WO2018163678A1 - Communications system - Google Patents

Communications system Download PDF

Info

Publication number
WO2018163678A1
WO2018163678A1 PCT/JP2018/003609 JP2018003609W WO2018163678A1 WO 2018163678 A1 WO2018163678 A1 WO 2018163678A1 JP 2018003609 W JP2018003609 W JP 2018003609W WO 2018163678 A1 WO2018163678 A1 WO 2018163678A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement frame
frequencies
timing
measurement
delay time
Prior art date
Application number
PCT/JP2018/003609
Other languages
French (fr)
Japanese (ja)
Inventor
充志 有留
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018163678A1 publication Critical patent/WO2018163678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers

Definitions

  • the present invention relates to a communication system, a communication device, a communication method, and a program.
  • a filter is provided in the wireless signal transmitting unit and the wireless signal receiving unit.
  • This filter is provided on the radio signal transmission side in order to prevent unnecessary frequency components generated from circuits in the apparatus from being released into the space. Further, this filter is provided on the radio signal receiving side in order to remove unnecessary frequency components from a signal input from space and to extract a desired frequency. Also, in a system that synthesizes and transmits multiple frequency channels and separates them for each frequency channel in order to transfer a large-capacity radio signal, it is closer to the frequency band used for transmission and reception.
  • a band-pass filter having a steep attenuation near the edge of the pass band may be used. As a characteristic of this bandpass filter, there is a characteristic that the delay of the radio signal becomes steep near the edge where the attenuation amount is steep, and a large delay difference occurs in the entire passband.
  • this is a technique for measuring the delay time for each frequency band, and performs delay compensation processing according to the frequency, such as detecting the delay time using the result of comparison between the mark frequency of the target frequency and the space frequency.
  • Technology has been considered (see, for example, Patent Documents 1 and 2).
  • JP 05-191382 A Japanese Patent No. 04-369134
  • a countermeasure for equalizing the delay can be considered by applying an inverse characteristic using a delay equalizer arranged in the reception unit of the radio signal.
  • the degree of delay varies according to the individual characteristics of the filter being used, and the degree of inverse characteristics cannot be determined universally. Therefore, it is necessary to measure in advance the delay characteristics of the individual wireless transmission device systems that are configured.
  • a measure to stop the equalization of the delay characteristics itself by widening the passband of the bandpass filter relative to the frequency band of the signal to be transmitted and received so that the transmitted and received signal is not applied near the edge where the delay becomes steep is considered. It is done.
  • the above-described technique has a problem in that it is not possible to easily obtain delay characteristics of individual transmission systems using a plurality of frequencies.
  • An object of the present invention is to provide a communication system, a communication device, a communication method, and a program that can solve any of the problems described above.
  • the communication system of the present invention includes: A first communication device and a second communication device;
  • the first communication device is: For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
  • a frame transmission unit that transmits the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame;
  • the second communication device is: A reception timing measuring unit that measures the reception timing at which the measurement frame transmitted from the frame transmission unit is received for each of the plurality of frequencies; and Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
  • a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
  • the communication device of the present invention For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame; A frame transmission unit configured to transmit the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame.
  • a reception timing measurement unit that measures the reception timing at which the measurement frames transmitted for each of the plurality of frequencies are received for each of the plurality of frequencies, and Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit
  • a calculation unit A delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
  • the communication method of the present invention includes: For each of a plurality of frequencies, transmission timing information indicating the timing of transmitting a predetermined measurement frame is included in the measurement frame to generate the measurement frame, Transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame; The reception timing at which the transmitted measurement frame is received is measured for each of the plurality of frequencies, Based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, the delay time of the measurement frame is calculated for each of the plurality of frequencies, The calculated delay time is balanced over the plurality of frequencies.
  • a recording medium on which the program of the present invention is recorded A recording medium that records a program to be executed by a computer, For each of a plurality of frequencies, a procedure for generating the measurement frame by including transmission timing information indicating a timing for transmitting a predetermined measurement frame in the measurement frame; A program for executing the procedure of transmitting the generated measurement frame at the timing indicated by the transmission timing information included in the measurement frame is recorded.
  • a recording medium that records a program to be executed by a computer, A procedure for measuring the reception timing at which a measurement frame transmitted for each of a plurality of frequencies is received for each of the plurality of frequencies, A procedure for calculating a delay time of the measurement frame for each of the plurality of frequencies based on a transmission timing indicated by transmission timing information included in the received measurement frame and the measured reception timing; A program for executing the procedure of balancing the calculated delay time over the plurality of frequencies is recorded.
  • FIG. 1 shows 1st Embodiment of the communication system of this invention. It is a figure which shows an example of an internal structure of the communication apparatus of the frame transmission side shown in FIG. It is a figure which shows an example of an internal structure of the communication apparatus of the frame reception side shown in FIG. 2 is a flowchart for explaining processing performed by the frame transmission-side communication apparatus shown in FIG. 1 in the communication method in the communication system shown in FIG. 1. 2 is a flowchart for explaining processing performed by the communication device on the frame reception side shown in FIG. 1 in the communication method in the communication system shown in FIG. 1. It is a figure which shows 2nd Embodiment of the communication system of this invention.
  • FIG. 7 is a flowchart for explaining processing performed by the radio transmission apparatus on the frame transmission side shown in FIG. 6 in the communication method in the communication system shown in FIG. 6. It is a figure which shows an example of the flow of a measurement frame. 7 is a flowchart for explaining processing performed by the wireless transmission device on the frame reception side shown in FIG. 6 in the communication method in the communication system shown in FIG. 6.
  • FIG. 1 is a diagram showing a first embodiment of a communication system of the present invention.
  • the communication system of the present invention includes a communication device 100 and a communication device 200.
  • the communication device 100 and the communication device 200 are connected to each other and can transmit and receive signals.
  • FIG. 2 is a diagram illustrating an example of an internal configuration of the communication apparatus 100 illustrated in FIG.
  • the communication apparatus 100 shown in FIG. 1 is a first communication apparatus having a measurement frame generation unit 110 and a frame transmission unit 120 as shown in FIG.
  • FIG. 2 shows an example of main components related to the present embodiment among the components included in the communication apparatus 100 shown in FIG.
  • the measurement frame generation unit 110 generates a predetermined measurement frame. At this time, the measurement frame generation unit 110 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
  • the frame transmission unit 120 transmits the measurement frame generated by the measurement frame generation unit 110 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
  • FIG. 3 is a diagram illustrating an example of an internal configuration of the communication apparatus 200 illustrated in FIG.
  • the communication apparatus 200 shown in FIG. 1 is a second communication apparatus having a reception timing measurement unit 210, a delay time calculation unit 220, and a delay equalization unit 230 as shown in FIG. Note that FIG. 3 illustrates an example of main components related to the present embodiment among the components included in the communication device 200 illustrated in FIG. 1.
  • the reception timing measurement unit 210 measures the reception timing at which the measurement frame transmitted from the frame transmission unit 120 of the communication apparatus 100 is received for each of a plurality of frequencies.
  • the delay time calculation unit 220 calculates the delay time of the measurement frame for each of a plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 210. calculate.
  • the delay equalization unit 230 balances the delay time calculated by the delay time calculation unit 220 over a plurality of frequencies.
  • FIG. 4 is a flowchart for explaining processing performed by communication apparatus 100 shown in FIG. 1 in the communication method in the communication system shown in FIG. 1 .
  • the measurement frame generation unit 110 generates a predetermined measurement frame.
  • the measurement frame generation unit 110 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
  • the frame transmission unit 120 transmits the measurement frame generated by the measurement frame generation unit 110 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
  • FIG. 5 is a flowchart for explaining processing performed by communication device 200 shown in FIG. 1 in the communication method in the communication system shown in FIG. 1 will be described.
  • reception timing measurement section 210 measures the reception timing at which the measurement frame transmitted from frame transmission section 120 of communication device 100 is received for each of a plurality of frequencies. Then, in step 12, the delay time calculation unit 220 determines the delay time of the measurement frame based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 210. Is calculated for each of a plurality of frequencies. Subsequently, in step 13, the delay equalization unit 230 balances the delay time calculated by the delay time calculation unit 220 over a plurality of frequencies.
  • the communication apparatus 100 transmits a measurement frame including transmission timing information indicating each transmission timing for each of a plurality of frequencies at the transmission timing.
  • the communication apparatus 200 calculates a delay time for each of a plurality of frequencies based on the reception timing at which the measurement frame is received and the transmission timing indicated by the transmission timing information included in the measurement frame. Equilibrate over frequency. Therefore, it is possible to easily obtain the delay characteristics of individual transmission systems using a plurality of frequencies.
  • FIG. 6 is a diagram showing a second embodiment of the communication system of the present invention.
  • a wireless transmission device 101 and a wireless transmission device 201 are connected via a wireless transmission path 301.
  • the wireless transmission device 101 is a first communication device that inputs the baseband signal 1 from the outside (for example, another communication device).
  • the wireless transmission device 101 transmits a wireless signal to the wireless transmission path 301 using the antenna 102.
  • the wireless transmission device 201 is a second communication device that receives a wireless signal transmitted via the wireless transmission path 301 using the antenna 202.
  • the wireless transmission device 201 transmits the baseband signal 4 to the outside (for example, another communication device).
  • FIG. 7 is a diagram illustrating an example of an internal configuration of the wireless transmission device 101 illustrated in FIG. As illustrated in FIG. 7, the wireless transmission device 101 illustrated in FIG. 6 includes a modulation unit 131, an IF-RF conversion unit 141, a measurement frame generation unit 111, a frame transmission unit 121, and a bandpass filter 151. . FIG. 7 illustrates an example of main components related to the present embodiment among the components included in the wireless transmission device 101 illustrated in FIG. 6.
  • the modulation unit 131 modulates the baseband signal 1 transmitted from the outside (for example, another communication device) into a radio frame. Modulation section 131 outputs the modulated radio frame as IF (Intermediate Frequency) signal 161.
  • the IF-RF converter 141 converts the input IF signal 161 into an RF (Radio Frequency) signal 181 and outputs it.
  • the measurement frame generation unit 111 generates a predetermined measurement frame (delay characteristic measurement frame 171). At this time, the measurement frame generation unit 111 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
  • the measurement frame generation unit 111 includes, in the measurement frame, identification information that can identify a group including measurement frames having a delay time with which the wireless transmission device 101 is balanced.
  • the measurement frame generation unit 111 includes a predetermined flag in the measurement frame. This flag indicates that the frame is “a measurement frame generated by the measurement frame generation unit 111”.
  • the frame transmission unit 121 transmits the measurement frame generated by the measurement frame generation unit 111 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
  • the bandpass filter 151 removes excess frequency components from the input RF signal 181.
  • the band pass filter 151 transmits an RF signal from which an extra frequency component is removed from the antenna 102 to the wireless transmission path 301.
  • FIG. 8 is a diagram illustrating an example of an internal configuration of the wireless transmission device 201 illustrated in FIG.
  • the wireless transmission apparatus 201 shown in FIG. 6 includes a bandpass filter 241, a reception timing measurement unit 211, an RF-IF conversion unit 251, a delay characteristic measurement unit 221, and a delay equalization unit 231. And a demodulator 261.
  • FIG. 8 illustrates an example of main components related to the present embodiment among the components included in the wireless transmission device 201 illustrated in FIG. 6.
  • the band pass filter 241 removes excess frequency components from the input RF signal and outputs an RF signal 271.
  • the reception timing measurement unit 211 receives a reception frame (RF signal 271) transmitted from the frame transmission unit 121 of the wireless transmission apparatus 101 and input via the bandpass filter 241 as a plurality of frequencies. Measure every time.
  • the RF-IF converter 251 converts the input RF signal 271 into an IF signal 272 and outputs it.
  • the delay characteristic measurement unit 221 calculates a delay time of the measurement frame for each of a plurality of frequencies based on the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 211. It is a calculation part.
  • the delay characteristic measurement unit 221 calculates the delay time based on the difference between the transmission timing and the reception timing for the reference frequency serving as a reference among the plurality of frequencies and the transmission timing and the reception timing for the other frequencies. calculate. Further, the delay characteristic measuring unit 221 calculates the delay characteristic in the frequency domain of the passing path based on the received measurement frame. The delay characteristic measurement unit 221 outputs the calculated result to the delay equalization unit 231 as delay characteristic information 208. The delay equalization unit 231 balances the delay time of the IF signal 272 over a plurality of frequencies based on the delay characteristic information 208 output from the delay characteristic measurement unit 221. The delay equalization unit 231 outputs the balanced IF signal to the demodulation unit 261.
  • the IF signal 272 (RF signal 271) has a large delay difference in the frequency domain due to the influence of the bandpass filters 151 and 241.
  • the delay characteristic measurement unit 221 In order for the delay equalization unit 231 to equalize this delay difference, the delay characteristic measurement unit 221 generates the delay characteristic information 208 before the wireless transmission apparatus 201 starts transferring the baseband signal.
  • the demodulation unit 261 demodulates the IF signal output from the delay equalization unit 231 to the baseband signal 4 and transmits it to the outside (for example, another communication device). Note that the measurement frame received by the wireless transmission device 201 passes through the same path as when the baseband signal is transferred, and is received by the delay characteristic measurement unit 221.
  • FIG. 9 is a flowchart for explaining processing performed by the wireless transmission device 101 shown in FIG. 6 in the communication method in the communication system shown in FIG. 6 .
  • the measurement frame generation unit 111 generates a predetermined measurement frame. At this time, the measurement frame generation unit 111 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
  • FIG. 10 is a diagram illustrating an example of the flow of a measurement frame.
  • the measurement frame generation unit 111 generates a delay characteristic measurement frame 171 that is a measurement frame for each frequency interval in the transmission frequency band.
  • the measurement frame generation unit 111 finely adjusts the frequency interval for transmitting the delay characteristic measurement frame 171 in a system where the delay difference is considered to be large, or the density at a portion where the delay near the edge of the bandpass filter is steep. It may be changed.
  • the measurement frame generation unit 111 records a transmission time 193 that is a transmission timing at which the wireless transmission apparatus 101 transmits the delay characteristic measurement frame 171 in the delay characteristic measurement frame 171.
  • the measurement frame generation unit 111 is a flag 191 indicating that it is a measurement frame for measuring delay characteristics, and the delay characteristic measurement unit 221 is the same group for calculating the delay difference of each frame. Is also recorded.
  • the frame transmission unit 121 transmits the measurement frame generated by the measurement frame generation unit 111 to the wireless transmission apparatus 201 at the transmission timing indicated by the transmission timing information included in the measurement frame.
  • the frame transmission unit 121 transmits a delay characteristic measurement frame using a modulation method that is resistant to deterioration such as QPSK (Quadrature Phase Shift Keying) so that it can withstand steep delay characteristics.
  • the delay characteristic measurement frame 171 generated by the measurement frame generation unit 111 is input to the IF-RF conversion unit 141 and passes through the same path as when the baseband signal is transferred.
  • FIG. 11 is a flowchart for explaining processing performed by the wireless transmission device 201 shown in FIG. 6 in the communication method in the communication system shown in FIG. 6 will be described.
  • FIG. 11 is a flowchart for explaining processing performed by the wireless transmission device 201 shown in FIG. 6 in the communication method in the communication system shown in FIG.
  • the delay characteristic measurement frame 171 transmitted from the frame transmission unit 121 reaches the reception timing measurement unit 211 with a different delay for each frequency according to the frequency characteristic of the signal transfer path 304.
  • the signal transfer path 304 is a transmission path from the frame transmission unit 121 to the reception timing measurement unit 211.
  • the signal transfer path 304 includes a bandpass filter 151, a wireless transmission path 301, and a bandpass filter 241.
  • the reception timing measurement unit 211 determines whether or not a flag is added to the frame transmitted from the frame transmission unit 121 of the wireless transmission device 101.
  • the reception timing measuring unit 211 measures the reception timing at which the measurement frame is received for each of a plurality of frequencies, with the frame determined to be flagged as a measurement frame. Then, in step 33, the delay characteristic measurement unit 221 determines the transmission timing indicated by the transmission timing information included in the measurement frame in which the reception timing measurement unit 211 measures the reception timing, and the reception timing measured by the reception timing measurement unit 211. Based on the above, the delay time of the measurement frame is calculated for each of a plurality of frequencies. At this time, the delay characteristic measurement unit 221 calculates the delay difference for the measurement frames having the same identification information included in the measurement frames. For example, as shown in FIG.
  • the delay characteristic measuring unit 221 calculates the delay characteristic 305 indicating the relationship between the frequency band and the delay time. In step 35, the delay characteristic measuring unit 221 determines the degree of the reverse characteristic from the obtained delay characteristic 305 and outputs it to the delay equalization unit 231 as the delay characteristic information 208 as shown in FIG. 10.
  • the method for determining the reverse characteristic may be a general method and is not particularly defined.
  • the delay equalization unit 231 multiplies the IF signal 272 by the delay characteristic information 208, which is the inverse characteristic 206 output from the delay characteristic measurement unit 221, and sets the delay time over a plurality of frequencies. Equilibrate.
  • the delay equalization unit 231 outputs the balanced (delay equalization) IF signal 307 to the demodulation unit 261.
  • the demodulator 261 demodulates the delay equalized IF signal 307 and outputs the baseband signal 4.
  • the delay characteristic measurement unit 221 may include the reception timing measurement unit 211.
  • the delay time is measured for each of a plurality of frequencies using the measurement frame, and the delay characteristic over the frequency band from the reverse characteristic of the delay characteristic based on the difference from the delay time at the reference frequency and the IF signal is delayed.
  • the radio transmission apparatus autonomously determines the optimum reverse characteristic for equalizing the delay characteristic of the radio transmission system.
  • it is possible to demodulate a radio signal subjected to delay equalization by the demodulator on the receiving side into a baseband signal without having to measure the delay characteristics of the system in advance.
  • each function is assigned to each component, but this assignment is not limited to the above.
  • the configuration described above is merely an example, and the present invention is not limited to this.
  • what combined each embodiment may be sufficient.
  • the processing performed by each component provided in each of the communication devices 100 and 201 and the wireless transmission devices 101 and 201 described above may be performed by a logic circuit that is produced according to the purpose.
  • a computer program hereinafter referred to as a program
  • processing contents are described as a procedure is recorded on a recording medium that can be read by each of the communication apparatuses 100 and 201 and the wireless transmission apparatuses 101 and 201, and is recorded on the recording medium.
  • the program may be read by the communication devices 100 and 201 and the wireless transmission devices 101 and 201 and executed.
  • Recording media that can be read by the communication devices 100 and 201 and the wireless transmission devices 101 and 201 are a floppy (registered trademark) disk, a magneto-optical disk, a DVD (Digital Versatile Disc), a CD (Compact Disc), and a Blu-ray. (Registered Trademark)
  • memories such as communication devices 100 and 201, wireless transmission devices 101 and 201, such as ROM (Read Only Memory), RAM (Random Access Memory), and HDD ( Hard Disc Drive).
  • the program recorded on this recording medium is read by the CPU provided in each of the communication devices 100 and 201 and the wireless transmission devices 101 and 201, and the same processing as described above is performed under the control of the CPU.
  • the CPU operates as a computer that executes a program read from a recording medium on which the program is recorded.
  • the first communication device is: For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame; A frame transmission unit that transmits the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame;
  • the second communication device is: A reception timing measuring unit that measures the reception timing at which the measurement frame transmitted from the frame transmission unit is received for each of the plurality of frequencies; and Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
  • a communication system comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality
  • the measurement frame generation unit includes a predetermined flag in the measurement frame.
  • the frame transmission unit transmits the measurement frame to the second communication device via a wireless transmission path.
  • the delay time calculation unit is based on a difference between a transmission timing and a reception timing for a reference frequency serving as a reference among the plurality of frequencies, and a transmission timing and a reception timing for other frequencies.
  • the communication system according to any one of appendices 1 to 4, which calculates a delay time.
  • a measurement frame generation unit that generates the measurement frame by including transmission timing information indicating the transmission timing of a predetermined measurement frame in the measurement frame;
  • a communication apparatus comprising: a frame transmission unit that transmits a measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame.
  • the communication device includes identification information that can identify the group when the measurement frame is divided into predetermined groups.
  • a reception timing measurement unit that measures the reception timing at which the measurement frame transmitted for each of the plurality of frequencies is received for each of the plurality of frequencies; Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
  • a communication apparatus comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
  • the delay time calculation unit based on the difference between the transmission timing and the reception timing for a reference frequency serving as a reference among the plurality of frequencies, and the transmission timing and the reception timing for other frequencies, 9.
  • the communication device which calculates a delay time.
  • transmission timing information indicating the timing of transmitting a predetermined measurement frame is included in the measurement frame to generate the measurement frame, Transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame;
  • the reception timing at which the transmitted measurement frame is received is measured for each of the plurality of frequencies, Based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, the delay time of the measurement frame is calculated for each of the plurality of frequencies, A communication method for balancing the calculated delay time over the plurality of frequencies.
  • a procedure for generating the measurement frame by including transmission timing information indicating a timing for transmitting a predetermined measurement frame in the measurement frame;
  • a recording medium recording a program for executing the procedure of transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device (100) generates, for each of a plurality of frequencies, a measurement frame including transmission timing information therein that indicates timing with which a prescribed measurement frame is transmitted, and transmits the generated measurement frame with the timing indicated by the transmission timing information included in the measurement frame, and a communication device (200) measures, for each of the plurality of frequencies, the reception timing with which the transmitted measurement frame is received, calculates for each of the plurality of frequencies a delay time of the measurement frame on the basis of the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, and equilibrates the calculated delay time over a span of the plurality of frequencies.

Description

通信システムCommunications system
 本発明は、通信システム、通信装置、通信方法およびプログラムに関する。 The present invention relates to a communication system, a communication device, a communication method, and a program.
 無線伝送路を介して通信装置が対向している通信システムにおいて、無線信号送信部および無線信号受信部にはフィルタが具備されている。このフィルタは、無線信号の送信側では、装置内の回路などから発生する不要な周波数成分を空間に放出しないようにするために設けられている。また、このフィルタは、無線信号の受信側では、空間から入力された信号から不要な周波数成分を除去し、所望の周波数を取り出すために設けられている。また、大容量の無線信号を転送するために、複数の周波数チャネルを合成して送信し、受信側にて周波数チャネルごとに分離するシステムにおいては、送受信に用いられる周波数帯域に近い、より狭帯域の通過帯域のエッジ付近の減衰量が急峻なバンドパスフィルタが使用されることがある。
 このバンドパスフィルタの特性として、減衰量が急峻なエッジ付近で無線信号の遅延も急峻となり、通過帯域全体では大きな遅延差となるという特性がある。
In a communication system in which communication devices are opposed to each other via a wireless transmission path, a filter is provided in the wireless signal transmitting unit and the wireless signal receiving unit. This filter is provided on the radio signal transmission side in order to prevent unnecessary frequency components generated from circuits in the apparatus from being released into the space. Further, this filter is provided on the radio signal receiving side in order to remove unnecessary frequency components from a signal input from space and to extract a desired frequency. Also, in a system that synthesizes and transmits multiple frequency channels and separates them for each frequency channel in order to transfer a large-capacity radio signal, it is closer to the frequency band used for transmission and reception. A band-pass filter having a steep attenuation near the edge of the pass band may be used.
As a characteristic of this bandpass filter, there is a characteristic that the delay of the radio signal becomes steep near the edge where the attenuation amount is steep, and a large delay difference occurs in the entire passband.
 このような遅延差は、これまで大きな問題となることは無かった。しかしながら、今日、変調方式が2048QAMなど多値になるにつれて、遅延差が信号劣化の原因や最悪の場合に信号不通の原因となるなど、問題が顕著化してきた。 This kind of delay difference has never been a big problem. However, today, as the modulation method becomes multi-valued such as 2048QAM, the problem has become more prominent, such as a delay difference causing signal deterioration or in the worst case causing signal interruption.
 また、周波数帯域毎の遅延時間を測定する技術であって、対象となる周波数のマーク周波数とスペース周波数との比較の結果を用いて遅延時間を検出するといった、周波数に応じて遅延補償処理を行う技術が考えられている(例えば、特許文献1,2参照。)。 Also, this is a technique for measuring the delay time for each frequency band, and performs delay compensation processing according to the frequency, such as detecting the delay time using the result of comparison between the mark frequency of the target frequency and the space frequency. Technology has been considered (see, for example, Patent Documents 1 and 2).
特開平05-191382号公報JP 05-191382 A 特許平04-369134号公報Japanese Patent No. 04-369134
 上述した技術においては、無線信号の受信部に配置した遅延等化器を用いて逆特性をかけることで、遅延を等化する対策が考えられる。しかしながら、使用しているフィルタの個々の特性に応じて遅延の程度がバラつきや逆特性の度合いを汎用的に決めることができない。そのため、構成している無線伝送装置システム個々の遅延特性を事前に測定する必要がある。また、送受信したい信号の周波数帯域に対して、バンドパスフィルタの通過帯域を広くして、遅延が急峻となるエッジ付近に送受信信号がかからないようにして、遅延特性の等化自体をやめる対策が考えられる。しかしながら、複数の周波数チャネルを合成するシステムにおいては、隣接チャネルとの間隔を広くする必要があり、周波数帯域の有効活用できない。
 このように、上述した技術においては、複数の周波数を用いた伝送システム個々の遅延特性を容易に得ることができないという問題点がある。
In the above-described technique, a countermeasure for equalizing the delay can be considered by applying an inverse characteristic using a delay equalizer arranged in the reception unit of the radio signal. However, the degree of delay varies according to the individual characteristics of the filter being used, and the degree of inverse characteristics cannot be determined universally. Therefore, it is necessary to measure in advance the delay characteristics of the individual wireless transmission device systems that are configured. In addition, a measure to stop the equalization of the delay characteristics itself by widening the passband of the bandpass filter relative to the frequency band of the signal to be transmitted and received so that the transmitted and received signal is not applied near the edge where the delay becomes steep is considered. It is done. However, in a system that synthesizes a plurality of frequency channels, it is necessary to increase the interval between adjacent channels, and the frequency band cannot be effectively used.
As described above, the above-described technique has a problem in that it is not possible to easily obtain delay characteristics of individual transmission systems using a plurality of frequencies.
 本発明の目的は、上述した課題のいずれかを解決する通信システム、通信装置、通信方法およびプログラムを提供することにある。 An object of the present invention is to provide a communication system, a communication device, a communication method, and a program that can solve any of the problems described above.
 本発明の通信システムは、
 第1の通信装置と、第2の通信装置とを有し、
 前記第1の通信装置は、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
 前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有し、
 前記第2の通信装置は、
 前記フレーム送信部から送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
 前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する。
 また、本発明の通信装置は、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
 前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有する。
 また、複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
 前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する。
 また、本発明の通信方法は、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成し、
 前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信し、
 前記送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定し、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出し、
 前記算出した遅延時間を前記複数の周波数にわたって平衡化する。
 また、本発明のプログラムを記録した記録媒体は、
 コンピュータに実行させるためのプログラムを記録した記録媒体であって、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する手順と、
 前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信する手順とを実行させるためのプログラムを記録する。
 また、コンピュータに実行させるためのプログラムを記録した記録媒体であって、
 複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する手順と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する手順と、
 前記算出した遅延時間を前記複数の周波数にわたって平衡化する手順とを実行させるためのプログラムを記録する。
The communication system of the present invention includes:
A first communication device and a second communication device;
The first communication device is:
For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
A frame transmission unit that transmits the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame;
The second communication device is:
A reception timing measuring unit that measures the reception timing at which the measurement frame transmitted from the frame transmission unit is received for each of the plurality of frequencies; and
Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
A delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
The communication device of the present invention
For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
A frame transmission unit configured to transmit the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame.
In addition, a reception timing measurement unit that measures the reception timing at which the measurement frames transmitted for each of the plurality of frequencies are received for each of the plurality of frequencies, and
Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
A delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
Further, the communication method of the present invention includes:
For each of a plurality of frequencies, transmission timing information indicating the timing of transmitting a predetermined measurement frame is included in the measurement frame to generate the measurement frame,
Transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame;
The reception timing at which the transmitted measurement frame is received is measured for each of the plurality of frequencies,
Based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, the delay time of the measurement frame is calculated for each of the plurality of frequencies,
The calculated delay time is balanced over the plurality of frequencies.
Further, a recording medium on which the program of the present invention is recorded,
A recording medium that records a program to be executed by a computer,
For each of a plurality of frequencies, a procedure for generating the measurement frame by including transmission timing information indicating a timing for transmitting a predetermined measurement frame in the measurement frame;
A program for executing the procedure of transmitting the generated measurement frame at the timing indicated by the transmission timing information included in the measurement frame is recorded.
Also, a recording medium that records a program to be executed by a computer,
A procedure for measuring the reception timing at which a measurement frame transmitted for each of a plurality of frequencies is received for each of the plurality of frequencies,
A procedure for calculating a delay time of the measurement frame for each of the plurality of frequencies based on a transmission timing indicated by transmission timing information included in the received measurement frame and the measured reception timing;
A program for executing the procedure of balancing the calculated delay time over the plurality of frequencies is recorded.
 以上説明したように、本発明においては、複数の周波数を用いた伝送システム個々の遅延特性を容易に得ることができる。 As described above, in the present invention, it is possible to easily obtain the delay characteristics of each transmission system using a plurality of frequencies.
本発明の通信システムの第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the communication system of this invention. 図1に示した、フレーム送信側の通信装置の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the communication apparatus of the frame transmission side shown in FIG. 図1に示した、フレーム受信側の通信装置の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the communication apparatus of the frame reception side shown in FIG. 図1に示した通信システムにおける通信方法のうち、図1に示した、フレーム送信側の通信装置が行う処理を説明するためのフローチャートである。2 is a flowchart for explaining processing performed by the frame transmission-side communication apparatus shown in FIG. 1 in the communication method in the communication system shown in FIG. 1. 図1に示した通信システムにおける通信方法のうち、図1に示した、フレーム受信側の通信装置が行う処理を説明するためのフローチャートである。2 is a flowchart for explaining processing performed by the communication device on the frame reception side shown in FIG. 1 in the communication method in the communication system shown in FIG. 1. 本発明の通信システムの第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the communication system of this invention. 図6に示した、フレーム送信側の無線伝送装置の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the radio | wireless transmission apparatus by the side of a frame transmission shown in FIG. 図6に示した、フレーム受信側の無線伝送装置の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the radio | wireless transmission apparatus by the side of a frame shown in FIG. 図6に示した通信システムにおける通信方法のうち、図6に示した、フレーム送信側の無線伝送装置が行う処理を説明するためのフローチャートである。7 is a flowchart for explaining processing performed by the radio transmission apparatus on the frame transmission side shown in FIG. 6 in the communication method in the communication system shown in FIG. 6. 測定フレームの流れの一例を示す図である。It is a figure which shows an example of the flow of a measurement frame. 図6に示した通信システムにおける通信方法のうち、図6に示した、フレーム受信側の無線伝送装置が行う処理を説明するためのフローチャートである。7 is a flowchart for explaining processing performed by the wireless transmission device on the frame reception side shown in FIG. 6 in the communication method in the communication system shown in FIG. 6.
 以下に本発明の実施の形態について図面を参照して説明する。
(第1の実施の形態)
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
 図1は、本発明の通信システムの第1の実施の形態を示す図である。本発明の通信システムは図1に示すように、通信装置100と、通信装置200とを有する。通信装置100と通信装置200とは、互いに接続されており、信号の送受信が可能な構成である。 FIG. 1 is a diagram showing a first embodiment of a communication system of the present invention. As shown in FIG. 1, the communication system of the present invention includes a communication device 100 and a communication device 200. The communication device 100 and the communication device 200 are connected to each other and can transmit and receive signals.
 図2は、図1に示した通信装置100の内部構成の一例を示す図である。図1に示した通信装置100は図2に示すように測定フレーム生成部110と、フレーム送信部120とを有する第1の通信装置である。なお、図2には、図1に示した通信装置100が具備する構成要素のうち、本実施の形態に関わる主要な構成要素の一例を示す。 FIG. 2 is a diagram illustrating an example of an internal configuration of the communication apparatus 100 illustrated in FIG. The communication apparatus 100 shown in FIG. 1 is a first communication apparatus having a measurement frame generation unit 110 and a frame transmission unit 120 as shown in FIG. FIG. 2 shows an example of main components related to the present embodiment among the components included in the communication apparatus 100 shown in FIG.
 測定フレーム生成部110は、所定の測定フレームを生成する。このとき、測定フレーム生成部110は、複数の周波数それぞれについて、測定フレーム送信するタイミングを示す送信タイミング情報をその測定フレームに含めて測定フレームを生成する。
 フレーム送信部120は、測定フレーム生成部110が生成した測定フレームを、その測定フレームに含まれた送信タイミング情報が示すタイミングで通信装置200へ送信する。
The measurement frame generation unit 110 generates a predetermined measurement frame. At this time, the measurement frame generation unit 110 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
The frame transmission unit 120 transmits the measurement frame generated by the measurement frame generation unit 110 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
 図3は、図1に示した通信装置200の内部構成の一例を示す図である。図1に示した通信装置200は図3に示すように受信タイミング測定部210と、遅延時間算出部220と、遅延等化部230とを有する第2の通信装置である。なお、図3には、図1に示した通信装置200が具備する構成要素のうち、本実施の形態に関わる主要な構成要素の一例を示す。 FIG. 3 is a diagram illustrating an example of an internal configuration of the communication apparatus 200 illustrated in FIG. The communication apparatus 200 shown in FIG. 1 is a second communication apparatus having a reception timing measurement unit 210, a delay time calculation unit 220, and a delay equalization unit 230 as shown in FIG. Note that FIG. 3 illustrates an example of main components related to the present embodiment among the components included in the communication device 200 illustrated in FIG. 1.
 受信タイミング測定部210は、通信装置100のフレーム送信部120から送信されてきた測定フレームを受信した受信タイミングを、複数の周波数ごとに測定する。
 遅延時間算出部220は、受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、受信タイミング測定部210が測定した受信タイミングとに基づいて、測定フレームの遅延時間を、複数の周波数ごとに算出する。
 遅延等化部230は、遅延時間算出部220が算出した遅延時間を複数の周波数にわたって平衡化する。
The reception timing measurement unit 210 measures the reception timing at which the measurement frame transmitted from the frame transmission unit 120 of the communication apparatus 100 is received for each of a plurality of frequencies.
The delay time calculation unit 220 calculates the delay time of the measurement frame for each of a plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 210. calculate.
The delay equalization unit 230 balances the delay time calculated by the delay time calculation unit 220 over a plurality of frequencies.
 以下に、図1に示した通信システムにおける通信方法について説明する。まずは、図1に示した通信システムにおける通信方法のうち、図1に示した通信装置100が行う処理について説明する。図4は、図1に示した通信システムにおける通信方法のうち、図1に示した通信装置100が行う処理を説明するためのフローチャートである。 Hereinafter, a communication method in the communication system shown in FIG. 1 will be described. First, processing performed by the communication apparatus 100 shown in FIG. 1 in the communication method in the communication system shown in FIG. 1 will be described. FIG. 4 is a flowchart for explaining processing performed by communication apparatus 100 shown in FIG. 1 in the communication method in the communication system shown in FIG.
 まず、ステップ1にて、測定フレーム生成部110は、所定の測定フレームを生成する。このとき、測定フレーム生成部110は、複数の周波数それぞれについて、測定フレーム送信するタイミングを示す送信タイミング情報をその測定フレームに含めて測定フレームを生成する。
 続いて、ステップ2にて、フレーム送信部120は、測定フレーム生成部110が生成した測定フレームを、その測定フレームに含まれた送信タイミング情報が示すタイミングで通信装置200へ送信する。
First, in step 1, the measurement frame generation unit 110 generates a predetermined measurement frame. At this time, the measurement frame generation unit 110 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
Subsequently, in step 2, the frame transmission unit 120 transmits the measurement frame generated by the measurement frame generation unit 110 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
 以下に、図1に示した通信システムにおける通信方法のうち、図1に示した通信装置200が行う処理について説明する。図5は、図1に示した通信システムにおける通信方法のうち、図1に示した通信装置200が行う処理を説明するためのフローチャートである。 Hereinafter, processing performed by the communication apparatus 200 shown in FIG. 1 in the communication method in the communication system shown in FIG. 1 will be described. FIG. 5 is a flowchart for explaining processing performed by communication device 200 shown in FIG. 1 in the communication method in the communication system shown in FIG.
 ステップ11にて、受信タイミング測定部210は、通信装置100のフレーム送信部120から送信されてきた測定フレームを受信した受信タイミングを、複数の周波数ごとに測定する。
 すると、ステップ12にて、遅延時間算出部220は、受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、受信タイミング測定部210が測定した受信タイミングとに基づいて、測定フレームの遅延時間を、複数の周波数ごとに算出する。
 続いて、ステップ13にて、遅延等化部230は、遅延時間算出部220が算出した遅延時間を複数の周波数にわたって平衡化する。
In step 11, reception timing measurement section 210 measures the reception timing at which the measurement frame transmitted from frame transmission section 120 of communication device 100 is received for each of a plurality of frequencies.
Then, in step 12, the delay time calculation unit 220 determines the delay time of the measurement frame based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 210. Is calculated for each of a plurality of frequencies.
Subsequently, in step 13, the delay equalization unit 230 balances the delay time calculated by the delay time calculation unit 220 over a plurality of frequencies.
 このように、通信装置100が、複数の周波数ごとにそれぞれの送信タイミングを示す送信タイミング情報を含めた測定フレームを、その送信タイミングで送信する。通信装置200が、測定フレームを受信した受信タイミングと、その測定フレームに含まれる送信タイミング情報が示す送信タイミングとに基づいて、複数の周波数ごとに遅延時間を算出し、算出した遅延時間を複数の周波数にわたって平衡化する。そのため、複数の周波数を用いた伝送システム個々の遅延特性を容易に得ることができる。
(第2の実施の形態)
Thus, the communication apparatus 100 transmits a measurement frame including transmission timing information indicating each transmission timing for each of a plurality of frequencies at the transmission timing. The communication apparatus 200 calculates a delay time for each of a plurality of frequencies based on the reception timing at which the measurement frame is received and the transmission timing indicated by the transmission timing information included in the measurement frame. Equilibrate over frequency. Therefore, it is possible to easily obtain the delay characteristics of individual transmission systems using a plurality of frequencies.
(Second Embodiment)
 図6は、本発明の通信システムの第2の実施の形態を示す図である。本形態における通信システムは図6に示すように、無線伝送装置101と、無線伝送装置201とが、無線伝送路301を介して接続されている。無線伝送装置101は、外部(例えば、他の通信装置)からベースバンド信号1を入力する第1の通信装置である。無線伝送装置101は、アンテナ102を用いて、無線信号を無線伝送路301へ送信する。無線伝送装置201は、無線伝送路301を介して伝送されてきた無線信号を、アンテナ202を用いて受信する第2の通信装置である。無線伝送装置201は、外部(例えば、他の通信装置)へベースバンド信号4を送信する。 FIG. 6 is a diagram showing a second embodiment of the communication system of the present invention. In the communication system according to this embodiment, as illustrated in FIG. 6, a wireless transmission device 101 and a wireless transmission device 201 are connected via a wireless transmission path 301. The wireless transmission device 101 is a first communication device that inputs the baseband signal 1 from the outside (for example, another communication device). The wireless transmission device 101 transmits a wireless signal to the wireless transmission path 301 using the antenna 102. The wireless transmission device 201 is a second communication device that receives a wireless signal transmitted via the wireless transmission path 301 using the antenna 202. The wireless transmission device 201 transmits the baseband signal 4 to the outside (for example, another communication device).
 図7は、図6に示した無線伝送装置101の内部構成の一例を示す図である。図6に示した無線伝送装置101は図7に示すように、変調部131と、IF-RF変換部141と、測定フレーム生成部111と、フレーム送信部121と、バンドパスフィルタ151とを有する。なお、図7には、図6に示した無線伝送装置101が具備する構成要素のうち、本実施の形態に関わる主要な構成要素の一例を示す。 FIG. 7 is a diagram illustrating an example of an internal configuration of the wireless transmission device 101 illustrated in FIG. As illustrated in FIG. 7, the wireless transmission device 101 illustrated in FIG. 6 includes a modulation unit 131, an IF-RF conversion unit 141, a measurement frame generation unit 111, a frame transmission unit 121, and a bandpass filter 151. . FIG. 7 illustrates an example of main components related to the present embodiment among the components included in the wireless transmission device 101 illustrated in FIG. 6.
 変調部131は、外部(例えば、他の通信装置)から送信されてきたベースバンド信号1を無線フレームに変調する。変調部131は、変調した無線フレームをIF(Intermediate Frequency)信号161として出力する。
 IF-RF変換部141は、入力されたIF信号161をRF(Radio Frequency)信号181へ変換して出力する。
 測定フレーム生成部111は、所定の測定フレーム(遅延特性測定フレーム171)を生成する。このとき、測定フレーム生成部111は、複数の周波数それぞれについて、測定フレーム送信するタイミングを示す送信タイミング情報をその測定フレームに含めて測定フレームを生成する。測定フレーム生成部111は、無線伝送装置101が平衡化する遅延時間を持つ測定フレームから構成されるグループを識別可能な識別情報を測定フレームに含める。また、測定フレーム生成部111は、所定のフラグを測定フレームに含める。このフラグは、フレームが「測定フレーム生成部111が生成した測定フレームであること」を示すものである。
 フレーム送信部121は、測定フレーム生成部111が生成した測定フレームを、その測定フレームに含まれた送信タイミング情報が示すタイミングで通信装置200へ送信する。
 バンドパスフィルタ151は、入力されたRF信号181から余分な周波数成分を除去する。バンドパスフィルタ151は、余分な周波数成分を除去したRF信号をアンテナ102から無線伝送路301へ送信する。
The modulation unit 131 modulates the baseband signal 1 transmitted from the outside (for example, another communication device) into a radio frame. Modulation section 131 outputs the modulated radio frame as IF (Intermediate Frequency) signal 161.
The IF-RF converter 141 converts the input IF signal 161 into an RF (Radio Frequency) signal 181 and outputs it.
The measurement frame generation unit 111 generates a predetermined measurement frame (delay characteristic measurement frame 171). At this time, the measurement frame generation unit 111 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame. The measurement frame generation unit 111 includes, in the measurement frame, identification information that can identify a group including measurement frames having a delay time with which the wireless transmission device 101 is balanced. In addition, the measurement frame generation unit 111 includes a predetermined flag in the measurement frame. This flag indicates that the frame is “a measurement frame generated by the measurement frame generation unit 111”.
The frame transmission unit 121 transmits the measurement frame generated by the measurement frame generation unit 111 to the communication apparatus 200 at the timing indicated by the transmission timing information included in the measurement frame.
The bandpass filter 151 removes excess frequency components from the input RF signal 181. The band pass filter 151 transmits an RF signal from which an extra frequency component is removed from the antenna 102 to the wireless transmission path 301.
 図8は、図6に示した無線伝送装置201の内部構成の一例を示す図である。図6に示した無線伝送装置201は図8に示すように、バンドパスフィルタ241と、受信タイミング測定部211と、RF-IF変換部251と、遅延特性計測部221と、遅延等化部231と、復調部261とを有する。なお、図8には、図6に示した無線伝送装置201が具備する構成要素のうち、本実施の形態に関わる主要な構成要素の一例を示す。 FIG. 8 is a diagram illustrating an example of an internal configuration of the wireless transmission device 201 illustrated in FIG. As shown in FIG. 8, the wireless transmission apparatus 201 shown in FIG. 6 includes a bandpass filter 241, a reception timing measurement unit 211, an RF-IF conversion unit 251, a delay characteristic measurement unit 221, and a delay equalization unit 231. And a demodulator 261. FIG. 8 illustrates an example of main components related to the present embodiment among the components included in the wireless transmission device 201 illustrated in FIG. 6.
 バンドパスフィルタ241は、入力されたRF信号から余分な周波数成分を除去し、RF信号271を出力する。
 受信タイミング測定部211は、無線伝送装置101のフレーム送信部121から送信され、バンドパスフィルタ241を介して入力された測定フレーム(RF信号271)を受信(入力)した受信タイミングを、複数の周波数ごとに測定する。
 RF-IF変換部251は、入力されたRF信号271をIF信号272へ変換して出力する。
 遅延特性計測部221は、受信した測定フレームに含まれる送信タイミング情報と、受信タイミング測定部211が測定した受信タイミングとに基づいて、測定フレームの遅延時間を、複数の周波数ごとに算出する遅延時間算出部である。ここで、遅延特性計測部221は、複数の周波数のうち基準となる基準周波数についての送信タイミングおよび受信タイミングと、それ以外の周波数についての送信タイミングおよび受信タイミングとの差分に基づいて、遅延時間を算出する。また、遅延特性計測部221は、受信した測定フレームに基づいて、通過経路の周波数領域における遅延特性を計算する。遅延特性計測部221は、計算した結果を遅延特性情報208として遅延等化部231へ出力する。
 遅延等化部231は、遅延特性計測部221から出力されてきた遅延特性情報208に基づいて、IF信号272の遅延時間を複数の周波数にわたって平衡化する。遅延等化部231は、平衡化されたIF信号を復調部261へ出力する。IF信号272(RF信号271)は、バンドパスフィルタ151,241の影響で、周波数領域において大きな遅延差を持っている。この遅延差を遅延等化部231が等化するために、無線伝送装置201がベースバンド信号の転送を開始する前に、遅延特性計測部221が遅延特性情報208を生成する。
 復調部261は、遅延等化部231から出力されてきたIF信号をベースバンド信号4へ復調し、外部(例えば、他の通信装置)へ送信する。
 なお、無線伝送装置201が受信した測定フレームは、ベースバンド信号の転送時と同じ経路を通り、遅延特性計測部221が受信する。
The band pass filter 241 removes excess frequency components from the input RF signal and outputs an RF signal 271.
The reception timing measurement unit 211 receives a reception frame (RF signal 271) transmitted from the frame transmission unit 121 of the wireless transmission apparatus 101 and input via the bandpass filter 241 as a plurality of frequencies. Measure every time.
The RF-IF converter 251 converts the input RF signal 271 into an IF signal 272 and outputs it.
The delay characteristic measurement unit 221 calculates a delay time of the measurement frame for each of a plurality of frequencies based on the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit 211. It is a calculation part. Here, the delay characteristic measurement unit 221 calculates the delay time based on the difference between the transmission timing and the reception timing for the reference frequency serving as a reference among the plurality of frequencies and the transmission timing and the reception timing for the other frequencies. calculate. Further, the delay characteristic measuring unit 221 calculates the delay characteristic in the frequency domain of the passing path based on the received measurement frame. The delay characteristic measurement unit 221 outputs the calculated result to the delay equalization unit 231 as delay characteristic information 208.
The delay equalization unit 231 balances the delay time of the IF signal 272 over a plurality of frequencies based on the delay characteristic information 208 output from the delay characteristic measurement unit 221. The delay equalization unit 231 outputs the balanced IF signal to the demodulation unit 261. The IF signal 272 (RF signal 271) has a large delay difference in the frequency domain due to the influence of the bandpass filters 151 and 241. In order for the delay equalization unit 231 to equalize this delay difference, the delay characteristic measurement unit 221 generates the delay characteristic information 208 before the wireless transmission apparatus 201 starts transferring the baseband signal.
The demodulation unit 261 demodulates the IF signal output from the delay equalization unit 231 to the baseband signal 4 and transmits it to the outside (for example, another communication device).
Note that the measurement frame received by the wireless transmission device 201 passes through the same path as when the baseband signal is transferred, and is received by the delay characteristic measurement unit 221.
 以下に、図6に示した通信システムにおける通信方法について説明する。まずは、図6に示した通信システムにおける通信方法のうち、図6に示した無線伝送装置101が行う処理について説明する。図9は、図6に示した通信システムにおける通信方法のうち、図6に示した無線伝送装置101が行う処理を説明するためのフローチャートである。 Hereinafter, a communication method in the communication system shown in FIG. 6 will be described. First, processing performed by the wireless transmission device 101 illustrated in FIG. 6 in the communication method in the communication system illustrated in FIG. 6 will be described. FIG. 9 is a flowchart for explaining processing performed by the wireless transmission device 101 shown in FIG. 6 in the communication method in the communication system shown in FIG.
 まず、ステップ21にて、測定フレーム生成部111は、所定の測定フレームを生成する。このとき、測定フレーム生成部111は、複数の周波数それぞれについて、測定フレーム送信するタイミングを示す送信タイミング情報をその測定フレームに含めて測定フレームを生成する。 First, in step 21, the measurement frame generation unit 111 generates a predetermined measurement frame. At this time, the measurement frame generation unit 111 generates a measurement frame by including transmission timing information indicating the timing of transmitting the measurement frame for each of a plurality of frequencies in the measurement frame.
 図10は、測定フレームの流れの一例を示す図である。
 図10に示すように、測定フレーム生成部111は、送信周波数帯域内のある周波数間隔ごとに測定フレームである遅延特性測定フレーム171を生成する。測定フレーム生成部111は、遅延特性測定フレーム171を送信する周波数間隔を、遅延差が大きいと思われるシステムでは密度を細かく、またはバンドパスフィルタのエッジ付近の遅延が急峻な箇所の密度を細かくするなど、変更するものであっても良い。測定フレーム生成部111は、遅延特性測定フレーム171に、無線伝送装置101が遅延特性測定フレーム171を送信する送信タイミングである送信時間193をそれぞれ記録する。また、測定フレーム生成部111は、遅延特性を測定するための測定フレームであることを示すフラグ191と、遅延特性計測部221がそれぞれのフレームの遅延差を算出するための同一のグループであることを示す識別情報192も記録する。
FIG. 10 is a diagram illustrating an example of the flow of a measurement frame.
As illustrated in FIG. 10, the measurement frame generation unit 111 generates a delay characteristic measurement frame 171 that is a measurement frame for each frequency interval in the transmission frequency band. The measurement frame generation unit 111 finely adjusts the frequency interval for transmitting the delay characteristic measurement frame 171 in a system where the delay difference is considered to be large, or the density at a portion where the delay near the edge of the bandpass filter is steep. It may be changed. The measurement frame generation unit 111 records a transmission time 193 that is a transmission timing at which the wireless transmission apparatus 101 transmits the delay characteristic measurement frame 171 in the delay characteristic measurement frame 171. Further, the measurement frame generation unit 111 is a flag 191 indicating that it is a measurement frame for measuring delay characteristics, and the delay characteristic measurement unit 221 is the same group for calculating the delay difference of each frame. Is also recorded.
 続いて、ステップ22にて、フレーム送信部121は、測定フレーム生成部111が生成した測定フレームを、その測定フレームに含まれた送信タイミング情報が示す送信タイミングで無線伝送装置201へ送信する。フレーム送信部121は、急峻な遅延特性にも耐えることができるよう、遅延特性測定フレームをQPSK(Quadrature Phase Shift Keying)のような劣化に強い変調方式を用いて送信する。また、測定フレーム生成部111が生成した遅延特性測定フレーム171は、IF-RF変換部141へ入力され、ベースバンド信号の転送時と同じ経路を通る。 Subsequently, in step 22, the frame transmission unit 121 transmits the measurement frame generated by the measurement frame generation unit 111 to the wireless transmission apparatus 201 at the transmission timing indicated by the transmission timing information included in the measurement frame. The frame transmission unit 121 transmits a delay characteristic measurement frame using a modulation method that is resistant to deterioration such as QPSK (Quadrature Phase Shift Keying) so that it can withstand steep delay characteristics. In addition, the delay characteristic measurement frame 171 generated by the measurement frame generation unit 111 is input to the IF-RF conversion unit 141 and passes through the same path as when the baseband signal is transferred.
 以下に、図6に示した通信システムにおける通信方法のうち、図6に示した無線伝送装置201が行う処理について説明する。図11は、図6に示した通信システムにおける通信方法のうち、図6に示した無線伝送装置201が行う処理を説明するためのフローチャートである。 Hereinafter, processing performed by the wireless transmission device 201 illustrated in FIG. 6 in the communication method in the communication system illustrated in FIG. 6 will be described. FIG. 11 is a flowchart for explaining processing performed by the wireless transmission device 201 shown in FIG. 6 in the communication method in the communication system shown in FIG.
 フレーム送信部121から送信された遅延特性測定フレーム171は、図10に示すように、信号転送経路304の周波数特性に従って、周波数ごとにそれぞれ異なる遅延をもって受信タイミング測定部211に到達する。ここで信号転送経路304は、フレーム送信部121から受信タイミング測定部211までの伝送経路である。信号転送経路304には、バンドパスフィルタ151、無線伝送路301およびバンドパスフィルタ241が含まれる。
 ステップ31にて、受信タイミング測定部211は、無線伝送装置101のフレーム送信部121から送信されてきたフレームにフラグが付与されているかどうかを判定する。ステップ32にて、受信タイミング測定部211は、フラグが付与されていると判定したフレームを測定フレームとして、その測定フレームを受信した受信タイミングを、複数の周波数ごとに測定する。
 すると、ステップ33にて、遅延特性計測部221は、受信タイミング測定部211が受信タイミングを測定した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、受信タイミング測定部211が測定した受信タイミングとに基づいて、測定フレームの遅延時間を、複数の周波数ごとに算出する。このとき、遅延特性計測部221は、測定フレームに含まれる識別情報が互いに同じものの測定フレームについて、遅延差を算出する。例えば、図10に示したように、周波数F0の遅延時間を基準点(D1=0s)とすると、周波数F1の周波数F0からの遅延差D1は(r1-r0)-(t1-t0)の式を用いて求められる。同様にそれぞれの周波数の基準点からの遅延差を求めることで信号転送経路304の遅延特性305が得られる。このように、ステップ34にて、遅延特性計測部221は、周波数帯域と遅延時間との関係を示す遅延特性305を算出する。
 ステップ35にて、遅延特性計測部221は、図10に示すように、得られた遅延特性305から逆特性の程度を決定し、遅延特性情報208として遅延等化部231へ出力する。この逆特性の決定方法は、一般的なものであっても良く、特に規定しない。
 続いて、ステップ36にて、遅延等化部231は、IF信号272に、遅延特性計測部221から出力されてきた逆特性206である遅延特性情報208を乗算し、遅延時間を複数の周波数にわたって平衡化する。遅延等化部231は、平衡化(遅延等化)したIF信号307を復調部261へ出力する。
 復調部261は、遅延等化されたIF信号307を復調してベースバンド信号4を出力する。
As shown in FIG. 10, the delay characteristic measurement frame 171 transmitted from the frame transmission unit 121 reaches the reception timing measurement unit 211 with a different delay for each frequency according to the frequency characteristic of the signal transfer path 304. Here, the signal transfer path 304 is a transmission path from the frame transmission unit 121 to the reception timing measurement unit 211. The signal transfer path 304 includes a bandpass filter 151, a wireless transmission path 301, and a bandpass filter 241.
In step 31, the reception timing measurement unit 211 determines whether or not a flag is added to the frame transmitted from the frame transmission unit 121 of the wireless transmission device 101. In step 32, the reception timing measuring unit 211 measures the reception timing at which the measurement frame is received for each of a plurality of frequencies, with the frame determined to be flagged as a measurement frame.
Then, in step 33, the delay characteristic measurement unit 221 determines the transmission timing indicated by the transmission timing information included in the measurement frame in which the reception timing measurement unit 211 measures the reception timing, and the reception timing measured by the reception timing measurement unit 211. Based on the above, the delay time of the measurement frame is calculated for each of a plurality of frequencies. At this time, the delay characteristic measurement unit 221 calculates the delay difference for the measurement frames having the same identification information included in the measurement frames. For example, as shown in FIG. 10, assuming that the delay time of the frequency F0 is the reference point (D1 = 0s), the delay difference D1 of the frequency F1 from the frequency F0 is an equation of (r1-r0)-(t1-t0). It is calculated using. Similarly, the delay characteristic 305 of the signal transfer path 304 is obtained by obtaining the delay difference from the reference point of each frequency. As described above, in step 34, the delay characteristic measuring unit 221 calculates the delay characteristic 305 indicating the relationship between the frequency band and the delay time.
In step 35, the delay characteristic measuring unit 221 determines the degree of the reverse characteristic from the obtained delay characteristic 305 and outputs it to the delay equalization unit 231 as the delay characteristic information 208 as shown in FIG. 10. The method for determining the reverse characteristic may be a general method and is not particularly defined.
Subsequently, in step 36, the delay equalization unit 231 multiplies the IF signal 272 by the delay characteristic information 208, which is the inverse characteristic 206 output from the delay characteristic measurement unit 221, and sets the delay time over a plurality of frequencies. Equilibrate. The delay equalization unit 231 outputs the balanced (delay equalization) IF signal 307 to the demodulation unit 261.
The demodulator 261 demodulates the delay equalized IF signal 307 and outputs the baseband signal 4.
 なお、遅延特性計測部221が受信タイミング測定部211を含むものであっても良い。 Note that the delay characteristic measurement unit 221 may include the reception timing measurement unit 211.
 このように、複数の周波数それぞれに対して測定フレームを用いて遅延時間を測定し、基準となる周波数における遅延時間との差分に基づいた遅延特性の逆特性とIF信号とからその周波数帯域にわたって遅延等化を行う。これにより、無線伝送システムの遅延特性を等化するための最適な逆特性を無線伝送装置が自律的に決定する。その結果、事前にシステムの遅延特性を測定する必要無く、受信側の復調部で遅延等化された無線信号をベースバンド信号に復調することができる。 In this way, the delay time is measured for each of a plurality of frequencies using the measurement frame, and the delay characteristic over the frequency band from the reverse characteristic of the delay characteristic based on the difference from the delay time at the reference frequency and the IF signal is delayed. Perform equalization. Thereby, the radio transmission apparatus autonomously determines the optimum reverse characteristic for equalizing the delay characteristic of the radio transmission system. As a result, it is possible to demodulate a radio signal subjected to delay equalization by the demodulator on the receiving side into a baseband signal without having to measure the delay characteristics of the system in advance.
 以上、各構成要素に各機能(処理)それぞれを分担させて説明したが、この割り当ては上述したものに限定しない。また、構成要素の構成についても、上述した形態はあくまでも例であって、これに限定しない。また、各実施の形態を組み合わせたものであっても良い。 As described above, each function (process) is assigned to each component, but this assignment is not limited to the above. In addition, the configuration described above is merely an example, and the present invention is not limited to this. Moreover, what combined each embodiment may be sufficient.
 上述した通信装置100,201、無線伝送装置101,201それぞれに設けられた各構成要素が行う処理は、目的に応じてそれぞれ作製された論理回路で行うようにしても良い。また、処理内容を手順として記述したコンピュータプログラム(以下、プログラムと称する)を通信装置100,201、無線伝送装置101,201それぞれにて読取可能な記録媒体に記録し、この記録媒体に記録されたプログラムを通信装置100,201、無線伝送装置101,201それぞれに読み込ませ、実行するものであっても良い。通信装置100,201、無線伝送装置101,201それぞれにて読取可能な記録媒体とは、フロッピー(登録商標)ディスク、光磁気ディスク、DVD(Digital Versatile Disc)、CD(Compact Disc)、Blu-ray(登録商標) Discなどの移設可能な記録媒体の他、通信装置100,201、無線伝送装置101,201に内蔵されたROM(Read Only Memory)、RAM(Random Access Memory)等のメモリやHDD(Hard Disc Drive)等を指す。この記録媒体に記録されたプログラムは、通信装置100,201、無線伝送装置101,201それぞれに設けられたCPUにて読み込まれ、CPUの制御によって、上述したものと同様の処理が行われる。ここで、CPUは、プログラムが記録された記録媒体から読み込まれたプログラムを実行するコンピュータとして動作するものである。 The processing performed by each component provided in each of the communication devices 100 and 201 and the wireless transmission devices 101 and 201 described above may be performed by a logic circuit that is produced according to the purpose. In addition, a computer program (hereinafter referred to as a program) in which processing contents are described as a procedure is recorded on a recording medium that can be read by each of the communication apparatuses 100 and 201 and the wireless transmission apparatuses 101 and 201, and is recorded on the recording medium. The program may be read by the communication devices 100 and 201 and the wireless transmission devices 101 and 201 and executed. Recording media that can be read by the communication devices 100 and 201 and the wireless transmission devices 101 and 201 are a floppy (registered trademark) disk, a magneto-optical disk, a DVD (Digital Versatile Disc), a CD (Compact Disc), and a Blu-ray. (Registered Trademark) In addition to transferable recording media such as Disc, memories such as communication devices 100 and 201, wireless transmission devices 101 and 201, such as ROM (Read Only Memory), RAM (Random Access Memory), and HDD ( Hard Disc Drive). The program recorded on this recording medium is read by the CPU provided in each of the communication devices 100 and 201 and the wireless transmission devices 101 and 201, and the same processing as described above is performed under the control of the CPU. Here, the CPU operates as a computer that executes a program read from a recording medium on which the program is recorded.
 上記の実施の形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)第1の通信装置と、第2の通信装置とを有し、
 前記第1の通信装置は、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
 前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有し、
 前記第2の通信装置は、
 前記フレーム送信部から送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
 前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する通信システム。
(付記2)前記測定フレーム生成部は、前記遅延等化部が平衡化する遅延時間を持つ測定フレームから構成されるグループを識別可能な識別情報を該測定フレームに含める、付記1に記載の通信システム。
(付記3)前記測定フレーム生成部は、所定のフラグを前記測定フレームに含める、付記1または付記2に記載の通信システム。
(付記4)前記フレーム送信部は、前記測定フレームを、無線伝送路を介して前記第2の通信装置へ送信する、付記1から3のいずれか1項に記載の通信システム。
(付記5)前記遅延時間算出部は、前記複数の周波数のうち基準となる基準周波数についての送信タイミングおよび受信タイミングと、それ以外の周波数についての送信タイミングおよび受信タイミングとの差分に基づいて、前記遅延時間を算出する、付記1から4のいずれか1項に記載の通信システム。
(付記6)複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
 前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有する通信装置。
(付記7)前記測定フレーム生成部は、前記測定フレームを所定のグループに分けた場合の該グループを識別可能な識別情報を該測定フレームに含める、付記6に記載の通信装置。
(付記8)複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
 前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する通信装置。
(付記9)前記遅延時間算出部は、前記複数の周波数のうち基準となる基準周波数についての送信タイミングおよび受信タイミングと、それ以外の周波数についての送信タイミングおよび受信タイミングとの差分に基づいて、前記遅延時間を算出する、付記8に記載の通信装置。
(付記10)複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成し、
 前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信し、
 前記送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定し、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出し、
 前記算出した遅延時間を前記複数の周波数にわたって平衡化する通信方法。
(付記11)コンピュータに、
 複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する手順と、
 前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信する手順とを実行させるためのプログラムを記録した記録媒体。
(付記12)コンピュータに、
 複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する手順と、
 前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する手順と、
 前記算出した遅延時間を前記複数の周波数にわたって平衡化する手順とを実行させるためのプログラムを記録した記録媒体。
A part or all of the above embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Additional remark 1) It has a 1st communication apparatus and a 2nd communication apparatus,
The first communication device is:
For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
A frame transmission unit that transmits the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame;
The second communication device is:
A reception timing measuring unit that measures the reception timing at which the measurement frame transmitted from the frame transmission unit is received for each of the plurality of frequencies; and
Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
A communication system comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
(Supplementary note 2) The communication according to supplementary note 1, wherein the measurement frame generation unit includes, in the measurement frame, identification information that can identify a group composed of measurement frames having a delay time that is balanced by the delay equalization unit. system.
(Supplementary note 3) The communication system according to supplementary note 1 or supplementary note 2, wherein the measurement frame generation unit includes a predetermined flag in the measurement frame.
(Supplementary note 4) The communication system according to any one of supplementary notes 1 to 3, wherein the frame transmission unit transmits the measurement frame to the second communication device via a wireless transmission path.
(Supplementary Note 5) The delay time calculation unit is based on a difference between a transmission timing and a reception timing for a reference frequency serving as a reference among the plurality of frequencies, and a transmission timing and a reception timing for other frequencies. The communication system according to any one of appendices 1 to 4, which calculates a delay time.
(Supplementary Note 6) For each of a plurality of frequencies, a measurement frame generation unit that generates the measurement frame by including transmission timing information indicating the transmission timing of a predetermined measurement frame in the measurement frame;
A communication apparatus comprising: a frame transmission unit that transmits a measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame.
(Supplementary note 7) The communication device according to supplementary note 6, wherein the measurement frame generation unit includes identification information that can identify the group when the measurement frame is divided into predetermined groups.
(Supplementary Note 8) A reception timing measurement unit that measures the reception timing at which the measurement frame transmitted for each of the plurality of frequencies is received for each of the plurality of frequencies;
Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
A communication apparatus comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
(Supplementary note 9) The delay time calculation unit, based on the difference between the transmission timing and the reception timing for a reference frequency serving as a reference among the plurality of frequencies, and the transmission timing and the reception timing for other frequencies, 9. The communication device according to appendix 8, which calculates a delay time.
(Supplementary Note 10) For each of a plurality of frequencies, transmission timing information indicating the timing of transmitting a predetermined measurement frame is included in the measurement frame to generate the measurement frame,
Transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame;
The reception timing at which the transmitted measurement frame is received is measured for each of the plurality of frequencies,
Based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, the delay time of the measurement frame is calculated for each of the plurality of frequencies,
A communication method for balancing the calculated delay time over the plurality of frequencies.
(Supplementary note 11)
For each of a plurality of frequencies, a procedure for generating the measurement frame by including transmission timing information indicating a timing for transmitting a predetermined measurement frame in the measurement frame;
A recording medium recording a program for executing the procedure of transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame.
(Supplementary note 12)
A procedure for measuring the reception timing at which a measurement frame transmitted for each of a plurality of frequencies is received for each of the plurality of frequencies,
A procedure for calculating a delay time of the measurement frame for each of the plurality of frequencies based on a transmission timing indicated by transmission timing information included in the received measurement frame and the measured reception timing;
A recording medium recording a program for executing the procedure of balancing the calculated delay time over the plurality of frequencies.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2017年3月10日に出願された日本出願特願2017-046155を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-046155 filed on Mar. 10, 2017, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  第1の通信装置と、第2の通信装置とを有し、
     前記第1の通信装置は、
     複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
     前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有し、
     前記第2の通信装置は、
     前記フレーム送信部から送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
     前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
     前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する通信システム。
    A first communication device and a second communication device;
    The first communication device is:
    For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
    A frame transmission unit that transmits the measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame;
    The second communication device is:
    A reception timing measuring unit that measures the reception timing at which the measurement frame transmitted from the frame transmission unit is received for each of the plurality of frequencies; and
    Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
    A communication system comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
  2.  請求項1に記載の通信システムにおいて、
     前記測定フレーム生成部は、前記遅延等化部が平衡化する遅延時間を持つ測定フレームから構成されるグループを識別可能な識別情報を該測定フレームに含める通信システム。
    The communication system according to claim 1,
    The communication frame in which the measurement frame generation unit includes, in the measurement frame, identification information that can identify a group including measurement frames having a delay time that the delay equalization unit balances.
  3.  請求項1または請求項2に記載の通信システムにおいて、
     前記測定フレーム生成部は、所定のフラグを前記測定フレームに含める通信システム。
    The communication system according to claim 1 or 2,
    The measurement frame generation unit is a communication system that includes a predetermined flag in the measurement frame.
  4.  請求項1から3のいずれか1項に記載の通信システムにおいて、
     前記フレーム送信部は、前記測定フレームを、無線伝送路を介して前記第2の通信装置へ送信する通信システム。
    The communication system according to any one of claims 1 to 3,
    The frame transmission unit is a communication system that transmits the measurement frame to the second communication device via a wireless transmission path.
  5.  請求項1から4のいずれか1項に記載の通信システムにおいて、
     前記遅延時間算出部は、前記複数の周波数のうち基準となる基準周波数についての送信タイミングおよび受信タイミングと、それ以外の周波数についての送信タイミングおよび受信タイミングとの差分に基づいて、前記遅延時間を算出する通信システム。
    The communication system according to any one of claims 1 to 4,
    The delay time calculation unit calculates the delay time based on a difference between a transmission timing and a reception timing for a reference frequency serving as a reference among the plurality of frequencies and a transmission timing and a reception timing for other frequencies. Communication system.
  6.  複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する測定フレーム生成部と、
     前記測定フレーム生成部が生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信するフレーム送信部とを有する通信装置。
    For each of a plurality of frequencies, a measurement frame generator for generating the measurement frame by including transmission timing information indicating the timing of transmitting a predetermined measurement frame in the measurement frame;
    A communication apparatus comprising: a frame transmission unit that transmits a measurement frame generated by the measurement frame generation unit at a timing indicated by transmission timing information included in the measurement frame.
  7.  請求項6に記載の通信装置において、
     前記測定フレーム生成部は、前記測定フレームを所定のグループに分けた場合の該グループを識別可能な識別情報を該測定フレームに含める通信装置。
    The communication device according to claim 6.
    The measurement frame generation unit includes, in the measurement frame, identification information that can identify the group when the measurement frame is divided into a predetermined group.
  8.  複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する受信タイミング測定部と、
     前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記受信タイミング測定部が測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する遅延時間算出部と、
     前記遅延時間算出部が算出した遅延時間を前記複数の周波数にわたって平衡化する遅延等化部とを有する通信装置。
    A reception timing measurement unit for measuring the reception timing of each of the plurality of frequencies received from the measurement frame transmitted for each of the plurality of frequencies;
    Delay time for calculating the delay time of the measurement frame for each of the plurality of frequencies based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the reception timing measured by the reception timing measurement unit A calculation unit;
    A communication apparatus comprising: a delay equalization unit that balances the delay time calculated by the delay time calculation unit over the plurality of frequencies.
  9.  請求項8に記載の通信装置において、
     前記遅延時間算出部は、前記複数の周波数のうち基準となる基準周波数についての送信タイミングおよび受信タイミングと、それ以外の周波数についての送信タイミングおよび受信タイミングとの差分に基づいて、前記遅延時間を算出する通信装置。
    The communication device according to claim 8.
    The delay time calculation unit calculates the delay time based on a difference between a transmission timing and a reception timing for a reference frequency serving as a reference among the plurality of frequencies and a transmission timing and a reception timing for other frequencies. Communication device.
  10.  複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成し、
     前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信し、
     前記送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定し、
     前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出し、
     前記算出した遅延時間を前記複数の周波数にわたって平衡化する通信方法。
    For each of a plurality of frequencies, transmission timing information indicating the timing of transmitting a predetermined measurement frame is included in the measurement frame to generate the measurement frame,
    Transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame;
    The reception timing at which the transmitted measurement frame is received is measured for each of the plurality of frequencies,
    Based on the transmission timing indicated by the transmission timing information included in the received measurement frame and the measured reception timing, the delay time of the measurement frame is calculated for each of the plurality of frequencies,
    A communication method for balancing the calculated delay time over the plurality of frequencies.
  11.  コンピュータに、
     複数の周波数それぞれについて、所定の測定フレーム送信するタイミングを示す送信タイミング情報を該測定フレームに含めて該測定フレームを生成する手順と、
     前記生成した測定フレームを、該測定フレームに含まれた送信タイミング情報が示すタイミングで送信する手順とを実行させるためのプログラムを記録した記録媒体。
    On the computer,
    For each of a plurality of frequencies, a procedure for generating the measurement frame by including transmission timing information indicating a timing for transmitting a predetermined measurement frame in the measurement frame;
    A recording medium recording a program for executing the procedure of transmitting the generated measurement frame at a timing indicated by transmission timing information included in the measurement frame.
  12.  コンピュータに、
     複数の周波数ごとに送信されてきた測定フレームを受信した受信タイミングを、前記複数の周波数ごとに測定する手順と、
     前記受信した測定フレームに含まれる送信タイミング情報が示す送信タイミングと、前記測定した受信タイミングとに基づいて、前記測定フレームの遅延時間を、前記複数の周波数ごとに算出する手順と、
     前記算出した遅延時間を前記複数の周波数にわたって平衡化する手順とを実行させるためのプログラムを記録した記録媒体。
    On the computer,
    A procedure for measuring the reception timing at which a measurement frame transmitted for each of a plurality of frequencies is received for each of the plurality of frequencies,
    A procedure for calculating a delay time of the measurement frame for each of the plurality of frequencies based on a transmission timing indicated by transmission timing information included in the received measurement frame and the measured reception timing;
    A recording medium recording a program for executing the procedure of balancing the calculated delay time over the plurality of frequencies.
PCT/JP2018/003609 2017-03-10 2018-02-02 Communications system WO2018163678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046155 2017-03-10
JP2017-046155 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163678A1 true WO2018163678A1 (en) 2018-09-13

Family

ID=63448632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003609 WO2018163678A1 (en) 2017-03-10 2018-02-02 Communications system

Country Status (1)

Country Link
WO (1) WO2018163678A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082264A (en) * 2006-12-13 2007-03-29 Fujitsu Ltd Adaptive control apparatus
JP2008227980A (en) * 2007-03-13 2008-09-25 Nec Corp Digital delay equalizer, multiplier coefficient determination method thereof and control program
JP2010093733A (en) * 2008-10-10 2010-04-22 Toshiba Corp Wireless communication method, system, wireless transmitter and wireless receiver
JP2010268364A (en) * 2009-05-18 2010-11-25 Nec Network & Sensor Systems Ltd Narrow-band digital wireless communication apparatus, and parameter setting method for equalizing group delay distortion
JP2012129868A (en) * 2010-12-16 2012-07-05 Nec Corp Communication system
WO2016072038A1 (en) * 2014-11-05 2016-05-12 日本電気株式会社 Communication system, time synchronization method, and radio relay device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082264A (en) * 2006-12-13 2007-03-29 Fujitsu Ltd Adaptive control apparatus
JP2008227980A (en) * 2007-03-13 2008-09-25 Nec Corp Digital delay equalizer, multiplier coefficient determination method thereof and control program
JP2010093733A (en) * 2008-10-10 2010-04-22 Toshiba Corp Wireless communication method, system, wireless transmitter and wireless receiver
JP2010268364A (en) * 2009-05-18 2010-11-25 Nec Network & Sensor Systems Ltd Narrow-band digital wireless communication apparatus, and parameter setting method for equalizing group delay distortion
JP2012129868A (en) * 2010-12-16 2012-07-05 Nec Corp Communication system
WO2016072038A1 (en) * 2014-11-05 2016-05-12 日本電気株式会社 Communication system, time synchronization method, and radio relay device

Similar Documents

Publication Publication Date Title
JP4299148B2 (en) Receiving apparatus and receiving method
US9166682B2 (en) Carrier phase estimator for non-linear impairment monitoring and mitigation in coherent optical systems
JP5175306B2 (en) Multi transmit antenna synchronization channel transmit cell ID detection
US20120170684A1 (en) Method and System for Decoding OFDM Signals Subject to Narrowband Interference
US20140079407A1 (en) Updating apparatus and method for equalizer coefficient, receiver and otpical communication system
JP6682985B2 (en) Signal processing device, signal transmitting device, and receiver
CN102710563B (en) Method for frequency offset estimation and signal transceiver
US10110275B2 (en) Frequency offset estimation and compensation method
JPS6243267B2 (en)
JP5585583B2 (en) Clock recovery circuit and clock recovery method
WO2018163678A1 (en) Communications system
KR20120046314A (en) Communication terminal
JP4940222B2 (en) Signal receiving apparatus and method
KR100812351B1 (en) Apparatus for generating down link signal, and method and apparatus for determining the log-likelihood ratio in cellular system
CN104025527A (en) Digital filter, partial response equalizer, and digital coherent receiver device and method
KR100755125B1 (en) Equalizer for signal by both single carrier modulation and multi carrier modulation and method thereof
JP2014123948A (en) Method and system for reducing amplitude modulation (am) noise in am broadcast signal
JP4180593B2 (en) Carrier wave reproducing apparatus for VSB type receiver and reproducing method thereof
JP6753394B2 (en) Transmitters and methods, and programs
JP7432522B2 (en) Receiving device, communication system and receiving method
JP5171439B2 (en) Transmitter and transmission control method
US7254181B2 (en) Transmitting apparatus and method, receiving apparatus and method, and transmitting and receiving apparatus and method
US20240204928A1 (en) Network side receiver for receiving high velocity transmitted signals
Kang et al. Simulation analysis of modified filter bank multicarrier for physical layer cognitive radio under radio environment
JP2017147667A (en) Signal compensation system, signal compensation execution system, and signal compensation coefficient calculation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP