WO2018164506A1 - 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2018164506A1
WO2018164506A1 PCT/KR2018/002761 KR2018002761W WO2018164506A1 WO 2018164506 A1 WO2018164506 A1 WO 2018164506A1 KR 2018002761 W KR2018002761 W KR 2018002761W WO 2018164506 A1 WO2018164506 A1 WO 2018164506A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbg
nack
cbs
terminal
base station
Prior art date
Application number
PCT/KR2018/002761
Other languages
English (en)
French (fr)
Inventor
박창환
김선욱
박한준
안준기
양석철
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/491,670 priority Critical patent/US11050518B2/en
Priority to EP18764333.3A priority patent/EP3595215B1/en
Publication of WO2018164506A1 publication Critical patent/WO2018164506A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the following description relates to a wireless communication system, and a method for transmitting and receiving a signal between a terminal and a base station in a wireless communication system and an apparatus supporting the same.
  • the following description includes a description of a method for transmitting and receiving a signal between a terminal and a base station according to a new HARQ procedure different from a HARQ procedure supported by a conventional wireless communication system.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications.
  • MTC Massive Machine Type Communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
  • An object of the present invention is to provide a method for transmitting and receiving acknowledgment information on a signal received between a terminal and a base station in a wireless communication system.
  • an object of the present invention is to provide a method for transmitting and receiving acknowledgment information in units of code block groups (CBGs) included in the TB, rather than acknowledgment information in units of transmission blocks (TBs) supported by a conventional wireless communication system. do.
  • CBGs code block groups
  • TBs transmission blocks
  • the present invention provides methods and apparatuses for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
  • a method for a terminal for transmitting and receiving a signal with a base station in a wireless communication system comprising: receiving a signal consisting of at least one code block group (CBG) from the base station; And transmitting acknowledgment information for each code block group including a plurality of bit information to the base station.
  • CBG code block group
  • a method for a base station to transmit and receive a signal with a terminal in a wireless communication system comprising: transmitting a signal consisting of at least one code block group (CBG) to the terminal; And receiving acknowledgment information for each code block group including a plurality of bit information from the terminal.
  • CBG code block group
  • a terminal for transmitting and receiving a signal with a base station in a wireless communication system comprising: a transmitter; Receiving unit; And a processor operatively coupled to the transmitter and the receiver, the processor comprising: receiving a signal consisting of at least one Code Block Group (CBG) from the base station; And transmitting acknowledgment information for each code block group including a plurality of bit information to the base station.
  • CBG Code Block Group
  • a base station for transmitting and receiving a signal with a terminal in a wireless communication system, the base station; Receiving unit; And a processor operatively connected to the transmitter and the receiver, the processor comprising: transmitting a signal consisting of at least one code block group (CBG) to the terminal; And receiving acknowledgment information for each code block group including a plurality of bit information from the terminal.
  • CBG code block group
  • each code block group includes one or more code blocks (CBs), and the plurality of bit information indicates one state indicating an acknowledgment (ACK) and a non-acknowledgement (NACK). It can indicate one of N states.
  • CBs code blocks
  • ACK acknowledgment
  • NACK non-acknowledgement
  • each of the N states (A) whether the NACK is generated in the corresponding CBG is a predetermined number or more, and when the NACK is generated CB is a predetermined number or more of the consecutive CB of the predetermined number of NACK generated First information indicating whether a CB exists, (B) second information indicating a location area including a CB in which a NACK has been generated in the corresponding CBG, and (C) all CBs included in the corresponding CBG.
  • the first information may include: (A-1) information indicating that the number of CBs in which the NACK in the corresponding CBG is generated is a predetermined number or less; (A-2) information indicating that NACKs generated in the corresponding CBG have exceeded a certain number of CBs, and that the CACKs in which the NACKs are generated are not consecutive; And (A-3) information indicating that NACK generated CBs in the corresponding CBG exceed a certain number, and that there is a continuous CB among CBs generated with NACK; It can indicate one of them.
  • the second information may include (B-1) information indicating that one or more CBs in which the NACK is generated in the first CBG among the first CBG and the second CBG, wherein the corresponding CBG is bisected; (B-2) information indicating that one or more CBs in which the NACK is generated in the second CBG among the first CBG and the second CBG, which have been bisected into the corresponding CBG; And (B-3) information indicating that there is at least one CB in which NACK is generated in both the first CBG and the second CBG which have been bisected into the corresponding CBG; It can indicate one of them.
  • the third information may include (C-1) information indicating that a ratio of CBs in which NACK is generated to the total CBs included in the corresponding CBG is less than or equal to a first threshold; (C-2) information indicating that the ratio of CBs in which NACK is generated to the total CBs included in the corresponding CBG is greater than or equal to a first threshold and is less than or equal to a second threshold; And (C-3) information indicating that a ratio of CBs in which NACK is generated to total CBs included in the corresponding CBG is greater than a second threshold; It can indicate one of them.
  • the fourth information may include: (D-1) information indicating that a retransmission method preferred by the UE for the corresponding CBG is an incremental redundancy (IR) type; And (D-2) UE's preferred retransmission method for the corresponding CBG includes: information indicating a CC (Chase Combining) type; It can indicate one of them.
  • IR incremental redundancy
  • D-2 UE's preferred retransmission method for the corresponding CBG includes: information indicating a CC (Chase Combining) type; It can indicate one of them.
  • the terminal may additionally receive information about the CB not transmitted from the base station.
  • the terminal may determine the N states by not counting the untransmitted CB or assuming ACK.
  • the terminal may additionally receive a response message for acknowledgment information for each CBG from the base station.
  • the response message may include retransmission for all CBs included in the CBG reported by the terminal as NACK, or may include retransmission for some CBs included in the CBG reported by the terminal as NACK.
  • the response message may include retransmission of some CBs included in the CBG reported by the terminal as NACK.
  • the response message may include the partial CB.
  • the terminal may further transmit acknowledgment information about one or more CBGs included in the response message to the base station.
  • the terminal and the base station can more specifically transmit and receive acknowledgment information for each CBG in TB, which has a larger size than the conventional one, and can perform retransmission of a specific CB or a specific CBG in response thereto.
  • the UE and the base station can identify specific matters indicated by the NACK and perform appropriate retransmission based on the NACK.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
  • 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
  • FIG. 7 and 8 illustrate exemplary connection schemes of a TXRU and an antenna element.
  • FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of a cyclic redundancy check (CRC) for each CB in one TB applicable to the present invention.
  • CRC cyclic redundancy check
  • FIG. 12 is a diagram illustrating a CRC decoding result and a display method for each CRC bad cause.
  • 16 is a diagram illustrating a signal transmission and reception procedure between the base station and the UE.
  • 17 is a view showing a signal transmission and reception method between a terminal and a base station applicable to the present invention.
  • FIG. 18 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiments can be implemented.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' is replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system
  • embodiments of the present invention include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents
  • Transmission Opportunity Period may be used in the same meaning as the term transmission period, transmission burst (Tx burst) or RRP (Reserved Resource Period).
  • LBT process may be performed for the same purpose as a carrier sensing process, a clear channel assessment (CCA), and a channel access procedure (CAP) for determining whether a channel state is idle.
  • CCA clear channel assessment
  • CAP channel access procedure
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
  • PRACH physical random access channel
  • the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • the configuration of a special frame (the length of DwPTS / GP / UpPTS) is provided by X (the number of additional SC-FDMA symbols and the upper layer parameter srs-UpPtsAdd) as shown in the following table. Otherwise, X is equal to 0), and a new configuration is added, and Special subframe configuration # 10 is newly added in the LTE Rel-14 system.
  • the UE adds two additional UpPTSs for special subframeconfigurations ⁇ 3, 4, 7, 8 ⁇ for general CP in downlink and special subframeconfigurations ⁇ 2, 3, 5, 6 ⁇ for extended CP in downlink. You may not expect SC-FDMA symbols to be set.
  • the UE has special subframeconfigurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for general CP in downlink and special subframeconfigurations ⁇ 1, 2, 3, 5 for extended CP in downlink , 4 ⁇ may not be expected to set four additional UpPTS SC-FDMA symbols.
  • the UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 3, 4, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 1, 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink.
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • a PUSCH carrying user data is allocated.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
  • FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. )to be.
  • a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • MTC Massive Machine Type Communications
  • a new wireless access technology system has been proposed as a new wireless access technology that considers such enhanced mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC).
  • the technology is referred to as New RAT or NR (New Radio) for convenience.
  • ⁇ and cyclic prefix information for each carrier bandwidth part may be signaled for each downlink (DL) or uplink (UL).
  • DL downlink
  • UL uplink
  • ⁇ and cyclic prefix information for a downlink carrier bandwidth part may be signaled through higher layer signaling DL-BWP-mu and DL-MWP-cp.
  • ⁇ and cyclic prefix information for an uplink carrier bandwidth part may be signaled through higher layer signaling UL-BWP-mu and UL-MWP-cp.
  • Downlink and uplink transmission consists of a frame of 10ms long.
  • the frame may be composed of 10 subframes of length 1ms. In this case, the number of consecutive OFDM symbols for each subframe is to be.
  • Each frame may consist of two equally sized half frames.
  • each half-frame may be configured of subframes 0-4 and subframes 5-9, respectively.
  • slots are in ascending order within one subframe. Numbered as in ascending order within a frame It may be numbered as follows. In this case, the number of consecutive OFDM symbols in one slot ( ) Can be determined according to the circulation translocation as shown in the table below. Start slot in one subframe ( ) Is the starting OFDM symbol () in the same subframe ) And time dimension. Table 4 shows the number of OFDM symbols per slot / frame / subframe for a normal cyclic prefix, and Table 5 shows slots / frame / for extended cyclic prefix. This indicates the number of OFDM symbols per subframe.
  • a self-contained slot structure may be applied as the slot structure as described above.
  • FIG. 6 is a diagram illustrating a self-contained slot structure applicable to the present invention.
  • the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot.
  • this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
  • a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
  • the independent slot structure includes both the DL control region and the UL control region.
  • the control regions may be selectively included in the independent slot structure.
  • the independent slot structure according to the present invention may include not only a case in which both the DL control region and the UL control region are included as shown in FIG. 6, but also a case in which only the DL control region or the UL control region is included.
  • a slot may have various slot formats.
  • the OFDM symbol of each slot may be classified into downlink (denoted 'D'), flexible (denoted 'X'), and uplink (denoted 'U').
  • the UE may assume that downlink transmission occurs only in 'D' and 'X' symbols. Similarly, in the uplink slot, the UE may assume that uplink transmission occurs only in the 'U' and 'X' symbols.
  • millimeter wave the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element.
  • TXRU Transceiver Unit
  • each antenna element may perform independent beamforming for each frequency resource.
  • a hybrid BF having B TXRUs having a smaller number than Q antenna elements may be considered as an intermediate form between digital beamforming and analog beamforming.
  • the direction of the beam that can be transmitted at the same time may be limited to B or less.
  • the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
  • FIG. 7 is a diagram illustrating how a TXRU is connected to a sub-array. In the case of FIG. 7, the antenna element is connected to only one TXRU.
  • FIG. 8 shows how TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • the antenna element requires a separate adder as shown in FIG. 8 to be connected to all TXRUs.
  • W represents the phase vector multiplied by an analog phase shifter.
  • W is a main parameter that determines the direction of analog beamforming.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
  • the beamforming focusing is difficult, but there is an advantage that the entire antenna configuration can be configured at a low cost.
  • analog beamforming refers to an operation of performing precoding (or combining) in the RF stage.
  • the baseband stage and the RF stage respectively perform precoding (or combining). This reduces the number of RF chains and the number of digital-to-analog (D / A) (or analog-to-digital) converters while providing near-digital beamforming performance.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
  • TXRUs transceiver units
  • the digital beamforming for the L data layers to be transmitted by the transmitter may be represented by an N * L (N by L) matrix.
  • the converted N digital signals are converted into analog signals through TXRU, and analog beamforming is applied to the converted signals represented by an M * N (M by N) matrix.
  • FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • the number of digital beams is L and the number of analog beams is N in FIG. 9.
  • the base station is designed to change the analog beamforming in units of symbols and considers a method for supporting more efficient beamforming for a terminal located in a specific region.
  • specific N TXRU and M RF antennas as one antenna panel as shown in FIG. 9, in the NR system according to the present invention, a plurality of antenna panels to which hybrid beamforming independent of each other can be applied are defined. It is also considered to adopt.
  • the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, the base station transmits a signal (at least a synchronization signal, system information, paging, etc.) by applying a different analog beam for each symbol in a specific subframe (SF) so that all terminals can receive the signal. Beam sweeping operations are being contemplated that allow for receiving opportunities.
  • FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • a physical resource (or physical channel) through which system information of an NR system to which the present invention is applicable is transmitted in a broadcasting manner is referred to as a physical broadcast channel (xPBCH).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
  • a configuration for measuring channels for analog beams is applied to transmit a reference signal (Reference signal,
  • Reference signal The introduction of beam reference signals (Beam RS, BRS), which is RS, is under discussion.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
  • the maximum size of a transport block (TB) for use-case such as enhanced mobile broadband (eMBB) is several times or more than that of a conventional LTE system.
  • eMBB enhanced mobile broadband
  • each TB may be composed of several times or more CB (Codeword Block) than the conventional LTE system.
  • CB Codeword Block
  • the conventional HARQ scheme for each TB which requires retransmission of all CBs included in the TB, may be inefficient.
  • HARQ-by-TB HARQ is not suitable when data is overridden to a higher priority for the use of Ultra Reliable and Low Latency Communications (URLLC), which requires very short latency during eMBB transmission. You may not.
  • URLLC Ultra Reliable and Low Latency Communications
  • a pencil beam e.g., an antenna pattern with a narrow circumferential lobe of which the contours of the radiation pattern are approximately circular
  • TDD dynamic time division duplex
  • the NR system proposes a HARQ operation method of a CBG (Codeword Block Group) unit or a CB unit included in a TB instead of a conventional HARQ for each TB.
  • CBG Codeword Block Group
  • one TB including N CBs may be composed of G codeword block groups (CBGs).
  • CBGs G codeword block groups
  • each CBG may be composed of B or B 'CBs.
  • FIG. 11 is a diagram illustrating a configuration of a cyclic redundancy check (CRC) for each CB in one TB applicable to the present invention.
  • CRC cyclic redundancy check
  • structure A and structure B may be configured such that a CRC (CB-CRC) is inserted into each CB in common.
  • structure B may have a difference in that CRC (CBG-CRC) is additionally inserted into each CBG.
  • structure A and structure B may be configured such that one TB commonly consists of G CBGs and a CRC (TB-CRC) for the one TB is inserted.
  • TB-CRC CRC
  • the CB-CRC, CBG-CRC, and TB-CRC may be set differently in size (eg, length, etc.).
  • the CBG-CRC of the G-th CBG may be omitted or set to a size different from that of the other CBG.
  • CRC bad may mean a case in which the CRC check result of the receiver is different from that intended when the CRC parity bit is inserted in the transmitter.
  • the transmitter and the receiver follow mutually agreed rules, and the receiver (eg, the terminal) may determine whether the rule intended by the transmitter is maintained after decoding the data block through a CRC check.
  • CRC good means that the intention (or rule) of the CRC parity bits is identical between the decoding result transmitting end and the receiving end
  • CRC bad means the insertion intention of the CRC parity bits between the decoding result transmitting end and the receiving end. Assume that (or rules) mean different cases.
  • the first block represents a CB corresponding to CRC good
  • the second to fourth blocks represent CBs corresponding to CRC bad.
  • the second block represents a CB in which a CB decoding error occurs due to insufficient signal to noise ratio (SNR).
  • SNR signal to noise ratio
  • a decoding error for some CBs (about 1 to 10%) may occur in a fading environment (eg, attenuation difference or phase difference).
  • the third block is inter-slot channel estimation performance when some CBs are punctured due to time-selective interference or Ultra Reliable Low Latency Communication (URLLC) transmission. performance) A CB whose CB decoding error occurred before or after the corresponding CB due to degradation. The probability of occurrence of such CRC bad may be higher than about 1-10% CB error probability that may occur in the aforementioned general fading environment. (In addition, it may be lower than the probability of CB error due to time-selective interference described below.)
  • the fourth block indicates a CB in which a corresponding CB decoding error occurs when some CBs are punctured due to time-selective interference or URLLC transmission.
  • the CB error probability is 100%, and in the case of time-selective interference, the CB error probability may be much higher than the above-mentioned CB error probability due to the degradation of channel measurement performance.
  • FIGS. 13 to 15 illustrate a scenario of CRC decoding results according to the present invention.
  • CB-CRC, CBG-CRC, and TB-CRC are omitted for convenience of description, but according to an embodiment, a configuration including one or more of CB-CRC, CBG-CRC, and TB-CRC may also be included in the present invention. May be included.
  • the CRC decoding state and the CRC bad cause for each CB illustrated in FIGS. 13 to 15 may be interpreted based on FIG. 12.
  • FIG. 13 illustrates a scenario of a CRC decoding result when a large number of CBs are included in the CBG compared to FIG. 15.
  • FIG. 14 illustrates a scenario of a CRC decoding result when the CB is included in the last CBG, unlike FIG. 13.
  • FIG. 15 illustrates a CRC decoding result scenario when each CBG of TB is configured with a small number of CBs unlike FIG. 13.
  • the CRC bad occurrence scenario shown in FIG. 13 may be classified as follows.
  • Type (A-2) ⁇ Type (A-3)
  • NACK occurs for some non-adjacent CBs (eg g2 and g5) within the gth CBG
  • Cross slots for CBs of g1, g3 and g4 adjacent to g2 and g5 because the UE or gNB could not receive RS (Reference Signal) contained in some non-adjacent CBs (eg g2 and g5) within the g-th CBG Additional CRC bad due to deterioration of cross-slot channel estimation performance
  • NACK occurs for some adjacent CBs across the (g-1) th and gth CBGs
  • the UE or gNB included in some adjacent CBs over the (g-1) th and gth CBGs do not receive the RS, causing additional CRC bad to some adjacent CBs.
  • the last CBG in the TB is composed of a different number of CBs than the remaining CBGs.
  • FIG. 15 illustrates that CRC bad occurs in CBs over three or more adjacent CBGs unlike in FIGS. 12 and 13.
  • the CRC bad form of the CBG level illustrated in FIGS. 13 to 15 may be classified into three types from the CB perspective.
  • FIG. 16 is a diagram illustrating a signal transmission and reception procedure between the base station and the UE. In FIG. 16, it is assumed that only one TB is transmitted, and a subject transmitting one TB is a base station, and a subject receiving one TB is a UE.
  • the multi-level ACK / NACK report proposed by the present invention may be different from the ACK / NACK reporting method as well as the downlink control information (DCI) configuration and retransmission method compared to the conventional LTE system.
  • the method of constructing and interpreting a multilevel ACK / NACK field for a CBG transmitted by being included in the initial TB proposed by the present invention is configured and interpreted for a multi-level ACK / NACK field for some retransmitted CBs or CBGs. It may be different from the method.
  • (A) shows the initial transmission procedure of the TB.
  • one TB is composed of G CBGs and each CBG is composed of B CBs.
  • a UE acquires TBS, G, and B information of a corresponding TB through DCI received from a base station.
  • the UE completes decoding on the G CBGs and reports an ACK / NACK for each CBG to the base station.
  • the NACK report may have various states as follows in consideration of the type of CRC bad of the corresponding CBG.
  • the ACK / NACK field composed of k-bits has 2 k states, and the 2 k states include one state indicating ACK and 2 k -1 states indicating various NACK states.
  • Method 1 (method for distinguishing NACKs of adjacent CBs in a CBG)
  • NACK state 0 Only NACK occurs in less than X CBs
  • NACK state 1 NACK occurs in (X + 1) or more CBs, and the CBs are not contiguous with each other.
  • NACK occurs in (X + 1) or more CBs, and the corresponding CBs are consecutive to each other
  • the X value may be predefined in the 3GPP standard or the like, or may be set to cell common or UE-specific (semi-) static or dynamic. Alternatively, when the X value is not set separately, the X value may have 1 as a default value.
  • the first method may be modified and applied as follows.
  • NACK state 0 When there are no consecutive NACKs of adjacent X CBs
  • NACK state 1 When adjacent X CBs consecutively NACK
  • NACK state 0 NACK in some or consecutive CBs of CBs between ceil (B / 2) th and (B-1) th
  • NACK state 1 NACK of some CBs or consecutive CBs between 0th and (ceil (B / 2) -1) th
  • NACK state 2 (i) NACK occurs in all CBs, or (ii) some of the CBs from 0th to (ceil (B / 2) -1) or NACK of consecutive CBs and ceil (B / NACK of some or consecutive CBs among CBs from 2nd to (B-1) th
  • the NACK state 2 means a case including both NACK state 0 and NACK state 1
  • NACK state 0 NACK in CB below X%
  • NACK state 1 NACK in CB above Y% but below Y%
  • NACK state 2 NACK in more than Y% CB
  • the X and Y values are predefined by the 3GPP standard or the like to be determined based on one or more parameters of Transmission Block Size (TBS), G or B, or cell-specific or UE-specific (quasi-) static or dynamic. Can be set.
  • TBS Transmission Block Size
  • G or B Cell-specific or UE-specific (quasi-) static or dynamic.
  • the X and Y values may have default values predefined by the 3GPP standard or the like.
  • NACK state 1 may be reserved for other uses.
  • the first method may be modified and applied as follows.
  • NACK state 0 Request for retransmission of incremental redundancy (IR) type
  • NACK state 1 CC (Chase Combining) type retransmission request
  • IR and CC may mean the following operations, respectively.
  • IR A redundancy version (RV) with a non-zero value (corresponding to a parity bit) or a portion of a coded bit corresponding to an RV different from the RV indicated in the previous scheduling.
  • CC A scheduling request for a portion of data (coded bit) corresponding to an RV having a zero value (corresponding to a systematic bit) or an RV equal to the RV indicated in a previous scheduling.
  • the first to fourth methods described above may be applied by overlapping (or crossing) each other, or may be applied by mixing in any combination with each other.
  • a NACK state classification method according to a mixed combination as described below may be applied.
  • NACK state 0 When there are no consecutive NACKs of adjacent X CBs
  • NACK state 1 An adjacent X CB is consecutively NACK, and IR type retransmission request
  • NACK state 0 NACK in CB below X%
  • the UE may report the types of the aforementioned CRC bad for each CBG or may report the representative values of the types of the CRC bad for one TB as a whole.
  • k-bits are allocated as ACK / NACK status fields for each CBG, so that a total of (k * G) bits may be allocated as total HARQ-ACK feedback.
  • HARQ-ACK feedback may be configured as follows. Specifically, assuming that the total number of CBGs is G, (i) 1-bit representing only ACK or NACK is allocated to each CBG, and (ii) the above-described NACK states (assuming a total of 2 k states). By allocating k-bits representing what states are represented throughout the CBG, the total HARQ-ACK feedback may be configured with a total of (G + k) bits.
  • the method of separately reporting the NACK state for each CBG has the advantage of accurately reporting the NACK state for each CBG, but has the disadvantage of increasing the payload size of the ACK / NACK report.
  • the method of reporting the NACK status as a representative value for the entire TB has the disadvantage of not accurately reporting the NACK status for each CBG, but has the advantage that the payload size of the ACK / NACK report is small.
  • various examples such as the following, may be applied as a method of selecting the NACK representative value for the entire TB.
  • the UE may determine the NACK state according to each method in the CBG in which the NACK has been generated, and report the NACK state in the TB as the NACK representative value for the entire TB.
  • the UE sets the corresponding NACK state X as a representative value for a plurality of CBGs, and if no CBG having the corresponding NACK state X exists, the UE Another NACK state (eg, state Y) may be set as a representative value for a plurality of CBGs.
  • NACK state 1 may be set to state X
  • NACK state 0 may be set to state Y, respectively.
  • Whether the UE performs HARQ ACK / NACK reporting according to any of the above-described CBG-specific reporting of the NACK state or the representative value reporting of TB is previously defined in relation to G (the number of CBGs) in the 3GPP standard or the like. Can be set to cell common or UE specific (semi-) statically or dynamically.
  • the base station may inform the UE of information on whether the corresponding CB is omitted. If the UE acquires information that some CB transmissions are omitted before a specific time (Q) than the time of reporting the uplink ACK / NACK for the received data at the time when the corresponding CB is included, the UE is as follows.
  • the HARQ ACK / NACK report may be performed based on the same option.
  • the retransmission type (eg IR or CC) is determined in consideration of only the NACK CB except for the omitted CB.
  • the above method may be similarly applied even when the above-described methods are cross applied.
  • the UE in classifying the NACK state, the UE may classify the NACK state without considering the omitted CB.
  • the UE In reporting the ACK / NACK of the CBG, the UE assumes the omitted CB as an ACK CB.
  • the specific time Q may be predefined by the 3GPP standard or the like according to the UE category or the like, or may be set to cell common or UE-specific (quasi-static or dynamically) by the base station.
  • the base station may perform the following retransmission based on the CBG-level ACK / NACK and the multi-level NACK state reported from the UE.
  • (2) is a configuration including (1), hereinafter will be described in detail only for the example divided into (2) and (3). Therefore, it is assumed that the base station retransmits all CBs included in the NACK CBG, or retransmits some CBs included in the NACK CBG.
  • the base station generally retransmits the entire CB of the NACK CBG, the base station may retransmit only some of the CB of the NACK CBG when the following specific situation occurs.
  • an additional signal (e.g., synchronization signal or CSI-RS) is transmitted at a specific time point (e.g., slot), so that the code rate of the CB generated at that specific time point is relatively higher than that of other CBs.
  • the base station may preferentially retransmit a specific CB having a high code rate.
  • the base station receives the NACK status as a multi-level NACK, and through this, the NACK has been generated in consecutive CBGs, and it can be inferred that CRC bad is generated in only a few CBs in the first and last CBGs of the consecutive CBG NACKs. If you can
  • the base station determines whether the base station performs retransmission scheduling for all CBs included in the NACK CBG (ie, in units of CBGs) or whether the base station performs retransmission scheduling for some CBs included in the NACK CBG (ie, in units of CBs).
  • the base station instructs the UE through DCI or can be automatically switched according to the HARQ-ACK feedback of the UE.
  • the base station may perform retransmission scheduling in units of CB when the number of CBGs that are NACK is less than or equal to a specific value in consideration of DCI and / or UCI overhead, and perform retransmission scheduling in units of CBG when the number of CBGs exceeds a specific value.
  • the configuration of the DCI transmitted by the base station may vary depending on the case where the base station retransmits the entire CB included in the NACK CBG or retransmits some CBs included in the NACK CBG.
  • the ACK / NACK reporting method and payload configuration for the corresponding retransmission may also be differently set according to the selection of the entire CBG retransmission and some CB retransmission methods of the base station.
  • the part in which the ACK / NACK reporting method and the payload configuration are different from the initial TB transmission are explicitly defined through DCI at the time of CBG retransmission, or ACK / NACK reporting for initial TB transmission and subsequent retransmission by 3GPP standard or the like. May be predefined to be distinguished, or may be set by the base station to be cell common or UE specific (semi-) static or dynamic.
  • the ACK / NACK reporting method and payload configuration for CBG retransmission may also be set differently according to retransmission timing (eg, (D) and (F) of FIG. 16).
  • the UE reports the CBG-level ACK / NACK and the multi-level NACK states at time (B) of FIG. 16, receives the retransmission corresponding to the report transmitted at time (C), and receives the retransmission at time (D) again.
  • the UE uses the same method as the CBG-level ACK / NACK and the multi-level NACK state at the time (B) to report the ACK / NACK report. Can be done.
  • the payload may be configured to report ACK / NACK only for the retransmitted CBG, or the option in which the payload is configured to report ACK / NACK for all CBGs for the initial TB may be additionally applied.
  • the method of interpreting the NACK in the ACK / NACK reporting process at the time (D) may be different between the base station and the UE.
  • the CB that is CRC bad at (B) may be classified as follows according to a ratio included in the CB retransmitted at (C).
  • the base station can identify which of the following three scenarios causes the CB retransmitted at the time (C) to be reported as the CBG NACK at the time (D) through the CBG-level ACK / NACK report at the time (D). Can't.
  • the base station may be ambiguous how to select the CB for retransmission at the point (E).
  • the present invention proposes the following method.
  • the UE maintains the ACK / NACK report structure at the time (D) and the CBG-level ACK / NACK report structure at the time (B), but is not retransmitted at the time (C) during the ACK / NACK report at the time (D).
  • a multi-level NACK status field corresponding to a CBG that has not been used may be used as a field for representing a decoding result of each CB belonging to a CBG retransmitted at (C).
  • the multi-level NACK state is described above in 3.1. Like the method presented in the section, this may mean a field for providing additional information on the CBG in which the NACK is generated. Accordingly, information on the multi-level NACK state is not necessary for the CBG not retransmitted at (C). Therefore, this field may be used to more fully express the CRC bad form of the CBG to which the CB retransmitted at (C) belongs.
  • “more detailed expression” can be defined as follows.
  • the information on the relationship may indicate one of the following.
  • the UE independently reports the CRC decoding result of each CB with respect to the retransmitted CB, or the CRCs of all the CBs in the CBG including the retransmitted CBs (that is, all of the CBs not retransmitted and the retransmitted CBs in the CBG). Decoding results can be reported independently.
  • the base station retransmits all CBs belonging to a specific CBG at (E), retransmits some CBs belonging to a specific CBG, or (D) based on the ACK / NACK reported at that time (C).
  • the CB may be retransmitted with or without the retransmitted CB.
  • the base station may retransmit the CB or CBG not retransmitted at (C) at (E) regardless of the ACK / NACK report at (D).
  • the UE determines the ACK / NACK reporting method for the (E) time point. You can use the same method as described in the section.
  • the above-described ACK / NACK technique can be applied not only to ACK / NACK for downlink transmission but also to ACK / NACK for uplink transmission. Accordingly, unlike the above-described configuration, the UE may perform initial TB transmission and TB retransmission, and the base station may perform an ACK / NACK report according to the aforementioned method in response thereto.
  • the CBG-level ACK / NACK, the multi-level ACK / NACK, and the single-level ACK / NACK may not be dependent on each other, and may be used independently of each other at each time point.
  • the multi-lever ACK / NACK proposed in the present patent is not limited to ACK / NACK of CBG units, and may be extended to a method of reporting ACK / NACK of TB units. Specifically, according to the above method, the UE or the base station may report the multi-level ACK / NACK by dividing the NACK state for the plurality of TB into multi-levels.
  • FIG. 17 is a view showing a signal transmission and reception method between a terminal and a base station applicable to the present invention. More specifically, in FIG. 17, a base station (eNB or gNB) transmits a signal, and a terminal transmits acknowledgment information about the received signal (that is, a base station is a signal transmitting node and a terminal is a signal receiving node). ) Is an example. However, in another example applicable to the present invention, operations of the base station and the terminal according to FIG. 17 may be performed in reverse. In other words, a configuration in which the terminal is a signal reception node and the base station is a signal transmission node may be applied.
  • the base station will be described in detail with reference to a configuration in which the signal transmission node and the terminal are signal reception nodes.
  • the base station 100 transmits a signal (for example, a first signal) composed of one or more code block groups (CBGs) to the terminal 1 (S1710).
  • a signal for example, a first signal
  • each CBG may include one or more code blocks (CBs).
  • the terminal 1 determines acknowledgment information about the signal (for example, the first signal) received through the operation S1710 (S1720).
  • the UE 1 may more specifically determine a NACK state for the specific CBG.
  • the terminal 1 determines whether the number of CBs in which the NACK is generated in the corresponding CBG is greater than or equal to a certain number, and when the number of CBs in which the NACK is generated is greater than or equal to a certain number, the terminal 1 consecutively performs the NBs in which the NACK is generated.
  • the specific NACK state for the specific CBG may be determined based on whether the CB exists.
  • the terminal 1 may determine a specific NACK state for the specific CBG based on which location region the CB in which the NACK in the corresponding CBG is generated is included.
  • the terminal 1 may determine a specific NACK state for the specific CBG based on the ratio of the number of CBs in which NACK is generated to the total CBs included in the corresponding CBG.
  • the terminal 1 may determine a specific NACK state for the specific CBG based on a retransmission method preferred by the terminal for the corresponding CBG.
  • the terminal 1 transmits the acknowledgment information determined through step S1720 to the base station 100 through a plurality of bit information (S1730).
  • the plurality of bit information may indicate one of one state indicating ACK and N states indicating NACK.
  • N is a natural number greater than 1 can be applied.
  • each of the N states is (A) a continuous number of CBs in which a NACK has been generated in a corresponding CBG or more, and when the NACK has more than a certain number of CBs.
  • First information indicating whether a CB exists
  • second information indicating a location area including a CB in which a NACK has been generated in the corresponding CBG
  • C all CBs included in the corresponding CBG.
  • third information indicating a range including a ratio of CBs in which a NACK has been generated versus (D) fourth information indicating a retransmission method preferred by a UE with respect to the corresponding CBG; can do.
  • the first to fourth information may indicate specific information as follows.
  • the first information includes: (A-1) information indicating that the number of CBs in which NACK in the corresponding CBG is generated is less than or equal to a predetermined number; (A-2) information indicating that NACKs generated in the corresponding CBG have exceeded a certain number of CBs, and that the CACKs in which the NACKs are generated are not consecutive; And (A-3) information indicating that NACK generated CBs in the corresponding CBG exceed a certain number, and that there is a continuous CB among CBs generated with NACK; It can indicate one of them.
  • the second information may include (B-1) information indicating that one or more CBs in which the NACK is generated in the first CBG among the first CBG and the second CBG, wherein the corresponding CBG is bisected; (B-2) information indicating that one or more CBs in which the NACK is generated in the second CBG among the first CBG and the second CBG, which have been bisected into the corresponding CBG; And (B-3) information indicating that there is at least one CB in which NACK is generated in both the first CBG and the second CBG which have been bisected into the corresponding CBG; It can indicate one of them.
  • the third information may include (C-1) information indicating that a ratio of CBs in which NACK is generated to the total CBs included in the corresponding CBG is less than or equal to a first threshold; (C-2) information indicating that the ratio of CBs in which NACK is generated to the total CBs included in the corresponding CBG is greater than or equal to a first threshold and is less than or equal to a second threshold; And (C-3) information indicating that a ratio of CBs in which NACK is generated to total CBs included in the corresponding CBG is greater than a second threshold; It can indicate one of them.
  • the fourth information may include: (D-1) information indicating that a retransmission method preferred by the UE for the corresponding CBG is an incremental redundancy (IR) type; And (D-2) UE's preferred retransmission method for the corresponding CBG includes: information indicating a CC (Chase Combining) type; It can indicate one of them.
  • IR incremental redundancy
  • D-2 UE's preferred retransmission method for the corresponding CBG includes: information indicating a CC (Chase Combining) type; It can indicate one of them.
  • the terminal 1 may determine the N states by not counting the non-transmitted CB or ACK in step S1720.
  • the base station 100 may determine a retransmission signal based on the second signal received from the terminal 1 (S1740), and transmit the retransmission signal (third signal) to the terminal 1 (S1750). .
  • the third signal includes retransmission for all CBs included in the CBG reported by the terminal 1 as NACK in step S1730, or part included in the CBG reported by the terminal 1 as NACK in step S1730. It may include retransmission for the CB.
  • the base station 100 transmits the terminal in step S1750. Only some of the CBs included in the CBG reported by (1) as the NACK may be retransmitted to the terminal (1).
  • the UE may report the CBG including the CB as an ACK.
  • the base station may selectively transmit CBs not previously transmitted among the CBGs.
  • the UE Because, even though the UE knows the information about the CB not transmitted by the base station, it did not assume that the omitted CB is NACK, (1) the UE received the information that some CB transmission was omitted (if the information If not properly detected, since the corresponding CB must be processed as NACK, of course), (2) the UE can be interpreted as indicating ACK information for all CBs except CBs omitted from transmission.
  • the terminal 1 may transmit acknowledgment information (fourth signal) for one or more CBGs included in the third signal to the base station 100 (S1760).
  • the acknowledgment information on the third signal may be configured and transmitted in a similar manner to the acknowledgment information on the first signal described above.
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form.
  • Information on whether the proposed methods are applied may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • FIG. 18 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiment can be implemented.
  • the terminal and the base station illustrated in FIG. 18 operate to implement the above-described embodiments of the method for transmitting and receiving signals between the terminal and the base station.
  • a UE (UE) 1 may operate as a transmitting end in uplink and a receiving end in downlink.
  • the base station eNB or gNB 100 may operate as a receiver in uplink and as a transmitter in downlink.
  • the terminal and the base station may include transmitters 10 and 110 and receivers 20 and 120, respectively, to control transmission and reception of information, data and / or messages.
  • the antenna may include antennas 30 and 130 for transmitting and receiving messages.
  • the terminal and the base station may each include a processor (Processor 40, 140) for performing the above-described embodiments of the present invention and a memory (50, 150) that can temporarily or continuously store the processing of the processor, respectively. Can be.
  • a processor Processor 40, 140
  • a memory 50, 150
  • the terminal 1 configured as described above receives a signal composed of one or more Code Block Groups (CBGs) from the base station 100 through the receiver 20 and receives a plurality of bit information through the transmitter 10.
  • the acknowledgment information for each configured code block group is transmitted to the base station 100.
  • the base station 100 transmits a signal consisting of one or more code block groups (CBGs) to the terminal 1 through the transmitter 110 and a plurality of bit information through the receiver 120.
  • CBGs code block groups
  • each code block group includes one or more code blocks (CBs), and the plurality of bit information indicates one state indicating an acknowledgment (ACK) and a non-acknowledgement (NACK). It can indicate one of N states. Where N may be a natural number greater than one.
  • each of the N states (A) whether the NACK is generated in the corresponding CBG is a predetermined number or more, and when the NACK is generated CB is a predetermined number or more of the consecutive CB of the predetermined number of NACK generated First information indicating whether a CB exists, (B) second information indicating a location area including a CB in which a NACK has been generated in the corresponding CBG, and (C) all CBs included in the corresponding CBG.
  • a combination of third information indicating a range including a ratio of CBs in which a NACK has been generated versus (D) fourth information indicating a retransmission method preferred by a UE with respect to the corresponding CBG; can do.
  • the transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) packet for data transmission.
  • the scheduling and / or channel multiplexing function may be performed.
  • the terminal and the base station of FIG. 18 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
  • RF radio frequency
  • IF intermediate frequency
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS MultiMode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal is a multi-modem chip that can operate in both portable Internet systems and other mobile communication systems (for example, code division multiple access (CDMA) 2000 system, wideband CDMA (WCDMA) system, etc.) Speak terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors and the like can be implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors and the like can be implemented.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • software code may be stored in memory units 50 and 150 and driven by processors 40 and 140.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems.
  • 3GPP 3rd Generation Partnership Project
  • Embodiments of the present invention can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 무선 통신 시스템에서 단말과 기지국 간 신호를 송수신하는 방법 및 이를 지원하는 장치를 개시한다. 보다 구체적으로, 본 발명에서는 종래 무선 통신 시스템에서 지원하는 HARQ (Hybrid AutomaticRepeat reQuest) 절차와 상이한 새로운 HARQ 절차에 따른 단말과 기지국 간 신호를 송수신하는 방법에 대한 설명을 개시한다.

Description

무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말과 기지국 간 신호를 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.
보다 구체적으로, 이하의 설명은 종래 무선 통신 시스템에서 지원하는 HARQ (Hybrid AutomaticRepeat reQuest) 절차와 상이한 새로운 HARQ 절차에 따른 단말과 기지국 간 신호를 송수신하는 방법에 대한 설명을 포함한다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시프 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 발명의 목적은 무선 통신 시스템에서 단말과 기지국 간 수신된 신호에 대한 확인 응답 정보를 송수신하는 방법을 제공하는 것이다.
특히, 본 발명은 종래 무선 통신 시스템에서 지원하는 TB (Transmission Block) 단위의 확인응답정보가 아닌 상기 TB에 포함된 CBG(Code Block Group) 단위의 확인응답정보를 송수신하는 방법을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 무선 통신 시스템에서 단말과 기지국 간 신호를 송수신하는 방법 및 장치들을 제공한다.
본 발명의 일 양태로서, 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법에 있어서, 상기 기지국으로부터 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 수신; 및 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 기지국으로 전송;하는 것을 포함하는 단말의 신호 송수신 방법에 대해 제안한다.
본 발명의 다른 양태로서, 무선 통신 시스템에서 기지국이 단말과 신호를 송수신하는 방법에 있어서, 상기 단말로 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 전송; 및 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 단말로부터 수신;하는 것을 포함하는 기지국의 신호 송수신 방법에 대해 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국과 신호를 송수신하는 단말에 있어서, 송신부; 수신부; 및 상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 기지국으로부터 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 수신; 및 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 기지국으로 전송;하도록 구성되는 단말에 대해 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말과 신호를 송수신하는 기지국에 있어서, 송신부; 수신부; 및 상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 단말로 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 전송; 및 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 단말로부터 수신;하도록 구성되는 기지국에 대해 제안한다.
여기서, 각 코드 블록 그룹은 하나 이상의 코드 블록 (Code Block; CB)을 포함하고, 상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시할 수 있다.
이때, 상기 N 개의 상태 각각은, (A) 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보, (B) 상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보, (C) 상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및 (D) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시한다.
상기 구성에 있어, 상기 제1 정보는, (A-1) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이하임을 지시하는 정보; (A-2) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB는 서로 연속하지 않음을 지시하는 정보; 및 (A-3) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB 중 연속하는 CB가 존재함을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제2 정보는, (B-1) 상기 대응하는 CBG를 이등분한 제1 CBG 및 제2 CBG 중 상기 제1 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; (B-2) 상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 중 상기 제2 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 및 (B-3) 상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 모두에 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제3 정보는, (C-1) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 이하임을 지시하는 정보; (C-2) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 초과이며 제2 문턱치 이하임을 지시하는 정보; 및 (C-3) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제2 문턱치 초과임을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제4 정보는, (D-1) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 IR (Incremental Redundancy) 타입임을 지시하는 정보; 및 (D-2) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 CC (Chase Combining) 타입 임을 지시하는 정보; 중 하나를 지시할 수 있다.
상기 구성에 있어, 상기 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 상기 기지국에 의해 전송되지 않은 경우, 상기 단말은 상기 기지국으로부터 전송되지 않은 CB에 대한 정보를 추가적으로 수신할 수 있다.
이때, 상기 단말은 상기 전송되지 않은 CB를 카운트하지 않거나 ACK으로 가정하여 상기 N 개의 상태를 결정할 수 있다.
또한, 상기 단말은 상기 기지국으로부터 상기 각 CBG별 확인 응답 정보에 대한 응답 메시지를 추가적으로 수신할 수 있다.
이때, 상기 응답 메시지는, 상기 단말이 NACK으로 보고한 CBG에 포함된 모든 CB에 대한 재전송을 포함하거나, 상기 단말이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대한 재전송을 포함할 수 있다.
상기 기지국으로부터 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 전송되지 않은 경우, 상기 응답 메시지는 상기 단말이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대한 재전송을 포함할 수 있다.
상기 기지국으로부터 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 전송되지 않고 상기 일부 CB에 대한 정보를 상기 기지국으로부터 수신하여 상기 일부 CB를 제외한 CBG의 확인 응답 정보로써 ACK을 상기 기지국으로 전송한 경우, 상기 응답 메시지는 상기 일부 CB를 포함할 수 있다.
또한, 상기 단말은 상기 응답 메시지에 포함된 하나 이상의 CBG에 대한 확인 응답 정보를 상기 기지국으로 추가적으로 전송할 수 있다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 발명에 따르면, 단말과 기지국은 종래 대비 큰 크기로 구성되는 TB 내 CBG별 확인 응답 정보를 보다 구체적으로 송수신할 수 있고, 이에 대응하여 특정 CB또는 특정 CBG의 재전송을 수행할 수 있다.
특히, 특정 CBG에 대한 NACK이 복수의 비트 정보로 지시되는 바, 단말 및 기지국은 상기 NACK이 지시하는 구체적인 사항을 파악하고, 이에 기반하여 적합한 재전송을 수행할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 11은 본 발명에 적용 가능한 하나의 TB 내 CB별 CRC (Cyclic Redundancy Check) 구성을 간단히 나타낸 도면이다.
도 12는 CRC 디코딩 결과 및 CRC bad 원인 별 표시 방법을 나타낸 도면이다.
도 13내지 도 15는 본 발명에 따른 CRC 디코딩 결과 시나리오를 나타낸 도면이다.
도 16은 기지국과 UE의 신호 송수신 절차를 간단히 나타낸 도면이다.
도 17은 본 발명에 적용 가능한 단말 및 기지국 간 신호 송수신 방법을 나타낸 도면이다.
도 18은 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간, 전송 버스트(Tx burst)또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정, CCA(Clear Channel Assessment), 채널 접속 과정(CAP: Channel Access Procedure)과 동일한 목적으로 수행될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE / LTE _A 시스템
1.1 물리 채널들 및 이를 이용한 신호 송수신 방법
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 자원 구조
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i +1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018002761-appb-T000001
또한, LTE Rel-13 시스템에서는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)가 하기 표와 같이 X (추가적인 SC-FDMA 심볼 개수, 상위 계층 파라미터 srs-UpPtsAdd 에 의해 제공되며, 상기 파라미터가 설정되지 않으면 X는 0과 같음)를 고려하여 설정되는 구성이 새로이 추가되었고, LTE Rel-14 시스템에서는 Special subframe configuration #10이 새로이 추가되었다. 여기서, UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {3, 4, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {2, 3, 5, 6}에 대해 2개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. 추가적으로, 상기 UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {1, 2, 3, 5, 6}에 대해 4개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. (The UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations {3, 4, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {2, 3, 5, 6} for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {1, 2, 3, 5, 6} for extended cyclic prefix in downlink.)
Figure PCTKR2018002761-appb-T000002
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫 번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되었다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 (massive) MTC (Machine Type Communications) 역시 필요하게 되었다. 뿐만 아니라 신뢰성 (reliability) 및 지연 (latency) 에 민감한 서비스/UE 를 고려한 통신 시스템의 디자인이 제시되었다.
이와 같이 향상된 단말 광대역 통신 (enhanced mobile broadband communication), 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 새로운 무선 접속 기술로써 새로운 무선 접속 기술 시스템이 제안되었다. 이하, 본 발명에서는 편의상 해당 기술을 New RAT 또는 NR (New Radio)이라 명명한다.
2.1. 뉴머롤로지들 ( Numeriologies )
본 발명이 적용 가능한 NR 시스템에서는 하기 표와 같은 다양한 OFDM 뉴머롤로지를 지원한다. 이때, 반송파 대역폭 부분 (carrier bandwidth part)별 μ 및 순환 전치 (Cyclic prefix) 정보는 하향링크 (DL) 또는 상향링크 (UL) 별로 각각 시그널링될 수 있다. 일 예로, 하향링크 반송파 대역폭 부분 (downlink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 DL-BWP-mu 및 DL-MWP-cp를 통해 시그널링될 수 있다. 다른 예로, 상향링크 반송파 대역폭 부분 (uplink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 UL-BWP-mu 및 UL-MWP-cp를 통해 시그널링될 수 있다
Figure PCTKR2018002761-appb-T000003
2.2. 프레임 구조
하향링크 및 상향링크 전송은 10ms 길이의 프레임으로 구성된다. 상기 프레임은 1ms 길이의 서브프레임이 10개 모여 구성될 수 있다. 이때, 각 서브프레임 별 연속하는 OFDM 심볼의 개수는
Figure PCTKR2018002761-appb-I000001
이다.
각 프레임은 2개의 동일한 크기를 갖는 하프-프레임(half frame)으로 구성될 수 있다. 이때, 각 하프-프레임은 각각 서브프레임 0 - 4 및 서브프레임 5- 9 로 구성될 수 있다.
부반송파 간격(subcarrier spacing) μ 에 대해, 슬롯은 하나의 서브프레임 내 오름차순으로
Figure PCTKR2018002761-appb-I000002
와 같이 넘버링되고, 하나의 프레임 내 오름차순으로
Figure PCTKR2018002761-appb-I000003
와 같이 넘버링될 수 있다. 이때, 하나의 슬롯내 연속하는 OFDM 심볼 개수 (
Figure PCTKR2018002761-appb-I000004
)는 순환 전치에 따라 하기 표와 같이 결정될 수 있다. 하나의 서브프레임 내 시작 슬롯 (
Figure PCTKR2018002761-appb-I000005
)은 동일한 서브프레임 내 시작 OFDM 심볼 (
Figure PCTKR2018002761-appb-I000006
) 과 시간 차원에서 정렬되어 있다 (aligned). 하기 표 4는 일반 순환 전치 (normal cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타내고, 표 5는 확장된 순환 전치 (extended cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타낸다.
Figure PCTKR2018002761-appb-T000004
Figure PCTKR2018002761-appb-T000005
본 발명이 적용 가능한 NR 시스템에서는 상기와 같은 슬롯 구조로써 자립적 슬롯 구조 (Self-contained slot structure)가 적용될 수 있다.
도 6은 본 발명에 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 6에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 또는 수신모드에서 송신모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 슬롯 구조는 도 6과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
일 예로, 슬롯은 다양한 슬롯 포맷을 가질 수 있다. 이때, 각 슬롯의 OFDM 심볼은 하향링크 ('D'로 표기함), 플렉시블('X'로 표기함), 상향링크 ('U'로 표기함)로 분류될 수 있다.
따라서, 하향링크 슬롯에서 UE는 하향링크 전송이 'D' 및 'X' 심볼들에서만 발생한다고 가정할 수 있다. 이와 유사하게, 상향링크 슬롯에서 UE는 상향링크 전송이 'U' 및 'X' 심볼에서만 발생한다고 가정할 수 있다.
2.3. 아날로그 빔포밍 (Analog beamforming )
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 7은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 8은 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 8에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 7 및 도 8에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 7의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 9에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도9와 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 10에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 10에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)의 도입이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
3. 제안하는 실시예
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 발명에서 제안하는 구성에 대해 보다 상세히 설명한다.
본 발명이 적용 가능한 NR 시스템에 있어, eMBB(enhanced Mobile Broad Band) 등의 사용 예 (use-case)를 위해 TB(Transport Block)의 최대 크기는 종래 LTE 시스템에서의 TB 보다 수 배 또는 그 이상으로 커질 수 있다. 일 예로, 각 TB는 종래 LTE 시스템보다 수 배 또는 그 이상의 CB(Codeword Block)로 구성될 수 있다. 이 경우, TB에 포함된 모든 CB의 재전송을 필요로 하는 종래의 각 TB별 HARQ (Hybrid AutomaticRepeat reQuest) 방식은 비효율적일 수 있다.
뿐만 아니라, eMBB 전송 중에 아주 짧은 latency를 요구하는 URLLC(Ultra Reliable and Low Latency Communications) 의 사용 예를 위해 데이터가 높은 우선순위 (higher priority)로 오버라이딩 (overriding) 되는 경우, TB별 HARQ는 적합하지 않을 수 있다.
또한, 동적 (dynamic) TDD(Time Division Duplex)와 같은 환경에서 펜슬 빔 (pencil beam, 예: 방사 패턴의 등고선이 근사적으로 원이 되는 좁은 주 로브(lobe)를 가진 안테나 패턴)으로 파워 부스팅된 인접 셀의 간섭 신호가 발생될 수 있는 시간 선택적 간섭 (time-selective interference) 시나리오를 고려할 때, 이와 같은 TB별 HARQ는 더욱 비효율적일 수 있다.
이에, 본 발명에 따른 NR 시스템에서는 종래 TB별 HARQ가 아닌 TB에 포함된 CBG (Codeword Block Group) 단위 또는 CB 단위의 HARQ 동작 방법을 제안한다.
구체적인 예로, N개의 CB를 포함하는 하나의 TB는 G개의 CBG(Codeword Block Group)로 구성될 수 있다. 이때, 각 CBG는 B 또는 B'개의 CB로 구성될 수 있다. 여기서 B'는 마지막 CBG에 속한 CB 수를 의미하고, 상기 B' 값은 N과 G 값에 따라 B와 같거나 또는 다르게 설정될 수 있다.
도 11은 본 발명에 적용 가능한 하나의 TB 내 CB별 CRC (Cyclic Redundancy Check) 구성을 간단히 나타낸 도면이다.
도 11에 도시된 바와 같이, 구조 A (structure A) 및 구조 B (structure B)는 공통적으로 각 CB마다 CRC(CB-CRC)가 삽입되도록 구성될 수 있다. 다만, 구조 B는 각 CBG 마다 CRC(CBG-CRC)가 추가적으로 삽입되도록 구성되는 차이가 있을 수 있다.
또한, 구조 A 및 구조 B는 공통적으로 하나의 TB를 G개의 CBG로 구성하고 상기 하나의 TB에 대한 CRC(TB-CRC)가 삽입되도록 구성될 수 있다.
여기서 CB-CRC, CBG-CRC 및 TB-CRC는 각각 그 크기(예: 길이 등)가 다르게 설정될 수 있다. 또한, 구조 B에서 G번째 CBG의 CBG-CRC는 생략되거나, 또는 다른 CBG의 CBG-CRC와 다른 크기로 설정될 수 있다.
도 12는 CRC 디코딩 결과 및 CRC bad 원인 별 표시 방법을 나타낸 도면이다. 여기서, 'CRC bad'란 수신단의 CRC 검사 결과가 송신단에서 CRC 패리티 비트를 삽입할 때 의도한 것과 다른 경우를 의미할 수 있다. 일반적으로, 송신단과 수신단은 서로 상호간 약속된 규칙을 따르는데, 수신단 (예: 단말)은 CRC 검사를 통해서 송신단에서 의도한 규칙이 데이터 블록을 디코딩한 이후에 유지되는지 판별할 수 있다. 이에, 이하 설명에 있어, CRC good은 디코딩 결과 송신단과 수신단 사이에 CRC 패리티 비트의 삽입 의도 (또는 규칙)가 동일한 경우를 의미하고, CRC bad는 디코딩 결과 송신단과 수신단 사이에 CRC 패리티 비트의 삽입 의도 (또는 규칙)가 상이한 경우를 의미한다고 가정한다.
도 12에 있어, 첫 번째 블록은 CRC good에 해당하는 CB를 나타내고, 두 번째 블록 내지 네 번째 블록은 CRC bad에 해당하는 CB를 나타낸다.
구체적으로, 두 번째 블록은 불충분한 SNR(Signal to Noise Ratio)로 인하여 CB 디코딩 에러가 발생된 CB를 나타낸다. 일반적으로 링크 적응 (link adaptation)이 적용되는 경우에도 페이딩 환경 (예: 감쇠차, 위상차)에서 일부 CB(약 1~10%)에 대한 디코딩 에러가 발생될 수 있다.
세 번째 블록은, 시간 선택적 간섭 (Time-selective interference) 또는 URLLC (Ultra Reliable Low Latency Communication) 전송으로 인하여 일부 CB가 펑쳐링(puncturing) 되는 경우, 슬롯 간 (inter-slot) 채널 측정 성능 (channel estimation performance) 열화로 인하여 해당 CB 이전 또는 이후에 CB 디코딩 에러가 발생된 CB를 나타낸다. 상기와 같은 CRC bad가 발생할 확률은 앞서 상술한 일반적인 페이딩 환경에서 발생될 수 있는 약 1~10% CB 에러 확률 보다 높을 수 있다. (추가적으로, 후술하는 time-selective interference로 인한 CB error 확률 보다는 낮을 수 있다.)
네 번째 블록은, 시간 선택적 간섭 또는 URLLC 전송으로 인하여 일부 CB가 펑쳐링되는 경우, 해당 CB decoding 에러가 발생된 CB를 나타낸다. CB 펑쳐링인 경우 CB 에러 확률은 100%이고, 시간 선택적 간섭인 경우 CB 에러 확률은 앞서 상술한 슬롯간 채널 측정 성능 열화로 인한 CB error 확률 보다 훨씬 높을 수 있다.
도 13내지 도 15는 본 발명에 따른 CRC 디코딩 결과 시나리오를 나타낸 도면이다. 도 13내지 도 15에서는 설명의 편의상 CB-CRC, CBG-CRC 및 TB-CRC를 생략하였으나, 실시예에 따라 CB-CRC, CBG-CRC 및 TB-CRC 중 하나 이상이 포함된 구성 또한 본 발명에 포함될 수 있다.
이때, 도 13 내지 도 15에 도시된 각 CB별 CRC 디코딩 상태 및 CRC bad 원인은 도 12에 기반하여 해석될 수 있다.
도 13에서는 도 15에 비해 CBG 내에 CB가 많이 포함된 경우의 CRC 디코딩 결과 시나리오를 도시한다. 도 14에서는 도 13과 달리 TB의 마지막 CBG에 상대적으로 적은 CB가 포함된 경우의 CRC 디코딩 결과 시나리오를 도시한다. 도 15에서는 TB의 각 CBG가 도 13과 달리 적은 개수의 CB로 구성된 경우의 CRC 디코딩 결과 시나리오를 도시한다.
도 13에 도시된 CRC bad 발생 시나리오는 다음과 같이 구분될 수 있다.
(1) Type (A-2) ~ Type (A-3)
- g번째 CBG 내에서 인접하지 않은 일부 CB(예: g2와 g5)에 대한 NACK이 발생
- g번째 CBG 내에서 인접하지 않은 일부 CB(예: g2와 g5)에 포함된 RS (Reference Signal)를 UE 또는 gNB가 수신하지 못하여 g2와 g5에 인접한 g1과 g3, g4의 CB에 대한 크로스 슬롯 채널 측정 (cross-slot channel estimation) 성능 열화로 인하여 추가적인 CRC bad가 발생
- g번째 CBG 내에서 인접한 일부 CB(예: g2~g5)에 대한 NACK이 발생
- g번째 CBG 내에서 인접한 일부 CB(예: g2~g5)에 포함된 RS를 UE 또는 gNB가 수신하지 못하여 g2~g5에 인접한 g1과 g6 CB에 대한 크로스 슬롯 채널 측정 성능 열화로 인하여 추가적인 CRC bad가 발생
(2) Type (A-4) ~ Type (A-5)
- g번째 CBG 내에서 인접한 일부 CB(예: g1~g4)에 대한 NACK이 발생
- g번째 CBG 내에서 인접한 일부 CB(예: g1~g4)에 포함된 RS를 수신하지 못하여 g1~g4에 인접한 (g-1)번째 CBG의 마지막 g8 CB와 g번째 CBG의 g5 CB에 대한 크로스 슬롯 채널 측정 성능 열화로 인하여 추가적인 CRC bad가 발생
- (g-1)번째와 g번째 CBG에 걸쳐서 인접한 일부 CB에 대한 NACK이 발생
- (g-1)번째와 g번째 CBG에 걸쳐서 인접한 일부 CB에 포함된 UE 또는 gNB가 RS를 수신하지 못하여 이와 인접한 일부 CB에 추가적인 CRC bad가 발생
이를 정리하면, CRC bad의 형태로는,
1) CBG 내에서 인접하지 않은 일부 CB의 NACK이 발생되는 형태,
2) CBG 내에서 인접한 일부 CB의 NACK이 발생되는 형태, 및
3) 인접한 CBG에 걸쳐서 연속된 CB의 NACK이 발생되는 형태가 있을 수 있다.
도 14에서는 도 13과 달리 TB 내의 마지막 CBG가 나머지 CBG와 다른 수의 CB로 구성됨을 도시한다.
도 15에서는 도 12 및 도 13과 달리 3개 이상의 인접한 CBG에 걸친 CB에 CRC bad가 발생됨을 도시한다.
정리하면, 도 13 내지 도 15에 도시된 CBG level의 CRC bad 형태는 CB 관점에서 아래와 같이 3가지로 분류될 수 있다.
[1] CBG 내에서 인접하지 않은 일부 CB의 NACK
[2] CBG 내에서 인접한 일부 CB의 NACK
[3] 인접한 CBG에 걸쳐서 연속된 CB의 NACK
도 16은 기지국과 UE의 신호 송수신 절차를 간단히 나타낸 도면이다. 도 16에 있어, 하나의 TB만 전송되는 경우로써, 상기 하나의 TB를 전송하는 주체는 기지국이고, 상기 하나의 TB를 수신하는 주체는 UE라 가정한다.
본 발명에서 제안하는 다중 레벨 (multi-level) ACK/NACK 보고는 종래 LTE 시스템 대비 ACK/NACK 보고 방법 뿐만 아니라 DCI (Downlink Control Information) 구성 및 재전송 방법에 있어서도 차이가 있을 수 있다. 특히, 본 발명에서 제안하는 최초 (initial) TB에 포함되어 전송된 CBG에 대한 다중 레벨 ACK/NACK 필드의 구성 및 해석 방법은 재전송된 일부 CB 또는 CBG에 대한 다중 레벨 ACK/NACK field의 구성 및 해석 방법과 상이할 수 있다.
도 16에 있어, (A)는 TB의 초기 전송 절차를 나타낸다. 이때, 하나의 TB는 G개의 CBG로 구성되고 각 CBG는 B개의 CB로 구성되었다고 가정하며, UE는 기지국으로부터 수신된 DCI를 통해서 해당 TB의 TBS와 G, B 정보를 획득하였다고 가정한다.
이하에서는, 본 발명에 따른 다중 레벨 ACK/NACK 방법이 적용되는 경우, 도 16의 (B), (C), (D), (E) 및 (F) 시점 별 기지국과 UE의 동작에 대해 상세히 설명한다.
3.1. CBG-level ACK/NACK report (도 16의 (B) 시점)
UE는 G개의 CBG에 대해서 디코딩을 완료하고, 각 CBG에 대한 ACK/NACK을 기지국에 보고한다.
이때, NACK에 대한 보고는 해당 CBG의 CRC bad에 대한 타입을 고려하여 다음과 같이 다양한 상태(state)를 가질 수 있다. 여기서 k-bit로 구성된 ACK/NACK 필드는 2k개의 상태를 가지며, 상기 2k개의 상태는 ACK을 지시하는 1개의 상태와 다양한 NACK의 상태를 지시하는 2k-1개의 상태를 포함한다.
이하 설명에서는, 상기 k 값으로 2가 적용되는 예시를 기준으로 본 발명의 구성에 대해 설명한다. 이때, k 값으로 2 보다 큰 값이 적용되는 경우, 후술할 다양한 방법과 유사하게 다양한 NACK의 상태가 정의될 수 있다.
이하에서는, NACK의 상태를 구분하는 방법에 대해 상세히 설명한다.
3.1.1. 제1 방법 (CBG 내 인접한 CB의 NACK을 구분하는 방법)
- NACK state 0: X개 이하의 CB애서만 NACK 발생
- NACK state 1: (X+1)개 이상의 CB에서 NACK 발생하고, 해당 CB는 서로 전혀 연속하지 않음
- NACK state 2: (X+1)개 이상의 CB에서 NACK 발생하고, 해당 CB가 서로 연속한 경우가 존재함
여기서, X 값은 3GPP 표준 등에서 미리 정의되거나 (predefined), 셀 공통 (cell common) 또는 UE 특정하게 (준-)정적 또는 동적으로 설정될 수 있다. 또는, 상기 X 값이 별도로 설정되지 않는 경우, 상기 X 값은 디폴트 (default) 값으로 1을 가질 수 있다.
다른 예로, 상기 제1 방법은 아래와 같이 변형되어 적용될 수 있다.
- NACK state 0: 인접한 X개 CB가 연속적으로 NACK인 경우가 존재하지 않는 경우
- NACK state 1: 인접한 X개 CB가 연속적으로 NACK인 경우가 존재하는 경우
- NACK state 2: 유보 (reserved)
3.1.2. 제2 방법 ( CBG NACK이 발생된 CB의 인접성 여부 및 인접한 CB의 위치를 구분하는 방법)
- NACK state 0: ceil(B/2)번째부터 (B-1)번째 사이의 CB 중 일부 또는 연속한 CB에서 NACK
- NACK state 1: 0번째부터 (ceil(B/2)-1)번째 사이의 CB 중 일부 또는 연속한 CB의 NACK
- NACK state 2: (i) 모든 CB에서 NACK이 발생되거나, 또는 (ii) 0번째부터 (ceil(B/2)-1)번째 사이의 CB 중 일부 또는 연속한 CB의 NACK이면서 ceil(B/2)번째부터 (B-1)번째 사이의 CB 중 일부 또는 연속한 CB의 NACK
다시 말해, 상기 NACK state 2는 NACK state 0 및 NACK state 1을 모두 포함하는 경우를 의미하며, ceil(A)는 상기 A와 같거나 큰 정수 중 가장 작은 값을 의미한다. 일 예로, ceil (4.3)=5 이다.
3.1.3. 제3 방법 (CBG 내 NACK이 발생된 CB의 비율을 구분하는 방법)
- NACK state 0: X% 이하의 CB에서 NACK
- NACK state 1: X% 초과이면서 Y% 이하의 CB에서 NACK
- NACK state 2: Y% 초과의 CB에서 NACK
여기서, X및 Y 값은 TBS (Transmission Block Size), G 또는 B 중 하나 이상의 파라미터에 기반하여 결정되도록 3GPP 표준 등에 의해 미리 정의되거나(predefined), 셀 공통 또는 UE 특정하게 (준-) 정적 또는 동적으로 설정될 수 있다. 또는, 상기 X 및 Y값이 별도로 설정되지 않는 경우, 상기 X 및 Y 값은 3GPP 표준 등에 의해 미리 정의된 디폴트 값을 가질 수 있다.
추가적으로, X와 Y가 동일한 경우, NACK state 1은 다른 용도로 유보될 수 있다.
다른 예로, 상기 제1 방법은 아래와 같이 변형되어 적용될 수 있다.
- NACK state 0: 전체 CB중 NACK인 CB가 X% 이하인 경우
- NACK state 1: 전체 CB중 NACK인 CB가 X%를 초과한 경우
- NACK state 2: 유보 (reserved)
3.1.4. 제4 방법 (CBG에 대한 재전송 기법을 구분하는 방법)
- NACK state 0: IR(Incremental Redundancy) type 재전송 요청
- NACK state 1: CC(Chase Combining) type 재전송 요청
- NACK state 2: 유보 (reserved)
상기 제4 방법에서 IR과 CC는 각각 다음과 같은 동작을 의미할 수 있다.
>> IR: (parity bit에 해당하는) 넌-제로 (non-zero) 값을 가지는 RV (Redundancy Version) 또는 이전 스케줄링에 지시된 RV와 다른 RV에 대응되는 데이터 (coded bit) 부분 (portion)에 대한 스케줄링 요청
>> CC: (systematic bit에 해당하는) 제로 값을 가지는 RV 또는 이전 스케줄링에 지시된 RV와 동일한 RV에 대응되는 데이터 (coded bit) 부분에 대한 스케줄링 요청
앞서 상술한 제1 내지 제4 방법은 서로 중첩되어 (또는 교차되어) 적용될 수 있고, 서로 임의의 조합으로 혼합하여 적용될 수도 있다. 일 실시 예로, 아래와 같이 혼합된 조합에 따른 NACK state 구분 방법이 적용될 수 있다.
[제1 교차 적용된 적용 예]
- NACK state 0: 인접한 X개 CB가 연속적으로 NACK인 경우가 존재하지 않는 경우
- NACK state 1: 인접한 X개 CB가 연속적으로 NACK인 경우가 존재하며, IR type 재전송 요청
- NACK state 2: 인접한 X개 CB가 연속적으로 NACK인 경우가 존재하며, CC type 재전송 요청
[제2 교차 적용된 적용 예]
- NACK state 0: X% 이하의 CB에서 NACK
- NACK state 1: X% 초과의 CB에서 NACK 발생되었으며, IR type 재전송 요청
- NACK state 2: X% 초과의 CB에서 NACK 발생되었으며, CC type 재전송 요청
상기와 같이 NACK 상태가 다중 레벨로 구성되는 경우, UE는 각 CBG 별로 앞서 설명한 CRC bad에 대한 타입을 각각 보고하거나, 하나의 TB 전체에 대해서 CRC bad에 대한 타입의 대표 값을 보고할 수 있다.
전자의 경우, 각 CBG별로 ACK/NACK 상태 필드로써 k-bit가 할당되어, 총 (k * G)개 비트가 전체 HARQ-ACK 피드백으로 할당될 수 있다.
후자의 경우, HARQ-ACK 피드백은 다음과 같이 구성될 수 있다. 구체적으로, 전체 CBG 수를 G라고 가정했을 경우, (i) 각 CBG별로 ACK 또는 NACK만을 표현하는 1-bit가 할당되고, (ii) 앞서 상술한 NACK 상태들 (총 2k개 state를 가정) 중 CBG 전체에 걸쳐 대표하는 상태가 어떤 것인지를 표현하는 k-bit가 할당됨으로써, 전체 HARQ-ACK 피드백은 총 (G+k)개 비트로 구성될 수 있다.
상기와 같은 경우, 각 CBG 별로 NACK 상태를 따로 보고하는 방법은 CBG 별로 NACK 상태를 정확하게 보고할 수 있다는 장점이 있는 반면, ACK/NACK 보고의 페이로드 크기가 증가한다는 단점이 있다.
반면, TB 전체에 대해서 대표 값으로 NACK 상태를 보고하는 방법은 각 CBG에 대한 NACK 상태를 정확하게 보고하지 못한다는 단점이 있으나, ACK/NACK 보고의 페이로드 크기가 적다는 장점이 있다.
이때, TB 전체에 대한 NACK 대표 값을 선정하는 방법으로는 다음과 같은 다양한 예시가 적용될 수 있다.
일 예로, UE는 NACK이 발생된 CBG 내에서 각 방법에 따른 NACK 상태를 결정하고, TB 내에서 가장 많은 NACK 상태를 상기 TB 전체에 대한 NACK 대표 값으로 설정하여 보고할 수 있다.
다른 예로, 특정 NACK 상태 (예: state X)인 CBG가 적어도 하나 존재하면, UE는 해당 NACK state X를 복수 CBG에 대한 대표 값으로 설정하고, 해당 NACK state X인 CBG가 하나도 존재하지 않으면 UE는 다른 NACK state (예: state Y)를 복수 CBG에 대한 대표 값으로 설정할 수 있다. 보다 구체적인 예로, 앞서 상술한 제1 방법 및 제3 방법에 있어, NACK state 1이 state X로, NACK state 0이 state Y로 각각 설정될 수 있다.
UE가 앞서 상술한 NACK 상태의 CBG 별 보고 또는 TB의 대표 값 보고 중 어떤 방법에 따른 HARQ ACK/NACK 보고를 수행하는지 여부는 3GPP 표준 등에서 G (CBG의 개수)에 대한 관계식으로 미리 정의되거나, 기지국에 의해 셀 공통 (cell common) 또는 UE 특정하게 (준-)정적 또는 동적으로 설정될 수 있다.
구체적인 예로, 기지국에서 일부 CB 전송을 생략한 경우(예를 들어, URLLC 전송 등으로 인해 특정 CB 전송이 생략됨), 기지국은 해당 CB의 생략 여부에 대한 정보를 UE에게 알려 줄 수 있다. 만약, UE가 해당 CB가 포함된 시점의 수신 데이터에 대해서, 상향링크 ACK/NACK을 보고하는 시점보다 특정 시간(Q) 이전에 일부 CB 전송이 생략되었다는 정보를 획득하는 경우, 상기 UE는 다음과 같은 옵션 (Option)에 기반하여 HARQ ACK/NACK 보고를 수행할 수 있다.
[Option 1] 다중-레벨 ACK/NACK인 경우, NACK 상태를 구분함에 있어 생략된 CB를 제외하는 방법
(A) 제1 방법에 따라 X개 NACK을 카운트함에 있어서 생략된 CB는 카운트하지 않음
(B) 제2 방법에서 생략된 CB는 ACK으로 가정함
(C) 제3 방법에 따라 X% 그리고/또는 Y%를 계산함에 있어, 생략된 CB를 전체 CB 수와 NACK CB의 수를 카운트 함에 있어서 제외함
(D) 제3 방법을 적용함에 있어, 생략된 CB를 제외한 NACK CB 만을 고려하여 재전송 타입 (예: IR 또는 CC)을 결정함. 이때, 상기와 같은 방법은 앞서 상술한 각 방법이 교차 적용되는 경우에도 마찬가지로 적용될 수 있다. 구체적인 예로, NACK 상태를 구분함에 있어 UE는 생략된 CB를 고려하지 않고 NACK 상태를 구분할 수 있다.
[Option 2]단일-레벨 (Single-level) ACK/NACK인 경우, 생략된 CB를 제외하는 방법
- CBG의 ACK/NACK을 보고함에 있어, UE는 생략된 CB를 ACK CB로 가정한다.
[Option 3] 특정 CBG에서 생략된 CB를 제외한 나머지 CB가 모두 ACK인 경우, UE는 해당 CBG를 ACK으로 보고한다.
앞서 상술한 예시에서, 특정 시간 Q는 UE 카테고리 등에 따라서 3GPP 표준 등에 의해 미리 정의되거나, 기지국에 의해 셀 공통 (cell common) 또는 UE 특정하게 (준-)정적 또는 동적으로 설정될 수 있다.
3.2. CBG 재전송 (도 16의 (C) 시점)
기지국은 UE로부터 보고 받은 CBG-level ACK/NACK 및 다중-레벨 NACK 상태에 기반하여 아래와 같은 재전송을 수행할 수 있다.
(1) NACK으로 보고 받은 모든 CBG에 대한 재전송
(2) NACK으로 보고 받은 CBG 중, 일부 CBG에 속한 모든 CB 재전송
(3) NACK으로 보고 받은 CBG 중, 일부 CBG에 속한 일부 CB 재전송
이때, (2)는 (1)을 포함하는 구성인 바, 이하에서는 (2)와 (3)로 구분하는 예시에 대해서만 상세히 설명한다. 따라서, 기지국은 NACK CBG에 포함된 전체 CB를 재전송을 하거나, 또는 NACK CBG에 포함된 일부 CB를 재전송한다고 가정한다.
상기 구성에 있어, 기지국은 일반적으로 NACK CBG의 CB 전체를 재전송 하되, 아래와 같은 특정 상황이 발생하는 경우 상기 기지국은 NACK CBG 중의 일부 CB만을 재전송 할 수 있다.
1) URLLC 등의 상대적으로 우선 순위가 높은 서비스의 데이터 전송을 위해서, 해당 CBG 중 일부 CB를 기지국에서 전송하지 않은 경우
2) 재전송 가능한 시점에 사용 가능한 resource와 비교하여, CBG를 구성하는 CB의 수 'B'가 상대적으로 너무 커서 (기지국이) 일부 CB만을 우선적으로 전송하고 싶은 경우
3) 초기 TB 전송 중에 특정 시점(예: slot)에 추가적인 신호 (예: synchronization signal 또는 CSI-RS 등)가 전송되어 해당 특정 시점에 전성된 CB의 코드 율 (code rate)이 상대적으로 다른 CB 보다 높으며, 해당 CB가 속한 CBG의 NACK이 보고된 경우, 기지국은 코드 율(code rate)이 높았던 특정 CB를 우선적으로 재전송할 수 있다.
4) 기지국이 NACK 상태를 다중-레벨 NACK으로 보고 받고, 이를 통해서 해당 CBG에 극히 일부의 CB에서만 CRC bad가 발생된 것을 유추할 수 있는 경우
5) 기지국이 NACK 상태를 다중-레벨 NACK으로 보고 받고, 이를 통해서 연속된 CBG에서 걸쳐서 NACK이 발생하였으며, 연속된 CBG NACK의 처음과 마지막 CBG에는 극히 일부의 CB에서만 CRC bad가 발생된 것을 유추할 수 있는 경우
이때, 기지국이 NACK CBG에 포함된 전체 CB에 대해 (즉, CBG 단위로) 재전송 스케줄링을 수행하는지 또는 상기 기지국이 NACK CBG에 포함된 일부 CB에 대해 (즉, CB 단위로) 재전송 스케줄링을 수행하는지 여부는 상기 기지국이 DCI를 통해 UE에게 지시해주거나 또는 UE의 HARQ-ACK 피드백에 따라 자동적으로 전환될 수 있다.
후자의 경우, 기지국은 DCI 및/또는 UCI 오버헤드를 고려하여 NACK인 CBG 수가 특정 값 이하이면 CB 단위의 재전송 스케줄링을 수행하고, 상기 CBG 수가 특정 값을 초과하면 CBG 단위의 재전송 스케줄링을 수행할 수 있다.
또한, 기지국이 NACK CBG에 포함된 전체 CB를 재전송을 하거나, 또는 NACK CBG에 포함된 일부 CB를 재전송하는 경우에 따라 상기 기지국이 전송하는 DCI의 구성은 달라질 수 있다.
또한, 기지국의 CBG 전체 재전송과 일부 CB 재전송 방법에 대한 선택에 따라서 해당 재전송에 대한 ACK/NACK 보고 방법 및 페이로드 구성 또한 달리 설정될 수 있다. 특히, ACK/NACK 보고 방법 및 페이로드 구성이 초기 TB 전송과 비교하여 달라지는 부분은 CBG 재전송 시점의 DCI를 통해서 명시적으로 정의되거나, 3GPP 표준 등에 의해 초기 TB 전송과 이후 재전송에 대한 ACK/NACK 보고가 구분되도록 미리 정의되거나, 기지국에 의해 셀 공통 또는 UE 특정하게 (준-)정적 또는 동적으로 설정될 수 있다. 또한, CBG 재전송에 대한 ACK/NACK 보고 방법 및 페이로드 구성 또한 재전송 시점 (예: 도 16의 (D) 및 (F) 등) 등에 따라 달리 설정될 수 있다.
3.3. CBG 재전송에 대한 ACK/NACK report(도 16의 (D) 시점)
UE는 도 16의 (B) 시점에서 CBG-level ACK/NACK 및 다중-레벨 NACK 상태를 보고하고, (C) 시점에서 전송한 보고에 대응하는 재전송을 수신 받고, 다시 (D) 시점에서 재전송 받은 CBG 또는 일부 CB에 대한 ACK/NACK을 보고한다.
여기서, (C) 시점의 재전송이 특정 CBG에 속한 모든 CB의 재전송인 경우, UE는 (B) 시점의 CBG-level ACK/NACK 및 다중-레벨 NACK 상태와 동일한 방법을 활용하여 ACK/NACK 보고를 수행할 수 있다. 다만, 이 경우 재전송된 CBG에 대해서만 ACK/NACK을 보고하도록 페이로드가 구성되거나, 또는 초기 TB에 대한 모든 CBG에 대한 ACK/NACK을 보고하도록 페이로드가 구성되는 옵션이 추가적으로 적용될 수 있다.
또는, (C) 시점의 재전송이 CBG에 속한 일부 CB인 경우, 앞서 설명한 경우와 달리, (B) 시점에서 보고한 NACK CBG의 CRC bad가 발생된 CB가 (C) 지점에 재전송되는 일부 CB에 포함되지 않을 가능성이 있다. 따라서, (D) 시점의 ACK/NACK 보고 과정에서 NACK의 해석 방법이 기지국과 UE간에 서로 다를 수 있다.
먼저, (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 포함되는 비율에 따라 다음과 같이 구분할 수 있다.
(1) (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 모두 포함되는 경우
(2) (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 모두 포함되지 않는 경우
(3) (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 일부만 포함되는 경우
이때, 기지국은 (D) 시점의 CBG-level ACK/NACK 보고를 통해, (C) 시점에 재전송된 CB가 (D) 시점에서 CBG NACK으로 보고된 원인이 다음의 세가지 시나리오 중 어느 것에 해당하는지를 구분할 수 없다.
- “재전송된 CB가 (B) 시점에서 CRC bad인 CB와 동일하지만 콤바이닝 (combining) 이후에도 여전히 해당 CB가 NACK인지”
- “재전송된 CB가 (B) 시점에서 CRC bad인 CB와 달라서 발생된 것인지”
- “재전송된 CB가 (B) 시점에서 CRC bad인 CB를 일부만 포함해서 해당 CBG가 NACK인지”
이로 인해, 기지국은 (E) 시점에서 재전송을 위한 CB를 어떻게 선택해야 하는지 모호할 수 있다.
이를 해결하기 위한 방안으로써, 본 발명에서는 아래와 같은 방법을 제안한다.
먼저, UE는 (D) 시점의 ACK/NACK 보고 구조를 (B) 시점의 CBG-level ACK/NACK 보고 구조를 유지하되, 상기 (D) 시점의 ACK/NACK 보고 중 (C) 시점에 재전송 되지 않은 CBG에 대응되는 다중-레벨 NACK 상태 필드를 (C) 시점에 재전송 된 CBG에 속한 각 CB의 디코딩 결과를 표현하기 위한 필드로 활용할 수 있다.
여기서, 다중-레벨 NACK 상태는 앞서 상술한 3.1. 절에서 제시된 방법과 같이 NACK이 발생된 CBG에 대한 추가적인 정보를 제공하기 위한 필드를 의미할 수 있다. 이에, (C) 시점에서 재전송되지 않은 CBG에 대해서는 다중-레벨 NACK 상태 대한 정보가 필요 없게 된다. 따라서, 해당 필드는 (C) 시점에서 재전송된 CB가 속한 CBG의 CRC bad 형태를 더욱 자세히 표현하기 위해서 사용될 수 있다. 여기서 “더욱 자세한 표현”은 아래와 같이 정의 될 수 있다.
1) (C) 시점에 재전송된 CB와 (B) 시점에 CRC bad가 발생된 CB의 관계를 구분. 이때, 상기 관계에 대한 정보는 다음 중 하나를 지시할 수 있다.
- (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 모두 포함되는 경우인지
- (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 모두 포함되지 않는 경우인지,
- (B) 시점에서 CRC bad인 CB가 (C) 시점에 재전송된 CB에 일부만 포함되는 경우인지
2) (C) 시점에 재전송된 CB에 대해서 단일-레벨 (single-level) ACK/NACK으로 각 CB의 CRC good과 bad를 알려 주는 방법
이때, UE는 재전송 받은 CB에 대해서 각 CB의 CRC 디코딩 결과를 독립적으로 보고하거나, 재전송 받은 CB가 포함된 CBG 내의 모든 CB(즉, CBG 내에 재전송 되지 않은 CB와 재전송된 CB를 모든 포함)의 CRC 디코딩 결과를 독립적으로 보고할 수 있다.
3.4. CBG 재전송 (도 16의 (E) 시점)
3.2. 절에서 설명한 것과 유사하게, 기지국은 (E) 시점에서 특정 CBG에 속한 모든 CB를 재전송하거나, 특정 CBG에 속한 일부 CB를 재전송하거나, (D) 시점에서 보고 받은 ACK/NACK을 기반으로 (C) 시점에서 재전송한 CB를 포함 또는 제외한 CB를 재전송할 수 있다. 뿐만 아니라, 기지국은 (C) 시점에서 재전송하지 않은 CB 또는 CBG를 (D) 시점의 ACK/NACK 보고와 관계 없이 (E) 시점에서 재전송할 수 있다. 이후, UE는 상기 (E) 시점에 대한 ACK/NACK 보고 방법으로써 3.3. 절에서 설명한 방법과 동일한 방법을 활용할 수 있다.
앞서 상술한 ACK/NACK 기법은 하향링크 전송에 대한 ACK/NACK뿐 아니라, 상향링크 전송에 대한 ACK/NACK에게 적용될 수 있다. 따라서, 앞서 상술한 구성과 달리, UE가 초기 TB 전송 및 TB 재전송을 수행하고, 기지국이 이에 대응하여 앞서 상술한 방법에 따라 ACK/NACK report를 수행할 수 있다.
또한, 도 16의 (B) 내지 (E) 앞서 상술한 다양한 방법들은 서로 독립적 또는 종속적으로 적용될 수 있다.
또한, CBG-level ACK/NACK과 다중-레벨 ACK/NACK 및 단일-레벨 ACK/NACK은 서로 종속되는 관계가 아닐 수 있으며, 각 시점에서 서로 독립적으로 사용될 수도 있다.
뿐만 아니라, 본 특허에서 제안된 다중-레빌 ACK/NACK은 CBG 단위의 ACK/NACK에만 국한되는 기술은 아니며, TB 단위의 ACK/NACK을 보고하는 방법으로도 확장 적용될 수 있다. 구체적으로, 상기 방법에 따라 UE 또는 기지국은 복수의 TB에 대한 NACK 상태를 다중-레벨로 구분하여 다중-레벨 ACK/NACK을 보고할 수 있다.
도 17은 본 발명에 적용 가능한 단말 및 기지국 간 신호 송수신 방법을 나타낸 도면이다. 보다 구체적으로, 도 17에서는 기지국 (eNB 또는 gNB)가 신호를 전송하고, 단말이 수신된 신호에 대한 확인 응답 정보를 전송하는 구성 (다시 말해, 기지국이 신호 송신 노드, 단말이 신호 수신 노드인 구성)을 예를 나타낸다. 다만, 본 발명에 적용 가능한 다른 예에 있어, 도 17에 따른 기지국 및 단말의 동작은 서로 반대로 수행될 수도 있다. 다시 말해, 단말이 신호 수신 노드, 기지국이 신호 송신 노드인 구성이 적용될 수 있다. 이하에서는, 설명의 편의상 기지국이 신호 송신 노드, 단말이 신호 수신 노드인 구성을 기준으로 상세히 설명한다.
먼저, 기지국(100)은 하나 이상의 코드 블록 그룹(Code Block Group;CBG)으로 구성된 신호(예: 제1 신호)를 단말(1)로 전송한다 (S1710). 이때, 각 CBG는 하나 이상의 코드 블록 (Code Block; CB)을 포함할 수 있다.
이어, 단말(1)은 S1710 단계를 통해 수신된 신호 (예: 제1 신호)에 대한 확인 응답 정보를 결정한다 (S1720). 본 발명에 적용 가능한 일 예에서 단말(1)이 특정 CBG에 대해 NACK이라고 판단한 경우, 상기 단말은 상기 특정 CBG에 대한 NACK 상태를 보다 구체적으로 결정할 수 있다.
일 예로, 단말(1)은 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부를 판단하고, 상기 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 바탕으로 상기 특정 CBG에 대한 구체적인 NACK 상태를 결정할 수 있다.
다른 예로, 단말(1)은 상기 대응하는 CBG 내 NACK이 발생된 CB가 어느 위치 영역에 포함되는지 여부를 바탕으로 상기 특정 CBG에 대한 구체적인 NACK 상태를 결정할 수 있다.
또 다른 예로, 단말(1)은 상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 어느 정도인지 여부를 바탕으로 상기 특정 CBG에 대한 구체적인 NACK 상태를 결정할 수 있다.
또 다른 예로, 단말(1)은 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 바탕으로 상기 특정 CBG에 대한 구체적인 NACK 상태를 결정할 수 있다.
이어, 상기 단말(1)은 S1720 단계를 통해 결정된 확인응답정보를 복수의 비트 정보를 통해 상기 기지국(100)으로 전송한다 (S1730).
이때, 상기 복수의 비트 정보는 ACK 를 지시하는 1개의 상태(state) 및 NACK을 지시하는 N개의 상태 중 하나를 지시할 수 있다. 여기서 N은 1보다 큰 자연수가 적용될 수 있다.
여기서, 상기 N 개의 상태 각각은, (A) 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보, (B) 상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보, (C) 상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및 (D) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시할 수 있다.
보다 구체적으로, 상기 제1 내지 제4 정보는 하기와 같은 구체적인 정보들을 지시할 수 있다.
먼저, 상기 제1 정보는, (A-1) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이하임을 지시하는 정보; (A-2) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB는 서로 연속하지 않음을 지시하는 정보; 및 (A-3) 상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB 중 연속하는 CB가 존재함을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제2 정보는, (B-1) 상기 대응하는 CBG를 이등분한 제1 CBG 및 제2 CBG 중 상기 제1 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; (B-2) 상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 중 상기 제2 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 및 (B-3) 상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 모두에 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제3 정보는, (C-1) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 이하임을 지시하는 정보; (C-2) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 초과이며 제2 문턱치 이하임을 지시하는 정보; 및 (C-3) 상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제2 문턱치 초과임을 지시하는 정보; 중 하나를 지시할 수 있다.
또한, 상기 제4 정보는, (D-1) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 IR (Incremental Redundancy) 타입임을 지시하는 정보; 및 (D-2) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 CC (Chase Combining) 타입 임을 지시하는 정보; 중 하나를 지시할 수 있다.
추가적으로, 도 17에는 도시되지 않았으나, 상기 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 상기 기지국(100)에 의해 전송되지 않은 경우, 상기 기지국(100)으로부터 전송되지 않은 CB에 대한 정보를 수신할 수 있다.
이 경우, 상기 단말(1)은 S1720 단계에서 상기 전송되지 않은 CB를 카운트하지 않거나 ACK으로 가정하여 상기 N 개의 상태를 결정할 수 있다.
또한, 기지국(100)은 상기 단말(1)로부터 수신된 제2 신호에 기반하여 재전송 신호를 결정하고(S1740), 상기 재전송 신호(제3 신호)를 단말(1)로 전송할 수 있다(S1750).
이때, 제3 신호는 S1730 단계에서 상기 단말(1)이 NACK으로 보고한 CBG에 포함된 모든 CB에 대한 재전송을 포함하거나, S1730 단계에서 상기 단말(1)이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대한 재전송을 포함할 수 있다.
보다 구체적으로, URLLC 등의 상대적으로 우선 순위가 높은 서비스의 데이터 전송을 위해 상기 기지국(100)에 의해 상기 제1 신호 내 일부 CB가 전송되지 않은 경우, 상기 기지국(100)은 S1750 단계에서 상기 단말(1)이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대해서만 상기 단말(1)로 재전송할 수 있다.
또한, 기지국이 의도적으로 일부 CB를 전송하지 않고 상기 전송되지 않은 일부 CB에 대한 정보를 직접 또는 간접적으로 단말에게 제공하는 경우, 상기 단말은 해당 CB를 포함하는 CBG를 ACK으로 보고할수 있다. 이때, 상기 기지국은 상기 상기 CBG 중 앞서 전송하지 않은 CB를 선택적으로 전송할 수 있다.
왜냐하면, 단말이 기지국에 의해 전송되지 않은 CB에 대한 정보를 알고도 생략된 CB를 NACK으로 가정하지 않았다는 것은, (1) 단말이 일부 CB 전송이 생략되었다는 정보를 잘 수신하였으며 (만약, 이 정보를 제대로 검출하지 못했다면 해당 CB는 당연히 NACK으로 처리되었어야 하기 때문에), (2) 단말이 CBG 내에서 전송 생략된 CB를 제외한 모든 CB에 대해 ACK이라는 정보를 나타낸 것으로 해석될 수 있기 때문이다.
또한, 상기 단말(1)은 상기 제3 신호에 포함된 하나 이상의 CBG에 대한 확인 응답 정보 (제4 신호)를 상기 기지국(100)으로 전송할 수 있다 (S1760). 이때, 상기 제3 신호에 대한 확인 응답 정보는 앞서 상술한 제1 신호에 대한 확인 응답 정보와 유사한 방법으로 구성되어 전송될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 장치 구성
도 18은 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 18에 도시된 단말 및 기지국은 앞서 설명한 단말과 기지국 간 신호 송수신 방법의 실시 예들을 구현하기 위해 동작한다.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB 또는 gNB, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(50, 150)를 각각 포함할 수 있다.
이와 같이 구성된 단말(1)은 수신기(20)를 통해 상기 기지국(100)으로부터 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 수신하고, 송신기(10)를 통해 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 기지국(100)으로 전송한다.
이에 대응하여, 기지국(100)은 송신기(110)를 통해 상기 단말(1)로 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 전송하고, 수신기(120)를 통해 복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 수신한다.
여기서, 각 코드 블록 그룹은 하나 이상의 코드 블록 (Code Block; CB)을 포함하고, 상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시할 수 있다. 여기서 N은 1보다 큰 자연수일 수 있다.
이때, 상기 N 개의 상태 각각은, (A) 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보, (B) 상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보, (C) 상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및 (D) 상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시할 수 있다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division MultipleAccess) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex)패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 18의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: MultiMode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division MultipleAccess) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 발명의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법에 있어서,
    상기 기지국으로부터 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 수신; 및
    복수의 비트 정보로 구성된 각 CBG 별 확인 응답 정보를 상기 기지국으로 전송;하는 것을 포함하되,
    각 CBG는 하나 이상의 코드 블록 (Code Block; CB)을 포함하고,
    상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시하고, 여기서 N은 1보다 큰 자연수이고,
    상기 N 개의 상태 각각은,
    대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보,
    상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보,
    상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시하는, 단말의 신호 송수신 방법.
  2. 제 1항에 있어서,
    상기 제1 정보는,
    상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이하임을 지시하는 정보;
    상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB는 서로 연속하지 않음을 지시하는 정보; 및
    상기 대응하는 CBG 내 NACK이 발생된 CB가 일정 개수를 초과하고, NACK이 발생된 CB 중 연속하는 CB가 존재함을 지시하는 정보; 중 하나를 지시하는, 단말의 신호 송수신 방법.
  3. 제 1항에 있어서,
    상기 제2 정보는,
    상기 대응하는 CBG를 이등분한 제1 CBG 및 제2 CBG 중 상기 제1 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보;
    상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 중 상기 제2 CBG 내 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 및
    상기 대응하는 CBG를 이등분한 상기 제1 CBG 및 상기 제2 CBG 모두에 NACK이 발생된 하나 이상의 CB가 존재함을 지시하는 정보; 중 하나를 지시하는, 단말의 신호 송수신 방법.
  4. 제 1항에 있어서,
    상기 제3 정보는,
    상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 이하임을 지시하는 정보;
    상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제1 문턱치 초과이며 제2 문턱치 이하임을 지시하는 정보; 및
    상기 대응하는 CBG에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 제2 문턱치 초과임을 지시하는 정보; 중 하나를 지시하는, 단말의 신호 송수신 방법.
  5. 제 1항에 있어서,
    상기 제4 정보는,
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 IR (Incremental Redundancy) 타입임을 지시하는 정보; 및
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법은 CC (Chase Combining) 타입 임을 지시하는 정보; 중 하나를 지시하는, 단말의 신호 송수신 방법.
  6. 제 1항에 있어서,
    상기 단말의 신호 송수신 방법은,
    상기 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 상기 기지국에 의해 전송되지 않은 경우, 상기 기지국으로부터 전송되지 않은 CB에 대한 정보를 수신;하는 것을 더 포함하는, 단말의 신호 송수신 방법.
  7. 제 6항에 있어서,
    상기 기지국으로부터 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 전송되지 않은 경우, 상기 단말은 상기 전송되지 않은 CB를 카운트하지 않거나 ACK으로 가정하여 상기 N 개의 상태를 결정하는, 단말의 신호 송수신 방법.
  8. 제 1항에 있어서,
    상기 단말의 신호 송수신 방법은,
    상기 기지국으로부터 상기 각 CBG별 확인 응답 정보에 대한 응답 메시지를 수신;하는 것을 더 포함하는, 단말의 신호 송수신 방법.
  9. 제 8항에 있어서,
    상기 응답 메시지는,
    상기 단말이 NACK으로 보고한 CBG에 포함된 모든 CB에 대한 재전송을 포함하거나,
    상기 단말이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대한 재전송을 포함하는, 단말의 신호 송수신 방법.
  10. 제 8항에 있어서,
    상기 기지국으로부터 수신된 하나 이상의 CBG로 구성된 신호 중 일부 CB가 전송되지 않은 경우, 상기 응답 메시지는 상기 단말이 NACK으로 보고한 CBG 에 포함된 일부 CB에 대한 재전송을 포함하는, 단말의 신호 송수신 방법.
  11. 제 8항에 있어서,
    상기 단말의 신호 송수신 방법은,
    상기 응답 메시지에 포함된 하나 이상의 CBG에 대한 확인 응답 정보를 상기 기지국으로 전송;하는 것을 더 포함하는, 단말의 신호 송수신 방법.
  12. 무선 통신 시스템에서 기지국이 단말과 신호를 송수신하는 방법에 있어서,
    상기 단말로 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 전송; 및
    복수의 비트 정보로 구성된 각 코드 블록 그룹 별 확인 응답 정보를 상기 단말로부터 수신;하는 것을 포함하되,
    각 코드 블록 그룹은 하나 이상의 코드 블록 (Code Block; CB)을 포함하고,
    상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시하고, 여기서 N은 1보다 큰 자연수이고,
    상기 N 개의 상태 각각은,
    대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보,
    상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보,
    상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시하는, 기지국의 신호 송수신 방법.
  13. 무선 통신 시스템에서 기지국과 신호를 송수신하는 단말에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    상기 기지국으로부터 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 수신; 및
    복수의 비트 정보로 구성된 각 CBG 별 확인 응답 정보를 상기 기지국으로 전송;하도록 구성되고,
    각 CBG는 하나 이상의 코드 블록 (Code Block; CB)을 포함하고,
    복수의 비트 정보로 구성된 각 CBG 별 확인 응답 정보를 상기 기지국으로 전송하되,
    상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시하고, 여기서 N은 1보다 큰 자연수이고,
    상기 N 개의 상태 각각은,
    대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보,
    상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보,
    상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시하는, 단말.
  14. 무선 통신 시스템에서 단말과 신호를 송수신하는 기지국에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    상기 단말로 하나 이상의 코드 블록 그룹(Code Block Group; CBG)으로 구성된 신호를 전송; 및
    복수의 비트 정보로 구성된 각 CBG 별 확인 응답 정보를 상기 단말로부터 수신;하도록 구성되고,
    각 CBG는 하나 이상의 코드 블록 (Code Block; CB)을 포함하고,
    상기 복수의 비트 정보는 ACK (Acknowledgement)를 지시하는 1개의 상태(state) 및 NACK(Non-Acknowledgement)을 지시하는 N개의 상태 중 하나를 지시하고, 여기서 N은 1보다 큰 자연수이고,
    상기 N 개의 상태 각각은,
    대응하는 CBG 내 NACK이 발생된 CB가 일정 개수 이상인지 여부, 및 NACK이 발생된 CB가 일정 개수 이상인 경우 상기 일정 개수 이상의 NACK이 발생된 CB 중 연속하는 CB가 존재하는지 여부를 지시하는 제1 정보,
    상기 대응하는 CBG 내 NACK이 발생된 CB가 포함되는 위치 영역을 지시하는 제2 정보,
    상기 대응하는 CBG 에 포함된 전체 CB 대비 NACK이 발생된 CB의 비율이 포함되는 범위를 지시하는 제3 정보, 및
    상기 대응하는 CBG에 대해 단말이 선호하는 재전송 방법을 지시하는 제4 정보, 중 하나 이상의 정보를 조합하여 지시하는, 기지국.
PCT/KR2018/002761 2017-03-08 2018-03-08 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 WO2018164506A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/491,670 US11050518B2 (en) 2017-03-08 2018-03-08 Method for transmitting and receiving signal between terminal and base station in wireless communication system, and apparatus for supporting same
EP18764333.3A EP3595215B1 (en) 2017-03-08 2018-03-08 Methods for transmitting and receiving signal between terminal and base station in wireless communication system, and apparatuses for supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762468390P 2017-03-08 2017-03-08
US62/468,390 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164506A1 true WO2018164506A1 (ko) 2018-09-13

Family

ID=63448581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002761 WO2018164506A1 (ko) 2017-03-08 2018-03-08 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치

Country Status (3)

Country Link
US (1) US11050518B2 (ko)
EP (1) EP3595215B1 (ko)
WO (1) WO2018164506A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855337A (zh) * 2019-10-25 2020-02-28 无锡北邮感知技术产业研究院有限公司 混合预编码方法、基站、电子设备及存储介质
AU2017417204B2 (en) * 2017-06-06 2023-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for data transmission by mapping and related product

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778336B (zh) 2017-03-08 2022-09-21 南韓商Lg電子股份有限公司 在無線通訊系統中用於傳送和接收無線訊號的方法、設備、媒體、裝置、及基地臺
CN108632192B (zh) * 2017-03-24 2020-04-03 华为技术有限公司 数据传输的方法、设备和系统
JP6972643B2 (ja) * 2017-05-02 2021-11-24 ソニーグループ株式会社 通信装置及び通信方法
WO2018204491A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Method and apparatus for improving hybrid automatic repeat request (harq) feedback performance of enhanced mobile broadband (embb) when impacted by low latency traffic
US10917219B2 (en) * 2017-09-06 2021-02-09 Qualcomm Incorporated Multiplexing code block group level and transport block level feedback
EP3745628A4 (en) * 2018-01-30 2021-09-15 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM
US12010637B2 (en) * 2020-06-12 2024-06-11 Qualcomm Incorporated Indication methods for synchronization signal block configuration changes
EP4171149A4 (en) * 2020-07-17 2023-08-30 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE
US11616597B1 (en) * 2022-01-11 2023-03-28 Qualcomm Incorporated Hierarchical cyclic redundancy check techniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233999A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517418A (ja) * 2007-01-25 2010-05-20 パナソニック株式会社 再送制御手法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233999A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Multi-bits HARQ Feedback", R1-1702379, 3GPP TSG R AN WG1 MEETING #88, 6 February 2017 (2017-02-06), Athens, Greece, XP051220689 *
NOKIA ET AL.: "Enriched Feedback for Adaptive HARQ", RL-1701020, 3GPP TSG RAN WG1 #NR, 10 January 2017 (2017-01-10), Spokane, WA, U.S.A., XP051203310 *
NOKIA ET AL.: "Multi-bit Feedback forNR HARQ Operatio n", R1-1703325, 3GPP TSG RAN WG1 MEETING #88, 6 February 2017 (2017-02-06), Athens, Greece, XP051220477 *
See also references of EP3595215A4 *
ZTE ET AL.: "NR HARQ Timing and Feedback Schemes", RL-1701593, 3GPP TSG RAN WG1 MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051220812 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017417204B2 (en) * 2017-06-06 2023-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for data transmission by mapping and related product
CN110855337A (zh) * 2019-10-25 2020-02-28 无锡北邮感知技术产业研究院有限公司 混合预编码方法、基站、电子设备及存储介质

Also Published As

Publication number Publication date
EP3595215A1 (en) 2020-01-15
US20200036482A1 (en) 2020-01-30
EP3595215B1 (en) 2022-02-23
EP3595215A4 (en) 2021-01-06
US11050518B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2018164506A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2018004246A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2019199143A1 (ko) 무선 통신 시스템에서 단말의 데이터 신호 획득 방법 및 이를 지원하는 장치
WO2019098700A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2018143771A1 (ko) 무선 통신 시스템에서 단말과 기지국간 신호 송수신 방법 및 이를 지원하는 장치
WO2017217799A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018021821A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치
WO2019212224A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018226039A2 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2019135650A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 위상 트래킹 참조 신호 송수신 방법 및 이를 지원하는 장치
WO2018143689A9 (ko) 선점된 자원 정보를 지시하는 방법 및 이를 위한 장치
WO2018169347A1 (ko) 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018182248A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2017131476A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 lbt 파라미터를 조절하는 방법 및 이를 지원하는 장치
WO2017171325A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 물리 상향링크 제어 채널을 전송하는 방법 및 이를 지원하는 장치
WO2018048282A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2017171347A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 지원하는 장치
WO2018231030A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2018164553A2 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 임의 접속 절차 수행 방법 및 이를 수행하는 단말
WO2017023146A1 (en) Apparatus and method for transmitting uplink control information through a physical uplink control channel
WO2018151564A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2013162247A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2014051254A1 (ko) 상향링크 전송 방법 및 장치
WO2012081920A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764333

Country of ref document: EP

Effective date: 20191008