し、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない偏光変換手段と、を備える光源装置。
    An excitation light source that emits excitation light;
    A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and
    A blue light source that emits linearly polarized blue light;
    Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source A dichroic mirror that reflects the linearly polarized blue light emitted from the non-polarized fluorescence in the same direction as the transmitted light;
    Polarization conversion means for converting the polarization of the non-polarized fluorescence transmitted through the dichroic mirror into the same polarization as the linearly polarized blue light, and not converting the polarization of the linearly polarized blue light reflected by the dichroic mirror; A light source device provided.
  2.  前記偏光変換手段は、偏光分離膜と反射膜とを備えた透明部材と、位相差板とを有し、
     前記直線偏光の青色光は、前記偏光分離膜と前記反射膜とにおいて反射され、前記位相差板を透過しない、請求項1に記載の光源装置。
    The polarization conversion means includes a transparent member provided with a polarization separation film and a reflection film, and a retardation plate,
    The light source device according to claim 1, wherein the linearly polarized blue light is reflected by the polarization separation film and the reflection film and does not pass through the retardation plate.
  3.  前記偏光分離膜に入射する前記青色光の偏光はS偏光である、請求項2に記載の光源装置。 The light source device according to claim 2, wherein the polarized light of the blue light incident on the polarization separation film is S-polarized light.
  4.  前記ダイクロイックミラーに入射する前記青色光の偏光はS偏光である、請求項2又は3に記載の光源装置。 The light source device according to claim 2 or 3, wherein the polarized light of the blue light incident on the dichroic mirror is S-polarized light.
  5.  前記無偏光の蛍光は、前記偏光分離膜において、偏光特性がP偏光の蛍光とS偏光の蛍光とに分離され、前記P偏光の蛍光は、前記偏光分離膜を透過して前記位相差板においてS偏光に変換される、請求項2から4の何れか1項に記載の光源装置。 The non-polarized fluorescence is separated into P-polarized fluorescence and S-polarized fluorescence in the polarization separation film, and the P-polarized fluorescence is transmitted through the polarization separation film in the retardation plate. The light source device according to claim 2, wherein the light source device is converted into S-polarized light.
  6.  前記ダイクロイックミラーは、
     前記励起光源から照射される励起光を、前記励起光の入射方向と直交する方向に反射して前記励起光を前記蛍光体へ向けて照射する第一面と、
     前記蛍光体から放出された無偏光の蛍光を透過し、前記青色光源から入射された直線偏光の青色光を、前記無偏光の蛍光が透過される方向と同一方向に反射する第二面と、と備える、請求項1から5の何れか1項に記載の光源装置。
    The dichroic mirror is
    A first surface that reflects the excitation light emitted from the excitation light source in a direction perpendicular to the incident direction of the excitation light and irradiates the excitation light toward the phosphor;
    A second surface that transmits non-polarized fluorescence emitted from the phosphor and reflects linearly polarized blue light incident from the blue light source in the same direction as the non-polarized fluorescence is transmitted; The light source device according to claim 1, further comprising:
  7.  前記励起光源と前記青色光源とは、前記ダイクロイックミラーの前記第一面及び前記第二面を介して対向して設けられている、請求項6に記載の光源装置。 The light source device according to claim 6, wherein the excitation light source and the blue light source are provided to face each other through the first surface and the second surface of the dichroic mirror.
  8.  前記励起光源と前記ダイクロイックミラーとの間に、前記励起光を拡散する拡散部材が設けられている、請求項1から7の何れか1項に記載の光源装置。 The light source device according to any one of claims 1 to 7, wherein a diffusion member that diffuses the excitation light is provided between the excitation light source and the dichroic mirror.
  9.  前記青色光源と前記ダイクロイックミラーとの間に、前記直線偏光の青色光を拡散する拡散部材が設けられている、請求項1から8の何れか1項に記載の光源装置。 The light source device according to any one of claims 1 to 8, wherein a diffusing member for diffusing the linearly polarized blue light is provided between the blue light source and the dichroic mirror.
  10.  前記蛍光は黄色光である、請求項1から9の何れか1項に記載の光源装置。 The light source device according to any one of claims 1 to 9, wherein the fluorescence is yellow light.
  11.  請求項1から10の何れか1項に記載の光源装置を備えた、投写型表示装置。 A projection display device comprising the light source device according to any one of claims 1 to 10.
  12.  励起光を照射する励起光源と、
     前記励起光が照射されると、無偏光の蛍光を放出する蛍光体と、
     直線偏光の青色光を照射する青色光源と、
     前記励起光源から照射される前記励起光を反射して前記蛍光体へ向けて照射し、前記励起光の照射に基づいて前記蛍光体から放出される前記無偏光の蛍光を透過し、前記青色光源から照射される前記直線偏光の青色光を前記無偏光の蛍光が透過された方向と同一方向に反射するダイクロイックミラーと、を備えた光源装置の制御方法であって、
     前記ダイクロイックミラーを透過した前記無偏光の蛍光の偏光を前記直線偏光の青色光と同じ偏光に変換する工程と、前記ダイクロイックミラーで反射した前記直線偏光の青色光の偏光を変換しない工程と、を備える光源装置の制御方法。
     
    An excitation light source that emits excitation light;
    A phosphor that emits unpolarized fluorescence when irradiated with the excitation light; and
    A blue light source that emits linearly polarized blue light;
    Reflecting the excitation light emitted from the excitation light source and irradiating the phosphor toward the phosphor, transmitting the non-polarized fluorescence emitted from the phosphor based on the irradiation of the excitation light, and transmitting the blue light source A dichroic mirror that reflects the linearly polarized blue light emitted from the dichroic mirror in the same direction as the non-polarized fluorescence is transmitted,
    Converting the non-polarized fluorescence polarized light transmitted through the dichroic mirror into the same polarized light as the linearly polarized blue light, and not converting the linearly polarized blue light polarized light reflected by the dichroic mirror. A method for controlling a light source device.
PCT/JP2017/011809 2017-03-23 2017-03-23 Light source device, method for controlling light source device, program, and projection-type display device WO2018173212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/011809 WO2018173212A1 (en) 2017-03-23 2017-03-23 Light source device, method for controlling light source device, program, and projection-type display device
CN201790001562.5U CN212031908U (en) 2017-03-23 2017-03-23 Light source device and projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011809 WO2018173212A1 (en) 2017-03-23 2017-03-23 Light source device, method for controlling light source device, program, and projection-type display device

Publications (1)

Publication Number Publication Date
WO2018173212A1 true WO2018173212A1 (en) 2018-09-27

Family

ID=63585188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011809 WO2018173212A1 (en) 2017-03-23 2017-03-23 Light source device, method for controlling light source device, program, and projection-type display device

Country Status (2)

Country Link
CN (1) CN212031908U (en)
WO (1) WO2018173212A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137744A (en) * 2010-12-06 2012-07-19 Panasonic Corp Light source device and projection type display device
JP2013033226A (en) * 2011-06-30 2013-02-14 Panasonic Corp Lighting device and projection type display device
JP2013182207A (en) * 2012-03-02 2013-09-12 Seiko Epson Corp Projector
JP2013190674A (en) * 2012-03-14 2013-09-26 Seiko Epson Corp Projector
JP2015106130A (en) * 2013-12-02 2015-06-08 セイコーエプソン株式会社 Illumination device and projector
US20150377430A1 (en) * 2014-06-26 2015-12-31 Texas Instruments Incorporated Hybrid Illumination for Headlamp
JP2016066086A (en) * 2015-11-24 2016-04-28 セイコーエプソン株式会社 Lighting device and projector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137744A (en) * 2010-12-06 2012-07-19 Panasonic Corp Light source device and projection type display device
JP2013033226A (en) * 2011-06-30 2013-02-14 Panasonic Corp Lighting device and projection type display device
JP2013182207A (en) * 2012-03-02 2013-09-12 Seiko Epson Corp Projector
JP2013190674A (en) * 2012-03-14 2013-09-26 Seiko Epson Corp Projector
JP2015106130A (en) * 2013-12-02 2015-06-08 セイコーエプソン株式会社 Illumination device and projector
US20150377430A1 (en) * 2014-06-26 2015-12-31 Texas Instruments Incorporated Hybrid Illumination for Headlamp
JP2016066086A (en) * 2015-11-24 2016-04-28 セイコーエプソン株式会社 Lighting device and projector

Also Published As

Publication number Publication date
CN212031908U (en) 2020-11-27

Similar Documents

Publication Publication Date Title
US10018900B2 (en) Illumination device and image display apparatus
US9407886B2 (en) Illumination optical system and projector including fluorophore
US9740088B2 (en) Light source apparatus and projection display apparatus provided with same including waveplate and dichroic prism
US10670953B2 (en) Light source device and projector
US10649321B2 (en) Light source device and projector
US10599025B2 (en) Light source device and projector
JP6796751B2 (en) Light source device and projection type image display device
US10620518B2 (en) Light source device and projector
JP2012128297A (en) Light source device
US20190041739A1 (en) Light source device and projector
US20130235353A1 (en) Illuminating unit and display
US11156825B2 (en) Projector
EP3570106B1 (en) Light source apparatus and image projection apparatus
US10705417B2 (en) Wavelength conversion element, light source apparatus and image projection apparatus
WO2018173212A1 (en) Light source device, method for controlling light source device, program, and projection-type display device
JP2015108830A (en) Illumination optical system including phosphor, projector, and irradiation method
JP6705598B2 (en) Projector and image projection method
JP2016194699A (en) Illumination optical system equipped with phosphor and projector
JP2021167865A (en) Illumination optical system and image projection device including the same
JP2018106087A (en) Light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP