WO2018171566A1 - 一种干馏型隧道式断续热解炉 - Google Patents

一种干馏型隧道式断续热解炉 Download PDF

Info

Publication number
WO2018171566A1
WO2018171566A1 PCT/CN2018/079518 CN2018079518W WO2018171566A1 WO 2018171566 A1 WO2018171566 A1 WO 2018171566A1 CN 2018079518 W CN2018079518 W CN 2018079518W WO 2018171566 A1 WO2018171566 A1 WO 2018171566A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
zone
furnace
cooling
door
Prior art date
Application number
PCT/CN2018/079518
Other languages
English (en)
French (fr)
Inventor
肖国雄
Original Assignee
肖国雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖国雄 filed Critical 肖国雄
Publication of WO2018171566A1 publication Critical patent/WO2018171566A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying

Definitions

  • the invention belongs to a biomass fuel pyrolysis device, and is also suitable for high temperature sintering of ceramics, refractory bricks and metals, and particularly relates to a dry distillation tunnel type intermittent pyrolysis furnace.
  • the inventors developed a series of pyrolysis furnaces from the 2008 material pyrolysis technology, including a biomass pyrolysis furnace, patent number: ZL201110006196.1; a pyrolysis furnace to prevent oxidation, patent number: ZL200920062938. 0; a biomass pyrolysis furnace, patent number: ZL201220031587.9; a biomass pyrolysis furnace, patent number: ZL201120357176.4.
  • the pyrolysis furnace previously designed by the present inventors is provided with a mesh furnace in the furnace, wherein the bottom and the bottom of the furnace are provided with a plurality of mesh holes, and an exhaust layer is arranged between the furnace shell and the inner wall of the furnace shell, and one end of the tobacco tube
  • the furnace shell is connected and the other end is connected to the recovery tower, which solves the technical problem of rapid pyrolysis of biomass.
  • a 6-cubic-meter furnace with 1.2 tons of bamboo sticks takes only 6 hours from ignition to charcoal, which is more than 10 times faster than conventional technology.
  • the prior art also has the following drawbacks:
  • the prior art generally adopts rapid cooling by adding water, and the material of the furnace body cannot withstand the working environment of rapid cooling and rapid heat, and the service life is short.
  • the present invention aims to provide a dry distillation type tunnel type intermittent pyrolysis furnace which can ensure the temperature in the furnace, is easy to operate, and has good sealing performance.
  • a dry distillation type tunnel type intermittent pyrolysis furnace comprising a hot air furnace and a tunnel type furnace body, wherein the furnace body is divided into a drying zone, a pyrolysis zone and a cooling zone, and the furnace body is provided with a movable mesh furnace frame for filling a substance to be heated;
  • a heating air inlet and a moisture exhausting outlet are arranged on the furnace body of the drying zone, and a drying zone door is arranged at the entrance of the drying zone, and a driving mechanism for driving the mesh furnace frame to be moved outside the drying zone door;
  • a cooling gas inlet and a cooling gas outlet are arranged on both sides of the furnace body of the cooling zone, and a cooling zone door is arranged at the outlet of the cooling zone;
  • a junction of the drying zone and the pyrolysis zone, and a junction of the pyrolysis zone and the cooling zone is provided with a sealing door capable of completely isolating the pyrolysis zone into a closed cavity;
  • the hot blast stove comprises a body, a burner connected to one end of the body, a chimney connected to the other end of the body, a pyrolysis gas pipe disposed in the body, and a pyrolysis gas for pyrolyzing the substance to be heated is passed through the pyrolysis gas pipe.
  • the pyrolysis gas pipe outlet is in communication with the side wall of the pyrolysis zone at the end of the cooling zone;
  • a side wall of the pyrolysis zone at the end of the drying zone is provided with an exhaust port.
  • the tunnel furnace body can be used for continuous heating.
  • the hot blast stove is placed outside the tunnel furnace body, and the pyrolysis gas is input into the pyrolysis zone through the pipeline, which can reduce investment and facilitate maintenance.
  • the pyrolysis gas pipe inlet is connected to the pyrolysis gas storage tank through a pipeline, and the gas discharge separation tower is connected to the exhaust port of the pyrolysis zone, and the pyrolysis gas storage tank is connected with the oil and gas separation tower.
  • the pyrolysis gas pipe in the hot air furnace is a tube bundle composed of a plurality of parallel small tubes, and a plurality of tube bundles are arranged along the axis of the hot air furnace body, and the adjacent tube bundles are connected end to end in sequence.
  • the pyrolysis gas is separately introduced into different small tubes and dispersed to facilitate heating.
  • the chimney is connected to the outside, and the chimney is connected to the flue gas storage tower by a fork, and the flue gas storage tower is connected to the cooling gas inlet;
  • the cooling gas outlet is connected to a heat exchanger through a pipe, and the heat exchanger is connected to the flue gas storage tower through a pipe.
  • the cooling gas is cooled by the flue gas circulation to realize waste utilization. After the flue gas is discharged from the chimney, part of it is discharged, and a part of it enters the flue gas storage tower. The flue gas in the flue gas storage tower enters the cooling zone from the cooling gas inlet for cooling, and then the higher temperature flue gas is discharged from the outlet of the cooling zone. And entering the heat exchanger to cool the flue gas, the cooled flue gas is reintroduced into the flue gas storage tower, and the cooling flue gas entering the flue gas storage tower can enter the cooling zone again, and the cycle is performed.
  • the hot blast stove body comprises a hollow casing, the casing is lined with insulation cotton, and the inner wall of the heat insulation cotton is refractory brick.
  • the inner walls of the two sides of the furnace body of the pyrolysis zone are respectively provided with a spoiler, and the spoilers of the opposite sides are arranged at an intersection, so that the high-temperature pyrolysis gas encounters the obstruction of the spoiler to form a flow path of the polyline.
  • the design of the spoiler can guide the high-temperature pyrolysis gas to advance along the fold line, and the pyrolysis gas temperature gradually decreases. This is in order to be in sufficient contact with the substance to be heated, the reaction is sufficient, the energy consumption is lower, and the heat loss is small.
  • a bottom of the furnace body of the pyrolysis zone and the drying zone is provided with a conveying line for conveying a mesh furnace frame
  • the conveying wire is composed of a plurality of rollers arranged in parallel
  • the roller includes a rod shaft a roller that is fixedly sleeved on the roller shaft, and a bottom portion of the mesh furnace frame is provided with a sliding portion that can slide along the roller;
  • the cooling zone employs a sprocket conveying line; the boundary between the drying zone and the pyrolysis zone, and the conveying line at the junction of the pyrolysis zone and the cooling zone are disconnected, the width of which is greater than the thickness of the sealing door.
  • the purpose of disconnecting the conveying line is to accommodate the sealing door so that it can be smoothly sealed in place.
  • the sliding portion may be made of angle steel, the width of the angle steel is slightly larger than the width of the roller, and the angle steel is placed on the roller during the sliding.
  • both ends of the roller shaft are fixed to the furnace body wall through a bearing assembly, and the outer surface of the bearing component is wrapped with a water jacket.
  • the water jacket is provided with an inlet pipe and a liquid outlet pipe, and the water jacket is provided with a circulating coolant;
  • the roller side is wrapped with a heat insulating layer
  • the roller shaft is a hollow shaft
  • the outer surface of the roller shaft is wrapped with a heat insulating layer
  • An intake branch pipe aligned with the hollow cavity of the roller shaft is disposed at a position of one end of the corresponding roller shaft on the wall of the furnace body of the pyrolysis zone, and an outlet branch pipe aligned with the hollow cavity of the roller shaft is disposed at the other end of the corresponding roller shaft;
  • a gas pipe is connected to the exhaust port of the pyrolysis zone, and the pipe is connected to a cooling tower.
  • the cooling tower is connected to the air inlet pipe through a pipe, and the gas outlet pipe is connected with an induced draft fan through a pipe.
  • the induced draft fan is connected to the oil and gas separation tower;
  • the boundary between the roller shaft and the furnace body wall of the pyrolysis zone is filled and sealed with an insulating material.
  • the high temperature pyrolysis gas flowing out from the exhaust port is introduced into the pipe, and the high temperature pyrolysis gas in the pipe is cooled in the cooling tower, and the cooled pyrolysis gas enters the intake branch pipe, and then enters the hollow cavity of the roller shaft.
  • the roller shaft is cooled, and then discharged from the gas outlet branch, and the higher temperature pyrolysis gas discharged from the gas outlet branch enters the oil and gas separation tower.
  • the cooling of the roller shaft is carried out by means of a pyrolysis gas cycle.
  • a partition is disposed between two adjacent rollers, and the height of the partition is greater than or equal to the height of the center of the roller.
  • the baffle prevents the high-temperature pyrolysis gas from flowing directly from the wheel passage, thus ensuring that the high-temperature pyrolysis gas moves along the mesh furnace frame, fully reacts with the biomass for pyrolysis, improves energy efficiency and increases pyrolysis speed.
  • the sealing door includes a carrying case fixedly connected to the furnace body and communicating with the cavity of the furnace body;
  • a furnace door is installed in the inner cavity of the box, and a sealing frame is fixed on a side of the furnace door near the pyrolysis zone, and the sealing frame is a box-shaped structure formed by the surrounding of the plate, and one side close to the pyrolysis zone is completely open; the casing is close to the heat.
  • a sealing groove is arranged on the inner wall of one side of the solution zone corresponding to the sealing frame, and a high temperature resistant fiber mat is arranged in the sealing groove, and the sealing frame can be inserted into the sealing groove to form a sealing structure;
  • a spring is arranged between the inner wall of the tank near the side of the pyrolysis zone and the furnace door, and a reciprocating ram is arranged away from the side of the furnace door of the pyrolysis zone, the ram extends to the outside of the box; the ejector and the box The contact between the parts is filled with an asbestos rope;
  • It also includes a door lift mechanism that lifts the furnace door up and down.
  • the box body is a support carrier for each structural member.
  • the function of the furnace door is to completely separate the pyrolysis zone from the drying zone and the cooling zone, and the structure of the sealing frame and the sealing groove is to ensure the airtightness of the pyrolysis zone.
  • the cooperation of the spring and the ejector mechanism can move the furnace door along the axial direction of the furnace body. When the furnace door is closed, the furnace door is tightened by the ejector rod, the spring is compressed, the ejector rod is loosened when the furnace door is opened, and the spring is elastically biased to the furnace door. Bounce off. The role of the asbestos rope is to prevent air leaks.
  • a cooling water jacket is disposed on a side of the box near the pyrolysis zone, and the water jacket is provided with a water jacket inlet and a water jacket outlet;
  • the furnace door is a hollow cavity structure, the inlet door is provided with an inlet pipe and an outlet pipe, and the inlet pipe is inserted into the lower part of the hollow cavity of the furnace door, and the inlet pipe joint and the outlet pipe joint, the inlet pipe and the inlet pipe joint are arranged at the top of the tank body, The outlet pipe and the outlet pipe joint are respectively connected by a hose;
  • a high temperature resistant fiber layer is disposed in the cavity of the sealing frame adjacent to the furnace door;
  • the furnace door lifting mechanism comprises a first hoisting machine and a first water tank fixed on one side of the box body.
  • the first hoisting machine is connected with the top of the furnace door through a steel wire rope passing through the wall of the box body, and the steel wire rope is sleeved with the perforation of the wall of the box body.
  • the pipe is fixed at one end to the wall of the casing and communicates with the cavity of the casing, and the other end is not inserted into the first water tank, and the wire rope passes through the pipe.
  • the water jacket is designed to cool the junction of the pyrolysis zone and the drying zone and the cooling zone; the design of the circulating water of the hollow cavity door can cool the furnace door; the function of the high temperature resistant fiber layer is to insulate and isolate the pyrolysis The heat transferred to the furnace door.
  • the ejector rod comprises a hydraulic rod and a cooling rod fixed at the front end of the hydraulic rod
  • the cooling rod includes a rod body, a circulation loop opened in the rod body, a coolant inlet disposed on the rod body and communicating with the circulation loop, and cooling Liquid outlet.
  • the provision of a cooling rod at the front end ensures that the hydraulic rod does not operate normally, thereby ensuring the sealing of the sealed door.
  • the working process of the pyrolysis furnace of the invention is:
  • the procedure for closing the sealed door is:
  • the pyrolysis gas heated in the hot blast stove is passed into the pyrolysis zone.
  • the pyrolysis gas is guided by the spoiler and advancing along the fold line until it is discharged from the exhaust port, so that the material to be heated is sufficiently contacted in order, so that the substance to be heated is fully pyrolyzed in the pyrolysis zone, after a predetermined time has elapsed. Stop sending high temperature pyrolysis gas.
  • the process of opening the sealing door is the reverse of closing the sealing door in step (a).
  • the heat of high-temperature pyrolysis gas as the pyrolysis energy that is, the high-temperature pyrolysis gas moves along the tunnel to the drying end, and the design of the spoiler can guide the high-temperature pyrolysis gas to advance along the fold line, and the pyrolysis gas temperature gradually reduce. This is in order to be in full contact with the biomass, the reaction is sufficient, the energy consumption is lower, and the heat loss is small.
  • the biomass in a mesh furnace frame it is initially subjected to the lower temperature pyrolysis gas, but as it is queued to the location close to the pyrolysis gas pipe, the temperature of the flue gas is getting higher and higher.
  • a frame of biomass can be fully pyrolyzed.
  • the traditional cooling methods are natural cooling, indirect cooling with water or direct water cooling, low cooling efficiency and long time; direct water cooling can also make the product powdery.
  • the invention adopts the continuous circulation cooling of the flue gas in the field of biomass pyrolysis, and the cooling efficiency is high, and the exhaust gas utilization is truly realized.
  • the ejector with cooling system ensures that the sealing door can be tightened without failure, ensuring sealing.
  • the conveying line composed of the roller is matched with the sprocket conveying line, and the conveying line carries the mesh furnace frame or the mesh plate to realize the transportation of the pyrolysis substance.
  • the heating is fast
  • the cooling is fast, no need to consume a large amount of energy, high efficiency, high reliability, and no need for frequent maintenance.
  • Figure 1 is a schematic view of the entire system of the pyrolysis furnace of the present invention.
  • FIG. 2 is a top plan view of a tunnel furnace body of a pyrolysis furnace of the present invention.
  • Figure 3 is a plan view of the interior of the hot blast stove body.
  • Figure 4 is a partial cross-sectional view of a cross section of the pyrolysis zone.
  • Figure 5 is a schematic view of the transfer line of the pyrolysis zone and the cooling zone.
  • Figure 6 is a front elevational view of the sealed door structure.
  • Figure 7 is a schematic view of the structure of the ram.
  • Figure 8 is a partial enlarged view of the jack.
  • a dry distillation type tunnel type intermittent pyrolysis furnace comprises a hot air furnace 100 and a tunnel type furnace body 4, and the furnace body 4 is sequentially divided into a drying zone 1, a pyrolysis zone 2, and a cooling zone 3.
  • a movable mesh furnace frame 5 for filling the substance to be heated is provided in the furnace body 4.
  • the furnace body of the drying zone 1 is provided with a hot air inlet 11 and a moisture discharge port 12, and the drying zone 1 is provided with a drying zone door 13 at the entrance.
  • a drive mechanism for driving the movement of the mesh furnace frame 5 is provided outside the drying zone door 13, and the drive mechanism is preferably a piston cylinder 14.
  • a cooling gas inlet 31 and a cooling gas outlet 32 are disposed on both sides of the furnace body of the cooling zone 3, and a cooling zone door 33 is provided at the outlet of the cooling zone 3.
  • the junction of the drying zone 1 and the pyrolysis zone 2, and the junction of the pyrolysis zone 2 and the cooling zone 3 are provided with a sealing door 6 capable of completely isolating the pyrolysis zone 2 into a closed cavity.
  • the hot blast stove 100 includes a body 101, a burner 102 connected to one end of the body 101, a chimney 103 connected to the other end of the body 101, and a pyrolysis gas pipe 104 disposed in the body 101.
  • the burner 102 is a burner or a furnace.
  • the hot blast stove body 101 comprises a hollow casing, the casing is lined with thermal insulation cotton, and the inner wall of the thermal insulation cotton is laid with refractory bricks.
  • the pyrolysis gas pipe 104 is internally provided with pyrolysis gas for pyrolyzing the substance to be heated, and the outlet of the pyrolysis gas pipe 104 communicates with the side wall of the pyrolysis zone 2 at the end of the cooling zone 3.
  • the inner walls of the two sides of the furnace body of the pyrolysis zone 2 are respectively provided with a spoiler 21, and the spoilers 21 on opposite sides are arranged to intersect each other, so that the high-temperature pyrolysis gas encounters the obstruction of the spoiler 21 to form a broken line path.
  • the pyrolysis gas pipe 104 in the hot blast stove 100 is a tube bundle 108 composed of a plurality of parallel small tubes 107, and a plurality of tube bundles 108 are disposed along the axis in the hot blast stove body 101, and adjacent tube bundles 108 are sequentially connected end to end.
  • a side wall of the pyrolysis zone 2 at the end of the drying zone 1 is provided with an exhaust port 23.
  • the inlet of the pyrolysis gas pipe 104 is connected to the pyrolysis gas storage tank 105 through a pipe, and the pyrolysis gas enters the hot air furnace 100 by the action of the induced draft fan 16.
  • the exhaust port 23 of the pyrolysis zone 2 is connected to an oil and gas separation column 106, and the pyrolysis gas storage tank 105 is connected to the oil and gas separation column 106.
  • the chimney 103 is in communication with the outside, and the chimney 103 is branched and connected with a flue gas storage tower 109.
  • the flue gas storage tower 109 is connected to the cooling gas inlet 31.
  • the cooling gas outlet 32 is connected to the heat exchanger 110 through a pipe.
  • the heat exchanger 110 is connected to the flue gas storage tower 109 through a pipe.
  • the cooled flue gas enters the flue gas storage tower 109 through the induced draft fan 16.
  • the bottom of the furnace body 4 of the pyrolysis zone 2 and the drying zone 1 is provided with a conveying line for conveying the mesh furnace frame 5.
  • the conveyor line consists of a plurality of rollers 111 arranged in parallel.
  • the roller 111 includes a roller shaft 112 and a roller 113 fixedly sleeved on the roller shaft 112.
  • the bottom of the mesh furnace frame 5 is provided with a sliding portion that can slide along the roller 113.
  • the sliding portion may adopt an angle steel 125, the width of the angle steel 125 is slightly larger than the width of the roller 113, and the angle steel rests on the roller 113 during the sliding.
  • the cooling zone 3 employs a sprocket conveyor line 114.
  • the junction of the drying zone 1 and the pyrolysis zone 2, and the conveying line at the junction of the pyrolysis zone 2 and the cooling zone 3 are broken, the width of which is broken greater than the thickness of the sealing door.
  • both ends of the roller shaft 112 are fixed to the wall of the furnace body 4 by a bearing assembly 115.
  • the outer surface of the bearing assembly 115 is wrapped with a water jacket 116.
  • the water jacket 116 is provided with an inlet pipe 117 and an outlet pipe 118, and a circulating coolant is passed through the water jacket 116.
  • the roller 113 is wrapped with an insulating layer 119 on the side.
  • the roller shaft 112 is a hollow shaft, and the outer surface of the roller shaft 112 is covered with a heat insulating layer 119.
  • An intake manifold 120 aligned with the hollow cavity of the roller shaft 112 is disposed at a position corresponding to the hollow cavity of the roller shaft 112 on the wall of the furnace body 4 of the pyrolysis zone 2, and the other end of the corresponding roller shaft 112 is disposed to be aligned with the hollow cavity of the roller shaft 112.
  • Outlet manifold 121 is provided to be aligned with the hollow cavity of the roller shaft 112.
  • a smoke pipe 122 is connected to the exhaust port 23 of the pyrolysis zone 2, and the pipe 122 is connected to a cooling tower 123.
  • the cooling tower 123 is connected to the intake manifold 120 through a pipe.
  • the outlet branch pipe 121 is connected to an induced draft fan 16 through a pipe, and the induced draft fan 16 is connected to the oil and gas separation tower 106.
  • the roller shaft 112 and the boundary region of the furnace body wall of the pyrolysis zone 2 are filled and sealed with an insulating material.
  • a partition 124 is provided between adjacent two rollers 113, and the height of the partition 124 is greater than or equal to the height of the center of the roller 113.
  • the sealing door 6 includes a carrying case 61 that is fixedly coupled to the furnace body 4 and that communicates with the interior of the furnace body 4.
  • a furnace door 62 is installed in the inner cavity of the casing 61, and a sealing frame 63 is fixed on a side of the furnace door 62 near the pyrolysis zone 2, and the sealing frame 63 is a box-shaped structure formed by the surrounding of the plate, and is close to the pyrolysis zone 2 The side is completely open.
  • a sealing groove 64 is provided in the inner wall of the casing 61 near the side of the pyrolysis zone 2 at a position corresponding to the sealing frame 63.
  • a high temperature resistant fiber mat 65 is disposed in the seal groove 64. The sealing frame 63 can be inserted into the sealing groove 64 to form a sealing structure.
  • a spring 66 is provided between the inner wall of the casing 61 on the side close to the pyrolysis zone 2 and the furnace door 62.
  • a reciprocating ram 67 is provided on the side of the furnace door 62 remote from the pyrolysis zone 2.
  • the jack 67 extends to the outside of the case 61.
  • the contact portion between the jack 67 and the case 61 is filled with an asbestos string 68.
  • a cooling water jacket 69 is disposed on a side of the casing 61 adjacent to the pyrolysis zone 2, and the water jacket 69 is provided with a water jacket water inlet 691 and a water jacket water outlet 692.
  • the oven door 62 is a hollow cavity structure.
  • the top of the furnace door 62 is provided with an inlet pipe 621 and an outlet pipe, and the inlet pipe 621 is inserted into the lower part of the hollow cavity of the furnace door 62.
  • the top of the casing 61 is provided with an inlet pipe joint 622 and an outlet pipe joint.
  • the inlet pipe 621 and the inlet pipe joint 622, the outlet pipe and the outlet pipe joint are connected by a hose 623, respectively.
  • a high temperature resistant fiber layer 70 is disposed in the cavity of the sealing frame 63 in close proximity to the furnace door 62.
  • the oven door lifting mechanism includes a first hoisting machine 71 and a first water tank 72 fixed to one side of the casing 61.
  • the first hoist 71 is coupled to the top of the oven door 62 by a wire rope 73 that passes through the wall of the cabinet.
  • the wire rope 73 and the perforation of the wall of the casing are sleeved with a pipe 74.
  • One end of the pipe 74 is fixed to the wall of the casing and communicates with the inner cavity of the casing 61, and the other end is immersed in the first water tank 72, and the wire rope 73 passes through the pipe 74.
  • the jack 67 includes a hydraulic rod 671 and a cooling rod 672 fixed to the front end of the hydraulic rod 671.
  • the cooling rod 672 includes a rod body 673, a circulation loop 674 opened in the rod body 673, a coolant inlet 675 disposed on the rod body 673 and communicating with the circulation loop 674, and a coolant outlet 676.
  • the pyrolysis furnace has a total length of 32 meters, and the mesh furnace frame 5 is filled with biomass, and a total of sixteen mesh furnace frames 5 are designed, of which 12 are pyrolysis zones. There are two cooling zones and two drying zones.
  • the working process of the pyrolysis furnace is:
  • the steps for closing the sealing door 6 are as follows:
  • the first hoisting machine 71 is opened to slowly lower the furnace door 62, and the ejector lever 67 pushes the furnace door 62 toward the pyrolysis zone 2, the spring 66 is compressed, and the sealing frame 63 is inserted into the sealing groove 64.
  • the process of opening the sealing door 6 is the reverse of the closing of the sealing door 6 in step (a).
  • the sprocket line 114 is activated to move the mesh furnace frame 5 in the cooling zone 3 a distance toward the outlet of the cooling zone (this distance is such that the sealing door 6 can be freely lowered), and the two closed doors 6 are closed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种干馏型隧道式断续热解炉,包括热风炉(100)、隧道式炉体(4),炉体分为烘干区(1)、热解区(2)、冷却区(3)、可移动网状炉框(5);烘干区(1)的炉体(4)上设有热风入口(11)和湿气排出口(12),烘干区(1)的入口处设有烘干区门(13);冷却区(3)的出口处设有冷却区门(33);烘干区(1)和热解区(2)的交界处,以及热解区(2)和冷却区(3)的交界处设有密封门(6);热风炉(100)包括本体(101)、燃烧器(102)、烟囱(103)、热解气管(104),热解气管(104)内通有热解气,热解气管(104)出口与热解区(2)上位于冷却区(3)的那一端的侧壁连通;在热解区(2)上设有排气口(23)。将传统处理的三个单独的工艺步骤,用一个隧道式热解炉统一为一个一体化设备,三个区循环工作,生产周期短、使用寿命长、使用温度范围广,能耗低。

Description

一种干馏型隧道式断续热解炉 技术领域
本发明属于生物质类燃料热解设备,也适合陶瓷、耐火砖、金属等高温烧结,具体涉及一种干馏型隧道式断续热解炉。
背景技术
本发明人从2008年研究生物质热解技术,开发了一系列热解炉,包含一种生物质热解炉,专利号:ZL201110006196.1;一种防止氧化的热解炉,专利号:ZL200920062938.0;一种生物质热解炉,专利号:ZL201220031587.9;一种生物质热解炉,专利号:ZL201120357176.4。
本发明人之前设计的热解炉在炉内设置了一个网状炉胆,所述的炉胆底面与四周设有多网孔,炉胆与炉壳内壁间设有排汽层,烟管一端连接炉壳,另一端连接回收塔,很好地解决了生物质快速热解的技术难题。一个6立方米的炉胆,内装竹节1.2吨,从点火至变成炭只需要6小时,这比传统技术快了10倍以上。但是,现有技术还存在如下缺陷:
1.不能连续热解,在冷却过程中要消耗大量的能源,占用大量的冷却时间。
2.现有技术一般采用加水快速冷却,炉体材料不能承受急冷急热的工作环境,使用寿命短。
3.不能生产热解温度高(如1200℃)的木炭。
4、高温烟气的热能直接排出炉体用水进行冷却,没有用于热解,浪费了大量的能源。所有的传统生物质热解技术均不例外。
发明内容
针对上述问题,本发明旨在提供一种能够保证炉内温度、操作简便、密封性好的干馏型隧道式断续热解炉。
本发明解决问题的技术方案是:一种干馏型隧道式断续热解炉,包括热风炉、隧道式炉体,炉体依次分为烘干区、热解区、冷却区,炉体内设有用于装填待加热物质的可移动网状炉框;
所述烘干区的炉体上设有热风入口和湿气排出口,烘干区的入口处设有烘干区门,烘干区门外设有驱动网状炉框移动的驱动机构;
所述冷却区的炉体两侧设有冷却气体进口和冷却气体出口,冷却区的出口处设有冷却区门;
所述烘干区和热解区的交界处,以及热解区和冷却区的交界处设有能够将热解区完全隔绝成密闭空腔的密封门;
所述热风炉包括本体、与本体一端连接的燃烧器、与本体另一端连接的烟囱、设置于本体内的热解气管,所述热解气管内通有用于热解待加热物质的热解气,热解气管出口与热解区上位于冷却区的那一端的侧壁连通;
在热解区上位于烘干区的那一端的侧壁设有排气口。
上述方案中,采用隧道式炉体可进行连续加热。将热风炉置于隧道式炉体外部,通过管道输入热解气到热解区,可减小投资,且便于维护。
进一步的,所述热解气管进口通过管道与热解气储气罐连接,热解区的排气口连接有油气分离塔,热解气储气罐与油气分离塔连接。
上述方案中,设备刚开始启动时,从外界引入空气进入热解区,当热解区进行一轮循环热解后形成热解气,然后停止引入外界空气。形成的热解气从排气口进入油气分离塔,可冷凝气体被冷却,不可冷凝气体进入热解气储气罐,一部份可做燃料,另一部份引入热风炉内加热,再进入热解区,这样反复循环。这种设计可以充分循环利用热解气而不浪费。
优选的,所述热风炉内的热解气管是由多跟并列小管组成的管束,且热风炉本体内沿轴线间隔设有多个管束,相邻管束依次首尾连通。
将热解气分别通入不同的小管,分散开来更利于加热。
进一步的,所述烟囱与外界连通,烟囱上分叉连接有烟气储藏塔,该烟气储藏塔与冷却气体进口连接;
所述冷却气体出口通过管道连接有热交换器,该热交换器通过管道与烟气储藏塔连接。
上述进一步改进的方案中,冷却气体采用烟气循环冷却,实现了废物利用。烟气从烟囱中排出后,一部分排出,一部分进入烟气储藏塔,烟气储藏塔中的烟气从冷却气体进口进入冷却区进行冷却,之后,较高温度的烟气从冷却区的出口排出并进入热交换器将烟气冷却,被冷却后的烟气被再次引入烟气储藏塔,进入烟气储藏塔的冷却烟气可再次进入冷却区,如此循环进行。
进一步的,所述热风炉本体包括中空的壳体,壳体内衬保温棉,保温棉内壁铺设耐火砖。
优选的,所述热解区炉体两侧内壁分别间隔设有扰流板,且相对两侧的扰流板交叉设置,使得高温热解气碰到扰流板的阻碍形成折线路径流动。
扰流板的设计可以引导高温热解气呈折线前进,热解气温度逐渐降低。这样依次有序的 充分与待加热物质接触,反应充分,能耗更低,热量损失小。
进一步的,所述热解区和烘干区的炉体内底部设有用于运送网状炉框的输送线,所述输送线由多个平行间隔布置的辊轮组成,所述辊轮包括棍轴、固定套接在辊轴上的滚子,所述网状炉框底部设有可沿滚子滑动的滑行部;
所述冷却区采用链轮输送线;所述烘干区和热解区的交界处,以及热解区和冷却区的交界处的输送线断开,其断开的宽度大于密封门的厚度。
上述方案中,将输送线断开的目的是为了能够容置密封门,使其顺利密封到位。所述滑行部可采用角钢,角钢宽度略大于滚子宽度,滑行时角钢搁置在滚子上。
由于热解区长时间处于高温状态,为了防止零部件在高温状态使用寿命下降,在热解区内,辊轴两端通过轴承组件固定于炉体壁,所述轴承组件外表面包裹有水套,水套设有进液管和出液管,水套内通有循环冷却液;
所述滚子侧面包裹有保温层,所述辊轴为空心轴,辊轴外表面包裹有保温层;
在热解区的炉体壁上对应辊轴一端位置设有与辊轴空心腔对准的进气支管,对应辊轴另一端位置设有与辊轴空心腔对准的出气支管;
所述热解区的排气口处分叉连接有烟管,该烟管与一冷却塔连接,所述冷却塔通过管道与进气支管连接,所述出气支管通过管道连接有引风机,该引风机与油气分离塔连接;
所述辊轴与热解区炉体壁交界区域采用保温材料填充密封。
上述方案中,烟管内通入从排气口流出的高温热解气,烟管内的高温热解气在冷却塔中冷却,冷却的热解气进入进气支管内,继而进入辊轴的空心腔对辊轴进行冷却,之后从出气支管排出,从出气支管排出的较高温度的热解气进入油气分离塔。如此利用热解气循环进行辊轴的冷却。
优选的,在热解区内,相邻两个滚子之间设有隔板,隔板高度大于或等于滚子中心的高度。隔板可防止高温热解气直接从车轮通道流出,从而确保了高温热解气沿着网状炉框运动,与生物质充分反应进行热解,提高能源效率与提高热解速度。
具体的,所述密封门包括与炉体固定连接并与炉体内腔连通的承载箱体;
箱体内腔中安装有炉门,炉门上靠近热解区的一侧固定有密封框,该密封框为板材合围形成的箱型结构,靠近热解区的一侧完全敞开;箱体靠近热解区一侧的内壁上与密封框对应的位置设有密封槽,密封槽内设有耐高温纤维垫,密封框可插入密封槽内形成密封结构;
靠近热解区一侧的箱体内壁和炉门之间设有弹簧,远离热解区的炉门一侧设有可往复移动的顶杆,顶杆延伸至箱体外部;顶杆与箱体之间的接触部位填充有石棉绳;
还包括将炉门上下提升的炉门提升机构。
上述方案中,箱体是各结构件安装的一个支撑载体。炉门的作用是将热解区和烘干区、冷却区完全隔离开来,密封框与密封槽配合的结构是保证热解区的气密性。弹簧与顶杆机构的配合可以使得炉门沿炉体轴向移动,关闭炉门时通过顶杆将炉门顶紧,弹簧被压缩,打开炉门时松开顶杆,弹簧靠弹力将炉门弹开。石棉绳的作用在于防止漏气。
进一步的,所述箱体上靠近热解区的一侧设有冷却用水套,水套上设有水套进水口和水套出水口;
所述炉门为空心腔结构,炉门顶部设有进水管和出水管,进水管至插入炉门空心腔下部,箱体顶部设有进水管接头和出水管接头,进水管和进水管接头、出水管和出水管接头之间分别通过软管连通;
所述密封框的腔内紧贴炉门的位置设有耐高温纤维层;
所述炉门提升机构包括第一卷扬机、固定于箱体一侧的第一水箱,第一卷扬机通过穿过箱体壁的钢丝绳与炉门顶部连接,钢丝绳与箱体壁的穿孔处套接有管道,该管道一端与箱体壁固定并与箱体内腔连通,另一端没入第一水箱中,钢丝绳从管道内穿过。
上述方案中,设计水套是为了冷却热解区与烘干区、冷却区的交界处;空心腔炉门循环水的设计能够冷却炉门;耐高温纤维层的作用在于隔热,隔绝热解区传到炉门的热量。
进一步的,所述顶杆包括液压杆以及固定在液压杆前端的冷却杆,所述冷却杆包括杆体、在杆体内开设的循环回路、设置于杆体上且与循环回路连通的冷却液进口和冷却液出口。
由于液压杆一般不能耐高温,在其前端设置冷却杆能够保证液压杆正常工作不失效,从而保证密封门的密封性。
本发明的热解炉工作过程为:
(a)打开烘干区门、冷却区门、以及两个密封门;将多个依次紧靠的装填有待加热物质的可移动网状炉框从烘干区门处推入炉体内,可移动网状炉框依次排满热解区后,关闭热解区的两个密封门。
关闭密封门的操作步骤为:
开启第一卷扬机将炉门慢慢放下,用顶杆将炉门朝热解区的方向推,弹簧被压缩,密封框插入密封槽中。
(b)再次推入装填有待加热物质的可移动网状炉框排满烘干区,之后关闭烘干区门,热风从热风入口通入烘干区对待加热物质进行烘干,湿气从湿气排出口排出。
(c)关闭冷却区门。
(d)针对不同的待加热物质(生物质、生活垃圾、矿物质和金属等),根据具体情况调节热风炉内的温度,使其维持设定温度(根据具体情况可维持在300℃~1200℃),在热风炉内被加热的热解气通入热解区。热解气受到扰流板的引导,呈折线前进,直至从排气口排出,这样依次有序的充分与待加热物质接触,使待加热物质在热解区充分热解反应,达到规定时间后停止输送高温热解气。
(e)打开热解区的两个密封门,开动驱动机构,将烘干区内已经烘干的待加热物质推入热解区,于此同时,已经热解好的相同数量的网状炉框被顺势顶出热解区,从而进入冷却区。
打开密封门的过程为步骤(a)中关闭密封门的逆过程。
(f)启动链轮输送线,将冷却区中的网状炉框向冷却区出口方向移动一段距离(该距离以密封门能够自由放下为准),关闭两个密闭门。
(g)再次推入装填有待加热物质的可移动网状炉框排满烘干区,之后关闭烘干区门。于此同时,从冷却气体进口通入冷却的烟气,冷却后的烟气从冷却气体出口排出。在这一过程中,同时进行的还有继续从热风炉往热解区通入高温热解气进行热解反应。
(h)冷却完成后,打开冷却区门,启动链轮输送线将冷却区内的网状炉框运至外面。待热解区反应完成,重复步骤(e)~(h)即可不断循环进行烘干、热解、冷却的工序。
本发明的显著效果是:
1.将传统生物质、生活垃圾、矿物质和金属等处理的三个单独的工艺步骤,创造性的用一个隧道式热解炉统一为一个一体化设备,三个区循环工作,生产效率高、周期短。
2.始终保持热解区的温度,不再冷却,节约了大量的能源。
3、利用高温热解气的热量做为热解能源,即高温热解气沿着隧道往烘干端移动,并且扰流板的设计可以引导高温热解气呈折线前进,热解气温度逐渐降低。这样依次有序的充分与生物质接触,反应充分,能耗更低,热量损失小。对于某一个网状炉框内的生物质来说,最开始受到的较低温度的热解气作用,但随着排队到接近热解气管的位置,受到的烟气温度越来越高,每一框生物质都能充分热解。
4.传统的冷却方式都是自然冷却、采用水间接冷却或者直接泼水冷却,冷却效率低,时间长;直接泼水冷却还容易使产品变粉状。本发明创造性的在生物质热解领域采用烟气不断循环冷却,冷却效率高,真正做到废气利用。
5.带冷却设施的顶杆保证能够顶紧密封门而不失效,确保密封性。
6.采用辊轮组成的输送线和链轮输送线配合,输送线上承载网状炉框或网状板,实现热解物质的运输。相比传统的运送方式而言,加热快、冷却快,无需消耗大量的能源,效率高,可靠性强,无须经常维护。
附图说明
下面结合附图对本发明作进一步说明。
图1为本发明热解炉整个系统图。
图2为本发明热解炉隧道式炉体俯视图。
图3为热风炉本体内部俯视图。
图4为热解区横截面局部剖视图。
图5为热解区和冷却区输送线示意图。
图6为密封门结构主视图。
图7为顶杆结构示意图。
图8为顶杆局部放大图。
图中:1-烘干区,2-热解区,3-冷却区,4-炉体,5-网状炉框,6-密封门,11-热风入口,12-湿气排出口,13-烘干区门,14-活塞缸,16-引风机,21-扰流板,23-排气口,31-冷却气体进口,32-冷却气体出口,33-冷却区门,61-箱体,62-炉门,63-密封框,64-密封槽,65-耐高温纤维垫,66-弹簧,67-顶杆,68-石棉绳,69-水套,70-耐高温纤维层,71-第一卷扬机,72-第一水箱,73-钢丝绳,74-管道,100-热风炉,101-本体,102-燃烧器,103-烟囱,104-热解气管,105-热解气储气罐,106-油气分离塔,107-小管,108-管束,109-烟气储藏塔,110-热交换器,111-辊轮,112-辊轴,113-滚子,114-链轮输送线,115-轴承组件,116-水套,117-进液管,118-出液管,119-保温层,120-进气支管,121-出气支管,122-烟管,123-冷却塔,124-隔板,125-角钢,621-进水管,622-进水管接头,623-软管,671-液压杆,672-冷却杆,673-杆体,674-循环回路,675-冷却液进口,676-冷却液出口,691-水套进水口,692-水套出水口。
具体实施方式
如图1~8所示,一种干馏型隧道式断续热解炉,包括热风炉100、隧道式炉体4,炉体4依次分为烘干区1、热解区2、冷却区3,炉体4内设有用于装填待加热物质的可移动网状炉框5。
所述烘干区1的炉体上设有热风入口11和湿气排出口12,烘干区1的入口处设有烘干区门13。烘干区门13外设有驱动网状炉框5移动的驱动机构,所述驱动机构优选为活塞缸14。
所述冷却区3的炉体两侧设有冷却气体进口31和冷却气体出口32,冷却区3的出口处设有冷却区门33。
所述烘干区1和热解区2的交界处,以及热解区2和冷却区3的交界处设有能够将热解区2完全隔绝成密闭空腔的密封门6。
所述热风炉100包括本体101、与本体101一端连接的燃烧器102、与本体101另一端连接的烟囱103、设置于本体101内的热解气管104。所述燃烧器102为燃烧机或炉子。所述热风炉本体101包括中空的壳体,壳体内衬保温棉,保温棉内壁铺设耐火砖。
所述热解气管104内通有用于热解待加热物质的热解气,热解气管104出口与热解区2上位于冷却区3的那一端的侧壁连通。所述热解区2炉体两侧内壁分别间隔设有扰流板21,且相对两侧的扰流板21交叉设置,使得高温热解气碰到扰流板21的阻碍形成折线路径流动。
所述热风炉100内的热解气管104是由多跟并列小管107组成的管束108,且热风炉本体101内沿轴线间隔设有多个管束108,相邻管束108依次首尾连通。
在热解区2上位于烘干区1的那一端的侧壁设有排气口23。
所述热解气管104进口通过管道与热解气储气罐105连接,热解气在引风机16的作用下进入热风炉100。热解区2的排气口23连接有油气分离塔106,热解气储气罐105与油气分离塔106连接。
所述烟囱103与外界连通,烟囱103上分叉连接有烟气储藏塔109。该烟气储藏塔109与冷却气体进口31连接。
所述冷却气体出口32通过管道连接有热交换器110。该热交换器110通过管道与烟气储藏塔109连接。冷却后的烟气通过引风机16进入烟气储藏塔109。
所述热解区2和烘干区1的炉体4内底部设有用于运送网状炉框5的输送线。所述输送线由多个平行间隔布置的辊轮111组成。所述辊轮111包括棍轴112、固定套接在辊轴112上的滚子113。所述网状炉框5底部设有可沿滚子113滑动的滑行部。所述滑行部可采用角钢125,角钢125宽度略大于滚子113宽度,滑行时角钢搁置在滚子113上。
所述冷却区3采用链轮输送线114。所述烘干区1和热解区2的交界处,以及热解区2和冷却区3的交界处的输送线断开,其断开的宽度大于密封门的厚度。
在热解区2内,辊轴112两端通过轴承组件115固定于炉体4壁。所述轴承组件115外表面包裹有水套116。水套116设有进液管117和出液管118,水套116内通有循环冷却液。
所述滚子113侧面包裹有保温层119。所述辊轴112为空心轴,辊轴112外表面包裹有保温层119。在热解区2的炉体4壁上对应辊轴112一端位置设有与辊轴112空心腔对准的进气支管120,对应辊轴112另一端位置设有与辊轴112空心腔对准的出气支管121。
所述热解区2的排气口23处分叉连接有烟管122,该烟管122与一冷却塔123连接。所述冷却塔123通过管道与进气支管120连接。所述出气支管121通过管道连接有引风机16,该引风机16与油气分离塔106连接。所述辊轴112与热解区2炉体壁交界区域采用保温材料填充密封。
在热解区2内,相邻两个滚子113之间设有隔板124,隔板124高度大于或等于滚子113中心的高度。
所述密封门6包括与炉体4固定连接并与炉体4内腔连通的承载箱体61。
箱体61内腔中安装有炉门62,炉门62上靠近热解区2的一侧固定有密封框63,该密封框63为板材合围形成的箱型结构,靠近热解区2的一侧完全敞开。箱体61靠近热解区2一侧的内壁上与密封框63对应的位置设有密封槽64。密封槽64内设有耐高温纤维垫65。密封框63可插入密封槽64内形成密封结构。
靠近热解区2一侧的箱体61内壁和炉门62之间设有弹簧66。远离热解区2的炉门62一侧设有可往复移动的顶杆67。顶杆67延伸至箱体61外部。顶杆67与箱体61之间的接触部位填充有石棉绳68。
所述箱体61上靠近热解区2的一侧设有冷却用水套69,水套69上设有水套进水口691和水套出水口692。
所述炉门62为空心腔结构。炉门62顶部设有进水管621和出水管,进水管621至插入炉门62空心腔下部,箱体61顶部设有进水管接头622和出水管接头。进水管621和进水管接头622、出水管和出水管接头之间分别通过软管623连通。
所述密封框63的腔内紧贴炉门62的位置设有耐高温纤维层70。
还包括将炉门62上下提升的炉门提升机构。所述炉门提升机构包括第一卷扬机71、固定于箱体61一侧的第一水箱72。第一卷扬机71通过穿过箱体壁的钢丝绳73与炉门62顶部连接。钢丝绳73与箱体壁的穿孔处套接有管道74,该管道74一端与箱体壁固定并与箱体61内腔连通,另一端没入第一水箱72中,钢丝绳73从管道74内穿过。
所述顶杆67包括液压杆671以及固定在液压杆671前端的冷却杆672。所述冷却杆672包括杆体673、在杆体673内开设的循环回路674、设置于杆体673上且与循环回路674连通的冷却液进口675和冷却液出口676。
一种具体形式的热解炉结构中,热解炉全长32米,网状炉框5装有生物质,共设计十六台网状炉框5,其中,热解区2十二台,冷却区3两台,烘干区1两台。
该热解炉工作过程为:
(a)打开烘干区门13、冷却区门33、以及两个密封门6。将十二台依次紧靠的装填有生物质的可移动网状炉框5从烘干区门13处推入炉体4内,网状炉框5依次排满热解区2后,关闭热解区2的两个密封门6。
关闭密封门6的操作步骤为:
开启第一卷扬机71将炉门62慢慢放下,用顶杆67将炉门62朝热解区2的方向推,弹簧66被压缩,密封框63插入密封槽64中。
(b)再次推入两台装填有生物质的可移动网状炉框排满烘干区1,之后关闭烘干区门13,热风从热风入口11通入烘干区1,对生物质进行烘干,湿气从湿气排出口12排出。
(c)关闭冷却区门33。
(d)针对不同的生物质,根据具体情况调节热风炉100内的温度,使其维持设定温度(根据具体情况可维持在400℃~1200℃),在热风炉100内被加热的热解气通入热解区2。热解气受到扰流板21的引导,呈折线前进,直至从排气口23排出,这样依次有序的充分与生物质接触,使生物质在热解区充分热解反应,达到规定时间后停止输送高温热解气。
(e)打开热解区2的两个密封门6,开动活塞缸14,将烘干区1内已经烘干的两台网状炉框5推入热解区2,于此同时,已经热解好的两台网状炉框5被顺势顶出热解区2,从而进入冷却区3。
打开密封门6的过程为步骤(a)中关闭密封门6的逆过程。
(f)启动链轮输送线114,将冷却区3中的网状炉框5向冷却区出口方向移动一段距离(该距离以密封门6能够自由放下为准),关闭两个密闭门6。
(g)再次推入装填有生物质的两台网状炉框5排满烘干区1,之后关闭烘干区门13。于此同时,从冷却气体进口31通入冷却的烟气,冷却后的烟气从冷却气体出口32排出。在这一过程中,同时进行的还有继续从热风炉100往热解区2通入高温热解气进行热解反应。
(h)冷却完成后,打开冷却区门33,启动链轮输送线114将冷却区3内的两台网状炉框5运至外面。待热解区2反应完成,重复步骤(e)~(h)即可不断循环进行烘干、热解、冷却的工序。

Claims (11)

  1. 一种干馏型隧道式断续热解炉,其特征在于:包括热风炉(100)、隧道式炉体(4),炉体(4)依次分为烘干区(1)、热解区(2)、冷却区(3),炉体(4)内设有用于装填待加热物质的可移动网状炉框(5);
    所述烘干区(1)的炉体上设有热风入口(11)和湿气排出口(12),烘干区(1)的入口处设有烘干区门(13),烘干区门(13)外设有驱动网状炉框(5)移动的驱动机构;
    所述冷却区(3)的炉体两侧设有冷却气体进口(31)和冷却气体出口(32),冷却区(3)的出口处设有冷却区门(33);
    所述烘干区(1)和热解区(2)的交界处,以及热解区(2)和冷却区(3)的交界处设有能够将热解区(2)完全隔绝成密闭空腔的密封门(6);
    所述热风炉(100)包括本体(101)、与本体(101)一端连接的燃烧器(102)、与本体(101)另一端连接的烟囱(103)、设置于本体(101)内的热解气管(104),所述热解气管(104)内通有用于热解待加热物质的热解气,热解气管(104)出口与热解区(2)上位于冷却区(3)的那一端的侧壁连通;
    在热解区(2)上位于烘干区(1)的那一端的侧壁设有排气口(23)。
  2. 根据权利要求1所述的干馏型隧道式断续热解炉,其特征在于:所述热解气管(104)进口通过管道与热解气储气罐(105)连接,热解区(2)的排气口(23)连接有油气分离塔(106),热解气储气罐(105)与油气分离塔(106)连接。
  3. 根据权利要求1所述的干馏型隧道式断续热解炉,其特征在于:所述热风炉(100)内的热解气管(104)是由多跟并列小管(107)组成的管束(108),且热风炉本体(101)内沿轴线间隔设有多个管束(108),相邻管束(108)依次首尾连通。
  4. 根据权利要求1所述的干馏型隧道式断续热解炉,其特征在于:所述烟囱(103)与外界连通,烟囱(103)上分叉连接有烟气储藏塔(109),该烟气储藏塔(109)与冷却气体进口(31)连接;
    所述冷却气体出口(32)通过管道连接有热交换器(110),该热交换器(110)通过管道与烟气储藏塔(109)连接。
  5. 根据权利要求1所述的干馏型隧道式断续热解炉,其特征在于:所述热解区(2)炉体两侧内壁分别间隔设有扰流板(21),且相对两侧的扰流板(21)交叉设置,使得高温热解气碰到扰流板(21)的阻碍形成折线路径流动。
  6. 根据权利要求1~5任一项所述的干馏型隧道式断续热解炉,其特征在于:所述热解区(2)和烘干区(1)的炉体(4)内底部设有用于运送网状炉框(5)的输送线,所述输送线由多个平行间隔布置的辊轮(111)组成,所述辊轮(111)包括棍轴(112)、固定套接在辊轴(112)上的滚子(113),所述网状炉框(5)底部设有可沿滚子(113)滑动的滑行部;
    所述冷却区(3)采用链轮输送线(114);所述烘干区(1)和热解区(2)的交界处,以及热解区(2)和冷却区(3)的交界处的输送线断开,其断开的宽度大于密封门的厚度。
  7. 根据权利要求6所述的干馏型隧道式断续热解炉,其特征在于:在热解区(2)内,辊轴(112)两端通过轴承组件(115)固定于炉体(4)壁,所述轴承组件(115)外表面包裹有水套(116),水套(116)设有进液管(117)和出液管(118),水套(116)内通有循环冷却液;
    所述滚子(113)侧面包裹有保温层(119),所述辊轴(112)为空心轴,辊轴(112)外表面包裹有保温层(119);
    在热解区(2)的炉体(4)壁上对应辊轴(112)一端位置设有与辊轴(112)空心腔对准的进气支管(120),对应辊轴(112)另一端位置设有与辊轴(112)空心腔对准的出气支管(121);
    所述热解区(2)的排气口(23)处分叉连接有烟管(122),该烟管(122)与一冷却塔(123)连接,所述冷却塔(123)通过管道与进气支管(120)连接,所述出气支管(121)通过管道连接有引风机(16),该引风机(16)与油气分离塔(106)连接;
    所述辊轴(112)与热解区(2)炉体壁交界区域采用保温材料填充密封。
  8. 根据权利要求7所述的干馏型隧道式断续热解炉,其特征在于:在热解区(2)内,相邻两个滚子(113)之间设有隔板(124),隔板(124)高度大于或等于滚子(113)中心的高度。
  9. 根据权利要求1所述的干馏型隧道式断续热解炉,其特征在于:所述密封门(6)包括与炉体(4)固定连接并与炉体(4)内腔连通的承载箱体(61);
    箱体(61)内腔中安装有炉门(62),炉门(62)上靠近热解区(2)的一侧固定有密封框(63),该密封框(63)为板材合围形成的箱型结构,靠近热解区(2)的一侧完全敞开;箱体(61)靠近热解区(2)一侧的内壁上与密封框(63)对应的位置设有密封槽(64),密封槽(64)内设有耐高温纤维垫(65),密封框(63)可插入密封槽(64)内形成密封结构;
    靠近热解区(2)一侧的箱体(61)内壁和炉门(62)之间设有弹簧(66),远离热解区(2)的炉门(62)一侧设有可往复移动的顶杆(67),顶杆(67)延伸至箱体(61)外部; 顶杆(67)与箱体(61)之间的接触部位填充有石棉绳(68);
    还包括将炉门(62)上下提升的炉门提升机构。
  10. 根据权利要求9所述的干馏型隧道式断续热解炉,其特征在于:所述箱体(61)上靠近热解区(2)的一侧设有冷却用水套(69),水套(69)上设有水套进水口(691)和水套出水口(692);
    所述炉门(62)为空心腔结构,炉门(62)顶部设有进水管(621)和出水管,进水管(621)至插入炉门(62)空心腔下部,箱体(61)顶部设有进水管接头(622)和出水管接头,进水管(621)和进水管接头(622)、出水管和出水管接头之间分别通过软管(623)连通;
    所述密封框(63)的腔内紧贴炉门(62)的位置设有耐高温纤维层(70);
    所述炉门提升机构包括第一卷扬机(71)、固定于箱体(61)一侧的第一水箱(72),第一卷扬机(71)通过穿过箱体壁的钢丝绳(73)与炉门(62)顶部连接,钢丝绳(73)与箱体壁的穿孔处套接有管道(74),该管道(74)一端与箱体壁固定并与箱体(61)内腔连通,另一端没入第一水箱(72)中,钢丝绳(73)从管道(74)内穿过。
  11. 根据权利要求9所述的干馏型隧道式断续热解炉,其特征在于:所述顶杆(67)包括液压杆(671)以及固定在液压杆(671)前端的冷却杆(672),所述冷却杆(672)包括杆体(673)、在杆体(673)内开设的循环回路(674)、设置于杆体(673)上且与循环回路(674)连通的冷却液进口(675)和冷却液出口(676)。
PCT/CN2018/079518 2017-03-23 2018-03-20 一种干馏型隧道式断续热解炉 WO2018171566A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710176390.1A CN106916598B (zh) 2017-03-23 2017-03-23 一种干馏型隧道式断续热解炉
CN201710176390.1 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018171566A1 true WO2018171566A1 (zh) 2018-09-27

Family

ID=59461621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079518 WO2018171566A1 (zh) 2017-03-23 2018-03-20 一种干馏型隧道式断续热解炉

Country Status (2)

Country Link
CN (1) CN106916598B (zh)
WO (1) WO2018171566A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916598B (zh) * 2017-03-23 2020-06-26 肖国雄 一种干馏型隧道式断续热解炉

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130638A (ja) * 2000-10-19 2002-05-09 Meidensha Corp 熱分解処理施設と運転方法
JP2004277464A (ja) * 2003-03-12 2004-10-07 Japan Sewage Works Agency 有機物含有汚泥の炭化処理装置
CN102925179A (zh) * 2012-11-26 2013-02-13 北京碧瑞能科技发展有限公司 一种褐煤全循环高效干馏提质系统及方法
CN104877690A (zh) * 2015-06-09 2015-09-02 湖州宜可欧环保科技有限公司 一种有机质废物热解炭化处理方法及装置
CN105694930A (zh) * 2016-03-09 2016-06-22 肖国雄 一种隧道式生物质断续热解炉
CN106398731A (zh) * 2016-11-25 2017-02-15 肖国雄 一种高效隧道式断续热解炉
CN206204223U (zh) * 2016-11-25 2017-05-31 肖国雄 一种高效隧道式断续热解炉
CN106916598A (zh) * 2017-03-23 2017-07-04 肖国雄 一种干馏型隧道式断续热解炉

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242876A (zh) * 2013-04-28 2013-08-14 蔡京鹏 一种褐煤或低变质长焰煤的烘干或低温干馏方法及装置
CN103409152A (zh) * 2013-07-26 2013-11-27 中国五环工程有限公司 高热值气体热载体低阶煤提质工艺及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130638A (ja) * 2000-10-19 2002-05-09 Meidensha Corp 熱分解処理施設と運転方法
JP2004277464A (ja) * 2003-03-12 2004-10-07 Japan Sewage Works Agency 有機物含有汚泥の炭化処理装置
CN102925179A (zh) * 2012-11-26 2013-02-13 北京碧瑞能科技发展有限公司 一种褐煤全循环高效干馏提质系统及方法
CN104877690A (zh) * 2015-06-09 2015-09-02 湖州宜可欧环保科技有限公司 一种有机质废物热解炭化处理方法及装置
CN105694930A (zh) * 2016-03-09 2016-06-22 肖国雄 一种隧道式生物质断续热解炉
CN106398731A (zh) * 2016-11-25 2017-02-15 肖国雄 一种高效隧道式断续热解炉
CN206204223U (zh) * 2016-11-25 2017-05-31 肖国雄 一种高效隧道式断续热解炉
CN106916598A (zh) * 2017-03-23 2017-07-04 肖国雄 一种干馏型隧道式断续热解炉

Also Published As

Publication number Publication date
CN106916598A (zh) 2017-07-04
CN106916598B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN206339094U (zh) 微波加热生产合金的生产线装置
CN105423749A (zh) 一种用于永磁铁氧体烧结的节能型分体式双层辊道电窑
CN108870958B (zh) 热风循环蓄热式辐射管加热密封辊道窑炉
CN101880535A (zh) 一种褐煤干馏装置及方法
CN206204223U (zh) 一种高效隧道式断续热解炉
WO2018171566A1 (zh) 一种干馏型隧道式断续热解炉
CN105018117B (zh) 一种肉尸连续式热解炭化方法
CN208505002U (zh) 热风循环蓄热式辐射管加热密封辊道窑炉
CN212620048U (zh) 一种节能高效红砖连续焙烧生产窑
CN105154112B (zh) 一种肉尸连续式热解炭化装置
CN208395101U (zh) 环保氢炭无人全自动智能生产设备
CN106398731A (zh) 一种高效隧道式断续热解炉
CN205222703U (zh) 连续式磷酸铁锂高温煅烧气氛保护生产线
CN111879096B (zh) 废旧镁碳砖水化、除杂、干燥一体化热处理装置及方法
CN220771841U (zh) 无隔层双层辊道窑焙烧锂云母生产线
CN113280632A (zh) 一种节能型工艺陶瓷烧成窑及其烧成方法
CN112944903A (zh) 循环烧制的装配结构梭式窑系统
CN204958809U (zh) 一种肉尸连续式热解炭化装置
CN215177021U (zh) 一种移动式隧道窑烟气余热利用装置
CN111595147A (zh) 一种页岩砖烧结辊道窑
CN105347324A (zh) 连续式磷酸铁锂高温煅烧气氛保护生产线
CN105973006B (zh) 一种磁芯烧结炉系统及其操作方法
CN201021872Y (zh) 一种砖瓦窑
CN221223159U (zh) 余热均匀烘干系统
CN216745384U (zh) 回转窑余热快速干燥系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18772599

Country of ref document: EP

Kind code of ref document: A1