WO2018170393A3 - Frame interpolation via adaptive convolution and adaptive separable convolution - Google Patents

Frame interpolation via adaptive convolution and adaptive separable convolution Download PDF

Info

Publication number
WO2018170393A3
WO2018170393A3 PCT/US2018/022858 US2018022858W WO2018170393A3 WO 2018170393 A3 WO2018170393 A3 WO 2018170393A3 US 2018022858 W US2018022858 W US 2018022858W WO 2018170393 A3 WO2018170393 A3 WO 2018170393A3
Authority
WO
WIPO (PCT)
Prior art keywords
convolution
pixel
frame
input
adaptive
Prior art date
Application number
PCT/US2018/022858
Other languages
French (fr)
Other versions
WO2018170393A2 (en
WO2018170393A9 (en
Inventor
Feng Liu
Simon NIKLAUS
Long MAI
Original Assignee
Portland State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Portland State University filed Critical Portland State University
Priority to KR1020197030137A priority Critical patent/KR102474168B1/en
Priority to US16/495,029 priority patent/US11468318B2/en
Publication of WO2018170393A2 publication Critical patent/WO2018170393A2/en
Publication of WO2018170393A9 publication Critical patent/WO2018170393A9/en
Publication of WO2018170393A3 publication Critical patent/WO2018170393A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0127Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4046Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Television Systems (AREA)
  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Systems, methods, and computer-readable media for context-aware synthesis for video frame interpolation are provided. A convolutional neural network (ConvNet) may, given two input video or image frames, interpolate a frame temporarily in the middle of the two input frames by combining motion estimation and pixel synthesis into a single step and formulating pixel interpolation as a local convolution over patches in the input images. The ConvNet may estimate a convolution kernel based on a first receptive field patch of a first input image frame and a second receptive field patch of a second input image frame. The ConvNet may then convolve the convolutional kernel over a first pixel patch of the first input image frame and a second pixel patch of the second input image frame to obtain color data of an output pixel of the interpolation frame. Other embodiments may be described and/or claimed.
PCT/US2018/022858 2017-03-17 2018-03-16 Frame interpolation via adaptive convolution and adaptive separable convolution WO2018170393A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197030137A KR102474168B1 (en) 2017-03-17 2018-03-16 Frame interpolation with adaptive convolution and adaptive disjoint convolution
US16/495,029 US11468318B2 (en) 2017-03-17 2018-03-16 Frame interpolation via adaptive convolution and adaptive separable convolution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762473234P 2017-03-17 2017-03-17
US62/473,234 2017-03-17
US201762485794P 2017-04-14 2017-04-14
US62/485,794 2017-04-14

Publications (3)

Publication Number Publication Date
WO2018170393A2 WO2018170393A2 (en) 2018-09-20
WO2018170393A9 WO2018170393A9 (en) 2018-11-15
WO2018170393A3 true WO2018170393A3 (en) 2018-12-20

Family

ID=63522622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/022858 WO2018170393A2 (en) 2017-03-17 2018-03-16 Frame interpolation via adaptive convolution and adaptive separable convolution

Country Status (3)

Country Link
US (1) US11468318B2 (en)
KR (1) KR102474168B1 (en)
WO (1) WO2018170393A2 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11308361B1 (en) * 2017-07-07 2022-04-19 Twitter, Inc. Checkerboard artifact free sub-pixel convolution
US11778195B2 (en) * 2017-07-07 2023-10-03 Kakadu R & D Pty Ltd. Fast, high quality optical flow estimation from coded video
US11557022B2 (en) * 2017-07-27 2023-01-17 Nvidia Corporation Neural network system with temporal feedback for denoising of rendered sequences
US11861811B2 (en) 2017-07-27 2024-01-02 Nvidia Corporation Neural network system with temporal feedback for denoising of rendered sequences
US11475542B2 (en) 2017-07-27 2022-10-18 Nvidia Corporation Neural network system with temporal feedback for adaptive sampling and denoising of rendered sequences
US10706890B2 (en) 2017-08-24 2020-07-07 Intel Corporation Cinematic space-time view synthesis for enhanced viewing experiences in computing environments
US10776688B2 (en) 2017-11-06 2020-09-15 Nvidia Corporation Multi-frame video interpolation using optical flow
US11122238B1 (en) * 2017-11-07 2021-09-14 Twitter, Inc. Frame interpolation with multi-scale deep loss functions and generative adversarial networks
DE102018200534A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method of operating an artificial neural network
US11019355B2 (en) * 2018-04-03 2021-05-25 Electronics And Telecommunications Research Institute Inter-prediction method and apparatus using reference frame generated based on deep learning
US10984245B1 (en) * 2018-06-11 2021-04-20 Facebook, Inc. Convolutional neural network based on groupwise convolution for efficient video analysis
KR102550327B1 (en) * 2018-09-21 2023-06-30 엘지디스플레이 주식회사 Method and apparatus for upscaling video
US11783707B2 (en) 2018-10-09 2023-10-10 Ford Global Technologies, Llc Vehicle path planning
JP7135697B2 (en) * 2018-10-11 2022-09-13 株式会社島津製作所 Analysis device, analysis system and analysis method
US11126915B2 (en) * 2018-10-15 2021-09-21 Sony Corporation Information processing apparatus and information processing method for volume data visualization
KR102525578B1 (en) 2018-10-19 2023-04-26 삼성전자주식회사 Method and Apparatus for video encoding and Method and Apparatus for video decoding
WO2020080665A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
WO2020080765A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
WO2020080873A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US11616988B2 (en) 2018-10-19 2023-03-28 Samsung Electronics Co., Ltd. Method and device for evaluating subjective quality of video
KR20200044653A (en) * 2018-10-19 2020-04-29 삼성전자주식회사 Method and apparatus for performing ai encoding and ai decoding of image using deep neural network
KR102312337B1 (en) * 2018-10-19 2021-10-14 삼성전자주식회사 AI encoding apparatus and operating method for the same, and AI decoding apparatus and operating method for the same
US11720997B2 (en) 2018-10-19 2023-08-08 Samsung Electronics Co.. Ltd. Artificial intelligence (AI) encoding device and operating method thereof and AI decoding device and operating method thereof
WO2020080709A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Artificial intelligence encoding and artificial intelligence decoding methods and apparatuses using deep neural network
US20200137380A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Multi-plane display image synthesis mechanism
CN112889084B (en) * 2018-11-08 2023-05-23 Oppo广东移动通信有限公司 Method, system and computer readable medium for improving color quality of image
CN111178491A (en) * 2018-11-09 2020-05-19 佳能株式会社 Method, device, system and storage medium for training and applying neural network model
CN109472315B (en) * 2018-11-15 2021-09-24 江苏木盟智能科技有限公司 Target detection method and system based on depth separable convolution
KR102641423B1 (en) 2018-12-11 2024-02-28 삼성전자주식회사 Image processing apparatus and operating method for the same
US11080835B2 (en) 2019-01-09 2021-08-03 Disney Enterprises, Inc. Pixel error detection system
CN109919829B (en) * 2019-01-17 2023-12-26 北京达佳互联信息技术有限公司 Image style migration method, device and computer readable storage medium
GB2580671B (en) * 2019-01-22 2022-05-04 Toshiba Kk A computer vision system and method
US11461653B2 (en) * 2019-01-23 2022-10-04 StradVision, Inc. Learning method and learning device for CNN using 1xK or Kx1 convolution to be used for hardware optimization, and testing method and testing device using the same
US11288818B2 (en) * 2019-02-19 2022-03-29 The Trustees Of The University Of Pennsylvania Methods, systems, and computer readable media for estimation of optical flow, depth, and egomotion using neural network trained using event-based learning
CN109905624B (en) 2019-03-01 2020-10-16 北京大学深圳研究生院 Video frame interpolation method, device and equipment
KR102619516B1 (en) * 2019-03-25 2023-12-28 텔레다인 디지털 이미징, 아이엔씨. Method and related device for generating super-resolution images
US20220016846A1 (en) * 2019-04-10 2022-01-20 Hewlett-Packard Development Company, L.P. Adaptive thermal diffusivity
EP3959882A1 (en) * 2019-04-23 2022-03-02 Telefonaktiebolaget LM Ericsson (publ) A computer software module, a device and a method for accelerating inference for compressed videos
CN110111366B (en) * 2019-05-06 2021-04-30 北京理工大学 End-to-end optical flow estimation method based on multistage loss
US10896356B2 (en) * 2019-05-10 2021-01-19 Samsung Electronics Co., Ltd. Efficient CNN-based solution for video frame interpolation
US11460851B2 (en) 2019-05-24 2022-10-04 Ford Global Technologies, Llc Eccentricity image fusion
US11521494B2 (en) 2019-06-11 2022-12-06 Ford Global Technologies, Llc Vehicle eccentricity mapping
US11662741B2 (en) 2019-06-28 2023-05-30 Ford Global Technologies, Llc Vehicle visual odometry
CN110427094B (en) * 2019-07-17 2021-08-17 Oppo广东移动通信有限公司 Display method, display device, electronic equipment and computer readable medium
CN110659379B (en) * 2019-09-24 2023-05-23 中南林业科技大学 Searchable encrypted image retrieval method based on deep convolution network characteristics
WO2021063119A1 (en) * 2019-10-01 2021-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for image processing, terminal
KR20210056179A (en) 2019-11-08 2021-05-18 삼성전자주식회사 AI encoding apparatus and operating method for the same, and AI decoding apparatus and operating method for the same
US10958869B1 (en) * 2019-11-14 2021-03-23 Huawei Technologies Co., Ltd. System, device and method for video frame interpolation using a structured neural network
KR102207736B1 (en) * 2020-01-14 2021-01-26 한국과학기술원 Frame interpolation, apparatus and method using deep neural network
CN111212287A (en) * 2020-01-15 2020-05-29 济南浪潮高新科技投资发展有限公司 Video compression method based on image interpolation method
US11074730B1 (en) 2020-01-23 2021-07-27 Netapp, Inc. Augmented reality diagnostic tool for data center nodes
US20210279841A1 (en) * 2020-03-09 2021-09-09 Nvidia Corporation Techniques to use a neural network to expand an image
KR102372046B1 (en) * 2020-03-12 2022-03-11 숭실대학교 산학협력단 Method of vessel structures extraction using artificial intelligence technique, recording medium and device for performing the method
US11508143B2 (en) 2020-04-03 2022-11-22 Disney Enterprises, Inc. Automated salience assessment of pixel anomalies
US11689693B2 (en) 2020-04-30 2023-06-27 Boe Technology Group Co., Ltd. Video frame interpolation method and device, computer readable storage medium
US11544880B2 (en) * 2020-05-14 2023-01-03 Adobe Inc. Generating modified digital images utilizing a global and spatial autoencoder
CN113727141B (en) * 2020-05-20 2023-05-12 富士通株式会社 Interpolation device and method for video frames
CN111814479B (en) * 2020-07-09 2023-08-25 上海明略人工智能(集团)有限公司 Method and device for generating enterprise abbreviations and training model thereof
KR20220030084A (en) * 2020-09-02 2022-03-10 삼성전자주식회사 Method and apparatus of processing image
CN112198799B (en) * 2020-10-28 2021-05-14 北京交通大学 High-speed train parking control method and system based on deep learning
US11216656B1 (en) * 2020-12-16 2022-01-04 Retrocausal, Inc. System and method for management and evaluation of one or more human activities
KR20220092247A (en) * 2020-12-24 2022-07-01 삼성전자주식회사 Electronic apparatus and method for controlling thereof
EP4207009A4 (en) 2020-12-24 2024-04-24 Samsung Electronics Co., Ltd. Electronic device and control method therefor
CN113014936B (en) * 2021-02-24 2022-12-13 北京百度网讯科技有限公司 Video frame insertion method, device, equipment and storage medium
WO2022186620A1 (en) * 2021-03-04 2022-09-09 현대자동차주식회사 Video coding method and apparatus for improving prediction signals of intra prediction
US11871145B2 (en) * 2021-04-06 2024-01-09 Adobe Inc. Optimization of adaptive convolutions for video frame interpolation
CN113132664B (en) * 2021-04-19 2022-10-04 科大讯飞股份有限公司 Frame interpolation generation model construction method and video frame interpolation method
GB2609708B (en) * 2021-05-25 2023-10-25 Samsung Electronics Co Ltd Method and apparatus for video recognition
CN113593033A (en) * 2021-06-03 2021-11-02 清华大学 Three-dimensional model feature extraction method based on grid subdivision structure
US12003885B2 (en) * 2021-06-14 2024-06-04 Microsoft Technology Licensing, Llc Video frame interpolation via feature pyramid flows
CN113379869B (en) * 2021-07-23 2023-03-24 浙江大华技术股份有限公司 License plate image generation method and device, electronic equipment and storage medium
CN113762349B (en) * 2021-08-11 2024-03-29 同济大学 Marine organism-oriented lightweight aliasing dense network classification method and system
US20230186487A1 (en) * 2021-12-13 2023-06-15 Qualcomm Incorporated Vectorized bilinear shift for replacing grid sampling in optical flow estimation
US20240098216A1 (en) * 2022-09-20 2024-03-21 Nvidia Corporation Video frame blending
KR20240083525A (en) * 2022-12-05 2024-06-12 삼성전자주식회사 Electronic apparatus and controlling method thereof
CN116503530B (en) * 2023-04-19 2023-12-05 钛玛科(北京)工业科技有限公司 Intermittent region extraction method based on image convolution
CN117095158B (en) * 2023-08-23 2024-04-26 广东工业大学 Terahertz image dangerous article detection method based on multi-scale decomposition convolution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132146A1 (en) * 2015-02-19 2016-08-25 Magic Pony Technology Limited Visual processing using sub-pixel convolutions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353119A (en) * 1990-11-15 1994-10-04 Sony United Kingdom Limited Format conversion of digital video signals, integration of digital video signals into photographic film material and the like, associated signal processing, and motion compensated interpolation of images
US20030189579A1 (en) * 2002-04-05 2003-10-09 Pope David R. Adaptive enlarging and/or sharpening of a digital image
US9039621B2 (en) * 2011-07-27 2015-05-26 The United States of America National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), NIH Division of Extramural Inventions and Technology Resources (DEITR) Non-invasive ultrasonic gingival tissue diagnosis
US9418458B2 (en) * 2015-01-05 2016-08-16 Superfish Ltd. Graph image representation from convolutional neural networks
CN110688891B (en) * 2015-08-15 2024-05-31 硕动力公司 Three-dimensional (3D) convolution with 3D batch normalization
JP6700712B2 (en) * 2015-10-21 2020-05-27 キヤノン株式会社 Convolution operation device
US10789691B2 (en) * 2016-01-21 2020-09-29 Sony Corporation Information processing apparatus and information processing method
WO2017200524A1 (en) * 2016-05-16 2017-11-23 United Technologies Corporation Deep convolutional neural networks for crack detection from image data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132146A1 (en) * 2015-02-19 2016-08-25 Magic Pony Technology Limited Visual processing using sub-pixel convolutions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUCAN LONG ET AL.: "Learning Image Matching by Simply Watching Video", ECCV 2016, 2016, pages 434 - 450, XP047355274 *
HAITAM BEN YAHIA: "Frame Interpolation using Convolutional Neural Networks on 2D animation", BACHELOR THESIS, 24 June 2016 (2016-06-24), XP055558906 *

Also Published As

Publication number Publication date
US20200012940A1 (en) 2020-01-09
WO2018170393A2 (en) 2018-09-20
US11468318B2 (en) 2022-10-11
WO2018170393A9 (en) 2018-11-15
KR20190132415A (en) 2019-11-27
KR102474168B1 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2018170393A3 (en) Frame interpolation via adaptive convolution and adaptive separable convolution
US20210281710A1 (en) Image stitching with electronic rolling shutter correction
US20200258200A1 (en) Double non-local means denoising
US9613408B2 (en) High dynamic range image composition using multiple images
US20200267339A1 (en) Three-dimensional noise reduction
WO2016061011A3 (en) Camera capture recommendation for applications
WO2020015724A8 (en) Picture acquisition method, and picture processing method and device
WO2007092937A3 (en) Adaptive image filter for filtering image information
WO2012003483A3 (en) A method and apparatus for video processing for improved video compression
WO2019226211A1 (en) Image signal processing for reducing lens flare
WO2015189629A3 (en) Improvements in and relating to the display of images
WO2007087640A3 (en) Adaptive filtering to enhance video encoder performance
JP2016516378A5 (en)
US20190098274A1 (en) Desaturation Control
WO2008066703A3 (en) Providing a desired resolution color image
WO2008066699A3 (en) Processing images having color and panchromatic pixels
WO2011060579A8 (en) Method for generating depth maps from monocular images and systems using the same
US9307162B2 (en) Local enhancement apparatus and method to generate high dynamic range images by blending brightness-preserved and brightness-adjusted blocks
US20220122228A1 (en) Chrominance Denoising
EP3891974B1 (en) High dynamic range anti-ghosting and fusion
CN106342194B (en) A kind of Infrared Image Non-uniformity Correction method of ground scene
EP2151996A3 (en) Image signal processing unit and method of processing image signal
WO2017205492A1 (en) Three-dimensional noise reduction
US20140064613A1 (en) Image processing method and apparatus using local brightness gain to enhance image quality
MX2019010055A (en) Method and device for reconstructing an hdr image.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767692

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030137

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18767692

Country of ref document: EP

Kind code of ref document: A2