WO2018173120A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2018173120A1
WO2018173120A1 PCT/JP2017/011212 JP2017011212W WO2018173120A1 WO 2018173120 A1 WO2018173120 A1 WO 2018173120A1 JP 2017011212 W JP2017011212 W JP 2017011212W WO 2018173120 A1 WO2018173120 A1 WO 2018173120A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
temperature
air
compressor
inlet
Prior art date
Application number
PCT/JP2017/011212
Other languages
French (fr)
Japanese (ja)
Inventor
達也 ▲雑▼賀
圭吾 岡島
智典 小島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/011212 priority Critical patent/WO2018173120A1/en
Priority to CN201780085771.7A priority patent/CN110418921B/en
Priority to JP2019506581A priority patent/JP6843227B2/en
Publication of WO2018173120A1 publication Critical patent/WO2018173120A1/en

Links

Images

Definitions

  • the present invention relates to a dehumidifier including a compressor that compresses and discharges a refrigerant.
  • Patent Document 1 when the air conditioner performs a dehumidifying operation, in order to maintain the room temperature at the set temperature, when the room temperature becomes higher than the set temperature, the rotation speed of the blower is increased and the room temperature becomes lower than the set temperature. It is disclosed that the rotational speed of the blower is reduced.
  • the heat exchange performance can be adjusted only by adjusting the rotational speed of the blower, but the dehumidification capability is improved so that frost formation does not occur in the evaporator only by adjusting the air volume of the blower. It is difficult.
  • the present invention has been made to solve the above-described problems, and provides a dehumidifier that improves the dehumidifying capacity so that frosting does not occur in the evaporator.
  • the dehumidifier according to the present invention includes a refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are connected in order, and a refrigerant circulates, and the dehumidification from a dehumidifying target space via the evaporator and the condenser.
  • a blower that circulates air through an air passage that returns to the target space, an inlet humidity sensor that is provided at an inlet of the air passage and measures the humidity of the air, an evaporation temperature sensor that measures the evaporation temperature of the evaporator, and the compression And a controller for controlling the expansion device and the blower, and the controller controls the humidity between the target humidity and the measured value of the inlet humidity sensor in a range where the evaporation temperature is higher than the freezing temperature of water.
  • the operating frequency of the compressor is controlled according to the difference.
  • the present invention controls the operating frequency of the compressor in accordance with the humidity difference between the target humidity and the actually measured humidity to adjust the evaporation temperature. It is possible to improve the dehumidifying ability while suppressing the occurrence of.
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of a dehumidifier according to Embodiment 1 of the present invention.
  • the dehumidifier 1 includes a compressor 10, a condenser 20, an expansion device 30, an evaporator 40, a blower 60, and a control unit 50.
  • the compressor 10, the condenser 20, the expansion device 30 and the evaporator 40 are sequentially connected by a pipe 15 and constitute a refrigerant circuit in which the refrigerant circulates.
  • the condenser 20 and the evaporator 40 are provided with a plurality of fins for allowing the refrigerant to exchange heat with air.
  • the blower 60 sucks air from the dehumidification target space and distributes the sucked air to the air path 61 that returns to the dehumidification target space via the evaporator 40 and the condenser 20.
  • the air flowing through the air path 61 passes through the gaps of the plurality of fins in each of the evaporator 40 and the condenser 20.
  • An inlet humidity sensor 71 that measures the humidity of air sucked into the dehumidifier 1 from the dehumidifying target space is provided at the inlet of the air passage 61.
  • An evaporating temperature sensor 45 that measures the evaporating temperature of the refrigerant is provided in the refrigerant outlet pipe 15 of the evaporator 40.
  • the inlet humidity sensor 71, the evaporation temperature sensor 45, and the expansion device 30 are connected to the control unit 50 via signal lines.
  • the inlet humidity sensor 71 outputs the humidity H1 as a measurement value to the control unit 50 via a signal line.
  • the evaporation temperature sensor 45 outputs the evaporation temperature Te as a measurement value to the control unit 50 via a signal line.
  • the compressor 10 is provided with an inverter (not shown), and the blower 60 is provided with a fan motor (not shown). The inverter and the fan motor are connected to the control unit 50 via signal lines. .
  • the compressor 10 compresses the refrigerant sucked from the evaporator 40 and discharges it to the condenser 20.
  • the expansion device 30 expands the refrigerant by reducing the pressure of the refrigerant flowing from the condenser 20 to the evaporator 40.
  • the evaporator 40 cools the air by heat exchange between the air sucked from the dehumidification target space and the refrigerant.
  • the condenser 20 heats the air by heat exchange between the air cooled by the evaporator 40 and the refrigerant. In the dehumidifier 1, the condenser 20 functions as a reheater.
  • FIG. 2 is a block diagram illustrating a configuration example of the control unit illustrated in FIG.
  • the control unit 50 is, for example, a microcomputer. As illustrated in FIG. 2, the control unit 50 includes a memory 51 that stores a program and a CPU (Central Processing Unit) 52 that executes processing according to the program.
  • a CPU Central Processing Unit
  • the control unit 50 controls the refrigeration cycle in the refrigerant circuit by controlling the operating frequency of the compressor 10 and the blower 60 and controlling the opening degree of the expansion device 30. Based on the evaporation temperature acquired from the evaporation temperature sensor 45, the control unit 50 controls the opening degree of the expansion device 30 so that the degree of superheat becomes a set value.
  • the control unit 50 controls the operating frequency of the compressor 10 based on the value of the humidity H1 acquired from the inlet humidity sensor 71 in a range where the evaporation temperature is higher than the freezing temperature of water.
  • the freezing temperature of water varies depending on the pressure, in the first embodiment, the case where the freezing temperature of water is 0 ° C. will be described.
  • a drain pan for collecting condensed water on the surface of the evaporator 40 may be provided under the evaporator 40.
  • the control part 50 demonstrated by the case where the evaporation temperature was acquired from the evaporation temperature sensor 45 provided in the refrigerant
  • a suction pressure sensor that measures the pressure on the refrigerant suction side of the compressor 10 may be provided, and the control unit 50 may calculate the evaporation temperature using the measured value of the suction pressure sensor.
  • the control part 50 starts the compressor 10 and the air blower 60, and sets the opening degree of the expansion apparatus 30 to an initial value.
  • the refrigerant repeats a cycle of returning from the compressor 10 to the compressor 10 through the pipe 15 in the order of the condenser 20, the expansion device 30, and the evaporator 40.
  • the air sucked into the air passage 61 from the space to be dehumidified passes through the evaporator 40.
  • the air passing through the low-temperature evaporator 40 is cooled to the dew point temperature or lower by exchanging heat with the evaporator 40.
  • the surface of the evaporator 40 is condensed and the absolute humidity of the air is reduced.
  • the absolute humidity is lowered, the air is heated by exchanging heat with the high-temperature condenser 20 when passing through the condenser 20.
  • the air passing through the condenser 20 becomes dry air having a reduced relative humidity when heated.
  • FIG. 3 is an air diagram showing changes in air temperature and humidity.
  • the vertical axis in FIG. 3 indicates absolute humidity, and the horizontal axis indicates the dry bulb temperature of air. Changes in the temperature and humidity of the air flowing through the air passage 61 will be described with reference to FIG.
  • the solid line arrows shown in FIG. 3 indicate changes in air temperature and humidity.
  • a state Sin illustrated in FIG. 3 indicates a state of air sucked into the dehumidifier 1 at the inlet of the air passage 61.
  • a state Sout shown in FIG. 3 indicates a state of air blown out from the dehumidifier 1 at the outlet of the air passage 61.
  • the temperature of the air sucked into the dehumidifier 1 is lowered by the evaporator 40 from the state Sin to the outdoor temperature (state Sv1 shown in FIG. 3).
  • the humidity of the air decreases along the line of 100% relative humidity to a value where the absolute humidity corresponds to the state Sv2.
  • the temperature also decreases, but is warmed when passing through the condenser 20 and rises to a temperature corresponding to the state Sout. Thereafter, the air in the state Sout in which the relative humidity is lower than that in the state Sin is released from the dehumidifier 1 to the dehumidifying target space.
  • control unit 50 may compare the actually measured humidity with the target humidity and control the operating frequency of the compressor 10 as follows.
  • FIG. 4 is a flowchart showing an example of an operation procedure of the dehumidifier shown in FIG.
  • the control unit 50 acquires measured values from the inlet humidity sensor 71 and the evaporation temperature sensor 45 at a constant cycle (step S101), and determines whether or not the evaporation temperature Te is higher than 0 ° C. (step S102). Let time of one cycle be ⁇ t1. If it is determined in step S102 that the evaporation temperature Te is 0 ° C. or lower, the control unit 50 proceeds to step S105 described later. When the evaporation temperature Te is higher than 0 ° C., the control unit 50 compares the target humidity H0 with the humidity H1 i measured by the inlet humidity sensor 71. i is a positive integer. The controller 50 controls the operating frequency of the compressor 10 based on the humidity difference ⁇ H i between the target humidity H0 and the humidity H1 i .
  • step S103 the control unit 50, the humidity difference [Delta] H i is equal to or greater than the first threshold TH1.
  • the first threshold TH1 is stored in the memory 51 in advance. It determined in step S103, when the humidity difference [Delta] H i is greater than the first threshold value TH1, the control unit 50 increases the operating frequency of the compressor 10 (step S104). On the other hand, the result of the determination in step S102, when the humidity difference [Delta] H i is equal to or less than the first threshold value TH1, the control unit 50 maintains unchanged the operating frequency of the compressor 10 (step S105).
  • step S104 the control unit 50, the larger the difference between the humidity difference [Delta] H i and the first threshold TH1, it may increase the value to increase the operating frequency of the compressor 10.
  • step S105 the control unit 50 may decrease the operating frequency of the compressor 10.
  • the dehumidifying capacity is determined in accordance with the difference between the actually measured humidity and the target humidity in the dehumidifying target space in a range where the evaporator 40 is not frosted. Can be improved. As a result, the humidity of the dehumidifying target space can be made to reach the target humidity more quickly.
  • the control unit 50 may control the operating frequency of the compressor 10 as follows based on the time change of the actually measured humidity.
  • FIG. 5 is a flowchart showing another example of the operation procedure of the dehumidifier shown in FIG.
  • FIG. 6 is a graph showing the relationship between humidity and time during operation of the dehumidifier shown in FIG. The vertical axis in FIG. 6 indicates relative humidity, and the horizontal axis indicates time.
  • the same step number is assigned to the same process as the process shown in FIG. 4, and detailed description thereof is omitted.
  • step S101 the control unit 50 stores the humidity H1 i-1 and the humidity H1 i acquired before and after the time ⁇ t1 in the memory 51 in the period of the time ⁇ t1. It determined in step S103, when the humidity difference [Delta] H i is equal to or less than the first threshold value TH1, the control unit 50, the humidity of the humidity H1 i-1 and the target humidity H0 measured the previous time t i-1 first humidity difference [Delta] H i-1 is the difference, compares the magnitude of the second humidity difference [Delta] H i is the humidity difference between the current time t i humidity H1 i and target humidity H0 measured in ( Step S111).
  • step S111 If it is determined in step S111 that ⁇ H i ⁇ H i ⁇ 1 , the control unit 50 decreases the operating frequency of the compressor 10 according to the magnitude of the second humidity difference ⁇ H i (step S112). For example, as the ratio of the second humidity difference ⁇ H i to the first humidity difference ⁇ H i ⁇ 1 is smaller, the control unit 50 may increase the ratio of decreasing the operating frequency of the compressor 10. On the other hand, if ⁇ H i ⁇ ⁇ H i ⁇ 1 as a result of the determination in step S111, the control unit 50 maintains the operating frequency of the compressor 10 without being changed (step S113).
  • control unit 50 performs control to maintain the operating frequency of the compressor 10 (step S113). Further, control for reducing the operation frequency may be performed.
  • control unit 50 controls the dehumidifier 1 according to the procedure shown in FIG. 5, it is possible to reduce the operating frequency of the compressor 10 while ensuring the necessary dehumidifying capacity, and to prevent the dehumidifying capacity from becoming excessive. . As a result, the power consumption of the dehumidifier 1 is reduced and energy saving operation can be performed.
  • the period when the control part 50 acquires a measured value from the entrance humidity sensor 71 was the same, these periods differed in the flowchart shown in FIG. 4 and FIG. May be.
  • the dehumidifier 1 includes a refrigerant circuit in which the compressor 10, the condenser 20, the expansion device 30 and the evaporator 40 are connected in order through a pipe, and the dehumidification target space via the evaporator 40 and the condenser 20.
  • a blower 60 that circulates air through the air passage 61 that returns to the dehumidifying target space, an inlet humidity sensor 71 provided at the inlet of the air passage 61, an evaporation temperature sensor 45 that measures the evaporation temperature of the evaporator 40, and control
  • the controller 50 controls the operating frequency of the compressor 10 in accordance with the humidity difference between the target humidity and the actually measured humidity in a range where the evaporation temperature is higher than the freezing temperature of water.
  • the dehumidifying ability can be improved while suppressing the formation of frost on the evaporator 40. Further, if the operating frequency of the compressor 10 is increased as the humidity difference value is increased, the humidity in the dehumidifying target space can be made to reach the target humidity sooner.
  • the control unit 50 acquires the measurement value from the inlet humidity sensor at a constant cycle, the first humidity difference that is the difference between the previously acquired measurement value and the target humidity, and the measurement acquired this time.
  • the second humidity difference that is the difference between the value and the target humidity is compared, and when the second humidity difference is smaller than the first humidity difference, the operating frequency of the compressor 10 may be reduced. In this case, the necessary dehumidifying capacity can be ensured and the dehumidifying capacity can be suppressed from becoming excessive. As a result, the power consumption of the dehumidifier 1 is reduced and energy saving operation can be performed.
  • Embodiment 2 FIG.
  • the dehumidifier 1 increases the operating frequency of the compressor 10 to improve the refrigerating capacity of the evaporator 40 so that the evaporation temperature does not fall to the freezing temperature of water. However, even if the evaporating temperature does not reach the freezing temperature of water, the refrigerating capacity of the evaporator 40 decreases when the evaporating temperature approaches the freezing temperature of water.
  • dehumidification and defrost are performed in a well-balanced manner to improve the dehumidification capability.
  • FIG. 7 is a refrigerant circuit diagram illustrating a configuration example of the dehumidifier according to Embodiment 2 of the present invention.
  • the dehumidifier 1a has a configuration in which an inlet temperature sensor 72, an outlet humidity sensor 81, and an outlet temperature sensor 82 are added as compared with the configuration shown in FIG.
  • the inlet temperature sensor 72, the outlet humidity sensor 81, and the outlet temperature sensor 82 are connected to the control unit 50 through signal lines.
  • the inlet temperature sensor 72 is provided at the inlet of the air passage 61.
  • the inlet temperature sensor 72 measures the temperature of the air sucked into the dehumidifier 1a from the dehumidification target space.
  • the inlet temperature sensor 72 outputs the temperature T1 as a measurement value to the control unit 50 via a signal line.
  • the outlet humidity sensor 81 and the outlet temperature sensor 82 are provided at the outlet of the air passage 61.
  • the outlet humidity sensor 81 measures the humidity of the air blown from the dehumidifier 1a to the dehumidifying target space.
  • the outlet humidity sensor 81 outputs the humidity H2 as a measurement value to the control unit 50 via a signal line.
  • the outlet temperature sensor 82 measures the temperature of the air blown from the dehumidifier 1a to the dehumidifying target space.
  • the outlet temperature sensor 82 outputs the temperature T2 as a measurement value to the control unit 50 via a signal line.
  • the control unit 50 prohibits increasing the operating frequency of the compressor 10 according to the humidity difference between the target humidity and the measured value of the inlet humidity sensor 71 when frosting suppression control is set and a certain condition is satisfied. Then, the frosting suppression control for maintaining or reducing the operation frequency of the compressor 10 is started.
  • the frosting suppression control may be set by a user operating a remote controller (not shown), and the user switches a switch (not shown) provided in the dehumidifier 1a from an off state to an on state. You may go.
  • the constant condition is, for example, that the evaporation temperature Te is lowered to a temperature just before frosting occurs in the evaporator 40.
  • control for increasing the operating frequency of the compressor 10 in accordance with the humidity difference between the target humidity and the measured value of the inlet humidity sensor 71 is referred to as normal dehumidification control.
  • the memory 51 of the control unit 50 includes air diagram data, dehumidification capability diagram data that differs depending on the model of the dehumidifier 1a, and capability correction that is a coefficient that corrects a humidity reduction in the dehumidification capability diagram.
  • the coefficient is memorized.
  • FIG. 3 described in the first embodiment shows a part of a graph of an air diagram.
  • FIG. 8 is a flowchart showing an example of an operation procedure of the dehumidifier shown in FIG.
  • the control unit 50 performs normal dehumidification control.
  • the frost suppression control is set to the on state by the user.
  • the controller 50 continues the normal dehumidification control until a certain condition is satisfied even when the frost suppression control is set to the on state.
  • the control unit 50 acquires the evaporation temperature Te from the evaporation temperature sensor 45 at a period of time ⁇ t2 (step S201).
  • the controller 50 determines whether or not the evaporation temperature Te is 4.5 ° C. or less (step S202). As a result of the determination in step S202, when the evaporation temperature Te is 4.5 ° C. or lower, the control unit 50 stops the normal dehumidification control and executes the frosting suppression control (step S203).
  • step S202 By prohibiting an increase in the operating frequency of the compressor 10, it is possible to suppress the evaporation temperature Te from further decreasing.
  • the control unit 50 returns to step S201 and maintains normal dehumidification control.
  • step S203 an increase in the operating frequency of the compressor 10 is prohibited, but it is also conceivable that the evaporation temperature Te further decreases.
  • the controller 50 determines whether or not the evaporation temperature Te is 3.5 ° C. or less (step S204). In the determination in step S204, when the evaporation temperature Te becomes 3.5 ° C. or lower, the control unit 50 decreases the operating frequency of the compressor 10. The controller 50 increases the evaporation temperature Te by reducing the operating frequency of the compressor 10 and controls the evaporator 40 so as not to form frost. On the other hand, if the evaporation temperature Te is higher than 3.5 ° C. as a result of the determination in step S204, the control unit 50 maintains the operating frequency of the compressor 10 and proceeds to step S206.
  • the control unit 50 determines whether or not the time ⁇ t3 has elapsed since the operating frequency of the compressor 10 was maintained or decreased (step S206). Since there is a time lag until the effect of control on the operating frequency of the compressor 10 occurs in the evaporator 40, it is desirable that the time ⁇ t3 is longer than the time ⁇ t2 that determines the frequency of monitoring the evaporation temperature. Until the time ⁇ t3 has elapsed, the control unit 50 repeats the determination of step S204, and when the evaporation temperature Te does not become higher than 3.5 ° C., the control frequency of the compressor 10 is decreased (step S205).
  • the control unit 50 continues to decrease the operating frequency of the compressor 10 by the frost suppression control, the evaporation temperature Te increases and the temperature difference between the air and the evaporator 40 decreases. In this case, the refrigerating capacity of the evaporator 40 is lowered and the dehumidifying capacity is also lowered.
  • the refrigeration capacity is reduced as the heat exchange performance is deteriorated due to the frost formation, but the refrigeration capacity is reduced by executing the frost suppression control for the defrosting time for melting the frost. Recover.
  • the frosting suppression control may be maintained even though the refrigeration capacity is recovered. In this case, the dehumidifying ability is excessively reduced. Therefore, it is necessary to compare the recovery of the refrigeration capacity and the decrease in the refrigeration capacity in the evaporator 40 by the frost suppression control to determine the switching between the frost suppression control and the normal dehumidification control.
  • the control unit 50 simply calculates the dehumidifying ability Q1 that has decreased due to a decrease in the operating frequency of the compressor 10 as follows. Referring to the air diagram shown in FIG. 3, the state of the air passing through the air passage 61 transitions along the path indicated by the solid line arrow shown in FIG. 3. Therefore, the control unit 50 refers to the air diagram and uses the humidity H1 acquired from the inlet humidity sensor 71 and the temperature T1 acquired from the inlet temperature sensor 72 to determine the absolute humidity of the air at the inlet of the air passage 61. The inlet absolute humidity AHin is calculated.
  • control unit 50 refers to the air diagram, and uses the humidity H2 acquired from the outlet humidity sensor 81 and the temperature T2 acquired from the outlet temperature sensor 82 to output the air passage 61 from the outlet.
  • the outlet absolute humidity AHout which is the absolute humidity of the air, is calculated.
  • the controller 50 calculates the dehumidification amount per unit time by multiplying the calculated absolute humidity difference ⁇ AH by the air volume determined for each model of the dehumidifier 1a, and simply calculates the dehumidification capability Q1.
  • the control unit 50 obtains the rated dehumidifying capacity Q2 from the model dehumidifying capacity determined by the rated capacity for each model of the dehumidifier 1a as follows.
  • the model dehumidifying capacity is represented by a dehumidifying capacity diagram, for example.
  • the rated dehumidifying capacity Q2 in consideration of frost formation and defrosting needs to be multiplied by a capacity correction coefficient to the dehumidifying capacity diagram of the dehumidifier 1a.
  • the capacity correction coefficient is a coefficient for correcting a capacity decrease depending on humidity with respect to the model dehumidifying capacity.
  • FIG. 9 is a graph showing an example of a capability correction coefficient indicating a dehumidification capability decrease due to defrosting.
  • the vertical axis represents temperature
  • the horizontal axis represents relative humidity.
  • the capacity correction coefficient varies depending on the temperature and humidity conditions, but as shown in FIG. 9, the capacity correction coefficient is a coefficient depending on the humidity with respect to the dehumidification capacity diagram.
  • the control unit 50 reads out the capability correction coefficient corresponding to the humidity H1 at the time of measurement from the capability correction coefficient shown in FIG. 9, and multiplies the read capability correction coefficient by the data of the dehumidification capability diagram stored in the memory 51.
  • the rated dehumidifying capacity Q2 is calculated in consideration of frost formation and defrosting. In the example of the procedure shown in FIG. 8, it is assumed that the humidity H1 is in the range of 60% to 70%. In this case, referring to FIG. 9, the capability correction coefficient is 0.6.
  • the control unit 50 performs the dehumidifying ability Q1 when the operating frequency of the compressor 10 is decreased by the frosting suppression control, the frosting and the defrosting under the humidity H1 measured by the inlet humidity sensor 71.
  • the dehumidifying capacity Q1 is compared with the rated dehumidifying capacity Q2.
  • the control unit 50 determines whether or not the dehumidifying capacity Q1 is equal to or higher than the rated dehumidifying capacity Q2. As a result of the determination in step S207, if Q1 ⁇ Q2, the control unit 50 continues the frosting suppression control and returns to step S201. On the other hand, if Q1 ⁇ Q2 as a result of the determination in step S207, the control unit 50 cancels the frosting suppression control and resumes the normal dehumidification control (step S208).
  • the constant condition is described when the evaporation temperature Te is 4.5 ° C. or lower, but the value of the evaporation temperature Te is not limited to 4.5 ° C. It may be 5 ° C. Further, the certain condition is not limited to the evaporation temperature Te, but may be other conditions.
  • the time ⁇ t2 may be the same as or different from the time ⁇ t1 of the first embodiment.
  • the control unit 50 prohibits increasing the operating frequency of the compressor 10 when the evaporation temperature falls to a predetermined temperature higher than the freezing temperature of water, and compresses Frost suppression control for maintaining or reducing the operating frequency of the machine 10 is executed.
  • the predetermined temperature at which the evaporation temperature is higher than the freezing temperature of water is, for example, 4.5 ° C.
  • the increase in the operating frequency of the compressor 10 is prohibited at a temperature at which frosting may start to occur in the evaporator 40, defrosting at room temperature is performed in the evaporator 40, The refrigeration capacity can be restored.
  • the control part 50 uses the value of humidity H1, temperature T1, humidity H2, and temperature T2, and dehumidification capability Q1 in humidity H1. If the dehumidifying capacity Q1 is smaller than the rated dehumidifying capacity Q2, the rated dehumidifying capacity Q2 is determined based on the model dehumidifying capacity of the dehumidifier 1a, the magnitude of the dehumidifying capacity Q1 and the rated dehumidifying capacity Q2 is compared, Release frosting suppression control and resume normal dehumidification control.
  • the control unit 50 compares the decrease in the refrigeration capacity due to frosting and the recovery of the refrigeration capacity due to defrosting, and automatically switches the control so that the dehumidification capacity becomes higher. Therefore, excessive recovery of the refrigerating capacity of the evaporator 40 can be suppressed, and the dehumidification target space can be dehumidified more efficiently.
  • the control unit 50 adjusts the operating frequency of the compressor 10 to control the evaporation temperature.
  • the evaporation temperature By controlling the evaporation temperature to be higher than the freezing temperature of water, it is possible to prevent moisture condensed on the evaporator 40 from becoming ice, and to suppress the performance deterioration of the heat exchanger due to frost formation. As a result, the defrosting frequency can be reduced and the dehumidifying ability can be improved.

Abstract

This dehumidifier is provided with: a refrigerant circuit wherein a compressor, a condenser, an expansion device, and an evaporator are connected sequentially by piping; a blower for causing air to flow through an air passage which extends from a space to be dehumidified, passes through the evaporator and the condenser, and returns to the space to be dehumidified; an inlet humidity sensor provided at the inlet of the air passage; an evaporation temperature sensor for measuring the evaporation temperature of the evaporator; and a control unit. The control unit is configured such that, when the evaporation temperature is higher than the freezing temperature of water, the control unit controls the operation frequency of the compressor according to the difference between target hummidity and actually measured humidity.

Description

除湿機Dehumidifier
 本発明は、冷媒を圧縮して吐出する圧縮機を備えた除湿機に関する。 The present invention relates to a dehumidifier including a compressor that compresses and discharges a refrigerant.
 従来の除湿機の一例として、圧縮機と、凝縮器として機能する室外熱交換器および第1の室内熱交換器と、蒸発器として機能する第2の室内熱交換器と、室外熱交換器に外気を供給する送風機とを有する空気調和装置が開示されている(例えば、特許文献1参照)。 As an example of a conventional dehumidifier, a compressor, an outdoor heat exchanger and a first indoor heat exchanger that function as a condenser, a second indoor heat exchanger that functions as an evaporator, and an outdoor heat exchanger An air conditioner having a blower for supplying outside air is disclosed (for example, see Patent Document 1).
 特許文献1には、空気調和装置は、除湿運転を行う際、室温を設定温度に維持するために、室温が設定温度より高くなると、送風機の回転数を大きくし、室温が設定温度より低くなると、送風機の回転数を小さくすることが開示されている。 In Patent Document 1, when the air conditioner performs a dehumidifying operation, in order to maintain the room temperature at the set temperature, when the room temperature becomes higher than the set temperature, the rotation speed of the blower is increased and the room temperature becomes lower than the set temperature. It is disclosed that the rotational speed of the blower is reduced.
特開平3-31640号公報JP-A-3-31640
 特許文献1に開示された空気調和装置では、送風機の回転数調整だけで熱交換性能を調整できるが、送風機の風量調節だけで、蒸発器に着霜が生じないように、除湿能力を向上させることは困難である。 In the air conditioner disclosed in Patent Document 1, the heat exchange performance can be adjusted only by adjusting the rotational speed of the blower, but the dehumidification capability is improved so that frost formation does not occur in the evaporator only by adjusting the air volume of the blower. It is difficult.
 本発明は、上記のような課題を解決するためになされたもので、蒸発器に着霜が生じないように除湿能力を向上させる除湿機を提供するものである。 The present invention has been made to solve the above-described problems, and provides a dehumidifier that improves the dehumidifying capacity so that frosting does not occur in the evaporator.
 本発明に係る除湿機は、圧縮機、凝縮器、膨張装置および蒸発器が順に配管で接続され、冷媒が循環する冷媒回路と、除湿対象空間から前記蒸発器および凝縮器を経由して前記除湿対象空間に戻る風路に空気を流通させる送風機と、前記風路の入口に設けられ、空気の湿度を測定する入口湿度センサと、前記蒸発器の蒸発温度を測定する蒸発温度センサと、前記圧縮機、前記膨張装置および前記送風機を制御する制御部と、を有し、前記制御部は、前記蒸発温度が水の凍結温度より高い範囲で、目標湿度と前記入口湿度センサの測定値との湿度差に応じて、前記圧縮機の運転周波数を制御するものである。 The dehumidifier according to the present invention includes a refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are connected in order, and a refrigerant circulates, and the dehumidification from a dehumidifying target space via the evaporator and the condenser. A blower that circulates air through an air passage that returns to the target space, an inlet humidity sensor that is provided at an inlet of the air passage and measures the humidity of the air, an evaporation temperature sensor that measures the evaporation temperature of the evaporator, and the compression And a controller for controlling the expansion device and the blower, and the controller controls the humidity between the target humidity and the measured value of the inlet humidity sensor in a range where the evaporation temperature is higher than the freezing temperature of water. The operating frequency of the compressor is controlled according to the difference.
 本発明は、蒸発温度が水の凍結温度まで低下しないように、目標湿度と実測湿度との湿度差に応じて圧縮機の運転周波数を制御して蒸発温度を調節するため、蒸発器に着霜が生じることを抑制しながら除湿能力を向上させることができる。 In order to prevent the evaporation temperature from dropping to the freezing temperature of water, the present invention controls the operating frequency of the compressor in accordance with the humidity difference between the target humidity and the actually measured humidity to adjust the evaporation temperature. It is possible to improve the dehumidifying ability while suppressing the occurrence of.
本発明の実施の形態1に係る除湿機の一構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows one structural example of the dehumidifier which concerns on Embodiment 1 of this invention. 図1に示した制御部の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the control part shown in FIG. 空気の温度および湿度の変化を示す空気線図である。It is an air diagram which shows the change of the temperature and humidity of air. 図1に示した除湿機の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement procedure of the dehumidifier shown in FIG. 図1に示した除湿機の動作手順の他の例を示すフローチャートである。It is a flowchart which shows the other example of the operation | movement procedure of the dehumidifier shown in FIG. 図1に示した除湿機の運転時における、湿度と時間の関係を示すグラフである。It is a graph which shows the relationship between humidity and time at the time of the driving | operation of the dehumidifier shown in FIG. 本発明の実施の形態2に係る除湿機の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one structural example of the dehumidifier which concerns on Embodiment 2 of this invention. 図7に示した除湿機の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement procedure of the dehumidifier shown in FIG. 除霜による除湿能力低下を示す能力補正係数の一例を示すグラフである。It is a graph which shows an example of the capability correction coefficient which shows the dehumidification capability fall by defrosting.
実施の形態1.
 本実施の形態1の除湿機の構成を説明する。図1は、本発明の実施の形態1に係る除湿機の一構成例を示す冷媒回路図である。図1に示すように、除湿機1は、圧縮機10、凝縮器20、膨張装置30、蒸発器40、送風機60および制御部50を有する。圧縮機10、凝縮器20、膨張装置30および蒸発器40は、配管15で順次接続され、冷媒が循環する冷媒回路を構成する。凝縮器20および蒸発器40には、冷媒が空気と熱交換するための複数のフィンが設けられている。
Embodiment 1 FIG.
The structure of the dehumidifier of this Embodiment 1 is demonstrated. FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of a dehumidifier according to Embodiment 1 of the present invention. As shown in FIG. 1, the dehumidifier 1 includes a compressor 10, a condenser 20, an expansion device 30, an evaporator 40, a blower 60, and a control unit 50. The compressor 10, the condenser 20, the expansion device 30 and the evaporator 40 are sequentially connected by a pipe 15 and constitute a refrigerant circuit in which the refrigerant circulates. The condenser 20 and the evaporator 40 are provided with a plurality of fins for allowing the refrigerant to exchange heat with air.
 送風機60は、除湿対象空間から空気を吸い込み、吸い込んだ空気を蒸発器40および凝縮器20を経由して除湿対象空間に戻る風路61に流通させる。風路61を流れる空気は、蒸発器40および凝縮器20のそれぞれにおいて、複数のフィンの隙間を通る。風路61の入口には、除湿対象空間から除湿機1に吸い込まれる空気の湿度を測定する入口湿度センサ71が設けられている。蒸発器40の冷媒出口の配管15に、冷媒の蒸発温度を測定する蒸発温度センサ45が設けられている。 The blower 60 sucks air from the dehumidification target space and distributes the sucked air to the air path 61 that returns to the dehumidification target space via the evaporator 40 and the condenser 20. The air flowing through the air path 61 passes through the gaps of the plurality of fins in each of the evaporator 40 and the condenser 20. An inlet humidity sensor 71 that measures the humidity of air sucked into the dehumidifier 1 from the dehumidifying target space is provided at the inlet of the air passage 61. An evaporating temperature sensor 45 that measures the evaporating temperature of the refrigerant is provided in the refrigerant outlet pipe 15 of the evaporator 40.
 入口湿度センサ71、蒸発温度センサ45および膨張装置30は信号線を介して制御部50と接続されている。入口湿度センサ71は、測定値として湿度H1を制御部50に信号線を介して出力する。蒸発温度センサ45は、測定値として蒸発温度Teを制御部50に信号線を介して出力する。また、圧縮機10には図に示さないインバータが設けられ、送風機60には図に示さないファンモータが設けられており、インバータおよびファンモータが信号線を介して制御部50と接続されている。 The inlet humidity sensor 71, the evaporation temperature sensor 45, and the expansion device 30 are connected to the control unit 50 via signal lines. The inlet humidity sensor 71 outputs the humidity H1 as a measurement value to the control unit 50 via a signal line. The evaporation temperature sensor 45 outputs the evaporation temperature Te as a measurement value to the control unit 50 via a signal line. The compressor 10 is provided with an inverter (not shown), and the blower 60 is provided with a fan motor (not shown). The inverter and the fan motor are connected to the control unit 50 via signal lines. .
 圧縮機10は、蒸発器40から吸い込む冷媒を圧縮して凝縮器20に吐出する。膨張装置30は、凝縮器20から蒸発器40に流通する冷媒の圧力を下げ、冷媒を膨張させる。蒸発器40は、除湿対象空間から吸い込まれた空気と冷媒が熱交換を行うことで、空気を冷却する。凝縮器20は、蒸発器40で冷却された空気と冷媒が熱交換を行うことで、空気を加熱する。除湿機1において、凝縮器20は再熱器として機能する。 The compressor 10 compresses the refrigerant sucked from the evaporator 40 and discharges it to the condenser 20. The expansion device 30 expands the refrigerant by reducing the pressure of the refrigerant flowing from the condenser 20 to the evaporator 40. The evaporator 40 cools the air by heat exchange between the air sucked from the dehumidification target space and the refrigerant. The condenser 20 heats the air by heat exchange between the air cooled by the evaporator 40 and the refrigerant. In the dehumidifier 1, the condenser 20 functions as a reheater.
 図2は、図1に示した制御部の一構成例を示すブロック図である。制御部50は、例えば、マイクロコンピュータである。図2に示すように、制御部50は、プログラムを記憶するメモリ51と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)52とを有する。 FIG. 2 is a block diagram illustrating a configuration example of the control unit illustrated in FIG. The control unit 50 is, for example, a microcomputer. As illustrated in FIG. 2, the control unit 50 includes a memory 51 that stores a program and a CPU (Central Processing Unit) 52 that executes processing according to the program.
 制御部50は、圧縮機10および送風機60の運転周波数を制御し、膨張装置30の開度を制御することで、冷媒回路における冷凍サイクルを制御する。制御部50は、蒸発温度センサ45から取得する蒸発温度に基づいて、過熱度が設定値になるように膨張装置30の開度を制御する。制御部50は、蒸発温度が水の凍結温度より高い範囲で、入口湿度センサ71から取得する湿度H1の値に基づいて、圧縮機10の運転周波数を制御する。水の凍結温度は圧力によって異なるが、本実施の形態1では、水の凍結温度が0℃の場合で説明する。 The control unit 50 controls the refrigeration cycle in the refrigerant circuit by controlling the operating frequency of the compressor 10 and the blower 60 and controlling the opening degree of the expansion device 30. Based on the evaporation temperature acquired from the evaporation temperature sensor 45, the control unit 50 controls the opening degree of the expansion device 30 so that the degree of superheat becomes a set value. The control unit 50 controls the operating frequency of the compressor 10 based on the value of the humidity H1 acquired from the inlet humidity sensor 71 in a range where the evaporation temperature is higher than the freezing temperature of water. Although the freezing temperature of water varies depending on the pressure, in the first embodiment, the case where the freezing temperature of water is 0 ° C. will be described.
 なお、図1に示していないが、蒸発器40の表面に結露した水を溜めるドレンパンが蒸発器40の下に設けられていてもよい。また、制御部50が蒸発器40の冷媒出口側に設けられた蒸発温度センサ45から蒸発温度を取得する場合で説明したが、蒸発温度センサ45の設置場所は、蒸発器40の冷媒出口側に限らず、冷媒入口側であってもよく、または冷媒入口および冷媒出口の両方であってもよい。さらに、圧縮機10の冷媒吸入側の圧力を測定する吸入圧力センサを設け、制御部50は吸入圧力センサの測定値を用いて蒸発温度を算出してもよい。 Although not shown in FIG. 1, a drain pan for collecting condensed water on the surface of the evaporator 40 may be provided under the evaporator 40. Moreover, although the control part 50 demonstrated by the case where the evaporation temperature was acquired from the evaporation temperature sensor 45 provided in the refrigerant | coolant exit side of the evaporator 40, the installation place of the evaporation temperature sensor 45 is on the refrigerant | coolant exit side of the evaporator 40. It may be not only the refrigerant inlet side but also both the refrigerant inlet and the refrigerant outlet. Furthermore, a suction pressure sensor that measures the pressure on the refrigerant suction side of the compressor 10 may be provided, and the control unit 50 may calculate the evaporation temperature using the measured value of the suction pressure sensor.
 次に、本実施の形態1の除湿機1の動作を、図1を参照して説明する。制御部50は、圧縮機10および送風機60を起動し、膨張装置30の開度を初期値に設定する。冷媒は圧縮機10から凝縮器20、膨張装置30および蒸発器40の順に配管15を流通して圧縮機10に戻るサイクルを繰り返す。 Next, the operation of the dehumidifier 1 according to the first embodiment will be described with reference to FIG. The control part 50 starts the compressor 10 and the air blower 60, and sets the opening degree of the expansion apparatus 30 to an initial value. The refrigerant repeats a cycle of returning from the compressor 10 to the compressor 10 through the pipe 15 in the order of the condenser 20, the expansion device 30, and the evaporator 40.
 除湿対象空間から風路61に吸い込まれた空気は、蒸発器40を通る。その際、低温の蒸発器40を通る空気は、蒸発器40と熱交換することで露点温度以下まで冷やされる。その結果、蒸発器40の表面が結露し、空気の絶対湿度が低下する。絶対湿度が低下した空気は、凝縮器20を通る際、高温の凝縮器20と熱交換することで温められる。凝縮器20を通る空気は、温められることで、相対湿度が低下した、乾燥した空気となる。この乾燥した空気が除湿機1から除湿対象空間に放出されることで、除湿対象空間の除湿を行うことができる。 The air sucked into the air passage 61 from the space to be dehumidified passes through the evaporator 40. At that time, the air passing through the low-temperature evaporator 40 is cooled to the dew point temperature or lower by exchanging heat with the evaporator 40. As a result, the surface of the evaporator 40 is condensed and the absolute humidity of the air is reduced. When the absolute humidity is lowered, the air is heated by exchanging heat with the high-temperature condenser 20 when passing through the condenser 20. The air passing through the condenser 20 becomes dry air having a reduced relative humidity when heated. By releasing this dried air from the dehumidifier 1 to the dehumidifying target space, the dehumidifying target space can be dehumidified.
 図3は、空気の温度および湿度の変化を示す空気線図である。図3の縦軸は絶対湿度を示し、横軸は空気の乾球温度を示す。風路61を流れる空気の温度および湿度の変化を、図3を参照して説明する。図3に示す実線矢印は、空気の温度および湿度の状態の変化を示す。図3に示す状態Sinは、除湿機1に吸い込まれる、風路61の入口における空気の状態を示す。図3に示す状態Soutは、除湿機1から吹き出される、風路61の出口における空気の状態を示す。 FIG. 3 is an air diagram showing changes in air temperature and humidity. The vertical axis in FIG. 3 indicates absolute humidity, and the horizontal axis indicates the dry bulb temperature of air. Changes in the temperature and humidity of the air flowing through the air passage 61 will be described with reference to FIG. The solid line arrows shown in FIG. 3 indicate changes in air temperature and humidity. A state Sin illustrated in FIG. 3 indicates a state of air sucked into the dehumidifier 1 at the inlet of the air passage 61. A state Sout shown in FIG. 3 indicates a state of air blown out from the dehumidifier 1 at the outlet of the air passage 61.
 除湿機1に吸い込まれた空気の温度は、蒸発器40で冷やされることで状態Sinから露天温度(図3に示す状態Sv1)まで下がる。空気の湿度は、相対湿度100%の線に沿って、絶対湿度が状態Sv2に相当する値まで低下する。空気は、状態Sv1から状態Sv2まで変化すると、温度も低下するが、凝縮器20を通るときに温められ、状態Soutに相当する温度まで上昇する。その後、状態Sinに比べて相対湿度が低下した状態Soutの空気が除湿機1から除湿対象空間に放出される。 The temperature of the air sucked into the dehumidifier 1 is lowered by the evaporator 40 from the state Sin to the outdoor temperature (state Sv1 shown in FIG. 3). The humidity of the air decreases along the line of 100% relative humidity to a value where the absolute humidity corresponds to the state Sv2. When the air changes from the state Sv1 to the state Sv2, the temperature also decreases, but is warmed when passing through the condenser 20 and rises to a temperature corresponding to the state Sout. Thereafter, the air in the state Sout in which the relative humidity is lower than that in the state Sin is released from the dehumidifier 1 to the dehumidifying target space.
 また、本実施の形態1において、制御部50は、実測の湿度と目標湿度とを比較し、次のように圧縮機10の運転周波数を制御してもよい。図4は、図1に示した除湿機の動作手順の一例を示すフローチャートである。 In the first embodiment, the control unit 50 may compare the actually measured humidity with the target humidity and control the operating frequency of the compressor 10 as follows. FIG. 4 is a flowchart showing an example of an operation procedure of the dehumidifier shown in FIG.
 制御部50は、一定の周期で入口湿度センサ71および蒸発温度センサ45から測定値を取得し(ステップS101)、蒸発温度Teが0℃より高いか否かを判定する(ステップS102)。1回の周期の時間をΔt1とする。ステップS102の判定において、蒸発温度Teが0℃以下の場合、制御部50は、後述するステップS105に進む。蒸発温度Teが0℃より高い場合、制御部50は、目標湿度H0と入口湿度センサ71が測定した湿度H1とを比較する。iは正の整数とする。制御部50は、目標湿度H0と湿度H1との湿度差ΔHに基づいて、圧縮機10の運転周波数を制御する。 The control unit 50 acquires measured values from the inlet humidity sensor 71 and the evaporation temperature sensor 45 at a constant cycle (step S101), and determines whether or not the evaporation temperature Te is higher than 0 ° C. (step S102). Let time of one cycle be Δt1. If it is determined in step S102 that the evaporation temperature Te is 0 ° C. or lower, the control unit 50 proceeds to step S105 described later. When the evaporation temperature Te is higher than 0 ° C., the control unit 50 compares the target humidity H0 with the humidity H1 i measured by the inlet humidity sensor 71. i is a positive integer. The controller 50 controls the operating frequency of the compressor 10 based on the humidity difference ΔH i between the target humidity H0 and the humidity H1 i .
 図4に示す手順の例では、ステップS103において、制御部50は、湿度差ΔHが第1の閾値TH1より大きいか否かを判定する。第1の閾値TH1はメモリ51に予め格納されている。ステップS103の判定の結果、湿度差ΔHが第1の閾値TH1より大きい場合、制御部50は、圧縮機10の運転周波数を増やす(ステップS104)。一方、ステップS102の判定の結果、湿度差ΔHが第1の閾値TH1以下である場合、制御部50は、圧縮機10の運転周波数を変更せず維持する(ステップS105)。ステップS104において、制御部50は、湿度差ΔHと第1の閾値TH1との差が大きいほど、圧縮機10の運転周波数を増やす値を大きくしてもよい。また、ステップS105において、制御部50は、圧縮機10の運転周波数を小さくしてもよい。 In the example of the procedure shown in FIG. 4, in step S103, the control unit 50, the humidity difference [Delta] H i is equal to or greater than the first threshold TH1. The first threshold TH1 is stored in the memory 51 in advance. It determined in step S103, when the humidity difference [Delta] H i is greater than the first threshold value TH1, the control unit 50 increases the operating frequency of the compressor 10 (step S104). On the other hand, the result of the determination in step S102, when the humidity difference [Delta] H i is equal to or less than the first threshold value TH1, the control unit 50 maintains unchanged the operating frequency of the compressor 10 (step S105). In step S104, the control unit 50, the larger the difference between the humidity difference [Delta] H i and the first threshold TH1, it may increase the value to increase the operating frequency of the compressor 10. In step S105, the control unit 50 may decrease the operating frequency of the compressor 10.
 制御部50が図4に示した手順にしたがって除湿機1を制御すれば、蒸発器40に着霜が生じない範囲で、除湿対象空間における実測の湿度と目標湿度との差に応じて除湿能力を向上させることができる。その結果、除湿対象空間の湿度を目標湿度近くまでより早く到達させることができる。 If the control unit 50 controls the dehumidifier 1 according to the procedure shown in FIG. 4, the dehumidifying capacity is determined in accordance with the difference between the actually measured humidity and the target humidity in the dehumidifying target space in a range where the evaporator 40 is not frosted. Can be improved. As a result, the humidity of the dehumidifying target space can be made to reach the target humidity more quickly.
 さらに、本実施の形態1において、制御部50は、実測の湿度の時間変化に基づいて、次のように圧縮機10の運転周波数を制御してもよい。図5は、図1に示した除湿機の動作手順の他の例を示すフローチャートである。図6は、図1に示した除湿機の運転時における、湿度と時間の関係を示すグラフである。図6の縦軸は相対湿度を示し、横軸は時間を示す。なお、図5に示すフローチャートでは、図4に示した処理と同様な処理に同じステップ番号を付し、その詳細な説明を省略する。 Furthermore, in the first embodiment, the control unit 50 may control the operating frequency of the compressor 10 as follows based on the time change of the actually measured humidity. FIG. 5 is a flowchart showing another example of the operation procedure of the dehumidifier shown in FIG. FIG. 6 is a graph showing the relationship between humidity and time during operation of the dehumidifier shown in FIG. The vertical axis in FIG. 6 indicates relative humidity, and the horizontal axis indicates time. In the flowchart shown in FIG. 5, the same step number is assigned to the same process as the process shown in FIG. 4, and detailed description thereof is omitted.
 ステップS101において、制御部50は、時間Δt1の周期で、時間Δt1の前後に取得する湿度H1i-1および湿度H1をメモリ51に記憶する。ステップS103の判定の結果、湿度差ΔHが第1の閾値TH1以下である場合、制御部50は、前回の時刻ti-1に測定された湿度H1i-1と目標湿度H0との湿度差である第1の湿度差ΔHi-1と、今回の時刻tに測定された湿度H1と目標湿度H0との湿度差である第2の湿度差ΔHとの大小を比較する(ステップS111)。 In step S101, the control unit 50 stores the humidity H1 i-1 and the humidity H1 i acquired before and after the time Δt1 in the memory 51 in the period of the time Δt1. It determined in step S103, when the humidity difference [Delta] H i is equal to or less than the first threshold value TH1, the control unit 50, the humidity of the humidity H1 i-1 and the target humidity H0 measured the previous time t i-1 first humidity difference [Delta] H i-1 is the difference, compares the magnitude of the second humidity difference [Delta] H i is the humidity difference between the current time t i humidity H1 i and target humidity H0 measured in ( Step S111).
 ステップS111の判定において、ΔH<ΔHi-1の場合、制御部50は、第2の湿度差ΔHの大きさに応じて、圧縮機10の運転周波数を小さくする(ステップS112)。例えば、第1の湿度差ΔHi-1に対する第2の湿度差ΔHの割合が小さいほど、制御部50は、圧縮機10の運転周波数を小さくする割合を大きくしてもよい。一方、ステップS111の判定の結果、ΔH≧ΔHi-1の場合、制御部50は、圧縮機10の運転周波数を変更せず維持する(ステップS113)。 If it is determined in step S111 that ΔH i <ΔH i−1 , the control unit 50 decreases the operating frequency of the compressor 10 according to the magnitude of the second humidity difference ΔH i (step S112). For example, as the ratio of the second humidity difference ΔH i to the first humidity difference ΔH i−1 is smaller, the control unit 50 may increase the ratio of decreasing the operating frequency of the compressor 10. On the other hand, if ΔH i ≧ ΔH i−1 as a result of the determination in step S111, the control unit 50 maintains the operating frequency of the compressor 10 without being changed (step S113).
 図5に示すフローチャートにおいても、ステップS102の判定の結果、蒸発温度Teが0℃以下の場合、制御部50は、圧縮機10の運転周波数を維持する制御を行うが(ステップS113)、この場合、運転周波数を小さくする制御を行ってもよい。 Also in the flowchart shown in FIG. 5, if the evaporation temperature Te is 0 ° C. or lower as a result of the determination in step S102, the control unit 50 performs control to maintain the operating frequency of the compressor 10 (step S113). Further, control for reducing the operation frequency may be performed.
 制御部50が図5に示した手順にしたがって除湿機1を制御すれば、必要な除湿能力を確保しながら圧縮機10の運転周波数を低減し、除湿能力が過剰になることを抑えることができる。その結果、除湿機1の消費電力が低減し、省エネルギー運転を行うことができる。なお、図4および図5を参照して、制御部50が入口湿度センサ71から測定値を取得する周期が同じ場合で説明したが、これらの周期が図4および図5に示すフローチャートで異なっていてもよい。 If the control unit 50 controls the dehumidifier 1 according to the procedure shown in FIG. 5, it is possible to reduce the operating frequency of the compressor 10 while ensuring the necessary dehumidifying capacity, and to prevent the dehumidifying capacity from becoming excessive. . As a result, the power consumption of the dehumidifier 1 is reduced and energy saving operation can be performed. In addition, with reference to FIG. 4 and FIG. 5, although the period when the control part 50 acquires a measured value from the entrance humidity sensor 71 was the same, these periods differed in the flowchart shown in FIG. 4 and FIG. May be.
 本実施の形態1の除湿機1は、圧縮機10、凝縮器20、膨張装置30および蒸発器40が順に配管で接続された冷媒回路と、除湿対象空間から蒸発器40および凝縮器20を経由して除湿対象空間に戻る風路61に空気を流通させる送風機60と、風路61の入口に設けられた入口湿度センサ71と、蒸発器40の蒸発温度を測定する蒸発温度センサ45と、制御部50とを有し、制御部50は、蒸発温度が水の凍結温度より高い範囲で、目標湿度と実測湿度との湿度差に応じて圧縮機10の運転周波数を制御するものである。 The dehumidifier 1 according to the first embodiment includes a refrigerant circuit in which the compressor 10, the condenser 20, the expansion device 30 and the evaporator 40 are connected in order through a pipe, and the dehumidification target space via the evaporator 40 and the condenser 20. Then, a blower 60 that circulates air through the air passage 61 that returns to the dehumidifying target space, an inlet humidity sensor 71 provided at the inlet of the air passage 61, an evaporation temperature sensor 45 that measures the evaporation temperature of the evaporator 40, and control The controller 50 controls the operating frequency of the compressor 10 in accordance with the humidity difference between the target humidity and the actually measured humidity in a range where the evaporation temperature is higher than the freezing temperature of water.
 本実施の形態1によれば、蒸発温度が水の凍結温度まで低下しないように、目標湿度と実測湿度との湿度差に応じて圧縮機10の運転周波数を制御して蒸発温度を調節するため、蒸発器40に着霜が生じることを抑制しながら除湿能力を向上させることができる。また、湿度差の値が大きいほど、圧縮機10の運転周波数を大きくすれば、除湿対象空間の湿度を目標湿度近くまでより早く到達させることができる。 According to the first embodiment, in order to adjust the evaporation temperature by controlling the operating frequency of the compressor 10 according to the humidity difference between the target humidity and the actually measured humidity so that the evaporation temperature does not decrease to the freezing temperature of water. The dehumidifying ability can be improved while suppressing the formation of frost on the evaporator 40. Further, if the operating frequency of the compressor 10 is increased as the humidity difference value is increased, the humidity in the dehumidifying target space can be made to reach the target humidity sooner.
 本実施の形態1において、制御部50は、一定の周期で入口湿度センサから測定値を取得し、前回取得した測定値と目標湿度との差である第1の湿度差と、今回取得した測定値と目標湿度との差である第2の湿度差とを比較し、第2の湿度差が第1の湿度差より小さい場合、圧縮機10の運転周波数を小さくしてもよい。この場合、必要な除湿能力を確保し、除湿能力が過剰になることを抑制できる。その結果、除湿機1の消費電力が低減し、省エネルギー運転を行うことができる。 In the first embodiment, the control unit 50 acquires the measurement value from the inlet humidity sensor at a constant cycle, the first humidity difference that is the difference between the previously acquired measurement value and the target humidity, and the measurement acquired this time. The second humidity difference that is the difference between the value and the target humidity is compared, and when the second humidity difference is smaller than the first humidity difference, the operating frequency of the compressor 10 may be reduced. In this case, the necessary dehumidifying capacity can be ensured and the dehumidifying capacity can be suppressed from becoming excessive. As a result, the power consumption of the dehumidifier 1 is reduced and energy saving operation can be performed.
実施の形態2.
 実施の形態1では、除湿機1は、蒸発温度が水の凍結温度まで下がらないように、圧縮機10の運転周波数を大きくして、蒸発器40の冷凍能力を向上させている。しかし、蒸発温度が水の凍結温度に達していなくても、水の凍結温度に近くなると、蒸発器40の冷凍能力が低下してしまう。本実施の形態2は、除湿と除霜とをバランスよく行って除湿能力を向上させるものである。
Embodiment 2. FIG.
In the first embodiment, the dehumidifier 1 increases the operating frequency of the compressor 10 to improve the refrigerating capacity of the evaporator 40 so that the evaporation temperature does not fall to the freezing temperature of water. However, even if the evaporating temperature does not reach the freezing temperature of water, the refrigerating capacity of the evaporator 40 decreases when the evaporating temperature approaches the freezing temperature of water. In the second embodiment, dehumidification and defrost are performed in a well-balanced manner to improve the dehumidification capability.
 本実施の形態2の除湿機の構成を説明する。本実施の形態2では、実施の形態1で説明した構成と同様な構成については、その詳細な説明を省略する。図7は、本発明の実施の形態2に係る除湿機の一構成例を示す冷媒回路図である。 The configuration of the dehumidifier of the second embodiment will be described. In the second embodiment, detailed description of the same configuration as that described in the first embodiment is omitted. FIG. 7 is a refrigerant circuit diagram illustrating a configuration example of the dehumidifier according to Embodiment 2 of the present invention.
 図7に示すように、除湿機1aは、図1に示した構成と比較すると、入口温度センサ72、出口湿度センサ81および出口温度センサ82が追加された構成である。入口温度センサ72、出口湿度センサ81および出口温度センサ82は信号線を介して制御部50と接続されている。 As shown in FIG. 7, the dehumidifier 1a has a configuration in which an inlet temperature sensor 72, an outlet humidity sensor 81, and an outlet temperature sensor 82 are added as compared with the configuration shown in FIG. The inlet temperature sensor 72, the outlet humidity sensor 81, and the outlet temperature sensor 82 are connected to the control unit 50 through signal lines.
 入口温度センサ72は、風路61の入口に設けられている。入口温度センサ72は、除湿対象空間から除湿機1aに吸い込まれる空気の温度を測定する。入口温度センサ72は、測定値として温度T1を制御部50に信号線を介して出力する。出口湿度センサ81および出口温度センサ82は、風路61の出口に設けられている。出口湿度センサ81は、除湿機1aから除湿対象空間に吹き出される空気の湿度を測定する。出口湿度センサ81は、測定値として湿度H2を制御部50に信号線を介して出力する。出口温度センサ82は、除湿機1aから除湿対象空間に吹き出される空気の温度を測定する。出口温度センサ82は、測定値として温度T2を制御部50に信号線を介して出力する。 The inlet temperature sensor 72 is provided at the inlet of the air passage 61. The inlet temperature sensor 72 measures the temperature of the air sucked into the dehumidifier 1a from the dehumidification target space. The inlet temperature sensor 72 outputs the temperature T1 as a measurement value to the control unit 50 via a signal line. The outlet humidity sensor 81 and the outlet temperature sensor 82 are provided at the outlet of the air passage 61. The outlet humidity sensor 81 measures the humidity of the air blown from the dehumidifier 1a to the dehumidifying target space. The outlet humidity sensor 81 outputs the humidity H2 as a measurement value to the control unit 50 via a signal line. The outlet temperature sensor 82 measures the temperature of the air blown from the dehumidifier 1a to the dehumidifying target space. The outlet temperature sensor 82 outputs the temperature T2 as a measurement value to the control unit 50 via a signal line.
 制御部50は、着霜抑制制御が設定され、一定の条件が満たされると、目標湿度と入口湿度センサ71の測定値との湿度差に応じて圧縮機10の運転周波数を大きくすることを禁止し、圧縮機10の運転周波数を維持または小さくする着霜抑制制御を開始する。着霜抑制制御の設定は、例えば、図に示さないリモートコントローラをユーザが操作して行ってもよく、除湿機1aに設けられた図に示さないスイッチをユーザがオフ状態からオン状態に切り替えて行ってもよい。一定の条件とは、例えば、蒸発器40に着霜が生じる直前の温度まで蒸発温度Teが低下することである。以下では、目標湿度と入口湿度センサ71の測定値との湿度差に応じて圧縮機10の運転周波数を大きくする制御を、通常除湿制御と称する。 The control unit 50 prohibits increasing the operating frequency of the compressor 10 according to the humidity difference between the target humidity and the measured value of the inlet humidity sensor 71 when frosting suppression control is set and a certain condition is satisfied. Then, the frosting suppression control for maintaining or reducing the operation frequency of the compressor 10 is started. For example, the frosting suppression control may be set by a user operating a remote controller (not shown), and the user switches a switch (not shown) provided in the dehumidifier 1a from an off state to an on state. You may go. The constant condition is, for example, that the evaporation temperature Te is lowered to a temperature just before frosting occurs in the evaporator 40. Hereinafter, control for increasing the operating frequency of the compressor 10 in accordance with the humidity difference between the target humidity and the measured value of the inlet humidity sensor 71 is referred to as normal dehumidification control.
 制御部50のメモリ51は、空気線図のデータと、除湿機1aの機種毎に異なる除湿能力線図のデータと、除湿能力線図において湿度に依存する能力低下を補正する係数である能力補正係数とを記憶している。実施の形態1で説明した図3は、空気線図のグラフの一部を示す。制御部50は、着霜抑制制御を開始した後、湿度H1、温度T1、湿度H2および温度T2の値を用いて、除湿能力Q1を簡易的に算出する。また、制御部50は、機種毎の定格能力で決まる除湿能力である機種除湿能力に基づいて定格除湿能力Q2を求める。そして、制御部50は、除湿能力Q1が定格除湿能力Q2より小さい場合、着霜抑制制御を解除し、通常除湿制御を再開する。 The memory 51 of the control unit 50 includes air diagram data, dehumidification capability diagram data that differs depending on the model of the dehumidifier 1a, and capability correction that is a coefficient that corrects a humidity reduction in the dehumidification capability diagram. The coefficient is memorized. FIG. 3 described in the first embodiment shows a part of a graph of an air diagram. After starting the frost suppression control, the control unit 50 simply calculates the dehumidifying capacity Q1 using the values of the humidity H1, the temperature T1, the humidity H2, and the temperature T2. Moreover, the control part 50 calculates | requires the rated dehumidification capability Q2 based on the model dehumidification capability which is a dehumidification capability determined by the rated capability for every model. When the dehumidifying capacity Q1 is smaller than the rated dehumidifying capacity Q2, the control unit 50 releases the frosting suppression control and resumes the normal dehumidifying control.
 次に、本実施の形態2の除湿機1aの動作を説明する。図8は、図7に示した除湿機の動作手順の一例を示すフローチャートである。初期状態として、制御部50は通常除湿制御を行っているものとする。 Next, the operation of the dehumidifier 1a according to the second embodiment will be described. FIG. 8 is a flowchart showing an example of an operation procedure of the dehumidifier shown in FIG. As an initial state, the control unit 50 performs normal dehumidification control.
 制御部50は、ユーザにより着霜抑制制御がオン状態に設定される。制御部50は、着霜抑制制御がオン状態に設定されても、一定の条件が満たされるまで、通常除湿制御を継続する。制御部50は、時間Δt2の周期で蒸発温度センサ45から蒸発温度Teを取得する(ステップS201)。制御部50は、蒸発温度Teが4.5℃以下であるか否かを判定する(ステップS202)。ステップS202の判定の結果、蒸発温度Teが4.5℃以下である場合、制御部50は、通常除湿制御を中止し、着霜抑制制御を実行する(ステップS203)。圧縮機10の運転周波数の増加を禁止することで、蒸発温度Teがさらに低下することが抑制される。一方、ステップS202の判定の結果、蒸発温度Teが4.5℃より高い場合、制御部50はステップS201に戻り、通常除湿制御を維持する。 In the control unit 50, the frost suppression control is set to the on state by the user. The controller 50 continues the normal dehumidification control until a certain condition is satisfied even when the frost suppression control is set to the on state. The control unit 50 acquires the evaporation temperature Te from the evaporation temperature sensor 45 at a period of time Δt2 (step S201). The controller 50 determines whether or not the evaporation temperature Te is 4.5 ° C. or less (step S202). As a result of the determination in step S202, when the evaporation temperature Te is 4.5 ° C. or lower, the control unit 50 stops the normal dehumidification control and executes the frosting suppression control (step S203). By prohibiting an increase in the operating frequency of the compressor 10, it is possible to suppress the evaporation temperature Te from further decreasing. On the other hand, if the result of determination in step S202 is that the evaporation temperature Te is higher than 4.5 ° C., the control unit 50 returns to step S201 and maintains normal dehumidification control.
 ステップS203で圧縮機10の運転周波数の増加が禁止されたが、さらに蒸発温度Teが低下することも考えられる。制御部50は、蒸発温度Teが3.5℃以下であるか否かを判定する(ステップS204)。ステップS204の判定において、蒸発温度Teが3.5℃以下になると、制御部50は、圧縮機10の運転周波数を小さくする。制御部50は、圧縮機10の運転周波数を小さくすることで、蒸発温度Teを上昇させ、蒸発器40に着霜が生じないように制御する。一方、ステップS204の判定の結果、蒸発温度Teが3.5℃より高い場合、制御部50は、圧縮機10の運転周波数を維持し、ステップS206に進む。 In step S203, an increase in the operating frequency of the compressor 10 is prohibited, but it is also conceivable that the evaporation temperature Te further decreases. The controller 50 determines whether or not the evaporation temperature Te is 3.5 ° C. or less (step S204). In the determination in step S204, when the evaporation temperature Te becomes 3.5 ° C. or lower, the control unit 50 decreases the operating frequency of the compressor 10. The controller 50 increases the evaporation temperature Te by reducing the operating frequency of the compressor 10 and controls the evaporator 40 so as not to form frost. On the other hand, if the evaporation temperature Te is higher than 3.5 ° C. as a result of the determination in step S204, the control unit 50 maintains the operating frequency of the compressor 10 and proceeds to step S206.
 続いて、制御部50は、圧縮機10の運転周波数を維持または小さくしてから時間Δt3が経過したか否かを判定する(ステップS206)。圧縮機10の運転周波数に対する制御による効果が蒸発器40に発生するまでタイムラグがあることから、時間Δt3は、蒸発温度の監視の頻度を決める時間Δt2も長い方が望ましい。時間Δt3が経過するまで、制御部50は、ステップS204の判定を繰り返し、蒸発温度Teが3.5℃より大きくならない場合、圧縮機10の運転周波数を小さくする(ステップS205)。制御部50が着霜抑制制御により圧縮機10の運転周波数を減少させ続けた場合、蒸発温度Teが上昇し、空気と蒸発器40との温度差が低下する。この場合、蒸発器40の冷凍能力が低下し、除湿能力も低下することになる。 Subsequently, the control unit 50 determines whether or not the time Δt3 has elapsed since the operating frequency of the compressor 10 was maintained or decreased (step S206). Since there is a time lag until the effect of control on the operating frequency of the compressor 10 occurs in the evaporator 40, it is desirable that the time Δt3 is longer than the time Δt2 that determines the frequency of monitoring the evaporation temperature. Until the time Δt3 has elapsed, the control unit 50 repeats the determination of step S204, and when the evaporation temperature Te does not become higher than 3.5 ° C., the control frequency of the compressor 10 is decreased (step S205). When the control unit 50 continues to decrease the operating frequency of the compressor 10 by the frost suppression control, the evaporation temperature Te increases and the temperature difference between the air and the evaporator 40 decreases. In this case, the refrigerating capacity of the evaporator 40 is lowered and the dehumidifying capacity is also lowered.
 蒸発器40において、着霜に起因する、熱交換性能の悪化に伴って冷凍能力が低下するが、霜を溶かすための除霜時間の分だけ着霜抑制制御を実行することで、冷凍能力は回復する。しかし、圧縮機10の運転周波数を減少させ続けると、冷凍能力が回復しているにもかかわらず、着霜抑制制御が維持されてしまうことが起こり得る。この場合、除湿能力が過剰に低下してしまう。そのため、着霜抑制制御による蒸発器40における冷凍能力の回復と冷凍能力の低下とを比較し、着霜抑制制御と通常除湿制御との切り換えを見極める必要がある。 In the evaporator 40, the refrigeration capacity is reduced as the heat exchange performance is deteriorated due to the frost formation, but the refrigeration capacity is reduced by executing the frost suppression control for the defrosting time for melting the frost. Recover. However, if the operating frequency of the compressor 10 is continuously reduced, the frosting suppression control may be maintained even though the refrigeration capacity is recovered. In this case, the dehumidifying ability is excessively reduced. Therefore, it is necessary to compare the recovery of the refrigeration capacity and the decrease in the refrigeration capacity in the evaporator 40 by the frost suppression control to determine the switching between the frost suppression control and the normal dehumidification control.
 制御部50は、圧縮機10の運転周波数が減少したことで低下した除湿能力Q1を、次のようにして、簡易的に算出する。図3に示した空気線図を参照すると、風路61を通る空気の状態は、図3に示す実線矢印の経路で遷移する。そこで、制御部50は、空気線図を参照し、入口湿度センサ71から取得する湿度H1と入口温度センサ72から取得する温度T1とを用いて、風路61の入口における空気の絶対湿度である入口絶対湿度AHinを算出する。風路61の出口側についても、制御部50は、空気線図を参照し、出口湿度センサ81から取得する湿度H2と出口温度センサ82から取得する温度T2とを用いて、風路61の出口における空気の絶対湿度である出口絶対湿度AHoutを算出する。 The control unit 50 simply calculates the dehumidifying ability Q1 that has decreased due to a decrease in the operating frequency of the compressor 10 as follows. Referring to the air diagram shown in FIG. 3, the state of the air passing through the air passage 61 transitions along the path indicated by the solid line arrow shown in FIG. 3. Therefore, the control unit 50 refers to the air diagram and uses the humidity H1 acquired from the inlet humidity sensor 71 and the temperature T1 acquired from the inlet temperature sensor 72 to determine the absolute humidity of the air at the inlet of the air passage 61. The inlet absolute humidity AHin is calculated. Also on the outlet side of the air passage 61, the control unit 50 refers to the air diagram, and uses the humidity H2 acquired from the outlet humidity sensor 81 and the temperature T2 acquired from the outlet temperature sensor 82 to output the air passage 61 from the outlet. The outlet absolute humidity AHout, which is the absolute humidity of the air, is calculated.
 さらに、制御部50は、入口絶対湿度AHinおよび出口絶対湿度AHoutを用いて、絶対湿度差ΔAH=(入口絶対湿度AHin-出口絶対湿度AHout)を算出する。制御部50は、算出した絶対湿度差ΔAHに除湿機1aの機種毎に定められた風量を乗算することで、単位時間当たりの除湿量を計算し、簡易的に除湿能力Q1を算出する。 Furthermore, the control unit 50 calculates the absolute humidity difference ΔAH = (inlet absolute humidity AHin−outlet absolute humidity AHout) using the inlet absolute humidity AHin and the outlet absolute humidity AHout. The controller 50 calculates the dehumidification amount per unit time by multiplying the calculated absolute humidity difference ΔAH by the air volume determined for each model of the dehumidifier 1a, and simply calculates the dehumidification capability Q1.
 次に、制御部50は、除湿機1aの機種毎の定格能力で決まる機種除湿能力から、次のようにして定格除湿能力Q2を求める。機種除湿能力は、例えば、除湿能力線図で表される。着霜と除霜とを考慮した定格除湿能力Q2は、除湿機1aの除湿能力線図に能力補正係数を乗算する必要がある。能力補正係数は、機種除湿能力に対して、湿度に依存する能力低下を補正する係数である。図9は、除霜による除湿能力低下を示す能力補正係数の一例を示すグラフである。図9の縦軸は温度を示し、横軸は相対湿度を示す。 Next, the control unit 50 obtains the rated dehumidifying capacity Q2 from the model dehumidifying capacity determined by the rated capacity for each model of the dehumidifier 1a as follows. The model dehumidifying capacity is represented by a dehumidifying capacity diagram, for example. The rated dehumidifying capacity Q2 in consideration of frost formation and defrosting needs to be multiplied by a capacity correction coefficient to the dehumidifying capacity diagram of the dehumidifier 1a. The capacity correction coefficient is a coefficient for correcting a capacity decrease depending on humidity with respect to the model dehumidifying capacity. FIG. 9 is a graph showing an example of a capability correction coefficient indicating a dehumidification capability decrease due to defrosting. In FIG. 9, the vertical axis represents temperature, and the horizontal axis represents relative humidity.
 能力補正係数は、温度および湿度の条件によって変わるが、図9に示すように、除湿能力線図に対して、湿度に依存した係数となる。制御部50は、図9に示す能力補正係数から測定時の湿度H1に対応する能力補正係数を読み出し、読み出した能力補正係数を、メモリ51が記憶する除湿能力線図のデータに乗算することで、着霜と除霜とを考慮した定格除湿能力Q2を算出する。図8に示す手順の一例では、湿度H1が60%~70%の範囲である場合とする。この場合、図9を参照すると、能力補正係数は0.6となる。 The capacity correction coefficient varies depending on the temperature and humidity conditions, but as shown in FIG. 9, the capacity correction coefficient is a coefficient depending on the humidity with respect to the dehumidification capacity diagram. The control unit 50 reads out the capability correction coefficient corresponding to the humidity H1 at the time of measurement from the capability correction coefficient shown in FIG. 9, and multiplies the read capability correction coefficient by the data of the dehumidification capability diagram stored in the memory 51. The rated dehumidifying capacity Q2 is calculated in consideration of frost formation and defrosting. In the example of the procedure shown in FIG. 8, it is assumed that the humidity H1 is in the range of 60% to 70%. In this case, referring to FIG. 9, the capability correction coefficient is 0.6.
 上記のようにして、制御部50は、入口湿度センサ71が測定した湿度H1の下で、着霜抑制制御による圧縮機10の運転周波数低下時の除湿能力Q1と、着霜と除霜とを考慮した定格除湿能力Q2とを算出すると、除湿能力Q1と定格除湿能力Q2とを比較する。図8に示すステップS207において、制御部50は、除湿能力Q1が定格除湿能力Q2以上であるか否かを判定する。ステップS207の判定の結果、Q1≧Q2である場合、制御部50は、着霜抑制制御を継続し、ステップS201に戻る。一方、ステップS207の判定の結果、Q1<Q2である場合、制御部50は、着霜抑制制御を解除し、通常除湿制御を再開する(ステップS208)。 As described above, the control unit 50 performs the dehumidifying ability Q1 when the operating frequency of the compressor 10 is decreased by the frosting suppression control, the frosting and the defrosting under the humidity H1 measured by the inlet humidity sensor 71. When the rated dehumidifying capacity Q2 is calculated, the dehumidifying capacity Q1 is compared with the rated dehumidifying capacity Q2. In step S207 shown in FIG. 8, the control unit 50 determines whether or not the dehumidifying capacity Q1 is equal to or higher than the rated dehumidifying capacity Q2. As a result of the determination in step S207, if Q1 ≧ Q2, the control unit 50 continues the frosting suppression control and returns to step S201. On the other hand, if Q1 <Q2 as a result of the determination in step S207, the control unit 50 cancels the frosting suppression control and resumes the normal dehumidification control (step S208).
 なお、図8を参照して説明した手順では、一定の条件が、蒸発温度Teが4.5℃以下の場合で説明したが、蒸発温度Teの値は4.5℃に限らず、3.5℃であってもよい。また、一定の条件は蒸発温度Teの場合に限らず、他の条件であってもよい。また、時間Δt2は実施の形態1の時間Δt1と同じであってもよく、異なっていてもよい。 In the procedure described with reference to FIG. 8, the constant condition is described when the evaporation temperature Te is 4.5 ° C. or lower, but the value of the evaporation temperature Te is not limited to 4.5 ° C. It may be 5 ° C. Further, the certain condition is not limited to the evaporation temperature Te, but may be other conditions. The time Δt2 may be the same as or different from the time Δt1 of the first embodiment.
 本実施の形態2の除湿機1aでは、制御部50は、蒸発温度が水の凍結温度よりも高い予め決められた温度まで下がると、圧縮機10の運転周波数を大きくすることを禁止し、圧縮機10の運転周波数を維持または小さくする着霜抑制制御を実行する。蒸発温度が水の凍結温度よりも高い予め決められた温度とは、例えば、4.5℃である。 In the dehumidifier 1a of the second embodiment, the control unit 50 prohibits increasing the operating frequency of the compressor 10 when the evaporation temperature falls to a predetermined temperature higher than the freezing temperature of water, and compresses Frost suppression control for maintaining or reducing the operating frequency of the machine 10 is executed. The predetermined temperature at which the evaporation temperature is higher than the freezing temperature of water is, for example, 4.5 ° C.
 本実施の形態2によれば、蒸発器40に着霜が生じ始めるおそれがある温度で、圧縮機10の運転周波数の増加を禁止するので、蒸発器40において、室温による除霜が行われ、冷凍能力を回復することができる。 According to the second embodiment, since the increase in the operating frequency of the compressor 10 is prohibited at a temperature at which frosting may start to occur in the evaporator 40, defrosting at room temperature is performed in the evaporator 40, The refrigeration capacity can be restored.
 また、本実施の形態2の除湿機1aでは、制御部50は、着霜抑制制御を開始した後、湿度H1、温度T1、湿度H2および温度T2の値を用いて、湿度H1における除湿能力Q1を簡易的に算出し、除湿機1aの機種除湿能力に基づいて定格除湿能力Q2を求め、除湿能力Q1と定格除湿能力Q2の大小を比較し、除湿能力Q1が定格除湿能力Q2より小さい場合、着霜抑制制御を解除し、通常除湿制御を再開する。 Moreover, in the dehumidifier 1a of this Embodiment 2, after starting frost suppression control, the control part 50 uses the value of humidity H1, temperature T1, humidity H2, and temperature T2, and dehumidification capability Q1 in humidity H1. If the dehumidifying capacity Q1 is smaller than the rated dehumidifying capacity Q2, the rated dehumidifying capacity Q2 is determined based on the model dehumidifying capacity of the dehumidifier 1a, the magnitude of the dehumidifying capacity Q1 and the rated dehumidifying capacity Q2 is compared, Release frosting suppression control and resume normal dehumidification control.
 蒸発温度が水の凍結温度まで低下しないように圧縮機10の運転周波数を減少させると、蒸発温度が上昇し、空気と蒸発器40との温度差が小さくなるため除湿能力が低下してくる。本実施の形態2では、制御部50が、着霜による冷凍能力の低下と除霜による冷凍能力の回復とを比較し、除湿能力がより高くなるように制御を自動的に切り換える。そのため、蒸発器40の冷凍能力の回復を過剰に行うことを抑制し、除湿対象空間の除湿をより効率良く行うことができる。 If the operating frequency of the compressor 10 is reduced so that the evaporation temperature does not drop to the freezing temperature of water, the evaporation temperature rises, and the temperature difference between the air and the evaporator 40 becomes smaller, so the dehumidifying ability decreases. In the second embodiment, the control unit 50 compares the decrease in the refrigeration capacity due to frosting and the recovery of the refrigeration capacity due to defrosting, and automatically switches the control so that the dehumidification capacity becomes higher. Therefore, excessive recovery of the refrigerating capacity of the evaporator 40 can be suppressed, and the dehumidification target space can be dehumidified more efficiently.
 本実施の形態2によれば、制御部50が圧縮機10の運転周波数を調整し、蒸発温度を制御する。蒸発温度が水の凍結温度より大きくなるように制御することで、蒸発器40に結露した水分が氷になることを防ぎ、着霜による熱交換器の性能低下を抑えることができる。その結果、除霜回数を低減し、除湿能力を向上させることができる。 According to the second embodiment, the control unit 50 adjusts the operating frequency of the compressor 10 to control the evaporation temperature. By controlling the evaporation temperature to be higher than the freezing temperature of water, it is possible to prevent moisture condensed on the evaporator 40 from becoming ice, and to suppress the performance deterioration of the heat exchanger due to frost formation. As a result, the defrosting frequency can be reduced and the dehumidifying ability can be improved.
 1、1a 除湿機、10 圧縮機、15 配管、20 凝縮器、30 膨張装置、40 蒸発器、45 蒸発温度センサ、50 制御部、51 メモリ、52 CPU、60 送風機、61 風路、71 入口湿度センサ、72 入口温度センサ、81 出口湿度センサ、82 出口温度センサ。 1, 1a Dehumidifier, 10 Compressor, 15 Piping, 20 Condenser, 30 Expansion Device, 40 Evaporator, 45 Evaporation Temperature Sensor, 50 Control Unit, 51 Memory, 52 CPU, 60 Blower, 61 Airway, 71 Inlet Humidity Sensor, 72 inlet temperature sensor, 81 outlet humidity sensor, 82 outlet temperature sensor.

Claims (5)

  1.  圧縮機、凝縮器、膨張装置および蒸発器が順に配管で接続され、冷媒が循環する冷媒回路と、
     除湿対象空間から前記蒸発器および凝縮器を経由して前記除湿対象空間に戻る風路に空気を流通させる送風機と、
     前記風路の入口に設けられ、空気の湿度を測定する入口湿度センサと、
     前記蒸発器の蒸発温度を測定する蒸発温度センサと、
     前記圧縮機、前記膨張装置および前記送風機を制御する制御部と、
    を有し、
     前記制御部は、
     前記蒸発温度が水の凍結温度より高い範囲で、目標湿度と前記入口湿度センサの測定値との湿度差に応じて、前記圧縮機の運転周波数を制御する、除湿機。
    A refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are sequentially connected by piping, and the refrigerant circulates;
    A blower that circulates air from a dehumidification target space to an air path that returns to the dehumidification target space via the evaporator and the condenser;
    An inlet humidity sensor provided at the inlet of the air passage for measuring the humidity of the air;
    An evaporation temperature sensor for measuring the evaporation temperature of the evaporator;
    A control unit for controlling the compressor, the expansion device and the blower;
    Have
    The controller is
    A dehumidifier that controls an operating frequency of the compressor according to a humidity difference between a target humidity and a measured value of the inlet humidity sensor in a range where the evaporation temperature is higher than a freezing temperature of water.
  2.  前記制御部は、
     前記湿度差の値が大きいほど、前記圧縮機の運転周波数を大きくする、請求項1に記載の除湿機。
    The controller is
    The dehumidifier according to claim 1, wherein an operating frequency of the compressor is increased as a value of the humidity difference is increased.
  3.  前記制御部は、
     一定の周期で前記入口湿度センサから測定値を取得し、前回取得した測定値と前記目標湿度との差である第1の湿度差と、今回取得した測定値と前記目標湿度との差である第2の湿度差とを比較し、該第2の湿度差が前記第1の湿度差より小さい場合、前記圧縮機の運転周波数を小さくする、請求項1または2に記載の除湿機。
    The controller is
    A measurement value is acquired from the inlet humidity sensor at a constant period, a first humidity difference that is a difference between the previously acquired measurement value and the target humidity, and a difference between the currently acquired measurement value and the target humidity. The dehumidifier according to claim 1 or 2, wherein the second humidity difference is compared, and if the second humidity difference is smaller than the first humidity difference, the operating frequency of the compressor is decreased.
  4.  前記制御部は、
     前記蒸発温度が水の凍結温度よりも高い予め決められた温度まで下がると、前記圧縮機の運転周波数を大きくすることを禁止し、該運転周波数を維持または小さくする着霜抑制制御を実行する、請求項1~3のいずれか1項に記載の除湿機。
    The controller is
    When the evaporation temperature falls to a predetermined temperature higher than the freezing temperature of water, it is prohibited to increase the operating frequency of the compressor, and frosting suppression control is performed to maintain or decrease the operating frequency. The dehumidifier according to any one of claims 1 to 3.
  5.  前記風路の入口に設けられ、空気の温度を測定する入口温度センサと、
     前記風路の出口に設けられ、空気の湿度を測定する出口湿度センサと、
     前記風路の出口に設けられ、空気の温度を測定する出口温度センサと、をさらに有し、
     前記制御部は、
     前記着霜抑制制御を開始した後、前記入口湿度センサ、前記入口温度センサ、前記出口湿度センサおよび前記出口温度センサの測定値に基づいて除湿能力を算出し、算出した除湿能力と定格能力に基づく定格除湿能力とを比較し、算出した除湿能力が該定格除湿能力より小さい場合、前記着霜抑制制御を解除し、前記目標湿度と前記入口湿度センサの測定値との湿度差に応じた前記運転周波数の制御を再開する、請求項4に記載の除湿機。
    An inlet temperature sensor that is provided at the inlet of the air passage and measures the temperature of the air;
    An outlet humidity sensor provided at the outlet of the air passage for measuring the humidity of the air;
    An outlet temperature sensor that is provided at the outlet of the air passage and measures the temperature of the air; and
    The controller is
    After starting the frosting suppression control, calculate the dehumidifying capacity based on the measured values of the inlet humidity sensor, the inlet temperature sensor, the outlet humidity sensor, and the outlet temperature sensor, and based on the calculated dehumidifying capacity and rated capacity Compared with the rated dehumidifying capacity, if the calculated dehumidifying capacity is smaller than the rated dehumidifying capacity, the frosting suppression control is canceled and the operation according to the humidity difference between the target humidity and the measured value of the inlet humidity sensor The dehumidifier of Claim 4 which restarts control of a frequency.
PCT/JP2017/011212 2017-03-21 2017-03-21 Dehumidifier WO2018173120A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/011212 WO2018173120A1 (en) 2017-03-21 2017-03-21 Dehumidifier
CN201780085771.7A CN110418921B (en) 2017-03-21 2017-03-21 Dehumidifier
JP2019506581A JP6843227B2 (en) 2017-03-21 2017-03-21 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011212 WO2018173120A1 (en) 2017-03-21 2017-03-21 Dehumidifier

Publications (1)

Publication Number Publication Date
WO2018173120A1 true WO2018173120A1 (en) 2018-09-27

Family

ID=63584320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011212 WO2018173120A1 (en) 2017-03-21 2017-03-21 Dehumidifier

Country Status (3)

Country Link
JP (1) JP6843227B2 (en)
CN (1) CN110418921B (en)
WO (1) WO2018173120A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112227043A (en) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 Drying control method of drying system
CN113418245A (en) * 2021-03-22 2021-09-21 青岛海尔空调电子有限公司 System, method and device for dehumidification
CN113847658A (en) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 Dehumidifier and control method thereof
JP7040424B2 (en) 2018-11-29 2022-03-23 三菱電機株式会社 Dehumidifier
CN114777222A (en) * 2022-04-25 2022-07-22 珠海格力电器股份有限公司 Dehumidification system, control method and device thereof and storage medium
CN114893934A (en) * 2022-05-24 2022-08-12 珠海格力电器股份有限公司 Constant-temperature dehumidification evaporator, air conditioner and control method of constant-temperature dehumidification evaporator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596575B (en) * 2020-05-25 2022-09-30 合肥天鹅制冷科技有限公司 Condensation water taking control method for evaporator of all-working-condition air water making machine
CN111966032A (en) * 2020-07-14 2020-11-20 中国人民解放军63653部队 Actual dehumidification quantity measurement control software system
CN112212474B (en) * 2020-09-14 2022-02-01 海信(山东)空调有限公司 Dehumidifier and dehumidification control method
CN116518701A (en) * 2023-07-05 2023-08-01 中建环能科技股份有限公司 Method for improving dehumidification performance of evaporator of heat pump low-temperature drying equipment and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419267A (en) * 1987-07-10 1989-01-23 Toshiba Corp Refrigeration cycle apparatus
JPH0331640A (en) * 1989-06-28 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JPH074727A (en) * 1993-06-18 1995-01-10 Sanyo Electric Co Ltd Control device for air conditioner
EP1508752A1 (en) * 2003-08-22 2005-02-23 Chi-Seng Huang Thermohygrostat-type air conditioner with means for controlling evaporation temperature
JP2005221110A (en) * 2004-02-04 2005-08-18 Hitachi Ltd Temperature and humidity controller and environment test device
WO2016021214A1 (en) * 2014-08-06 2016-02-11 三菱電機株式会社 Dehumidifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817803B2 (en) * 2013-10-17 2015-11-18 ダイキン工業株式会社 Air conditioner
EP3165843B1 (en) * 2014-07-04 2021-08-25 Mitsubishi Electric Corporation Ventilation device
CN105864939B (en) * 2016-03-08 2019-01-15 珠海格力电器股份有限公司 A kind of air-conditioning system and dehumidification control method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419267A (en) * 1987-07-10 1989-01-23 Toshiba Corp Refrigeration cycle apparatus
JPH0331640A (en) * 1989-06-28 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JPH074727A (en) * 1993-06-18 1995-01-10 Sanyo Electric Co Ltd Control device for air conditioner
EP1508752A1 (en) * 2003-08-22 2005-02-23 Chi-Seng Huang Thermohygrostat-type air conditioner with means for controlling evaporation temperature
JP2005221110A (en) * 2004-02-04 2005-08-18 Hitachi Ltd Temperature and humidity controller and environment test device
WO2016021214A1 (en) * 2014-08-06 2016-02-11 三菱電機株式会社 Dehumidifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040424B2 (en) 2018-11-29 2022-03-23 三菱電機株式会社 Dehumidifier
CN112227043A (en) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 Drying control method of drying system
CN113418245A (en) * 2021-03-22 2021-09-21 青岛海尔空调电子有限公司 System, method and device for dehumidification
CN113847658A (en) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 Dehumidifier and control method thereof
CN113847658B (en) * 2021-10-22 2022-09-16 海信(广东)空调有限公司 Dehumidifier and control method thereof
CN114777222A (en) * 2022-04-25 2022-07-22 珠海格力电器股份有限公司 Dehumidification system, control method and device thereof and storage medium
CN114893934A (en) * 2022-05-24 2022-08-12 珠海格力电器股份有限公司 Constant-temperature dehumidification evaporator, air conditioner and control method of constant-temperature dehumidification evaporator

Also Published As

Publication number Publication date
JPWO2018173120A1 (en) 2019-11-07
JP6843227B2 (en) 2021-03-17
CN110418921B (en) 2021-01-19
CN110418921A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2018173120A1 (en) Dehumidifier
JP6486586B1 (en) Air conditioner, control method and program for air conditioner
JP6185251B2 (en) Air conditioner
US10345022B2 (en) Air-conditioning apparatus
JP5471873B2 (en) Air conditioner
US5743100A (en) Method for controlling an air conditioning system for optimum humidity control
JP6071648B2 (en) Air conditioner
CN111684212B (en) Air conditioner
JP6785987B2 (en) Refrigeration cycle equipment
JP3835453B2 (en) Air conditioner
TWI572836B (en) Air conditioner
JP2016008742A (en) Air conditioning device
JP2015036591A (en) Dehumidifier
CN111033152A (en) Refrigerating machine
JP3668750B2 (en) Air conditioner
CN115031351B (en) Air conditioner and defrosting control method thereof
JP2004225929A (en) Air conditioner and control method of air conditioner
JP3684860B2 (en) Air conditioner
US10830483B2 (en) Refrigeration cycle apparatus
WO2016084796A1 (en) Air-conditioning machine
US20230366601A1 (en) Air conditioner and operation method thereof
CN117450653A (en) Air conditioner control method and air conditioner
CN112443946A (en) Air conditioner and dehumidification control method thereof
CN116906986A (en) Control method for air conditioner and air conditioner
JP2023066634A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901395

Country of ref document: EP

Kind code of ref document: A1