WO2018160337A1 - 3-d printing using spray forming - Google Patents

3-d printing using spray forming Download PDF

Info

Publication number
WO2018160337A1
WO2018160337A1 PCT/US2018/017364 US2018017364W WO2018160337A1 WO 2018160337 A1 WO2018160337 A1 WO 2018160337A1 US 2018017364 W US2018017364 W US 2018017364W WO 2018160337 A1 WO2018160337 A1 WO 2018160337A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
spray forming
instructions
spray
printer
Prior art date
Application number
PCT/US2018/017364
Other languages
French (fr)
Inventor
Kevin Robert Czinger
Broc William Tenhouten
Narender Shankar LAKSHMAN
Original Assignee
Divergent Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Divergent Technologies, Inc. filed Critical Divergent Technologies, Inc.
Priority to EP18761166.0A priority Critical patent/EP3589477B1/en
Priority to CN201880014516.8A priority patent/CN110366485B/en
Publication of WO2018160337A1 publication Critical patent/WO2018160337A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates generally to manufacturing techniques, and more specifically 3D-printing methods using spray forming.
  • 3-D printing using FDM and other techniques rely on the successive deposition of layers of material.
  • printed parts may exhibit a stair-stepped effect, especially with respect to angled surfaces.
  • the printed part is, by way of example, a panel such as a hood for a vehicle
  • the part may fall out of applicable vehicular requirements and specifications.
  • these printed parts may require additional sanding, machining, or other finishing steps to make them smooth.
  • a panel may be 3-D printed.
  • the part may be prepared for a second manufacturing step wherein the stair-stepped effect is reduced or eliminated using sanding, hand spray forming, or some other process.
  • Requiring separate manufacturing steps to produce a smooth 3D-printed part may result in manufacturing inefficiencies, added complexity, and increased cost. Additionally, since in the conventional method the stair-stepped effect is often eliminated using techniques not calibrated with the 3-D printer that produced the part, accuracy in the resulting printed part may be compromised.
  • One aspect of a method of three-dimensional (3-D) printing a structure includes receiving instructions for printing the structure, the instructions based on a data model of the structure, receiving material, and printing the structure based on the instructions, the printing comprising spray forming the material to produce the structure.
  • Another aspect of a method of 3-D printing a structure includes receiving
  • instructions for printing the structure the instructions based on a data model of the structure, receiving material, printing the structure based on the instructions using the material, the printing including forming successive layers of the material to produce an intermediate structure having a stair-stepped surface portion, and spray forming the material onto the stair-stepped surface portion to produce the structure from the intermediate structure by smoothing the stair-stepped surface portion.
  • Another aspect of a method of three-dimensional (3-D) printing a structure includes receiving instructions for printing the structure, receiving a nominal dimension and a corresponding tolerance for one or more layers of the structure, printing the structure based on the instructions, the printing including forming successive layers of the material to produce an intermediate structure, scanning the intermediate structure to determine a physical dimension of the one or more layers, and spray forming selected portions of the intermediate structure to produce the structure such that the physical dimension falls within the received tolerance of the nominal dimension.
  • FIGS. 1A-B illustrate a diagram of a conventional 3-D printer using fused
  • FDM deposition modeling
  • FIG. 2 is a flow diagram illustrating an exemplary process of 3-D printing.
  • FIGS. 3A, 3B and 3C are illustrations of a desired part and a build plate supporting a resulting 3-D printed part.
  • FIG. 4 is a diagram of a 3-D printer employing spray forming.
  • FIG. 5 is a diagram of a 3-D printer integrating spray forming and fused deposition modeling (FDM) printing.
  • FIGS. 6A-B are is a flow diagram illustrating an exemplary method for 3-D printing using spray forming.
  • FIG. 7 is a flow diagram illustrating an exemplary method for 3-D printing using in situ monitoring of stair-stepped effects of the 3-D printed structure.
  • FIGS. 1 A-B illustrate a diagram of a conventional 3-D printer using fused
  • FDM deposition modeling
  • the 3-D printer of FIG. 1A also includes a first spool 104 for providing a first
  • the material 1 14 may constitute a build material for forming the successive layers of the part and the material 1 16 a support material for providing temporary support to accommodate spatial vacancies created by the predetermined shapes of certain structures whose shape may otherwise be compromised by gravity prior to solidifying, the 3-D printing techniques contemplated in this disclosure may obviate the need for a support material by using complex matrix arrays as backing structures.
  • 3-D printer 100 may also include a substrate or base 112 upon which the printing may occur, and a vertically moveable build platform 1 10.
  • the build platform 1 10 may be configured under software control to gradually move lower in the vertical direction (as indicated by the arrow on support arm 123) to accommodate the space occupied by the increasing number of layers of part 121.
  • FIG. IB shows an expanded view of extrusion head 102.
  • Materials 1 14 and 116 may be fed using rotating drive wheels 125 into extrusion nozzles 126 and 128, respectively.
  • the materials 1 14 and 1 16 are melted by the application of heat in respective extrusion nozzles 126 and 128 and thereupon ejected under software control from the nozzles onto the substrate 110, or onto the layers previously disposed on the substrate.
  • FIG. 2 is a flow diagram 200 illustrating an exemplary process of 3-D printing.
  • a data model of the desired 3-D obj ect to be printed is rendered (step 210).
  • a data model is a virtual design of the 3-D object.
  • the data model may reflect the geometrical and structural features of the 3-D object, as well as its material composition.
  • the data model may be created using a variety of methods, including 3D scanning, 3D modeling software, photogrammetry software, and camera imaging.
  • 3D scanning methods for creating the data model may also use a variety of
  • These techniques may include, for example, time-of flight, volumetric scanning, structured light, modulated light, laser scanning, triangulation, and the like.
  • 3-D modeling software may include one of numerous commercially
  • Data models may be rendered using a suitable computer-aided design (CAD) package, for example in an STL format.
  • STL files are one example of a file format associated with commercially available CAD software.
  • a CAD program may be used to create the data model of the 3-D object as an STL file. Thereupon, the STL file may undergo a process whereby errors in the file are identified and resolved.
  • the data model can be "sliced" by a software application known as a sheer to thereby produce a set of instructions for 3-D printing the obj ect, with the instructions being compatible and associated with the particular 3-D printing technology to be utilized (step 220).
  • a sheer program converts the data model into a series of individual layers representing thin slices (e.g., 100 microns thick) of the object be printed, along with a file containing the printer-specific instructions for 3- D printing these successive individual layers to produce an actual 3-D printed representation of the data model.
  • a common type of file used for this purpose is a G-code file, which is a numerical control programming language that includes instructions for 3-D printing the obj ect.
  • the G-code file, or other file constituting the instructions is uploaded to the 3-D printer (step 230). Because the file containing these instructions is typically configured to be operable with a specific 3-D printing process, it will be appreciated that many formats of the instruction file are possible depending on the 3-D printing technology used.
  • the appropriate physical materials necessary for use by the 3-D printer in rendering the obj ect are loaded into the 3-D printer using any of several conventional and often printer-specific methods (step 240).
  • FDM fused deposition modelling
  • materials may be loaded as filaments on spools, which are placed on one or more spool holders.
  • the filaments are typically fed into an extruder apparatus which, in operation, heats the filament into a melted form before ej ecting the material onto a build plate or other substrate.
  • SLS selective laser sintering
  • the materials may be loaded as powders into chambers that feed the powder to a build platform.
  • other techniques for loading printing materials may be used.
  • the respective data slices of the 3-D obj ect are then printed based on the provided instructions using the material(s) (step 250).
  • a laser scans a powder bed and melts the powder together where structure is desired, and avoids scanning areas where the sliced data indicates that nothing is to be printed. This process may be repeated thousands of times until the desired structure is formed, after which the printed part is removed from a fabricator.
  • fused deposition modelling as described above, parts are printed by applying successive layers of model and support materials to a substrate.
  • any suitable 3-D printing technology may be employed for purposes of this disclosure.
  • the FDM technique has a minimum layer
  • FIGS. 3A-C are illustrations of a desired part 312 and a build plate 310 supporting a resulting 3-D printed part 320.
  • FIG. 3 A is a visual representation of a data model of a part 312 to be printed.
  • the part 312 for purposes of this illustration has a first surface 314 that is substantially flat and a second surface 313 that is angled on both ends and that has a flat top surface.
  • the part 312 may, for example, be a panel for use in a transport structure where the surface 313 is intended to represent an exterior portion of the panel such as the external portion of a car door.
  • FIG. 3B shows part 320 that is 3-D printed on substrate 310 based on the data model of part 312.
  • the 3-D printing process generates a stair-stepped effect 322 on the surface of part 320 that is intended to represent one of the angled surfaces 313 (FIG. 3A).
  • the exterior surface of a part such as a body panel may have undesirable and unaesthetically pleasing jagged edges that must be smoothed out by some other process.
  • the stair-stepped effect 322 that results may add further complications. For example, it may render the part non-compliant with specifications or applicable regulations, or non-functional for a particular purpose.
  • FIG. 3C shows the part 320 after going through an additional manufacturing step.
  • the stair-stepped effect 322 is reduced to form substantially flat surfaces 202 and 304 of part 320.
  • One such manufacturing step may involve workers removing part 320 from the 3-D printer, depositing part 320 on a second substrate 330 and applying a hand spray forming technique to smooth the stair- stepped effect.
  • Conventional spray forming involves casting metal components with homogeneous microstructures via the inert gas atomisation of a liquid metal stream into droplets and the deposition of semi-solid sprayed droplets onto a shaped substrate.
  • the substrate collects the droplets and solidifies them into a coherent preform.
  • an alloy is melted, normally in an induction furnace, then the molten metal is slowly poured through a conical tundish into a small-bore ceramic nozzle.
  • the molten metal exits the furnace and is broken up into droplets by an atomizer.
  • the droplets then proceed downwards to impact a substrate.
  • the process is arranged such that the droplets strike the substrate while in the semi-solid condition. This process provides sufficient liquid fraction to 'stick' the solid fraction together.
  • Deposition continues, gradually building up a spray formed part, such as a billet, of metal on the substrate.
  • Spray forming may use a chamber in the shape of the part to be formed.
  • Spray forming may involve applying finishing procedures on metal structures as indicated above, or forming metal structures in a chamber. More specifically, metal parts may be spray formed in a temperature controlled chamber, which is typically in a shape that is consistent with that of the final part. In current metal spray forming processes, dedicated equipment is needed such as the chamber, nozzle, atomiser, etc. In addition, the metal parts are limited by the constraints of the chamber and can only be shaped to substantially adhere to the geometry of the chamber.
  • a spray forming technique is incorporated as part of a 3-D printer.
  • the 3-D printer includes a flexible, computer-controlled nozzle having six degrees of freedom that is capable of being manipulated in all three X-Y- Z directions and inclined at a variety of angles relative to the printer build plate.
  • the 3-D printer incorporating the spray former may, depending on the embodiment, be used for both for finishing of surfaces of existing parts and for wholesale construction of parts.
  • the spray forming 3-D printer is not limited to spray forming of metals and may additionally or alternatively employ spray forming of plastics and other materials.
  • the 3-D printer may incorporate a spray former that broadly includes one or more mechanical assemblies for converting a desired material into droplets and spray forming the material in a manner specified by the 3-D printing instructions and/or the CAM program associated with the 3-D printer.
  • FIG. 4 shows a conceptual diagram of a 3-D printer 400 employing spray forming.
  • the 3-D printer includes support arm 402, build plate 404, and substrate 406.
  • a tooling shell 408 is disposed on a surface of substrate 406.
  • the tooling shell 408 was previously machined or 3-D printed and was placed on the substrate 408 after its construction.
  • the tooling shell 408 may be 3-D printed on 3-D printer 400.
  • 3-D printer 400 may include a conventional computer-controlled print extruder (not shown) which may 3-D print the mold using any of a variety of known methods (SLS, FDM, etc.).
  • the mold is spray formed using 3-D printer 400.
  • a robotic arm 414 under computer control of the 3-D printer may be used to spray form a part 410, such as a panel, on a surface of the tooling shell 408.
  • the spray forming is deposited directly on substrate 406 to spray form the part 410.
  • the nozzle 416 of robotic arm 414 shoots droplets 412 of material onto the tooling shell 408 to thereby create the part 410 as described above.
  • robotic arm 414 can be manipulated in a variety of directions and angles.
  • robotic arm 414 may be moved in one or more of the A, B or C directions (or directions at any point in between), which may correspond respectively to coordinate axes X, Y, Z of the 3-D printer.
  • robotic arm 414 can be inclined at substantially any angle in order to perform spray forming at a variety of angles.
  • robotic arm 414 may be configured to rotate or twist as shown by the arrow and corresponding designation D.
  • the robotic arm 414 is equipped with six degrees of freedom.
  • the robotic arm 414 is designed to be thin relative to the generally bulky print extruder 502 and associated mechanical assembly. This gives the robotic arm 414 additional flexibility to move about the substrate.
  • material extruded from conventional printers may be adversely affected by gravity when the extruder angle is changed, for example, to a slightly angled position to deposit material. That is, the print extruder in the conventional 3-D printer is often bulky, carries more inertia, and is limited in motion due to its pivot point connection to the remainder of the extrusion system, so that its flexibility to change angles and directions is accordingly limited. This phenomenon is similar in principal to attempting to write upside down with a ballpoint pen. 3-D printing using spray forming lacks this limitation.
  • the spray forming technologies enables the 3-D printer to spray the light droplets on the substrate or part at essentially any angle, including in an upward direction, and the spray mechanic is not substantially adversely affected by gravity.
  • the robotic arm 414 and spray forming capability is incorporated as part of the 3-D printer, the arm 414 can be controlled and directed under computer control using instructions provided directly to the 3-D printer.
  • the 3-D printer as disclosed herein can spray form parts in three dimensions, with such parts having a variety of possible geometries and features under software control.
  • the mechanical assembly of the robotic arm 414 and printer may vary depending on the embodiment. Where spray forming of metals is performed, the assembly may incorporate a mechanism for heating the metal, an atomiser, and other elements.
  • robotic arm 414 of the 3-D printer may be configured to spray resins onto a mold or a substrate for forming or finishing parts.
  • nozzle 416 of robotic arm 414 may include an assembly for adjusting the viscosity of the target material to be used in the spray forming process.
  • the assembly may be dynamically adjusted according to software as a function of the material to be used in the spray forming process.
  • a heating mechanism may be included in or proximate to nozzle 416 for facilitating flow of the material.
  • thermoset resins where thermoset resins are used, the resin and the hardener are generally mixed in some ratio and then applied. Pre-mixing the resin and the hardener and then attempting to spray form the resulting viscous material gives rise to inherent difficulties. For example, pre-mixing the resin and hardener and spray forming the combined material may cause the material to cure within the nozzle, thereby clogging the nozzle.
  • robotic arm 414 may include two nozzles 416 (only one shown), each which constitutes a separate spray forming head.
  • a first such nozzle may spray the resin and the second nozzle may spray the hardener.
  • the above-described 3-D printing techniques can be used either to smooth (finish) a part such as a panel using spray forming, or to create a part.
  • the diameter of the nozzle 416 is generally very small, in some embodiments being on the order of approximately 50 ⁇ . Because the diameter of nozzle 416 is small, the corresponding thickness of the material exiting nozzle 416 may be negligible, such that substantially no stair-stepped effect is observed when 3- D printing parts using the spray forming technique.
  • the robotic arm 414 is advantageous for incorporation into the 3-D printer 400 for use in spray forming because, among other reasons, such robotic assemblies may be controlled by a data model and related instructions as are used in 3-D printers.
  • the material forming the panel can be sprayed over the 3-D printed tooling shell 408 (or the substrate 406 in other embodiments).
  • imperfections that arise due to surface properties of the 3-D printed tooling shell 408 are present only on the B side of the final panel where the part 410 meets the surface of tooling shell 408.
  • the A side (surface 418, 420 of part 410) of the panel may be made to be substantially flawlessly smooth, thereby satisfying Class A vehicular surface requirements.
  • the 3-D printer as described above can be used to spray resin on metal or plastic 3-D printed tools to smoothen the surface of the tools.
  • smooth metal or plastic parts and panels having complex geometries can be spray formed from the ground up under software control of the printers. Layers can be sprayed from a build plate 404 or, alternatively, a first material can be used as a base 406 and a second material can be used for the spray forming process.
  • a spray forming mechanism is integrated with a conventional 3-D print extruder to form a single 3-D printer.
  • the 3-D printer according to this exemplary embodiment is capable of dual (or multiple) functions; namely, a conventional extruder (such as SLS, FDM, etc.) can be used to 3-D print a part and a spray former can be used either to form parts or to provide finishing for the part printed by the conventional print extruder.
  • a conventional extruder such as SLS, FDM, etc.
  • FIG. 5 shows a diagram of a 3-D printer 500 integrating spray forming and FDM printing capability. While an FDM assembly is shown for purposes of illustration, it will be appreciated that any conventional 3-D printing technique may be integrated with the spray forming mechanism.
  • the spray forming mechanism includes robotic arm 514, nozzle 516, and associated control mechanism (not shown) guided by printer software. As previously shown with reference to FIG. 4, robotic arm 514 of FIG. 5 may be under control of the 3-D printer instructions and can be manipulated at a variety of angles and directions, including in the A, B, C and D directions.
  • part 508 is 3-D printed on build plate 504 (or an intervening substrate or foam base) using print extruder 502 and one or both of print materials 514 and 518.
  • the angled portions of part 508 are characterized by a stair-stepped effect, the scale of which is exaggerated here for clarity.
  • nozzle 516 of robotic arm applies spray forming to finish the part and thereby reduce or eliminate the stair-stepped effect, such that part 508 will have smooth angled surfaces as noted previously with reference to FIGS. 5A and 5C.
  • metals, plastics, or composites may be spray formed.
  • FIGS. 6A-B are is a flow diagram illustrating an exemplary method for 3-D printing using spray forming.
  • a data model of the part to be printed is rendered.
  • the data model is sliced into a plurality of layers to produce 3-D printing instructions.
  • these instructions may include instructions for conventional 3-D printing (such as SLS or FDM), spray forming, or both.
  • the instructions are uploaded to the 3-D printer.
  • materials are provided to the 3-D printer 500 for use in 3-D printing the object. These materials may include one or more of plastics, metals, resins, and composites in their appropriate form for use in the specific 3-D printing technique employed.
  • This step may also include providing materials for use in spray forming a part.
  • the materials are provided to different functional mechanisms within the 3-D printer.
  • the spray forming mechanism may draw its material from a common source as the conventional 3-D print head. It should be noted that step 640 need not occur in any particular order, and may occur prior to any of the steps 610-630 or later, as long as the material is made available at the actual time of printing the part.
  • the 3-D printer 500 may determine, based on the instructions, whether the part to be produced will be formed via spray forming (as in the application of material via robotic arm 514 and nozzle 516 in FIG. 5) or via a conventional 3-D printing technique (as in the application of one or more materials 514, 518 via print extruder 502 in FIG. 5). If it is determined that the part will be spray formed, then at 660, the 3-D printer 500 will form the part on substrate 504 or on another base plate. Conversely, if it is determined that the part will be 3-D printed using the conventional print extruder 502, then at step 670 the 3-D printer 500 will proceed to deposit successive layers onto the substrate until part 508 is formed. It will be appreciated that the angled portions of part 508 may include the stair-stepped effect as previously described.
  • the 3-D printer 500 may spray form the surface of part 508, including the stair-stepped portions, to finish the part and thereby smoothen the angled portions of part 508.
  • the part 508 printed using conventional means constitutes an intermediate structure that is finished using the spray form portion of 3-D printer 500.
  • the robotic arm 514 may contemporaneously provide finishing on portions of intermediate structure 508 while the print extruder 502 is depositing layers of material.
  • 3-D printer 500 may 3-D print the structure 508 in part using print extruder 502 and in part using spray forming via robotic arm 514 and nozzle 516.
  • robotic arm 514 While for purposes of clarity the robotic arm 514 is shown to be small in scale relative to build plate 504 and the part 508, in other embodiments robotic arm 514 may be constructed in any flexible manner. For example, robotic arm 514 may be longer, have a wider range, and have a more flexible geometry to enable it to spray form the part 508 from all angles, or a wide range of angles including an inverted angle relative to the floor.
  • the 3-D printer employs in situ monitoring of stair-stepped effects or other variations of a 3- D printed structure. During programming using the CAD models or another suitable software technique, nominal dimensions and tolerances of one or more layers constituting the structure may be defined (step 710).
  • a nominal dimension of a layer thickness may be defined along with a corresponding tolerance of deviation from the nominal dimension.
  • a nominal thickness for a particular layer is one inch, a corresponding tolerance may be +/- 0.005 inches, or any suitable number.
  • Other dimensions may be similarly defined.
  • a specified nominal dimension of an angle or contour of an inclined surface of the structure may be defined along with a corresponding tolerance for the angle or contour.
  • the 3-D printer prints an intermediate structure (step 720).
  • the 3-D printer may scan the printed intermediate structure and thereby determine the actual physical dimension at issue, such as the thickness of the layers, the measurement of stair- stepped effects in an angled portion, etc. (step 730).
  • the scanning is performed after the 3-D printed intermediate structure is rendered.
  • the scanning is performed in real time while the intermediate structure is being printed. Having received the actual physical dimension(s) at issue, the 3-D printer and/or its control system or associated software application may compare the determined physical dimension(s) to the nominal dimension(s) and the respective tolerance(s) (step 740).
  • the 3-D printer may then provide feedback to the control system of the robotic arm, such as, for example, when the determined physical dimensions fall outside the tolerance of the identified nominal dimensions (step 750). Using this feedback, the 3-D printer may spray form the intermediate structure to provide material to bring the affected layers and/or structures within the specified tolerances (step 760).
  • the spray former may smooth out rough edges and/or add thickness to portions of the structure.
  • the spray forming may be performed in real time during the 3-D printing of the intermediate structure (using an FDM, SLS or another technique). Alternatively, the spray forming may be performed after the intermediate structure is complete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)

Abstract

Techniques for 3-D printing parts using spray forming are disclosed. A 3-D printer receives instructions for printing a structure, where the instructions are based on a data model of the structure. The 3-D printer receives a suitable material such as a metal, plastic, or composite, and prints the structure based on the instructions using spray forming. In one embodiment, the 3-D printer employs spray forming to finish an angled surface of a 3-D printed part having a stair-stepped effect.

Description

3-D PRINTING USING SPRAY FORMING
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Patent Application No. 15/446,932, entitled 3-D PRINTING USING SPRAY FORMING, and filed on March 1, 2017, which is expressly incorporated by reference herein in its entirety.
BACKGROUND
Field
[0002] The present disclosure relates generally to manufacturing techniques, and more specifically 3D-printing methods using spray forming.
Background
[0003] Key technological developments and advances in manufacturing have been made in recent years with the increasingly widespread use of three dimensional (3-D) printing for a variety of applications. Such applications are especially prevalent in the context of manufacturing numerous types of sophisticated mechanical structures. Similar advances have recently been made, and milestones achieved, relative to the advancement of 3-D printing technologies themselves. The plethora of modern 3-D printing techniques that have been the subject of such recent advances include, for example, stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), and the like.
[0004] Various limitations with existing 3D-printing applications persist. As an illustration,
3-D printing using FDM and other techniques rely on the successive deposition of layers of material. As a result of this layer-by-layer deposition technique, printed parts may exhibit a stair-stepped effect, especially with respect to angled surfaces. Where the printed part is, by way of example, a panel such as a hood for a vehicle, the part may fall out of applicable vehicular requirements and specifications. Thus these printed parts may require additional sanding, machining, or other finishing steps to make them smooth. For example, using conventional manufacturing techniques, a panel may be 3-D printed. Thereafter, the part may be prepared for a second manufacturing step wherein the stair-stepped effect is reduced or eliminated using sanding, hand spray forming, or some other process. Requiring separate manufacturing steps to produce a smooth 3D-printed part may result in manufacturing inefficiencies, added complexity, and increased cost. Additionally, since in the conventional method the stair-stepped effect is often eliminated using techniques not calibrated with the 3-D printer that produced the part, accuracy in the resulting printed part may be compromised.
SUMMARY
[0006] Several aspects of methods will be described more fully hereinafter with reference to three-dimensional printing techniques.
[0007] One aspect of a method of three-dimensional (3-D) printing a structure includes receiving instructions for printing the structure, the instructions based on a data model of the structure, receiving material, and printing the structure based on the instructions, the printing comprising spray forming the material to produce the structure.
[0008] Another aspect of a method of 3-D printing a structure includes receiving
instructions for printing the structure, the instructions based on a data model of the structure, receiving material, printing the structure based on the instructions using the material, the printing including forming successive layers of the material to produce an intermediate structure having a stair-stepped surface portion, and spray forming the material onto the stair-stepped surface portion to produce the structure from the intermediate structure by smoothing the stair-stepped surface portion.
[0009] Another aspect of a method of three-dimensional (3-D) printing a structure includes receiving instructions for printing the structure, receiving a nominal dimension and a corresponding tolerance for one or more layers of the structure, printing the structure based on the instructions, the printing including forming successive layers of the material to produce an intermediate structure, scanning the intermediate structure to determine a physical dimension of the one or more layers, and spray forming selected portions of the intermediate structure to produce the structure such that the physical dimension falls within the received tolerance of the nominal dimension.
It will be understood that other aspects of 3-D printing using spray forming will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the panels, tooling shells and methods for producing panels are capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Various aspects of 3-D printing using spray forming will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
[0012] FIGS. 1A-B illustrate a diagram of a conventional 3-D printer using fused
deposition modeling (FDM).
[0013] FIG. 2 is a flow diagram illustrating an exemplary process of 3-D printing.
[0014] FIGS. 3A, 3B and 3C are illustrations of a desired part and a build plate supporting a resulting 3-D printed part.
[0015] FIG. 4 is a diagram of a 3-D printer employing spray forming.
[0016] FIG. 5 is a diagram of a 3-D printer integrating spray forming and fused deposition modeling (FDM) printing.
[0017] FIGS. 6A-B are is a flow diagram illustrating an exemplary method for 3-D printing using spray forming.
[0018] FIG. 7 is a flow diagram illustrating an exemplary method for 3-D printing using in situ monitoring of stair-stepped effects of the 3-D printed structure.
DETAILED DESCRIPTION [0019] The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of 3-D printing using spray forming and is not intended to represent the only embodiments in which the invention may be practiced. The term "exemplary" used throughout this disclosure means "serving as an example, instance, or illustration," and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.
[0020] FIGS. 1 A-B illustrate a diagram of a conventional 3-D printer using fused
deposition modeling (FDM). FDM is an additive manufacturing technique wherein a thermoplastic or other material is extruded through a temperature-controlled print nozzle 102. The print nozzle 102 can be moved in both horizontal and vertical directions by a mechanical device that is under the control of a computer-aided manufacturing (CAM) software package. The 3-D part to be constructed is built one layer at a time, and the layers successively overlap each other in a prescribed manner to form a part 121.
[0021] The 3-D printer of FIG. 1A also includes a first spool 104 for providing a first
material that is fed to the extrusion head 102 and a second spool for providing a second material that is fed to the extrusion head 102. While in some configurations the material 1 14 may constitute a build material for forming the successive layers of the part and the material 1 16 a support material for providing temporary support to accommodate spatial vacancies created by the predetermined shapes of certain structures whose shape may otherwise be compromised by gravity prior to solidifying, the 3-D printing techniques contemplated in this disclosure may obviate the need for a support material by using complex matrix arrays as backing structures.
[0022] 3-D printer 100 may also include a substrate or base 112 upon which the printing may occur, and a vertically moveable build platform 1 10. During the 3-D printing process wherein the material 1 14 is extruded onto a surface of part 121 to form successive layers, the build platform 1 10 may be configured under software control to gradually move lower in the vertical direction (as indicated by the arrow on support arm 123) to accommodate the space occupied by the increasing number of layers of part 121.
[0023] FIG. IB shows an expanded view of extrusion head 102. Materials 1 14 and 116 may be fed using rotating drive wheels 125 into extrusion nozzles 126 and 128, respectively. The materials 1 14 and 1 16 are melted by the application of heat in respective extrusion nozzles 126 and 128 and thereupon ejected under software control from the nozzles onto the substrate 110, or onto the layers previously disposed on the substrate.
[0024] While an FDM printing technique has been described here for illustration purposes, the disclosure herein is not so limited, and any suitable 3-D printing technique may be employed in connection with the description that follows.
[0025] FIG. 2 is a flow diagram 200 illustrating an exemplary process of 3-D printing. A data model of the desired 3-D obj ect to be printed is rendered (step 210). A data model is a virtual design of the 3-D object. Thus, the data model may reflect the geometrical and structural features of the 3-D object, as well as its material composition. The data model may be created using a variety of methods, including 3D scanning, 3D modeling software, photogrammetry software, and camera imaging.
[0026] 3D scanning methods for creating the data model may also use a variety of
techniques for generating a 3-D model. These techniques may include, for example, time-of flight, volumetric scanning, structured light, modulated light, laser scanning, triangulation, and the like.
[0027] 3-D modeling software, in turn, may include one of numerous commercially
available 3-D modeling software applications. Data models may be rendered using a suitable computer-aided design (CAD) package, for example in an STL format. STL files are one example of a file format associated with commercially available CAD software. A CAD program may be used to create the data model of the 3-D object as an STL file. Thereupon, the STL file may undergo a process whereby errors in the file are identified and resolved.
[0028] Following error resolution, the data model can be "sliced" by a software application known as a sheer to thereby produce a set of instructions for 3-D printing the obj ect, with the instructions being compatible and associated with the particular 3-D printing technology to be utilized (step 220). Numerous sheer programs are commercially available. Generally, the sheer program converts the data model into a series of individual layers representing thin slices (e.g., 100 microns thick) of the object be printed, along with a file containing the printer-specific instructions for 3- D printing these successive individual layers to produce an actual 3-D printed representation of the data model.
[0029] A common type of file used for this purpose is a G-code file, which is a numerical control programming language that includes instructions for 3-D printing the obj ect. The G-code file, or other file constituting the instructions, is uploaded to the 3-D printer (step 230). Because the file containing these instructions is typically configured to be operable with a specific 3-D printing process, it will be appreciated that many formats of the instruction file are possible depending on the 3-D printing technology used.
[0030] In addition to the printing instructions that dictate what and how an obj ect is to be rendered, the appropriate physical materials necessary for use by the 3-D printer in rendering the obj ect are loaded into the 3-D printer using any of several conventional and often printer-specific methods (step 240). In fused deposition modelling (FDM) 3-D printers, as indicated above, materials may be loaded as filaments on spools, which are placed on one or more spool holders. The filaments are typically fed into an extruder apparatus which, in operation, heats the filament into a melted form before ej ecting the material onto a build plate or other substrate. In selective laser sintering (SLS) printing and other methods, the materials may be loaded as powders into chambers that feed the powder to a build platform. Depending on the 3-D printer, other techniques for loading printing materials may be used.
[0031] The respective data slices of the 3-D obj ect are then printed based on the provided instructions using the material(s) (step 250). In 3-D printers that use laser sintering, a laser scans a powder bed and melts the powder together where structure is desired, and avoids scanning areas where the sliced data indicates that nothing is to be printed. This process may be repeated thousands of times until the desired structure is formed, after which the printed part is removed from a fabricator. In fused deposition modelling, as described above, parts are printed by applying successive layers of model and support materials to a substrate. In general, any suitable 3-D printing technology may be employed for purposes of this disclosure.
[0032] Like other 3-D printing techniques, the FDM technique has a minimum layer
resolution, which may in some configurations be on the order of 0.127 mm or thereabouts, depending on the printer resolution and other factors. As a consequence of this minimum resolution, it becomes apparent that the attempted 3- D printing of an angled surface will result in often unwanted "stair-stepped" artifacts caused by the finite thickness of the successive layers.
[0033] This phenomenon can be appreciated with reference to FIGS. 3A-C, which are illustrations of a desired part 312 and a build plate 310 supporting a resulting 3-D printed part 320. FIG. 3 A is a visual representation of a data model of a part 312 to be printed. The part 312 for purposes of this illustration has a first surface 314 that is substantially flat and a second surface 313 that is angled on both ends and that has a flat top surface. The part 312 may, for example, be a panel for use in a transport structure where the surface 313 is intended to represent an exterior portion of the panel such as the external portion of a car door.
[0034] FIG. 3B shows part 320 that is 3-D printed on substrate 310 based on the data model of part 312. As can be seen, due to the finite minimal thickness of the layers being deposited, the 3-D printing process generates a stair-stepped effect 322 on the surface of part 320 that is intended to represent one of the angled surfaces 313 (FIG. 3A). As a result, the exterior surface of a part such as a body panel may have undesirable and unaesthetically pleasing jagged edges that must be smoothed out by some other process. Depending on the part being constructed and the specific implementation, the stair-stepped effect 322 that results may add further complications. For example, it may render the part non-compliant with specifications or applicable regulations, or non-functional for a particular purpose. [0035] FIG. 3C shows the part 320 after going through an additional manufacturing step. In particular, the stair-stepped effect 322 is reduced to form substantially flat surfaces 202 and 304 of part 320. One such manufacturing step may involve workers removing part 320 from the 3-D printer, depositing part 320 on a second substrate 330 and applying a hand spray forming technique to smooth the stair- stepped effect.
[0036] Conventional spray forming involves casting metal components with homogeneous microstructures via the inert gas atomisation of a liquid metal stream into droplets and the deposition of semi-solid sprayed droplets onto a shaped substrate. The substrate collects the droplets and solidifies them into a coherent preform. In one example of the process, an alloy is melted, normally in an induction furnace, then the molten metal is slowly poured through a conical tundish into a small-bore ceramic nozzle. The molten metal exits the furnace and is broken up into droplets by an atomizer. The droplets then proceed downwards to impact a substrate. The process is arranged such that the droplets strike the substrate while in the semi-solid condition. This process provides sufficient liquid fraction to 'stick' the solid fraction together. Deposition continues, gradually building up a spray formed part, such as a billet, of metal on the substrate. Spray forming may use a chamber in the shape of the part to be formed.
[0037] Spray forming may involve applying finishing procedures on metal structures as indicated above, or forming metal structures in a chamber. More specifically, metal parts may be spray formed in a temperature controlled chamber, which is typically in a shape that is consistent with that of the final part. In current metal spray forming processes, dedicated equipment is needed such as the chamber, nozzle, atomiser, etc. In addition, the metal parts are limited by the constraints of the chamber and can only be shaped to substantially adhere to the geometry of the chamber.
[0038] Accordingly, in one embodiment, a spray forming technique is incorporated as part of a 3-D printer. The 3-D printer includes a flexible, computer-controlled nozzle having six degrees of freedom that is capable of being manipulated in all three X-Y- Z directions and inclined at a variety of angles relative to the printer build plate. The 3-D printer incorporating the spray former may, depending on the embodiment, be used for both for finishing of surfaces of existing parts and for wholesale construction of parts. In other exemplary embodiments, the spray forming 3-D printer is not limited to spray forming of metals and may additionally or alternatively employ spray forming of plastics and other materials. Thus, the 3-D printer may incorporate a spray former that broadly includes one or more mechanical assemblies for converting a desired material into droplets and spray forming the material in a manner specified by the 3-D printing instructions and/or the CAM program associated with the 3-D printer.
[0039] FIG. 4 shows a conceptual diagram of a 3-D printer 400 employing spray forming.
The 3-D printer includes support arm 402, build plate 404, and substrate 406. In this embodiment, a tooling shell 408 is disposed on a surface of substrate 406. In one exemplary embodiment, the tooling shell 408 was previously machined or 3-D printed and was placed on the substrate 408 after its construction.
[0040] In another exemplary embodiment as described further below with reference to
FIGS. 5 and 6, the tooling shell 408 may be 3-D printed on 3-D printer 400. For example, 3-D printer 400 may include a conventional computer-controlled print extruder (not shown) which may 3-D print the mold using any of a variety of known methods (SLS, FDM, etc.). In another exemplary embodiment, the mold is spray formed using 3-D printer 400.
[0041] A robotic arm 414 under computer control of the 3-D printer may be used to spray form a part 410, such as a panel, on a surface of the tooling shell 408. In other exemplary embodiments, the spray forming is deposited directly on substrate 406 to spray form the part 410. The nozzle 416 of robotic arm 414 shoots droplets 412 of material onto the tooling shell 408 to thereby create the part 410 as described above.
[0042] As the part 410 is formed by the 3-D printer using spray forming, it will be
appreciated that the angled or inclined sections 418 and 420 of part 410 can be created without any appreciable stair-stepped effect. Accordingly, the use of spray forming as part of, and under computer control of, the 3-D printer enables a manufacturer to form a part 410 that requires no further finishing step. Accordingly, a smoothened part may be provided in a single step or on a single 3-D printer. [0043] In an exemplary embodiment, robotic arm 414 can be manipulated in a variety of directions and angles. For example, robotic arm 414 may be moved in one or more of the A, B or C directions (or directions at any point in between), which may correspond respectively to coordinate axes X, Y, Z of the 3-D printer. For example, in another exemplary embodiment, robotic arm 414 can be inclined at substantially any angle in order to perform spray forming at a variety of angles. In yet another embodiment, robotic arm 414 may be configured to rotate or twist as shown by the arrow and corresponding designation D. In an exemplary embodiment, the robotic arm 414 is equipped with six degrees of freedom. In one embodiment, the robotic arm 414 is designed to be thin relative to the generally bulky print extruder 502 and associated mechanical assembly. This gives the robotic arm 414 additional flexibility to move about the substrate.
[0044] Conventional 3-D printers that perform plastic extrusion generally have a limited ability to alter angles of the print extruder. Such conventional printers typically employ a pivot point for the print nozzle in lieu of a thin, flexible robotic arm. For this reason, the extruders on 3-D printers typically do not have the six degrees of freedom such that they can have significant flexibility in their degrees of movement. One reason for this limitation is that conventional print nozzles typically have thicker diameters and cannot be manipulated easily about different axes, in contrast to the sleek robotic arm 414, whose range of diameters may be made very thin due in part to the intrinsic nature of the spray forming technique and the small size of droplets required from the spray nozzle.
[0045] In addition, due to the thickness of the extruded material and other constraints, material extruded from conventional printers may be adversely affected by gravity when the extruder angle is changed, for example, to a slightly angled position to deposit material. That is, the print extruder in the conventional 3-D printer is often bulky, carries more inertia, and is limited in motion due to its pivot point connection to the remainder of the extrusion system, so that its flexibility to change angles and directions is accordingly limited. This phenomenon is similar in principal to attempting to write upside down with a ballpoint pen. 3-D printing using spray forming lacks this limitation. The spray forming technologies enables the 3-D printer to spray the light droplets on the substrate or part at essentially any angle, including in an upward direction, and the spray mechanic is not substantially adversely affected by gravity.
[0046] Because the robotic arm 414 and spray forming capability is incorporated as part of the 3-D printer, the arm 414 can be controlled and directed under computer control using instructions provided directly to the 3-D printer. In addition, in contrast to the conventional spray forming method wherein a chamber constrains the part formation to adhere to a single or a limited geometry, the 3-D printer as disclosed herein can spray form parts in three dimensions, with such parts having a variety of possible geometries and features under software control.
[0047] The mechanical assembly of the robotic arm 414 and printer may vary depending on the embodiment. Where spray forming of metals is performed, the assembly may incorporate a mechanism for heating the metal, an atomiser, and other elements. In another embodiment, robotic arm 414 of the 3-D printer may be configured to spray resins onto a mold or a substrate for forming or finishing parts. Generally, in considering the spray forming of different types of materials, molten materials should not be overly viscous to thereby render them too difficult for nozzle 416 to ej ect the droplets. Accordingly, in an exemplary embodiment, nozzle 416 of robotic arm 414 may include an assembly for adjusting the viscosity of the target material to be used in the spray forming process. In one embodiment, the assembly may be dynamically adjusted according to software as a function of the material to be used in the spray forming process. In addition, for plastics, a heating mechanism may be included in or proximate to nozzle 416 for facilitating flow of the material.
[0048] Where thermoset resins are used, the resin and the hardener are generally mixed in some ratio and then applied. Pre-mixing the resin and the hardener and then attempting to spray form the resulting viscous material gives rise to inherent difficulties. For example, pre-mixing the resin and hardener and spray forming the combined material may cause the material to cure within the nozzle, thereby clogging the nozzle.
[0049] Accordingly, in another exemplary embodiment, robotic arm 414 may include two nozzles 416 (only one shown), each which constitutes a separate spray forming head. A first such nozzle may spray the resin and the second nozzle may spray the hardener. This technique obviates the difficulties inherent in pre-mixing and spraying the combined resin and hardener.
[0050] The above-described 3-D printing techniques can be used either to smooth (finish) a part such as a panel using spray forming, or to create a part.
[0051] In spray forming plastics, the diameter of the nozzle 416 is generally very small, in some embodiments being on the order of approximately 50 μιτι. Because the diameter of nozzle 416 is small, the corresponding thickness of the material exiting nozzle 416 may be negligible, such that substantially no stair-stepped effect is observed when 3- D printing parts using the spray forming technique.
[0052] The robotic arm 414 is advantageous for incorporation into the 3-D printer 400 for use in spray forming because, among other reasons, such robotic assemblies may be controlled by a data model and related instructions as are used in 3-D printers.
[0053] Referring back to FIG. 4, in an example where the part 410 to be formed constitutes an exterior body panel of a vehicle, the material forming the panel can be sprayed over the 3-D printed tooling shell 408 (or the substrate 406 in other embodiments). In this manner, imperfections that arise due to surface properties of the 3-D printed tooling shell 408 are present only on the B side of the final panel where the part 410 meets the surface of tooling shell 408. In contrast, the A side (surface 418, 420 of part 410) of the panel may be made to be substantially flawlessly smooth, thereby satisfying Class A vehicular surface requirements.
[0054] In another exemplary embodiment, the 3-D printer as described above can be used to spray resin on metal or plastic 3-D printed tools to smoothen the surface of the tools.
[0055] In the embodiments involving spray forming of metals, various techniques and processes may be suitable for use in conjunction therewith including plasma deposition, physical vapor deposition, chemical vapor deposition, and the like.
[0056] Using the techniques described herein, smooth metal or plastic parts and panels having complex geometries can be spray formed from the ground up under software control of the printers. Layers can be sprayed from a build plate 404 or, alternatively, a first material can be used as a base 406 and a second material can be used for the spray forming process.
[0057] In another exemplary embodiment, a spray forming mechanism is integrated with a conventional 3-D print extruder to form a single 3-D printer. The 3-D printer according to this exemplary embodiment is capable of dual (or multiple) functions; namely, a conventional extruder (such as SLS, FDM, etc.) can be used to 3-D print a part and a spray former can be used either to form parts or to provide finishing for the part printed by the conventional print extruder.
FIG. 5 shows a diagram of a 3-D printer 500 integrating spray forming and FDM printing capability. While an FDM assembly is shown for purposes of illustration, it will be appreciated that any conventional 3-D printing technique may be integrated with the spray forming mechanism. The spray forming mechanism includes robotic arm 514, nozzle 516, and associated control mechanism (not shown) guided by printer software. As previously shown with reference to FIG. 4, robotic arm 514 of FIG. 5 may be under control of the 3-D printer instructions and can be manipulated at a variety of angles and directions, including in the A, B, C and D directions.
In the embodiment shown, part 508 is 3-D printed on build plate 504 (or an intervening substrate or foam base) using print extruder 502 and one or both of print materials 514 and 518. As discussed in connection with previous embodiments, the angled portions of part 508 are characterized by a stair-stepped effect, the scale of which is exaggerated here for clarity. After part 508 is 3-D printed via print extruder 502, nozzle 516 of robotic arm applies spray forming to finish the part and thereby reduce or eliminate the stair-stepped effect, such that part 508 will have smooth angled surfaces as noted previously with reference to FIGS. 5A and 5C. Depending on the embodiment, metals, plastics, or composites may be spray formed.
FIGS. 6A-B are is a flow diagram illustrating an exemplary method for 3-D printing using spray forming. Referring to FIG. 6A. at 610, a data model of the part to be printed is rendered. At 620, the data model is sliced into a plurality of layers to produce 3-D printing instructions. Depending on the application, these instructions may include instructions for conventional 3-D printing (such as SLS or FDM), spray forming, or both. At 630, the instructions are uploaded to the 3-D printer.
At 640, materials are provided to the 3-D printer 500 for use in 3-D printing the object. These materials may include one or more of plastics, metals, resins, and composites in their appropriate form for use in the specific 3-D printing technique employed. This step may also include providing materials for use in spray forming a part. In an exemplary embodiment, the materials are provided to different functional mechanisms within the 3-D printer. In other embodiments, the spray forming mechanism may draw its material from a common source as the conventional 3-D print head. It should be noted that step 640 need not occur in any particular order, and may occur prior to any of the steps 610-630 or later, as long as the material is made available at the actual time of printing the part.
[0062] Referring to FIG 6B. at 650, the 3-D printer 500 may determine, based on the instructions, whether the part to be produced will be formed via spray forming (as in the application of material via robotic arm 514 and nozzle 516 in FIG. 5) or via a conventional 3-D printing technique (as in the application of one or more materials 514, 518 via print extruder 502 in FIG. 5). If it is determined that the part will be spray formed, then at 660, the 3-D printer 500 will form the part on substrate 504 or on another base plate. Conversely, if it is determined that the part will be 3-D printed using the conventional print extruder 502, then at step 670 the 3-D printer 500 will proceed to deposit successive layers onto the substrate until part 508 is formed. It will be appreciated that the angled portions of part 508 may include the stair-stepped effect as previously described.
[0063] In an exemplary embodiment, after the part 508 is printed using the 3-D print extruder
502 (FIG. 5), then at 680, the 3-D printer 500 may spray form the surface of part 508, including the stair-stepped portions, to finish the part and thereby smoothen the angled portions of part 508. In this exemplary embodiment, the part 508 printed using conventional means constitutes an intermediate structure that is finished using the spray form portion of 3-D printer 500. In another exemplary embodiment and depending on the instructions provided to 3-D printer 500, the robotic arm 514 may contemporaneously provide finishing on portions of intermediate structure 508 while the print extruder 502 is depositing layers of material. In another exemplary embodiment, based on a different set of instructions, 3-D printer 500 may 3-D print the structure 508 in part using print extruder 502 and in part using spray forming via robotic arm 514 and nozzle 516.
[0064] While for purposes of clarity the robotic arm 514 is shown to be small in scale relative to build plate 504 and the part 508, in other embodiments robotic arm 514 may be constructed in any flexible manner. For example, robotic arm 514 may be longer, have a wider range, and have a more flexible geometry to enable it to spray form the part 508 from all angles, or a wide range of angles including an inverted angle relative to the floor. [0065] In another exemplary embodiment shown in the flow chart 700 of FIG. 7, the 3-D printer employs in situ monitoring of stair-stepped effects or other variations of a 3- D printed structure. During programming using the CAD models or another suitable software technique, nominal dimensions and tolerances of one or more layers constituting the structure may be defined (step 710). For example, a nominal dimension of a layer thickness (at an edge or otherwise) may be defined along with a corresponding tolerance of deviation from the nominal dimension. As an illustration, if a nominal thickness for a particular layer is one inch, a corresponding tolerance may be +/- 0.005 inches, or any suitable number. Other dimensions may be similarly defined. For example, a specified nominal dimension of an angle or contour of an inclined surface of the structure may be defined along with a corresponding tolerance for the angle or contour.
[0066] The 3-D printer prints an intermediate structure (step 720). The 3-D printer may scan the printed intermediate structure and thereby determine the actual physical dimension at issue, such as the thickness of the layers, the measurement of stair- stepped effects in an angled portion, etc. (step 730). In one exemplary embodiment, the scanning is performed after the 3-D printed intermediate structure is rendered. In another exemplary embodiment, the scanning is performed in real time while the intermediate structure is being printed. Having received the actual physical dimension(s) at issue, the 3-D printer and/or its control system or associated software application may compare the determined physical dimension(s) to the nominal dimension(s) and the respective tolerance(s) (step 740).
[0067] The 3-D printer may then provide feedback to the control system of the robotic arm, such as, for example, when the determined physical dimensions fall outside the tolerance of the identified nominal dimensions (step 750). Using this feedback, the 3-D printer may spray form the intermediate structure to provide material to bring the affected layers and/or structures within the specified tolerances (step 760). Thus, for example, the spray former may smooth out rough edges and/or add thickness to portions of the structure. Depending on the embodiment, the spray forming may be performed in real time during the 3-D printing of the intermediate structure (using an FDM, SLS or another technique). Alternatively, the spray forming may be performed after the intermediate structure is complete. The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to 3-D printing techniques using spray forming. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase "means for" or, in the case of a method claim, the element is recited using the phrase "step for."

Claims

WHAT IS CLAIMED IS:
1. A method of three dimensional (3-D) printing a structure, comprising:
receiving instructions for printing the structure, the instructions based on a data model of the structure;
receiving material; and
printing the structure based on the instructions, the printing comprising spray forming the material to produce the structure.
2. The method of claim 1 , wherein the spray forming comprises spraying one or more layers of the material to produce the structure.
3. The method of claim 1 , wherein the spray forming comprises directing, responsive to the instructions, a moveable arm comprising a nozzle to spray the material to produce the structure.
4. The method of claim 1, wherein the structure comprises a panel suitable for use in a transport structure.
5. The method of claim 1, wherein the material comprises one or more of resin, metal, plastic, or carbon fiber.
6. The method of claim 1, wherein the structure comprises a tooling shell suitable for molding a panel for use in a transport structure.
7. The method of claim 1, wherein the spray forming comprises spraying the material onto a surface of a mold to produce the structure comprising a panel suitable for use in a transport structure.
8. The method of claim 1, wherein the spray forming comprises spraying a resin and a hardener.
9. The method of claim 9, wherein the spray forming further comprises directing the resin into a first nozzle coupled to the moveable arm for spraying the resin and directing the hardener into a second nozzle coupled to the moveable arm for spraying the hardener.
10. A method of three-dimensional (3-D) printing a structure, comprising:
receiving instructions for printing the structure, the instructions based on a data model of the structure;
receiving material;
printing the structure based on the instructions using the material, the printing comprising:
forming successive layers of the material to produce an intermediate structure having a stair-stepped surface portion; and
spray forming the material onto the stair-stepped surface portion to produce the structure from the intermediate structure by smoothing the stair-stepped surface portion.
1 1. The method of claim 10, wherein the spray forming comprises directing, responsive to the instructions, a movable arm comprising a nozzle to spray form the material at a plurality of different angles to smoothen the stair-stepped portion.
12. The method of claim 10, wherein the material comprises one or more of resin, metal, plastic, or a composite material.
13. The method of claim 10, wherein the material comprises a panel suitable for use in a transport structure.
14. The method of claim 10, further comprising receiving a second material, and wherein the spray forming further comprises spray forming the second material onto the stair-stepped surface portion.
15. The method of claim 10, wherein the structure comprises a tooling shell suitable for molding a panel for use in a transport structure.
16. A method of three-dimensional (3-D) printing a structure, comprising:
receiving instructions for printing the structure;
receiving a nominal dimension and a corresponding tolerance for one or more layers of the structure;
printing the structure based on the instructions, the printing comprising:
forming successive layers of the material to produce an intermediate structure; scanning the intermediate structure to determine a physical dimension of the one or more layers; and
spray forming selected portions of the intermediate structure to produce the structure such that the physical dimension falls within the received tolerance of the nominal dimension.
17. The method of claim 16, wherein the nominal dimension comprises a thickness of the one or more layers.
18. The method of claim 16, wherein the nominal dimension comprises an angle or contour of an inclined surface of the structure.
PCT/US2018/017364 2017-03-01 2018-02-08 3-d printing using spray forming WO2018160337A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18761166.0A EP3589477B1 (en) 2017-03-01 2018-02-08 3-d printing using spray forming
CN201880014516.8A CN110366485B (en) 2017-03-01 2018-02-08 3D printing with spray forming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/446,932 US20180250889A1 (en) 2017-03-01 2017-03-01 3-d printing using spray forming
US15/446,932 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018160337A1 true WO2018160337A1 (en) 2018-09-07

Family

ID=63357581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/017364 WO2018160337A1 (en) 2017-03-01 2018-02-08 3-d printing using spray forming

Country Status (4)

Country Link
US (1) US20180250889A1 (en)
EP (1) EP3589477B1 (en)
CN (1) CN110366485B (en)
WO (1) WO2018160337A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759090B2 (en) * 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US10691104B2 (en) * 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US20210316499A1 (en) * 2018-09-07 2021-10-14 Magna Exteriors Inc. Apparatus and method for 3d printing with smooth surface
SG11202107982WA (en) * 2019-02-11 2021-08-30 Univ Nanyang Tech Method of fabricating an interfacial structure and a fabricated interfacial structure
DE102019111113A1 (en) * 2019-04-30 2020-11-05 Rolls-Royce Deutschland Ltd & Co Kg Process for the production of a component with a steel material system, component producible with the process and a gas turbine engine with one component
US20230241683A1 (en) * 2019-10-24 2023-08-03 Postprocess Technologies, Inc. Finishing Of Additively Manufactured Parts With Smoothing And Color
KR102207315B1 (en) * 2020-06-16 2021-01-25 주식회사 바이오프렌즈 Nozzle device for fdm type 3d printer
US20210387401A1 (en) * 2020-06-16 2021-12-16 Orion Additive Manufacturing GmbH Methods and Systems for Additive Manufacturing
JP2023031602A (en) * 2021-08-25 2023-03-09 セイコーエプソン株式会社 Three-dimensional object printing method and robot teaching method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173838A1 (en) * 2002-04-17 2005-08-11 Stratasys, Inc. Smoothing method for layered deposition modeling
WO2005097476A2 (en) * 2004-04-02 2005-10-20 Z Corporation Methods and apparatus for 3d printing
US20080169585A1 (en) * 2007-01-12 2008-07-17 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
US20090271323A1 (en) * 2005-10-13 2009-10-29 Stratasys, Inc. Transactional Method for Building Three-Dimensional Objects
US20130295338A1 (en) * 2012-04-03 2013-11-07 Massachusetts Institute Of Technology Methods and Apparatus for Computer-Assisted Spray Foam Fabrication
WO2015123732A1 (en) 2014-02-21 2015-08-27 Laing O'rourke Australia Pty Limited Method for fabricating a composite construction element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510066A (en) * 1992-08-14 1996-04-23 Guild Associates, Inc. Method for free-formation of a free-standing, three-dimensional body
US6084980A (en) * 1997-05-13 2000-07-04 3D Systems, Inc. Method of and apparatus for deriving data intermediate to cross-sectional data descriptive of a three-dimensional object
SG106041A1 (en) * 2000-03-21 2004-09-30 Nanyang Polytechnic Plastic components with improved surface appearance and method of making the same
GB0127252D0 (en) * 2001-11-13 2002-01-02 Vantico Ag Production of composite articles composed of thin layers
US10029415B2 (en) * 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
JP2014233922A (en) * 2013-06-03 2014-12-15 株式会社ミマキエンジニアリング Method of manufacturing laminate
US10029416B2 (en) * 2014-01-28 2018-07-24 Palo Alto Research Center Incorporated Polymer spray deposition methods and systems
US9937666B2 (en) * 2014-06-04 2018-04-10 Empire Technology Development Llc Systems and methods for forming three dimensional objects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173838A1 (en) * 2002-04-17 2005-08-11 Stratasys, Inc. Smoothing method for layered deposition modeling
WO2005097476A2 (en) * 2004-04-02 2005-10-20 Z Corporation Methods and apparatus for 3d printing
US20090271323A1 (en) * 2005-10-13 2009-10-29 Stratasys, Inc. Transactional Method for Building Three-Dimensional Objects
US20080169585A1 (en) * 2007-01-12 2008-07-17 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
US20130295338A1 (en) * 2012-04-03 2013-11-07 Massachusetts Institute Of Technology Methods and Apparatus for Computer-Assisted Spray Foam Fabrication
WO2015123732A1 (en) 2014-02-21 2015-08-27 Laing O'rourke Australia Pty Limited Method for fabricating a composite construction element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3589477A4

Also Published As

Publication number Publication date
US20180250889A1 (en) 2018-09-06
EP3589477A1 (en) 2020-01-08
CN110366485B (en) 2022-03-04
EP3589477B1 (en) 2023-06-28
EP3589477A4 (en) 2020-11-25
CN110366485A (en) 2019-10-22

Similar Documents

Publication Publication Date Title
EP3589477B1 (en) 3-d printing using spray forming
US10137636B2 (en) Three-dimensional modelling and/or manufacturing apparatus, and related processes
CN113038995B (en) Cold spray nozzle
EP3083200B1 (en) A machine for grinding a work-piece customized by additive manufacturing
JP3472779B2 (en) Variable welding laminated rapid molding method and rapid molding apparatus
US6405095B1 (en) Rapid prototyping and tooling system
Dudek et al. Rapid prototyping: Technologies, materials and advances
US10807273B2 (en) High temperature additive manufacturing print head
US10691104B2 (en) Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11269311B2 (en) Spray forming structural joints
Fateri et al. Introduction to additive manufacturing
US11097488B2 (en) Printer having print assembly
Weiss Processes overview
Frazelle Out-of-this-World Additive Manufacturing: From thingamabobs to rockets, 3D printing takes many forms.
Hejtmanek Additive Manufacturing Technologies Utilization in Process Engineering
Wang et al. 3D printing technology and the adaptability of printing material
Kundu et al. Additive manufacturing process (3D printing):“A critical review of techniques, applications & future scope.”
Hejtmánek Aditivní výrobní technologie a jejich využití v procesní technice
Orchard Making the Impossible: An Overview of Additive Manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761166

Country of ref document: EP

Effective date: 20191001