WO2018171119A1 - 液压自升桁架式悬臂重型拱坝模板系统 - Google Patents
液压自升桁架式悬臂重型拱坝模板系统 Download PDFInfo
- Publication number
- WO2018171119A1 WO2018171119A1 PCT/CN2017/098972 CN2017098972W WO2018171119A1 WO 2018171119 A1 WO2018171119 A1 WO 2018171119A1 CN 2017098972 W CN2017098972 W CN 2017098972W WO 2018171119 A1 WO2018171119 A1 WO 2018171119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- template
- tripod
- truss type
- hydraulic
- suspension rod
- Prior art date
Links
- 238000009415 formwork Methods 0.000 title claims abstract description 55
- 230000009194 climbing Effects 0.000 claims description 82
- 239000000725 suspension Substances 0.000 claims description 79
- 238000010276 construction Methods 0.000 claims description 36
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 5
- 241001503987 Clematis vitalba Species 0.000 claims description 4
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 19
- 238000004873 anchoring Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/02—Fixed barrages
- E02B7/04—Dams across valleys
- E02B7/08—Wall dams
- E02B7/12—Arch dams
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D15/00—Handling building or like materials for hydraulic engineering or foundations
- E02D15/02—Handling of bulk concrete specially for foundation or hydraulic engineering purposes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
Definitions
- the invention relates to an arch dam construction template, in particular to a hydraulic self-lifting truss cantilever heavy arch dam formwork system.
- the formwork used for arch dam concrete pouring is a crane lifting ordinary dam formwork.
- the formwork system can meet the arch dam concrete construction requirements.
- the construction safety and construction efficiency of the common dam formwork will greatly affect the concrete construction work of the arch dam.
- the automatic climbing dam template technology can well solve the above problems of ordinary dam templates.
- the automatic climbing mold technique requires the template plate surface to be separated from the concrete surface by a certain distance (about 300 mm) during the climbing process to facilitate the climbing rail to climb in place first, and then climb the template and the platform as a whole.
- the Chinese patent document CN 102345381 A describes a hydraulic climbing mold system and a climbing mold construction method thereof, which are characterized in that a climbing system is constituted by four machine positions and a climbing mold device attached to the surface of the wall, and the machine position is installed.
- a climbing system is constituted by four machine positions and a climbing mold device attached to the surface of the wall, and the machine position is installed.
- On the side of the Hengqiao there are templates, template moving brackets, working platforms, hydraulic power units, hydraulic platforms and finishing platforms from top to bottom.
- the vertical bridges are only installed with templates and template moving brackets.
- the working platform and the passing passage connecting the climbing platform hydraulic platform, the template and the working platform of the longitudinal bridge to the side when climbing, the four planes of the transverse bridge drive the four sides to climb together.
- the structure of the invention is mostly used for the structure of the column, the pier or the wall with a small thickness, and the overall strength of the climbing mold is not high, and the frame reinforcement needs to be arranged around the climbing mold.
- the Chinese patent document CN 103635643 B also has the same problem, and it is necessary to use a plurality of wall rods for fixing.
- the technical problem to be solved by the invention is to provide a hydraulic self-lifting truss type cantilever heavy arch dam formwork system, which can use the climbing mold to carry out the self-climbing pouring construction of the arch dam concrete, and increase the pouring height of each warehouse concrete, preferably
- the force of the mold removing device during demolding can be reduced, and the mold release can be ensured.
- the anchoring and anchoring cones are easy to bury and install, and can easily and reliably fix the entire climbing mold device, and can be adapted to the complex curved structure of the arch dam by fine-tuning some components.
- a hydraulic self-lifting truss type cantilever heavy arch dam formwork system including a force tripod, a hydraulic climbing frame system connected with a force tripod, and a force triangle A stencil device is installed on the shelf;
- the force tripod is a plurality of, the force tripod and the template device are arranged along the construction bin surface, and the force tripods are fixedly connected by a plurality of tripod connecting beams; in the template device, the template back surface There are a plurality of lateral enclosures, the transverse enclosure is connected to the truss type longitudinal enclosure, the truss type longitudinal enclosure is connected to one end of the sliding lever by the template adjustable axle, and the other end of the sliding pole is connected by the module and the truss The bottom connection of the longitudinal enclosure, the connection module is connected to the force tripod;
- the sliding bar is also connected to the top of the stressed tripod by a telescopic drive.
- the connecting module is provided with a horizontally arranged long circular groove, and the bottom of the truss type longitudinal ring is slidably connected to the long circular groove by a sliding pin;
- the bottom of the truss type longitudinal ring is also connected with the demolding rod, and the demolding rod and the connecting module are provided with a first wedge groove and a second wedge groove, and the wedge plate is inserted into the first wedge groove or the second wedge groove to make the truss
- the longitudinal enclosure moves toward the template or moves the truss longitudinal enclosure in the opposite direction of the template.
- the top of the force tripod is movably mounted with a suspension rod, and one end of each suspension rod is fixedly connected to the anchor cone bolt suspension plate near one end of the template, and the anchor cone bolt suspension plate is provided adjacent to the template side for connecting the anchor cone.
- the U-shaped connecting hole is inverted, and the other end of each suspension rod is connected with the tripod connecting beam through the fine adjustment screw, and the distance between the inverted U-shaped connecting hole and the anchor cone is adjusted by the fine adjustment screw.
- the suspension rod is welded by two I-beams or channel steels back to back, and a gap is formed between the two I-beams or the channel steel, and the pressure plate is fixedly connected with the tripod connecting beam, and the suspension rod is pressed. The edge of the suspension rod slides along the top of the force tripod.
- the connecting module slides in the gap of the suspension rod and is provided with a limiting device so that the connecting module can only slide along the hanging rod;
- the bottom of the connecting module is provided with a plurality of connecting module pin holes, and the hanging rods are correspondingly provided with a plurality of hanging rod pin holes, and the connecting module pin holes and the hanging rod pin holes are connected by pins.
- the horizontal section of the truss type longitudinal enclosure is a triangle
- the apex position of the triangle is a steel pipe
- the three steel pipes are connected by a structural member
- the structural member and the steel pipe form a triangle.
- the telescopic drive device is a hydraulic cylinder, and one end of the hydraulic cylinder is fixedly connected with the suspension rod. The other end of the hydraulic cylinder is fixedly connected to the sliding rod.
- the connecting module and the sliding bar are provided with rollers, and the rollers roll along the upper surface of the hanging bar.
- the bottom leg of the force tripod is an adjustable structure to change the distance between the force tripod and the dam according to the adaptation of the dam body;
- the legs connected to the bottom of the climber tripod are also adjustable.
- a plurality of platforms for construction are also provided, and the platform adopts an adjustable flat connection structure.
- the pouring quality can not be guaranteed, that is, the template is deformed and running, the installation quality of the near 9m long guide rail cannot be guaranteed, and the self-climbing of the arch dam formwork cannot be realized.
- Only the lifting device can be used to lift the formwork, and the complexity of the construction is greatly increased, and Existing conventional longitudinal enclosures are difficult to meet the needs of a 4.5 meter cast position in terms of stiffness.
- the utility model provides a hydraulic self-lifting truss type cantilever heavy arch dam formwork system, which can be easily used for vertical mold and demoulding, and can increase the pouring of each silo by adopting a unique truss type longitudinal enclosure and the mold-removing mold clamping structure.
- the height of the concrete, the set force-bearing tripod can reliably fix the entire climbing mold, and the entire template device can be conveniently moved back and forth by the telescopic drive device.
- the longitudinal enclosure uses a truss-type longitudinal enclosure, and the truss-type longitudinal enclosure uses a plurality of triangular fixed structures to ensure the quality of the concrete cast.
- the connecting module and the demoulding rod are arranged to cooperate with the wedge plate, so that the template can be separated from the concrete surface to avoid damage to the concrete surface.
- the template adjustable shaft is provided to further separate the template from the concrete surface during demolding.
- the structure of the suspension rod and the force tripod movable connection, with the fine adjustment screw provided, can conveniently adjust the position of the end of the suspension rod, and is convenient to be connected with the anchor cone to adapt to the complex curved shape of the arch dam.
- the structure of the invention has higher strength under the same weight, so the height of the formwork can be increased, thereby increasing the pouring height of the concrete in each warehouse, improving the pouring efficiency, speeding up the dam construction progress, and shortening the construction period of the project.
- the formwork frame body and the working platforms of each layer are in the form of an adjustable system, which is adapted to the shape characteristics of the arch dam structure, and is convenient for the construction personnel to be in a horizontal working surface during the platform operation, thereby ensuring the safety of the construction personnel.
- Figure 1 is a schematic view of the structure of the present invention.
- Figure 2 is a schematic view of the structure of the present invention.
- Figure 3 is a schematic view showing the arrangement of the cross section of the arch dam during the pouring process of the arch dam according to the present invention.
- Figure 4 is a schematic view showing the horizontal section arrangement of the arch dam during the arch dam pouring process of the present invention.
- Fig. 5 is a partially enlarged schematic view showing the connecting module of the present invention.
- Figure 6 is a top plan view of the connecting module of the present invention.
- Figure 7 is a schematic view showing the structure of the entire mold removing and clamping device in the present invention.
- Figure 8 is a top plan view showing the mounting structure of the suspension rod of the present invention.
- Figure 9 is a B-direction view of Figure 8.
- Fig. 10 is a partially enlarged schematic view showing a portion C in Fig. 8.
- Figure 11 is a schematic view showing the construction steps of the present invention.
- Figure 12 is a horizontal cross-sectional view showing the truss type longitudinal enclosure of the present invention.
- Climbing die 1 template device 10, template 101, transverse enclosure 102, truss longitudinal enclosure 103, template adjustable axle 104, connection module 105, oblong groove 1051, roller 1052, connecting modular pin holes 1053, sliding pin 1054, wedge plate 1055, connecting module shoe 1056, second wedge groove 1057, first wedge groove 1058, stripping rod 1059, platform leveling rod 106, force tripod 107, suspension rod 108, suspension Rod pin hole 1081, suspension rod connecting plate 1082, hydraulic cylinder 109, fine adjustment screw 110, tripod connecting beam 111, pressure plate 112, sliding rod 113, anchor cone bolt suspension plate 114, fourth platform 11, triangular bracket 12, a platform 13, a second platform 14, a hydraulic climbing frame system 15, a hanging shoe 151, a climbing frame hydraulic cylinder 152, a climbing frame rail 153, an anchoring cone 16, a climbing anchor cone 17, an anti-winding rod 18, a third platform 19, Dam body 2.
- a hydraulic self-lifting truss cantilever heavy arch dam formwork system includes a force tripod 107, a hydraulic climbing frame system 15 connected to the force tripod 107, and a force tripod 107 from a cross.
- the rod, a vertical rod and a diagonal rod are fixedly connected, and the cross rod is located at the top.
- the hydraulic climbing frame system 15 connected to the force tripod 107 has multiple uses in the climbing frame system.
- the climbing frame system is a prior art, for example, the climbing frame system described in the Chinese patent document CN 102345381A.
- the force-receiving tripod 107 is movably mounted with a template device 10; the force-bearing tripod 107 is a plurality of, the force-bearing tripod 107 and the formwork device 10 are arranged along the construction bin face, and the force tripod 107 passes between The tripod connecting beams 111 are fixedly connected; thereby, the template 101 is arranged along the concrete construction bin surface, thereby facilitating the concrete pouring construction of the entire bin face, as shown in FIG. 2 .
- the hydraulic self-lifting truss cantilever heavy arch dam formwork system of the present invention is a cantilever support structure, instead of the prior art pull-and-fix structure, and therefore, the hydraulic self-lifting truss type of the present invention
- the self-climbing, reliable suspension and anti-running mode correction of the cantilever heavy arch dam formwork system put forward higher requirements.
- a plurality of lateral enclosures 102 are disposed on the back of the template 101, the transverse enclosures 102 are coupled to the truss-type longitudinal enclosures 103, and the truss-type longitudinal enclosures 103 are passed through the template-adjustable axles 104 and the sliding members 113.
- One end is connected, and the other end of the sliding rod 113 is connected to the bottom of the truss type longitudinal ring 103 through the connecting module 105, and the connecting module 105 is connected.
- the longitudinal enclosure uses a truss-type longitudinal enclosure to replace the I-beam structure of the prior art by the combination of multiple triangles, the same weight
- the lower strength is higher and the deformation is smaller, so that the pouring precision under the condition of higher pouring position is ensured.
- the back side of the truss type longitudinal enclosure is connected with the template adjustable shaft 104, and the connection point with the template adjustable shaft 104 is further rearward, which is advantageous for reducing the template adjustable shaft 104.
- the length increases the strength of the support.
- the stencil adjustable shaft 104 typically employs a twin screw and threaded sleeve configuration that adjusts the length of the entire stencil adjustable shaft 104 by rotating the threaded sleeve.
- the slide bar 113 is also coupled to the top of the force tripod 107 by a telescoping drive.
- a stable force-bearing tripod 107 is used as a support base for the entire formwork, which improves reliability.
- the sliding structure of the entire stencil apparatus 10 can be set to retract the entire stencil apparatus 10 by about 30-40 cm after demolding, so that the climbing rail can be climbed up and seated first.
- the connecting module 105 is provided with a horizontally arranged oblong groove 1051, and the bottom of the truss-type longitudinal enclosing 103 is slidably connected to the oblong groove 1051 by a sliding pin 1054; thereby, the structure is such that the truss is first released during demolding
- the bottom of the longitudinal ring 103 is retracted a distance, for example 3 cm, within the range of the long circular groove 1051, so that the lower end of the template 101 is detached from the concrete surface, and in the subsequent process of shortening the template adjustable shaft 104, the template 101
- the lower end does not damage the concrete surface and it is easier to detach.
- the bottom of the truss type longitudinal ring 103 is also connected to the stripping rod 1059.
- the stripping rod 1059 and the connecting module 105 are provided with a first wedge groove 1058 and a second wedge groove 1057.
- the wedge plate 1055 is inserted into the first wedge groove 1058 or
- the second wedge-shaped groove 1057 moves the truss-type longitudinal enclosure 103 in the direction of the template 101 or moves the truss-type longitudinal enclosure 103 in the opposite direction to the template 101.
- the wedge plate 1055 is inserted into the first wedge groove 1058 and the wedge plate 1055 is struck, under the action of the wedge plate 1055, as shown in FIG.
- the wedge plate 1055 pushes the stripping rod 1059 to move toward the template, thereby
- the template 101 is close to the concrete silo surface to achieve a vertical mold.
- the wedge plate 1055 is struck, and under the action of the wedge plate 1055, the wedge plate 1055 pushes the stripping rod 1059 to move away from the template, so that the template 101 leaves the concrete surface, and the strip 101 is removed. mold.
- the top of the force tripod 107 is movably mounted with a suspension rod 108, and one end of each suspension rod 108 near the template 101 is fixedly connected with the anchor bolt suspension plate 114, and the anchor cone bolt suspension plate 114 is adjacent to the side of the template 101.
- An inverted “U” shaped connecting hole for connecting the anchor cone is provided, and when connected to the bearing anchor cone 16, the inverted “U” shaped connecting hole is hung on the anchor taper bolt.
- the other end of each suspension rod 108 is provided with a suspension rod connecting plate 1082.
- the suspension rod connecting plate 1082 is connected to the tripod connecting beam 111 through the fine adjustment screw 110, and the distance between the connecting hole and the anchor cone is adjusted by the fine adjustment screw 110.
- the suspension rod 108, the anchor bolt bolt suspension plate 114, and the formwork device 10 are integrally formed by adjusting the fine adjustment screw 110. Move 10 ⁇ 20mm. Space is provided for the climb of the hydraulic climbing frame system 15 and the formwork device 10.
- the suspension rod 108 is welded by two I-beams or channel steels back to back, and a gap is provided between the two I-beams or the channel steel, and the pressure plate 112 is fixedly connected with the tripod connecting beam 111. And pressing the edge of the suspension bar 108 to slide the suspension bar 108 along the top of the force tripod 107. With this configuration, the suspension bar 108 can be slid back and forth, thereby allowing the climbing space of the hydraulic climbing frame system 15 to be opened. After the concrete casting is stopped, the concrete surface and the front end of the suspension rod 108 are touched to form a whole climbing frame.
- a suspension rod connecting plate 1082 is disposed between the two I-beams or the channel steel of the suspension rod 108, and one end of the fine adjustment screw 110 is fixedly connected to the screw seat on the tripod connecting beam 111 through a nut.
- the other end of the fine adjustment screw 110 is connected to the adjusting nut through the suspension rod connecting plate 1082.
- the connecting module 105 slides within the gap of the suspension bar 108 and is provided with a stop means to allow the connecting module 105 to slide only along the suspension bar 108.
- the limiting device is a slotted plate that hooks the two wings of the top of the I-beam or the channel steel to define that the connecting module 105 cannot be detached from the suspension rod 108.
- a limiting device is also provided at an end of the sliding rod 113 away from the connecting module 105.
- the bottom of the connecting module 105 is provided with a plurality of connecting module pin holes 1053.
- the hanging rod 108 is correspondingly provided with a plurality of hanging rod pin holes 1081, and the connecting module pin holes 1053 are connected. It is connected to the suspension rod pin hole 1081 by a pin.
- the structure is used to connect and disconnect the connecting module 105 from the suspension rod 108.
- the telescopic driving device is a hydraulic cylinder 109.
- One end of the hydraulic cylinder 109 is fixedly connected to the suspension rod 108, and the other end of the hydraulic cylinder 109 is fixedly connected to the sliding rod 113.
- the connecting module 105 and the sliding rod 113 are provided with rollers 1052 which roll along the upper surface of the suspension rod 108. With this configuration, the resistance of the movement of the entire stencil apparatus 10 is reduced.
- the bottom leg of the force tripod 107 is an adjustable structure.
- a structure is adopted which is adjusted by a plurality of pin holes at different positions to adjust the force triangle according to the adaptation of the dam body 2.
- the legs connected to the bottom of the climber tripod 12 are also of an adjustable construction. With this structure, it is better to meet the force and climb requirements of the template.
- FIG. 3 The preferred scheme is shown in Figures 1 and 2, and there are also a plurality of platforms for construction, and the platform adopts an adjustable flat connection knot. Structure.
- a first platform 13, a second platform 14, a third platform 19 and a fourth platform 11 are provided in order from top to bottom, and each platform is provided with an adjustable support structure, such as a platform leveling rod.
- the structure of the platform, the platform leveling rod 106 adopts the structure of a double screw and a threaded sleeve, and the length of the entire platform leveling rod 106 is adjusted by rotating the threaded sleeve, so that the platforms are kept horizontal, which is convenient for the construction workers to construct on the horizontal surface. It is also convenient to place relevant construction equipment to ensure the safety of construction workers.
- the wedge plate 1055 on the connecting module 105 is inserted into the second wedge groove 1057, and the wedge plate 1055 is struck, and the bottom of the template 101 is 10-20 mm away from the concrete surface;
- the clamping process is basically the reverse operation of the demolding process.
- the specific operation process is as follows:
- the arch dam plane is composed of several pouring blocks, and the height is increased by layer by layer.
- the single casting block that is, the upper and lower surfaces of the first pouring block and the transverse joint surfaces of both sides are installed with templates, and both sides of the rear pouring block There is no need to install a template for the horizontal seam surface.
- step one using the upper template system of the large steel formwork or the self-lifting cantilever formwork, installing the first layer formwork, and embedding the first layer of bearing anchor cone and the first layer of climbing anchor cone, and pouring the first layer of concrete after the completion of the process in the warehouse .
- Step 2 Remove the first layer formwork, use the first layer bearing anchor cone and connecting bolt as the suspension point, and adopt the self-lifting cantilever formwork formwork system.
- the hydraulic climbing frame system 15 and the platform system are not included because the height of the poured concrete cannot be satisfied.
- the second layer of the template is installed, and the second layer of the anchoring cone and the second layer of the climbing anchor cone are buried, and the second layer of concrete is poured after the completion of the process in the warehouse.
- Step 3 using the second layer of anchoring cone 16 and the connecting bolt as the suspension point, lifting the second layer template to the third to-be-cast layer, installing the hydraulic climbing frame system 15, and installing the construction platform system, for example, the first platform 13, the second The platform 14, the third platform 19 and the fourth platform 11 respectively mount the suspension boots at the first layer climbing anchor cone and the second layer climbing anchor cone, and the climbing frame guides 153 are sequentially inserted into the second layer suspension boots from top to bottom.
- the first layer of suspension boots and the climbing frame rail 153 and the SKE50 climber are connected, the third layer bearing anchor cone and the third layer climbing anchor cone are buried, and the third layer of concrete is poured after the in-house process is completed.
- Step 4 The template system of the hydraulic self-lifting cantilever template of the third casting layer is demolded.
- the stencil bottom is separated from the concrete surface by the above-mentioned demoulding step; the stencil adjustable shaft 104 is adjusted so that the stencil apparatus 10 is entirely separated from the concrete surface by 10 to 20 mm.
- the truss type longitudinal enclosure 103 improves the strength and rigidity of the formwork, ensures the quality and precision of the concrete pouring body with a height of 4.5 m, thereby ensuring the flatness of the guide rail after it is seated, and ensuring the overall climb of the climbing mold.
- the wind-resistant pull rod is used to increase the stability of the formwork in a high wind environment, and the removal of the wind-resistant pull rod removes the constraint of the formwork.
- Step 5 The hydraulic self-lifting truss type cantilever heavy arch dam formwork system of the third pouring layer and the whole body climb up to the fourth to-be-casting layer.
- the hydraulic self-lifting truss type cantilever heavy arch dam formwork system climbs 150mm overall, removes the connecting bolt of the second layer bearing anchor cone; adjusts the fine adjustment screw 110 so that the suspension rod 108 is integrated with the template device Move 10 ⁇ 20mm. In this step, the gap between the front end of the suspension rod 108 and the concrete is increased to ensure that the template climbs smoothly.
- the hydraulic self-lifting truss cantilever heavy arch dam formwork system climbs up to 150mm above the third layer bearing anchor cone and installs the connecting bolts.
- Step 6 The template clamping and operation platform leveling of the hydraulic self-lifting truss cantilever heavy arch dam formwork system to be poured.
- Step 7 After the warehouse is completed, the fourth layer of concrete is poured after acceptance.
- Step 8 Repeat steps 4 to 7 above to complete the fifth layer of concrete pouring, and then push until the arch dam is poured to the design height.
- the maximum height of the template 101 of the invention is 4.5m, and the width of the single standard template is 3m; the upper and lower faces of the arch dam are composed of a plurality of templates, and the joint plates are arranged between the templates to adapt to the curved surface deformation of the arch dam; The face is composed of multiple templates.
- a semi-circular keyway template is fixed on the panel of the transverse seam surface template to meet the structural requirements of the transverse dam surface of the arch dam.
- the force-bearing tripod 107 provided by the single-piece template of the present invention is a 2", and the hydraulic climbing frame system 15 is disposed in the middle of the 2" force-triangle frame 107.
- One of the structural systems solves the problem that the template does not need to be reinforced by reinforcement, and the amount of lacing work and manual work is reduced; the second is to solve the problem of climbing of the cantilever template.
- the force tripod 107 and the climbing frame system are independent systems, exert their respective functions, and closely cooperate with each other without mutual interference, and form an overall structure through the template frame body and the operation platforms of the layers.
- the central pump station power supply of the hydraulic cylinder 109 is started, and all the hydraulic cylinders 109 of the entire storage surface can be grouped or operated simultaneously, so that the single, single or four-sided formwork panel and the truss type longitudinal enclosure 103 can be separated from the concrete surface. Or move in the direction of the bin.
- the climb of the climbing frame rail 153 includes an extension movement (empty stroke) of the climbing frame hydraulic cylinder 152 and a contraction movement (working stroke) of the hydraulic cylinder.
- the entire climbing frame system is anchored on the concrete wall surface with the suspension shoe, and the upper lifting device and the lower lifting device control handle are placed at the upper "rail" position; the climbing frame rail 153 is engaged with the upper lifting device of the hydraulic climbing frame system 15 In position, the climbing frame hydraulic cylinder 152 drives the lower lifting device to extend downwardly until the lower lifting device is embedded in the square slot of the climbing frame rail 153; the lower lifting device is engaged with the climbing frame rail 153 to be fixed in position, and the climbing frame hydraulic cylinder 152 The lower lifting device is driven to contract upwardly until the upper lifting device automatically engages with the climbing rail 153 to be fixed in position, and the upper lifting device drives the climbing frame rail 153 to climb upward; thus alternately moving until the rail is climbed into position.
- the entire crawler rail 153 is initially fixed to the concrete wall by the hanging shoe 151 and the anchor cone, and the control handles of the upper lifting device and the lower lifting device are placed in the lower "climbing frame" position.
- the lower lifting device is fixedly engaged with the guide rail, and the climbing frame hydraulic cylinder 152 drives the upper lifting device to extend upward, and drives the entire climbing frame system and the template to move upward until the upper lifting device and the climbing frame rail 153 are automatically bitten and fixed in place again.
- the upper lifting device fixes the entire climbing frame system on the climbing frame rail 153, and the climbing frame hydraulic cylinder 152 drives the lower lifting device to contract upwardly and freely until the lower lifting device and the climbing frame hydraulic cylinder 152 are automatically engaged and fixed;
- the template and the force tripod 107 are integrally climbed into position.
- the operation method of the template and the overall drop of the force tripod 107 is the reverse operation of the climb.
- step 5 the hydraulic climbing frame system 15 can be started in groups or simultaneously, so that the single template and the frame can be climbed, the single transverse surface or the single upper and lower surface template and the frame of the frame can be climbed and the four sides of the frame can be framed and framed.
- the overall climbing of the four-sided form of the warehouse is very fast, only about 8 to 10 hours, and the entire construction process is safe and reliable, reducing external environmental factors, such as the impact of strong wind on the construction progress.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Mechanical Engineering (AREA)
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
Abstract
一种液压自升桁架式悬臂重型拱坝模板系统,包括受力三角架(107),与受力三角架(107)连接的液压爬架系统(15),受力三角架(107)上活动安装有模板装置(10);受力三角架(107)为多个,受力三角架(107)之间通过多个三角架连接横梁(111)固定连接;模板装置(10)中,模板(101)背面设有多个横向围令(102),横向围令(102)与桁架式纵向围令(103)连接,桁架式纵向围令(103)通过模板可调轴杆(104)与滑动杆件(113)的一端连接,滑动杆件(113)的另一端通过连接模件(105)与桁架式纵向围令(103)的底部连接,连接模件(105)与受力三角架(107)连接;滑动杆件(113)还通过伸缩驱动装置与受力三角架(107)的顶部连接。
Description
本发明涉及拱坝施工模板,特别是一种液压自升桁架式悬臂重型拱坝模板系统。
长期以来,用于拱坝混凝土浇筑的模板均为吊车提升式普通大坝模板,一般施工环境下此模板系统可以满足拱坝混凝土施工要求。但是一旦拱坝处于常年大风环境或者起吊手段不足,普通大坝模板的施工安全和施工效率问题将极大影响拱坝混凝土施工作业。自动爬升大坝模板技术可以很好地解决普通大坝模板上述问题。但是自动爬模技术在爬升过程中要求模板板面脱离混凝土面一定的距离(约300mm)以方便爬升导轨先爬升就位,然后再整体爬升模板和平台。而拱坝自身结构特点决定其结构自下而上的前仰后倾角度变化大,参见图3中所示,导致混凝土施工过程中模板的合模退模均需在具有较大倾角的平面上完成,仅配置现有大坝模板常规的结构已无法满足自动爬升大坝模板施工过程中的合模和退模要求。
中国专利文献CN 102345381 A记载了一种液压爬模系统及其爬模施工方法,其特征在于:由4个机位以及附着于墙体表面的爬模装置构成爬升系统,所述机位安设于横桥向边上,机位侧由上至下有模板、模板移动支架、工作平台、液压动力装置、液压平台及修饰平台,纵桥向边不安设机位仅安装模板、模板移动支架、工作平台及连接爬升面液压平台的过人通道,爬升时纵桥向边的模板及工作平台由横桥向的4个机位带动四面一起爬升。但是该发明的结构多用于厚度不大的立柱、桥墩或夹墙的结构,爬模整体的强度不高,爬模周围需要设置排架加固。中国专利文献CN 103635643 B,也存在相同的问题,需要采用多处的穿墙拉杆固定。
对于拱坝施工而言,由于很难设置排架固定,也没法采用对拉杆的固定结构,仅靠锚筋和锚锥进行固定对整个爬模系统的要求非常高,由于拱坝表面并不是一个平面且高度上前仰后倾角度变化大,施工过程中需要能够对架体的构件进行更多的微调。这对整个爬模结构的设计也提出更高的要求。
现有的拱坝混凝土浇筑施工中,每仓的浇筑高度为3米,工程进度较慢,效率较低。
发明内容
本发明所要解决的技术问题是提供一种液压自升桁架式悬臂重型拱坝模板系统,能够利用爬模对拱坝的混凝土进行自爬升的浇筑施工,并且增大每仓混凝土的浇筑高度,优选
的方案中,能够减少脱模时候退模装置的受力,确保退模可靠。锚筋和锚锥的埋设及安装便利,能够方便、可靠的固定整个爬模装置,能够通过对部分构件的微调以适应拱坝的复杂曲面结构。
为解决上述技术问题,本发明所采用的技术方案是:一种液压自升桁架式悬臂重型拱坝模板系统,包括受力三角架,与受力三角架连接的液压爬架系统,受力三角架上活动安装有模板装置;
所述的受力三角架为多个,受力三角架和模板装置沿着施工仓面布置,受力三角架之间通过多个三角架连接横梁固定连接;所述的模板装置中,模板背面设有多个横向围令,横向围令与桁架式纵向围令连接,桁架式纵向围令通过模板可调轴杆与滑动杆件的一端连接,滑动杆件的另一端通过连接模件与桁架式纵向围令的底部连接,连接模件与受力三角架连接;
滑动杆件还通过伸缩驱动装置与受力三角架的顶部连接。
优选的方案中,连接模件上设有水平布置的长圆槽,桁架式纵向围令的底部通过滑动销与长圆槽滑动连接;
桁架式纵向围令的底部还与脱模拉杆连接,脱模拉杆和连接模件上设有第一楔形槽和第二楔形槽,楔形板插入第一楔形槽或第二楔形槽,以使桁架式纵向围令向模板方向移动,或使桁架式纵向围令向与模板相反方向移动。
优选的方案中,受力三角架的顶部活动安装有悬挂杆,各个悬挂杆靠近模板的一端与锚锥螺栓悬挂板固定连接,锚锥螺栓悬挂板靠近模板的一侧设有用于连接锚锥的倒“U”形连接孔,各个悬挂杆的另一端通过微调螺杆与三角架连接横梁连接,通过微调螺杆调节倒“U”形连接孔与锚锥之间的距离。
优选的方案中,悬挂杆采用背靠背的两根工字钢或槽钢焊接而成,两根工字钢或槽钢之间设有间隙,压板与三角架连接横梁固定连接,并压住悬挂杆的边沿,使悬挂杆沿受力三角架的顶部滑动。
优选的方案中,连接模件滑动位于悬挂杆的间隙内,并设有限位装置,以使连接模件仅能沿着悬挂杆滑动;
连接模件的底部设有多个连接模件销孔,悬挂杆上相应设有多个悬挂杆销孔,连接模件销孔与悬挂杆销孔之间通过销钉连接。
优选的方案中,所述的桁架式纵向围令的水平截面为三角形,三角形的顶点位置为钢管,三根钢管之间通过结构件连接,结构件与钢管之间组成三角形。
优选的方案中,所述的伸缩驱动装置为液压缸,液压缸的一端与悬挂杆固定连接,
液压缸的另一端与滑动杆件固定连接。
优选的方案中,所述的连接模件和滑动杆件上设有滚轮,滚轮沿着悬挂杆的上表面滚动。
优选的方案中,受力三角架的底部支腿为可调节结构,以根据坝体相适应的改变受力三角架与坝体的距离;
爬架三角架底部连接的支腿也采用可调节结构。
优选的方案中,还设有多个用于施工的平台,平台采用可调平的连接结构。
如果浇筑质量不能保证,即模板发生变形跑模,则近9m长导轨的安装质量无法保证,就不能实现拱坝模板的自爬升,只能采用起吊设备提升模板,施工的复杂程度大幅增加,而且现有的普通纵向围令在刚度上难以满足4.5米浇筑仓位的需求。
本发明提供的一种液压自升桁架式悬臂重型拱坝模板系统,通过采用独特的桁架式纵向围令,配合退模合模结构,能够方便地立模和脱模,并能够增加每仓浇筑混凝土的高度,设置的受力三角架能够可靠的固定整个爬模,通过伸缩驱动装置即可方便地前后移动整个模板装置。纵向围令采用桁架式纵向围令,由于桁架式纵向围令采用了多个三角形的固定结构,能够保证混凝土浇筑体型质量。设置的连接模件和脱模拉杆,配合楔形板,能够在便于使模板与混凝土面脱离,避免损坏混凝土表面。设置的模板可调轴杆使脱模时,模板与混凝土面进一步脱离。采用悬挂杆与受力三角架活动连接的结构,配合设置的微调螺杆,能够方便的调节悬挂杆端头的位置,便于和锚锥进行连接,以适应拱坝的复杂曲面形状。本发明的结构相同重量下强度更高,因此能够加高模板的高度,从而加高每仓混凝土的浇筑高度,提高浇筑效率,加快大坝施工进度,缩短工程建设周期。进一步优选的,模板架体及各层作业平台为可调节体系形式,适应了拱坝结构体型特点,方便施工人员在平台作业时处于水平工作面,保证了施工人员的安全。
下面结合附图和实施例对本发明作进一步说明:
图1为本发明的结构示意图。
图2为本发明的结构示意图。
图3为本发明在拱坝浇筑过程中的拱坝横截面布置示意图。
图4为本发明的在拱坝浇筑过程中的拱坝水平截面布置示意图。
图5为本发明中连接模件的局部放大示意图。
图6为本发明中连接模件的俯视示意图。
图7为本发明中整个退模和合模装置的结构示意图。
图8为本发明中悬挂杆的安装结构俯视示意图。
图9为图8的B向视图。
图10为图8中C处的局部放大示意图。
图11为本发明的施工步骤示意图。
图12为本发明中桁架式纵向围令的水平截面示意图。
图中:爬模1,模板装置10,模板101,横向围令102,桁架式纵向围令103,模板可调轴杆104,连接模件105,长圆槽1051,滚轮1052,连接模件销孔1053,滑动销1054,楔形板1055,连接模件靴1056,第二楔形槽1057,第一楔形槽1058,脱模拉杆1059,平台调平拉杆106,受力三角架107,悬挂杆108,悬挂杆销孔1081,悬挂杆连接板1082,液压缸109,微调螺杆110,三角架连接横梁111,压板112,滑动杆件113,锚锥螺栓悬挂板114,第四平台11,三角支架12,第一平台13,第二平台14,液压爬架系统15,挂靴151,爬架液压缸152,爬架导轨153,承载锚锥16,爬升锚锥17,抗风拉杆18,第三平台19,坝体2。
如图1~12中,一种液压自升桁架式悬臂重型拱坝模板系统,包括受力三角架107,与受力三角架107连接的液压爬架系统15,受力三角架107由一横杆、一竖杆和一斜杆固定连接组成,横杆位于顶部,如图1、2中所示,与受力三角架107连接的液压爬架系统15,爬架系统中设有多个用于和锚锥连接的挂靴、H型的爬架导轨和爬架液压缸152,爬架系统为现有技术,例如,中国专利文献CN 102345381A中所记载的爬架系统。
受力三角架107上活动安装有模板装置10;所述的受力三角架107为多个,受力三角架107和模板装置10沿着施工仓面布置,受力三角架107之间通过多个三角架连接横梁111固定连接;由此结构,将模板101沿着混凝土施工仓面布置,从而便于实现整个仓面的混凝土浇筑施工,如图2中所示。与现有技术中不同的,本发明中的液压自升桁架式悬臂重型拱坝模板系统为悬臂支撑结构,而非现有技术中的对拉固定结构,因此,对本发明的液压自升桁架式悬臂重型拱坝模板系统的自爬升、可靠悬挂固定和防跑模矫正提出了更高的要求。
所述的模板装置中,模板101背面设有多个横向围令102,横向围令102与桁架式纵向围令103连接,桁架式纵向围令103通过模板可调轴杆104与滑动杆件113的一端连接,滑动杆件113的另一端通过连接模件105与桁架式纵向围令103的底部连接,连接模件105
与受力三角架107连接;本例中参见图1、2、12,纵向围令采用桁架式纵向围令,通过多个三角形的组合结构,替换现有技术中的工字钢结构,相同重量下强度更高,变形更小,使更高的浇筑仓位条件下的浇筑精度得以确保。采用桁架式纵向围令的结构,桁架式纵向围令的背面与模板可调轴杆104连接,由于与模板可调轴杆104的连接点更为靠后,有利于减少模板可调轴杆104的长度,提高支承强度。
模板可调轴杆104通常采用双螺杆与螺纹套筒的结构,通过转动螺纹套筒来调节整个模板可调轴杆104的长度。
滑动杆件113还通过伸缩驱动装置与受力三角架107的顶部连接。由此结构,采用稳固的受力三角架107作为整个模板的支承基础,提高了可靠性。设置的整个模板装置10的滑动结构,能够在脱模后使整个模板装置10向后退约30~40cm,以方便爬升导轨先爬升就位。
优选的方案中,连接模件105上设有水平布置的长圆槽1051,桁架式纵向围令103的底部通过滑动销1054与长圆槽1051滑动连接;由此结构,在脱模时,先使桁架式纵向围令103底部在长圆槽1051的行程范围内先退后一段距离,例如3cm,从而使模板101的下端脱离混凝土面,在后继的缩短模板可调轴杆104的工序时,模板101的下端不会损坏混凝土面,并且脱离也较为容易。
桁架式纵向围令103的底部还与脱模拉杆1059连接,脱模拉杆1059和连接模件105上设有第一楔形槽1058和第二楔形槽1057,楔形板1055插入第一楔形槽1058或第二楔形槽1057,以使桁架式纵向围令103向模板101方向移动,或使桁架式纵向围令103向与模板101相反方向移动。在本例中,当楔形板1055插入第一楔形槽1058,敲击楔形板1055,在楔形板1055的作用下,如图6中,楔形板1055推动脱模拉杆1059向模板方向移动,从而使模板101靠近混凝土仓面,实现立模。当楔形板1055插入到第二楔形槽1057,敲击楔形板1055,在楔形板1055的作用下,楔形板1055推动脱模拉杆1059向远离模板的方向移动,使模板101离开混凝土面,实现脱模。
优选的方案中,受力三角架107的顶部活动安装有悬挂杆108,各个悬挂杆108靠近模板101的一端与锚锥螺栓悬挂板114固定连接,锚锥螺栓悬挂板114靠近模板101的一侧设有用于连接锚锥的倒“U”形连接孔,在与承载锚锥16连接时,倒“U”形连接孔挂在锚锥螺栓上。各个悬挂杆108的另一端设有悬挂杆连接板1082,悬挂杆连接板1082通过微调螺杆110与三角架连接横梁111连接,通过微调螺杆110调节连接孔与锚锥之间的距离。由此结构,通过调节微调螺杆110使悬挂杆108、锚锥螺栓悬挂板114和模板装置10整体后
移10~20mm。以给液压爬架系统15和模板装置10的爬升留出空间。
优选的方案如图9中,悬挂杆108采用背靠背的两根工字钢或槽钢焊接而成,两根工字钢或槽钢之间设有间隙,压板112与三角架连接横梁111固定连接,并压住悬挂杆108的边沿,使悬挂杆108沿受力三角架107的顶部滑动。由此结构,使悬挂杆108能够前后滑动,从而让开液压爬架系统15的爬升空间。可避免混凝土浇筑跑模后,混凝土面与悬挂杆108前端触碰约束模板整体爬升。
如图8、10中,在悬挂杆108的两根工字钢或槽钢之间设有悬挂杆连接板1082,微调螺杆110的一端通过螺母与三角架连接横梁111上的螺杆座固定连接,微调螺杆110的另一端穿过悬挂杆连接板1082与调节螺母连接,当悬挂杆108与锚锥脱开,拧紧调节螺母,则整个悬挂杆108后移;当爬升就位,松开调节螺母,悬挂杆108的挂钩与锚锥上的螺栓连接,再拧紧调节螺母,则使悬挂杆108与锚锥上的螺栓可靠固定连接。
优选的方案如图7中,连接模件105滑动位于悬挂杆108的间隙内,并设有限位装置,以使连接模件105仅能沿着悬挂杆108滑动。所述的限位装置为勾住工字钢或槽钢顶部两翼的带槽板,以限定连接模件105不可脱离悬挂杆108。优选的,在滑动杆件113远离连接模件105的一端也设有限位装置。
优选的方案如图1、2、7中,连接模件105的底部设有多个连接模件销孔1053,悬挂杆108上相应设有多个悬挂杆销孔1081,连接模件销孔1053与悬挂杆销孔1081之间通过销钉连接。由此结构,用于使连接模件105与悬挂杆108连接和脱开。
优选的方案如图1、2、8中,所述的伸缩驱动装置为液压缸109,液压缸109的一端与悬挂杆108固定连接,液压缸109的另一端与滑动杆件113固定连接。由此结构,当液压缸109的活塞杆伸出,推动滑动杆件113后移实现脱模,当液压缸109的活塞杆缩回,使滑动杆件113前移实现立模。
优选的方案如图1、2中,所述的连接模件105和滑动杆件113上设有滚轮1052,滚轮1052沿着悬挂杆108的上表面滚动。由此结构,减少整个模板装置10移动的阻力。
优选的方案中,受力三角架107的底部支腿为可调节结构,本例中采用通过多个不同位置的销孔配合销钉进行调节的结构,以根据坝体2相适应的改变受力三角架107各个三角形的角度;
爬架三角架12的底部连接的支腿也采用可调节结构。由此结构,更好的满足模板的受力和爬升需要。
优选的方案如图1、2中,还设有多个用于施工的平台,平台采用可调平的连接结
构。如图3中所示,从上到下依次设有第一平台13、第二平台14、第三平台19和第四平台11,各个平台均设有可调的支撑结构,例如平台调平拉杆106的结构,平台调平拉杆106采用双螺杆与螺纹套筒的结构,通过转动螺纹套筒来调节整个平台调平拉杆106的长度,从而使各个平台保持水平,方便施工人员在水平面上进行施工,也便于放置相关的施工设备,确保施工人员的安全。
采用本发明的退模流程:
在混凝土浇筑完成达到脱模规定的强度时,可以开始退模。具体操作流程如下:
1、将连接模件105上的楔形板1055插入第二楔形槽1057处,敲击楔形板1055,将模板101底部离开混凝土面10~20mm;
2、旋转模板可调轴杆104,模板上口离开混凝土面10~20mm;
3、拆除连接模件105与悬挂杆108之间的连接轴销;
4、启动液压缸的中心泵站电源,整个仓面约20个液压缸可分组或同时伸长,向后顶伸滑动杆件113,模板装置10整体向后沿着垂直混凝土面的方向移动一段距离,约30~40cm;
5、将连接模件105与悬挂杆108之间的销钉安装就位;
6、视拱坝高度方向曲线变化实际情况,决定是否需要调节微调螺杆110,使悬挂杆108整体后移10~20mm。
至此完成整个退模流程。
合模流程
合模流程基本上是退模流程的逆向操作,具体操作流程如下:
1、如果退模时微调螺杆110有调节,此时需将其反向旋转直至悬挂杆108可固定在已经预埋好的锚固点上,例如承载锚锥16上;
2、拆除连接模件105与悬挂杆108之间的销钉;
3、启动液压缸中心泵站,整个仓面约20个液压缸可分组或同时收缩,拉动滑动杆件113,模板装置10整体向垂直混凝土面的方向移动一段距离后,关闭中心泵站电源。
4、将连接模件105与悬挂杆108之间的销钉安装就位;
5、将连接模件105上的楔形板1055插入第一楔形槽1058处,敲击楔形板1055,使模板底部顶紧混凝土面;
6、旋转模板可调轴杆104,调节模板垂直度。
至此完成整个合模流程。
采用本发明的整体施工方法,如图11中所示:
按照设计分缝,拱坝平面上由若干个浇筑块组成,高度上逐层浇筑上升,单个浇筑块,即先浇块的上下游面和两侧横缝面均安装模板,后浇筑块两侧横缝面不需安装模板,其具体步骤为:
参见图11,步骤一:采用大钢模板或自升式悬臂模板的上部模板系统,安装首层模板,并埋设首层承载锚锥和首层爬升锚锥,仓内工序完成后浇筑首层混凝土。
步骤二:拆除首层模板,利用首层承载锚锥及连接螺栓作为悬挂点,采用自升式悬臂模板的模板系统,不包含液压爬架系统15及平台系统是因为已浇筑混凝土的高度不能满足。安装第二层模板,并埋设第二层承载锚锥和第二层爬升锚锥,仓内工序完成后浇筑第二层混凝土。
步骤三:利用第二层承载锚锥16及连接螺栓作为悬挂点,提升第二层模板至第三待浇筑层,安装液压爬架系统15,安装施工平台系统,例如第一平台13、第二平台14、第三平台19和第四平台11,在首层爬升锚锥和第二层爬升锚锥处分别安装悬挂靴,自上而下将爬架导轨153依次穿入第二层悬挂靴、首层悬挂靴并将爬架导轨153与SKE50爬升器配合连接,埋设第三层承载锚锥和第三层爬升锚锥,仓内工序完成后浇筑第三层混凝土。
步骤四:第三浇筑层的液压自升式悬臂模板的模板系统退模。
1、取出模板面板背面上的与第三层承载锚锥和第三层爬升锚锥相配合的连接螺栓,此环节是解除模板面板与预埋在混凝土内锚锥的约束。
2、拆除上下游面两块模板间的拼缝板。所述拼缝板是由于拱坝常设计为双曲拱坝,坝体沿垂直和水平方向的曲率均不断变化,上下游面模板之间竖向缝隙尺寸随着坝体的上升先增大后缩小,各模板单元之间会出现“V”形和倒“V”形缝隙;为方便施工在模板单元之间设置拼缝板,拼缝板的宽度根据变化需要可调节。
3、以前述的退模步骤使模板底口脱离混凝土面;调节模板可调轴杆104,使模板装置10整体脱离混凝土面10~20mm。所述桁架式纵向围令103提高了模板强度和刚度,保证4.5m浇筑高度的混凝土浇筑体型质量及精度,从而确保导轨就位后的平整度,保证爬模的整体顺利爬升。
4、安装液压缸109的液压油路,使模板装置10整体脱离混凝土面约400mm,恢复连接模件与悬挂杆108之间的销钉。
5、安装模板上口的第三层爬升锚锥处的连接螺栓及悬挂靴。
6、安装液压爬架系统15的液压油路,爬架导轨153爬升至第三层爬升锚锥17的悬挂靴处。爬架导轨153爬升就位为步骤五模板爬升做好准备工作。
7.拆除模板的抗风拉杆18。所述抗风拉杆是增加大风环境下模板稳定性,拆除抗风拉杆解除了模板的约束。
8.收缩三角支架12的可调节支腿,使其脱离混凝土面。
9.拆除第四平台11对应混凝土面的首层承载锚锥及连接螺栓、首层爬升锚锥及连接螺栓。上述锚固件可周转至上部仓位使用,避免后期坝体浇筑至顶再拆除增加工作量。
步骤五:第三浇筑层的液压自升桁架式悬臂重型拱坝模板系统及架体整体爬升至第四待浇筑层。
1、启动液压爬架系统15,液压自升桁架式悬臂重型拱坝模板系统整体爬升150mm高度,拆除第二层承载锚锥的连接螺栓;调节微调螺杆110,使悬挂杆108连同模板装置整体后移10~20mm。由此步骤,增大悬挂杆108前端与混凝土的间隙,保证模板爬升顺利。
2、启动液压爬架系统15,液压自升桁架式悬臂重型拱坝模板系统整体爬升至第三层承载锚锥上方150mm处,安装连接螺栓。
3、调节微调螺杆110,将悬挂杆108连同模板装置10整体前移10~20mm,使悬挂杆108前端距离混凝土面10~20mm。
4、启动液压爬架系统15,液压自升桁架式悬臂重型拱坝模板系统及架体整体下落,使悬挂杆108前端挂钩卡在第三层承载锚锥的连接螺栓的螺杆上。
步骤六:待浇筑层的液压自升桁架式悬臂重型拱坝模板系统的模板合模及操作平台调平。
1、调节各个平台的斜向的平台调平拉杆106使平台处于水平。
2、伸长模板下支架的可调节支腿,使其贴紧混凝土面。
3、安装第二层承载锚锥的连接螺栓及模板抗风拉杆。
4、完成合模流程。
调节模板可调轴杆104,使模板面板处于设计边线位置。
5、安装模板上口第四层承载锚锥及连接螺栓和第四层爬升锚锥及连接螺栓。
6、安装上下游面两块模板间的拼缝板。
步骤七:仓内备仓工作完成、验收后浇筑第四层混凝土。
步骤八:重复上述步骤四~步骤七,完成第五层混凝土浇筑,依次类推直到拱坝浇筑至设计高度。
本发明的模板101浇筑最大高度为4.5m,单块标准模板宽度为3m;拱坝上下游面由多块模板组成,模板间设置有拼缝板适应拱坝体型曲面变化;拱坝横缝面由多块模板组成。
横缝面模板的面板上固定有半圆形键槽模板,满足拱坝横缝面结构需要。
本发明的单块模板设置的受力三角架107为2榀,2榀受力三角架107的中部设置液压爬架系统15。此种结构体系一是解决了模板无需设置拉筋加固,减少拉筋工程量和人工工作量;二是解决了悬臂模板爬升的问题。受力三角架107与爬架系统各成独立的体系、发挥各自的功能,又紧密配合不相互干扰,通过模板架体及各层操作平台形成整体结构。
所述步骤四中,启动液压缸109中心泵站电源,整个仓面所有液压缸109可分组或同时动作,可使单块、单面或者四面的模板面板及桁架式纵向围令103脱离混凝土面或向仓内方向移动。
爬架导轨153的爬升,包含爬架液压缸152伸长运动(空行程)和液压缸收缩运动(工作行程)。此时整个爬架系统用悬挂靴锚固在混凝土壁面上,将上部提升装置和下部提升装置控制手柄置于上方“导轨”位置处;爬架导轨153与液压爬架系统15的上部提升装置咬合固定就位,爬架液压缸152驱动下部提升装置向下伸长运动,直至下部提升装置嵌入爬架导轨153的方形槽内;下部提升装置与爬架导轨153咬合固定就位,爬架液压缸152驱动下部提升装置向上收缩运动,直至上部提升装置再次自动与爬架导轨153咬合固定就位,此时上部提升装置带动爬架导轨153向上爬升;如此交替动作直至将导轨爬升就位。
受力三角架107和模板装置10的爬升,初始整个爬架导轨153用挂靴151和锚锥固在混凝土壁面上,将上部提升装置和下部提升装置的控制手柄置于下方“爬架”位置处;下部提升装置与导轨咬合固定,爬架液压缸152驱动上部提升装置向上伸长运动,带动整个爬架系统及模板向上运动,直至上部提升装置与爬架导轨153再次自动咬合并固定就位;上部提升装置将整个爬架系统固定在爬架导轨153上,爬架液压缸152驱动下部提升装置向上收缩空行程,直至下部提升装置与爬架液压缸152自动咬合固定;如此交替动作直至将模板及受力三角架107整体爬升就位。
模板及受力三角架107整体下落的操作方法,为爬升的逆向操作。
步骤五中,可分组或同时启动液压爬架系统15,可使单块模板及架体爬升、单个横缝面或者单个上、下游面模板及架体爬升、仓位四个面的模板及架体整体同步爬升。仓位四个面的模板整体爬升非常快捷,大约只需要8~10个小时,且整个施工过程安全可靠,减低外部环境因素,例如大风对施工进度的影响。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。
Claims (10)
- 一种液压自升桁架式悬臂重型拱坝模板系统,包括受力三角架(107),与受力三角架(107)连接的液压爬架系统(15),其特征是:受力三角架(107)上活动安装有模板装置(10);所述的受力三角架(107)为多个,受力三角架(107)和模板装置(10)沿着施工仓面布置,受力三角架(107)之间通过多个三角架连接横梁(111)固定连接;所述的模板装置中,模板(101)背面设有多个横向围令(102),横向围令(102)与桁架式纵向围令(103)连接,桁架式纵向围令(103)通过模板可调轴杆(104)与滑动杆件(113)的一端连接,滑动杆件(113)的另一端通过连接模件(105)与桁架式纵向围令(103)的底部连接,连接模件(105)与受力三角架(107)连接;滑动杆件(113)还通过伸缩驱动装置与受力三角架(107)的顶部连接。
- 根据权利要求1所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:连接模件(105)上设有水平布置的长圆槽(1051),桁架式纵向围令(103)的底部通过滑动销(1054)与长圆槽(1051)滑动连接;桁架式纵向围令(103)的底部还与脱模拉杆(1059)连接,脱模拉杆(1059)和连接模件(105)上设有第一楔形槽(1058)和第二楔形槽(1057),楔形板(1055)插入第一楔形槽(1058)或第二楔形槽(1057),以使桁架式纵向围令(103)向模板(101)方向移动,或使桁架式纵向围令(103)向与模板(101)相反方向移动。
- 根据权利要求1或2所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:受力三角架(107)的顶部活动安装有悬挂杆(108),各个悬挂杆(108)靠近模板(101)的一端与锚锥螺栓悬挂板(114)固定连接,锚锥螺栓悬挂板(114)靠近模板(101)的一侧设有用于连接锚锥的倒“U”形连接孔,各个悬挂杆(108)的另一端通过微调螺杆(110)与三角架连接横梁(111)连接,通过微调螺杆(110)调节倒“U”形连接孔与锚锥之间的距离。
- 根据权利要求3所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:悬挂杆(108)采用背靠背的两根工字钢或槽钢焊接而成,两根工字钢或槽钢之间设有间隙,压板(112)与三角架连接横梁(111)固定连接,并压住悬挂杆(108)的边沿,使悬挂杆(108)沿受力三角架(107)的顶部滑动。
- 根据权利要求3所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:连接模件(105)滑动位于悬挂杆(108)的间隙内,并设有限位装置,以使连接模件(105)仅能沿着悬挂杆(108)滑动;连接模件(105)的底部设有多个连接模件销孔(1053),悬挂杆(108)上相应设有多个悬挂杆销孔(1081),连接模件销孔(1053)与悬挂杆销孔(1081)之间通过销钉连接。
- 根据权利要求1所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:所述的桁架式纵向围令(103)的水平截面为三角形,三角形的顶点位置为钢管,三根钢管之间通过结构件连接,结构件与钢管之间组成三角形。
- 根据权利要求3所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:所述的伸缩驱动装置为液压缸(109),液压缸(109)的一端与悬挂杆(108)固定连接,液压缸(109)的另一端与滑动杆件(113)固定连接。
- 根据权利要求5所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:所述的连接模件(105)和滑动杆件(113)上设有滚轮(1052),滚轮(1052)沿着悬挂杆(108)的上表面滚动。
- 根据权利要求1所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:受力三角架(107)的底部支腿为可调节结构,以根据坝体(2)相适应的改变受力三角架(107)与坝体的距离;爬架三角架(12)底部连接的支腿也采用可调节结构。
- 根据权利要求1所述的一种液压自升桁架式悬臂重型拱坝模板系统,其特征是:还设有多个用于施工的平台,平台采用可调平的连接结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710170071.XA CN106812120B (zh) | 2017-03-21 | 2017-03-21 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN201710170071.X | 2017-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018171119A1 true WO2018171119A1 (zh) | 2018-09-27 |
Family
ID=59116267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/098972 WO2018171119A1 (zh) | 2017-03-21 | 2017-08-25 | 液压自升桁架式悬臂重型拱坝模板系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106812120B (zh) |
WO (1) | WO2018171119A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109869153A (zh) * | 2019-02-26 | 2019-06-11 | 中铁十局集团第一工程有限公司 | 快速施工竖井衬砌的整体提升悬臂模板装置及施工方法 |
CN110056005A (zh) * | 2019-04-30 | 2019-07-26 | 云南大力神金属构件有限公司 | 地铁侧墙施工对顶支撑系统 |
CN110065145A (zh) * | 2019-05-31 | 2019-07-30 | 中交武汉港湾工程设计研究院有限公司 | 一种用于混凝土预制的自适应外模系统 |
CN110644436A (zh) * | 2019-10-25 | 2020-01-03 | 中国水利水电第七工程局有限公司 | 一种大模板无腿支撑结构 |
CN110714484A (zh) * | 2019-11-13 | 2020-01-21 | 北京磐石嘉华机电设备有限公司 | 侧墙钢大模板万向升降遥控运行台车 |
CN111470434A (zh) * | 2020-04-30 | 2020-07-31 | 中建五局第三建设有限公司 | 一种岩壁锚索预应力张拉千斤顶安装装置 |
CN112228108A (zh) * | 2020-09-30 | 2021-01-15 | 湖南五新模板有限公司 | 一种可滑动的仰拱模板及其施工方法 |
CN112609967A (zh) * | 2021-01-22 | 2021-04-06 | 中交二航局第三工程有限公司 | 船闸闸首边墩组合模板及安装方法 |
CN113148871A (zh) * | 2021-04-30 | 2021-07-23 | 中铁二十局集团第六工程有限公司 | 防倾导向支撑系统及塔架爬升系统 |
CN113502756A (zh) * | 2021-08-23 | 2021-10-15 | 宜春市春顺机械设备有限公司 | 一种薄壁墩液压爬模系统及其施工方法 |
CN113858401A (zh) * | 2021-11-04 | 2021-12-31 | 马相建 | 一种混凝土预制件的自动脱模机构及其使用方法 |
CN113927719A (zh) * | 2021-11-04 | 2022-01-14 | 马相建 | 一种新型混凝土预制件的自动脱模设备及其使用方法 |
CN114164772A (zh) * | 2021-12-07 | 2022-03-11 | 甘肃建投临夏建设管理有限公司 | 一种高架桥悬臂浇筑施工用菱形挂篮及安装方法 |
CN114239113A (zh) * | 2021-12-21 | 2022-03-25 | 黄河勘测规划设计研究院有限公司 | 一种陡坡坝段拱坝横缝设计方法 |
CN115182269A (zh) * | 2022-08-25 | 2022-10-14 | 中国铁建港航局集团有限公司 | 一种超高墩大截面重型液压爬模分次拼装方法 |
CN115233683A (zh) * | 2022-08-12 | 2022-10-25 | 中国水利水电第七工程局有限公司 | 一种表孔溢流面翻模施工方法 |
CN115288412A (zh) * | 2022-08-24 | 2022-11-04 | 中国建筑第二工程局有限公司 | 全钢智能爬架设计施工方法 |
CN115387474A (zh) * | 2022-09-20 | 2022-11-25 | 上海建工四建集团有限公司 | 一种异形超大悬挑混凝土结构及其施工方法 |
CN115416824A (zh) * | 2022-09-14 | 2022-12-02 | 广州文冲船厂有限责任公司 | 一种维修平台位置转换装置及使用方法 |
CN115788073A (zh) * | 2022-11-29 | 2023-03-14 | 中国十七冶集团有限公司 | 一种附着式卸料平台爬升方法 |
CN115949006A (zh) * | 2023-02-25 | 2023-04-11 | 广东省第二建筑工程有限公司 | 塔柱混凝土浇筑施工方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106812120B (zh) * | 2017-03-21 | 2022-09-02 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN108755606B (zh) * | 2018-07-12 | 2023-04-25 | 中国水利水电第八工程局有限公司 | 一种拱坝支撑大梁模板结构及施工方法 |
CN112177320B (zh) * | 2020-09-28 | 2021-10-22 | 厦门安科科技有限公司 | 一种用于爬模架体的附着结构 |
CN112390171A (zh) * | 2020-10-19 | 2021-02-23 | 中国铁建港航局集团有限公司 | 一种液压爬模及其倒角模板悬吊机构 |
CN112761187B (zh) * | 2021-01-13 | 2024-09-24 | 中国水利水电第七工程局成都水电建设工程有限公司 | 大直径工作井电动升降移动模架 |
CN114717949B (zh) * | 2022-03-17 | 2024-04-12 | 中交武汉港湾工程设计研究院有限公司 | 模板自动立模退模驱动装置及智能控制方法 |
CN116950017A (zh) * | 2023-07-26 | 2023-10-27 | 中国水利水电第三工程局有限公司 | 一种大坝溢洪道导墙顶部混凝土结构施工方法 |
CN116950016A (zh) * | 2023-07-26 | 2023-10-27 | 中国水利水电第三工程局有限公司 | 一种大坝溢洪道导墙顶部牛腿模板结构 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202006012762U1 (de) * | 2005-08-25 | 2007-02-08 | Hans Künz GmbH | Haltegerüst zur Herstellung eines Bauwerks zur Regulierung und/oder Aufstauung eines Wasserlaufs |
CN102345381A (zh) * | 2011-10-12 | 2012-02-08 | 四川路桥建设股份有限公司 | 液压爬模系统及爬模施工方法 |
WO2013110126A1 (en) * | 2012-01-24 | 2013-08-01 | Sureform Systems Pty Ltd | Automated formwork climbing system |
CN103635643B (zh) * | 2012-06-11 | 2015-09-16 | 浙江省建工集团有限责任公司 | 高层钢结构建筑钢筋砼筒体的施工方法 |
CN106812121A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 用于自爬升悬臂模板的退模合模装置 |
CN106812122A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型模板 |
CN106812120A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN106836146A (zh) * | 2017-03-21 | 2017-06-13 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型拱坝模板工作平台 |
CN106958233A (zh) * | 2017-03-21 | 2017-07-18 | 中国葛洲坝集团三峡建设工程有限公司 | 用于浇筑拱坝混凝土的液压自升式悬臂模板施工方法 |
CN206607554U (zh) * | 2017-03-21 | 2017-11-03 | 中国葛洲坝集团三峡建设工程有限公司 | 用于自爬升悬臂模板的退模合模装置 |
CN206667192U (zh) * | 2017-03-21 | 2017-11-24 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型模板 |
CN206680962U (zh) * | 2017-03-21 | 2017-11-28 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN206736864U (zh) * | 2017-03-21 | 2017-12-12 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型拱坝模板工作平台 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1684337A1 (de) * | 1967-08-12 | 1971-03-18 | Luchterhand Schalungen Kg | Kletterschalung |
CN2929056Y (zh) * | 2005-05-25 | 2007-08-01 | 北京卓良模板有限公司 | 液压驱动自动爬升模板 |
CN201826525U (zh) * | 2010-07-27 | 2011-05-11 | 南京道广建筑模板有限公司 | 建筑爬升模板体系装置 |
CN202247894U (zh) * | 2011-09-05 | 2012-05-30 | 葛洲坝集团第二工程有限公司 | 双撑杆悬臂模板 |
CN204475342U (zh) * | 2014-12-30 | 2015-07-15 | 南京道广建筑模板有限公司 | 高大建筑结构大体积混凝土用模板装置 |
CN205742991U (zh) * | 2016-05-02 | 2016-11-30 | 北京星河人施工技术有限责任公司 | 一种桁架式液压整体钢平台爬升模板 |
-
2017
- 2017-03-21 CN CN201710170071.XA patent/CN106812120B/zh active Active
- 2017-08-25 WO PCT/CN2017/098972 patent/WO2018171119A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202006012762U1 (de) * | 2005-08-25 | 2007-02-08 | Hans Künz GmbH | Haltegerüst zur Herstellung eines Bauwerks zur Regulierung und/oder Aufstauung eines Wasserlaufs |
CN102345381A (zh) * | 2011-10-12 | 2012-02-08 | 四川路桥建设股份有限公司 | 液压爬模系统及爬模施工方法 |
WO2013110126A1 (en) * | 2012-01-24 | 2013-08-01 | Sureform Systems Pty Ltd | Automated formwork climbing system |
CN103635643B (zh) * | 2012-06-11 | 2015-09-16 | 浙江省建工集团有限责任公司 | 高层钢结构建筑钢筋砼筒体的施工方法 |
CN106812121A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 用于自爬升悬臂模板的退模合模装置 |
CN106812122A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型模板 |
CN106812120A (zh) * | 2017-03-21 | 2017-06-09 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN106836146A (zh) * | 2017-03-21 | 2017-06-13 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型拱坝模板工作平台 |
CN106958233A (zh) * | 2017-03-21 | 2017-07-18 | 中国葛洲坝集团三峡建设工程有限公司 | 用于浇筑拱坝混凝土的液压自升式悬臂模板施工方法 |
CN206607554U (zh) * | 2017-03-21 | 2017-11-03 | 中国葛洲坝集团三峡建设工程有限公司 | 用于自爬升悬臂模板的退模合模装置 |
CN206667192U (zh) * | 2017-03-21 | 2017-11-24 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型模板 |
CN206680962U (zh) * | 2017-03-21 | 2017-11-28 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升桁架式悬臂重型拱坝模板系统 |
CN206736864U (zh) * | 2017-03-21 | 2017-12-12 | 中国葛洲坝集团三峡建设工程有限公司 | 液压自升悬臂重型拱坝模板工作平台 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109869153A (zh) * | 2019-02-26 | 2019-06-11 | 中铁十局集团第一工程有限公司 | 快速施工竖井衬砌的整体提升悬臂模板装置及施工方法 |
CN109869153B (zh) * | 2019-02-26 | 2024-06-11 | 中铁十局集团第一工程有限公司 | 快速施工竖井衬砌的整体提升悬臂模板装置及施工方法 |
CN110056005A (zh) * | 2019-04-30 | 2019-07-26 | 云南大力神金属构件有限公司 | 地铁侧墙施工对顶支撑系统 |
CN110056005B (zh) * | 2019-04-30 | 2024-05-07 | 云南大力神金属构件有限公司 | 地铁侧墙施工对顶支撑系统 |
CN110065145A (zh) * | 2019-05-31 | 2019-07-30 | 中交武汉港湾工程设计研究院有限公司 | 一种用于混凝土预制的自适应外模系统 |
CN110065145B (zh) * | 2019-05-31 | 2023-12-12 | 中交武汉港湾工程设计研究院有限公司 | 一种用于混凝土预制的自适应外模系统 |
CN110644436A (zh) * | 2019-10-25 | 2020-01-03 | 中国水利水电第七工程局有限公司 | 一种大模板无腿支撑结构 |
CN110714484A (zh) * | 2019-11-13 | 2020-01-21 | 北京磐石嘉华机电设备有限公司 | 侧墙钢大模板万向升降遥控运行台车 |
CN111470434A (zh) * | 2020-04-30 | 2020-07-31 | 中建五局第三建设有限公司 | 一种岩壁锚索预应力张拉千斤顶安装装置 |
CN112228108A (zh) * | 2020-09-30 | 2021-01-15 | 湖南五新模板有限公司 | 一种可滑动的仰拱模板及其施工方法 |
CN112228108B (zh) * | 2020-09-30 | 2023-05-23 | 湖南五新模板有限公司 | 一种可滑动的仰拱模板及其施工方法 |
CN112609967A (zh) * | 2021-01-22 | 2021-04-06 | 中交二航局第三工程有限公司 | 船闸闸首边墩组合模板及安装方法 |
CN113148871A (zh) * | 2021-04-30 | 2021-07-23 | 中铁二十局集团第六工程有限公司 | 防倾导向支撑系统及塔架爬升系统 |
CN113502756A (zh) * | 2021-08-23 | 2021-10-15 | 宜春市春顺机械设备有限公司 | 一种薄壁墩液压爬模系统及其施工方法 |
CN113858401A (zh) * | 2021-11-04 | 2021-12-31 | 马相建 | 一种混凝土预制件的自动脱模机构及其使用方法 |
CN113927719A (zh) * | 2021-11-04 | 2022-01-14 | 马相建 | 一种新型混凝土预制件的自动脱模设备及其使用方法 |
CN114164772A (zh) * | 2021-12-07 | 2022-03-11 | 甘肃建投临夏建设管理有限公司 | 一种高架桥悬臂浇筑施工用菱形挂篮及安装方法 |
CN114239113B (zh) * | 2021-12-21 | 2024-03-29 | 黄河勘测规划设计研究院有限公司 | 一种陡坡坝段拱坝横缝设计方法 |
CN114239113A (zh) * | 2021-12-21 | 2022-03-25 | 黄河勘测规划设计研究院有限公司 | 一种陡坡坝段拱坝横缝设计方法 |
CN115233683A (zh) * | 2022-08-12 | 2022-10-25 | 中国水利水电第七工程局有限公司 | 一种表孔溢流面翻模施工方法 |
CN115288412A (zh) * | 2022-08-24 | 2022-11-04 | 中国建筑第二工程局有限公司 | 全钢智能爬架设计施工方法 |
CN115182269A (zh) * | 2022-08-25 | 2022-10-14 | 中国铁建港航局集团有限公司 | 一种超高墩大截面重型液压爬模分次拼装方法 |
CN115416824A (zh) * | 2022-09-14 | 2022-12-02 | 广州文冲船厂有限责任公司 | 一种维修平台位置转换装置及使用方法 |
CN115387474A (zh) * | 2022-09-20 | 2022-11-25 | 上海建工四建集团有限公司 | 一种异形超大悬挑混凝土结构及其施工方法 |
CN115387474B (zh) * | 2022-09-20 | 2023-06-27 | 上海建工四建集团有限公司 | 一种异形超大悬挑混凝土结构及其施工方法 |
CN115788073A (zh) * | 2022-11-29 | 2023-03-14 | 中国十七冶集团有限公司 | 一种附着式卸料平台爬升方法 |
CN115949006A (zh) * | 2023-02-25 | 2023-04-11 | 广东省第二建筑工程有限公司 | 塔柱混凝土浇筑施工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106812120B (zh) | 2022-09-02 |
CN106812120A (zh) | 2017-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018171119A1 (zh) | 液压自升桁架式悬臂重型拱坝模板系统 | |
CN103967050B (zh) | 一种地铁车站的施工方法 | |
CN206680962U (zh) | 液压自升桁架式悬臂重型拱坝模板系统 | |
CN110453613B (zh) | 一种大跨径梁桥箱梁全断面一次悬浇施工方法 | |
CN204174541U (zh) | 连续梁桥悬浇挂篮推移装置 | |
CN104863060A (zh) | 斜塔模板系统及采用斜塔模板系统的施工方法 | |
CN111749140A (zh) | 一种桁架整体提升式桥梁高墩爬模装置及施工方法 | |
CN206736864U (zh) | 液压自升悬臂重型拱坝模板工作平台 | |
WO2024077879A1 (zh) | 一种斜墙外翻爬升式钢平台施工装置及方法 | |
CN106836146B (zh) | 液压自升悬臂重型拱坝模板工作平台 | |
CN106401177B (zh) | 一种现浇混凝土板的模板支撑 | |
CN106958233B (zh) | 用于浇筑拱坝混凝土的液压自升式悬臂模板施工方法 | |
CN106812121B (zh) | 用于自爬升悬臂模板的退模合模装置 | |
CN110438908B (zh) | 一种上承式箱型拱桥改造施工方法 | |
CN207934490U (zh) | 一种可拆卸式三脚架后浇带独立支撑装置 | |
CN206667192U (zh) | 液压自升悬臂重型模板 | |
CN106812122B (zh) | 液压自升悬臂重型模板 | |
CN207268080U (zh) | 一种用于地铁侧墙的多功能爬架模板 | |
CN206607554U (zh) | 用于自爬升悬臂模板的退模合模装置 | |
CN215976895U (zh) | 一种三支腿架桥机的自平衡式倒t型前辅助支腿 | |
CN112160245B (zh) | 变截面塔段的安装方法 | |
CN210256628U (zh) | 一种用于混凝土预制的自适应外模系统 | |
CN210636798U (zh) | 应用于风洞拐角段竖墙和框架柱的爬模结构 | |
CN110438906B (zh) | 一种上承式箱型拱桥拱肋施工方法 | |
CN110438907B (zh) | 一种基于钢拱架的上承式拱桥施工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17901693 Country of ref document: EP Kind code of ref document: A1 |