WO2018170393A3 - Frame interpolation via adaptive convolution and adaptive separable convolution - Google Patents
Frame interpolation via adaptive convolution and adaptive separable convolution Download PDFInfo
- Publication number
- WO2018170393A3 WO2018170393A3 PCT/US2018/022858 US2018022858W WO2018170393A3 WO 2018170393 A3 WO2018170393 A3 WO 2018170393A3 US 2018022858 W US2018022858 W US 2018022858W WO 2018170393 A3 WO2018170393 A3 WO 2018170393A3
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- convolution
- pixel
- frame
- input
- adaptive
- Prior art date
Links
- 230000003044 adaptive Effects 0.000 title 2
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000003786 synthesis reaction Methods 0.000 abstract 2
- 230000002194 synthesizing Effects 0.000 abstract 2
- 230000001537 neural Effects 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0127—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Computing arrangements based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image
- G06T3/40—Scaling the whole image or part thereof
- G06T3/4007—Interpolation-based scaling, e.g. bilinear interpolation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image
- G06T3/40—Scaling the whole image or part thereof
- G06T3/4046—Scaling the whole image or part thereof using neural networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0135—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/587—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
Abstract
Systems, methods, and computer-readable media for context-aware synthesis for video frame interpolation are provided. A convolutional neural network (ConvNet) may, given two input video or image frames, interpolate a frame temporarily in the middle of the two input frames by combining motion estimation and pixel synthesis into a single step and formulating pixel interpolation as a local convolution over patches in the input images. The ConvNet may estimate a convolution kernel based on a first receptive field patch of a first input image frame and a second receptive field patch of a second input image frame. The ConvNet may then convolve the convolutional kernel over a first pixel patch of the first input image frame and a second pixel patch of the second input image frame to obtain color data of an output pixel of the interpolation frame. Other embodiments may be described and/or claimed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762473234P true | 2017-03-17 | 2017-03-17 | |
US62/473,234 | 2017-03-17 | ||
US201762485794P true | 2017-04-14 | 2017-04-14 | |
US62/485,794 | 2017-04-14 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/495,029 US20200012940A1 (en) | 2017-03-17 | 2018-03-16 | Frame interpolation via adaptive convolution and adaptive separable convolution |
KR1020197030137A KR20190132415A (en) | 2017-03-17 | 2018-03-16 | Frame Interpolation with Adaptive Convolution and Adaptive Isolated Convolution |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2018170393A2 WO2018170393A2 (en) | 2018-09-20 |
WO2018170393A9 WO2018170393A9 (en) | 2018-11-15 |
WO2018170393A3 true WO2018170393A3 (en) | 2018-12-20 |
Family
ID=63522622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/022858 WO2018170393A2 (en) | 2017-03-17 | 2018-03-16 | Frame interpolation via adaptive convolution and adaptive separable convolution |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200012940A1 (en) |
KR (1) | KR20190132415A (en) |
WO (1) | WO2018170393A2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11308361B1 (en) * | 2017-07-07 | 2022-04-19 | Twitter, Inc. | Checkerboard artifact free sub-pixel convolution |
US10706890B2 (en) * | 2017-08-24 | 2020-07-07 | Intel Corporation | Cinematic space-time view synthesis for enhanced viewing experiences in computing environments |
US10776688B2 (en) | 2017-11-06 | 2020-09-15 | Nvidia Corporation | Multi-frame video interpolation using optical flow |
US11122238B1 (en) * | 2017-11-07 | 2021-09-14 | Twitter, Inc. | Frame interpolation with multi-scale deep loss functions and generative adversarial networks |
US11019355B2 (en) * | 2018-04-03 | 2021-05-25 | Electronics And Telecommunications Research Institute | Inter-prediction method and apparatus using reference frame generated based on deep learning |
US10984245B1 (en) * | 2018-06-11 | 2021-04-20 | Facebook, Inc. | Convolutional neural network based on groupwise convolution for efficient video analysis |
JP2020060473A (en) * | 2018-10-11 | 2020-04-16 | 株式会社島津製作所 | Analysis device, analysis system, and analysis method |
US11126915B2 (en) * | 2018-10-15 | 2021-09-21 | Sony Corporation | Information processing apparatus and information processing method for volume data visualization |
US20200137380A1 (en) * | 2018-10-31 | 2020-04-30 | Intel Corporation | Multi-plane display image synthesis mechanism |
CN111178491A (en) * | 2018-11-09 | 2020-05-19 | 佳能株式会社 | Method, device, system and storage medium for training and applying neural network model |
CN109472315B (en) * | 2018-11-15 | 2021-09-24 | 江苏木盟智能科技有限公司 | Target detection method and system based on depth separable convolution |
KR20200071404A (en) * | 2018-12-11 | 2020-06-19 | 삼성전자주식회사 | Image processing apparatus and operating method for the same |
US11080835B2 (en) * | 2019-01-09 | 2021-08-03 | Disney Enterprises, Inc. | Pixel error detection system |
GB2580671B (en) * | 2019-01-22 | 2022-05-04 | Toshiba Kk | A computer vision system and method |
US11288818B2 (en) * | 2019-02-19 | 2022-03-29 | The Trustees Of The University Of Pennsylvania | Methods, systems, and computer readable media for estimation of optical flow, depth, and egomotion using neural network trained using event-based learning |
CN109905624B (en) * | 2019-03-01 | 2020-10-16 | 北京大学深圳研究生院 | Video frame interpolation method, device and equipment |
EP3959882A1 (en) * | 2019-04-23 | 2022-03-02 | Telefonaktiebolaget LM Ericsson (publ) | A computer software module, a device and a method for accelerating inference for compressed videos |
CN110111366B (en) * | 2019-05-06 | 2021-04-30 | 北京理工大学 | End-to-end optical flow estimation method based on multistage loss |
US10896356B2 (en) * | 2019-05-10 | 2021-01-19 | Samsung Electronics Co., Ltd. | Efficient CNN-based solution for video frame interpolation |
CN110427094B (en) * | 2019-07-17 | 2021-08-17 | Oppo广东移动通信有限公司 | Display method, display device, electronic equipment and computer readable medium |
WO2021063119A1 (en) * | 2019-10-01 | 2021-04-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and apparatus for image processing, terminal |
US10958869B1 (en) | 2019-11-14 | 2021-03-23 | Huawei Technologies Co., Ltd. | System, device and method for video frame interpolation using a structured neural network |
KR102207736B1 (en) * | 2020-01-14 | 2021-01-26 | 한국과학기술원 | Frame interpolation, apparatus and method using deep neural network |
CN111212287A (en) * | 2020-01-15 | 2020-05-29 | 济南浪潮高新科技投资发展有限公司 | Video compression method based on image interpolation method |
US11074730B1 (en) | 2020-01-23 | 2021-07-27 | Netapp, Inc. | Augmented reality diagnostic tool for data center nodes |
KR102372046B1 (en) * | 2020-03-12 | 2022-03-11 | 숭실대학교 산학협력단 | Method of vessel structures extraction using artificial intelligence technique, recording medium and device for performing the method |
CN113875228A (en) * | 2020-04-30 | 2021-12-31 | 京东方科技集团股份有限公司 | Video frame insertion method and device and computer readable storage medium |
CN113727141A (en) * | 2020-05-20 | 2021-11-30 | 富士通株式会社 | Interpolation device and method for video frame |
KR20220030084A (en) * | 2020-09-02 | 2022-03-10 | 삼성전자주식회사 | Method and apparatus of processing image |
US11216656B1 (en) * | 2020-12-16 | 2022-01-04 | Retrocausal, Inc. | System and method for management and evaluation of one or more human activities |
WO2022139217A1 (en) * | 2020-12-24 | 2022-06-30 | 삼성전자주식회사 | Electronic device and control method therefor |
CN113132664A (en) * | 2021-04-19 | 2021-07-16 | 科大讯飞股份有限公司 | Frame interpolation generation model construction method and video frame interpolation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016132146A1 (en) * | 2015-02-19 | 2016-08-25 | Magic Pony Technology Limited | Visual processing using sub-pixel convolutions |
-
2018
- 2018-03-16 US US16/495,029 patent/US20200012940A1/en active Pending
- 2018-03-16 WO PCT/US2018/022858 patent/WO2018170393A2/en active Application Filing
- 2018-03-16 KR KR1020197030137A patent/KR20190132415A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016132146A1 (en) * | 2015-02-19 | 2016-08-25 | Magic Pony Technology Limited | Visual processing using sub-pixel convolutions |
Non-Patent Citations (2)
Title |
---|
GUCAN LONG ET AL.: "Learning Image Matching by Simply Watching Video", ECCV 2016, 2016, pages 434 - 450, XP047355274 * |
HAITAM BEN YAHIA: "Frame Interpolation using Convolutional Neural Networks on 2D animation", BACHELOR THESIS, 24 June 2016 (2016-06-24), XP055558906 * |
Also Published As
Publication number | Publication date |
---|---|
US20200012940A1 (en) | 2020-01-09 |
WO2018170393A2 (en) | 2018-09-20 |
WO2018170393A9 (en) | 2018-11-15 |
KR20190132415A (en) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018170393A3 (en) | Frame interpolation via adaptive convolution and adaptive separable convolution | |
US9613408B2 (en) | High dynamic range image composition using multiple images | |
US20200267339A1 (en) | Three-dimensional noise reduction | |
US11276149B2 (en) | Double non-local means denoising | |
WO2016061011A3 (en) | Camera capture recommendation for applications | |
WO2020081901A3 (en) | Crop yield prediction at field-level and pixel-level | |
JP2016516378A5 (en) | ||
WO2007092937A3 (en) | Adaptive image filter for filtering image information | |
WO2012003483A3 (en) | A method and apparatus for video processing for improved video compression | |
WO2007087640A3 (en) | Adaptive filtering to enhance video encoder performance | |
US9307162B2 (en) | Local enhancement apparatus and method to generate high dynamic range images by blending brightness-preserved and brightness-adjusted blocks | |
US10931851B2 (en) | Image stitching with electronic rolling shutter correction | |
WO2008066699A3 (en) | Processing images having color and panchromatic pixels | |
WO2011060579A8 (en) | Method for generating depth maps from monocular images and systems using the same | |
US10757384B2 (en) | Desaturation control | |
EP2151996A3 (en) | Image signal processing unit and method of processing image signal | |
WO2019226211A1 (en) | Image signal processing for reducing lens flare | |
MX2019010055A (en) | Method and device for reconstructing an hdr image. | |
WO2017205492A1 (en) | Three-dimensional noise reduction | |
TW200632765A (en) | Method and apparatus of image dynamic response re-mapping and digital camera using the same | |
CN106342194B (en) | A kind of Infrared Image Non-uniformity Correction method of ground scene | |
WO2020146911A3 (en) | Multi-stage multi-reference bootstrapping for video super-resolution | |
US20220122228A1 (en) | Chrominance Denoising | |
US20190355098A1 (en) | Multiscale denoising of raw images with noise estimation | |
US10867370B2 (en) | Multiscale denoising of videos |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767692 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197030137 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767692 Country of ref document: EP Kind code of ref document: A2 |