WO2018169249A1 - Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes - Google Patents

Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes Download PDF

Info

Publication number
WO2018169249A1
WO2018169249A1 PCT/KR2018/002737 KR2018002737W WO2018169249A1 WO 2018169249 A1 WO2018169249 A1 WO 2018169249A1 KR 2018002737 W KR2018002737 W KR 2018002737W WO 2018169249 A1 WO2018169249 A1 WO 2018169249A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
carbon
alcohol
carbon nanotube
nanotubes
Prior art date
Application number
PCT/KR2018/002737
Other languages
French (fr)
Korean (ko)
Inventor
한중탁
이건웅
박종환
서선희
정승열
정희진
하정선
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170033090A external-priority patent/KR102190466B1/en
Priority claimed from KR1020170133953A external-priority patent/KR102190467B1/en
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2018169249A1 publication Critical patent/WO2018169249A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to a carbon nanotube composition dispersed in alcohol without a dispersant, a method for producing a carbon nanotube composition, a carbon nanotube reduced product having a high electroconductivity by restoring its structure by reduction, and more particularly,
  • a dispersant In order to improve the dispersibility in alcohol without using a dispersant, carbon nanotubes with low dispersibility in alcohol are treated with carbon nanotubes through easy oxidation and printing and coating on substrates, and carbon nanotubes through reduction process.
  • a ring that can restore the shape of nanotubes and maintain the electrical conductivity of carbon nanotubes The structure is restored by a circle, and relates to a carbon nanotube reduced product having a high electroconductivity and a method for producing the same.
  • carbon nanotubes have electrical resistance 10 has an electric conductivity comparable to metals to 4 ⁇ cm, the surface area is higher than 1000 times that of the bulk material, in the conductive implemented because the length is long enough to be a thousand times compared with the outer diameter of the ideal material And it has the advantage that can improve the binding force to the substrate through the surface functionalization.
  • the use of the flexible substrate can be infinite.
  • the carbon nanotubes when a large amount is added, the carbon nanotubes are agglomerated with each other, and thus uniform dispersion is difficult.
  • an object of the present invention is to easily print and coat the substrate by treating the carbon nanotubes through an oxidation process to improve the dispersibility in the alcohol without using a dispersant in the carbon nanotubes having low dispersibility in alcohol,
  • the shape of the carbon nanotubes is restored through a reduction process to provide a carbon nanotube composition dispersed in alcohol without a dispersant exhibiting high conductivity and a method of manufacturing the same, and also performing an oxidation process to improve the dispersibility of the carbon nanotubes.
  • the present invention relates to a carbon nanotube reduced product having high conductivity, and a method of manufacturing the same. .
  • the above object is to oxidize carbon nanotubes through acid treatment to form carbon nanotubes; Dispersing the carbon nanotubes in alcohol to obtain a carbon nanotube composition is achieved by a method for producing a carbon nanotube composition dispersed in alcohol without a dispersant.
  • the reduction is to recover the carbon nanotube double bond Therefore, it is preferable that the electrical conductivity is higher than that of the carbon nanotubes.
  • the forming of the carbon nanotubes may include fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide in the carbon nanotubes.
  • peroxide and a strong acid selected from the group consisting of sodium chlorate (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ) and mixtures thereof
  • An oxidizing agent is added and left to stir or kneaded at room temperature for 30 minutes to a week, and the oxidizing agent is preferably added in a 0.5 to 10 weight ratio based on the weight of the carbon nanotubes.
  • the alcohol is selected from the group consisting of primary alcohols, secondary alcohols, tertiary alcohols, alcohol derivatives and mixtures thereof, and the carbon nanotubes are preferably added to the alcohol at 10 to 10,000 mg / L.
  • the above object is, carbon nanotube oxide in a state in which a double bond is broken to form a surface defect in which the hexagonal carbon structure is broken; It is also achieved by a carbon nanotube composition dispersed in an alcohol without a dispersant, characterized in that the carbon nanotubes contain an alcohol dispersed.
  • the carbon nanotubes have a high electroconductivity by recovering the double bond through reduction
  • the carbon nanotubes are preferably added to the alcohol at 10 to 10,000mg / L
  • the carbon nanotube composition is ink It is preferable that it is an ink or paste.
  • the step of forming the carbon nanotubes, the carbon nanotubes and the oxidizing agent is mixed to form a mixed powder, kneading while adding a strong acid to the mixed powder, the dough having no flow formed through the dough It is preferable to leave the water to form the carbon nanotubes.
  • the carbon nanotube dispersion is dispersed in a solvent and then reduced by adding a reducing agent through a wet process to obtain the carbon oxide oxide reduction product
  • the reducing agent is sodium hydroxide ( NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), iodine hydrochloric acid (HI), ascorbic acid, reducing solvent, It is preferably selected from the group consisting of a reducing organic material and a mixture thereof, and the carbon nanotube reduced product is, the carbon nanotubes by the oxidation of the carbon nanotubes using the strong acid and the oxidizing agent to deform the tube shape, deformed tube shape It is preferable to restore the double bond through reduction to increase the electrical conductivity than the carbon nanotubes.
  • the above object is also oxidized carbon nanotubes through a strong acid to form carbon nanotubes, and the structure is restored by reduction, characterized in that obtained by reducing the carbon nanotubes, carbon nanooxide having high conductivity. It is also achieved by tube reduction.
  • FIG. 1 is a flow chart of a carbon nanotube composition manufacturing method according to an embodiment of the present invention
  • Figure 2 is a flow chart of the carbon nanotube reduction product manufacturing method according to an embodiment of the present invention.
  • Example 3 is a photograph showing a dispersion state of carbon nanotubes according to the solvent of Example 1,
  • FIG. 4 is a graph showing absorbance of visible light region according to the concentration of carbon nanotubes of Example 1.
  • the carbon nanotube composition dispersed in alcohol without a dispersant means an ink or paste that can be used for coating or printing, and the ink or paste has a viscosity adjusted according to the proportion of carbon nanotubes added to the alcohol.
  • a low viscosity composition can be used as an ink and a high viscosity composition can be used as a paste.
  • carbon nanotubes After oxidation of carbon nanotubes consisting of single wall, double wall or multi-wall through acid treatment, carbon nanotubes are formed by removing impurities by repeated washing of aqueous solution and centrifuge. When the acid treatment is carried out, the double bonds of the carbon nanotubes are broken and the original carbon structures are present in a damaged state. The carbon nanotubes in the damaged state are easily agglomerated and dispersed in a solvent.
  • Acid treatment is performed on carbon nanotubes with strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide.
  • strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide.
  • NaClO 3 sodium perchlorate
  • NaClO 4 potassium chlorate
  • KClO 4 potassium perchlorate
  • KClO 4 potassium perchlorate
  • the oxidizing agent is preferably added in a ratio of 0.5 to 10% by weight based on the weight of the carbon nanotubes.
  • Stirring or kneading of carbon nanotubes can be selected according to the amount of strong acid added. However, the method of kneading with strong acid is most preferred due to the characteristics of carbon nanotubes that are strongly agglomerated. Then, the strong acid is neutralized with distilled water, followed by repeated washing with filtering or centrifugation, and drying yields pure carbon nanotubes without strong acid remaining on the surface.
  • the carbon nanotubes and the oxidizing agent are respectively prepared and mixed to form a mixed powder.
  • the carbon nanotubes and the oxidizing agent are present in powder form, they do not react with each other even if they are mixed to form a mixed powder.
  • kneading while adding a small amount of strong acid to the mixed powder formed. That is, a small amount of strong acid is added to the mixed powder, followed by kneading, and a small amount of strong acid is added thereto, followed by kneading.
  • the strong acid is preferably added in small portions of about 2 to 5 times.
  • the dough is left to form carbon nanotubes.
  • the kneaded non-flowable dough is left for 1 to 10 hours to oxidize carbon nanotubes in the dough to form carbon nanotubes. Even if the formed dough is left as it is without further treatment, carbon nanotubes in the dough may be oxidized to obtain carbon nanotubes. The process of purifying the remaining oxidant and strong acid may then be further subjected.
  • the strong acid added in small portions is preferably kneaded while adding to the mixed powder in a ratio of 0.1 to 0.5% by weight based on the carbon nanotube weight.
  • the kneading is made while the strong acid is added in less than 0.1 weight ratio, a lot of time is consumed when kneading, and when the strong acid is added in excess of 0.5 weight ratio, the reaction may occur excessively and the carbon nanotubes may be damaged by high temperature heating.
  • This oxidation method not only introduces an oxidizing functional group, but also has a disadvantage that surface defects in which the hexagonal carbon structure is broken due to strong oxidizing power are simultaneously formed and are not recovered to the hexagonal carbon structure even after reduction. Therefore, when manufacturing carbon nanotubes by this method, there is an advantage in that the carbon nanotubes have excellent dispersibility, but instead of excellent dispersibility, it contains many oxidizing groups and structural defects are formed, thereby improving the quality of carbon nanotubes. This has the disadvantage of falling. In addition, carbon nanotubes are reduced in a later step. In the process, the oxidation functional group and the defect structure interfere with the rearrangement of the carbon nanotubes in the shape of a tube. There is no way to apply it.
  • the carbon nanotubes are dispersed in alcohol to obtain a carbon nanotube composition (S2a).
  • the carbon nanotubes prepared through the step S1a are dispersed in alcohols having low harmfulness and high environmental friendliness, thereby obtaining a carbon nanotube composition which may be coated or printed.
  • a dispersant may be used separately or mixed with a harmful solvent such as dimethyl formamide or N-methyl-2-pyrollidone.
  • a dispersant not only increases the manufacturing cost but also reduces the content of carbon nanotubes, so that the electrical conductivity cannot be maintained.
  • the alcohol constituting such a carbon nanotube composition is preferably selected from the group consisting of primary alcohols, secondary alcohols, tertiary alcohols, alcohol derivatives, and mixtures thereof.
  • methyl alcohol, ethyl alcohol Any alcohol that is generally used as a solvent, such as ethyl alcohol, isopropyl alcohol, and butyl alcohol, can be applied without limitation.
  • carbon nanotubes are preferably added in an amount of 10 to 10,000 mg / L using alcohol as a solvent. If the carbon nanotube oxide is less than 10mg / L, it is difficult to show high conductivity, and when the carbon nanotube exceeds 10,000mg / L, the viscosity becomes high, which makes it unsuitable for printing.
  • the carbon nanotube composition is classified into ink or paste according to the viscosity, and may be used as an ink when the viscosity is 2,000 cps or less and may be used as a paste when it exceeds 2,000 cps.
  • the carbon nanotube composition may be reduced.
  • the shape of the tube is deformed, so the electrical conductivity is present in a very low state.
  • the double bonds are restored to increase the electrical conductivity than carbon nanotubes. .
  • sodium hydroxide NaOH
  • potassium hydroxide KOH
  • ammonium hydroxide NH 4 OH
  • sodium borohydride NaBH 4
  • hydrazine N 2 H 4
  • hydriodine HI
  • ascorbic acid reducing organic solvents and mixtures thereof
  • the method of chemical reduction and the drying process such as heat treatment, plasma treatment.
  • the structure is restored by such a reduction, and as a method for producing a carbon nanooxide reduced product having high electroconductivity, as shown in FIG. 2, first, the carbon nanotubes are oxidized to form carbon nanotubes (S1b).
  • carbon nanotubes After oxidation of carbon nanotubes consisting of single wall, double wall or multi-wall through acid treatment, carbon nanotubes are formed by removing impurities by repeated washing of aqueous solution and centrifuge. Acid treatment is performed on carbon nanotubes with strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide.
  • strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide.
  • NaClO 3 sodium perchlorate
  • KlO 3 potassium chlorate
  • the oxidizing agent is preferably added in a ratio of 0.5 to 10% by weight based on the weight of the carbon nanotubes. If the oxidizing agent is less than 0.5 weight ratio, the carbon nanotubes are not sufficiently oxidized. If the oxidizing agent is more than 10 weight ratio, the degree of oxidation is excessive, so that the electrical conductivity of the carbon nanotubes is rapidly decreased.
  • Stirring or kneading of carbon nanotubes can be selected according to the amount of strong acid added. However, the method of kneading with strong acid is most preferred due to the characteristics of carbon nanotubes that are strongly agglomerated. Then, the strong acid is neutralized with distilled water, followed by repeated washing with filtering or centrifugation, and drying yields pure carbon nanotubes without strong acid remaining on the surface.
  • the carbon nanotubes and the oxidizing agent are respectively prepared and mixed to form a mixed powder.
  • the carbon nanotubes and the oxidizing agent are present in powder form, they do not react with each other even if they are mixed to form a mixed powder.
  • kneading while adding a small amount of strong acid to the mixed powder formed. That is, a small amount of strong acid is added to the mixed powder, followed by kneading, and a small amount of strong acid is added thereto, followed by kneading.
  • the strong acid is preferably added in small portions of about 2 to 5 times.
  • the dough is left to form carbon nanotubes.
  • the kneaded non-flowable dough is left for 1 to 10 hours to oxidize carbon nanotubes in the dough to form carbon nanotubes. Even if the formed dough is left as it is without further treatment, carbon nanotubes in the dough may be oxidized to obtain carbon nanotubes. The process of purifying the remaining oxidant and strong acid may then be further subjected.
  • the strong acid added in small portions is preferably kneaded while adding to the mixed powder in a ratio of 0.1 to 0.5% by weight based on the carbon nanotube weight.
  • the kneading is made while the strong acid is added in less than 0.1 weight ratio, a lot of time is consumed when kneading, and when the strong acid is added in excess of 0.5 weight ratio, the reaction may occur excessively and the carbon nanotubes may be damaged by high temperature heating.
  • This oxidation method not only introduces an oxidizing functional group, but also has a disadvantage that surface defects in which the hexagonal carbon structure is broken due to strong oxidizing power are simultaneously formed and are not recovered to the hexagonal carbon structure even after reduction. Therefore, when manufacturing carbon nanotubes by this method, there is an advantage in that the carbon nanotubes have excellent dispersibility, but instead of excellent dispersibility, it contains many oxidizing groups and structural defects are formed, thereby improving the quality of carbon nanotubes. This has the disadvantage of falling. In addition, carbon nanotubes are reduced in a later step. In the process, the oxidation functional group and the defect structure interfere with the rearrangement of the carbon nanotubes into a tube shape. There is no way to apply it.
  • the manufactured carbon nanotube has the advantage that the hexagonal structure is maintained as it is, and thus the quality is excellent due to high purity and low defects.
  • the carbon nanotube is reduced in a subsequent step, the carbon nanotube is oxidized.
  • carbon nanotubes are manufactured by using a brody method rather than a commonly used studenmeier method or a hummus method.
  • the solvent in which carbon nanotubes are reduced is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol (butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, tetrahydropyran dimethyl formamide, dimethyl acetamide, N-methyl -2-pyrrolidone (N-methyl-2-pyrolidone), hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethyl benzene ), Trimethyl benzene, pyridine, methyl naphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide Id (dimethyl sulfoxide), preferably selected from the group consisting of distilled water and the mixture thereof.
  • Example 1> method for producing carbon nanotube composition dispersed in alcohol without dispersant
  • the carbon nanotubes prepared are 30 to 300 mg / L in alcoholic organic solvents such as butyl alcohol and isopropyl alcohol, as well as water and dimethyl formamide as shown in FIG. 3.
  • Carbon nanotubes were added at the concentration of and dispersed using an ultrasonic disperser.
  • they are originally dispersed in dimethylformamide or N-methyl-2-pyrrolidone, but not in water, butyl alcohol or isopropyl alcohol.
  • dispersion is easily performed.
  • FIG. 4 is a graph showing absorbance according to carbon nanotube concentration in the visible light region (550 nm wavelength). Absorption is linear as the concentration of carbon nanotubes increases, indicating that the dispersion state is maintained even when the concentration increases. That is, it can be seen that carbon nanotubes are properly dispersed in alcoholic organic solvents such as water, butyl alcohol and isopropyl alcohol as well as dimethylformamide. Therefore, it can be seen that the carbon nanotubes prepared through the present examples generally have a good dispersion state in polar solvents such as water, dimethylformamide and N-methylpyrrolidone in addition to alcohol.
  • alcoholic organic solvents such as water, butyl alcohol and isopropyl alcohol as well as dimethylformamide. Therefore, it can be seen that the carbon nanotubes prepared through the present examples generally have a good dispersion state in polar solvents such as water, dimethylformamide and N-methylpyrrolidone in addition to alcohol.
  • the dispersion is made even at a concentration of 300mg / L or more than 10,000mg / L, can be selectively used depending on the viscosity to suit the purpose. If it is used for applications that have no flow, it can be used at higher concentrations.
  • pattern printing is possible by direct printing process such as inkjet, 3D printing, gravure, gravure offset, reverse gravure offset, and applied to the substrate by front coating by coating method such as spray coating, bar coating, knife coating and slot die coating. It is possible.
  • plasma treatment can be used.
  • Example 2> A method for producing a carbon nanotube reduced product having a high electroconductivity by restoring its structure by reduction
  • the prepared carbon oxide nanotubes at 100mg / L in 100mL of water, add 1mL of hydrazine (N 2 H 4 ) to it, and raise the temperature to 80 ° C.
  • the produced film After filtering the carbon nanotube dispersion to produce a paper-like film, the produced film may be subjected to chemical reduction using iodine hydrochloric acid (HI) to finally obtain a carbon nanotube reduction product.
  • HI iodine hydrochloric acid
  • Figure 5a shows a SEM picture before the oxidation of the single-walled carbon nanotubes
  • Figure 5b shows a SEM picture of the carbon nanotubes oxidized through Example 2.
  • the bundle size decreases after oxidation of the single-walled carbon nanotubes.
  • the degree of oxidation of the prepared carbon nanotubes was confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy.
  • the D band indicating the degree of defect increased after oxidizing the carbon nanotubes. This indicates that the carbon nanotubes are changed to carbon nanotubes due to an increase in defects or an increase in the introduction of an oxidative functional group to change a double bond into a single bond.
  • the results of measuring the electrical conductivity before and after reduction of the carbon nanotubes present in the film prepared through the examples can be confirmed through FIG. 8.
  • the electrical conductivity of the carbon nanotubes decreased as the mixing ratio (NaClO 3 / SWCNT ratio) of sodium chloride and single-walled carbon nanotubes added for oxidation increased. Can be.
  • the reduced carbon nanotube reduced product has an electrical conductivity that is increased by three times or more compared with the carbon nanotube before reduction, and the functional group is removed after the reduction as illustrated in FIGS. 5 and 6. And the defects are reduced.
  • the Raman analysis of the carbon nanotube reduced product of FIG. 7 the significant decrease in the intensity of the D-band peak proves that the structure of the chemically oxidized carbon nanotubes is recovered through reduction.
  • Example 3 is the same as Example 2, but the same oxidation and reduction process was performed using multi-walled carbon nanotubes. As a result of chemically reducing the oxidized multi-walled carbon nanotubes like single-walled carbon nanotubes, it was confirmed that the defect structure of the oxidative functional group was recovered to a double bond, thereby improving the electrical conductivity.
  • Examples 1 to 3 were made of a flowable slurry, but in the case of the present embodiment, unlike the slurry, the flowability is almost impossible, such as a flour dough, so that stirring is impossible and mixing is possible through the dough.
  • the soaked dough is then left for 1 to 10 hours to form carbon nanotubes.
  • the oxidizing agent is dissolved in the concentrated nitric acid, the local oxidation reaction proceeds rapidly on the surface of the carbon nanotubes, which can drastically shorten the reaction time.
  • Comparative Example 2 the single-walled carbon nanotubes were heated to more than 100 ° C. in nitric acid or nitric acid / sulfuric acid mixture, oxidized by reflux, and chemically reduced. Also in this case, as in Comparative Example 1, as a result of Raman analysis, D bands showing defects did not decrease, and it was confirmed that the structure of the single-walled oxide carbon nanotubes was not restored by chemical reduction.
  • the carbon nanotubes having low dispersibility in alcohol are treated with carbon nanotubes through an oxidation process in order to improve dispersibility in alcohol without using a dispersing agent, and thus printing and coating on the substrate are easily carried out.
  • the restoration of the shape of the carbon nanotubes it is possible to obtain carbon nanotubes having high conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a carbon nanotube composition, a method for manufacturing a carbon nanotube composition, reduced oxidized carbon nanotubes, and a method for manufacturing reduced oxidized carbon nanotubes, and the technical subject of the present invention comprises: a step of oxidizing carbon nanotubes through an acid treatment to form oxidized carbon nanotubes; and a step of obtaining the carbon nanotube composition by dispersing the oxidized carbon nanotubes in alcohol. As a result, carbon nanotubes having low dispersibility in alcohol can be treated with an oxidation process to improve dispersibility in alcohol to enable easy printing and coating on a substrate, and the shape of carbon nanotubes are recovered through reduction so that the carbon nanotube composition dispersed in alcohol having high electric conductivity can be obtained without a dispersing agent. Also, the shape of carbon nanotubes can be recovered through reduction even when oxidation is performed to improve the dispersibility of carbon nanotubes, enabling recovery of the structure which can maintain electric conductivity of carbon nanotubes through reduction, thus the reduced oxidized carbon nanotubes having high electric conductivity can be obtained.

Description

탄소나노튜브 조성물, 탄소나노튜브 조성물 제조방법, 산화 탄소나노튜브 환원물 및 산화 탄소나노튜브 환원물 제조방법Carbon nanotube composition, carbon nanotube composition manufacturing method, carbon nanotube reduced product and carbon nanotube reduced product manufacturing method
본 발명은 분산제 없이 알코올에 분산된 탄소나노튜브 조성물, 탄소나노튜브 조성물 제조방법, 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 알코올에 분산성이 낮은 탄소나노튜브를 분산제를 사용하지 않고 알코올에서의 분산성을 향상시키기 위해 산화과정을 통해 탄소나노튜브를 처리하여 기재에 인쇄 및 코팅이 용이하며, 환원과정을 통해 탄소나노튜브의 형상이 복원되어 고전기전도성을 띄는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 및 그 제조방법을 제공하는 것이며, 또한 탄소나노튜브의 분산성을 향상시키기 위해 산화 과정을 수행하여도 환원 과정을 통해 탄소나노튜브의 형상을 회복시킬 수 있어 탄소나노튜브의 전기전도성을 유지할 수 있는 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 및 그 제조방법에 관한 것이다.The present invention relates to a carbon nanotube composition dispersed in alcohol without a dispersant, a method for producing a carbon nanotube composition, a carbon nanotube reduced product having a high electroconductivity by restoring its structure by reduction, and more particularly, In order to improve the dispersibility in alcohol without using a dispersant, carbon nanotubes with low dispersibility in alcohol are treated with carbon nanotubes through easy oxidation and printing and coating on substrates, and carbon nanotubes through reduction process. Is to provide a carbon nanotube composition dispersed in alcohol without a dispersing agent exhibiting a high electroconductivity and a method for producing the same, and also through the reduction process even if the oxidation process to improve the dispersibility of the carbon nanotubes A ring that can restore the shape of nanotubes and maintain the electrical conductivity of carbon nanotubes The structure is restored by a circle, and relates to a carbon nanotube reduced product having a high electroconductivity and a method for producing the same.
탄소나노튜브(carbon nanotube, CNT)는 6각형 고리로 연결된 탄소들이 튜브 형상을 이루는 직경 1 내지 수십nm 정도의 미세한 분자로, 탄소원자가 3개씩 결합해 벌집 모양의 구조를 갖게 된 탄소평면이 튜브 형상으로 말려 형성된다. 이러한 탄소나노튜브는 현재 기계적 강도, 화학적 안정성, 열전도도, 전기전도도 등이 우수한 특성을 기반으로 현대 산업 분야에서 다양한 적용이 기대되고 있다. 즉 탄소나노튜브는 전기저항이 10- 4Ωcm로 금속에 버금가는 전기전도도를 가지고 있으며, 표면적이 벌크 재료에 비해 1000배 이상 높고, 외경에 비해 길이가 수천배 정도로 길기 때문에 전도성 구현에 있어 이상적인 재료이며 표면기능화를 통해 기질에의 결합력을 향상시킬 수 있다는 장점이 있다. 특히 플렉시블한 기질에의 사용이 가능하여 그 용도가 무한할 것으로 기대되고 있다. 하지만 탄소나노튜브의 경우 많은 양이 첨가되면 탄소나노튜브끼리 서로 뭉침이 발생하여 균일한 분산이 어렵다는 단점이 있다.Carbon nanotubes (CNTs) are tiny molecules of about 1 to several tens of nanometers in diameter, in which carbons connected by hexagonal rings form a tube shape, and carbon planes in which the carbon planes have a honeycomb structure by combining three carbon atoms each have a tube shape. It is formed by curling. Such carbon nanotubes are expected to have various applications in modern industrial fields based on their excellent mechanical strength, chemical stability, thermal conductivity, and electrical conductivity. That is, carbon nanotubes have electrical resistance 10 has an electric conductivity comparable to metals to 4 Ωcm, the surface area is higher than 1000 times that of the bulk material, in the conductive implemented because the length is long enough to be a thousand times compared with the outer diameter of the ideal material And it has the advantage that can improve the binding force to the substrate through the surface functionalization. In particular, it is expected that the use of the flexible substrate can be infinite. However, in the case of carbon nanotubes, when a large amount is added, the carbon nanotubes are agglomerated with each other, and thus uniform dispersion is difficult.
이에 종래의 경우 탄소나노튜브를 산처리하여 카르복실기 또는 히드록실기로 표면을 기능화하고, 여기에 다양한 관능기를 도입하여 탄소나노튜브의 분산성을 향상시키는 기술이 주로 사용되었다. 또한 탄소나노튜브에 존재하는 불순물은 안정적인 탄소층에 둘러싸여 있기 때문에 물리적 또는 화학적 정제가 어려운 편인데, 이를 탄소나노튜브를 산처리할 경우 탄소나노튜브에 존재하는 불순물을 비교적 쉽게 제거할 수 있다는 장점이 있다. 이러한 종래기술은 '대한민국특허청 등록특허 제10-1586155호 탄소나노튜브의 정제 방법' 및 '대한민국특허청 등록특허 제10-0685796호 고순도 및 고밀도의 탄소나노튜브 필름을 이용한 투명전극의 제조방법'과 같은 기술이 알려져 있다.In the conventional case, a technique of acidifying a carbon nanotube to functionalize a surface with a carboxyl group or a hydroxyl group, and introducing various functional groups to improve the dispersibility of the carbon nanotube is mainly used. In addition, since impurities present in carbon nanotubes are surrounded by a stable carbon layer, it is difficult to physically or chemically purify them. When acid-processing carbon nanotubes, impurities present in carbon nanotubes can be relatively easily removed. have. Such a prior art is a method for purifying carbon nanotubes of Korea Patent Office No. 10-1586155 and a method for manufacturing a transparent electrode using carbon nanotube films of high purity and high density. The technique is known.
하지만 탄소나노튜브를 지나치게 산처리하여 산화 탄소나노튜브를 제조할 경우 탄소나노튜브의 튜브 형상이 터지게 되는 결함이 발생하게 되는데, 이러한 결함은 환원을 하더라도 복원이 되지 않고 탄소나노튜브에 결함이 발생하게 되면 전기전도도가 감소하게 된다. 즉, 탄소나노튜브의 분산성 향상을 위해 기존 방법으로 산처리를 수행하게 되면 결국 탄소나노튜브의 전기전도도가 크게 감소하게 된다는 단점이 있다. 뿐만 아니라 종래에는 탄소나노튜브를 산처리한 후 관능기를 추가로 도입할 경우 어떠한 방법을 사용하여도 결함이 생긴 탄소나노튜브를 다시 이중결합을 가지는 튜브 형상으로 복구하기 힘들다는 문제점이 있다.However, when carbon nanotubes are excessively acid treated to produce carbon nanotubes, defects that cause the tube shape of the carbon nanotubes to burst occur, and these defects are not restored even when reduced, resulting in defects in the carbon nanotubes. When the conductivity is reduced. That is, when acid treatment is performed by the conventional method to improve the dispersibility of the carbon nanotubes, the electrical conductivity of the carbon nanotubes is greatly reduced. In addition, conventionally, when acid is treated with carbon nanotubes and then additional functional groups are introduced, it is difficult to recover the defective carbon nanotubes to a tube shape having double bonds by using any method.
따라서 본 발명의 목적은, 알코올에 분산성이 낮은 탄소나노튜브를 분산제를 사용하지 않고 알코올에서의 분산성을 향상시키기 위해 산화과정을 통해 탄소나노튜브를 처리하여 기재에 인쇄 및 코팅이 용이하며, 환원과정을 통해 탄소나노튜브의 형상이 복원되어 고전기전도성을 띄는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 및 그 제조방법을 제공하는 것이며, 또한 탄소나노튜브의 분산성을 향상시키기 위해 산화 과정을 수행하여도 환원 과정을 통해 탄소나노튜브의 형상을 회복시킬 수 있어 탄소나노튜브의 전기전도성을 유지할 수 있는 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 및 그 제조방법에 관한 것이다.Accordingly, an object of the present invention is to easily print and coat the substrate by treating the carbon nanotubes through an oxidation process to improve the dispersibility in the alcohol without using a dispersant in the carbon nanotubes having low dispersibility in alcohol, The shape of the carbon nanotubes is restored through a reduction process to provide a carbon nanotube composition dispersed in alcohol without a dispersant exhibiting high conductivity and a method of manufacturing the same, and also performing an oxidation process to improve the dispersibility of the carbon nanotubes. Even though the shape of the carbon nanotubes can be recovered through a reduction process, and the structure is restored by the reduction capable of maintaining the electrical conductivity of the carbon nanotubes, the present invention relates to a carbon nanotube reduced product having high conductivity, and a method of manufacturing the same. .
상기한 목적은, 산처리를 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하는 단계와; 상기 산화 탄소나노튜브를 알코올에 분산시켜 탄소나노튜브 조성물을 얻는 단계를 포함하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법에 의해서 달성된다.The above object is to oxidize carbon nanotubes through acid treatment to form carbon nanotubes; Dispersing the carbon nanotubes in alcohol to obtain a carbon nanotube composition is achieved by a method for producing a carbon nanotube composition dispersed in alcohol without a dispersant.
여기서, 상기 탄소나노튜브 조성물을 얻는 단계 이후에, 상기 탄소나노튜브 조성물을 이용하여 기재에 코팅 또는 패턴 인쇄한 후 환원하는 단계를 더 포함하며, 상기 환원은 상기 산화탄소나노튜브가 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도성이 증가하는 과정인 것이 바람직하다.Here, after obtaining the carbon nanotube composition, further comprising the step of reducing after coating or pattern printing on the substrate using the carbon nanotube composition, the reduction is to recover the carbon nanotube double bond Therefore, it is preferable that the electrical conductivity is higher than that of the carbon nanotubes.
또한, 상기 산화 탄소나노튜브를 형성하는 단계는, 상기 탄소나노튜브와 산화제를 혼합하여 혼합 분말을 형성하고, 상기 혼합 분말에 강산을 나누어 첨가하면서 반죽한 후, 반죽을 통해 형성된 흐름성이 없는 반죽물을 방치하여 상기 산화 탄소나노튜브를 형성하는 것이 바람직하다.In the forming of the carbon nanotubes, the carbon nanotubes may be mixed with the oxidizing agent to form a mixed powder, kneaded with the addition of a strong acid to the mixed powder, and then there is no flowable dough formed through the dough. It is preferable to leave the water to form the carbon nanotubes.
상기 산화 탄소나노튜브를 형성하는 단계는, 상기 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 및 이의 혼합으로 이루어진 군으로부터 선택된 강산과, 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 및 이의 혼합으로 이루어진 군으로부터 선택된 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하며, 상기 산화제는 상기 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가되는 것이 바람직하다.The forming of the carbon nanotubes may include fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide in the carbon nanotubes. peroxide) and a strong acid selected from the group consisting of sodium chlorate (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ) and mixtures thereof An oxidizing agent is added and left to stir or kneaded at room temperature for 30 minutes to a week, and the oxidizing agent is preferably added in a 0.5 to 10 weight ratio based on the weight of the carbon nanotubes.
상기 알코올은, 1차 알코올, 2차 알코올, 3차 알코올, 알코올 유도체 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 산화 탄소나노튜브는 상기 알코올에 10 내지 10,000mg/L로 첨가되는 것이 바람직하다.The alcohol is selected from the group consisting of primary alcohols, secondary alcohols, tertiary alcohols, alcohol derivatives and mixtures thereof, and the carbon nanotubes are preferably added to the alcohol at 10 to 10,000 mg / L.
상기한 목적은, 이중결합이 끊어져 육각형 모양의 탄소구조체가 깨지는 표면 결함이 형성된 상태의 산화 탄소나노튜브와; 상기 산화 탄소나노튜브가 분산된 알코올을 포함하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물에 의해서도 달성된다.The above object is, carbon nanotube oxide in a state in which a double bond is broken to form a surface defect in which the hexagonal carbon structure is broken; It is also achieved by a carbon nanotube composition dispersed in an alcohol without a dispersant, characterized in that the carbon nanotubes contain an alcohol dispersed.
여기서, 상기 산화 탄소나노튜브는 환원을 통해 이중결합이 복구되어 고전기전도성을 띄며, 상기 산화 탄소나노튜브는 상기 알코올에 10 내지 10,000mg/L로 첨가되는 것이 바람직하며, 상기 탄소나노튜브 조성물은 잉크(ink) 또는 페이스트(paste)인 것이 바람직하다.Here, the carbon nanotubes have a high electroconductivity by recovering the double bond through reduction, the carbon nanotubes are preferably added to the alcohol at 10 to 10,000mg / L, the carbon nanotube composition is ink It is preferable that it is an ink or paste.
상기한 목적은 또한, 강산을 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하는 단계와; 상기 산화 탄소나노튜브를 환원시켜 산화 탄소나노튜브 환원물을 얻는 단계를 포함하는 것을 특징으로 하는 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 제조방법에 의해서도 달성된다.The above object is also to oxidize carbon nanotubes through a strong acid to form carbon nanotubes; Reducing the carbon nanotubes to reduce the carbon nanotubes, the structure is restored by the reduction, characterized in that it comprises a carbon nanotube reduced product manufacturing method exhibiting high conductivity.
여기서, 상기 산화 탄소나노튜브를 형성하는 단계는, 상기 탄소나노튜브와 산화제를 혼합하여 혼합 분말을 형성하고, 상기 혼합 분말에 강산을 나누어 첨가하면서 반죽한 후, 반죽을 통해 형성된 흐름성이 없는 반죽물을 방치하여 상기 산화 탄소나노튜브를 형성하는 것이 바람직하다.Here, the step of forming the carbon nanotubes, the carbon nanotubes and the oxidizing agent is mixed to form a mixed powder, kneading while adding a strong acid to the mixed powder, the dough having no flow formed through the dough It is preferable to leave the water to form the carbon nanotubes.
또한, 상기 산화 탄소나노튜브를 형성하는 단계는, 상기 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 및 이의 혼합으로 이루어진 군으로부터 선택된 강산과, 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 및 이의 혼합으로 이루어진 군으로부터 선택된 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하는 것이 바람직하며, 상기 산화제는 상기 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가되는 것이 바람직하다.In addition, the step of forming the carbon oxide nanotubes, fuming nitric acid (sulfuric acid), sulfuric acid (sulfuric acid), nitric acid (nitric acid), hydrochloric acid (hydrochloric acid), phosphoric acid (phosphoric acid), hydrogen peroxide on the carbon nanotubes (hydrogen peroxide) and a strong acid selected from the group consisting of, sodium chloride (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chloride (KClO 3 ), potassium perchlorate (KClO 4 ) and a group thereof It is preferable to add an oxidizing agent selected from and to stir for 30 minutes to a week at room temperature or to leave it kneaded, and the oxidizing agent is preferably added in a 0.5 to 10 weight ratio based on the weight of the carbon nanotubes.
상기 산화 탄소나노튜브 환원물을 얻는 단계는, 상기 산화 탄소나노튜브를 용매에 분산시킨 후 환원제를 첨가하여 습식 공정을 통해 환원시켜 상기 산화 탄소나노튜브 환원물을 얻으며, 상기 환원제는, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 수산화붕소나트륨(NaBH4), 히드라진(N2H4), 아이오딘수소산(HI), 아스코빅산(ascorbic acid), 환원성 용매, 환원성 유기물 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하며, 상기 산화 탄소나노튜브 환원물은, 상기 강산 및 상기 산화제를 이용하여 상기 탄소나노튜브가 산화를 통해 튜브 형상이 변형되고, 변형된 튜브 형상을 환원을 통해 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도도가 증가하는 것이 바람직하다.In the obtaining of the carbon oxide oxide reduction product, the carbon nanotube dispersion is dispersed in a solvent and then reduced by adding a reducing agent through a wet process to obtain the carbon oxide oxide reduction product, and the reducing agent is sodium hydroxide ( NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), iodine hydrochloric acid (HI), ascorbic acid, reducing solvent, It is preferably selected from the group consisting of a reducing organic material and a mixture thereof, and the carbon nanotube reduced product is, the carbon nanotubes by the oxidation of the carbon nanotubes using the strong acid and the oxidizing agent to deform the tube shape, deformed tube shape It is preferable to restore the double bond through reduction to increase the electrical conductivity than the carbon nanotubes.
상기한 목적은 또한, 강산을 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하고, 상기 산화탄소나노튜브를 환원하여 얻어지는 것을 특징으로 하는 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물에 의해서도 달성된다.The above object is also oxidized carbon nanotubes through a strong acid to form carbon nanotubes, and the structure is restored by reduction, characterized in that obtained by reducing the carbon nanotubes, carbon nanooxide having high conductivity. It is also achieved by tube reduction.
여기서, 상기 산화 탄소나노튜브 환원물은, 상기 강산을 이용하여 상기 탄소나노튜브가 산화를 통해 튜브 형상이 변형되고, 변형된 튜브 형상을 환원을 통해 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도도가 증가하는 것이 바람직하다.Here, the carbon nanotube reduced product, the carbon nanotubes are deformed by the oxidation of the carbon nanotubes using the strong acid, the modified tube shape is restored to the double bond through the reduction of the electric It is desirable to increase the conductivity.
상술한 본 발명의 구성에 따르면, 알코올에 분산성이 낮은 탄소나노튜브를 분산제를 사용하지 않고 알코올에서의 분산성을 향상시키기 위해 산화과정을 통해 탄소나노튜브를 처리하여 기재에 인쇄 및 코팅이 용이하며, 환원과정을 통해 탄소나노튜브의 형상이 복원되어 고전기전도성을 띄는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물을 얻을 수 있다.According to the above-described configuration of the present invention, carbon nanotubes having low dispersibility in alcohol can be easily printed and coated on a substrate by treating the carbon nanotubes through oxidation to improve dispersibility in alcohol without using a dispersant. In addition, the shape of the carbon nanotubes is restored through a reduction process, thereby obtaining a carbon nanotube composition dispersed in alcohol without a dispersant having high conductivity.
또한 탄소나노튜브의 분산성을 향상시키기 위해 산화 과정을 수행하여도 환원 과정을 통해 탄소나노튜브의 형상을 회복시킬 수 있어 탄소나노튜브의 전기전도성을 유지할 수 있는 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물을 얻을 수 있다.In addition, even if the oxidation process is performed to improve the dispersibility of the carbon nanotubes, the shape of the carbon nanotubes can be restored through the reduction process, so that the structure is restored by the reduction, which can maintain the electrical conductivity of the carbon nanotubes. It is possible to obtain a carbon nanotube reduction product.
도 1은 본 발명의 실시예에 따른 탄소나노튜브 조성물 제조방법의 순서도이고,1 is a flow chart of a carbon nanotube composition manufacturing method according to an embodiment of the present invention,
도 2는 본 발명의 실시예에 따른 산화 탄소나노튜브 환원물 제조방법의 순서도이고,Figure 2 is a flow chart of the carbon nanotube reduction product manufacturing method according to an embodiment of the present invention,
도 3은 실시예 1의 용매에 따른 산화 탄소나노튜브의 분산 상태를 나타낸 사진이고,3 is a photograph showing a dispersion state of carbon nanotubes according to the solvent of Example 1,
도 4는 실시예 1의 산화 탄소나노튜브의 농도에 따른 가시광선 영역 흡수도를 나타낸 그래프이다.4 is a graph showing absorbance of visible light region according to the concentration of carbon nanotubes of Example 1. FIG.
도 5는 산화처리 전 및 후의 탄소나노튜브 SEM 사진이고,5 is a SEM photograph of carbon nanotubes before and after oxidation;
도 6은 산화처리 전 및 후의 탄소나노튜브 X-선 광전자 분광기 분석 결과 그래프이고,6 is a graph of carbon nanotube X-ray photoelectron spectroscopy analysis results before and after oxidation treatment,
도 7은 실시예 2의 산화 탄소나노튜브의 라만 분광기 분석 결과 그래프이고,7 is a graph of Raman spectroscopy analysis results of carbon nanotubes of Example 2,
도 8은 산화 탄소나노튜브의 환원 전 및 후의 전기전도도 결과 그래프이고,8 is a graph showing the results of electrical conductivity before and after reduction of carbon nanotubes,
도 9는 비교예 1의 산화 탄소나노튜브의 라만 분광기 분석 결과 그래프이다.9 is a graph showing Raman spectroscopy analysis results of carbon nanotubes of Comparative Example 1.
이하 본 발명의 실시예에 따른 탄소나노튜브 조성물, 탄소나노튜브 조성물 제조방법, 산화 탄소나노튜브 환원물 및 산화 탄소나노튜브 환원물 제조방법을 도면을 통해 상세히 설명한다.Hereinafter, a carbon nanotube composition, a carbon nanotube composition manufacturing method, a carbon nanotube reduction product, and a carbon nanotube reduction product manufacturing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
여기서 분산제 없이 알코올에 분산된 탄소나노튜브 조성물은 코팅용 또는 인쇄용으로 사용 가능한 잉크(ink) 또는 페이스트(paste)를 의미하며, 잉크 또는 페이스트는 알코올에 첨가되는 탄소나노튜브의 비율에 따라 점도가 조절되어 낮은 점도의 조성물을 잉크로 사용되고 높은 점도의 조성물을 페이스트로 사용될 수 있다.Here, the carbon nanotube composition dispersed in alcohol without a dispersant means an ink or paste that can be used for coating or printing, and the ink or paste has a viscosity adjusted according to the proportion of carbon nanotubes added to the alcohol. A low viscosity composition can be used as an ink and a high viscosity composition can be used as a paste.
이와 같은 분산제 없이 알코올에 분산된 탄소나노튜브 조성물을 제조방법은 도 1에 도시된 바와 같이 먼저, 산처리를 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성한다(S1a).In the method for preparing a carbon nanotube composition dispersed in an alcohol without such a dispersant, first, as shown in FIG. 1, carbon nanotubes are oxidized through acid treatment to form carbon nanotubes (S1a).
단일벽, 이중벽 또는 다중벽으로 이루어진 탄소나노튜브를 산처리를 통해 산화한 후, 수용액의 반복 세척과정과 원심분리기를 이용하여 불순물을 제거함으로 인해 산화 탄소나노튜브를 형성한다. 산처리를 수행하게 되면 탄소나노튜브의 이중결합이 깨어져 본래의 탄소구조체가 훼손된 상태로 존재하게 되며, 훼손된 상태의 산화 탄소나노튜브는 서로 뭉치지 않고 용매 내에 분산이 용이해진다.After oxidation of carbon nanotubes consisting of single wall, double wall or multi-wall through acid treatment, carbon nanotubes are formed by removing impurities by repeated washing of aqueous solution and centrifuge. When the acid treatment is carried out, the double bonds of the carbon nanotubes are broken and the original carbon structures are present in a damaged state. The carbon nanotubes in the damaged state are easily agglomerated and dispersed in a solvent.
산처리는 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 등과 같은 강산과 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 등의 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하여 탄소나노튜브를 산화시킨다. 여기서 산화제는 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가하는 것이 바람직하다. 산화제가 0.5중량비 미만일 경우 탄소나노튜브가 충분히 산화되지 못하며, 10중량비를 초과할 경우 산화되는 정도가 과하여 탄소나노튜브의 전기전도도가 급격히 감소한다는 단점이 있다.Acid treatment is performed on carbon nanotubes with strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide. (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ) and the like are added and stirred at room temperature for 30 minutes to a week, or left to kneaded and carbon nano Oxidize the tube. Here, the oxidizing agent is preferably added in a ratio of 0.5 to 10% by weight based on the weight of the carbon nanotubes. If the oxidizing agent is less than 0.5 weight ratio, the carbon nanotubes are not sufficiently oxidized. If the oxidizing agent is more than 10 weight ratio, the degree of oxidation is excessive, so that the electrical conductivity of the carbon nanotubes is rapidly decreased.
탄소나노튜브의 교반 또는 반죽은 첨가되는 강산의 양에 따라서 선택 가능하나 서로 뭉침이 심한 탄소나노튜브의 특성상 강산과 함께 반죽하여 방치하는 방법이 가장 바람직하다. 그 다음 증류수를 사용하여 강산을 중화시킨 후 필터링(filtering) 또는 원심분리를 통한 세척(washing)을 반복하고, 건조를 통해 강산이 표면에 남지 않은 순수한 산화 탄소나노튜브를 얻게 된다.Stirring or kneading of carbon nanotubes can be selected according to the amount of strong acid added. However, the method of kneading with strong acid is most preferred due to the characteristics of carbon nanotubes that are strongly agglomerated. Then, the strong acid is neutralized with distilled water, followed by repeated washing with filtering or centrifugation, and drying yields pure carbon nanotubes without strong acid remaining on the surface.
탄소나노튜브를 반죽하여 방치하는 방법은, 탄소나노튜브와 산화제를 각각 준비하고 이를 혼합하여 혼합 분말을 형성한다. 이때 탄소나노튜브와 산화제를 각각이 분말 상태로 존재하기 때문에 이를 혼합하여 혼합 분말을 형성하여도 서로 반응이 되지 않는다. 그 다음 형성된 혼합 분말에 강산을 소량씩 나누어 첨가하면서 반죽한다. 즉 혼합 분말에 강산을 소량 첨가한 후 반죽하고, 다시 강산을 소량 첨가한 후 반죽하는 과정을 반복한다. 반죽의 편의성을 위해 강산은 2 내지 5번 정도 소량씩 나누어 첨가하는 것이 바람직하다. 마지막으로 반죽물을 방치하여 산화탄소나노튜브를 형성한다. 혼합 분말에 강산을 첨가한 후 반죽시킨 흐름성이 없는 반죽물을 1 내지 10시간 동안 방치하여 반죽물 내의 탄소나노튜브를 산화시켜 산화탄소나노튜브를 형성한다. 형성된 반죽물을 별도의 처리를 하지 않고 그대로 방치하여도 반죽물 내의 탄소나노튜브가 산화되어 산화탄소나노튜브를 얻을 수 있다. 이후 잔여하는 산화제 및 강산을 정제하는 과정을 추가로 거칠 수도 있다.In the method of kneading the carbon nanotubes, the carbon nanotubes and the oxidizing agent are respectively prepared and mixed to form a mixed powder. At this time, since the carbon nanotubes and the oxidizing agent are present in powder form, they do not react with each other even if they are mixed to form a mixed powder. Then kneading while adding a small amount of strong acid to the mixed powder formed. That is, a small amount of strong acid is added to the mixed powder, followed by kneading, and a small amount of strong acid is added thereto, followed by kneading. For ease of kneading the strong acid is preferably added in small portions of about 2 to 5 times. Finally, the dough is left to form carbon nanotubes. After adding strong acid to the mixed powder, the kneaded non-flowable dough is left for 1 to 10 hours to oxidize carbon nanotubes in the dough to form carbon nanotubes. Even if the formed dough is left as it is without further treatment, carbon nanotubes in the dough may be oxidized to obtain carbon nanotubes. The process of purifying the remaining oxidant and strong acid may then be further subjected.
강산의 양은 탄소나노튜브의 중량 대비 0.5 내지 7중량비로 첨가된다. 즉 탄소나노튜브 : 강산 = 1 : 0.5 내지 7 중량비로 첨가된다. 만약 강산의 양이 0.5중량비 미만일 경우 반죽하는 데 많은 시간이 소모되고 산화제가 산에 녹지 않아 탄소나노튜브가 전량 산화되지 않고 일부가 잔존하게 되어 산화 효율이 저하된다. 또한 7중량비를 초과하도록 강산이 첨가될 경우 반응이 과하게 일어나 고온 발열에 의해 탄소나노튜브가 손상되고 안전상의 문제가 발생할 수 있다.The amount of strong acid is added in a weight ratio of 0.5 to 7% by weight of the carbon nanotubes. That is, carbon nanotubes: strong acids = 1: 0.5 to 7 is added in a weight ratio. If the amount of strong acid is less than 0.5% by weight, a lot of time is spent kneading and the oxidizing agent is not dissolved in the acid, so that the carbon nanotubes are not completely oxidized and some remain. In addition, when a strong acid is added in excess of 7% by weight, the reaction is excessive, the carbon nanotubes may be damaged by high temperature heat generation, and safety problems may occur.
또한 소량씩 나누어 첨가되는 강산은 탄소나노튜브 중량 대비 0.1 내지 0.5중량비로 혼합 분말에 첨가하면서 반죽하는 것이 바람직하다. 여기서 강산이 0.1중량비 미만으로 첨가되면서 반죽이 이루어질 경우 반죽하는 데 많은 시간이 소모되며, 0.5중량비를 초과하도록 강산이 첨가될 경우 반응이 과하게 일어나 고온 발열에 의해 탄소나노튜브가 손상될 수 있다.In addition, the strong acid added in small portions is preferably kneaded while adding to the mixed powder in a ratio of 0.1 to 0.5% by weight based on the carbon nanotube weight. Here, when the kneading is made while the strong acid is added in less than 0.1 weight ratio, a lot of time is consumed when kneading, and when the strong acid is added in excess of 0.5 weight ratio, the reaction may occur excessively and the carbon nanotubes may be damaged by high temperature heating.
여기서 산처리는 일반적으로 사용하는 스타우덴마이어법(L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), 험머스법(W. Hummers 외 1명, J.Am. Chem. Soc., 80, 1339, 1958)이 아닌 브로디법(B. C. Brodie Ann. Chim. Phys., 59, 466-472, 1860)이나 이의 변형된 방법을 사용한다. 스타우덴마이어법, 험머스법 및 이의 수정된 산화법은 주로 흑연을 산화시켜 산화흑연을 제조하거나 산화흑연을 박리시켜 산화그래핀을 제조하는 방법으로 사용되어져 왔다. Here, the acid treatment is generally used by the Staudenmaier method (L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), the Hummus method (W. Hummers et al., J. Am. Chem) Soc., 80, 1339, 1958) or the Brodie method (BC Brodie Ann. Chim. Phys., 59, 466-472, 1860) or variations thereof. The Steudenmeier method, the Hummus method and its modified oxidation method have been mainly used to prepare graphite oxide by oxidizing graphite or to produce graphene oxide by peeling graphite oxide.
이러한 산화법은 산화작용기를 도입시킬 뿐만 아니라 강한 산화력에 의해 육각형 모양의 탄소구조체가 깨지는 표면 결함이 동시에 형성되어 환원 후에도 육각형의 탄소구조체로 회복되지 않는 단점을 지니고 있다. 따라서, 이러한 방법으로 산화 탄소나노튜브를 제조할 경우 산화 탄소나노튜브의 분산성이 우수하다는 장점이 있으나, 분산성이 우수한 대신에 산화작용기를 많이 포함하고 구조적 결함이 형성되어 산화 탄소나노튜브의 품질이 떨어진다는 단점이 있다. 뿐만 아니라 이후의 단계에서 산화탄소나노튜브를 환원하게 되는데 환원 과정에서 산화작용기와 결함구조가 탄소나노튜브를 튜브 형상으로 재배치되는 데 방해하는 역할을 하기 때문에 스타우덴마이어법 또는 험머스법을 본 발명에 적용하는 데에는 무리가 있다. 이에 비해 브로디법의 경우 제조된 산화 탄소나노튜브가 육각형 구조가 그대로 유지되어 고순도, 저결함으로 품질이 우수하다는 장점이 있으며, 이후의 단계에서 환원될 경우 원활하게 환원이 이루어져 산화 탄소나노튜브가 산화에 의해 튜브 형상이 변형된 것을 복구할 수 있다는 장점이 있다. 따라서 본 발명에서는 일반적으로 사용하는 스타우덴마이어법 또는 험머스법이 아닌 브로디법을 이용하여 산화 탄소나노튜브를 제조한다.This oxidation method not only introduces an oxidizing functional group, but also has a disadvantage that surface defects in which the hexagonal carbon structure is broken due to strong oxidizing power are simultaneously formed and are not recovered to the hexagonal carbon structure even after reduction. Therefore, when manufacturing carbon nanotubes by this method, there is an advantage in that the carbon nanotubes have excellent dispersibility, but instead of excellent dispersibility, it contains many oxidizing groups and structural defects are formed, thereby improving the quality of carbon nanotubes. This has the disadvantage of falling. In addition, carbon nanotubes are reduced in a later step. In the process, the oxidation functional group and the defect structure interfere with the rearrangement of the carbon nanotubes in the shape of a tube. There is no way to apply it. On the other hand, in the case of brody method, the manufactured carbon nanotube has the advantage that the hexagonal structure is maintained as it is, and thus the quality is excellent due to high purity and low defects. When the carbon nanotube is reduced in a subsequent step, the carbon nanotube is oxidized smoothly. There is an advantage that it is possible to recover the deformation of the tube shape by. Therefore, in the present invention, carbon nanotubes are manufactured by using a brody method rather than a commonly used studenmeier method or a hummus method.
산화 탄소나노튜브를 알코올에 분산시켜 탄소나노튜브 조성물을 얻는다(S2a).The carbon nanotubes are dispersed in alcohol to obtain a carbon nanotube composition (S2a).
S1a 단계를 통해 제조된 산화 탄소나노튜브를 유해성이 적으며 환경 친화도가 높은 알코올에 분산시켜 코팅 또는 인쇄가 가능한 탄소나노튜브 조성물을 얻는다. 일반적인 탄소나노튜브의 경우 알코올에 분산되지 않아 분산제를 따로 사용하거나 디메틸포름아마이드(dimethyl formamide) 또는 N-메틸-2-피롤리돈(N-methyl-2-pyrollidone) 등과 같은 유해성 용매에 혼합시켜 조성물을 얻었다. 하지만 분산제를 사용할 경우 제조 비용이 증가할 뿐 아니라 그만큼 탄소나노튜브의 함량이 줄어들어 전기전도도를 유지할 수 없다는 단점이 있었다. 또한 디메틸포름아마이드 또는 N-메틸-2-피롤리돈의 경우 신체에 해로울 뿐 아니라 환경에 악영향을 끼치는 용매이기 때문에 이를 코팅 또는 인쇄가 가능한 탄소나노튜브 조성물에 적용하기는 바람직하지 않다는 문제점이 있었다. 하지만 본 발명과 같이 탄소나노튜브가 산화된 상태인 산화 탄소나노튜브는 분산제를 사용하지 않아도 알코올에 분산이 용이하다.The carbon nanotubes prepared through the step S1a are dispersed in alcohols having low harmfulness and high environmental friendliness, thereby obtaining a carbon nanotube composition which may be coated or printed. In the case of general carbon nanotubes, it is not dispersed in alcohol, so that a dispersant may be used separately or mixed with a harmful solvent such as dimethyl formamide or N-methyl-2-pyrollidone. Got. However, the use of a dispersant not only increases the manufacturing cost but also reduces the content of carbon nanotubes, so that the electrical conductivity cannot be maintained. In addition, dimethylformamide or N-methyl-2-pyrrolidone has a problem that it is not desirable to apply it to a carbon nanotube composition that can be coated or printed because it is not only harmful to the body but also adversely affects the environment. However, carbon nanotubes in which carbon nanotubes are oxidized as in the present invention can be easily dispersed in alcohol without using a dispersant.
이와 같은 탄소나노튜브 조성물을 이루는 알코올은 1차 알코올, 2차 알코올, 3차 알코올, 알코올 유도체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하며, 예를 들어 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol) 등과 같이 일반적으로 용매로 사용되고 있는 알코올이면 제한 없이 적용 가능하다.The alcohol constituting such a carbon nanotube composition is preferably selected from the group consisting of primary alcohols, secondary alcohols, tertiary alcohols, alcohol derivatives, and mixtures thereof. For example, methyl alcohol, ethyl alcohol ( Any alcohol that is generally used as a solvent, such as ethyl alcohol, isopropyl alcohol, and butyl alcohol, can be applied without limitation.
탄소나노튜브 조성물은 알코올을 용매로 하여 산화 탄소나노튜브가 10 내지 10,000mg/L로 첨가되는 것이 바람직하다. 산화 탄소나노튜브가 10mg/L 미만일 경우 고전기전도성을 나타내기 어려우며, 10,000mg/L를 초과할 경우 점도가 높아져 인쇄용으로 사용하기 적합하지 않게 된다.In the carbon nanotube composition, carbon nanotubes are preferably added in an amount of 10 to 10,000 mg / L using alcohol as a solvent. If the carbon nanotube oxide is less than 10mg / L, it is difficult to show high conductivity, and when the carbon nanotube exceeds 10,000mg / L, the viscosity becomes high, which makes it unsuitable for printing.
탄소나노튜브 조성물은 점도에 따라서 잉크 또는 페이스트로 구분되는데, 점도가 2,000cps 이하의 경우 잉크로 사용될 수 있으며 2,000cps를 초과할 경우 페이스트로 사용될 수 있다.The carbon nanotube composition is classified into ink or paste according to the viscosity, and may be used as an ink when the viscosity is 2,000 cps or less and may be used as a paste when it exceeds 2,000 cps.
이와 같이 제조된 탄소나노튜브 조성물을 코팅용 또는 인쇄용으로 적용하기 위해서는 코팅 또는 패턴을 인쇄한 후 환원한다(S3a).In order to apply the carbon nanotube composition prepared as described above for coating or printing, the coating or pattern is printed and then reduced (S3a).
탄소나노튜브 조성물을 용도에 맞게 잉크 또는 페이스트를 선택하여 코팅하거나 또는 기재에 원하는 패턴으로 인쇄한 후, 이를 환원하는 과정을 거치게 된다. 산화 탄소나노튜브의 경우 튜브 형상이 변형되기 때문에 전기전도성이 매우 낮은 상태로 존재하게 되는데, 환원공정을 통해 산화 탄소나노튜브가 환원되면 이중결합을 복구하여 산화 탄소나노튜브보다 전기전도성이 증가하게 된다. 이와 같이 탄소나노튜브를 환원하는 공정으로는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산(Ascorbic acid), 환원성 유기용매 및 이의 혼합물 등으로 화학적으로 환원하는 방법과 열처리, 플라즈마 처리 등의 건식법에 의한 환원과정이 있다.After the carbon nanotube composition is selected and coated with an ink or a paste, or printed on a substrate with a desired pattern, the carbon nanotube composition may be reduced. In the case of carbon nanotubes, the shape of the tube is deformed, so the electrical conductivity is present in a very low state. When carbon nanotubes are reduced through the reduction process, the double bonds are restored to increase the electrical conductivity than carbon nanotubes. . As such a process for reducing carbon nanotubes, sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid, reducing organic solvents and mixtures thereof, and the method of chemical reduction and the drying process such as heat treatment, plasma treatment.
다음으로 산화 탄소나노튜브 환원물은 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물에 해당하며, 이는 강산을 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하고, 상기 산화탄소나노튜브를 환원하여 얻어진다. Next, the carbon nanotube reduction product is a carbon nanotube reduction product having a high electroconductivity by restoring its structure by reduction, which oxidizes carbon nanotubes through a strong acid to form carbon nanotube oxides, and the oxidation It is obtained by reducing carbon nanotubes.
이와 같은 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 제조방법으로는 도 2에 도시된 바와 같이 먼저, 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성한다(S1b).The structure is restored by such a reduction, and as a method for producing a carbon nanooxide reduced product having high electroconductivity, as shown in FIG. 2, first, the carbon nanotubes are oxidized to form carbon nanotubes (S1b).
단일벽, 이중벽 또는 다중벽으로 이루어진 탄소나노튜브를 산처리를 통해 산화한 후, 수용액의 반복 세척과정과 원심분리기를 이용하여 불순물을 제거함으로 인해 산화 탄소나노튜브를 형성한다. 산처리는 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 등과 같은 강산과 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 등의 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하여 탄소나노튜브를 산화시킨다. 여기서 산화제는 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가하는 것이 바람직하다. 산화제가 0.5중량비 미만일 경우 탄소나노튜브가 충분히 산화되지 못하며, 10중량비를 초과할 경우 산화되는 정도가 과하여 탄소나노튜브의 전기전도도가 급격히 감소한다는 단점이 있다.After oxidation of carbon nanotubes consisting of single wall, double wall or multi-wall through acid treatment, carbon nanotubes are formed by removing impurities by repeated washing of aqueous solution and centrifuge. Acid treatment is performed on carbon nanotubes with strong acids and sodium chlorates such as fuming nitric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and hydrogen peroxide. (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ) and the like are added and stirred at room temperature for 30 minutes to a week, or left to kneaded and carbon nano Oxidize the tube. Here, the oxidizing agent is preferably added in a ratio of 0.5 to 10% by weight based on the weight of the carbon nanotubes. If the oxidizing agent is less than 0.5 weight ratio, the carbon nanotubes are not sufficiently oxidized. If the oxidizing agent is more than 10 weight ratio, the degree of oxidation is excessive, so that the electrical conductivity of the carbon nanotubes is rapidly decreased.
탄소나노튜브의 교반 또는 반죽은 첨가되는 강산의 양에 따라서 선택 가능하나 서로 뭉침이 심한 탄소나노튜브의 특성상 강산과 함께 반죽하여 방치하는 방법이 가장 바람직하다. 그 다음 증류수를 사용하여 강산을 중화시킨 후 필터링(filtering) 또는 원심분리를 통한 세척(washing)을 반복하고, 건조를 통해 강산이 표면에 남지 않은 순수한 산화 탄소나노튜브를 얻게 된다.Stirring or kneading of carbon nanotubes can be selected according to the amount of strong acid added. However, the method of kneading with strong acid is most preferred due to the characteristics of carbon nanotubes that are strongly agglomerated. Then, the strong acid is neutralized with distilled water, followed by repeated washing with filtering or centrifugation, and drying yields pure carbon nanotubes without strong acid remaining on the surface.
탄소나노튜브를 반죽하여 방치하는 방법은, 탄소나노튜브와 산화제를 각각 준비하고 이를 혼합하여 혼합 분말을 형성한다. 이때 탄소나노튜브와 산화제를 각각이 분말 상태로 존재하기 때문에 이를 혼합하여 혼합 분말을 형성하여도 서로 반응이 되지 않는다. 그 다음 형성된 혼합 분말에 강산을 소량씩 나누어 첨가하면서 반죽한다. 즉 혼합 분말에 강산을 소량 첨가한 후 반죽하고, 다시 강산을 소량 첨가한 후 반죽하는 과정을 반복한다. 반죽의 편의성을 위해 강산은 2 내지 5번 정도 소량씩 나누어 첨가하는 것이 바람직하다. 마지막으로 반죽물을 방치하여 산화탄소나노튜브를 형성한다. 혼합 분말에 강산을 첨가한 후 반죽시킨 흐름성이 없는 반죽물을 1 내지 10시간 동안 방치하여 반죽물 내의 탄소나노튜브를 산화시켜 산화탄소나노튜브를 형성한다. 형성된 반죽물을 별도의 처리를 하지 않고 그대로 방치하여도 반죽물 내의 탄소나노튜브가 산화되어 산화탄소나노튜브를 얻을 수 있다. 이후 잔여하는 산화제 및 강산을 정제하는 과정을 추가로 거칠 수도 있다.In the method of kneading the carbon nanotubes, the carbon nanotubes and the oxidizing agent are respectively prepared and mixed to form a mixed powder. At this time, since the carbon nanotubes and the oxidizing agent are present in powder form, they do not react with each other even if they are mixed to form a mixed powder. Then kneading while adding a small amount of strong acid to the mixed powder formed. That is, a small amount of strong acid is added to the mixed powder, followed by kneading, and a small amount of strong acid is added thereto, followed by kneading. For ease of kneading the strong acid is preferably added in small portions of about 2 to 5 times. Finally, the dough is left to form carbon nanotubes. After adding strong acid to the mixed powder, the kneaded non-flowable dough is left for 1 to 10 hours to oxidize carbon nanotubes in the dough to form carbon nanotubes. Even if the formed dough is left as it is without further treatment, carbon nanotubes in the dough may be oxidized to obtain carbon nanotubes. The process of purifying the remaining oxidant and strong acid may then be further subjected.
강산의 양은 탄소나노튜브의 중량 대비 0.5 내지 7중량비로 첨가된다. 즉 탄소나노튜브 : 강산 = 1 : 0.5 내지 7 중량비로 첨가된다. 만약 강산의 양이 0.5중량비 미만일 경우 반죽하는 데 많은 시간이 소모되고 산화제가 산에 녹지 않아 탄소나노튜브가 전량 산화되지 않고 일부가 잔존하게 되어 산화 효율이 저하된다. 또한 7중량비를 초과하도록 강산이 첨가될 경우 반응이 과하게 일어나 고온 발열에 의해 탄소나노튜브가 손상되고 안전상의 문제가 발생할 수 있다.The amount of strong acid is added in a weight ratio of 0.5 to 7% by weight of the carbon nanotubes. That is, carbon nanotubes: strong acids = 1: 0.5 to 7 is added in a weight ratio. If the amount of strong acid is less than 0.5% by weight, a lot of time is spent kneading and the oxidizing agent is not dissolved in the acid, so that the carbon nanotubes are not completely oxidized and some remain. In addition, when a strong acid is added in excess of 7% by weight, the reaction is excessive, the carbon nanotubes may be damaged by high temperature heat generation, and safety problems may occur.
또한 소량씩 나누어 첨가되는 강산은 탄소나노튜브 중량 대비 0.1 내지 0.5중량비로 혼합 분말에 첨가하면서 반죽하는 것이 바람직하다. 여기서 강산이 0.1중량비 미만으로 첨가되면서 반죽이 이루어질 경우 반죽하는 데 많은 시간이 소모되며, 0.5중량비를 초과하도록 강산이 첨가될 경우 반응이 과하게 일어나 고온 발열에 의해 탄소나노튜브가 손상될 수 있다.In addition, the strong acid added in small portions is preferably kneaded while adding to the mixed powder in a ratio of 0.1 to 0.5% by weight based on the carbon nanotube weight. Here, when the kneading is made while the strong acid is added in less than 0.1 weight ratio, a lot of time is consumed when kneading, and when the strong acid is added in excess of 0.5 weight ratio, the reaction may occur excessively and the carbon nanotubes may be damaged by high temperature heating.
여기서 산처리는 일반적으로 사용하는 스타우덴마이어법(L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), 험머스법(W. Hummers 외 1명, J. Am. Chem. Soc., 80, 1339, 1958)이 아닌 브로디법(B. C. Brodie Ann. Chim. Phys., 59, 466-472, 1860)이나 이의 변형된 방법을 사용한다. 스타우덴마이어법, 험머스법 및 이의 수정된 산화법은 주로 흑연을 산화시켜 산화흑연을 제조하거나 산화흑연을 박리시켜 산화그래핀을 제조하는 방법으로 사용되어져 왔다. 이러한 산화법은 산화작용기를 도입시킬 뿐만 아니라 강한 산화력에 의해 육각형 모양의 탄소구조체가 깨지는 표면 결함이 동시에 형성되어 환원 후에도 육각형의 탄소구조체로 회복되지 않는 단점을 지니고 있다. 따라서, 이러한 방법으로 산화 탄소나노튜브를 제조할 경우 산화 탄소나노튜브의 분산성이 우수하다는 장점이 있으나, 분산성이 우수한 대신에 산화작용기를 많이 포함하고 구조적 결함이 형성되어 산화 탄소나노튜브의 품질이 떨어진다는 단점이 있다. 뿐만 아니라 이후의 단계에서 산화 탄소나노튜브를 환원하게 되는데 환원 과정에서 산화작용기와 결함구조가 탄소나노튜브를 튜브 형상으로 재배치되는 데 방해하는 역할을 하기 때문에 스타우덴마이어법 또는 험머스법을 본 발명에 적용하는 데에는 무리가 있다. 이에 비해 브로디법의 경우 제조된 산화 탄소나노튜브가 육각형 구조가 그대로 유지되어 고순도, 저결함으로 품질이 우수하다는 장점이 있으며, 이후의 단계에서 환원될 경우 원활하게 환원이 이루어져 산화 탄소나노튜브가 산화에 의해 튜브 형상이 변형된 것을 복구할 수 있다는 장점이 있다. 따라서 본 발명에서는 일반적으로 사용하는 스타우덴마이어법 또는 험머스법이 아닌 브로디법을 이용하여 산화 탄소나노튜브를 제조한다.Here, the acid treatment is generally used by the Staudenmaier method (L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), the Hummus method (W. Hummers et al., J. Am. Chem) Soc., 80, 1339, 1958) or the Brodie method (BC Brodie Ann. Chim. Phys., 59, 466-472, 1860) or variations thereof. The Steudenmeier method, the Hummus method and its modified oxidation method have been mainly used to prepare graphite oxide by oxidizing graphite or to produce graphene oxide by peeling graphite oxide. This oxidation method not only introduces an oxidizing functional group, but also has a disadvantage that surface defects in which the hexagonal carbon structure is broken due to strong oxidizing power are simultaneously formed and are not recovered to the hexagonal carbon structure even after reduction. Therefore, when manufacturing carbon nanotubes by this method, there is an advantage in that the carbon nanotubes have excellent dispersibility, but instead of excellent dispersibility, it contains many oxidizing groups and structural defects are formed, thereby improving the quality of carbon nanotubes. This has the disadvantage of falling. In addition, carbon nanotubes are reduced in a later step. In the process, the oxidation functional group and the defect structure interfere with the rearrangement of the carbon nanotubes into a tube shape. There is no way to apply it. On the other hand, in the case of brody method, the manufactured carbon nanotube has the advantage that the hexagonal structure is maintained as it is, and thus the quality is excellent due to high purity and low defects. When the carbon nanotube is reduced in a subsequent step, the carbon nanotube is oxidized. There is an advantage that it is possible to recover the deformation of the tube shape by. Therefore, in the present invention, carbon nanotubes are manufactured by using a brody method rather than a commonly used studenmeier method or a hummus method.
산화 탄소나노튜브를 환원시켜 산화 탄소나노튜브 환원물을 얻는다(S2b).Reduction of carbon nanotubes results in reduction of carbon nanotubes (S2b).
S1b 단계를 통해 제조된 산화 탄소나노튜브를 용매에 분산시킨 후 여기에 환원제를 첨가하여 습식 공정을 통해 환원시킴으로써 산화 탄소나노튜브 환원물을 얻는다. 여기서 환원제는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 수산화붕소나트륨(NaBH4), 히드라진(N2H4), 아이오딘수소산(HI), 아스코빅산(ascorbic acid), 환원성 용매, 환원성 유기물 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.The carbon nanotubes prepared by the step S1b are dispersed in a solvent, and thereafter, a reducing agent is added thereto to be reduced by a wet process to obtain a carbon nanotube reduced product. The reducing agent here is sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium boron hydroxide (NaBH 4 ), hydrazine (N 2 H 4 ), iodine hydrochloric acid (HI), ascorbic acid (ascorbic) acid), a reducing solvent, a reducing organic material and a mixture thereof.
또한 산화 탄소나노튜브의 환원이 이루어지는 용매는 아세톤(acetone), 메틸에틸케톤(methyl ethyl ketone), 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol), 에틸렌글리콜(ethylene glycol), 폴리에틸렌글리콜(polyethylene glycol), 테트라하이드로퓨란(tetrahydrofuran), 테트라하이드로피란(tetrahydropyran) 디메틸포름아마이드(dimethyl formamide), 디메틸아세트아마이드(dimethyl acetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrolidone), 헥산(hexane), 사이클로헥사논(cycolhexanone), 톨루엔(toluene), 클로로폼(cloroform), 디클로로벤젠(dichlorobenzene), 디메틸벤젠(dimethyl benzene), 트리메틸벤젠(trimethyl benzene), 피리딘(pyridine), 메틸나프탈렌(methyl naphthalene), 니트로메탄(nitromethane), 아크릴로니트릴(acrylonitrile), 옥타데실아민(octadecylamine), 아닐린(aniline), 디메틸설폭사이드(dimethyl sulfoxide), 증류수 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.In addition, the solvent in which carbon nanotubes are reduced is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol ( butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, tetrahydropyran dimethyl formamide, dimethyl acetamide, N-methyl -2-pyrrolidone (N-methyl-2-pyrolidone), hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethyl benzene ), Trimethyl benzene, pyridine, methyl naphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide Id (dimethyl sulfoxide), preferably selected from the group consisting of distilled water and the mixture thereof.
이하에서는 본 발명의 실시예를 좀 더 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in more detail.
<실시예 1> : 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법<Example 1>: method for producing carbon nanotube composition dispersed in alcohol without dispersant
먼저, 단일벽 탄소나노튜브 1g과 염소산나트륨(sodium chlorate, NaClO3) 5g을 파우더 상태에서 혼합하고, 여기에 농질산(fuming nitric acid) 100mL를 혼합하여 반죽상태로 만든 후, 제조된 혼합물을 상온에서 1 내지 48시간 정도 동안 그대로 방치하거나 밀링 (milling), 반죽 (kneading) 등의 방법으로 전단응력을 가하는 개조된 브로디법을 이용한 산화반응을 진행시킨다. 그 후 증류수, 염산, 과산화수소를 사용하여 탄소나노튜브의 중화과정을 수행한 후 세척, 여과 및 건조 과정을 통해 산 및 산화제를 제거하여 산화된 탄소나노튜브를 얻는다. 필요에 따라서는 동결건조기를 이용한 건조 과정을 수행하여 산화 탄소나노튜브 파우더를 수득한다.First, 1 g of single-walled carbon nanotubes and 5 g of sodium chlorate (NaClO 3 ) are mixed in a powder state, and 100 mL of fuming nitric acid is mixed therein to make a dough, and then the prepared mixture is prepared at room temperature. Oxidation reaction is carried out using an altered brody method that is left as it is for 1 to 48 hours or is subjected to shear stress by milling, kneading, or the like. Thereafter, carbon nanotubes are neutralized using distilled water, hydrochloric acid, and hydrogen peroxide, followed by washing, filtration, and drying to remove acids and oxidants to obtain oxidized carbon nanotubes. If necessary, carbon nanotube powder is obtained by performing a drying process using a freeze dryer.
제조된 산화 탄소나노튜브를 도 3에서와 같이 물, 디메틸포름아마이드(dimethyl formamide) 뿐만 아니라, 부틸알콜(butyl alcohol), 이소프로필알콜(isopropyl alcohol)과 같이 알콜성 유기용매에 30 내지 300mg/L의 농도로 각각 산화 탄소나노튜브를 첨가하고 이를 초음파 분산기를 이용하여 분산시켰다. 탄소나노튜브의 경우 디메틸포름아마이드 또는 N-메틸-2-피롤리돈에는 원래 분산이 되지만 물, 부틸알콜, 이소프로필알콜에는 분산되지 않는다. 하지만 본 발명과 같이 탄소나노튜브가 산화된 상태에서 분산시킬 경우 분산이 용이하게 이루어진다. The carbon nanotubes prepared are 30 to 300 mg / L in alcoholic organic solvents such as butyl alcohol and isopropyl alcohol, as well as water and dimethyl formamide as shown in FIG. 3. Carbon nanotubes were added at the concentration of and dispersed using an ultrasonic disperser. In the case of carbon nanotubes, they are originally dispersed in dimethylformamide or N-methyl-2-pyrrolidone, but not in water, butyl alcohol or isopropyl alcohol. However, when the carbon nanotubes are dispersed in an oxidized state as in the present invention, dispersion is easily performed.
이는 도 4을 통해 더욱 명확하게 알 수 있는데, 도 4는 가시광선영역(550nm 파장)에서 산화 탄소나노튜브 농도에 따른 흡수도를 나타낸 그래프이다. 흡수도가 산화 탄소나노튜브의 농도가 증가함에 따라 선형을 보이는 것은 농도가 증가하더라도 분산상태가 유지되는 것을 나타낸다. 즉 디메틸포름아마이드 뿐 아니라 물, 부틸알콜, 이소프로필알콜 등의 알콜성 유기용매에서도 산화 탄소나노튜브가 제대로 분산된 것을 알 수 있다. 따라서 본 실시예를 통해 제조된 산화 탄소나노튜브는 알코올 이외에 기본적으로 물, 디메틸포름아미드, N-메틸피롤리돈 등 극성용매에서도 대체로 양호한 분산상태를 보이는 것을 알 수 있다. 또한 300mg/L 이상 10,000mg/L 이하의 농도에서도 분산이 이루어지며, 용도에 맞는 점도에 따라 선택적으로 이용할 수 있다. 흐름성이 전혀 없는 용도로 활용할 경우 그 이상의 농도에서도 활용이 가능하다.This can be seen more clearly through FIG. 4, which is a graph showing absorbance according to carbon nanotube concentration in the visible light region (550 nm wavelength). Absorption is linear as the concentration of carbon nanotubes increases, indicating that the dispersion state is maintained even when the concentration increases. That is, it can be seen that carbon nanotubes are properly dispersed in alcoholic organic solvents such as water, butyl alcohol and isopropyl alcohol as well as dimethylformamide. Therefore, it can be seen that the carbon nanotubes prepared through the present examples generally have a good dispersion state in polar solvents such as water, dimethylformamide and N-methylpyrrolidone in addition to alcohol. In addition, the dispersion is made even at a concentration of 300mg / L or more than 10,000mg / L, can be selectively used depending on the viscosity to suit the purpose. If it is used for applications that have no flow, it can be used at higher concentrations.
이러한 탄소나노튜브 조성물을 이용하여 기재에 패턴을 인쇄한 후 패턴을 환원시키는 과정을 거쳐 탄소나노튜브가 골고루 분산된 패턴의 기재를 얻을 수 있게 된다. 여기서 패턴 인쇄는 잉크젯, 3D 프린팅, 그라비아, 그라비아 오프셋, 리버스 그라비아 오프셋와 같은 직접인쇄 공정이 가능하며 스프레이 코팅, 바코팅, 나이프 코팅, 슬롯다이 코팅과 같은 코팅법에 의해 전면코팅을 하여 기재에 도포가 가능하다. 인쇄 또는 코팅 후 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산(Ascorbic acid), 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택된 화합물을 이용하여 화학적으로 환원하는 방법과 열처리, 플라즈마 처리 등의 건식법에 의한 환원과정을 사용할 수 있다. 구체적인 예로는 100mg/L 단일벽 탄소나노튜브 잉크로 플라스틱 기재에 스프레이 코팅하여 박막을 형성한 후에 히드라진 증기를 이용하여 탄소나노튜브를 환원하였다.After printing the pattern on the substrate using the carbon nanotube composition, the pattern of the carbon nanotubes is evenly dispersed through the process of reducing the pattern. Here, pattern printing is possible by direct printing process such as inkjet, 3D printing, gravure, gravure offset, reverse gravure offset, and applied to the substrate by front coating by coating method such as spray coating, bar coating, knife coating and slot die coating. It is possible. After printing or coating sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid ( Ascorbic acid), a reducing organic solvent and a compound selected from the group consisting of a mixture of the method of chemical reduction and the reduction process by a dry method such as heat treatment, plasma treatment can be used. As a specific example, after forming a thin film by spray coating a plastic substrate with 100mg / L single-walled carbon nanotube ink, carbon nanotubes were reduced by using hydrazine vapor.
<실시예 2> : 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 제조방법<Example 2>: A method for producing a carbon nanotube reduced product having a high electroconductivity by restoring its structure by reduction
단일벽 탄소나노튜브 1g과 염소산나트륨(sodium chlorate, NaClO3) 5g을 파우더 상태에서 혼합하고, 여기에 농질산(fuming nitric acid) 100mL를 혼합하여 혼합물을 제조한다. 제조된 혼합물을 상온에서 24시간 정도 동안 방치하여 브로디법을 이용한 산화반응을 진행시킨다. 그 후 증류수, 염산, 과산화수소를 사용하여 탄소나노튜브의 중화과정을 수행한 후 세척, 여과 및 건조 과정을 통해 산 및 산화제를 제거하여 산화된 탄소나노튜브를 얻는다. 필요에 따라서는 동결건조기를 이용한 건조 과정을 수행하여 산화 탄소나노튜브 파우더를 수득한다.1 g of single-walled carbon nanotubes and 5 g of sodium chlorate (NaClO 3 ) are mixed in a powder state, and 100 mL of fuming nitric acid is mixed therein to prepare a mixture. The prepared mixture is left at room temperature for about 24 hours to proceed the oxidation reaction using brody method. Thereafter, carbon nanotubes are neutralized using distilled water, hydrochloric acid, and hydrogen peroxide, followed by washing, filtration, and drying to remove acids and oxidants to obtain oxidized carbon nanotubes. If necessary, carbon nanotube powder is obtained by performing a drying process using a freeze dryer.
제조된 산화 탄소나노튜브를 물 100mL에 100mg/L로 분산하고, 여기에 히드라진(N2H4) 1mL를 첨가하고 80℃로 승온하여 환원과정을 거쳐 산화 탄소나노튜브 환원물을 제조하거나, 산화 탄소나노튜브 분산액을 여과를 통해 종이형태의 필름을 제조한 후 제조된 필름을 아이오딘수소산(HI)을 이용하여 화학적 환원을 시행하여 최종적으로 산화 탄소나노튜브 환원물을 얻을 수 있다.Disperse the prepared carbon oxide nanotubes at 100mg / L in 100mL of water, add 1mL of hydrazine (N 2 H 4 ) to it, and raise the temperature to 80 ° C. After filtering the carbon nanotube dispersion to produce a paper-like film, the produced film may be subjected to chemical reduction using iodine hydrochloric acid (HI) to finally obtain a carbon nanotube reduction product.
도 5a는 단일벽 탄소나노튜브를 산화처리하기 전의 SEM 사진을 나타낸 것이고, 도 5b는 실시예 2를 통해 산화처리한 산화 탄소나노튜브의 SEM 사진을 나타낸 것이다. 이와 같은 도 5a 및 도 5b를 통해 확인되는 바와 같이 단일벽 탄소나노튜브의 산화처리 후 번들 크기가 감소하는 것을 알 수 있다. 또한 제조된 산화 탄소나노튜브를 X-선 광전자 분광기(X-ray photoelectron spectroscopy), 라만 분광기(Raman spectroscopy)를 이용하여 산화정도를 확인하였다. 도 6a의 산화처리 전 탄소나노튜브 및 도 6b의 산화처리 후 탄소나노튜브와 같이 X-선 광전자 분광기 분석 결과, 산화에 의해 C-O, C=O 형태의 관능기가 도입되었다는 것을 확인할 수 있었다. 도 7에 도시된 라만 분광기 분석에서도 탄소나노튜브를 산화한 후 결함정도를 나타내는 D 밴드가 크게 증가하였다. 이는 결함이 증가하였거나 산화관능기가 도입되어 이중결합이 단일결합으로 변함에 의해 증가하는 것으로 탄소나노튜브가 산화 탄소나노튜브로 변화되었다는 것을 나타낸다.Figure 5a shows a SEM picture before the oxidation of the single-walled carbon nanotubes, Figure 5b shows a SEM picture of the carbon nanotubes oxidized through Example 2. 5A and 5B, the bundle size decreases after oxidation of the single-walled carbon nanotubes. In addition, the degree of oxidation of the prepared carbon nanotubes was confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy. As a result of X-ray photoelectron spectroscopy analysis like the carbon nanotubes before the oxidation treatment of FIG. 6A and the carbon nanotubes after the oxidation treatment of FIG. 6B, it was confirmed that functional groups of C-O and C = O forms were introduced by oxidation. In the Raman spectroscopy analysis shown in FIG. 7, the D band indicating the degree of defect increased after oxidizing the carbon nanotubes. This indicates that the carbon nanotubes are changed to carbon nanotubes due to an increase in defects or an increase in the introduction of an oxidative functional group to change a double bond into a single bond.
실시예를 통해 제조된 필름에 존재하는 산화 탄소나노튜브의 환원 전 및 환원 후의 전기전도성 측정 결과를 도 8을 통해 확인할 수 있다. 우선 산화 탄소나노튜브를 제조할 때 산화를 위해 첨가된 염소산나트륨과 단일벽 탄소나노튜브의 혼합비(NaClO3/SWCNT ratio)가 증가할수록 산화 탄소나노튜브의 전기전도도(electrical conductivity)가 감소하는 것을 확인할 수 있다. 이는 염소산나트륨의 양이 증가할수록 탄소나노튜브의 이중결합이 단일결합으로 변하고 산화관능기가 도입되었다는 것을 의미한다. 도 8과 같이 산화 탄소나노튜브 환원물은 환원되기 전 산화 탄소나노튜브에 비해 전기전도도가 3배 이상 증가하는 것을 확인할 수 있으며, 도 5 및 도 6과 같이 환원 후 산화 탄소나노튜브는 관능기가 제거되고 결함이 줄어든 것을 확인할 수 있다. 도 7의 산화 탄소나노튜브 환원물의 라만분석결과에서 D 밴드 피크의 강도가 크게 감소하는 것은 화학적으로 산화된 탄소나노튜브가 환원을 통해 구조가 회복된다는 사실을 증명하는 것이다.The results of measuring the electrical conductivity before and after reduction of the carbon nanotubes present in the film prepared through the examples can be confirmed through FIG. 8. First of all, when the carbon nanotubes were prepared, the electrical conductivity of the carbon nanotubes decreased as the mixing ratio (NaClO 3 / SWCNT ratio) of sodium chloride and single-walled carbon nanotubes added for oxidation increased. Can be. This means that as the amount of sodium chlorate increases, double bonds of carbon nanotubes change into single bonds, and oxidative functional groups are introduced. As shown in FIG. 8, the reduced carbon nanotube reduced product has an electrical conductivity that is increased by three times or more compared with the carbon nanotube before reduction, and the functional group is removed after the reduction as illustrated in FIGS. 5 and 6. And the defects are reduced. In the Raman analysis of the carbon nanotube reduced product of FIG. 7, the significant decrease in the intensity of the D-band peak proves that the structure of the chemically oxidized carbon nanotubes is recovered through reduction.
<실시예 3> : 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 제조방법<Example 3>: Method for producing carbon nanotube reduced product having high electroconductivity by reconstructing structure by reduction
실시예 3은 실시예 2와 동일하나 다중벽 탄소나노튜브를 이용하여 동일한 산화 및 환원 과정을 수행하였다. 단일벽 탄소나노튜브처럼 산화 다중벽 탄소나노튜브를 화학적으로 환원한 결과 산화관능기에 의한 결함구조가 이중결합으로 회복되어 전기전도도가 향상됨을 확인하였다.Example 3 is the same as Example 2, but the same oxidation and reduction process was performed using multi-walled carbon nanotubes. As a result of chemically reducing the oxidized multi-walled carbon nanotubes like single-walled carbon nanotubes, it was confirmed that the defect structure of the oxidative functional group was recovered to a double bond, thereby improving the electrical conductivity.
<실시예 4> : 반죽을 이용한 산화 탄소나노튜브 제조방법<Example 4>: method for producing carbon nanotubes using dough
탄소나노튜브 2g과 산화제인 염소산나트륨 15g을 분말상태에서 혼합한 후, 혼합 분말에 농질산을 소량씩 여러 번 첨가하면서 총 10ml를 첨가한다. 이때 혼합 분말에 농질산을 첨가하면서 혼합 분말을 반죽하듯이 버무려준다. 이런 과정은 실시예 1 내지 3은 흐름성이 있는 슬러리로 제조되었으나, 본 실시예의 경우 슬러리와는 달리 밀가루 반죽처럼 흐름성이 거의 없어 교반이 불가능하고 반죽을 통해 혼합이 가능한 상태이다.After mixing 2g of carbon nanotubes and 15g of sodium chlorate as an oxidizing agent in powder form, 10ml of total nitric acid is added to the mixed powder in small portions several times. At this time, while adding the nitric acid to the mixed powder, mix the mixed powder as if kneaded. In this process, Examples 1 to 3 were made of a flowable slurry, but in the case of the present embodiment, unlike the slurry, the flowability is almost impossible, such as a flour dough, so that stirring is impossible and mixing is possible through the dough.
그 다음 버무려진 반죽을 1 내지 10시간 동안 방치하여 산화탄소나노튜브를 형성한다. 이때 산화제가 농질산에 녹으면서 탄소나노튜브 표면에서 국부적인 산화반응이 급속히 진행되어 반응시간을 획기적으로 단축시킬 수 있다.The soaked dough is then left for 1 to 10 hours to form carbon nanotubes. At this time, as the oxidizing agent is dissolved in the concentrated nitric acid, the local oxidation reaction proceeds rapidly on the surface of the carbon nanotubes, which can drastically shorten the reaction time.
반응 종결 후에는 반죽에 과산화수소와 염산을 첨가하여 반죽을 중화시킨 후에 과량의 물을 첨가하여 산을 제거하고, 동결건조를 통해 산화탄소나노튜브 분말을 수득한다. 즉 탄소나노튜브의 표면에 혼합된 산화제와, 소량씩 첨가되는 강산의 순간적인 강한 반응에 의해 빠른 시간 내에 탄소나노튜브의 산화가 진행된다.After completion of the reaction, hydrogen peroxide and hydrochloric acid were added to the dough to neutralize the dough, and then excess water was added to remove the acid, and lyophilized to obtain carbon nanotube powder. That is, the oxidation of carbon nanotubes proceeds quickly by the instant strong reaction between the oxidant mixed on the surface of the carbon nanotubes and the strong acid added in small amounts.
<비교예 1>Comparative Example 1
비교예 1에서는 단일벽 탄소나노튜브를 황산과 과망간산칼륨(KMnO4)을 이용해 산화 단일벽 탄소나노튜브를 제조하였다. 제조된 산화 단일벽 탄소나노튜브를 하이드로아이오딕산을 이용해 환원한 결과 도 9와 같이 라만분석에서 결함을 나타내는 D 밴드가 감소하지 않는 것을 볼 수 있었다. 또한 전기전도도도 소폭의 증가만을 나타내었다. 이는 벌집구조의 탄소나노튜브 구조가 깨져 회복이 되지 않는 결함구조로 변화했다는 것을 나타낸다.In Comparative Example 1, single-walled carbon nanotubes were prepared using sulfuric acid and potassium permanganate (KMnO 4 ). As a result of reducing the prepared single-walled carbon nanotubes using hydroiodic acid, it was found that the D bands showing defects did not decrease in Raman analysis as shown in FIG. 9. In addition, the electrical conductivity showed only a slight increase. This indicates that the honeycomb carbon nanotube structure is broken and changed into a defect structure that cannot be recovered.
<비교예 2>Comparative Example 2
비교예 2에서는 단일벽 탄소나노튜브를 질산 또는 질산/황산 혼합물에서 100 oC 이상으로 승온하여 환류에 의해 산화시키고 화학적으로 환원공정을 진행하였다. 이 경우도 비교예 1과 마찬가지로 라만분석결과 결함을 나타내는 D 밴드가 감소하지 않아, 산화 단일벽 탄소나노튜브가 화학적 환원에 의해 그 구조가 복원되지 않음을 확인하였다. In Comparative Example 2, the single-walled carbon nanotubes were heated to more than 100 ° C. in nitric acid or nitric acid / sulfuric acid mixture, oxidized by reflux, and chemically reduced. Also in this case, as in Comparative Example 1, as a result of Raman analysis, D bands showing defects did not decrease, and it was confirmed that the structure of the single-walled oxide carbon nanotubes was not restored by chemical reduction.
종래기술과 같이 일반적인 탄소나노튜브를 코팅 또는 인쇄할 경우 많은 양이 첨가되면 탄소나노튜브끼리 서로 뭉침이 발생하여 균일한 분산이 어렵다는 단점이 있다. 특히 탄소나노튜브와 함께 사용되는 용매가 알코올을 포함할 경우 특히 분산이 어려워 분산제를 함께 사용하고 있다. 또한 알코올에서는 탄소나노튜브의 분산이 제대로 이루어지지 않기 때문에 디메틸포름아마이드 또는 N-메틸-2-피롤리돈 등과 같이 유해한 용매를 주로 사용하여 탄소나노튜브가 뭉치지 않도록 조성물을 제조하고 있다.When coating or printing general carbon nanotubes as in the prior art, when a large amount is added, the carbon nanotubes are agglomerated with each other, which makes it difficult to uniformly disperse them. In particular, when the solvent used with the carbon nanotubes include alcohol, it is particularly difficult to disperse the dispersant. In addition, since alcohol is not properly dispersed in carbon nanotubes, a composition is prepared to prevent agglomeration of carbon nanotubes using mainly harmful solvents such as dimethylformamide or N-methyl-2-pyrrolidone.
하지만 본 발명에서는 알코올에 분산성이 낮은 탄소나노튜브를 분산제를 사용하지 않고 알코올에서의 분산성을 향상시키기 위해 산화과정을 통해 탄소나노튜브를 처리하여 기재에 인쇄 및 코팅이 용이하며, 환원과정을 통해 탄소나노튜브의 형상이 복원되어 고전기전도성을 띄는 탄소나노튜브를 얻을 수 있다.However, in the present invention, the carbon nanotubes having low dispersibility in alcohol are treated with carbon nanotubes through an oxidation process in order to improve dispersibility in alcohol without using a dispersing agent, and thus printing and coating on the substrate are easily carried out. Through the restoration of the shape of the carbon nanotubes, it is possible to obtain carbon nanotubes having high conductivity.

Claims (20)

  1. 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법에 있어서,In the method for producing a carbon nanotube composition dispersed in alcohol without a dispersant,
    산처리를 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하는 단계와;Oxidizing the carbon nanotubes by acid treatment to form carbon nanotubes;
    상기 산화 탄소나노튜브를 알코올에 분산시켜 탄소나노튜브 조성물을 얻는 단계를 포함하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.Dispersing the carbon nanotubes in alcohol to obtain a carbon nanotube composition, wherein the carbon nanotube composition is dispersed in alcohol without a dispersant.
  2. 제 1항에 있어서,The method of claim 1,
    상기 탄소나노튜브 조성물을 얻는 단계 이후에,After obtaining the carbon nanotube composition,
    상기 탄소나노튜브 조성물을 이용하여 기재에 코팅 또는 패턴 인쇄한 후 환원하는 단계를 더 포함하며,Reducing after coating or pattern printing on the substrate using the carbon nanotube composition,
    상기 환원은 상기 산화탄소나노튜브가 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도성이 증가하는 과정인 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.The reduction is a method of producing a carbon nanotube composition dispersed in an alcohol without a dispersant, characterized in that the carbon nanotubes are a process of increasing the electrical conductivity than the carbon nanotubes by restoring a double bond.
  3. 제 1항에 있어서,The method of claim 1,
    상기 산화 탄소나노튜브를 형성하는 단계는,Forming the carbon oxide nanotubes,
    상기 탄소나노튜브와 산화제를 혼합하여 혼합 분말을 형성하고, 상기 혼합 분말에 강산을 나누어 첨가하면서 반죽한 후, 반죽을 통해 형성된 흐름성이 없는 반죽물을 방치하여 상기 산화 탄소나노튜브를 형성하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.After mixing the carbon nanotubes and the oxidizing agent to form a mixed powder, and kneading while adding a strong acid to the mixed powder, and leaving the flow-free dough formed through the dough to form the carbon nanotubes Method for producing a carbon nanotube composition dispersed in alcohol without a dispersant characterized in that.
  4. 제 1항에 있어서,The method of claim 1,
    상기 산화 탄소나노튜브를 형성하는 단계는,Forming the carbon oxide nanotubes,
    상기 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 및 이의 혼합으로 이루어진 군으로부터 선택된 강산과, 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 및 이의 혼합으로 이루어진 군으로부터 선택된 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.Strong acid selected from the group consisting of fuming nitric acid, sulfuric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, hydrogen peroxide, and mixtures thereof on the carbon nanotubes. And an oxidizing agent selected from the group consisting of sodium chlorate (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ), and mixtures thereof, for 30 minutes to a week at room temperature. Method for producing a carbon nanotube composition dispersed in alcohol without a dispersant, characterized in that it is left in a stirred or kneaded state.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 산화제는 상기 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가되는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.The oxidizing agent is a carbon nanotube composition manufacturing method dispersed in an alcohol without a dispersant, characterized in that added to the weight ratio of 0.5 to 10% by weight of the carbon nanotubes.
  6. 제 1항에 있어서,The method of claim 1,
    상기 알코올은, 1차 알코올, 2차 알코올, 3차 알코올, 알코올 유도체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.The alcohol is a method of producing a carbon nanotube composition dispersed in an alcohol without a dispersant, characterized in that selected from the group consisting of primary alcohol, secondary alcohol, tertiary alcohol, alcohol derivatives and mixtures thereof.
  7. 제 1항에 있어서,The method of claim 1,
    상기 산화 탄소나노튜브는 상기 알코올에 10 내지 10,000mg/L로 첨가되는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물 제조방법.The carbon nanotubes are carbon nanotube composition prepared by dispersing in alcohol without a dispersant, characterized in that added to the alcohol 10 to 10,000mg / L.
  8. 분산제 없이 알코올에 분산된 탄소나노튜브 조성물에 있어서,In the carbon nanotube composition dispersed in alcohol without a dispersant,
    이중결합이 끊어져 육각형 모양의 탄소구조체가 깨지는 표면 결함이 형성된 상태의 산화 탄소나노튜브와;Carbon nanotubes in which a double bond is broken to form a surface defect in which a hexagonal carbon structure is broken;
    상기 산화 탄소나노튜브가 분산된 알코올을 포함하는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물.Carbon nanotube composition dispersed in alcohol without a dispersant, characterized in that the carbon nanotubes are dispersed in the alcohol.
  9. 제 8항에 있어서,The method of claim 8,
    상기 산화 탄소나노튜브는 환원을 통해 이중결합이 복구되어 고전기전도성을 띄는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물.The carbon nanotubes are carbon nanotube compositions dispersed in alcohol without a dispersant, characterized in that the double bond is recovered through reduction to exhibit high conductivity.
  10. 제 8항에 있어서,The method of claim 8,
    상기 산화 탄소나노튜브는 상기 알코올에 10 내지 10,000mg/L로 첨가되는 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물.The carbon nanotubes are carbon nanotube composition dispersed in alcohol without a dispersant, characterized in that added to the alcohol 10 to 10,000mg / L.
  11. 제 8항에 있어서,The method of claim 8,
    상기 탄소나노튜브 조성물은 잉크(ink) 또는 페이스트(paste)인 것을 특징으로 하는 분산제 없이 알코올에 분산된 탄소나노튜브 조성물.The carbon nanotube composition is an ink (ink) or paste (paste) characterized in that the carbon nanotube composition dispersed in alcohol without a dispersant.
  12. 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물 제조방법에 있어서,In the method for producing a carbon nanotube reduced product having a high electroconductivity by restoring its structure by reduction,
    강산을 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하는 단계와;Oxidizing the carbon nanotubes through a strong acid to form carbon nanotubes;
    상기 산화 탄소나노튜브를 환원시켜 산화 탄소나노튜브 환원물을 얻는 단계를 포함하는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.Reducing the carbon nanotubes to obtain a carbon nanotube reduced product.
  13. 제 12항에 있어서,The method of claim 12,
    상기 산화 탄소나노튜브를 형성하는 단계는,Forming the carbon oxide nanotubes,
    상기 탄소나노튜브와 산화제를 혼합하여 혼합 분말을 형성하고, 상기 혼합 분말에 강산을 나누어 첨가하면서 반죽한 후, 반죽을 통해 형성된 흐름성이 없는 반죽물을 방치하여 상기 산화 탄소나노튜브를 형성하는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.After mixing the carbon nanotubes and the oxidizing agent to form a mixed powder, and kneading while adding a strong acid to the mixed powder, and leaving the flow-free dough formed through the dough to form the carbon nanotubes Carbon nanotube reduction product manufacturing method characterized in that.
  14. 제 13항에 있어서,The method of claim 13,
    상기 산화 탄소나노튜브를 형성하는 단계는,Forming the carbon oxide nanotubes,
    상기 탄소나노튜브에 농질산(fuming nitric acid), 황산(sulfuric acid), 질산(nitric acid), 염산(hydrochloric acid), 인산(phosphoric acid), 과산화수소(hydrogen peroxide) 및 이의 혼합으로 이루어진 군으로부터 선택된 강산과, 소듐클로레이트(NaClO3), 소듐퍼클로레이트(NaClO4), 포타슘클로레이트(KClO3), 포타슘퍼클로레이트(KClO4) 및 이의 혼합으로 이루어진 군으로부터 선택된 산화제를 첨가하여 상온에서 30분 내지 일주일 동안 교반하거나 또는 반죽된 상태로 방치하는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.Strong acid selected from the group consisting of fuming nitric acid, sulfuric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, hydrogen peroxide, and mixtures thereof on the carbon nanotubes. And an oxidizing agent selected from the group consisting of sodium chlorate (NaClO 3 ), sodium perchlorate (NaClO 4 ), potassium chlorate (KClO 3 ), potassium perchlorate (KClO 4 ), and mixtures thereof, for 30 minutes to a week at room temperature. Method for producing a carbon nano-oxide reduced product characterized in that it is left in a stirred or kneaded state.
  15. 제 14항에 있어서,The method of claim 14,
    상기 산화제는 상기 탄소나노튜브의 중량 대비 0.5 내지 10중량비로 첨가되는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.The oxidizing agent is a carbon nanotube reduction product manufacturing method, characterized in that added to the weight ratio of 0.5 to 10% by weight of the carbon nanotubes.
  16. 제 13항에 있어서,The method of claim 13,
    상기 산화 탄소나노튜브 환원물을 얻는 단계는,Obtaining the carbon nanotube reduction product,
    상기 산화 탄소나노튜브를 용매에 분산시킨 후 환원제를 첨가하여 습식 공정을 통해 환원시켜 상기 산화 탄소나노튜브 환원물을 얻는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.Dispersing the carbon nanotubes in a solvent and then reducing the carbon nanotube reduction product by adding a reducing agent through a wet process to obtain a carbon nanotube reduced product.
  17. 제 16항에 있어서,The method of claim 16,
    상기 환원제는, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 수산화붕소나트륨(NaBH4), 히드라진(N2H4), 아이오딘수소산(HI), 아스코빅산(ascorbic acid), 환원성 용매, 환원성 유기물 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.The reducing agent is sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium boron hydroxide (NaBH 4 ), hydrazine (N 2 H 4 ), iodine hydrochloric acid (HI), ascorbic acid ( ascorbic acid), a reducing solvent, a reducing organic material, and a mixture thereof.
  18. 제 13항에 있어서,The method of claim 13,
    상기 산화 탄소나노튜브 환원물은,The carbon oxide oxide reduction product,
    상기 강산 및 상기 산화제를 이용하여 상기 탄소나노튜브가 산화를 통해 튜브 형상이 변형되고, 변형된 튜브 형상을 환원을 통해 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도도가 증가하는 것을 특징으로 하는 산화 탄소나노튜브 환원물 제조방법.By using the strong acid and the oxidizing agent, the carbon nanotubes are deformed in the shape of a tube through oxidation, and by reducing the deformed tube shape by restoring a double bond, the electrical conductivity of the carbon nanotubes is increased. Carbon nanotube reduction product manufacturing method.
  19. 환원에 의해 구조가 복원되어 고전기전도성을 띄는 산화 탄소나노튜브 환원물에 있어서,In the carbon nanotube reduction product having a high electroconductivity by restoring the structure by reduction,
    강산을 통해 탄소나노튜브를 산화하여 산화 탄소나노튜브를 형성하고, 상기 산화탄소나노튜브를 환원하여 얻어지는 것을 특징으로 하는 산화 탄소나노튜브 환원물.A carbon nanotube reduced product obtained by oxidizing carbon nanotubes through a strong acid to form carbon nanotubes and reducing the carbon nanotubes.
  20. 제 19항에 있어서,The method of claim 19,
    상기 산화 탄소나노튜브 환원물은,The carbon oxide oxide reduction product,
    상기 강산을 이용하여 상기 탄소나노튜브가 산화를 통해 튜브 형상이 변형되고, 변형된 튜브 형상을 환원을 통해 이중결합을 복구하여 상기 산화 탄소나노튜브보다 전기전도도가 증가하는 것을 특징으로 하는 산화 탄소나노튜브 환원물.The carbon nanotubes are deformed by oxidation of the carbon nanotubes using the strong acid, and the carbon nanotubes have higher electrical conductivity than the carbon nanotubes by restoring the double bonds through reduction of the deformed tube shapes. Tube reducing material.
PCT/KR2018/002737 2017-03-16 2018-03-08 Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes WO2018169249A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170033090A KR102190466B1 (en) 2017-03-16 2017-03-16 Reduced carbon nanotube oxide and their fabrication methods
KR10-2017-0033090 2017-03-16
KR1020170133953A KR102190467B1 (en) 2017-10-16 2017-10-16 Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods
KR10-2017-0133953 2017-10-16

Publications (1)

Publication Number Publication Date
WO2018169249A1 true WO2018169249A1 (en) 2018-09-20

Family

ID=63522471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002737 WO2018169249A1 (en) 2017-03-16 2018-03-08 Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes

Country Status (1)

Country Link
WO (1) WO2018169249A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120034370A (en) * 2010-10-01 2012-04-12 인하대학교 산학협력단 Method for manufacturing the conductive transparent and superhydrophobic film using carbon nanotube
JP2015146227A (en) * 2014-01-31 2015-08-13 日本ゼオン株式会社 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell
KR20160127683A (en) * 2015-04-27 2016-11-04 명지대학교 산학협력단 Method for preparing multiwalled carbon nanotubes/ionic liquid/manganese nanohybrid and hydrogen generation catalyst by the method
US20170029633A1 (en) * 2013-12-23 2017-02-02 Beijing Aglaia Technology Development Co.,Ltd. Method for improving single-wall carbon nanotube dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120034370A (en) * 2010-10-01 2012-04-12 인하대학교 산학협력단 Method for manufacturing the conductive transparent and superhydrophobic film using carbon nanotube
US20170029633A1 (en) * 2013-12-23 2017-02-02 Beijing Aglaia Technology Development Co.,Ltd. Method for improving single-wall carbon nanotube dispersion
JP2015146227A (en) * 2014-01-31 2015-08-13 日本ゼオン株式会社 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell
KR20160127683A (en) * 2015-04-27 2016-11-04 명지대학교 산학협력단 Method for preparing multiwalled carbon nanotubes/ionic liquid/manganese nanohybrid and hydrogen generation catalyst by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN, JUNG-TAK ET AL.,: "Chemically Exfoliated Graphene and Its Application", POLYMER SCIENCE AND TECHNOLOGY, vol. 22, no. 2, 2011, pages 137 - 145 *

Similar Documents

Publication Publication Date Title
Liu et al. Reduction of solubilized multi-walled carbon nanotubes
WO2017191887A1 (en) Method for producing graphene oxide/carbon nanotube composite fiber, graphene oxide/graphene composite fiber or graphene oxide/graphene/carbon nanotube composite fiber using wet spinning process
Unger et al. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification
JP6208364B2 (en) Graphene production method and graphene dispersion composition
Ferreira et al. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents
WO2013081248A1 (en) Graphene oxide reduced material dispersed at high concentration by cation-π interaction and method for manufacturing same
WO2018004099A1 (en) Graphene oxide/carbon nanotube composite fiber having heterojunction structure, and method for manufacturing graphene oxide/graphene composite fiber or graphene oxide/graphene/carbon nanotube composite fiber
EP2570462B1 (en) Method of producing graphene layers and paste comprising graphene nanoplatelets
US10896784B2 (en) Direct microwave production of graphene
WO2017209380A1 (en) Method for manufacturing graphene balls
JP6806898B2 (en) Conductive film, thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module, method for manufacturing conductive film, composition
KR20160076182A (en) Method of manufacturing for graphene/carbon nanotube composite membrane
Lebrón-Colón et al. Surface oxidation study of single wall carbon nanotubes
CN113860289B (en) Method for purifying carbon nano tube
KR102190467B1 (en) Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods
WO2018169249A1 (en) Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes
CN108314027B (en) Preparation method of high-conductivity hydroxyl/epoxy externally-modified graphene transparent conductive film
KR101639600B1 (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
Khan et al. Graphene oxide: synthesis and characterization
Qin et al. Fast and cost-effective room temperature synthesis of high quality graphene oxide with excellent structural intactness
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
KR102190466B1 (en) Reduced carbon nanotube oxide and their fabrication methods
WO2020262780A1 (en) Composition for preparing highly expanded graphite, highly expanded graphite, and method for preparing same
KR102695191B1 (en) Carbon nanotube silver nano wire one component type coating composition and manufacturing method thereof
JP7276625B2 (en) Method for producing boron nitride nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767425

Country of ref document: EP

Kind code of ref document: A1