WO2018169053A1 - Balloon catheter, production method therefor, production device, and treatment method - Google Patents

Balloon catheter, production method therefor, production device, and treatment method Download PDF

Info

Publication number
WO2018169053A1
WO2018169053A1 PCT/JP2018/010472 JP2018010472W WO2018169053A1 WO 2018169053 A1 WO2018169053 A1 WO 2018169053A1 JP 2018010472 W JP2018010472 W JP 2018010472W WO 2018169053 A1 WO2018169053 A1 WO 2018169053A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
metal layer
drug
solvent
catheter
Prior art date
Application number
PCT/JP2018/010472
Other languages
French (fr)
Japanese (ja)
Inventor
村田悠
黒崎靖夫
後藤博
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019506299A priority Critical patent/JP7073338B2/en
Publication of WO2018169053A1 publication Critical patent/WO2018169053A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/10Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a balloon catheter in which a drug is provided on the outer surface of the balloon, a method and apparatus for manufacturing the balloon catheter, and a treatment method.
  • the balloon catheter has been used to improve a lesion (stenosis) occurring in a living body lumen.
  • the balloon catheter usually includes a long shaft portion and a balloon that is provided on the distal end side of the shaft portion and is expandable in the radial direction. By expanding the deflated balloon after reaching a target location in the body via a thin living body lumen, the lesioned part can be expanded.
  • a drug eluting balloon in which a drug for suppressing stenosis is coated on the outer surface of the balloon is used.
  • the drug coated on the outer surface is instantaneously released to the lesioned part, thereby preventing restenosis.
  • the morphological form of the drug coated on the outer surface of the balloon affects the drug release from the balloon surface and the tissue transferability at the lesion.
  • the form of the drug coated on the outer surface of the balloon can be adjusted by changing the conditions for volatilizing the solvent after applying a coating liquid containing the drug and the solvent to the outer surface of the balloon.
  • Patent Document 1 describes a method of drying a coating composition applied to a balloon while applying a fluid for adjusting the temperature condition of the coating composition inside the balloon.
  • Patent Document 2 describes a method in which conductive ink is applied to a balloon by a method such as pad printing, ink jet printing, spraying, marker striping, painting, or electrostatic coating. Thereby, it becomes possible to flow an electric current through the stent mounted on the balloon, and it is possible to apply a coating to the stent by an electrostatic coating method.
  • JP 2014-200269 A International Publication No. 2005/060870
  • Patent Document 1 The method described in Patent Document 1 is complicated because it requires a fluid whose temperature is controlled to flow into a rotating balloon.
  • the method described in Patent Document 2 is a technique for applying a coating of a drug or the like to a stent by electrostatic coating, and does not increase the uniformity of the drug provided on the balloon.
  • the present invention has been made to solve the above-described problem, and a balloon catheter capable of uniformly forming a drug crystal on the outer surface of the balloon and easily controlling the morphological type of the drug, and a manufacturing method and a manufacturing apparatus thereof.
  • An object of the present invention is to provide a treatment method.
  • a method for manufacturing a balloon catheter that achieves the above object is a method for manufacturing a balloon catheter in which a coating layer containing a water-insoluble drug crystal is formed on the outer surface of the balloon, and a conductive metal is applied to the outer surface of the balloon.
  • a current is passed through the metal layer to generate heat to volatilize the solvent.
  • the balloon catheter manufacturing method configured as described above was applied because the coating solution solvent can be volatilized by heating with a metal layer in a state where the coating solution solvent remains in the entire range applied. Crystallization of the entire range of drugs can be promoted simultaneously under substantially the same conditions. For this reason, drug crystals can be uniformly formed on the outer surface of the balloon, and the morphological form of the drug can be easily controlled regardless of various conditions and fluctuations in the procedure.
  • a current is supplied to the metal layer by a terminal that is slidably in contact with the metal layer while rotating the balloon around the axis of the balloon. Good. Thereby, an electric current can be sent through a metal layer and a solvent can be volatilized, without stopping rotation of the balloon which plays the role which makes a coating liquid uniform. For this reason, drug crystals can be formed uniformly, and the morphological type of the drug can be easily controlled.
  • the solvent is water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol, s-butyl. It may be at least one selected from the group consisting of alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Thereby, the volatility of the solvent is lowered, and the solvent is less likely to volatilize from the coating liquid applied to the balloon.
  • the water-insoluble drug may be rapamycin, paclitaxel, docetaxel, or everolimus.
  • An apparatus for manufacturing a balloon catheter that achieves the above object applies a rotating mechanism that applies a rotational force to the balloon, and a coating solution containing a drug and a solvent on the outer surface of a metal layer deposited on the rotating balloon.
  • a supply unit and a terminal that slidably contacts the metal layer and supplies current to the metal layer.
  • the balloon catheter manufacturing apparatus configured as described above has a current flowing in the metal layer by means of a terminal that slidably contacts the metal layer of the rotating balloon with the solvent of the coating solution remaining in the entire range. To heat the metal layer and volatilize the solvent of the coating solution. For this reason, crystallization of the whole range of the applied drug can be promoted simultaneously under substantially the same conditions. Therefore, drug crystals can be uniformly formed on the outer surface of the balloon, and the morphological type of the drug can be easily controlled, regardless of various conditions and fluctuations in the procedure.
  • a balloon catheter that achieves the above-mentioned object is a balloon catheter that can be inserted into a living body lumen, and is a long catheter body, a balloon that is provided on the distal side of the catheter body and is expandable in the radial direction, A metal layer deposited on the outer surface of the balloon; a water-insoluble drug crystal disposed on the outer surface of the metal layer; and a proximal side along the catheter body electrically connected to the metal layer And a conductive wire extending to the surface.
  • the balloon catheter configured as described above can supply an electric current to the metal layer disposed on the balloon inserted into the living body via a lead wire. For this reason, the drug crystal can be heated in the living body to improve the transferability of the drug to the living tissue.
  • a treatment method for achieving the above object is a treatment method for delivering a drug to a lesion in a living body lumen using a balloon catheter, the step of inserting the balloon into the living body lumen to reach the lesion Expanding the balloon and the metal layer to press against the living tissue, and bringing the drug crystal into contact with the living tissue; passing an electric current through the conductor to the metal layer to heat the metal layer; Heating the drug crystal; and deflating the balloon to remove it from the living body lumen.
  • the treatment method configured as described above generates heat in the metal layer and heats the drug crystal, it is possible to improve the transferability of the drug to a living tissue.
  • the balloon catheter 10 is a drug-eluting catheter in which drug crystals are provided on the outer surface of the balloon 30 as shown in FIGS.
  • the side of the balloon catheter 10 to be inserted into the living body lumen is referred to as “tip” or “tip side”
  • the proximal side for operation is referred to as “base end” or “base end side”.
  • the balloon catheter 10 includes a long catheter body 20, a balloon 30 provided at the distal end of the catheter body 20, a metal layer 37 provided on the outer surface of the balloon 30, and a drug provided on the outer surface of the metal layer 37.
  • the coating layer 40 includes a hub 26 fixed to the proximal end of the catheter body 20.
  • the catheter body 20 includes an outer tube 21 that is a tube having an open front end and a proximal end, and an inner tube 22 that is a tube disposed inside the outer tube 21.
  • the inner tube 22 is housed in the hollow interior of the outer tube 21, and the catheter body 20 has a double tube structure at the distal end.
  • the hollow interior of the inner tube 22 is a guide wire lumen 24 through which the guide wire is inserted.
  • an expansion lumen 23 through which the expansion fluid of the balloon 30 flows is formed inside the hollow of the outer tube 21 and outside the inner tube 22.
  • the inner tube 22 opens to the outside at the opening 25.
  • the inner tube 22 protrudes further to the distal end side than the distal end of the outer tube 21.
  • the balloon 30 has a proximal end portion fixed to the distal end portion of the outer tube 21 and a distal end portion fixed to the distal end portion of the inner tube 22. Thereby, the inside of the balloon 30 communicates with the expansion lumen 23.
  • the balloon 30 can be expanded by injecting an expansion fluid into the balloon 30 through the expansion lumen 23.
  • the expansion fluid may be a gas or a liquid.
  • a gas such as helium gas, CO 2 gas, O 2 gas, N 2 gas, Ar gas, air, mixed gas, or a liquid such as physiological saline or contrast medium is used. Can do.
  • a cylindrical straight portion 31 having the same outer diameter when expanded is formed in the central portion of the balloon 30 in the axial direction, and a taper whose outer diameter gradually changes on both sides of the straight portion 31 in the axial direction.
  • a portion 33 is formed.
  • medical agent is formed in the whole outer surface of the straight part 31.
  • FIG. The range in which the coating layer 40 is formed in the balloon 30 is not limited to the straight portion 31, and may include at least a part of the tapered portion 33 in addition to the straight portion 31, or one of the straight portions 31. It may be only part.
  • the hub 26 is formed with a base end opening portion 27 that functions as a port that communicates with the expansion lumen 23 of the outer tube 21 and allows the expansion fluid to flow in and out.
  • the length of the balloon 30 in the axial direction is not particularly limited, but is preferably 5 to 500 mm, more preferably 10 to 300 mm, and still more preferably 20 to 200 mm.
  • the outer diameter of the balloon 30 at the time of expansion is not particularly limited, but is preferably 1 to 10 mm, more preferably 2 to 8 mm.
  • the outer surface of the balloon 30 before the metal layer 37 and the coat layer 40 are formed is smooth and non-porous.
  • the outer surface of the balloon 30 before the metal layer 37 and the coat layer 40 are formed may have minute holes that do not penetrate the membrane.
  • the outer surface of the balloon 30 before the coating layer 40 is formed may have both a smooth and non-porous range and a range with minute holes that do not penetrate the membrane.
  • the size of the minute holes is, for example, 0.1 to 5 ⁇ m in diameter and 0.1 to 10 ⁇ m in depth, and may have one or a plurality of holes for one crystal.
  • the size of the minute holes is, for example, a diameter of 5 to 500 ⁇ m and a depth of 0.1 to 50 ⁇ m, and one hole or a plurality of crystals may be included for one hole.
  • the balloon 30 has a certain degree of flexibility so that it can be expanded when it reaches a blood vessel, tissue, etc., and has a certain degree of hardness so that the drug can be released from the coat layer 40 on its outer surface.
  • the balloon 30 is made of metal or resin, but at least the outer surface of the balloon 30 on which the coat layer 40 is provided is preferably made of resin.
  • the constituent material of at least the outer surface of the balloon 30 is, for example, a polyolefin such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft poly
  • a thermoplastic resin such as vinyl chloride resin, polyamide, polyamide elastomer, nylon elastomer, polyester, polyester elastomer, polyurethane, fluororesin, silicone rubber, latex rubber, or the like can be used.
  • polyamides are preferable. That is, at least a part of the outer surface of the balloon 30 that coats the drug is a polyamide.
  • the polyamide is not particularly limited as long as it is a polymer having an amide bond.
  • polytetramethylene adipamide nylon 46
  • polycaprolactam nylon 6
  • polyhexamethylene adipamide nylon 66
  • Homopolymers such as polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecanolactam (nylon 11), polydodecanolactam (nylon 12), caprolactam / lauryl lactam copolymer Polymer (nylon 6/12), caprolactam / aminoundecanoic acid copolymer (nylon 6/11), caprolactam / ⁇ -aminononanoic acid copolymer (nylon 6/9), caprolactam / hexamethylene diammonium adipate copolymer ( Nylon 6/66 Copolymers such as a copolymer of adipic acid and meta-x
  • a polyamide elastomer which is a block copolymer having nylon 6, nylon 66, nylon 11, nylon 12 or the like as a hard segment and polyalkylene glycol, polyether, aliphatic polyester or the like as a soft segment is also a material of the balloon 30.
  • the said polyamides may be used individually by 1 type, and may use 2 or more types together.
  • the balloon 30 preferably has a smooth surface of polyamide.
  • a conductive metal material is deposited on the outer surface of the balloon 30 to form a metal layer 37, and a coat layer 40 is formed on the outer surface.
  • the constituent material of the metal layer 37 is a conductive metal, for example, gold (Au), platinum (Pt), chromium (Cr), zinc (Zn), nickel (Ni), silver (Ag), copper (Cu ) And alloys thereof.
  • the thickness of the metal layer 37 is not particularly limited as long as it can be formed to have conductivity by vapor deposition and does not hinder the flexibility of the balloon 30, but is, for example, 0.1 to 500 nm, preferably 0.1 It is ⁇ 100 nm, more preferably 0.1 to 50 nm.
  • the coat layer 40 includes an additive 41 (excipient) containing a water-soluble low-molecular compound disposed in a layered manner on the outer surface of the metal layer 37 of the balloon 30, and a water-insoluble extending with an independent long axis.
  • the drug crystal 42 is included.
  • the end of the drug crystal 42 may be in direct contact with the outer surface of the metal layer 37, but the additive 41 is not directly contacted between the end of the drug crystal 42 and the outer surface of the metal layer 37. May be present.
  • the end portion of the drug crystal 42 may be positioned on the surface of the layer of the additive 41, and the drug crystal 42 may protrude from the additive 41.
  • the plurality of drug crystals 42 may be regularly arranged on the outer surface of the metal layer 37. Alternatively, the plurality of drug crystals 42 may be irregularly arranged on the outer surface of the metal layer 37.
  • the amount of the drug contained in the coat layer 40 is not particularly limited, but is 0.1 ⁇ g / mm 2 to 10 ⁇ g / mm 2 , preferably 0.5 ⁇ g / mm 2 to 5 ⁇ g / mm 2 , more preferably 0.5 ⁇ g. / Mm 2 to 3.5 ⁇ g / mm 2 , more preferably 1.0 ⁇ g / mm 2 to 3 ⁇ g / mm 2 .
  • the amount of crystals of the coat layer 40 is not particularly limited, but is preferably 5 to 500,000 [crystal / (10 ⁇ m 2 )] (number of crystals per 10 ⁇ m 2 ), more preferably 50 to 50,000 [crystal / (10 ⁇ m 2 )], more preferably 500 to 5,000 [crystal / (10 ⁇ m 2 )].
  • the drug crystal 42 may have a form having independent long axes. Further, the drug crystal 42 may be other morphological types.
  • the plurality of drug crystals 42 may be present in a state where they are combined, or may be present in contact with each other with a plurality of adjacent drug crystals 42 forming different angles.
  • the plurality of drug crystals 42 may be positioned on the surface of the metal layer 37 with a space (a space not including a crystal). On the surface of the metal layer 37, there may be both a plurality of drug crystals 42 in a combined state and a plurality of drug crystals 42 that are separated from each other and independent.
  • the plurality of drug crystals 42 may be arranged in a brush shape around the circumference having different major axis directions.
  • Each of the drug crystals 42 exists independently, has a certain length, and one end (base end) of the length portion is fixed to the additive 41 or the metal layer 37.
  • the drug crystal 42 does not form a complex structure with the adjacent drug crystal 42 and is not connected.
  • the major axis of the crystal is almost linear.
  • the drug crystal 42 forms a predetermined angle with respect to the surface with which the base portion where the major axes intersect is in contact.
  • the drug crystals 42 stand independently without contacting each other.
  • the base of the drug crystal 42 may be in contact with another base on the metal layer 37.
  • the base of the drug crystal 42 may be independent on the metal layer 37 without being in contact with other bases.
  • the drug crystal 42 may be hollow or solid. Both the hollow drug crystal 42 and the solid drug crystal 42 may exist on the surface of the metal layer 37. When the drug crystal 42 is hollow, at least the vicinity of its tip is hollow.
  • the cross section of the drug crystal 42 in a plane perpendicular to the major axis of the drug crystal 42 (perpendicular) has a hollow.
  • the drug crystal 42 having the hollow has a polygonal cross section of the drug crystal 42 in a plane perpendicular (perpendicular) to the long axis.
  • the polygon is, for example, a triangle, a tetragon, a pentagon, or a hexagon.
  • the drug crystal 42 has a distal end (or distal end surface) and a proximal end (or proximal end surface), and a side surface between the distal end (or distal end surface) and the proximal end (or proximal end surface) is a plurality of substantially flat surfaces. It is formed as a configured long polyhedron.
  • This crystal form type (hollow elongated body crystal form type) constitutes the whole or at least a part of a certain plane on the surface in contact with the base.
  • the length in the major axis direction of the drug crystal 42 having a major axis is preferably 5 ⁇ m to 20 ⁇ m, more preferably 9 ⁇ m to 11 ⁇ m, and even more preferably around 10 ⁇ m.
  • the diameter of the drug crystal 42 having a long axis is preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.05 ⁇ m to 4 ⁇ m, and even more preferably 0.1 ⁇ m to 3 ⁇ m.
  • a combination having a diameter of 0.01 to 5 ⁇ m when the length is 5 ⁇ m to 20 ⁇ m, and a combination when the length is 5 to 20 ⁇ m examples include combinations having a diameter of 0.05 to 4 ⁇ m, and combinations having a diameter of 0.1 to 3 ⁇ m when the length is 5 to 20 ⁇ m.
  • the drug crystal 42 having the long axis is linear in the long axis direction, but may be curved. Both the linear drug crystal 42 and the curved drug crystal 42 may exist on the surface of the metal layer 37.
  • the above-mentioned crystal form type having a crystal having a long axis is 50% by volume or more, and more preferably 70% by volume or more with respect to the entire drug crystal on the outer surface of the metal layer 37.
  • the drug crystal 42 which is a crystal particle having a long axis, is formed so as to stand on the outer surface of the metal layer 37 or the additive 41.
  • the additive 41 is present in the region where the drug crystal 42 is present, and may not be present in the region where the drug crystal 42 is absent.
  • the additive 41 is distributed and present in the space between the plurality of drug crystals 42 in the forest.
  • the proportion of the substance constituting the coat layer 40 is preferably such that the water-insoluble drug crystal 42 occupies a larger volume than the additive 41.
  • the additive 41 does not form a matrix.
  • the matrix is a layer in which a relatively high-molecular substance (polymer or the like) is continuously formed, forms a network-like three-dimensional structure, and has a fine space therein. Therefore, the water-insoluble drug constituting the crystal is not attached to the matrix material.
  • the water-insoluble drug constituting the crystal is not embedded in the matrix material.
  • the additive 41 may form a matrix.
  • the additive 41 is coated on the outer surface of the metal layer 37 while being dissolved in a solvent, and then dried to form a layer.
  • the additive 41 is amorphous.
  • the additive 41 may be crystal particles.
  • Additive 41 may be present as a mixture of amorphous and crystalline particles.
  • the additive 41 in FIG. 3 is in the state of crystal grains and / or particulate amorphous. Alternatively, the additive 41 may be in a film-like amorphous state.
  • the additive 41 is formed as a layer containing a water-insoluble drug. Alternatively, the additive 41 may be formed as an independent layer that does not contain a water-insoluble drug.
  • the thickness of the additive 41 is 0.1 to 5 ⁇ m, preferably 0.3 to 3 ⁇ m, more preferably 0.5 to 2 ⁇ m.
  • the layer containing the drug crystal 42 of a long crystal form type has low toxicity and high stenosis-inhibiting effect when delivered into the body.
  • a water-insoluble drug containing a hollow long crystalline form is effective because it has good permeability to the tissue and good solubility because one unit of the crystal becomes small when the drug moves into the tissue. It can act to suppress stenosis.
  • toxicity is low because the drug hardly remains in the tissue as a large mass.
  • the layer containing the drug crystal 42 having a long crystal form type has a small crystal size (length in the long axis direction) that moves to the tissue of about 10 ⁇ m. Therefore, it acts uniformly on the affected part of the lesion and increases tissue permeability. Furthermore, since the size of the transferred drug crystal 42 is small, an excessive amount of drug does not stay in the affected area for an excessive period of time, so that it is possible to exhibit a high stenosis suppressing effect without developing toxicity. Think.
  • the drug coated on the outer surface of the metal layer 37 may include an amorphous type.
  • the drug crystal 42 and the amorphous may be arranged so as to have regularity in the coat layer 40. Alternatively, crystals and amorphous materials may be arranged irregularly.
  • the manufacturing apparatus 50 can form the metal layer 37 and the coat layer 40 on the balloon 30.
  • the balloon catheter manufacturing apparatus 50 includes a rotation mechanism 60 that rotates the balloon catheter 10 and a support base 70 that supports the balloon catheter 10.
  • the manufacturing apparatus 50 further includes a coating liquid supply unit 90 provided with a dispensing tube 94 that applies the coating liquid 45 to the outer surface of the metal layer 37, and a moving mechanism unit 80 that moves the dispensing tube 94 relative to the balloon 30. And have.
  • the manufacturing apparatus 50 further includes a current supply unit 110 that supplies current to the metal layer 37, a vapor deposition apparatus 120 that deposits metal on the outer surface of the balloon 30 to form the metal layer 37, and each part of the manufacturing apparatus 50. And a control unit 100 for controlling.
  • the rotation mechanism unit 60 holds the hub 26 of the balloon catheter 10 and rotates the balloon catheter 10 about the axis of the balloon 30 by a built-in driving source such as a motor.
  • a built-in driving source such as a motor.
  • the core material 61 is inserted and held in the guide wire lumen 24, and the core material 61 prevents the coating liquid 45 from flowing into the guide wire lumen 24.
  • a three-way cock that can open and close the flow path is connected to the proximal end opening 27 of the hub 26 in order to control the flow of fluid to the expansion lumen 23.
  • the support base 70 includes a tubular proximal end support portion 71 that accommodates the catheter main body 20 in a rotatable manner, and a distal end side support portion 72 that rotatably supports the core member 61. Note that the distal end side support portion 72 may rotatably support the distal end portion of the catheter body 20 instead of the core member 61 if possible.
  • the moving mechanism unit 80 includes a moving table 81 that can move linearly in a direction parallel to the axis of the balloon 30 and a tube fixing unit 83 to which the dispensing tube 94 is fixed.
  • the moving table 81 can move linearly by a driving source such as a built-in motor. As the moving table 81 moves, the dispensing tube 94 linearly moves in a direction parallel to the axis of the balloon 30.
  • the moving table 81 has a coating liquid supply unit 90 mounted thereon, and linearly moves the coating liquid supply unit 90 in both directions along the axis.
  • the coating liquid supply unit 90 is a part that applies the coating liquid 45 to the metal layer 37 on the surface of the balloon 30.
  • the coating liquid supply unit 90 includes a container 92 that stores the coating liquid 45, a liquid feeding pump 93 that feeds the coating liquid 45 in an arbitrary liquid feeding amount, and a dispensing tube 94 that applies the coating liquid 45 to the metal layer 37. And.
  • the liquid feed pump 93 is, for example, a syringe pump, and is controlled by the control unit 100 to suck the coating liquid 45 from the container 92 through the suction tube 91 and to the dispensing tube 94 through the supply tube 96. Can be supplied at an arbitrary liquid feeding amount.
  • the liquid feed pump 93 is installed on the moving table 81 and can move linearly by the movement of the moving table 81.
  • the liquid feed pump 93 is not limited to a syringe pump as long as the coating liquid 45 can be fed, and may be a tube pump, for example.
  • the dispensing tube 94 communicates with the supply tube 96 and discharges the coating liquid 45 supplied from the liquid feed pump 93 through the supply tube 96 to the metal layer 37 on the surface of the balloon 30.
  • the dispensing tube 94 is a flexible tubular member.
  • the dispensing tube 94 has an upper end fixed to the tube fixing portion 83, extends vertically downward from the tube fixing portion 83, and has an opening 95 at the discharge end 97 that is the lower end.
  • the dispensing tube 94 can move linearly in both directions along the axial direction of the balloon catheter 10 together with the liquid feed pump 93 installed on the moving table 81 by moving the moving table 81.
  • the dispensing tube 94 can supply the coating liquid 45 to the metal layer 37 in a state where the dispensing tube 94 is pressed against the metal layer 37 and is bent.
  • the dispensing tube 94 may not be a circular tube as long as the coating liquid 45 can be supplied.
  • the dispensing tube 94 may not extend in the vertical direction as long as the coating liquid 45 can be discharged from the opening 95.
  • the dispensing tube 94 may supply the coating liquid 45 to the metal layer 37 at a position away from the outer surface of the metal layer 37.
  • the dispensing tube 94 is preferably made of a flexible material so as to reduce the contact load on the metal layer 37 and absorb the change in the contact position accompanying the rotation of the balloon 30 by bending.
  • the constituent material of the dispensing tube 94 is, for example, polyolefin such as polyethylene and polypropylene, cyclic polyolefin, polyester, polyamide, polyurethane, PTFE (polytetrafluoroethylene), ETFE (tetrafluoroethylene / ethylene copolymer), PFA (tetra Fluororesin such as fluoroethylene / perfluoroalkyl vinyl ether copolymer) or FEP (tetrafluoroethylene / hexafluoropropylene copolymer) can be applied, but if it is flexible and deformable There is no particular limitation.
  • the outer diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.1 mm to 5.0 mm, preferably 0.15 mm to 3.0 mm, and more preferably 0.3 mm to 2.5 mm.
  • the inner diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.05 mm to 3.0 mm, preferably 0.1 mm to 2.0 mm, and more preferably 0.15 mm to 1.5 mm.
  • the length of the dispensing tube 94 is not particularly limited, but is preferably within 5 times the balloon diameter, for example, 1.0 mm to 50 mm, preferably 3 mm to 40 mm, more preferably 5 mm to 35 mm. .
  • the current supply unit 110 is a part that applies current to the metal layer 37 on the surface of the balloon 30.
  • the metal layer 37 generates heat when an electric current flows, and volatilizes the solvent of the coating liquid 45 to be applied.
  • the current supply unit 110 includes two terminals 111 that are slidably in contact with the distal end portion and the proximal end portion of the balloon 30, and a power source 112 that supplies current to the terminal 111.
  • the terminal 111 can flow a current supplied from the power source 112 to the metal layer 37 in contact with the terminal 111.
  • the power source 112 supplies a direct current or an alternating current to the terminal 111.
  • the power source 112 can adjust the voltage, current and frequency of the current to be supplied.
  • the two terminals 111 are in contact with a position different from a range where the coating layer 40 of the metal layer 37 is formed (a range where the coating liquid 45 is applied).
  • the position where the terminal 111 contacts is, for example, the tapered portion 33 (see FIG. 2). Thereby, the formation of the coat layer 40 is not inhibited by the terminals 111.
  • the terminal 111 is preferably flexible so that the balloon 30 and the metal layer 37 are not damaged.
  • the terminal 111 has, for example, a bifurcated structure so as to contact the metal layer 37 reliably.
  • the shape of the terminal 111 will not be specifically limited if it can contact the metal layer 37 so that sliding is possible, For example, one rod shape may be sufficient.
  • the terminal 111 can effectively pass a current through the metal layer 37.
  • the structure which can be clamped like a clip may be sufficient.
  • the deposition apparatus 120 is an apparatus that forms a metal layer 37 by depositing metal on the outer surface of the balloon 30.
  • the vapor deposition apparatus 120 can use a well-known thing.
  • the vapor deposition apparatus 120 is a vacuum vapor deposition apparatus, for example.
  • the control unit 100 is configured by a computer, for example, and comprehensively controls the rotation mechanism unit 60, the movement mechanism unit 80, the coating liquid supply unit 90, and the current supply unit 110. Therefore, the control unit 100 determines the rotational speed of the balloon 30, the moving speed of the dispensing tube 94 in the axial direction relative to the balloon 30, the drug discharge speed from the dispensing tube 94, the voltage, current, and frequency of the current supply unit 110. Can be comprehensively controlled.
  • the coating liquid 45 supplied to the metal layer 37 by the dispensing tube 94 is a solution or suspension containing the constituent material of the coat layer 40, and contains a water-insoluble drug, an additive, and a solvent. After the coating liquid 45 is supplied to the metal layer 37 on the outer surface of the balloon 30, the solvent is volatilized, so that the water-insoluble drug crystal extending on the outer surface of the metal layer 37 with an independent long axis extends. A coat layer 40 having 42 is formed.
  • the viscosity of the coating liquid 45 is 0.2 to 500 cP, preferably 0.2 to 50 cP, more preferably 0.2 to 10 cP.
  • Water-insoluble drug means a drug that is insoluble or sparingly soluble in water. Specifically, the solubility in water is less than 5 mg / mL at pH 5-8. Its solubility may be less than 1 mg / mL and even less than 0.1 mg / mL. Water-insoluble drugs include fat-soluble drugs.
  • examples of some preferred water-insoluble drugs include immunosuppressants, such as cyclosporines including cyclosporine, immunoactive agents such as rapamycin, anticancer agents such as paclitaxel, antiviral or antibacterial agents, anti-neoplastic agents, Analgesics and anti-inflammatory agents, antibiotics, antiepileptics, anxiolytics, antiparalytic agents, antagonists, neuron blocking agents, anticholinergics and cholinergic agents, antimuscarinic and muscarinic agents, antiadrenergic agents, Contains antiarrhythmic, antihypertensive, hormonal and nutritional agents.
  • immunosuppressants such as cyclosporines including cyclosporine, immunoactive agents such as rapamycin, anticancer agents such as paclitaxel, antiviral or antibacterial agents, anti-neoplastic agents, Analgesics and anti-inflammatory agents, antibiotics, antiepileptics, anxiolytics, antiparalytic agents, antagonist
  • Water-insoluble drugs are preferably paclitaxel and paclitaxel derivatives, taxanes, docetaxel and rapamycin and rapamycin derivatives, such as biolimus A9, pimecrolimus, everolimus, zotarolimus, tacrolimus, fasudil and epothilone, paclitaxel and rapamycin, especially docetaxel, and evelimel.
  • rapamycin, paclitaxel, docetaxel, and everolimus include analogs and / or derivatives thereof as long as they have similar medicinal effects.
  • paclitaxel and docetaxel are in an analog relationship.
  • Rapamycin and everolimus are in a derivative relationship. Of these, paclitaxel is more preferred.
  • Additive 41 includes a water-soluble low molecular weight compound.
  • the molecular weight of the water-soluble low molecular weight compound is 50 to 2000, preferably 50 to 1000, more preferably 50 to 500, and further preferably 50 to 200.
  • the water-soluble low molecular weight compound is preferably 5 to 10,000 parts by weight, more preferably 5 to 200 parts by weight, and still more preferably 8 to 150 parts by weight with respect to 100 parts by weight of the water-insoluble drug.
  • the constituent materials of water-soluble low molecular weight compounds are serine ethyl ester, citrate ester, polysorbate, water-soluble polymer, sugar, contrast agent, amino acid ester, glycerol ester of short-chain monocarboxylic acid, pharmaceutically acceptable salt and interface An activator or the like, or a mixture of two or more of these can be used.
  • the water-soluble low molecular weight compound has a hydrophilic group and a hydrophobic group and is characterized by being dissolved in water.
  • the water-soluble low molecular weight compound is preferably non-swellable or hardly swellable.
  • the additive 41 is preferably amorphous (amorphous) on the metal layer 37.
  • the additive 41 containing a water-soluble low-molecular compound has an effect of uniformly dispersing the water-insoluble drug on the outer surface of the metal layer 37. Furthermore, since the additive 41 is easily dissolved when the balloon 30 is expanded in the blood vessel, the water-insoluble drug crystal particles on the outer surface of the metal layer 37 can be easily released, and the drug crystal particles in the blood vessel are released. It has the effect of increasing the amount of adhesion.
  • the additive 41 is preferably not a hydrogel. Since the additive 41 is a low molecular weight compound, it dissolves rapidly without swelling when in contact with an aqueous solution.
  • the additive 41 is easily dissolved when the balloon 30 is expanded in the blood vessel, the particles of the water-insoluble drug crystal 42 on the outer surface of the metal layer 37 are easily released, and the drug crystal 42 into the blood vessel. It has the effect of increasing the amount of adhesion.
  • the additive 41 is a matrix made of a contrast agent such as Ultravist (registered trademark)
  • crystal particles are embedded in the matrix, and crystals are not generated from the metal layer 37 toward the outside of the matrix.
  • the drug crystal 42 of the present embodiment can extend from the surface of the metal layer 37 to the outside of the additive 41.
  • the solvent has low volatility so that the solvent remains in the coating liquid 45 in the entire applied range until the application of the coating liquid 45 to the entire range in which the coating layer 40 of the metal layer 37 is formed is completed.
  • the solvent contains at least one of an organic solvent and water.
  • the organic solvent is not particularly limited, and tetrahydrofuran, acetone, glycerin, acetic acid, benzene, chlorohexane, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, ethanol, methanol, dichloromethane, hexane, Examples thereof include ethyl acetate, i-butyl alcohol, s-butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Among these, some of these mixed solvents are preferable among tetrahydrofuran, ethanol, and acetone.
  • organic solvent and water mixture examples include, for example, tetrahydrofuran and water, tetrahydrofuran and ethanol and water, tetrahydrofuran and acetone and water, acetone and ethanol and water, and tetrahydrofuran, acetone, ethanol, and water.
  • Low volatile solvents include, for example, water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol , S-butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, ethylene glycol and the like.
  • the volatility of the solvent can be adjusted by, for example, the viscosity of the solution, the concentration of the solution (solvent content ratio), and the like.
  • a metal layer 37 is formed on the outer surface of the balloon 30 by a known vapor deposition device 120. Note that the metal layer 37 can be formed only on the surface of the balloon 30 by performing masking or the like on the portion of the balloon catheter 10 where the metal layer 37 is not formed.
  • an expansion fluid is supplied into the balloon 30 through a three-way cock connected to the proximal end opening 27 of the balloon catheter 10.
  • the three-way cock is operated in a state where the balloon 30 is expanded to seal the expansion lumen 23, and the state where the balloon 30 is expanded is maintained.
  • the balloon 30 is expanded at a pressure (for example, 4 atmospheres) lower than a pressure (for example, 8 atmospheres) at the time of use in the blood vessel.
  • the coating layer 40 can also be formed on the outer surface of the balloon 30 without expanding the balloon 30, and in this case, it is not necessary to supply the expansion fluid into the balloon 30.
  • the balloon catheter 10 is rotatably installed on the support base 70, and the hub 26 is connected to the rotation mechanism 60.
  • the position of the moving table 81 is adjusted, and the dispensing tube 94 is positioned with respect to the balloon 30.
  • the dispensing tube 94 is positioned at the most distal end position where the coating layer 40 is formed in the balloon 30.
  • the extending direction (discharge direction) of the dispensing tube 94 is opposite to the rotation direction of the balloon 30 as shown in FIG. Accordingly, the balloon 30 rotates in the direction opposite to the direction in which the coating liquid 45 is discharged from the dispensing tube 94 at the position where the dispensing tube 94 is brought into contact. Thereby, physical stimulation can be given to the coating liquid 45 and formation of the crystal nucleus of a drug crystal can be promoted.
  • the extending direction (discharge direction) toward the opening 95 of the dispensing tube 94 is the direction opposite to the rotation direction of the balloon 30, so that the water-insoluble drug formed on the metal layer 37 on the surface of the balloon 30.
  • the crystal is easily formed to include a morphological form including a plurality of drug crystals 42 each having an independent major axis.
  • the extending direction of the dispensing tube 94 does not have to be the reverse direction of the rotation direction of the balloon 30, and can therefore be the same direction or can be perpendicular.
  • the balloon catheter 10 is rotated by the rotation mechanism 60. Subsequently, while the amount of liquid fed is adjusted by the liquid feed pump 93 and the coating liquid 45 is supplied to the dispensing tube 94, the moving table 81 is moved to move the dispensing tube 94 along the axial direction of the balloon 30. Gradually move toward the proximal direction.
  • the coating liquid 45 discharged from the opening 95 of the dispensing tube 94 is applied while drawing a spiral on the outer peripheral surface of the metal layer 37 as the dispensing tube 94 moves relative to the balloon 30. By rotating the balloon 30, the coating liquid 45 applied to the outer peripheral surface of the metal layer 37 tends to be uniform in the circumferential direction.
  • the moving speed of the dispensing tube 94 is not particularly limited, but is, for example, 0.01 to 2 mm / sec, preferably 0.03 to 1.5 mm / sec, and more preferably 0.05 to 1.0 mm / sec.
  • the discharge speed of the coating liquid 45 from the dispensing tube 94 is not particularly limited, but is, for example, 0.01 to 1.5 ⁇ L / sec, preferably 0.01 to 1.0 ⁇ L / sec, more preferably 0.03 to 0. .8 ⁇ L / sec.
  • the rotation speed of the balloon 30 is not particularly limited, but is, for example, 10 to 300 rpm, preferably 30 to 250 rpm, and more preferably 50 to 200 rpm.
  • the diameter of the balloon 30 when applying the coating liquid 45 is not particularly limited, but is, for example, 1 to 10 mm, preferably 2 to 7 mm.
  • the dispensing tube 94 is gradually moved in the axial direction of the balloon 30 while rotating the balloon 30.
  • the layer of the coating liquid 45 is gradually formed on the metal layer 37 on the surface of the balloon 30 in the axial direction.
  • the moving mechanism unit 80 and the coating liquid supply unit 90 are stopped. Since the solvent contained in the coating liquid 45 is low in volatility, the coating liquid 45 on the metal layer 37 is applied even after the coating liquid 45 is completely applied to the entire area where the coating layer 40 of the metal layer 37 is formed. In the entire range, the solvent remains.
  • the control unit 100 causes the power supply 112 to supply current to the terminal 111 in a state where the terminal 111 is in contact with the distal end portion and the proximal end portion of the balloon 30.
  • a current flows through the metal layer 37, the metal layer 37 generates heat, and the volatilization of the solvent of the coating liquid 45 applied to the balloon 30 is promoted.
  • the balloon 30 is rotated and the coating liquid 45 is heated in a state where the solvent of the coating liquid 45 remains in the whole range applied, so that the coating liquid 45 is kept uniform while maintaining the uniformity of the coating liquid 45.
  • the control unit 100 stops the supply of current from the power source 112 and stops the rotation of the balloon 30. Note that the supply of current from the power source 112 and the rotation of the balloon 30 may be stopped before the volatilization of the solvent is completely completed.
  • the organic solvent contained in the coating solution applied to the metal layer 37 on the outer surface of the balloon 30 is volatilized before water. Therefore, the organic solvent is volatilized in a state where the water-insoluble drug, the water-soluble low-molecular compound and water are left on the outer surface of the metal layer 37. As described above, when the organic solvent is volatilized with water remaining, a water-insoluble drug is precipitated inside the water-soluble low-molecular compound containing water, and the crystal gradually grows from the crystal nucleus.
  • a morphological drug crystal 42 containing a plurality of crystals each having an independent long axis is formed on the outer surface of the film.
  • the base of the drug crystal 42 is located on the outer surface of the metal layer 37, the surface of the additive 41, or inside the additive 41 (see FIG. 3). After the organic solvent is volatilized and the drug crystals 42 are deposited, water is evaporated more slowly than the organic solvent, and an additive 41 containing a water-soluble low-molecular compound is formed.
  • the time for which water evaporates is appropriately set according to the type of drug, the type of water-soluble low molecular weight compound, the type of organic solvent, the ratio of materials, the amount of coating solution applied, etc., for example, about 1 to 600 seconds It is.
  • the balloon catheter 10 is removed from the support base 70.
  • the expansion fluid is discharged from the balloon 30, and the balloon 30 is contracted and folded. Thereby, manufacture of the balloon catheter 10 is completed.
  • the balloon 30 has a substantially circular cross section in a state where the expansion fluid is injected therein. From this state, the balloon 30 is formed with the protruding blade portion 32, so that the blade outer portion 34a constituting the outer surface of the blade portion 32 and the inner portion of the blade portion 32 are formed as shown in FIG. A blade inner portion 34b constituting the side surface and an intermediate portion 34c located between the blade outer portion 34a and the blade inner portion 34b are formed. From this state, as shown in FIG. 7C, the blade portion 32 protruding outward in the radial direction is folded in the circumferential direction.
  • a root-side space portion 36 is formed between the root portion of the blade portion 32 and the intermediate portion 34c.
  • a minute gap is formed between the blade part 32 and the intermediate part 34c.
  • the region on the tip side of the base side space portion 36 of the blade portion 32 is in close contact with the intermediate portion 34c.
  • the ratio of the circumferential length of the base side space portion 36 to the circumferential length of the blade portion 32 is in the range of 1 to 95%.
  • the blade outer portion 34a of the balloon 30 receives a pressing force that rubs in the circumferential direction from a blade for folding the balloon 30, and is further heated. As a result, the long drug crystal 42 provided on the blade outer portion 34 a falls down on the surface of the balloon 30 and is easy to sleep. It is not necessary for all of the drug crystal 42 to sleep.
  • the drug crystal 42 is difficult to sleep.
  • the region that does not face the root side space portion 36 that is, the region where the blade inner portion 34b and the intermediate portion 34c are in close contact with each other, Easy to receive pressure. Therefore, in this region, the drug crystal 42 falls down and tends to sleep.
  • the surgeon punctures a blood vessel from the skin by a known method such as the Seldinger method, and places an introducer (not shown).
  • the guide wire 200 (see FIG. 7) is inserted into the guide wire lumen 24.
  • the guide wire 200 and the balloon catheter 10 are inserted into the blood vessel from the inside of the introducer.
  • the balloon catheter 10 is advanced while the guide wire 200 is advanced, and the balloon 30 reaches the stenosis.
  • a guiding catheter may be used to reach the balloon catheter 10 to the stenosis 300.
  • a predetermined amount of expansion fluid is injected from the proximal end opening 27 of the hub 26 using an inflator or a syringe, and the expansion fluid is sent into the balloon 30 through the expansion lumen 23.
  • the folded balloon 30 is expanded, and the narrowed portion 300 is pushed and expanded by the balloon 30.
  • the coat layer 40 provided on the reinforcing layer 35 on the surface of the balloon 30 comes into contact with the narrowed portion 300.
  • the drug crystal 42 is delivered to the living body while the additive 41, which is a water-soluble low-molecular compound contained in the coat layer 40, gradually or rapidly dissolves.
  • the drug crystals 42 of the coat layer 40 are uniformly formed by the manufacturing method described above. For this reason, a medicine can be made to act satisfactorily on a living body without variation.
  • the expansion fluid is sucked and discharged from the proximal end opening 27 of the hub 26, and the balloon 30 is deflated and folded.
  • the guide wire 200 and the balloon catheter 10 are removed from the blood vessel via the introducer, and the procedure is completed.
  • the method for manufacturing the balloon catheter 10 is a method for manufacturing the balloon catheter 10 in which the coat layer 40 containing water-insoluble drug crystals is formed on the outer surface of the balloon 30.
  • Forming a metal layer 37 by depositing a conductive metal on the outer surface of the substrate, applying a coating liquid 45 containing a drug and a solvent to the outer surface of the metal layer 37, and forming a coat layer 40 of the balloon 30
  • a current is passed through the metal layer 37 to generate heat and volatilize the solvent.
  • the solvent of the coating liquid 45 is volatilized by heating with the metal layer 37 in a state where the solvent of the coating liquid 45 remains in the entire range applied.
  • the crystallization of the entire range of drugs can be promoted simultaneously under substantially the same conditions. For this reason, the drug crystal 42 can be uniformly formed on the outer surface of the balloon 30 and the morphological form of the drug can be easily controlled regardless of various conditions and fluctuations in the procedure.
  • an electric current is supplied to the metal layer 37 by the terminal 111 that slidably contacts the metal layer 37 while rotating the balloon 30 around the axis of the balloon 30.
  • an electric current can be sent through the metal layer 37 to volatilize the solvent without stopping the rotation of the balloon 30 that plays the role of making the coating liquid 45 uniform.
  • the drug crystal 42 can be formed uniformly, and the control of the morphological type of the drug is facilitated.
  • Solvents are water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol, s- It may be at least one selected from the group consisting of butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Thereby, the volatility of the solvent is lowered, and the solvent is less likely to volatilize from the coating liquid 45 applied to the balloon 30.
  • the water-insoluble drug may contain at least one selected from the group consisting of rapamycin, paclitaxel, docetaxel and everolimus.
  • the manufacturing apparatus 50 for the balloon catheter 10 applies a drug and a solvent to the outer surface of the rotation mechanism 60 that applies a rotational force to the balloon 30 and the metal layer 37 deposited on the rotating balloon 30.
  • the coating liquid supply part 90 which apply
  • the manufacturing apparatus 50 configured as described above supplies a current to the metal layer 37 by the terminal 111 slidably contacting the metal layer 37 of the rotating balloon 30 in a state where the solvent of the coating liquid 45 remains.
  • the metal layer 37 can generate heat, and the solvent of the coating liquid 45 can be volatilized.
  • crystallization of the whole range of the applied drug can be promoted simultaneously under substantially the same conditions. Therefore, the drug crystal 42 can be uniformly formed on the outer surface of the balloon 30 regardless of various conditions and the fluctuation of the technique, and the morphological type of the drug can be easily controlled.
  • the balloon catheter 10 is a balloon catheter 10 that can be inserted into a living body lumen, and is provided on the distal side of the long catheter body 20 and the catheter body 20 so as to expand in the radial direction.
  • the drug crystal 42 is disposed on the outer surface of the metal layer 37, the transfer property of the drug to the living body is adjusted by the metal layer 37 having a surface structure different from that of the balloon 30. it can.
  • the present invention also includes a treatment method (therapeutic method) for delivering a drug to a lesion in a living body lumen using the balloon catheter 10.
  • the treatment method includes a step of inserting the balloon 30 into the body lumen to reach the lesioned part, a step of expanding the balloon 30 and the metal layer 37 and pressing the body 30 against the living tissue, and bringing the drug crystal 42 into contact with the living tissue. And deflating the balloon 30 to remove it from the living body lumen.
  • the metal layer 37 having a surface structure different from that of the balloon 30 is used. Transferability to living tissue can be adjusted.
  • the balloon catheter 10 according to the above-described embodiment is a rapid exchange type, but may be an over-the-wire type.
  • the balloon catheter 10 may move along the axis without moving the dispensing tube 94.
  • the balloon catheter 10 further includes a conductive wire 39 that is electrically connected to the metal layer 37 and extends proximally along the catheter body 20. May be.
  • the conducting wire 39 can be connected to an external power supply device (not shown) via 28 provided on the hub 26. Thereby, an electric current can be supplied to the metal layer 37 disposed on the balloon 30 inserted in the living body via the conductive wire 39. For this reason, the drug crystal 42 can be heated by the metal layer 37 in the living body to improve the transferability of the drug to the living tissue.
  • the metal layer 37 may be partially provided on the outer surface of the balloon 30.
  • a part of the balloon 30 has an exposed portion 38 where the metal layer 37 is not provided.
  • the exposed portion 38 can be formed by masking the surface of the balloon 38 when the metal layer 37 is deposited on the balloon 30.
  • the coat layer 40 is directly disposed on the exposed portion 38 of the balloon 30.
  • the shape of the exposed portion 38 is not particularly limited.

Abstract

Provided are: a balloon catheter capable of uniformly forming a drug crystal on the outer surface of a balloon and capable of readily controlling the morphological form of the drug; a production method therefor; a production device; and a treatment method. This production method for a balloon catheter (10) having a coat layer (40) including crystals of a water insoluble drug, formed on the outer surface of a balloon (30), has: a step in which a conductive metal is deposited and a metal layer (37) is formed on the outer surface of the balloon (30); a step in which a coating fluid (45) including the drug and a solvent is coated on the outer surface of the metal layer (37); and a step in which, after the coating of the coating fluid (45) on to the entire area forming the coat layer (40) of the balloon (30) has been completed, current is supplied to the metal layer (37), heat is generated, and the solvent is volatized, in a state in which the coating fluid (45) solvent remains.

Description

バルーンカテーテルおよびその製造方法および製造装置並びに処置方法Balloon catheter, manufacturing method and manufacturing apparatus thereof, and treatment method
 本発明は、バルーンの外表面に薬剤が設けられたバルーンカテーテルおよびその製造方法および製造装置、並びに処置方法に関する。 The present invention relates to a balloon catheter in which a drug is provided on the outer surface of the balloon, a method and apparatus for manufacturing the balloon catheter, and a treatment method.
 近年、生体管腔内に生じた病変部(狭窄部)の改善のために、バルーンカテーテルが用いられている。バルーンカテーテルは、通常、長尺なシャフト部と、シャフト部の先端側に設けられて径方向に拡張可能なバルーンとを備えている。収縮されているバルーンを、細い生体管腔を経由して体内の目的場所まで到達させた後に拡張させることで、病変部を押し広げることができる。 In recent years, a balloon catheter has been used to improve a lesion (stenosis) occurring in a living body lumen. The balloon catheter usually includes a long shaft portion and a balloon that is provided on the distal end side of the shaft portion and is expandable in the radial direction. By expanding the deflated balloon after reaching a target location in the body via a thin living body lumen, the lesioned part can be expanded.
 しかしながら、病変部を強制的に押し広げると、平滑筋細胞が過剰に増殖して病変部に新たな狭窄(再狭窄)が発症する場合がある。このため、最近では、バルーンの外表面に狭窄を抑制するための薬剤をコーティングした薬剤溶出バルーン(Drug Eluting Balloon:DEB)が用いられている。薬剤溶出バルーンは、拡張することで外表面にコーティングされている薬剤を病変部へ瞬時に放出し、これにより、再狭窄を抑制することができる。 However, if the lesion is forcedly expanded, smooth muscle cells may proliferate and new stenosis (restenosis) may develop in the lesion. Therefore, recently, a drug eluting balloon (DEB) in which a drug for suppressing stenosis is coated on the outer surface of the balloon is used. By expanding the drug-eluting balloon, the drug coated on the outer surface is instantaneously released to the lesioned part, thereby preventing restenosis.
 近年では、バルーンの外表面にコーティングされる薬剤の形態型(morphological form)が、病変部におけるバルーン表面からの薬剤の放出性や組織移行性に影響を及ぼすことが明らかになりつつある。バルーンの外表面にコーティングされる薬剤の形態型は、薬剤と溶媒を含むコーティング液をバルーンの外表面に塗布した後、溶媒を揮発させる条件を変更することで、調節することができる。 In recent years, it has become clear that the morphological form of the drug coated on the outer surface of the balloon affects the drug release from the balloon surface and the tissue transferability at the lesion. The form of the drug coated on the outer surface of the balloon can be adjusted by changing the conditions for volatilizing the solvent after applying a coating liquid containing the drug and the solvent to the outer surface of the balloon.
 ところで、コーティングにおけるパラメータ等の各種条件や手技のぶれ、乾燥の仕方等の環境が、バルーンの表面に形成される薬剤の形態型に大きく依存する。このため、形成する結晶の制御は困難であり、その困難さが、品質にばらつきが生じさせる原因となっている。 By the way, various conditions such as coating parameters and the environment such as the fluctuation of the technique and the drying method greatly depend on the morphological type of the drug formed on the surface of the balloon. For this reason, it is difficult to control the crystals to be formed, and this difficulty causes variations in quality.
 特許文献1には、バルーンの内部にコーティング組成物の温度条件を調節するための流体を適用しつつ、バルーンに塗布したコーティング組成物を乾燥させる方法が記載されている。また、特許文献2には、導電性インクを、パッド印刷、インクジェット印刷、噴霧、マーカーストライピング、塗装、静電被覆などの方法でバルーンに塗布する方法が記載されている。これにより、バルーンに載置されるステントに電流を流すことが可能となり、静電被覆法によりステントに被膜を付けることが可能となっている。 Patent Document 1 describes a method of drying a coating composition applied to a balloon while applying a fluid for adjusting the temperature condition of the coating composition inside the balloon. Patent Document 2 describes a method in which conductive ink is applied to a balloon by a method such as pad printing, ink jet printing, spraying, marker striping, painting, or electrostatic coating. Thereby, it becomes possible to flow an electric current through the stent mounted on the balloon, and it is possible to apply a coating to the stent by an electrostatic coating method.
特開2014-200269号公報JP 2014-200269 A 国際公開第2005/060870号International Publication No. 2005/060870
 特許文献1に記載の方法は、回転するバルーンの内部に、温度を管理した流体を流入させる必要があり、煩雑である。また、特許文献2に記載の方法は、静電被覆によりステントに薬剤等の被膜を付けることを目的とする技術であり、バルーンに設けられる薬剤の均一性を高めるものではない。 The method described in Patent Document 1 is complicated because it requires a fluid whose temperature is controlled to flow into a rotating balloon. The method described in Patent Document 2 is a technique for applying a coating of a drug or the like to a stent by electrostatic coating, and does not increase the uniformity of the drug provided on the balloon.
 本発明は、上述した課題を解決するためになされたものであり、バルーンの外表面に薬剤結晶を均一に形成でき、かつ薬剤の形態型を容易に制御できるバルーンカテーテルおよびその製造方法および製造装置並びに処置方法を提供することを目的とする。 The present invention has been made to solve the above-described problem, and a balloon catheter capable of uniformly forming a drug crystal on the outer surface of the balloon and easily controlling the morphological type of the drug, and a manufacturing method and a manufacturing apparatus thereof. An object of the present invention is to provide a treatment method.
 上記目的を達成するバルーンカテーテルの製造方法は、バルーンの外表面に水不溶性薬剤の結晶を含むコート層が形成されたバルーンカテーテルの製造方法であって、前記バルーンの外表面に導電性の金属を蒸着して金属層を形成するステップと、前記金属層の外表面に薬剤および溶媒を含むコーティング液を塗布するステップと、前記バルーンの前記コート層を形成する全範囲への前記コーティング液の塗布が完了した後に、前記コーティング液の溶媒が残存している状態で、前記金属層に電流を流して発熱させて前記溶媒を揮発させるステップと、を有する。 A method for manufacturing a balloon catheter that achieves the above object is a method for manufacturing a balloon catheter in which a coating layer containing a water-insoluble drug crystal is formed on the outer surface of the balloon, and a conductive metal is applied to the outer surface of the balloon. Forming a metal layer by vapor deposition, applying a coating liquid containing a drug and a solvent to the outer surface of the metal layer, and applying the coating liquid to the entire area of the balloon forming the coating layer. After completion, in a state where the solvent of the coating solution remains, a current is passed through the metal layer to generate heat to volatilize the solvent.
 上記のように構成したバルーンカテーテルの製造方法は、コーティング液の溶媒が塗布した全範囲で残存している状態で、金属層により加熱してコーティング液の溶媒を揮発させることができるため、塗布した全範囲の薬剤の結晶化を、略同一条件で同時に促すことができる。このため、各種条件や手技のぶれに関わらず、バルーンの外表面に薬剤結晶を均一に形成でき、かつ薬剤の形態型を容易に制御できる。 The balloon catheter manufacturing method configured as described above was applied because the coating solution solvent can be volatilized by heating with a metal layer in a state where the coating solution solvent remains in the entire range applied. Crystallization of the entire range of drugs can be promoted simultaneously under substantially the same conditions. For this reason, drug crystals can be uniformly formed on the outer surface of the balloon, and the morphological form of the drug can be easily controlled regardless of various conditions and fluctuations in the procedure.
 本製造方法は、前記溶媒を揮発させるステップにおいて、前記バルーンを当該バルーンの軸心を中心として回転させつつ、前記金属層に摺動可能に接触する端子により前記金属層へ電流を供給してもよい。これにより、コーティング液を均一化する役割を果たすバルーンの回転を止めずに、金属層に電流を流して溶媒を揮発させることができる。このため、薬剤結晶を均一に形成でき、かつ薬剤の形態型の制御が容易となる。 In the manufacturing method, in the step of volatilizing the solvent, a current is supplied to the metal layer by a terminal that is slidably in contact with the metal layer while rotating the balloon around the axis of the balloon. Good. Thereby, an electric current can be sent through a metal layer and a solvent can be volatilized, without stopping rotation of the balloon which plays the role which makes a coating liquid uniform. For this reason, drug crystals can be formed uniformly, and the morphological type of the drug can be easily controlled.
 前記溶媒は、水、酢酸、ベンゼン、クロロヘキサン、グリセリン、エタノール、ヘキサン、エチルアセテート、o-ジクロロベンゼン、o-キシレン、p-キシレン、シクロヘキサノール、スチレン、シクロヘキサン、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、プロパノール、ブタノール、トルエン、エチレングリコールからなる群から選択される少なくとも1つであってもよい。これにより、溶媒の揮発性が低くなり、バルーンに塗布されたコーティング液から溶媒が揮発し難くなる。このため、バルーンの塗布範囲の全体へコーティング液が塗布されるまで、コーティング液の溶媒が塗布した全範囲で残存している状態とすることが容易となる。したがって、金属層へ電流を流すタイミングで、薬剤の結晶化を、コーティング液を塗布した全範囲で略同一条件で同時に促すことができる。 The solvent is water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol, s-butyl. It may be at least one selected from the group consisting of alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Thereby, the volatility of the solvent is lowered, and the solvent is less likely to volatilize from the coating liquid applied to the balloon. For this reason, it becomes easy to make it the state which remains in the whole range which the solvent of the coating liquid apply | coated until the coating liquid is apply | coated to the whole application | coating range of a balloon. Therefore, the crystallization of the drug can be simultaneously promoted under substantially the same conditions in the entire range where the coating liquid is applied at the timing when the current is supplied to the metal layer.
 前記水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセル、またはエベロリムスであってもよい。これにより、血管内の狭窄部の再狭窄を良好に抑制できる。 The water-insoluble drug may be rapamycin, paclitaxel, docetaxel, or everolimus. Thereby, restenosis of the stenosis part in a blood vessel can be suppressed favorably.
 上記目的を達成するバルーンカテーテルの製造装置は、前記バルーンに回転力を作用させる回転機構部と、回転する前記バルーンに蒸着されている金属層の外表面に薬剤および溶媒を含むコーティング液を塗布する供給部と、前記金属層に摺動可能に接触して電流を金属層に供給する端子と、を有する。 An apparatus for manufacturing a balloon catheter that achieves the above object applies a rotating mechanism that applies a rotational force to the balloon, and a coating solution containing a drug and a solvent on the outer surface of a metal layer deposited on the rotating balloon. A supply unit; and a terminal that slidably contacts the metal layer and supplies current to the metal layer.
 上記のように構成したバルーンカテーテルの製造装置は、コーティング液の溶媒が塗布した全範囲で残存している状態で、回転するバルーンの金属層に摺動可能に接触する端子により、金属層に電流を供給して金属層を発熱させ、コーティング液の溶媒を揮発させることができる。このため、塗布した全範囲の薬剤の結晶化を、略同一条件で同時に促すことができる。したがって、各種条件や手技のぶれに関わらず、バルーンの外表面に薬剤結晶を均一に形成でき、かつ薬剤の形態型を容易に制御できる。 The balloon catheter manufacturing apparatus configured as described above has a current flowing in the metal layer by means of a terminal that slidably contacts the metal layer of the rotating balloon with the solvent of the coating solution remaining in the entire range. To heat the metal layer and volatilize the solvent of the coating solution. For this reason, crystallization of the whole range of the applied drug can be promoted simultaneously under substantially the same conditions. Therefore, drug crystals can be uniformly formed on the outer surface of the balloon, and the morphological type of the drug can be easily controlled, regardless of various conditions and fluctuations in the procedure.
 上記目的を達成するバルーンカテーテルは、生体管腔内に挿入可能なバルーンカテーテルであって、長尺なカテーテル本体と、前記カテーテル本体の遠位側に設けられて径方向へ拡張可能なバルーンと、前記バルーンの外表面に蒸着された金属層と、前記金属層の外表面に配置される水不溶性の薬剤結晶と、前記金属層に電気的に接続されるとともに前記カテーテル本体に沿って近位側へ延在する導電性の導線と、を有する。 A balloon catheter that achieves the above-mentioned object is a balloon catheter that can be inserted into a living body lumen, and is a long catheter body, a balloon that is provided on the distal side of the catheter body and is expandable in the radial direction, A metal layer deposited on the outer surface of the balloon; a water-insoluble drug crystal disposed on the outer surface of the metal layer; and a proximal side along the catheter body electrically connected to the metal layer And a conductive wire extending to the surface.
 上記のように構成したバルーンカテーテルは、生体内に挿入したバルーンに配置される金属層に、導線を介して電流を供給できる。このため、生体内で薬剤結晶を加熱して、薬剤の生体組織への移行性を高めることができる。 The balloon catheter configured as described above can supply an electric current to the metal layer disposed on the balloon inserted into the living body via a lead wire. For this reason, the drug crystal can be heated in the living body to improve the transferability of the drug to the living tissue.
 上記目的を達成する処置方法は、バルーンカテーテルを使用して生体管腔内の病変部に薬剤を送達する処置方法であって、前記バルーンを生体管腔内に挿入して病変部へ到達させるステップと、前記バルーンおよび金属層を拡張させて生体組織に押し付け、前記薬剤結晶を前記生体組織に接触させるステップと、前記導線を介して前記金属層へ電流を流して前記金属層を発熱させて前記薬剤結晶を加熱するステップと、前記バルーンを収縮させて生体管腔から抜去するステップと、を有する。 A treatment method for achieving the above object is a treatment method for delivering a drug to a lesion in a living body lumen using a balloon catheter, the step of inserting the balloon into the living body lumen to reach the lesion Expanding the balloon and the metal layer to press against the living tissue, and bringing the drug crystal into contact with the living tissue; passing an electric current through the conductor to the metal layer to heat the metal layer; Heating the drug crystal; and deflating the balloon to remove it from the living body lumen.
 上記のように構成した処置方法は、金属層を発熱させて薬剤結晶を加熱するため、薬剤の生体組織への移行性を高めることができる。 Since the treatment method configured as described above generates heat in the metal layer and heats the drug crystal, it is possible to improve the transferability of the drug to a living tissue.
本実施形態に係るバルーンカテーテルを示す正面図である。It is a front view which shows the balloon catheter which concerns on this embodiment. バルーンカテーテルの先端部の断面図である。It is sectional drawing of the front-end | tip part of a balloon catheter. バルーンの外表面の概略断面図である。It is a schematic sectional drawing of the outer surface of a balloon. バルーンカテーテルの製造装置を示す正面図である。It is a front view which shows the manufacturing apparatus of a balloon catheter. バルーンに接触したディスペンシングチューブおよび端子を示す断面図である。It is sectional drawing which shows the dispensing tube and terminal which contacted the balloon. バルーンに塗布したコーティング液の溶媒を揮発させている状態を示す正面図である。It is a front view which shows the state which has volatilized the solvent of the coating liquid apply | coated to the balloon. 折り畳まれるバルーンを示す断面図であり、(A)はバルーンの折り畳み前の状態、(B)はバルーンに羽根部が形成された状態、(C)は羽根部が折り畳まれた状態を示す。It is sectional drawing which shows the balloon folded, (A) is the state before folding of a balloon, (B) is the state in which the blade | wing part was formed in the balloon, (C) shows the state by which the blade | wing part was folded. バルーンカテーテルにより血管の狭窄部を押し広げた状態を示す断面図である。It is sectional drawing which shows the state which expanded the stenosis part of the blood vessel with the balloon catheter. バルーンカテーテルの変形例を示す正面図である。It is a front view which shows the modification of a balloon catheter. バルーンカテーテルの他の変形例を示す正面図である。It is a front view which shows the other modification of a balloon catheter.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 本実施形態に係るバルーンカテーテル10は、図1、2に示すように、バルーン30の外表面に薬剤の結晶が設けられた薬剤溶出型のカテーテルである。なお、本明細書では、バルーンカテーテル10の生体管腔に挿入する側を「先端」若しくは「先端側」、操作する手元側を「基端」若しくは「基端側」と称することとする。 The balloon catheter 10 according to the present embodiment is a drug-eluting catheter in which drug crystals are provided on the outer surface of the balloon 30 as shown in FIGS. In this specification, the side of the balloon catheter 10 to be inserted into the living body lumen is referred to as “tip” or “tip side”, and the proximal side for operation is referred to as “base end” or “base end side”.
 まず、バルーンカテーテル10の構造を説明する。バルーンカテーテル10は、長尺なカテーテル本体20と、カテーテル本体20の先端部に設けられるバルーン30と、バルーン30の外表面に設けられる金属層37と、金属層37の外表面に設けられる薬剤を含むコート層40と、カテーテル本体20の基端に固着されたハブ26とを有している。 First, the structure of the balloon catheter 10 will be described. The balloon catheter 10 includes a long catheter body 20, a balloon 30 provided at the distal end of the catheter body 20, a metal layer 37 provided on the outer surface of the balloon 30, and a drug provided on the outer surface of the metal layer 37. The coating layer 40 includes a hub 26 fixed to the proximal end of the catheter body 20.
 カテーテル本体20は、先端および基端が開口した管体である外管21と、外管21の内部に配置される管体である内管22とを備えている。内管22は、外管21の中空内部に納められており、カテーテル本体20は、先端部において二重管構造となっている。内管22の中空内部は、ガイドワイヤを挿通させるガイドワイヤルーメン24である。また、外管21の中空内部であって、内管22の外側には、バルーン30の拡張用流体を流通させる拡張ルーメン23が形成される。内管22は、開口部25において外部に開口している。内管22は、外管21の先端よりもさらに先端側まで突出している。 The catheter body 20 includes an outer tube 21 that is a tube having an open front end and a proximal end, and an inner tube 22 that is a tube disposed inside the outer tube 21. The inner tube 22 is housed in the hollow interior of the outer tube 21, and the catheter body 20 has a double tube structure at the distal end. The hollow interior of the inner tube 22 is a guide wire lumen 24 through which the guide wire is inserted. Further, an expansion lumen 23 through which the expansion fluid of the balloon 30 flows is formed inside the hollow of the outer tube 21 and outside the inner tube 22. The inner tube 22 opens to the outside at the opening 25. The inner tube 22 protrudes further to the distal end side than the distal end of the outer tube 21.
 バルーン30は、基端側端部が外管21の先端部に固定され、先端側端部が内管22の先端部に固定されている。これにより、バルーン30の内部が拡張ルーメン23と連通している。拡張ルーメン23を介してバルーン30に拡張用流体を注入することで、バルーン30を拡張させることができる。拡張用流体は気体でも液体でもよく、例えばヘリウムガス、COガス、Oガス、Nガス、Arガス、空気、混合ガス等の気体や、生理食塩水、造影剤等の液体を用いることができる。 The balloon 30 has a proximal end portion fixed to the distal end portion of the outer tube 21 and a distal end portion fixed to the distal end portion of the inner tube 22. Thereby, the inside of the balloon 30 communicates with the expansion lumen 23. The balloon 30 can be expanded by injecting an expansion fluid into the balloon 30 through the expansion lumen 23. The expansion fluid may be a gas or a liquid. For example, a gas such as helium gas, CO 2 gas, O 2 gas, N 2 gas, Ar gas, air, mixed gas, or a liquid such as physiological saline or contrast medium is used. Can do.
 バルーン30の軸心方向における中央部には、拡張させた際に外径が等しい円筒状のストレート部31が形成され、ストレート部31の軸心方向の両側に、外径が徐々に変化するテーパ部33が形成される。そして、ストレート部31の外表面の全体に、薬剤を含むコート層40が形成される。なお、バルーン30においてコート層40を形成する範囲は、ストレート部31のみに限定されず、ストレート部31に加えてテーパ部33の少なくとも一部が含まれてもよく、または、ストレート部31の一部のみであってもよい。 A cylindrical straight portion 31 having the same outer diameter when expanded is formed in the central portion of the balloon 30 in the axial direction, and a taper whose outer diameter gradually changes on both sides of the straight portion 31 in the axial direction. A portion 33 is formed. And the coat layer 40 containing a chemical | medical agent is formed in the whole outer surface of the straight part 31. FIG. The range in which the coating layer 40 is formed in the balloon 30 is not limited to the straight portion 31, and may include at least a part of the tapered portion 33 in addition to the straight portion 31, or one of the straight portions 31. It may be only part.
 ハブ26は、外管21の拡張ルーメン23と連通して拡張用流体を流入出させるポートとして機能する基端開口部27が形成されている。 The hub 26 is formed with a base end opening portion 27 that functions as a port that communicates with the expansion lumen 23 of the outer tube 21 and allows the expansion fluid to flow in and out.
 バルーン30の軸心方向の長さは特に限定されないが、好ましくは5~500mm、より好ましくは10~300mm、さらに好ましくは20~200mmである。 The length of the balloon 30 in the axial direction is not particularly limited, but is preferably 5 to 500 mm, more preferably 10 to 300 mm, and still more preferably 20 to 200 mm.
 バルーン30の拡張時の外径は、特に限定されないが、好ましくは1~10mm、より好ましくは2~8mmである。 The outer diameter of the balloon 30 at the time of expansion is not particularly limited, but is preferably 1 to 10 mm, more preferably 2 to 8 mm.
 バルーン30の金属層37およびコート層40が形成される前の外表面は、平滑であり、非多孔質である。バルーン30の金属層37およびコート層40が形成される前の外表面は、膜を貫通しない微小な孔があってもよい。または、バルーン30のコート層40が形成される前の外表面は、平滑であって非多孔質である範囲と、膜を貫通しない微小な孔がある範囲の両方を備えてもよい。微小な孔の大きさは、例えば、直径が0.1~5μm、深さが0.1~10μmであり、1つの結晶に対して、1つまたは複数の孔を有してもよい。また、微小な孔の大きさは、例えば、直径が5~500μm、深さが0.1~50μmであり、1つの孔に対して、1つまたは複数の結晶を有してもよい。 The outer surface of the balloon 30 before the metal layer 37 and the coat layer 40 are formed is smooth and non-porous. The outer surface of the balloon 30 before the metal layer 37 and the coat layer 40 are formed may have minute holes that do not penetrate the membrane. Alternatively, the outer surface of the balloon 30 before the coating layer 40 is formed may have both a smooth and non-porous range and a range with minute holes that do not penetrate the membrane. The size of the minute holes is, for example, 0.1 to 5 μm in diameter and 0.1 to 10 μm in depth, and may have one or a plurality of holes for one crystal. The size of the minute holes is, for example, a diameter of 5 to 500 μm and a depth of 0.1 to 50 μm, and one hole or a plurality of crystals may be included for one hole.
 バルーン30は、ある程度の柔軟性を有するとともに、血管や組織等に到達した際に拡張されて、その外表面に有するコート層40から薬剤を放出できるようにある程度の硬度を有するものが好ましい。具体的には、バルーン30は、金属や、樹脂で構成されるが、コート層40が設けられるバルーン30の少なくとも外表面は、樹脂で構成されていることが好ましい。バルーン30の少なくとも外表面の構成材料は、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ナイロンエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用できる。そのなかでも、好適にはポリアミド類が挙げられる。すなわち、薬剤をコートするバルーン30の外表面の少なくとも一部がポリアミド類である。ポリアミド類としては、アミド結合を有する重合体であれば特に制限されないが、例えば、ポリテトラメチレンアジパミド(ナイロン46)、ポリカプロラクタム(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカノラクタム(ナイロン11)、ポリドデカノラクタム(ナイロン12)などの単独重合体、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/アミノウンデカン酸共重合体(ナイロン6/11)、カプロラクタム/ω-アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)などの共重合体、アジピン酸とメタキシレンジアミンとの共重合体、またはヘキサメチレンジアミンとm,p-フタル酸との共重合体などの芳香族ポリアミドなどが挙げられる。さらに、ナイロン6、ナイロン66、ナイロン11、ナイロン12などをハードセグメントとし、ポリアルキレングリコール、ポリエーテル、または脂肪族ポリエステルなどをソフトセグメントとするブロック共重合体であるポリアミドエラストマーも、バルーン30の材料として用いられる。上記ポリアミド類は、1種単独で使用してもよいし、2種以上を併用してもよい。特に、バルーン30はポリアミドの滑らかな表面を有することが好ましい。 It is preferable that the balloon 30 has a certain degree of flexibility so that it can be expanded when it reaches a blood vessel, tissue, etc., and has a certain degree of hardness so that the drug can be released from the coat layer 40 on its outer surface. Specifically, the balloon 30 is made of metal or resin, but at least the outer surface of the balloon 30 on which the coat layer 40 is provided is preferably made of resin. The constituent material of at least the outer surface of the balloon 30 is, for example, a polyolefin such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft poly A thermoplastic resin such as vinyl chloride resin, polyamide, polyamide elastomer, nylon elastomer, polyester, polyester elastomer, polyurethane, fluororesin, silicone rubber, latex rubber, or the like can be used. Among these, polyamides are preferable. That is, at least a part of the outer surface of the balloon 30 that coats the drug is a polyamide. The polyamide is not particularly limited as long as it is a polymer having an amide bond. For example, polytetramethylene adipamide (nylon 46), polycaprolactam (nylon 6), polyhexamethylene adipamide (nylon 66), Homopolymers such as polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecanolactam (nylon 11), polydodecanolactam (nylon 12), caprolactam / lauryl lactam copolymer Polymer (nylon 6/12), caprolactam / aminoundecanoic acid copolymer (nylon 6/11), caprolactam / ω-aminononanoic acid copolymer (nylon 6/9), caprolactam / hexamethylene diammonium adipate copolymer ( Nylon 6/66 Copolymers such as a copolymer of adipic acid and meta-xylylenediamine, or hexamethylene diamine and m, and aromatic polyamides such as a copolymer of p- phthalic acid. Further, a polyamide elastomer which is a block copolymer having nylon 6, nylon 66, nylon 11, nylon 12 or the like as a hard segment and polyalkylene glycol, polyether, aliphatic polyester or the like as a soft segment is also a material of the balloon 30. Used as The said polyamides may be used individually by 1 type, and may use 2 or more types together. In particular, the balloon 30 preferably has a smooth surface of polyamide.
 バルーン30は、図3に示すように、その外表面上に、導電性の金属材料が蒸着されて金属層37が形成され、さらにその外表面上に、コート層40が形成される。 As shown in FIG. 3, a conductive metal material is deposited on the outer surface of the balloon 30 to form a metal layer 37, and a coat layer 40 is formed on the outer surface.
 金属層37の構成材料は、導電性を有する金属であり、例えば金(Au)、白金(Pt)、クロム(Cr)、亜鉛(Zn)、ニッケル(Ni)、銀(Ag)、銅(Cu)およびこれらの合金等が挙げられる。金属層37の厚さは、蒸着によって導電性を有するように形成可能であって、かつバルーン30の柔軟性を妨げなければ、特に限定されないが、例えば0.1~500nm、好ましくは0.1~100nm、より好ましくは0.1~50nmである。 The constituent material of the metal layer 37 is a conductive metal, for example, gold (Au), platinum (Pt), chromium (Cr), zinc (Zn), nickel (Ni), silver (Ag), copper (Cu ) And alloys thereof. The thickness of the metal layer 37 is not particularly limited as long as it can be formed to have conductivity by vapor deposition and does not hinder the flexibility of the balloon 30, but is, for example, 0.1 to 500 nm, preferably 0.1 It is ˜100 nm, more preferably 0.1 to 50 nm.
 コート層40は、バルーン30の金属層37の外表面に層状に配置される水溶性低分子化合物を含む添加剤41(賦形剤)と、独立した長軸を有して延在する水不溶性の薬剤結晶42とを有している。薬剤結晶42の端部は、金属層37の外表面と直接接触してもよいが、直接接触せずに、薬剤結晶42の端部と金属層37の外表面との間に添加剤41が存在してもよい。薬剤結晶42の端部が添加剤41の層の表面に位置して、薬剤結晶42が添加剤41から突出してもよい。複数の薬剤結晶42は、金属層37の外表面に規則的に配置されてもよい。または、複数の薬剤結晶42は、金属層37の外表面に不規則に配置されてもよい。 The coat layer 40 includes an additive 41 (excipient) containing a water-soluble low-molecular compound disposed in a layered manner on the outer surface of the metal layer 37 of the balloon 30, and a water-insoluble extending with an independent long axis. The drug crystal 42 is included. The end of the drug crystal 42 may be in direct contact with the outer surface of the metal layer 37, but the additive 41 is not directly contacted between the end of the drug crystal 42 and the outer surface of the metal layer 37. May be present. The end portion of the drug crystal 42 may be positioned on the surface of the layer of the additive 41, and the drug crystal 42 may protrude from the additive 41. The plurality of drug crystals 42 may be regularly arranged on the outer surface of the metal layer 37. Alternatively, the plurality of drug crystals 42 may be irregularly arranged on the outer surface of the metal layer 37.
 コート層40に含まれる薬剤量は、特に限定されないが、0.1μg/mm~10μg/mm、好ましくは0.5μg/mm~5μg/mmの密度で、より好ましくは0.5μg/mm~3.5μg/mm、さらに好ましくは1.0μg/mm~3μg/mmの密度で含まれる。コート層40の結晶の量は、特に限定されないが、好ましくは5~500、000[crystal/(10μm)](10μm当たりの結晶の数)、より好ましくは50~50、000[crystal/(10μm)]、さらに好ましくは500~5、000[crystal/(10μm)]である。 The amount of the drug contained in the coat layer 40 is not particularly limited, but is 0.1 μg / mm 2 to 10 μg / mm 2 , preferably 0.5 μg / mm 2 to 5 μg / mm 2 , more preferably 0.5 μg. / Mm 2 to 3.5 μg / mm 2 , more preferably 1.0 μg / mm 2 to 3 μg / mm 2 . The amount of crystals of the coat layer 40 is not particularly limited, but is preferably 5 to 500,000 [crystal / (10 μm 2 )] (number of crystals per 10 μm 2 ), more preferably 50 to 50,000 [crystal / (10 μm 2 )], more preferably 500 to 5,000 [crystal / (10 μm 2 )].
 薬剤結晶42は、各々独立した長軸を有する形態であってもよい。また、薬剤結晶42は、他の形態型であってもよい。複数の薬剤結晶42は、これらが組み合された状態で存在していてもよいし、隣接する複数の薬剤結晶42同士が異なる角度を形成した状態で接触して存在してもよい。複数の薬剤結晶42は金属層37の表面上で空間(結晶を含まない空間)をおいて位置していてもよい。金属層37の表面に、組み合された状態の複数の薬剤結晶42と、互いに離れて独立した複数の薬剤結晶42の両方が存在してもよい。複数の薬剤結晶42は、異なる長軸方向を有して円周状にブラシ状として配置されてもよい。各々の前記薬剤結晶42は独立して存在しており、ある長さを有し、その長さ部分の一端(基端)が、添加剤41または金属層37に固定されている。薬剤結晶42は隣接する薬剤結晶42と複合的な構造を形成せず、連結していない。前記結晶の長軸は、ほぼ直線状である。薬剤結晶42はその長軸が交わる基部が接する表面に対して所定の角度を形成している。 The drug crystal 42 may have a form having independent long axes. Further, the drug crystal 42 may be other morphological types. The plurality of drug crystals 42 may be present in a state where they are combined, or may be present in contact with each other with a plurality of adjacent drug crystals 42 forming different angles. The plurality of drug crystals 42 may be positioned on the surface of the metal layer 37 with a space (a space not including a crystal). On the surface of the metal layer 37, there may be both a plurality of drug crystals 42 in a combined state and a plurality of drug crystals 42 that are separated from each other and independent. The plurality of drug crystals 42 may be arranged in a brush shape around the circumference having different major axis directions. Each of the drug crystals 42 exists independently, has a certain length, and one end (base end) of the length portion is fixed to the additive 41 or the metal layer 37. The drug crystal 42 does not form a complex structure with the adjacent drug crystal 42 and is not connected. The major axis of the crystal is almost linear. The drug crystal 42 forms a predetermined angle with respect to the surface with which the base portion where the major axes intersect is in contact.
 薬剤結晶42は、互いに接触せずに独立して立っていることが好ましい。薬剤結晶42の基部は、金属層37上で他の基部と接触していてもよい。または、薬剤結晶42の基部は、金属層37上で他の基部と接触せずに独立していてもよい。 It is preferable that the drug crystals 42 stand independently without contacting each other. The base of the drug crystal 42 may be in contact with another base on the metal layer 37. Alternatively, the base of the drug crystal 42 may be independent on the metal layer 37 without being in contact with other bases.
 薬剤結晶42は、中空である場合と、中実である場合がある。金属層37の表面に、中空の薬剤結晶42と、中実の薬剤結晶42の両方が存在してもよい。薬剤結晶42は、中空である場合、少なくともその先端付近が中空である。薬剤結晶42の長軸に直角な(垂直な)面における薬剤結晶42の断面は中空を有する。当該中空を有する薬剤結晶42は長軸に直角な(垂直な)面における薬剤結晶42の断面が多角形である。当該多角形は、例えば3角形、4角形、5角形、6角形などである。したがって、薬剤結晶42は先端(または先端面)と基端(または基端面)とを有し、先端(または先端面)と基端(または基端面)との間の側面が複数のほぼ平面で構成された長尺多面体として形成される。この結晶形態型(中空長尺体結晶形態型)は基部が接する表面において、ある平面の全体または少なくとも一部を構成する。 The drug crystal 42 may be hollow or solid. Both the hollow drug crystal 42 and the solid drug crystal 42 may exist on the surface of the metal layer 37. When the drug crystal 42 is hollow, at least the vicinity of its tip is hollow. The cross section of the drug crystal 42 in a plane perpendicular to the major axis of the drug crystal 42 (perpendicular) has a hollow. The drug crystal 42 having the hollow has a polygonal cross section of the drug crystal 42 in a plane perpendicular (perpendicular) to the long axis. The polygon is, for example, a triangle, a tetragon, a pentagon, or a hexagon. Therefore, the drug crystal 42 has a distal end (or distal end surface) and a proximal end (or proximal end surface), and a side surface between the distal end (or distal end surface) and the proximal end (or proximal end surface) is a plurality of substantially flat surfaces. It is formed as a configured long polyhedron. This crystal form type (hollow elongated body crystal form type) constitutes the whole or at least a part of a certain plane on the surface in contact with the base.
 長軸を有する薬剤結晶42の長軸方向の長さは5μm~20μmが好ましく、9μm~11μmがより好ましく、10μm前後であるのがさらに好ましい。長軸を有する薬剤結晶42の径は、0.01μm~5μmであるのが好ましく、0.05μm~4μmであるのがより好ましく、0.1μm~3μmであるのがさらに好ましい。長軸を有する薬剤結晶42の長軸方向の長さと径の組み合わせの例として、長さが5μm~20μmのときに径が0.01~5μmである組み合わせ、長さが5~20μmのときに径が0.05~4μmである組み合わせ、長さが5~20μmのときに径が0.1~3μmである組み合わせが挙げられる。長軸を有する薬剤結晶42は、長軸方向に直線状であるが、曲線状に湾曲してもよい。金属層37の表面に、直線状の薬剤結晶42と、曲線状の薬剤結晶42の両方が存在してもよい。 The length in the major axis direction of the drug crystal 42 having a major axis is preferably 5 μm to 20 μm, more preferably 9 μm to 11 μm, and even more preferably around 10 μm. The diameter of the drug crystal 42 having a long axis is preferably 0.01 μm to 5 μm, more preferably 0.05 μm to 4 μm, and even more preferably 0.1 μm to 3 μm. As an example of the combination of the length and the diameter in the long axis direction of the drug crystal 42 having a long axis, a combination having a diameter of 0.01 to 5 μm when the length is 5 μm to 20 μm, and a combination when the length is 5 to 20 μm Examples include combinations having a diameter of 0.05 to 4 μm, and combinations having a diameter of 0.1 to 3 μm when the length is 5 to 20 μm. The drug crystal 42 having the long axis is linear in the long axis direction, but may be curved. Both the linear drug crystal 42 and the curved drug crystal 42 may exist on the surface of the metal layer 37.
 上述した長軸を有する結晶を有する結晶形態型は、金属層37の外表面の薬剤結晶全体に対して50体積%以上、より好ましくは70体積%以上である。長軸を有する結晶粒子である薬剤結晶42は、金属層37または添加剤41の外表面に対して寝ておらず立っているように形成される。添加剤41は、薬剤結晶42がある領域に存在し、薬剤結晶42がない領域にはなくてもよい。 The above-mentioned crystal form type having a crystal having a long axis is 50% by volume or more, and more preferably 70% by volume or more with respect to the entire drug crystal on the outer surface of the metal layer 37. The drug crystal 42, which is a crystal particle having a long axis, is formed so as to stand on the outer surface of the metal layer 37 or the additive 41. The additive 41 is present in the region where the drug crystal 42 is present, and may not be present in the region where the drug crystal 42 is absent.
 添加剤41は、林立する複数の薬剤結晶42の間の空間に分配されて存在する。コート層40を構成する物質の割合は、水不溶性の薬剤結晶42の方が、添加剤41よりも大きい体積を占めることが好ましい。添加剤41は、マトリックスを形成しない。マトリックスとは、比較的高分子の物質(ポリマーなど)が連続して構成された層であり、網目状の三次元構造を形成し、その中に微細な空間が存在する。したがって、結晶を構成する水不溶性薬剤はマトリックス物質中に付着していない。結晶を構成する水不溶性薬剤は、マトリックス物質中に埋め込まれてもいない。なお、添加剤41は、マトリックスを形成してもよい。 The additive 41 is distributed and present in the space between the plurality of drug crystals 42 in the forest. The proportion of the substance constituting the coat layer 40 is preferably such that the water-insoluble drug crystal 42 occupies a larger volume than the additive 41. The additive 41 does not form a matrix. The matrix is a layer in which a relatively high-molecular substance (polymer or the like) is continuously formed, forms a network-like three-dimensional structure, and has a fine space therein. Therefore, the water-insoluble drug constituting the crystal is not attached to the matrix material. The water-insoluble drug constituting the crystal is not embedded in the matrix material. The additive 41 may form a matrix.
 添加剤41は金属層37の外表面で溶媒に溶けた状態でコートされた後、乾燥して層として形成される。添加剤41はアモルファスである。添加剤41は、結晶粒子であってもよい。添加剤41は、アモルファスおよび結晶粒子の混合物として存在してもよい。図3の添加剤41は、結晶粒子及び/または粒子状アモルファスの状態である。または、添加剤41は、フィルム状アモルファスの状態であってもよい。添加剤41は、水不溶性薬剤を含んだ層として形成されている。または、添加剤41は、水不溶性薬剤を含まない独立した層として形成されてもよい。添加剤41の厚みは、0.1~5μm、好ましくは0.3~3μm、より好ましくは0.5~2μmである。 The additive 41 is coated on the outer surface of the metal layer 37 while being dissolved in a solvent, and then dried to form a layer. The additive 41 is amorphous. The additive 41 may be crystal particles. Additive 41 may be present as a mixture of amorphous and crystalline particles. The additive 41 in FIG. 3 is in the state of crystal grains and / or particulate amorphous. Alternatively, the additive 41 may be in a film-like amorphous state. The additive 41 is formed as a layer containing a water-insoluble drug. Alternatively, the additive 41 may be formed as an independent layer that does not contain a water-insoluble drug. The thickness of the additive 41 is 0.1 to 5 μm, preferably 0.3 to 3 μm, more preferably 0.5 to 2 μm.
 長尺な結晶形態型の薬剤結晶42を含む層は、体内に送達する際に、毒性が低く、狭窄抑制効果が高い。中空長尺体結晶形態を含む水不溶性薬剤は、薬剤が組織に移行した時に結晶の一つの単位が小さくなるために組織への浸透性が良く、かつ、良好な溶解性を有するため、有効に作用して狭窄を抑制できる。また、薬剤が大きな塊として組織に残留することが少ないために毒性が低くなると考えられる。 The layer containing the drug crystal 42 of a long crystal form type has low toxicity and high stenosis-inhibiting effect when delivered into the body. A water-insoluble drug containing a hollow long crystalline form is effective because it has good permeability to the tissue and good solubility because one unit of the crystal becomes small when the drug moves into the tissue. It can act to suppress stenosis. In addition, it is considered that toxicity is low because the drug hardly remains in the tissue as a large mass.
 また、長尺な結晶形態型の薬剤結晶42を含む層は、組織に移行する結晶の大きさ(長軸方向の長さ)が約10μmと小さい。そのために病変患部に均一に作用し、組織浸透性が高まる。さらに、移行する薬剤結晶42の寸法が小さいために過剰量の薬剤が、過剰時間、患部に留まることがなくなるために、毒性を発現することなく、高い狭窄抑制効果を示すことが可能であると考える。 In addition, the layer containing the drug crystal 42 having a long crystal form type has a small crystal size (length in the long axis direction) that moves to the tissue of about 10 μm. Therefore, it acts uniformly on the affected part of the lesion and increases tissue permeability. Furthermore, since the size of the transferred drug crystal 42 is small, an excessive amount of drug does not stay in the affected area for an excessive period of time, so that it is possible to exhibit a high stenosis suppressing effect without developing toxicity. Think.
 金属層37の外表面にコーティングされる薬剤は、非晶質(アモルファス)型を含んでもよい。薬剤結晶42や非晶質は、コート層40において規則性を有するように配置されてもよい。または、結晶や非晶質は、不規則に配置されてもよい。 The drug coated on the outer surface of the metal layer 37 may include an amorphous type. The drug crystal 42 and the amorphous may be arranged so as to have regularity in the coat layer 40. Alternatively, crystals and amorphous materials may be arranged irregularly.
 次に、バルーンカテーテル10の製造装置50について説明する。製造装置50は、バルーン30に金属層37およびコート層40を形成することができる。バルーンカテーテルの製造装置50は、図4、5に示すように、バルーンカテーテル10を回転させる回転機構部60と、バルーンカテーテル10を支持する支持台70とを有する。製造装置50は、さらに、金属層37の外表面にコーティング液45を塗布するディスペンシングチューブ94が設けられるコーティング液供給部90と、ディスペンシングチューブ94をバルーン30に対して移動させる移動機構部80とを有する。製造装置50は、さらに、金属層37に電流を供給する電流供給部110と、バルーン30の外表面に金属を蒸着して金属層37を形成する蒸着装置120と、製造装置50の各部位を制御する制御部100とを有する。 Next, the manufacturing apparatus 50 for the balloon catheter 10 will be described. The manufacturing apparatus 50 can form the metal layer 37 and the coat layer 40 on the balloon 30. As shown in FIGS. 4 and 5, the balloon catheter manufacturing apparatus 50 includes a rotation mechanism 60 that rotates the balloon catheter 10 and a support base 70 that supports the balloon catheter 10. The manufacturing apparatus 50 further includes a coating liquid supply unit 90 provided with a dispensing tube 94 that applies the coating liquid 45 to the outer surface of the metal layer 37, and a moving mechanism unit 80 that moves the dispensing tube 94 relative to the balloon 30. And have. The manufacturing apparatus 50 further includes a current supply unit 110 that supplies current to the metal layer 37, a vapor deposition apparatus 120 that deposits metal on the outer surface of the balloon 30 to form the metal layer 37, and each part of the manufacturing apparatus 50. And a control unit 100 for controlling.
 回転機構部60は、バルーンカテーテル10のハブ26を保持し、内蔵されるモータ等の駆動源によってバルーンカテーテル10を、バルーン30の軸心を中心に回転させる。バルーンカテーテル10は、ガイドワイヤルーメン24内に芯材61が挿通されて保持されるとともに、芯材61によってコーティング液45のガイドワイヤルーメン24内への流入が防止されている。また、バルーンカテーテル10は、拡張ルーメン23への流体の流通を操作するために、ハブ26の基端開口部27に、流路の開閉を操作可能な三方活栓が接続される。 The rotation mechanism unit 60 holds the hub 26 of the balloon catheter 10 and rotates the balloon catheter 10 about the axis of the balloon 30 by a built-in driving source such as a motor. In the balloon catheter 10, the core material 61 is inserted and held in the guide wire lumen 24, and the core material 61 prevents the coating liquid 45 from flowing into the guide wire lumen 24. In the balloon catheter 10, a three-way cock that can open and close the flow path is connected to the proximal end opening 27 of the hub 26 in order to control the flow of fluid to the expansion lumen 23.
 支持台70は、カテーテル本体20を内部に収容して回転可能に支持する管状の基端側支持部71と、芯材61を回転可能に支持する先端側支持部72とを備えている。なお、先端側支持部72は、可能であれば、芯材61ではなしにカテーテル本体20の先端部を回転可能に支持してもよい。 The support base 70 includes a tubular proximal end support portion 71 that accommodates the catheter main body 20 in a rotatable manner, and a distal end side support portion 72 that rotatably supports the core member 61. Note that the distal end side support portion 72 may rotatably support the distal end portion of the catheter body 20 instead of the core member 61 if possible.
 移動機構部80は、バルーン30の軸心と平行な方向へ直線的に移動可能な移動台81と、ディスペンシングチューブ94が固定されるチューブ固定部83とを備えている。移動台81は、内蔵されるモータ等の駆動源によって、直線的に移動可能である。移動台81が移動することで、ディスペンシングチューブ94がバルーン30の軸心と平行な方向へ直線的に移動する。また、移動台81は、コーティング液供給部90が載置されており、コーティング液供給部90を軸心に沿う両方向へ直線的に移動させる。 The moving mechanism unit 80 includes a moving table 81 that can move linearly in a direction parallel to the axis of the balloon 30 and a tube fixing unit 83 to which the dispensing tube 94 is fixed. The moving table 81 can move linearly by a driving source such as a built-in motor. As the moving table 81 moves, the dispensing tube 94 linearly moves in a direction parallel to the axis of the balloon 30. The moving table 81 has a coating liquid supply unit 90 mounted thereon, and linearly moves the coating liquid supply unit 90 in both directions along the axis.
 コーティング液供給部90は、バルーン30の表面の金属層37にコーティング液45を塗布する部位である。コーティング液供給部90は、コーティング液45を収容する容器92と、任意の送液量でコーティング液45を送液する送液ポンプ93と、コーティング液45を金属層37に塗布するディスペンシングチューブ94とを備えている。 The coating liquid supply unit 90 is a part that applies the coating liquid 45 to the metal layer 37 on the surface of the balloon 30. The coating liquid supply unit 90 includes a container 92 that stores the coating liquid 45, a liquid feeding pump 93 that feeds the coating liquid 45 in an arbitrary liquid feeding amount, and a dispensing tube 94 that applies the coating liquid 45 to the metal layer 37. And.
 送液ポンプ93は、例えばシリンジポンプであり、制御部100によって制御されて、容器92から吸引チューブ91を介してコーティング液45を吸引し、供給チューブ96を介してディスペンシングチューブ94へコーティング液45を任意の送液量で供給できる。送液ポンプ93は、移動台81に設置され、移動台81の移動により直線的に移動可能である。なお、送液ポンプ93は、コーティング液45を送液可能であればシリンジポンプに限定されず、例えばチューブポンプであってもよい。 The liquid feed pump 93 is, for example, a syringe pump, and is controlled by the control unit 100 to suck the coating liquid 45 from the container 92 through the suction tube 91 and to the dispensing tube 94 through the supply tube 96. Can be supplied at an arbitrary liquid feeding amount. The liquid feed pump 93 is installed on the moving table 81 and can move linearly by the movement of the moving table 81. The liquid feed pump 93 is not limited to a syringe pump as long as the coating liquid 45 can be fed, and may be a tube pump, for example.
 ディスペンシングチューブ94は、供給チューブ96と連通しており、送液ポンプ93から供給チューブ96を介して供給されるコーティング液45を、バルーン30の表面の金属層37へ吐出する。ディスペンシングチューブ94は、可撓性を備えた円管状の部材である。ディスペンシングチューブ94は、チューブ固定部83に上端が固定されており、チューブ固定部83から鉛直方向下方へ延在し、下端である吐出端97に開口部95が形成されている。ディスペンシングチューブ94は、移動台81を移動させることで、移動台81に設置される送液ポンプ93とともに、バルーンカテーテル10の軸心方向に沿う両方向へ直線的に移動可能である。ディスペンシングチューブ94は金属層37に押し付けられて撓んだ状態で、コーティング液45を金属層37に供給可能である。 The dispensing tube 94 communicates with the supply tube 96 and discharges the coating liquid 45 supplied from the liquid feed pump 93 through the supply tube 96 to the metal layer 37 on the surface of the balloon 30. The dispensing tube 94 is a flexible tubular member. The dispensing tube 94 has an upper end fixed to the tube fixing portion 83, extends vertically downward from the tube fixing portion 83, and has an opening 95 at the discharge end 97 that is the lower end. The dispensing tube 94 can move linearly in both directions along the axial direction of the balloon catheter 10 together with the liquid feed pump 93 installed on the moving table 81 by moving the moving table 81. The dispensing tube 94 can supply the coating liquid 45 to the metal layer 37 in a state where the dispensing tube 94 is pressed against the metal layer 37 and is bent.
 なお、ディスペンシングチューブ94は、コーティング液45を供給可能であれば、円管状でなくてもよい。また、ディスペンシングチューブ94は、開口部95からコーティング液45を吐出可能であれば、鉛直方向に延在していなくてもよい。また、ディスペンシングチューブ94は、金属層37の外表面から離れた位置で金属層37へコーティング液45を供給してもよい。 The dispensing tube 94 may not be a circular tube as long as the coating liquid 45 can be supplied. The dispensing tube 94 may not extend in the vertical direction as long as the coating liquid 45 can be discharged from the opening 95. The dispensing tube 94 may supply the coating liquid 45 to the metal layer 37 at a position away from the outer surface of the metal layer 37.
 ディスペンシングチューブ94は、金属層37への接触負担を低減し、かつバルーン30の回転に伴う接触位置の変化を撓みにより吸収できるように、柔軟な材料であることが好ましい。ディスペンシングチューブ94の構成材料は、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、環状ポリオレフィン、ポリエステル、ポリアミド、ポリウレタン、PTFE(ポリテトラフルオロエチレン)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(四フッ化エチレン・六フッ化プロピレン共重合体)等のフッ素系樹脂等を適用できるが、可撓性を有して変形可能であれば、特に限定されない。 The dispensing tube 94 is preferably made of a flexible material so as to reduce the contact load on the metal layer 37 and absorb the change in the contact position accompanying the rotation of the balloon 30 by bending. The constituent material of the dispensing tube 94 is, for example, polyolefin such as polyethylene and polypropylene, cyclic polyolefin, polyester, polyamide, polyurethane, PTFE (polytetrafluoroethylene), ETFE (tetrafluoroethylene / ethylene copolymer), PFA (tetra Fluororesin such as fluoroethylene / perfluoroalkyl vinyl ether copolymer) or FEP (tetrafluoroethylene / hexafluoropropylene copolymer) can be applied, but if it is flexible and deformable There is no particular limitation.
 ディスペンシングチューブ94の外径は、特に限定されないが、例えば0.1mm~5.0mm、好ましくは0.15mm~3.0mm、より好ましくは0.3mm~2.5mmである。ディスペンシングチューブ94の内径は、特に限定されないが、例えば0.05mm~3.0mm、好ましくは0.1mm~2.0mm、より好ましくは0.15mm~1.5mmである。ディスペンシングチューブ94の長さは、特に限定されないが、バルーン直径の5倍以内の長さであることがよく、例えば1.0mm~50mm、好ましくは3mm~40mm、より好ましくは5mm~35mmである。 The outer diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.1 mm to 5.0 mm, preferably 0.15 mm to 3.0 mm, and more preferably 0.3 mm to 2.5 mm. The inner diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.05 mm to 3.0 mm, preferably 0.1 mm to 2.0 mm, and more preferably 0.15 mm to 1.5 mm. The length of the dispensing tube 94 is not particularly limited, but is preferably within 5 times the balloon diameter, for example, 1.0 mm to 50 mm, preferably 3 mm to 40 mm, more preferably 5 mm to 35 mm. .
 電流供給部110は、バルーン30の表面の金属層37に電流を印可する部位である。金属層37は、電流が流れることで発熱し、塗布されるコーティング液45の溶媒を揮発させる。電流供給部110は、バルーン30の先端部および基端部に摺動可能に接触する2つの端子111と、端子111に電流を供給する電源112とを有している。端子111は、電源112から供給される電流を、接触する金属層37へ流すことができる。電源112は、端子111に直流または交流の電流を供給する。電源112は、供給する電流の電圧、電流および周波数を調節可能である。2つの端子111は、金属層37のコート層40が形成される範囲(コーティング液45が塗布される範囲)と異なる位置に接触する。端子111が接触する位置は、例えば、テーパ部33(図2を参照)である。これにより、コート層40の形成が、端子111により阻害されない。端子111は、バルーン30および金属層37が損傷しないように、柔軟であることが好ましい。端子111は、金属層37に確実に接触するように、例えば二股構造を有している。なお、端子111の形状は、金属層37と摺動可能に接触できれば、特に限定されず、例えば1本の棒状であってもよい。また、バルーン30の回転を停止した状態で金属層37を発熱させてコーティング液45の溶媒を揮発させるのであれば、端子111は、金属層37に効果的に電流を流すことができるように、クリップのような挟持できる構造であってもよい。 The current supply unit 110 is a part that applies current to the metal layer 37 on the surface of the balloon 30. The metal layer 37 generates heat when an electric current flows, and volatilizes the solvent of the coating liquid 45 to be applied. The current supply unit 110 includes two terminals 111 that are slidably in contact with the distal end portion and the proximal end portion of the balloon 30, and a power source 112 that supplies current to the terminal 111. The terminal 111 can flow a current supplied from the power source 112 to the metal layer 37 in contact with the terminal 111. The power source 112 supplies a direct current or an alternating current to the terminal 111. The power source 112 can adjust the voltage, current and frequency of the current to be supplied. The two terminals 111 are in contact with a position different from a range where the coating layer 40 of the metal layer 37 is formed (a range where the coating liquid 45 is applied). The position where the terminal 111 contacts is, for example, the tapered portion 33 (see FIG. 2). Thereby, the formation of the coat layer 40 is not inhibited by the terminals 111. The terminal 111 is preferably flexible so that the balloon 30 and the metal layer 37 are not damaged. The terminal 111 has, for example, a bifurcated structure so as to contact the metal layer 37 reliably. In addition, the shape of the terminal 111 will not be specifically limited if it can contact the metal layer 37 so that sliding is possible, For example, one rod shape may be sufficient. Further, if the metal layer 37 is heated while the rotation of the balloon 30 is stopped to volatilize the solvent of the coating liquid 45, the terminal 111 can effectively pass a current through the metal layer 37. The structure which can be clamped like a clip may be sufficient.
 蒸着装置120は、バルーン30の外表面に金属を蒸着して金属層37を形成する装置である。蒸着装置120は、公知のものを使用できる。蒸着装置120は、例えば、真空蒸着装置である。 The deposition apparatus 120 is an apparatus that forms a metal layer 37 by depositing metal on the outer surface of the balloon 30. The vapor deposition apparatus 120 can use a well-known thing. The vapor deposition apparatus 120 is a vacuum vapor deposition apparatus, for example.
 制御部100は、例えばコンピュータにより構成され、回転機構部60、移動機構部80、コーティング液供給部90および電流供給部110を統括的に制御する。したがって、制御部100は、バルーン30の回転速度、ディスペンシングチューブ94のバルーン30に対する軸心方向への移動速度、ディスペンシングチューブ94からの薬剤吐出速度、電流供給部110の電圧、電流および周波数等を、統括的に制御できる。 The control unit 100 is configured by a computer, for example, and comprehensively controls the rotation mechanism unit 60, the movement mechanism unit 80, the coating liquid supply unit 90, and the current supply unit 110. Therefore, the control unit 100 determines the rotational speed of the balloon 30, the moving speed of the dispensing tube 94 in the axial direction relative to the balloon 30, the drug discharge speed from the dispensing tube 94, the voltage, current, and frequency of the current supply unit 110. Can be comprehensively controlled.
 ディスペンシングチューブ94により金属層37に供給されるコーティング液45は、コート層40の構成材料を含む溶液または懸濁液であり、水不溶性薬剤、添加剤、溶媒を含んでいる。コーティング液45がバルーン30の外表面の金属層37に供給された後、溶媒が揮発することで、金属層37の外表面に、独立した長軸を有して延在する水不溶性の薬剤結晶42を有するコート層40が形成される。 The coating liquid 45 supplied to the metal layer 37 by the dispensing tube 94 is a solution or suspension containing the constituent material of the coat layer 40, and contains a water-insoluble drug, an additive, and a solvent. After the coating liquid 45 is supplied to the metal layer 37 on the outer surface of the balloon 30, the solvent is volatilized, so that the water-insoluble drug crystal extending on the outer surface of the metal layer 37 with an independent long axis extends. A coat layer 40 having 42 is formed.
 コーティング液45の粘度は、0.2~500cP、好ましくは0.2~50cP、より好ましくは0.2~10cPである。 The viscosity of the coating liquid 45 is 0.2 to 500 cP, preferably 0.2 to 50 cP, more preferably 0.2 to 10 cP.
 水不溶性薬剤とは、水に不溶または難溶性である薬剤を意味し、具体的には、水に対する溶解度が、pH5~8で5mg/mL未満である。その溶解度は、1mg/mL未満、さらに、0.1mg/mL未満でもよい。水不溶性薬剤は脂溶性薬剤を含む。 Water-insoluble drug means a drug that is insoluble or sparingly soluble in water. Specifically, the solubility in water is less than 5 mg / mL at pH 5-8. Its solubility may be less than 1 mg / mL and even less than 0.1 mg / mL. Water-insoluble drugs include fat-soluble drugs.
 いくつかの好ましい水不溶性薬剤の例は、免疫抑制剤、例えば、シクロスポリンを含むシクロスポリン類、ラパマイシン等の免疫活性剤、パクリタキセル等の抗がん剤、抗ウイルス剤または抗菌剤、抗新生組織剤、鎮痛剤および抗炎症剤、抗生物質、抗てんかん剤、不安緩解剤、抗麻痺剤、拮抗剤、ニューロンブロック剤、抗コリン作動剤およびコリン作動剤、抗ムスカリン剤およびムスカリン剤、抗アドレナリン作用剤、抗不整脈剤、抗高血圧剤、ホルモン剤ならびに栄養剤を含む。 Examples of some preferred water-insoluble drugs include immunosuppressants, such as cyclosporines including cyclosporine, immunoactive agents such as rapamycin, anticancer agents such as paclitaxel, antiviral or antibacterial agents, anti-neoplastic agents, Analgesics and anti-inflammatory agents, antibiotics, antiepileptics, anxiolytics, antiparalytic agents, antagonists, neuron blocking agents, anticholinergics and cholinergic agents, antimuscarinic and muscarinic agents, antiadrenergic agents, Contains antiarrhythmic, antihypertensive, hormonal and nutritional agents.
 水不溶性薬剤は、パクリタキセルおよびパクリタキセル誘導体、タキサン、ドセタキセルならびにラパマイシンおよびラパマイシン誘導体、例えば、バイオリムスA9、ピメクロリムス、エベロリムス、ゾタロリムス、タクロリムス、ファスジルおよびエポチロンが好ましく、パクリタキセルおよびラパマイシン、ドセタキセル、エベロリムスが特に好ましい。本明細書においてラパマイシン、パクリタキセル、ドセタキセル、エベロリムスとは、同様の薬効を有する限りそれらの類似体および/またはそれらの誘導体を含む。例えば、パクリタキセルとドセタキセルは類似体の関係にある。ラパマイシンとエベロリムスは誘導体の関係にある。これらのうちでは、パクリタキセルがさらに好ましい。 Water-insoluble drugs are preferably paclitaxel and paclitaxel derivatives, taxanes, docetaxel and rapamycin and rapamycin derivatives, such as biolimus A9, pimecrolimus, everolimus, zotarolimus, tacrolimus, fasudil and epothilone, paclitaxel and rapamycin, especially docetaxel, and evelimel. In the present specification, rapamycin, paclitaxel, docetaxel, and everolimus include analogs and / or derivatives thereof as long as they have similar medicinal effects. For example, paclitaxel and docetaxel are in an analog relationship. Rapamycin and everolimus are in a derivative relationship. Of these, paclitaxel is more preferred.
 添加剤41は、水溶性の低分子化合物を含む。水溶性の低分子化合物の分子量は、50~2000であり、好ましくは50~1000であり、より好ましくは50~500であり、さらに好ましくは50~200である。水溶性の低分子化合物は、水不溶性薬剤100質量部に対して、好ましくは5~10000質量部、より好ましくは5~200質量部、さらに好ましくは8~150質量部である。水溶性の低分子化合物の構成材料は、セリンエチルエステル、クエン酸エステル、ポリソルベート、水溶性ポリマー、糖、造影剤、アミノ酸エステル、短鎖モノカルボン酸のグリセロールエステル、医薬として許容される塩および界面活性剤等、あるいはこれら二種以上の混合物等が使用できる。水溶性の低分子化合物は、親水基と疎水基を有し、水に溶解することを特徴とする。水溶性の低分子化合物は、非膨潤性または難膨潤性であることが好ましい。添加剤41は、金属層37上でアモルファス(非晶質)であることが好ましい。水溶性の低分子化合物を含む添加剤41は、金属層37の外表面上で水不溶性薬剤を均一に分散させる効果を有する。さらに、血管内でのバルーン30の拡張時に添加剤41が溶解しやすくなることで、金属層37の外表面上の水不溶性薬剤の結晶粒子を放出しやすくなり、血管への薬剤の結晶粒子の付着量を増加させる効果を有する。添加剤41は、ハイドロゲルでないことが好ましい。添加剤41は低分子化合物であることで、水溶液に接すると膨潤することなく速やかに溶解する。さらに、血管内でのバルーン30の拡張時に添加剤41が溶解しやすくなることで、金属層37の外表面上の水不溶性の薬剤結晶42の粒子を放出しやすくなり、血管への薬剤結晶42の付着量を増加させる効果を有する。添加剤41がウルトラビスト(Ultravist)(登録商標)のような造影剤からなるマトリクスである場合、結晶粒子がマトリクスに埋め込まれ、金属層37上からマトリクスの外側に向かって結晶が生成しない。これに対し、本実施形態の薬剤結晶42は、金属層37の表面から添加剤41の外側まで延在することができる。 Additive 41 includes a water-soluble low molecular weight compound. The molecular weight of the water-soluble low molecular weight compound is 50 to 2000, preferably 50 to 1000, more preferably 50 to 500, and further preferably 50 to 200. The water-soluble low molecular weight compound is preferably 5 to 10,000 parts by weight, more preferably 5 to 200 parts by weight, and still more preferably 8 to 150 parts by weight with respect to 100 parts by weight of the water-insoluble drug. The constituent materials of water-soluble low molecular weight compounds are serine ethyl ester, citrate ester, polysorbate, water-soluble polymer, sugar, contrast agent, amino acid ester, glycerol ester of short-chain monocarboxylic acid, pharmaceutically acceptable salt and interface An activator or the like, or a mixture of two or more of these can be used. The water-soluble low molecular weight compound has a hydrophilic group and a hydrophobic group and is characterized by being dissolved in water. The water-soluble low molecular weight compound is preferably non-swellable or hardly swellable. The additive 41 is preferably amorphous (amorphous) on the metal layer 37. The additive 41 containing a water-soluble low-molecular compound has an effect of uniformly dispersing the water-insoluble drug on the outer surface of the metal layer 37. Furthermore, since the additive 41 is easily dissolved when the balloon 30 is expanded in the blood vessel, the water-insoluble drug crystal particles on the outer surface of the metal layer 37 can be easily released, and the drug crystal particles in the blood vessel are released. It has the effect of increasing the amount of adhesion. The additive 41 is preferably not a hydrogel. Since the additive 41 is a low molecular weight compound, it dissolves rapidly without swelling when in contact with an aqueous solution. Furthermore, since the additive 41 is easily dissolved when the balloon 30 is expanded in the blood vessel, the particles of the water-insoluble drug crystal 42 on the outer surface of the metal layer 37 are easily released, and the drug crystal 42 into the blood vessel. It has the effect of increasing the amount of adhesion. When the additive 41 is a matrix made of a contrast agent such as Ultravist (registered trademark), crystal particles are embedded in the matrix, and crystals are not generated from the metal layer 37 toward the outside of the matrix. On the other hand, the drug crystal 42 of the present embodiment can extend from the surface of the metal layer 37 to the outside of the additive 41.
 溶媒は、金属層37のコート層40を形成する全範囲へのコーティング液45の塗布が完了するまで、塗布した全範囲でコーティング液45に残存しているように、揮発性が低いことが好ましい。溶媒は、有機溶媒および水の少なくとも一方を含んでいる。 It is preferable that the solvent has low volatility so that the solvent remains in the coating liquid 45 in the entire applied range until the application of the coating liquid 45 to the entire range in which the coating layer 40 of the metal layer 37 is formed is completed. . The solvent contains at least one of an organic solvent and water.
 有機溶媒は、特に限定されず、テトラヒドロフラン、アセトン、グリセリン、酢酸、ベンゼン、クロロヘキサン、o-ジクロロベンゼン、o-キシレン、p-キシレン、シクロヘキサノール、スチレン、シクロヘキサン、エタノール、メタノール、ジクロロメタン、ヘキサン、エチルアセテート、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、プロパノール、ブタノール、トルエン、エチレングリコール等である。中でも、テトラヒドロフラン、エタノール、アセトンのうち、これらのいくつかの混合溶媒が好ましい。 The organic solvent is not particularly limited, and tetrahydrofuran, acetone, glycerin, acetic acid, benzene, chlorohexane, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, ethanol, methanol, dichloromethane, hexane, Examples thereof include ethyl acetate, i-butyl alcohol, s-butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Among these, some of these mixed solvents are preferable among tetrahydrofuran, ethanol, and acetone.
 有機溶媒と水の混合例として、例えば、テトラヒドロフランと水、テトラヒドロフランとエタノールと水、テトラヒドロフランとアセトンと水、アセトンとエタノールと水、テトラヒドロフランとアセトンとエタノールと水が挙げられる。 Examples of the organic solvent and water mixture include, for example, tetrahydrofuran and water, tetrahydrofuran and ethanol and water, tetrahydrofuran and acetone and water, acetone and ethanol and water, and tetrahydrofuran, acetone, ethanol, and water.
 揮発性の低い溶媒は、例えば水、酢酸、ベンゼン、クロロヘキサン、グリセリン、エタノール、ヘキサン、エチルアセテート、o-ジクロロベンゼン、o-キシレン、p-キシレン、シクロヘキサノール、スチレン、シクロヘキサン、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、プロパノール、ブタノール、トルエン、エチレングリコール等が挙げられる。溶媒の揮発性は、例えば、溶液の粘度、溶液の濃度(溶媒の含有比率)等より調節できる。 Low volatile solvents include, for example, water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol , S-butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, ethylene glycol and the like. The volatility of the solvent can be adjusted by, for example, the viscosity of the solution, the concentration of the solution (solvent content ratio), and the like.
 次に、上述したバルーンカテーテル10の製造装置50を用いてバルーン30の外表面の金属層37に水不溶性の薬剤結晶42を形成する方法を説明する。 Next, a method of forming the water-insoluble drug crystal 42 on the metal layer 37 on the outer surface of the balloon 30 using the manufacturing apparatus 50 for the balloon catheter 10 described above will be described.
 初めに、バルーン30の外表面に、公知の蒸着装置120によって金属層37を形成する。なお、バルーンカテーテル10の金属層37を形成しない部位に、マスキング等を施すことで、バルーン30の表面にのみ、金属層37を形成できる。 First, a metal layer 37 is formed on the outer surface of the balloon 30 by a known vapor deposition device 120. Note that the metal layer 37 can be formed only on the surface of the balloon 30 by performing masking or the like on the portion of the balloon catheter 10 where the metal layer 37 is not formed.
 次に、バルーンカテーテル10の基端開口部27に接続した三方活栓を介して拡張用の流体をバルーン30内に供給する。次に、バルーン30を拡張させた状態で三方活栓を操作して拡張ルーメン23を密封し、バルーン30を拡張させた状態を維持する。バルーン30は、血管内での使用時の圧力(例えば8気圧)よりも低い圧力(例えば4気圧)で拡張される。なお、バルーン30を拡張させずに、バルーン30の外表面にコート層40を形成することもでき、その場合には、拡張用の流体をバルーン30内に供給する必要はない。 Next, an expansion fluid is supplied into the balloon 30 through a three-way cock connected to the proximal end opening 27 of the balloon catheter 10. Next, the three-way cock is operated in a state where the balloon 30 is expanded to seal the expansion lumen 23, and the state where the balloon 30 is expanded is maintained. The balloon 30 is expanded at a pressure (for example, 4 atmospheres) lower than a pressure (for example, 8 atmospheres) at the time of use in the blood vessel. Note that the coating layer 40 can also be formed on the outer surface of the balloon 30 without expanding the balloon 30, and in this case, it is not necessary to supply the expansion fluid into the balloon 30.
 次に、ディスペンシングチューブ94がバルーン30の外表面と接触しない状態で、バルーンカテーテル10を支持台70に回転可能に設置し、ハブ26を回転機構部60に連結する。 Next, in a state where the dispensing tube 94 is not in contact with the outer surface of the balloon 30, the balloon catheter 10 is rotatably installed on the support base 70, and the hub 26 is connected to the rotation mechanism 60.
 次に、移動台81の位置を調節して、ディスペンシングチューブ94を、バルーン30に対して位置決めする。このとき、バルーン30においてコート層40を形成する最も先端側の位置に、ディスペンシングチューブ94を位置決めする。一例として、ディスペンシングチューブ94の延在方向(吐出方向)は、図5に示すように、バルーン30の回転方向と逆方向である。したがって、バルーン30は、ディスペンシングチューブ94を接触させた位置において、ディスペンシングチューブ94からのコーティング液45の吐出方向と逆方向に回転する。これにより、コーティング液45に物理的な刺激を与え、薬剤結晶の結晶核の形成を促すことができる。そして、ディスペンシングチューブ94の開口部95へ向かう延在方向(吐出方向)が、バルーン30の回転方向と逆方向であることで、バルーン30の表面の金属層37に形成される水不溶性薬剤の結晶は、結晶が各々独立した長軸を有する複数の薬剤結晶42を含む形態型(morphological form)を含んで形成されやすい。なお、ディスペンシングチューブ94の延在方向は、バルーン30の回転方向と逆方向でなくてもよく、したがって同方向とすることができ、または垂直とすることもできる。 Next, the position of the moving table 81 is adjusted, and the dispensing tube 94 is positioned with respect to the balloon 30. At this time, the dispensing tube 94 is positioned at the most distal end position where the coating layer 40 is formed in the balloon 30. As an example, the extending direction (discharge direction) of the dispensing tube 94 is opposite to the rotation direction of the balloon 30 as shown in FIG. Accordingly, the balloon 30 rotates in the direction opposite to the direction in which the coating liquid 45 is discharged from the dispensing tube 94 at the position where the dispensing tube 94 is brought into contact. Thereby, physical stimulation can be given to the coating liquid 45 and formation of the crystal nucleus of a drug crystal can be promoted. The extending direction (discharge direction) toward the opening 95 of the dispensing tube 94 is the direction opposite to the rotation direction of the balloon 30, so that the water-insoluble drug formed on the metal layer 37 on the surface of the balloon 30. The crystal is easily formed to include a morphological form including a plurality of drug crystals 42 each having an independent major axis. The extending direction of the dispensing tube 94 does not have to be the reverse direction of the rotation direction of the balloon 30, and can therefore be the same direction or can be perpendicular.
 次に、図4、5に示すように、回転機構部60によりバルーンカテーテル10を回転させる。続いて、送液ポンプ93により送液量を調節してコーティング液45をディスペンシングチューブ94へ供給しつつ、移動台81を移動させて、ディスペンシングチューブ94をバルーン30の軸心方向に沿って徐々に基端方向へ移動させる。ディスペンシングチューブ94の開口部95から吐出されるコーティング液45は、ディスペンシングチューブ94がバルーン30に対して相対的に移動することで、金属層37の外周面に螺旋を描きつつ塗布される。バルーン30が回転していることで、金属層37の外周面に塗布されたコーティング液45が周方向に均一となりやすい。 Next, as shown in FIGS. 4 and 5, the balloon catheter 10 is rotated by the rotation mechanism 60. Subsequently, while the amount of liquid fed is adjusted by the liquid feed pump 93 and the coating liquid 45 is supplied to the dispensing tube 94, the moving table 81 is moved to move the dispensing tube 94 along the axial direction of the balloon 30. Gradually move toward the proximal direction. The coating liquid 45 discharged from the opening 95 of the dispensing tube 94 is applied while drawing a spiral on the outer peripheral surface of the metal layer 37 as the dispensing tube 94 moves relative to the balloon 30. By rotating the balloon 30, the coating liquid 45 applied to the outer peripheral surface of the metal layer 37 tends to be uniform in the circumferential direction.
 ディスペンシングチューブ94の移動速度は、特に限定されないが、例えば0.01~2mm/sec、好ましくは0.03~1.5mm/sec、より好ましくは0.05~1.0mm/secである。コーティング液45のディスペンシングチューブ94からの吐出速度は、特に限定されないが、例えば0.01~1.5μL/sec、好ましくは0.01~1.0μL/sec、より好ましくは0.03~0.8μL/secである。バルーン30の回転速度は、特に限定されないが、例えば10~300rpm、好ましくは30~250rpm、より好ましくは50~200rpmである。コーティング液45を塗布する際のバルーン30の直径は、特に限定されないが、例えば1~10mm、好ましくは2~7mmである。 The moving speed of the dispensing tube 94 is not particularly limited, but is, for example, 0.01 to 2 mm / sec, preferably 0.03 to 1.5 mm / sec, and more preferably 0.05 to 1.0 mm / sec. The discharge speed of the coating liquid 45 from the dispensing tube 94 is not particularly limited, but is, for example, 0.01 to 1.5 μL / sec, preferably 0.01 to 1.0 μL / sec, more preferably 0.03 to 0. .8 μL / sec. The rotation speed of the balloon 30 is not particularly limited, but is, for example, 10 to 300 rpm, preferably 30 to 250 rpm, and more preferably 50 to 200 rpm. The diameter of the balloon 30 when applying the coating liquid 45 is not particularly limited, but is, for example, 1 to 10 mm, preferably 2 to 7 mm.
 そして、バルーン30を回転させつつディスペンシングチューブ94を徐々にバルーン30の軸心方向へ移動させる。これにより、バルーン30の表面の金属層37に、軸心方向へ向かって、コーティング液45の層を徐々に形成する。金属層37のコーティングする範囲の全体に、コーティング液45の層が形成された後、移動機構部80およびコーティング液供給部90を停止させる。コーティング液45に含まれる溶媒は、揮発性が低いため、金属層37のコート層40を形成する全範囲へのコーティング液45の塗布が完了した後も、金属層37上のコーティング液45を塗布した全範囲において、溶媒が残存している。 Then, the dispensing tube 94 is gradually moved in the axial direction of the balloon 30 while rotating the balloon 30. Thereby, the layer of the coating liquid 45 is gradually formed on the metal layer 37 on the surface of the balloon 30 in the axial direction. After the layer of the coating liquid 45 is formed over the entire coating range of the metal layer 37, the moving mechanism unit 80 and the coating liquid supply unit 90 are stopped. Since the solvent contained in the coating liquid 45 is low in volatility, the coating liquid 45 on the metal layer 37 is applied even after the coating liquid 45 is completely applied to the entire area where the coating layer 40 of the metal layer 37 is formed. In the entire range, the solvent remains.
 この後、ディスペンシングチューブ94を金属層37から離す。次に、図6に示すように、端子111をバルーン30の先端部および基端部に接触させた状態で、制御部100は、電源112に端子111へ電流を供給させる。これにより、金属層37に電流が流れて金属層37が発熱し、バルーン30に塗布されたコーティング液45の溶媒の揮発が促進される。このとき、バルーン30が回転し、コーティング液45の溶媒が塗布した全範囲で残存している状態で、コーティング液45を加熱するため、コーティング液45の均一性を維持しつつ、塗布した全範囲の薬剤の結晶化を同一条件で同時に促すことができる。このため、バルーン30の外表面に薬剤結晶42を均一に形成できる。また、バルーン30の外表面の薬剤結晶42の形態型の制御が容易となる。所定の時間が経過し、溶媒が完全に揮発してコート層40が形成された後、制御部100は、電源112からの電流の供給を停止させ、バルーン30の回転を停止させる。なお、電源112からの電流の供給の停止およびバルーン30の回転の停止は、溶媒の揮発が完全に終了する前に行われてもよい。 Thereafter, the dispensing tube 94 is separated from the metal layer 37. Next, as illustrated in FIG. 6, the control unit 100 causes the power supply 112 to supply current to the terminal 111 in a state where the terminal 111 is in contact with the distal end portion and the proximal end portion of the balloon 30. As a result, a current flows through the metal layer 37, the metal layer 37 generates heat, and the volatilization of the solvent of the coating liquid 45 applied to the balloon 30 is promoted. At this time, the balloon 30 is rotated and the coating liquid 45 is heated in a state where the solvent of the coating liquid 45 remains in the whole range applied, so that the coating liquid 45 is kept uniform while maintaining the uniformity of the coating liquid 45. It is possible to simultaneously promote crystallization of the drugs under the same conditions. For this reason, the drug crystal 42 can be uniformly formed on the outer surface of the balloon 30. In addition, control of the morphological type of the drug crystal 42 on the outer surface of the balloon 30 is facilitated. After the predetermined time has elapsed and the solvent is completely volatilized to form the coat layer 40, the control unit 100 stops the supply of current from the power source 112 and stops the rotation of the balloon 30. Note that the supply of current from the power source 112 and the rotation of the balloon 30 may be stopped before the volatilization of the solvent is completely completed.
 バルーン30の外表面の金属層37に塗布されたコーティング溶液に含まれる有機溶媒は、水よりも先に揮発する。したがって、金属層37の外表面に、水不溶性薬剤、水溶性低分子化合物および水が残された状態で、有機溶媒が揮発する。このように、水が残された状態で有機溶媒が揮発すると、水不溶性の薬剤が、水を含む水溶性低分子化合物の内部で析出し、結晶核から結晶が徐々に成長して、バルーン30の外表面に、結晶が各々独立した長軸を有する複数の結晶を含む形態型(morphological form)の薬剤結晶42が形成される。薬剤結晶42の基部は、金属層37の外表面、添加剤41の表面または添加剤41内部に位置する(図3を参照)。有機溶媒が揮発して薬剤結晶42が析出した後、水が有機溶媒よりもゆっくり蒸発し、水溶性低分子化合物を含む添加剤41が形成される。水が蒸発する時間は、薬剤の種類、水溶性低分子化合物の種類、有機溶媒の種類、材料の比率、コーティング溶液の塗布量等に応じて適宜設定されるが、例えば、1~600秒程度である。 The organic solvent contained in the coating solution applied to the metal layer 37 on the outer surface of the balloon 30 is volatilized before water. Therefore, the organic solvent is volatilized in a state where the water-insoluble drug, the water-soluble low-molecular compound and water are left on the outer surface of the metal layer 37. As described above, when the organic solvent is volatilized with water remaining, a water-insoluble drug is precipitated inside the water-soluble low-molecular compound containing water, and the crystal gradually grows from the crystal nucleus. A morphological drug crystal 42 containing a plurality of crystals each having an independent long axis is formed on the outer surface of the film. The base of the drug crystal 42 is located on the outer surface of the metal layer 37, the surface of the additive 41, or inside the additive 41 (see FIG. 3). After the organic solvent is volatilized and the drug crystals 42 are deposited, water is evaporated more slowly than the organic solvent, and an additive 41 containing a water-soluble low-molecular compound is formed. The time for which water evaporates is appropriately set according to the type of drug, the type of water-soluble low molecular weight compound, the type of organic solvent, the ratio of materials, the amount of coating solution applied, etc., for example, about 1 to 600 seconds It is.
 次に、バルーンカテーテル10を支持台70から取り外す。次に、バルーン30から拡張用流体を排出し、バルーン30を収縮させて折り畳む。これにより、バルーンカテーテル10の製造が完了する。 Next, the balloon catheter 10 is removed from the support base 70. Next, the expansion fluid is discharged from the balloon 30, and the balloon 30 is contracted and folded. Thereby, manufacture of the balloon catheter 10 is completed.
 バルーン30は、図7(A)に示すように、内部に拡張用流体が注入された状態で断面略円形状を有する。この状態から、バルーン30は、突出する羽根部32が形成されることで、図7(B)に示すように、羽根部32の外側面を構成する羽根外側部34aと、羽根部32の内側面を構成する羽根内側部34bと、羽根外側部34aと羽根内側部34bの間に位置する中間部34cとが形成される。この状態から、図7(C)に示すように、径方向外側へ突出する羽根部32が、周方向へ折り畳まれる。バルーン30の羽根部32が折り畳まれると、羽根部32の外側面を構成する羽根外側部34aと、羽根部32の内側面を構成する羽根内側部34bと、羽根外側部34aと羽根内側部34bの間に位置する中間部34cとが形成される。バルーン30の羽根部32が折り畳まれると、羽根内側部34bと中間部34cが重なって接触し、バルーン30の外表面同士が対向して重なる重複部35が形成される。そして、中間部34cの一部および羽根外側部34aは、羽根内側部34bに覆われず、外側に露出する。また、バルーン30が折り畳まれた状態では、羽根部32の根元部と中間部34cとの間に、根元側空間部36が形成される。根元側空間部36の領域では、羽根部32と中間部34cとの間に、微小な隙間が形成される。一方、羽根部32の根元側空間部36よりも先端側の領域は、中間部34cに対して密接した状態となっている。羽根部32の周方向長さに対する根元側空間部36の周方向長さの割合は、1~95%の範囲である。バルーン30の羽根外側部34aは、バルーン30を折り畳むためのブレードから周方向に擦れるような押圧力を受け、さらに加熱される。これにより、羽根外側部34aに設けられる長尺な薬剤結晶42がバルーン30の表面に倒れて寝やすい。なお、薬剤結晶42の全てが寝る必要はない。 As shown in FIG. 7A, the balloon 30 has a substantially circular cross section in a state where the expansion fluid is injected therein. From this state, the balloon 30 is formed with the protruding blade portion 32, so that the blade outer portion 34a constituting the outer surface of the blade portion 32 and the inner portion of the blade portion 32 are formed as shown in FIG. A blade inner portion 34b constituting the side surface and an intermediate portion 34c located between the blade outer portion 34a and the blade inner portion 34b are formed. From this state, as shown in FIG. 7C, the blade portion 32 protruding outward in the radial direction is folded in the circumferential direction. When the blade portion 32 of the balloon 30 is folded, the blade outer portion 34a that forms the outer surface of the blade portion 32, the blade inner portion 34b that forms the inner surface of the blade portion 32, the blade outer portion 34a, and the blade inner portion 34b. An intermediate portion 34c located between the two is formed. When the blade portion 32 of the balloon 30 is folded, the blade inner portion 34b and the intermediate portion 34c overlap and come into contact with each other, and an overlapping portion 35 is formed in which the outer surfaces of the balloon 30 face each other and overlap. And a part of intermediate part 34c and the blade | wing outer side part 34a are not covered with the blade | wing inner side part 34b, but are exposed outside. Further, in a state where the balloon 30 is folded, a root-side space portion 36 is formed between the root portion of the blade portion 32 and the intermediate portion 34c. In the area of the root side space part 36, a minute gap is formed between the blade part 32 and the intermediate part 34c. On the other hand, the region on the tip side of the base side space portion 36 of the blade portion 32 is in close contact with the intermediate portion 34c. The ratio of the circumferential length of the base side space portion 36 to the circumferential length of the blade portion 32 is in the range of 1 to 95%. The blade outer portion 34a of the balloon 30 receives a pressing force that rubs in the circumferential direction from a blade for folding the balloon 30, and is further heated. As a result, the long drug crystal 42 provided on the blade outer portion 34 a falls down on the surface of the balloon 30 and is easy to sleep. It is not necessary for all of the drug crystal 42 to sleep.
 また、バルーン30の重複部35において重なる外表面は、外部に露出しないため、折り畳む際に、ブレードから押圧力が間接的に作用する。このため、バルーン30の重複部35において重なる外表面に設けられる薬剤結晶42に作用する力を、強くなり過ぎないように調節することが容易である。したがって、バルーン30の重複部35において重なる外表面に設けられる薬剤結晶42を寝かせるために望ましい力を作用させることができる。また、互いに対向する羽根内側部34bと中間部34cの領域のうち、根元側空間部36に面する領域、すなわち羽根内側部34bと中間部34cとが密接しない領域では、薬剤結晶42は押圧力を受け難い。したがって、この領域では、薬剤結晶42が寝にくい。また、互いに対向する羽根内側部34bと中間部34cの領域のうち、根元側空間部36に面しない領域、すなわち羽根内側部34bと中間部34cとが密接している領域では、薬剤結晶42は押圧力を受けやすい。したがって、この領域では、薬剤結晶42が倒れて寝やすい。 Further, since the outer surface overlapping the overlapping portion 35 of the balloon 30 is not exposed to the outside, a pressing force is indirectly applied from the blade when it is folded. For this reason, it is easy to adjust the force acting on the drug crystal 42 provided on the outer surface overlapping in the overlapping portion 35 of the balloon 30 so as not to become too strong. Therefore, a desirable force can be applied to lay down the drug crystal 42 provided on the outer surface overlapping in the overlapping portion 35 of the balloon 30. Moreover, in the area | region of the blade | wing inner side part 34b and the intermediate part 34c which mutually oppose, the area | region which faces the root side space part 36, ie, the area | region where the blade | wing inner side part 34b and the intermediate part 34c are not closely_contact | adhered, It is difficult to receive. Therefore, in this region, the drug crystal 42 is difficult to sleep. Further, in the regions of the blade inner portion 34b and the intermediate portion 34c that face each other, the region that does not face the root side space portion 36, that is, the region where the blade inner portion 34b and the intermediate portion 34c are in close contact with each other, Easy to receive pressure. Therefore, in this region, the drug crystal 42 falls down and tends to sleep.
 次に、本実施形態に係るバルーンカテーテル10の使用方法を、血管内の狭窄部を治療する場合を例として説明する。 Next, a method of using the balloon catheter 10 according to this embodiment will be described by taking as an example the case of treating a stenosis in a blood vessel.
 まず、術者は、セルジンガー法等の公知の方法により、皮膚から血管を穿刺し、イントロデューサ(図示せず)を留置する。次に、バルーンカテーテル10の保護シース15を外し、プライミングを行った後、ガイドワイヤルーメン24内にガイドワイヤ200(図7を参照)を挿入する。この状態で、ガイドワイヤ200およびバルーンカテーテル10をイントロデューサの内部より血管内へ挿入する。続いて、ガイドワイヤ200を先行させつつバルーンカテーテル10を進行させ、バルーン30を狭窄部へ到達させる。なお、バルーンカテーテル10を狭窄部300まで到達させるために、ガイディングカテーテルを用いてもよい。 First, the surgeon punctures a blood vessel from the skin by a known method such as the Seldinger method, and places an introducer (not shown). Next, after removing the protective sheath 15 of the balloon catheter 10 and performing priming, the guide wire 200 (see FIG. 7) is inserted into the guide wire lumen 24. In this state, the guide wire 200 and the balloon catheter 10 are inserted into the blood vessel from the inside of the introducer. Subsequently, the balloon catheter 10 is advanced while the guide wire 200 is advanced, and the balloon 30 reaches the stenosis. A guiding catheter may be used to reach the balloon catheter 10 to the stenosis 300.
 次に、ハブ26の基端開口部27より、インデフレーターまたはシリンジ等を用いて拡張用流体を所定量注入し、拡張ルーメン23を通じてバルーン30の内部に拡張用流体を送り込む。これにより、図8に示すように、折り畳まれたバルーン30が拡張し、狭窄部300が、バルーン30によって押し広げられる。このとき、バルーン30の表面の補強層35に設けられるコート層40が、狭窄部300に接触する。 Next, a predetermined amount of expansion fluid is injected from the proximal end opening 27 of the hub 26 using an inflator or a syringe, and the expansion fluid is sent into the balloon 30 through the expansion lumen 23. Thereby, as shown in FIG. 8, the folded balloon 30 is expanded, and the narrowed portion 300 is pushed and expanded by the balloon 30. At this time, the coat layer 40 provided on the reinforcing layer 35 on the surface of the balloon 30 comes into contact with the narrowed portion 300.
 バルーン30を拡張させてコート層40を生体組織に押し付けると、コート層40に含まれる水溶性の低分子化合物である添加剤41が徐々にまたは速やかに溶けつつ、薬剤結晶42が生体へ送達される。コート層40の薬剤結晶42は、上述した製造方法によって、均一に形成されている。このため、薬剤を生体へばらつきなく良好に作用させることができる。 When the balloon 30 is expanded and the coat layer 40 is pressed against the living tissue, the drug crystal 42 is delivered to the living body while the additive 41, which is a water-soluble low-molecular compound contained in the coat layer 40, gradually or rapidly dissolves. The The drug crystals 42 of the coat layer 40 are uniformly formed by the manufacturing method described above. For this reason, a medicine can be made to act satisfactorily on a living body without variation.
 この後、拡張用流体をハブ26の基端開口部27より吸引して排出し、バルーン30を収縮させて折り畳まれた状態とする。この後、イントロデューサを介して血管よりガイドワイヤ200およびバルーンカテーテル10を抜去し、手技が終了する。 Thereafter, the expansion fluid is sucked and discharged from the proximal end opening 27 of the hub 26, and the balloon 30 is deflated and folded. Thereafter, the guide wire 200 and the balloon catheter 10 are removed from the blood vessel via the introducer, and the procedure is completed.
 以上のように、本実施形態に係るバルーンカテーテル10の製造方法は、バルーン30の外表面に水不溶性薬剤の結晶を含むコート層40が形成されたバルーンカテーテル10の製造方法であって、バルーン30の外表面に導電性の金属を蒸着して金属層37を形成するステップと、金属層37の外表面に薬剤および溶媒を含むコーティング液45を塗布するステップと、バルーン30のコート層40を形成する全範囲へのコーティング液45の塗布が完了した後に、コーティング液45の溶媒が残存している状態で、金属層37に電流を流して発熱させて溶媒を揮発させるステップと、を有する。 As described above, the method for manufacturing the balloon catheter 10 according to the present embodiment is a method for manufacturing the balloon catheter 10 in which the coat layer 40 containing water-insoluble drug crystals is formed on the outer surface of the balloon 30. Forming a metal layer 37 by depositing a conductive metal on the outer surface of the substrate, applying a coating liquid 45 containing a drug and a solvent to the outer surface of the metal layer 37, and forming a coat layer 40 of the balloon 30 And after the application of the coating liquid 45 to the entire range is completed, in a state where the solvent of the coating liquid 45 remains, a current is passed through the metal layer 37 to generate heat and volatilize the solvent.
 上記のように構成したバルーンカテーテル10の製造方法は、コーティング液45の溶媒が塗布した全範囲で残存している状態で、金属層37により加熱してコーティング液45の溶媒を揮発させるため、塗布した全範囲の薬剤の結晶化を、略同一条件で同時に促すことができる。このため、各種条件や手技のぶれに関わらず、バルーン30の外表面に薬剤結晶42を均一に形成でき、かつ薬剤の形態型を容易に制御できる。 In the method of manufacturing the balloon catheter 10 configured as described above, the solvent of the coating liquid 45 is volatilized by heating with the metal layer 37 in a state where the solvent of the coating liquid 45 remains in the entire range applied. The crystallization of the entire range of drugs can be promoted simultaneously under substantially the same conditions. For this reason, the drug crystal 42 can be uniformly formed on the outer surface of the balloon 30 and the morphological form of the drug can be easily controlled regardless of various conditions and fluctuations in the procedure.
 また、溶媒を揮発させるステップにおいて、バルーン30を当該バルーン30の軸心を中心として回転させつつ、金属層37に摺動可能に接触する端子111により金属層37へ電流を供給する。これにより、コーティング液45を均一化する役割を果たすバルーン30の回転を止めずに、金属層37に電流を流して溶媒を揮発させることができる。このため、薬剤結晶42を均一に形成でき、かつ薬剤の形態型の制御が容易となる。 Further, in the step of volatilizing the solvent, an electric current is supplied to the metal layer 37 by the terminal 111 that slidably contacts the metal layer 37 while rotating the balloon 30 around the axis of the balloon 30. Thereby, an electric current can be sent through the metal layer 37 to volatilize the solvent without stopping the rotation of the balloon 30 that plays the role of making the coating liquid 45 uniform. For this reason, the drug crystal 42 can be formed uniformly, and the control of the morphological type of the drug is facilitated.
 また、溶媒は、水、酢酸、ベンゼン、クロロヘキサン、グリセリン、エタノール、ヘキサン、エチルアセテート、o-ジクロロベンゼン、o-キシレン、p-キシレン、シクロヘキサノール、スチレン、シクロヘキサン、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、プロパノール、ブタノール、トルエン、エチレングリコールからなる群から選択される少なくとも1つであってもよい。これにより、溶媒の揮発性が低くなり、バルーン30に塗布されたコーティング液45から溶媒が揮発し難くなる。このため、バルーン30の塗布範囲の全体へコーティング液45が塗布されるまで、コーティング液45の溶媒が塗布した全範囲で残存している状態とすることが容易となる。したがって、金属層37へ電流を流すタイミングで、薬剤の結晶化を、バルーン30のコーティング液45を塗布した全範囲で略同一条件で同時に促すことができる。 Solvents are water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol, s- It may be at least one selected from the group consisting of butyl alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol. Thereby, the volatility of the solvent is lowered, and the solvent is less likely to volatilize from the coating liquid 45 applied to the balloon 30. For this reason, it becomes easy to make it the state which the solvent of the coating liquid 45 remains in the whole range which apply | coated until the coating liquid 45 is apply | coated to the whole application | coating range of the balloon 30. FIG. Therefore, the crystallization of the drug can be simultaneously promoted under substantially the same conditions in the entire range where the coating liquid 45 of the balloon 30 is applied at the timing when the current is supplied to the metal layer 37.
 また、水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセルおよびエベロリムスからなる群から選択される少なくとも1つを含有してもよい。これにより、血管内の狭窄部の再狭窄を良好に抑制できる。 Moreover, the water-insoluble drug may contain at least one selected from the group consisting of rapamycin, paclitaxel, docetaxel and everolimus. Thereby, restenosis of the stenosis part in a blood vessel can be suppressed favorably.
 また、本実施形態に係るバルーンカテーテル10の製造装置50は、バルーン30に回転力を作用させる回転機構部60と、回転するバルーン30に蒸着されている金属層37の外表面に薬剤および溶媒を含むコーティング液45を塗布するコーティング液供給部90と、金属層37に摺動可能に接触して電流を金属層37に供給する端子111と、を有する。 In addition, the manufacturing apparatus 50 for the balloon catheter 10 according to the present embodiment applies a drug and a solvent to the outer surface of the rotation mechanism 60 that applies a rotational force to the balloon 30 and the metal layer 37 deposited on the rotating balloon 30. The coating liquid supply part 90 which apply | coats the coating liquid 45 to be included, and the terminal 111 which slidably contacts the metal layer 37 and supplies an electric current to the metal layer 37 are provided.
 上記のように構成した製造装置50は、コーティング液45の溶媒が残存している状態で、回転するバルーン30の金属層37に摺動可能に接触する端子111により、金属層37に電流を供給して金属層37を発熱させ、コーティング液45の溶媒を揮発させることができる。このため、塗布した全範囲の薬剤の結晶化を、略同一条件で同時に促すことができる。したがって、各種条件や手技のぶれに関わらず、バルーン30の外表面に薬剤結晶42を均一に形成でき、かつ薬剤の形態型を容易に制御できる。 The manufacturing apparatus 50 configured as described above supplies a current to the metal layer 37 by the terminal 111 slidably contacting the metal layer 37 of the rotating balloon 30 in a state where the solvent of the coating liquid 45 remains. Thus, the metal layer 37 can generate heat, and the solvent of the coating liquid 45 can be volatilized. For this reason, crystallization of the whole range of the applied drug can be promoted simultaneously under substantially the same conditions. Therefore, the drug crystal 42 can be uniformly formed on the outer surface of the balloon 30 regardless of various conditions and the fluctuation of the technique, and the morphological type of the drug can be easily controlled.
 また、本実施形態に係るバルーンカテーテル10は、生体管腔内に挿入可能なバルーンカテーテル10であって、長尺なカテーテル本体20と、カテーテル本体20の遠位側に設けられて径方向へ拡張可能なバルーン30と、バルーン30の外表面に蒸着された金属層37と、金属層37の外表面に配置される水不溶性の薬剤結晶42と、を有する。 The balloon catheter 10 according to this embodiment is a balloon catheter 10 that can be inserted into a living body lumen, and is provided on the distal side of the long catheter body 20 and the catheter body 20 so as to expand in the radial direction. A possible balloon 30, a metal layer 37 deposited on the outer surface of the balloon 30, and a water-insoluble drug crystal 42 disposed on the outer surface of the metal layer 37.
 上記のように構成したバルーンカテーテル10は、金属層37の外表面に薬剤結晶42が配置されるため、バルーン30とは異なる表面構造を有する金属層37によって、薬剤の生体への移行性を調節できる。 In the balloon catheter 10 configured as described above, since the drug crystal 42 is disposed on the outer surface of the metal layer 37, the transfer property of the drug to the living body is adjusted by the metal layer 37 having a surface structure different from that of the balloon 30. it can.
 また、本発明は、バルーンカテーテル10を使用して生体管腔内の病変部に薬剤を送達する処置方法(治療方法)をも含む。当該処置方法は、バルーン30を生体管腔内に挿入して病変部へ到達させるステップと、バルーン30および金属層37を拡張させて生体組織に押し付け、薬剤結晶42を生体組織に接触させるステップと、バルーン30を収縮させて生体管腔から抜去するステップと、を有する。 The present invention also includes a treatment method (therapeutic method) for delivering a drug to a lesion in a living body lumen using the balloon catheter 10. The treatment method includes a step of inserting the balloon 30 into the body lumen to reach the lesioned part, a step of expanding the balloon 30 and the metal layer 37 and pressing the body 30 against the living tissue, and bringing the drug crystal 42 into contact with the living tissue. And deflating the balloon 30 to remove it from the living body lumen.
 上記のように構成した処置方法は、金属層37の外表面に配置された薬剤結晶42を、バルーン30によって生体組織に押し付けるため、バルーン30とは異なる表面構造を有する金属層37によって、薬剤の生体組織への移行性を調節できる。 In the treatment method configured as described above, since the drug crystal 42 arranged on the outer surface of the metal layer 37 is pressed against the living tissue by the balloon 30, the metal layer 37 having a surface structure different from that of the balloon 30 is used. Transferability to living tissue can be adjusted.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、上述の実施形態に係るバルーンカテーテル10は、ラピッドエクスチェンジ型(Rapid exchange type)であるが、オーバーザワイヤ型(Over-the-wire type)であってもよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, the balloon catheter 10 according to the above-described embodiment is a rapid exchange type, but may be an over-the-wire type.
 また、ディスペンシングチューブ94が移動せずに、バルーンカテーテル10が軸心に沿って移動してもよい。 Further, the balloon catheter 10 may move along the axis without moving the dispensing tube 94.
 また、図9に示す変形例のように、バルーンカテーテル10は、金属層37に電気的に接続されるとともにカテーテル本体20に沿って近位側へ延在する導電性の導線39をさらに有してもよい。導線39は、ハブ26に設けられる28を介して外部電源装置(図示せず)に接続可能である。これにより、生体内に挿入したバルーン30に配置される金属層37に、導線39を介して電流を供給できる。このため、生体内で薬剤結晶42を金属層37により加熱して、薬剤の生体組織への移行性を高めることができる。 Further, as in the modification shown in FIG. 9, the balloon catheter 10 further includes a conductive wire 39 that is electrically connected to the metal layer 37 and extends proximally along the catheter body 20. May be. The conducting wire 39 can be connected to an external power supply device (not shown) via 28 provided on the hub 26. Thereby, an electric current can be supplied to the metal layer 37 disposed on the balloon 30 inserted in the living body via the conductive wire 39. For this reason, the drug crystal 42 can be heated by the metal layer 37 in the living body to improve the transferability of the drug to the living tissue.
 また、図10に示す他の変形例のように、金属層37は、バルーン30の外表面に部分的に設けられてもよい。バルーン30の一部は、金属層37が設けられていない露出部38を有している。露出部38は、バルーン30に金属層37を蒸着する際に、バルーン38の表面にマスキングを施すことで、形成できる。バルーン30の露出部38は、コート層40が直接的に配置されている。これにより、バルーン30上に、薬剤の生体組織への移行性の異なる部位を、任意に形成できる。なお、露出部38の形状は、特に限定されない。 Further, as in another modification shown in FIG. 10, the metal layer 37 may be partially provided on the outer surface of the balloon 30. A part of the balloon 30 has an exposed portion 38 where the metal layer 37 is not provided. The exposed portion 38 can be formed by masking the surface of the balloon 38 when the metal layer 37 is deposited on the balloon 30. The coat layer 40 is directly disposed on the exposed portion 38 of the balloon 30. Thereby, the site | part from which the transferability to the biological tissue of a chemical | medical agent differs on the balloon 30 can be formed arbitrarily. The shape of the exposed portion 38 is not particularly limited.
 さらに、本出願は、2017年3月16日に出願された日本特許出願番号2017-050838号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2017-050838 filed on Mar. 16, 2017, the disclosures of which are referenced and incorporated as a whole.
  10  バルーンカテーテル
  20  カテーテル本体
  30  バルーン
  37  金属層
  40  コート層
  41  添加剤
  42  薬剤結晶
  45  コーティング液
  50  カテーテルの製造装置
  60  回転機構部
  80  移動機構部
  90  コーティング液供給部
  94  ディスペンシングチューブ
  100  制御部
  110  電流供給部
  111  端子
  120  蒸着装置
DESCRIPTION OF SYMBOLS 10 Balloon catheter 20 Catheter main body 30 Balloon 37 Metal layer 40 Coat layer 41 Additive 42 Drug crystal 45 Coating liquid 50 Catheter manufacturing apparatus 60 Rotation mechanism part 80 Movement mechanism part 90 Coating liquid supply part 94 Dispensing tube 100 Control part 110 Current Supply section 111 Terminal 120 Vapor deposition equipment

Claims (7)

  1.  バルーンの外表面に水不溶性薬剤の結晶を含むコート層が形成されたバルーンカテーテルの製造方法であって、
     前記バルーンの外表面に導電性の金属を蒸着して金属層を形成するステップと、
     前記金属層の外表面に薬剤および溶媒を含むコーティング液を塗布するステップと、
     前記バルーンの前記コート層を形成する全範囲への前記コーティング液の塗布が完了した後に、前記コーティング液の溶媒が残存している状態で、前記金属層に電流を流して発熱させて前記溶媒を揮発させるステップと、を有するバルーンカテーテルの製造方法。
    A method for producing a balloon catheter in which a coat layer containing water-insoluble drug crystals is formed on the outer surface of the balloon,
    Depositing a conductive metal on the outer surface of the balloon to form a metal layer;
    Applying a coating liquid containing a drug and a solvent to the outer surface of the metal layer;
    After the application of the coating liquid to the entire area of the balloon forming the coating layer is completed, with the solvent of the coating liquid remaining, an electric current is passed through the metal layer to generate heat and the solvent is removed. And a step of volatilizing the balloon catheter.
  2.  前記溶媒を揮発させるステップにおいて、前記バルーンを当該バルーンの軸心を中心として回転させつつ、前記金属層に摺動可能に接触する端子により前記金属層へ電流を供給する請求項1に記載のバルーンカテーテルの製造方法。 2. The balloon according to claim 1, wherein in the step of volatilizing the solvent, a current is supplied to the metal layer by a terminal that slidably contacts the metal layer while rotating the balloon about the axis of the balloon. A method for manufacturing a catheter.
  3.  前記溶媒は、水、酢酸、ベンゼン、クロロヘキサン、グリセリン、エタノール、ヘキサン、エチルアセテート、o-ジクロロベンゼン、o-キシレン、p-キシレン、シクロヘキサノール、スチレン、シクロヘキサン、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、プロパノール、ブタノール、トルエン、エチレングリコールからなる群から選択される少なくとも1つを含有する請求項1または2に記載のバルーンカテーテルの製造方法。 The solvent is water, acetic acid, benzene, chlorohexane, glycerin, ethanol, hexane, ethyl acetate, o-dichlorobenzene, o-xylene, p-xylene, cyclohexanol, styrene, cyclohexane, i-butyl alcohol, s-butyl. The method for producing a balloon catheter according to claim 1 or 2, comprising at least one selected from the group consisting of alcohol, t-butyl alcohol, propanol, butanol, toluene, and ethylene glycol.
  4.  前記水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセルおよびエベロリムスからなる群から選択される少なくとも1つを含有する請求項1~3のいずれか1項に記載のバルーンカテーテルの製造方法。 The method for producing a balloon catheter according to any one of claims 1 to 3, wherein the water-insoluble drug contains at least one selected from the group consisting of rapamycin, paclitaxel, docetaxel and everolimus.
  5.  バルーンの外表面に水不溶性薬剤の結晶を含むコート層が形成されたバルーンカテーテルの製造装置であって、
     前記バルーンに回転力を作用させる回転機構部と、
     回転する前記バルーンに蒸着されている金属層の外表面に薬剤および溶媒を含むコーティング液を塗布する供給部と、
     前記金属層に摺動可能に接触して電流を金属層に供給する端子と、を有するバルーンカテーテルの製造装置。
    A balloon catheter manufacturing apparatus in which a coat layer containing water-insoluble drug crystals is formed on the outer surface of a balloon,
    A rotation mechanism for applying a rotational force to the balloon;
    A supply unit for applying a coating liquid containing a drug and a solvent to the outer surface of the metal layer deposited on the rotating balloon;
    And a terminal for supplying current to the metal layer in slidable contact with the metal layer.
  6.  生体管腔内に挿入可能なバルーンカテーテルであって、
     長尺なカテーテル本体と、
     前記カテーテル本体の遠位側に設けられて径方向へ拡張可能なバルーンと、
     前記バルーンの外表面に蒸着された導電性の金属層と、
     前記金属層の外表面に配置される水不溶性の薬剤結晶と、
     前記金属層に電気的に接続されるとともに前記カテーテル本体に沿って近位側へ延在する導電性の導線と、を有するバルーンカテーテル。
    A balloon catheter that can be inserted into a body lumen,
    A long catheter body;
    A balloon provided on the distal side of the catheter body and radially expandable;
    A conductive metal layer deposited on the outer surface of the balloon;
    A water-insoluble drug crystal disposed on the outer surface of the metal layer;
    And a conductive wire electrically connected to the metal layer and extending proximally along the catheter body.
  7.  請求項6に記載のバルーンカテーテルを使用して生体管腔内の病変部に薬剤を送達する処置方法であって、
     前記バルーンを生体管腔内に挿入して病変部へ到達させるステップと、
     前記バルーンおよび金属層を拡張させて生体組織に押し付け、前記薬剤結晶を前記生体組織に接触させるステップと、
     前記導線を介して前記金属層へ電流を流して前記金属層を発熱させて前記薬剤結晶を加熱するステップと、
     前記バルーンを収縮させて生体管腔から抜去するステップと、を有する処置方法。
    A treatment method for delivering a drug to a lesion in a living body lumen using the balloon catheter according to claim 6,
    Inserting the balloon into the body lumen to reach the lesion;
    Expanding the balloon and the metal layer to press against the living tissue and bringing the drug crystal into contact with the living tissue;
    Heating the drug crystal by causing an electric current to flow to the metal layer through the conductive wire to generate heat in the metal layer;
    Deflating the balloon and removing it from the living body lumen.
PCT/JP2018/010472 2017-03-16 2018-03-16 Balloon catheter, production method therefor, production device, and treatment method WO2018169053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506299A JP7073338B2 (en) 2017-03-16 2018-03-16 Balloon catheter and its manufacturing method and manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050838 2017-03-16
JP2017050838 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018169053A1 true WO2018169053A1 (en) 2018-09-20

Family

ID=63523575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010472 WO2018169053A1 (en) 2017-03-16 2018-03-16 Balloon catheter, production method therefor, production device, and treatment method

Country Status (2)

Country Link
JP (1) JP7073338B2 (en)
WO (1) WO2018169053A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113092A (en) * 2000-08-04 2002-04-16 Japan Lifeline Co Ltd Manufacturing method for medical instrument and medical instrument
JP2007144170A (en) * 2005-11-23 2007-06-14 Cordis Corp Local vascular delivery of pi3 kinase inhibition factors alone or in combination with sirolimus for preventing restenosis after vascular damage
JP2007534362A (en) * 2003-12-16 2007-11-29 クック インコーポレイテッド Stent catheter with permanently attached conductor
JP2009531157A (en) * 2006-03-24 2009-09-03 ボストン サイエンティフィック リミテッド Method and apparatus having an electrically actuable surface
JP2011517589A (en) * 2008-03-28 2011-06-16 サーモディクス,インコーポレイティド Insertable medical device having an elastic matrix with microparticles disposed thereon, and drug delivery method
JP2015516237A (en) * 2012-05-09 2015-06-11 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc Medical device coated with water-insoluble therapeutic agent and additive
WO2015151877A1 (en) * 2014-04-01 2015-10-08 テルモ株式会社 Balloon coating method, coat layer control method and balloon coating device
JP2016202916A (en) * 2015-04-23 2016-12-08 テルモ株式会社 Balloon coating method, balloon rotating method, and balloon coating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113092A (en) * 2000-08-04 2002-04-16 Japan Lifeline Co Ltd Manufacturing method for medical instrument and medical instrument
JP2007534362A (en) * 2003-12-16 2007-11-29 クック インコーポレイテッド Stent catheter with permanently attached conductor
JP2007144170A (en) * 2005-11-23 2007-06-14 Cordis Corp Local vascular delivery of pi3 kinase inhibition factors alone or in combination with sirolimus for preventing restenosis after vascular damage
JP2009531157A (en) * 2006-03-24 2009-09-03 ボストン サイエンティフィック リミテッド Method and apparatus having an electrically actuable surface
JP2011517589A (en) * 2008-03-28 2011-06-16 サーモディクス,インコーポレイティド Insertable medical device having an elastic matrix with microparticles disposed thereon, and drug delivery method
JP2015516237A (en) * 2012-05-09 2015-06-11 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc Medical device coated with water-insoluble therapeutic agent and additive
WO2015151877A1 (en) * 2014-04-01 2015-10-08 テルモ株式会社 Balloon coating method, coat layer control method and balloon coating device
JP2016202916A (en) * 2015-04-23 2016-12-08 テルモ株式会社 Balloon coating method, balloon rotating method, and balloon coating device

Also Published As

Publication number Publication date
JPWO2018169053A1 (en) 2020-04-09
JP7073338B2 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
WO2015151877A1 (en) Balloon coating method, coat layer control method and balloon coating device
WO2015151876A1 (en) Balloon coating method
JP6472572B2 (en) Balloon catheter, manufacturing method thereof, and treatment method
JP6498664B2 (en) Positioning method and balloon coating method for balloon coating
WO2015151878A1 (en) Positioning method for balloon coating
WO2017164280A1 (en) Balloon catheter, production method for balloon catheter, and treatment method
JP2017169740A (en) Balloon catheter and manufacture method therefor, and treatment method
JP6668131B2 (en) Balloon catheter, manufacturing method and treatment method thereof
WO2018169052A1 (en) Balloon catheter production method
JP2018153283A (en) Balloon coating method
JP6831722B2 (en) Balloon catheter manufacturing method and manufacturing equipment
JP2018153291A (en) Manufacturing method and manufacturing apparatus of balloon catheter
WO2018169054A1 (en) Balloon catheter, production method therefor, and treatment method
JP2018153288A (en) Manufacturing method and manufacturing apparatus of balloon catheter
JP2017169738A (en) Balloon catheter, and production method and treatment method therefor
WO2018169053A1 (en) Balloon catheter, production method therefor, production device, and treatment method
JP2018153289A (en) Method and apparatus for manufacturing baloon catheter
WO2018169051A1 (en) Balloon coating method
JP2017169734A (en) Balloon catheter, and production method and treatment method therefor
JP2017169741A (en) Balloon catheter and treatment method
JP2017169737A (en) Balloon catheter, and production method and treatment method therefor
JP2017169742A (en) Balloon catheter, and production method and treatment method therefor
JP2018153287A (en) Manufacturing method and manufacturing device of balloon catheter
JP2018153282A (en) Balloon coating method
WO2017164279A1 (en) Balloon catheter, production method for balloon catheter, and treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768715

Country of ref document: EP

Kind code of ref document: A1