WO2018159704A1 - 荷重検知センサ - Google Patents

荷重検知センサ Download PDF

Info

Publication number
WO2018159704A1
WO2018159704A1 PCT/JP2018/007590 JP2018007590W WO2018159704A1 WO 2018159704 A1 WO2018159704 A1 WO 2018159704A1 JP 2018007590 W JP2018007590 W JP 2018007590W WO 2018159704 A1 WO2018159704 A1 WO 2018159704A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
spacer
sheet
detection sensor
annular member
Prior art date
Application number
PCT/JP2018/007590
Other languages
English (en)
French (fr)
Inventor
貴 亀島
哲也 川平
絵里子 林
滋 中崎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP18761352.6A priority Critical patent/EP3591682A4/en
Priority to CN201880013708.7A priority patent/CN110326076B/zh
Priority to JP2019503079A priority patent/JP6707710B2/ja
Publication of WO2018159704A1 publication Critical patent/WO2018159704A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • H01H3/14Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch adapted for operation by a part of the human body other than the hand, e.g. by foot
    • H01H3/141Cushion or mat switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2213/00Venting
    • H01H2213/002Venting with external pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2213/00Venting
    • H01H2213/016Venting in adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/024Spacer elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2229/00Manufacturing
    • H01H2229/024Packing between substrate and membrane
    • H01H2229/028Adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • H01H9/04Dustproof, splashproof, drip-proof, waterproof, or flameproof casings
    • H01H9/047Dustproof, splashproof, drip-proof, waterproof, or flameproof casings provided with venting means

Definitions

  • the present invention relates to a load detection sensor, which is suitable for detecting a load caused by sitting or the like.
  • an alarm system that warns that a seat belt is not worn when riding is put into practical use.
  • a warning is issued when the seat belt is not detected while a person is seated.
  • a load detection sensor that detects a load caused by the seating may be used.
  • Patent Document 1 As a load detection sensor, a configuration having a pair of resin films and a pair of electrodes provided on each film and facing each other with a predetermined interval is disclosed in Patent Document 1 below. A pair of films of the load detection sensor described in the following Patent Document 1 are bonded together with an adhesive disposed other than between the electrodes facing each other.
  • the pressure-sensitive adhesive generally tends to soften with an increase in temperature. Therefore, when the load detection sensor described in Patent Document 1 is placed in an environment where the temperature is high, such as in an automobile under a hot sun, the load necessary for the electrodes provided on each film to come in contact decreases. There is concern. On the other hand, when the load detection sensor described in Patent Document 1 is placed in an environment where the temperature is as low as about ⁇ 40 ° C., the load necessary for the electrodes provided on each film to come into contact with each other due to the hardened adhesive. There is concern about the increase.
  • the pressure-sensitive adhesive may undergo creep deformation when pressed for a long time.
  • the adhesive is creep-deformed, the distance between the resin films changes, and there is a concern that the load required for the electrodes provided on the films to contact each other changes.
  • an object of the present invention is to provide a load detection sensor capable of appropriately detecting a load.
  • a load detection sensor includes a first electrode sheet having a first electrode, a second electrode sheet having a second electrode facing the first electrode, and the first electrode sheet.
  • a spacer interposed between the second electrode sheet and having an opening between the first electrode and the second electrode; an annular member disposed in the opening; the spacer and the first electrode sheet; And an adhesive layer disposed on at least one of the spacer and the second electrode sheet, and the annular member is exposed to the opening and the first electrode sheet. It is in contact with at least one of the second electrode sheets and is not adhered to both the first electrode sheet and the second electrode sheet.
  • the 1st electrode sheet exposed to the opening of a spacer and the 2nd electrode sheet exposed to the opening of a spacer are supported by the annular member arrange
  • This annular member is not adhered to both the first electrode sheet exposed at the opening of the spacer and the second electrode sheet exposed at the opening of the spacer.
  • annular member is adhere
  • the adhesive layer at the edge portion of the opening of the spacer changes according to the temperature environment, and the first electrode sheet and the second electrode sheet are bent so as to enter the opening of the spacer.
  • the bending method changes.
  • the load required for the first electrode and the second electrode to contact with each other changes due to the change in the bending method.
  • the annular member disposed in the opening of the spacer is not bonded to both the first electrode sheet and the second electrode sheet, the temperature environment changes due to the adhesive layer at the edge portion of the opening of the annular member. Does not occur.
  • At least one of the 1st electrode sheet and the 2nd electrode sheet is pressed, and the bending method bent so that it may enter the inside of the annular member in the opening of a spacer does not change substantially. Therefore, compared with the case where an annular member is adhered to at least one of the first electrode sheet and the second electrode sheet with an adhesive layer, a change in load necessary for the first electrode and the second electrode to contact each other is suppressed. it can. Further, the presence of the annular member makes it difficult for a load to be applied to the adhesive layer, and the adhesive layer is difficult to creep.
  • the first The distance between the electrode sheet and the second electrode sheet can be kept substantially constant by the annular member. As a result, a change in load necessary for the first electrode and the second electrode to come into contact with the creep deformation is reduced. Thus, a load detection sensor that can appropriately detect the load is realized.
  • the annular member is preferably in contact with both the first electrode sheet and the second electrode sheet.
  • the first electrode sheet and the second electrode sheet are The annular member can be supported more stably. Therefore, it is possible to further reduce the change in load necessary for the first electrode and the second electrode to contact each other.
  • the adhesive layer disposed between at least one of the spacer and the first electrode sheet and between the spacer and the second electrode sheet softens and flows toward the opening side.
  • the said adhesive layer can be stored in the clearance gap between an annular member and a spacer. Therefore, it is avoided that the softened adhesive layer flows between the annular member and the first electrode sheet or the second electrode sheet. As a result, it is possible to further reduce the change in load necessary for the first electrode and the second electrode to contact each other.
  • annular member and the spacer are made of the same material.
  • the annular member has a vent for venting air in the opening of the spacer.
  • the first electrode sheet or the second electrode sheet is bent so as to enter the inside of the annular member in the opening of the spacer, and when the first electrode and the second electrode are in contact with each other, the opening of the spacer Air is exhausted from the vent. Therefore, it is avoided that the bending of the second electrode sheet is suppressed by the air in the opening of the spacer, and the load detection sensor can be prevented from being erroneously detected.
  • the spacer has a slit connected to the opening, and at least one of the first electrode sheet and the second electrode sheet has an air vent and is disposed in the slit, It is preferable to provide a communication member that communicates the vent and the air vent.
  • the first electrode sheet or the second electrode sheet is bent so as to enter the inside of the annular member in the opening of the spacer, and when the first electrode and the second electrode are in contact with each other, the opening of the spacer Air is discharged from the air vent through the communication member to the outside of the load detection sensor. Therefore, it is avoided that the bending of the first electrode sheet or the second electrode sheet is suppressed by the air in the opening of the spacer, and the load detection sensor can be prevented from being erroneously detected.
  • the spacer has a slit connected to the opening, and at least one of the first electrode sheet and the second electrode sheet has a pair of wirings spaced apart from each other and an air vent.
  • the end portions of the pair of wirings are located inside the annular member, are arranged in the slit, and serve as a communication path that connects the inside of the annular member and the air vent in the opening of the spacer. It is preferable to provide a communication path forming member that forms a gap between the pair of wires.
  • the annular member, the first electrode, and the second electrode overlap when the sheet surface of the first electrode sheet is viewed in plan.
  • annular member is interposed between the first electrode and the second electrode.
  • the distance between the first electrode and the second electrode is held substantially constant by the annular member. Therefore, the variation in the distance between the first electrode and the second electrode in the plurality of load detection sensors can be reduced by the annular member, and the first electrode and the second electrode are in contact between the load detection sensors. The variation in load necessary for the reduction is reduced.
  • the total thickness of the spacer and the thickness of the adhesive layer is preferably approximately the same as the total height of the annular member, the thickness of the first electrode, and the thickness of the second electrode.
  • the annular member is prevented from moving within the opening of the spacer. Moreover, it can suppress that a stress arises in the direction which peels off the spacer adhere
  • the annular member, the first electrode, and the second electrode do not overlap when the sheet surface of the first electrode sheet is viewed in plan.
  • the sum of the thickness of the spacer and the thickness of the adhesive layer is approximately the same as the height of the annular member.
  • the annular member is prevented from moving within the opening of the spacer. Moreover, it can suppress that a stress arises in the direction which peels off the spacer adhere
  • FIG. 1 is an exploded view showing a configuration of a load detection sensor according to a first embodiment, and FIG.
  • the load detection sensor 5 ⁇ / b> A includes a first electrode sheet 6, a second electrode sheet 7, a spacer 8, an annular member 9, and an adhesive layer 10 as main components. Note that the adhesive layer 10 is omitted in FIG. 1 for convenience.
  • the first electrode sheet 6 has a first insulating sheet 61 and a first electrode 62.
  • the first insulating sheet 61 is a resin insulating sheet having flexibility. Examples of the material of the first insulating sheet 61 include resins such as polyethylene terephthalate (PET), polyimide (PI), and polyethylene naphthalate (PEN).
  • the first electrode 62 is one switch element constituting the switch SW (FIG. 2) of the load detection sensor 5A, and is, for example, a substantially circular metal printing layer.
  • the first electrode 62 is disposed on one surface of the first insulating sheet 61 and is electrically connected to one of the pair of terminals via the first wiring 63.
  • the second electrode sheet 7 has a second insulating sheet 71 and a second electrode 72.
  • the 2nd insulating sheet 71 is arrange
  • the pressing part PP presses the switch SW (FIG. 2) of the load detection sensor 5A, and is fixed to another member different from the load detection sensor 5A, for example.
  • the tip of the pressing portion PP has a planar shape, but may have a convex curved shape.
  • tip of the press part PP is made non-contact with the 2nd insulating sheet 71 of the 2nd electrode sheet 7, you may contact.
  • the material of the second insulating sheet 71 a resin such as PET, PI, or PEN can be used as in the first insulating sheet 61.
  • the material of the second insulating sheet 71 and the material of the first insulating sheet 61 may be the same or different.
  • the second electrode 72 is the other switch element constituting the switch SW (FIG. 2) of the load detection sensor 5A, and is, for example, a substantially circular metal printing layer.
  • the second electrode 72 is disposed on one surface of the second insulating sheet 71 and is electrically connected to the other of the pair of terminals via the second wiring 73.
  • size of the 2nd electrode 72 is made into the same magnitude
  • the spacer 8 is interposed between the first electrode sheet 6 and the second electrode sheet 7, and is a flexible resin insulating sheet.
  • a resin such as PET, PI, or PEN can be used as the material of the spacer 8 as in the first insulating sheet 61 and the second insulating sheet 71.
  • the material of the spacer 8 and the material of the first insulating sheet 61 or the second insulating sheet 71 may be the same or different.
  • the spacer 8 has an opening 81 penetrating from one surface side of the spacer 8 to the other surface side.
  • the peripheral shape of the opening 81 is, for example, a substantially circular shape, and the opening 81 is formed so that its diameter is larger than the diameters of the first electrode 62 and the second electrode 72.
  • the spacer 8 has a slit 82 that communicates the space in the opening 81 and the space outside the load detection sensor 5A.
  • the slit 82 becomes an air vent when the spacer 8 is overlapped with the first electrode sheet 6 and the second electrode sheet 7.
  • the air vent is a passage for extracting the air in the opening 81 to the outside of the load detection sensor 5A.
  • the annular member 9 is an annular member disposed in the opening 81 of the spacer 8.
  • the outer diameter of the annular member 9 is smaller than the diameter of the opening 81 of the spacer 8, and the inner diameter of the annular member 9 is larger than the diameters of the first electrode 62 and the second electrode 72.
  • the height of the annular member 9 is such that the thickness of the adhesive layer 10 between the first insulating sheet 61 and the spacer 8, the thickness of the adhesive layer 10 between the second insulating sheet 71 and the spacer 8, and the thickness of the spacer 8. It is about the same as the total.
  • the annular member 9 does not overlap the first electrode 62 and the second electrode 72 when the sheet surface of the first electrode sheet 6 is viewed in plan.
  • the material of the annular member 9 examples include, for example, a resin such as PET, PI, or PEN, similarly to the first insulating sheet 61, the second insulating sheet 71, and the spacer 8.
  • the material of the annular member 9 and the material of the spacer 8, the first insulating sheet 61, or the second insulating sheet 71 may be the same or different.
  • the spacer 8 and the annular member 9 are made of the same material.
  • the annular member 9 has a vent 91 for venting air inside the annular member 9 in the opening 81 of the spacer 8, that is, in the opening of the annular member 9.
  • the vent 91 is a slit that is cut from one end to the other end of the annular member 9 in the height direction, but is a through hole that penetrates from the outer peripheral surface to the inner peripheral surface of the annular member. There may be.
  • a part of the annular member 9 in the circumferential direction is interrupted by the vent 91.
  • the length of the interrupted portion along the circumferential direction of the annular member 9 is preferably 1/5 or less of the entire length of the annular member 9 including the interrupted portion.
  • the annular member 9 includes a case where the annular member 9 is interrupted at one place or intermittently as long as it extends in the shape of a ring.
  • the annular member 9 is unevenly arranged due to vibration or the like and the load changes.
  • the number of discontinuous portions is one or less.
  • the adhesive layer 10 is disposed both between the first insulating sheet 61 of the first electrode sheet 6 and the spacer 8 and between the second insulating sheet 71 of the second electrode sheet 7 and the spacer 8.
  • the adhesive layer 10 is not particularly limited as long as the first insulating sheet 61, the second insulating sheet 71, and the spacer 8 are bonded together. Examples thereof include a pressure-sensitive adhesive, an adhesive, and a double-sided tape configured by providing a pressure-sensitive adhesive or an adhesive on both surfaces of a base material such as PET or nonwoven fabric.
  • Examples of the material of the adhesive layer 10 include a thermoplastic resin, a thermosetting resin, and a photo-curing resin.
  • Such an adhesive layer 10 may be disposed over the entire surface between the first insulating sheet 61, the second insulating sheet 71, and the spacer 8, and the first insulating sheet 61, the second insulating sheet 71, and the spacer 8 may be disposed. It may be scattered and arranged in a plurality of parts between. Further, the elastic modulus of the annular member 9 is preferably larger than the elastic modulus of the adhesive layer 10.
  • the load detection sensor 5A is configured by combining the above components. That is, in a state where the annular member 9 is disposed in the opening 81 of the spacer 8, the first electrode sheet 6 is adhered to the one surface side of the spacer 8 with the adhesive layer 10, and the second surface side of the spacer 8 is second.
  • the load detection sensor 5 ⁇ / b> A is configured by bonding the electrode sheet 7 with the adhesive layer 10.
  • the annular member 9 has a first insulating sheet 61 exposed on one opening surface side of the opening 81 of the spacer 8 and a first insulating sheet 61 exposed on the other opening surface side of the opening 81. 2 is in contact with both insulating sheets 71. Specifically, one end of the annular member 9 is in contact with the inner peripheral portion exposed from the opening 81 in the first insulating sheet 61, and the other end of the annular member 9 is from the opening 81 in the second insulating sheet 71. Touch the exposed inner periphery.
  • the annular member 9 can support the inner peripheral portion exposed from the opening 81 of the first insulating sheet 61 and the inner peripheral portion exposed from the opening 81 of the second insulating sheet 71.
  • the annular member 9 includes a first insulating sheet 61 exposed on one opening surface side of the opening 81 of the spacer 8, and a second insulating sheet 71 exposed on the other opening surface side of the opening 81. Both are non-adhesive.
  • the outer peripheral surface of the annular member 9 is arranged in a state of being separated from the spacer 8, and the vent 91 of the annular member 9 is connected to the outside of the load detection sensor 5 ⁇ / b> A through the slit 82 of the spacer 8. Communicate. Note that only a part of the outer peripheral surface of the annular member 9 may be in contact with the spacer 8. That is, the outer peripheral surface of the annular member 9 only needs to be separated from at least a part of the spacer 8.
  • the first electrode 62 is located inside one open end of the annular member 9, and the second electrode 72 is located inside the other open end of the annular member 9.
  • the first electrode 62 and the second electrode 72 are opposed to each other through the inside of the annular member 9 to constitute the switch SW.
  • FIG. 3 is a diagram showing an ON state of the load detection sensor 5A.
  • the pressing portion PP receives a load and moves downward to contact the surface of the second insulating sheet 71 of the second electrode sheet 7 on the side opposite to the surface on the spacer 8 side, and the second insulating sheet 71. Press.
  • the second insulating sheet 71 is bent so as to enter the inside of the annular member 9 by the pressing of the pressing portion PP, so that the second electrode 72 contacts the first electrode 62 and the switch SW of the load detection sensor 5A is in the ON state. It becomes.
  • a load is detected by a vehicle control unit (not shown) that is electrically connected to the second electrode 72 and the first electrode 62.
  • the air inside the annular member 9 is discharged to the outside of the annular member 9 through the vent 91 of the annular member 9, and the air inside the opening 81 of the spacer 8 is slit 82. It is discharged through. Therefore, it is avoided that the bending of the first insulating sheet 61 and the second insulating sheet 71 is suppressed by the air inside the annular member 9 and the opening 81 of the spacer 8, and the switch SW of the load detection sensor 5A is appropriately set. Turns on.
  • the load detection sensor 5A of the present embodiment includes the first electrode sheet 6 having the first electrode 62, the second electrode sheet 7 having the second electrode 72 facing the first electrode 62, and the first electrode.
  • a spacer 8 is provided between the sheet 6 and the second electrode sheet 7 and has an opening 81 between the first electrode 62 and the second electrode 72.
  • the load detection sensor 5 ⁇ / b> A is disposed between the annular member 9 disposed in the opening 81 of the spacer 8, between the spacer 8 and the first electrode sheet 6, and between the spacer 8 and the second electrode sheet 7.
  • an adhesive layer 10 is disposed between the annular member 9 disposed in the opening 81 of the spacer 8, between the spacer 8 and the first electrode sheet 6, and between the spacer 8 and the second electrode sheet 7.
  • the adhesive layer 10 tends to be softened under a high temperature environment and hardened under a low temperature environment. Therefore, when there is no annular member 9, the first electrode sheet 6 bends so that the adhesive layer 10 at the edge portion of the opening 81 of the spacer 8 changes according to the temperature environment and enters the opening 81 of the spacer 8. And the bending method of the 2nd electrode sheet 7 changes. The load necessary for the first electrode 62 and the second electrode 72 to be in contact with each other is changed by the change in the bending method. On the other hand, in this embodiment, since the annular member 9 disposed in the opening 81 of the spacer 8 is not bonded, the temperature environment due to the adhesive layer 10 does not change at the edge portion of the opening of the annular member 9. .
  • the bending method which bends so that the 2nd electrode sheet 7 may be pressed and may enter the inner side of the annular member 9 does not change substantially. Therefore, it is necessary for the first electrode 62 and the second electrode 72 to contact each other as compared with the case where the annular member 9 is adhered to at least one of the first electrode sheet 6 and the second electrode sheet 7 with an adhesive layer. The change in load can be suppressed.
  • the presence of the annular member 9 makes it difficult for a load to be applied to the adhesive layer 10, making it difficult for the adhesive layer 10 to undergo creep deformation, and if the load detection sensor 5 ⁇ / b> A is pressed for a long time, the adhesive layer 10 undergoes creep deformation. Even so, the distance between the first electrode sheet 6 and the second electrode sheet 7 is held substantially constant by the annular member 9. As a result, it is possible to reduce the change in the load necessary for the first electrode 62 and the second electrode 72 to come into contact with each other due to creep deformation.
  • the load detection sensor 5A capable of appropriately detecting the load is realized.
  • annular member 9 of this embodiment is in contact with both the first electrode sheet 6 exposed at the opening 81 of the spacer 8 and the second electrode sheet 7 exposed at the opening 81 of the spacer 8.
  • the first electrode sheet 6 and The annular member 9 can support the second electrode sheet 7 more stably. Accordingly, it is possible to further reduce the change in load necessary for the first electrode 62 and the second electrode 72 to contact each other.
  • the outer peripheral surface of the annular member 9 of the present embodiment is separated from the spacer 8. For this reason, the adhesive layer 10 between the spacer 8 and the first electrode sheet 6 and the adhesive layer 10 between the spacer 8 and the second electrode sheet 7 are softened by the presence of the load detection sensor 5A in a high temperature environment. Even if it flows into the opening 81, it can be accommodated in the gap between the annular member 9 and the spacer 8. Therefore, it is possible to avoid the softened adhesive layer 10 from flowing between the annular member 9 and the first electrode sheet 6 or the second electrode sheet 7. As a result, it is possible to further reduce the change in load necessary for the first electrode 62 and the second electrode 72 to contact each other.
  • the annular member 9 of the present embodiment has a vent 91 for extracting air inside the annular member 9 in the opening 81 of the spacer 8. Therefore, the second electrode sheet 7 is bent so as to enter the inside of the annular member 9, and when the first electrode 62 and the second electrode 72 are in contact with each other, the air inside the annular member 9 is discharged from the vent 91. Is done. Therefore, it is avoided that the bending of the 2nd electrode sheet 7 is suppressed by the air inside the annular member 9, and it can suppress that a load detection sensor detects erroneously.
  • the annular member 9 does not overlap the first electrode 62 and the second electrode 72 when the sheet surface of the first electrode sheet 6 is viewed in plan. In this way, it is possible to make it difficult to damage the first electrode 62 and the second electrode 72 as compared with the case where the annular member 9 overlaps the first electrode 62 and the second electrode 72.
  • the height of the annular member 9 is such that the thickness of the adhesive layer 10 between the first insulating sheet 61 and the spacer 8, the thickness of the adhesive layer 10 between the second insulating sheet 71 and the spacer 8, and the thickness of the spacer 8. It is about the same as the total.
  • FIG. 4 is an exploded view showing the configuration of the load detection sensor unit of the second embodiment
  • FIG. 5 is a cross-sectional view showing a state in which the load detection sensor unit is attached to the S spring of the seat device.
  • the load detection sensor 5B is not shown in cross section.
  • the load detection sensor unit 100 includes a support plate 2, an upper case 4, and a load detection sensor 5 ⁇ / b> B as main components.
  • the support plate 2 has a placement portion 21 on which the load detection sensor 5B is placed, and a pair of hook portions 22 connected to the placement portion 21.
  • the mounting portion 21 includes a wide main block mounting portion 21m and a tail block mounting portion 21t extending from the main block mounting portion 21m and having a narrower width than the main block mounting portion 21m.
  • the hook portion 22 is connected to the main block placement portion 21m.
  • the mounting part 21 and a pair of hook part 22 are integrally shape
  • board thickness of the support plate 2 shall be 0.8 mm, for example.
  • the main block 50m of the load detection sensor 5B is disposed on the surface of the main block placement portion 21m facing the seat cushion SC. Further, as shown in FIG. 4, a plurality of circular through holes 20H penetrating the support plate 2 are formed in the main block mounting portion 21m, and a plurality of generally rectangular case stopping openings 24 are formed. Yes.
  • the main block mounting portion 21m is provided between two S springs BN facing each other among a plurality of S springs BN stretched side by side in the opening of the seat frame in the vehicle seat device.
  • the size is such that it can be placed.
  • the S spring BN is a spring meandering in an S shape.
  • the tail block mounting portion 21t has a substantially rectangular shape, and extends in a direction substantially perpendicular to the direction connecting the pair of hook portions 22 when the main block mounting portion 21m is viewed in plan.
  • a tail block 50t of the load detection sensor 5B is disposed on the surface of the tail block placement portion 21t facing the seat cushion SC.
  • the width in the direction perpendicular to the extending direction of the tail block mounting portion 21t is smaller than the width of the tail block 50t of the load detection sensor 5B, and the extending direction of the tail block mounting portion 21t. Is made smaller than the length of the tail block 50t of the load detection sensor 5B.
  • the upper case 4 is a member that covers the main block 50m placed on the main block placement portion 21m of the placement portion 21 and protects the switch SW and the like of the main block 50m. Further, as shown in FIG. 5, the upper case 4 is also a pressing member that presses the switch SW of the load detection sensor 5 ⁇ / b> B by being pressed by the seat cushion SC.
  • the upper case 4 has a top wall 45 and a frame wall 48.
  • the top wall 45 is a plate-like member that is generally rectangular.
  • the frame wall 48 of the upper case 4 is divided into a plurality of parts and connected to the top wall 45 along the outer periphery of the top wall 45.
  • a hook piece 47 is connected to the top wall 45 between each of the frame walls 48 divided into a plurality.
  • Each hook piece 47 is configured to be fitted into the case stop opening 24 in the main block mounting portion 21 m of the support plate 2. By fitting each hook piece 47 into the case stopping opening 24, relative movement of the support plate 2 and the upper case 4 in the mounting surface direction of the main block mounting portion 21m is restricted.
  • the top wall 45 of the upper case 4 is provided with a pressing portion 46 that protrudes from the bottom surface facing the mounting portion 21 of the support plate 2.
  • the front end of the pressing portion 46 has a planar shape.
  • the tip of the pressing part 46 may be a convex curved surface. In the case of this embodiment, in the state where the upper case 4 covers the load detection sensor 5B placed on the placement portion 21 and the hook pieces 47 corresponding to the respective case stop openings 24 are fitted, the tip of the pressing portion 46 is Although it is in contact with the load detection sensor 5B, it may not be in contact.
  • the upper surface 45S of the top wall 45 of the upper case 4 is separated from the lower surface of the seat cushion SC when the load detection sensor unit 100 is attached to the pair of S springs BN. You may do it.
  • the upper surface 45S has a planar shape.
  • the upper surface 45S is a pressure receiving surface that receives pressure from the seat cushion SC, and the area of the upper surface 45S is larger than the area of the portion of the pressing portion 46 that contacts the switch SW of the load detection sensor 5B.
  • the upper case 4 is formed of a material harder than the seat cushion SC. Therefore, the pressing part 46 which is a part of the upper case 4 is also formed of a material harder than the seat cushion SC. Since the seat cushion SC is generally made of foamed urethane resin, the material of the upper case 4 is polycarbonate (PC), polybutylene terephthalate (PBT), polyamide (PA), phenol resin, epoxy resin, etc. These resins are mentioned.
  • the load detection sensor 5B has a substantially rectangular main block 50m and a tail block 50t connected to the main block 50m and narrower than the main block 50m.
  • the main block 50m is provided with a switch SW.
  • a through hole 50H is formed near each vertex of the main block 50m. These through holes 50H are formed in a positional relationship overlapping with the plurality of through holes 20H formed in the mounting portion 21 of the support plate 2.
  • the tail block 50t is connected to the main block 50m and extends away from the main block 50m.
  • FIG. 6 is an exploded view of the load detection sensor in the second embodiment
  • FIG. 7 is a sectional view of the load detection sensor in the second embodiment.
  • the load detection sensor 5 ⁇ / b> B in this embodiment includes a first electrode sheet 56, a second electrode sheet 57, a spacer 58, an annular member 59, and an adhesive layer 10 as main components. . Note that the adhesive layer 10 is omitted in FIG. 6 for convenience.
  • the first electrode sheet 56 includes a first insulating sheet 56s, a first electrode 56e, and a first terminal 56c.
  • the first insulating sheet 56s is a flexible resin insulating sheet.
  • the first insulating sheet 56s includes a main block 56m and a tail block 56t connected to the main block 56m.
  • the shape of the tail block 56t is such that the tip portion opposite to the main block 56m is narrower than the other portions of the tail block 56t.
  • a through hole 56H is formed in the main block 56m.
  • the through hole 56H is a part of the through hole 50H of the load detection sensor 5B.
  • Examples of the material of the first insulating sheet 56s include resins such as PET, PI, and PEN.
  • the first electrode 56e is provided on one surface substantially at the center of the main block 56m.
  • the first electrode 56e is made of a conductor layer, for example, a substantially circular metal printing layer.
  • the first terminal 56c is made of a conductor layer, for example, a substantially rectangular metal layer.
  • the first terminal 56c is provided on the surface of the tail block 56t on the side where the first electrode 56e is provided.
  • the first electrode 56e and the first terminal 56c are electrically connected to each other via the first wiring 56w.
  • the second electrode sheet 57 includes a second insulating sheet 57s, a metal plate 60, a metal adhesive layer 70, a second electrode 57e, and a second terminal 57c.
  • the second electrode sheet 7 of the first embodiment is composed of one layer of the second insulating sheet 71, whereas the second electrode sheet 57 of the present embodiment is composed of the second insulating sheet 57s and the metal plate 60. And two layers.
  • the second insulating sheet 57s is disposed closer to the seat cushion SC (FIG. 4) than the first electrode sheet 56, and is a resin insulating sheet similar to the first insulating sheet 56s.
  • the thickness of the second insulating sheet 57s is made smaller than the thickness of the first insulating sheet 56s and less than the thickness of the metal plate 60.
  • the second insulating sheet 57s has the same shape as the main block 56m of the main block 56m of the first insulating sheet 56s and the shape other than the tip block of the tail block 56t of the first insulating sheet 56s connected to the main block 57m.
  • the tail block 57t has a shape.
  • the tip portion of the tail block 57t has a narrower width than other portions of the tail block 57t, and when the first insulating sheet 56s and the second insulating sheet 57s are overlapped, the tail block 56t of the first insulating sheet 56s.
  • the tip portion of the second insulating sheet 57s and the tip portion of the tail block 57t of the second insulating sheet 57s do not overlap each other.
  • a through hole 57H is formed in the main block 57m.
  • the through hole 57H is a part of the through hole 50H of the load detection sensor 5B, similarly to the through hole 56H of the first insulating sheet 56s.
  • Examples of the material of the second insulating sheet 57s include resins such as PET, PI, and PEN.
  • the material of the second insulating sheet 57s and the material of the first insulating sheet 56s may be the same or different. good.
  • the metal plate 60 is attached to one surface of the second insulating sheet 57s by the metal adhesive layer 70.
  • the metal plate 60 is attached to the surface of the main block 57m that is a part of the second insulating sheet 57s on the seat cushion SC side.
  • the metal plate 60 is formed with a through hole 60H.
  • the through hole 60H is a part of the through hole 50H of the load detection sensor 5B.
  • the material of the metal plate 60 is not particularly limited, and examples thereof include copper and stainless steel.
  • the metal adhesive layer 70 is disposed between the main block 57m of the second insulating sheet 57s and the metal plate 60.
  • the metal adhesive layer 70 is not particularly limited as long as the second insulating sheet 57s and the metal plate 60 are bonded together. Examples thereof include a pressure-sensitive adhesive, an adhesive, and a double-sided tape configured by providing an adhesive layer on both surfaces of a base material such as PET or nonwoven fabric. Examples of the material for the metal adhesive layer 70 include thermoplastic resins, thermosetting resins, and photo-curing resins.
  • the material of the metal adhesive layer 70 and the material of the adhesive layer 10 may be the same or different.
  • the glass transition point Tg of the metal adhesive layer 70 is preferably 85 ° C. or higher.
  • the glass transition point Tg is 85 ° C. or higher, it is difficult to flow even in an environment where the temperature is high, such as the interior of a car under hot weather, thereby suppressing erroneous detection of seating due to the flow of the metal adhesive layer 70. Can do.
  • the metal adhesion layer 70 may be arrange
  • the second electrode 57e has the same configuration as the first electrode 56e, and is provided on one surface of the second insulating sheet 57s at the center of the main block 57m.
  • the position where the second electrode 57e is provided is a position that overlaps the first electrode 56e when the first electrode sheet 56 and the second electrode sheet 57 are overlapped.
  • the second terminal 57c has the same configuration as that of the first terminal 56c, and is provided on the surface of the tail block 57t on the side where the second electrode 57e is provided.
  • the tip portions of the respective insulating sheets do not overlap with each other, so the first terminal 56c and the second terminal 57c are not insulated from each other.
  • the sheet 56s and the second insulating sheet 57s are not positioned and are exposed.
  • the second electrode 57e and the second terminal 57c are electrically connected to each other through the second wiring 57w.
  • the spacer 58 is disposed between the first electrode sheet 56 and the second electrode sheet 57, and is a flexible resin insulating sheet.
  • the spacer 58 includes a main block 58m and a tail block 58t connected to the main block 58m.
  • the main block 58m has the same outer shape as the main blocks 56m and 57m of the first insulating sheet 56s and the second insulating sheet 57s.
  • the tail block 58t has a shape excluding the narrow tip portions of the tail blocks 56t and 57t of the first insulating sheet 56s and the second insulating sheet 57s.
  • a through hole 58H is formed in the spacer 58 in the same manner as the first insulating sheet 56s and the second insulating sheet 57s.
  • the through hole 58H is a part of the through hole 50H of the load detection sensor 5B.
  • the material of the spacer 58 include resins such as PET, PI, and PEN, similarly to the first insulating sheet 56s and the second insulating sheet 57s.
  • the material of the spacer 58 may be the same as or different from the material of the first insulating sheet 56s or the second insulating sheet 57s.
  • the main block 58m of the spacer 58 has an opening 58c penetrating from one surface side of the spacer 58 to the other surface side.
  • the first electrode 56e and the second electrode 57e face each other through the opening 58c.
  • the peripheral shape of the opening 58c is, for example, a substantially circular shape, and the opening 58c is formed so that the diameter thereof is smaller than the diameters of the first electrode 56e and the second electrode 57e.
  • the opening 81 of the spacer 8 of the first embodiment is formed so that its diameter is larger than the diameters of the first electrode 62 and the second electrode 72.
  • the opening 58c of the spacer 58 of the present embodiment is formed so that the diameter thereof is smaller than the diameters of the first electrode 56e and the second electrode 57e. Therefore, when the spacer 58 is overlapped with the first electrode sheet 56 and the second electrode sheet 57, the opening 58c of the spacer 58 is positioned inside the peripheral edges of the first electrode 56e and the second electrode 57e. To do.
  • the spacer 58 has a slit 58b that communicates the space in the opening 58c with the space outside the load detection sensor 5B.
  • the slit 58b becomes an air vent when the first electrode sheet 56, the spacer 58, and the second electrode sheet 57 are overlapped.
  • the air vent is a passage for extracting the air in the opening 58c to the outside of the load detection sensor 5B.
  • the annular member 59 is an annular member disposed in the opening 58 c of the spacer 58.
  • the outer diameter of the annular member 59 is smaller than the diameter of the opening 58c of the spacer 58, and smaller than the diameters of the first electrode 56e and the second electrode 57e.
  • the inner diameter of the annular member 9 of the first embodiment is made larger than the diameters of the first electrode 62 and the second electrode 72, whereas the inner diameter and the outer diameter of the annular member 59 of the present embodiment are both The diameter is smaller than the diameters of the first electrode 56e and the second electrode 57e. Therefore, as shown in FIG. 8, when the spacer 58 is overlapped with the first electrode sheet 56 and the second electrode sheet 57 and the sheet surface of the main block 57m of the second electrode sheet 57 is viewed in plan, The member 59 and the second electrode 57e overlap. Further, as shown in FIG.
  • the sum of the height of the annular member 59, the thickness of the first electrode 56e, and the thickness of the second electrode 57e is equal to the thickness of the adhesive layer 10 between the first insulating sheet 61 and the spacer 8.
  • the total thickness of the adhesive layer 10 between the second insulating sheet 71 and the spacer 8 and the thickness of the spacer 8 is approximately the same.
  • the elastic modulus of the annular member 59 is preferably larger than the elastic modulus of the adhesive layer 10 as in the first embodiment.
  • the material of the annular member 59 examples include resins such as PET, PI, and PEN as well as the first insulating sheet 56s, the second insulating sheet 57s, and the spacer 58.
  • the material of the annular member 59 and the material of the spacer 58, the first insulating sheet 56s, or the second insulating sheet 57s may be the same or different.
  • the annular member 59 has a vent hole 59b for extracting air inside the annular member 59 in the opening 58c in the spacer 58.
  • the vent 59b is a slit that is cut from one end to the other end in the height direction of the annular member 59, but is a through hole that penetrates from the outer peripheral surface to the inner peripheral surface of the annular member.
  • the annular member 59 of the present embodiment includes a case where the annular member 59 is interrupted at one place or intermittently as long as it extends like a ring. However, it is preferable that the number of discontinuous portions is one or less.
  • the load detection sensor 5B is configured by combining the above components. That is, in a state where the annular member 59 is disposed in the opening 58 c of the spacer 58, the first electrode sheet 56 is adhered to one surface side of the spacer 58 with the adhesive layer 10, and the second surface side of the spacer 58 is second.
  • the load detection sensor 5 ⁇ / b> B is configured by adhering the electrode sheet 57 with the adhesive layer 10.
  • the respective through holes 56H, 57H, 58H overlap each other to form the through hole 50H.
  • the second electrode 57e is opposed to each other to configure the switch SW.
  • the annular member 59 is in contact with both the first electrode 56e and the second electrode 57e. Specifically, one end of the annular member 59 is in contact with the first electrode 56e of the first electrode sheet 56 along the inner periphery of the opening 58c, and the other end of the annular member 59 is the inner periphery of the opening 58c. Along the second electrode 57e of the second electrode sheet 57. Therefore, the annular member 59 can support the first electrode sheet 56 and the second electrode sheet 57. However, the annular member 59 is in contact with the first electrode 56e of the first electrode sheet 56, but is not adhered to the first electrode 56e. Similarly, the annular member 59 is in contact with the second electrode 57e of the second electrode sheet 57, but is not bonded to the second electrode 57e.
  • the outer peripheral surface of the annular member 59 is arranged in a state of being separated from the spacer 58, and the vent hole 59b of the annular member 59 is connected to the outside of the load detection sensor 5B through the slit 58b of the spacer 58. Communicate. A part of the outer peripheral surface of the annular member 59 may be in contact with the spacer 58. That is, the outer peripheral surface of the annular member 59 only needs to be separated from at least a part of the spacer 58.
  • a signal cable 19 connected to a control device is connected to the first terminal 56c and the second terminal 57c of the load detection sensor 5B.
  • the first terminal 56c and the second terminal 57c and the respective signal cables 19 are connected by conductive paste, soldering, or the like.
  • the load detection sensor 5B having the above configuration is arranged on the support plate 2 as shown in FIG. Specifically, the main block 50m of the load detection sensor 5B having the switch SW is disposed on the main block mounting portion 21m of the support plate 2, and the tail block 50t of the load detection sensor 5B is mounted on the tail block of the support plate 2. It arrange
  • the protective resin 18 is made of, for example, a polyamide resin, a polyimide resin, an olefin resin, a urethane resin, an acrylic resin, or the like, or a resin such as a photo-curing resin.
  • the pressing portion 46 is The tip of the metal plate 60 of the load detection sensor 5B contacts the position overlapping the switch SW.
  • each rib 49 is inserted through the through hole 50H of the load detection sensor 5B and the through hole 20H of the support plate 2. Accordingly, even when the support plate 2 and the first insulating sheet 56s are not bonded, the relative movement between the switch SW of the load detection sensor 5B and the pressing portion 46 of the upper case 4 is restricted. That is, the rib 49 can be understood as a movement regulating member that regulates relative movement between the load detection sensor 5 ⁇ / b> B and the support plate 2 in the surface direction of the support plate 2.
  • FIG. 9 is a diagram showing an ON state of the load detection sensor unit.
  • the lower surface of the seat cushion SC moves downward, and the lower surface of the seat cushion SC contacts the upper surface 45S of the upper case 4 and presses the upper surface 45S.
  • the tip of the pressing portion 46 presses the metal plate 60 of the second electrode sheet 57 in the load detection sensor 5 ⁇ / b> B, and By bending, the main block 57m of the second insulating sheet 57s is bent so as to enter the inside of the annular member 59. For this reason, the second electrode 57e contacts the first electrode 56e, and the switch SW of the load detection sensor 5B is turned on.
  • the load detection sensor 5B of the present embodiment includes the first electrode sheet 56 having the first electrode 56e, the second electrode sheet 57 having the second electrode 57e facing the first electrode 56e, and the first electrode.
  • a spacer 58 is provided between the sheet 56 and the second electrode sheet 57, and has an opening 58c between the first electrode 56e and the second electrode 57e.
  • the load detection sensor 5B is disposed between the annular member 59 disposed in the opening 58c of the spacer 58, between the spacer 58 and the first electrode sheet 56, and between the spacer 58 and the second electrode sheet 57.
  • an adhesive layer 10 is disposed between the annular member 59 disposed in the opening 58c of the spacer 58, between the spacer 58 and the first electrode sheet 56, and between the spacer 58 and the second electrode sheet 57.
  • the adhesive layer 10 tends to be softened under a high temperature environment and hardened under a low temperature environment. For this reason, when there is no annular member 59, the first electrode sheet 56 bends so that the adhesive layer 10 at the edge portion of the opening 58c of the spacer 58 changes according to the temperature environment and enters the opening 58c of the spacer 58. And the bending method of the 2nd electrode sheet 57 changes. The load necessary for the first electrode 56e and the second electrode 57e to come into contact with each other is changed by the change in the bending method.
  • the annular member 59 disposed in the opening 58c of the spacer 58 since the annular member 59 disposed in the opening 58c of the spacer 58 is not adhered, the temperature environment due to the adhesive layer 10 does not change at the edge portion of the opening of the annular member 59. . For this reason, the bending method which bends so that the 2nd electrode sheet 57 may be pressed and may enter into the opening of the annular member 59 does not change substantially. Therefore, compared with the case where the annular member 59 is bonded to at least one of the first electrode sheet 56 and the second electrode sheet 57 with an adhesive layer, the load necessary for the first electrode 56e and the second electrode 57e to contact each other. Can be prevented.
  • the presence of the annular member 59 makes it difficult for a load to be applied to the adhesive layer 10, making it difficult for the adhesive layer 10 to undergo creep deformation, and if the load detection sensor 5 ⁇ / b> B is pressed for a long time, the adhesive layer 10 undergoes creep deformation. Even so, the distance between the first electrode sheet 56 and the second electrode sheet 57 can be held substantially constant by the annular member 59. As a result, a change in load necessary for the first electrode 56e and the second electrode 57e to come into contact with creep deformation is reduced.
  • the load detection sensor 5B of the present embodiment it is possible to appropriately detect the load, similarly to the load detection sensor 5A of the first embodiment.
  • annular member 59 of the present embodiment is provided on both the first electrode sheet 56 exposed in the opening 58c of the spacer 58 and the second electrode sheet 57 exposed in the opening 58c of the spacer 58, as in the first embodiment. It touches.
  • the first electrode sheet 56 and The annular member 59 can support the second electrode sheet 57 more stably. Therefore, it is possible to further reduce the change in load necessary for the first electrode 56e and the second electrode 57e to contact each other.
  • the outer peripheral surface of the annular member 59 of the present embodiment is separated from the spacer 58 as in the first embodiment.
  • the adhesive layer 10 between the spacer 58 and the first electrode sheet 56 and the adhesive layer 10 between the spacer 58 and the second electrode sheet 57 are softened by the presence of the load detection sensor 5B in a high temperature environment. Even if it flows into the opening 58c, it can be accommodated in the gap between the annular member 59 and the spacer 58. Therefore, it is avoided that the softened adhesive layer 10 flows between the annular member 59 and the first electrode sheet 56 and the second electrode sheet 57. As a result, it is possible to further reduce the change in load necessary for the first electrode 56e and the second electrode 57e to contact each other.
  • the annular member 59 of the present embodiment has a vent 59b for venting the air inside the annular member 59 in the opening 81 of the spacer 8 as in the first embodiment. Therefore, when the second electrode sheet 57 is bent so as to enter the inside of the annular member 59 and the first electrode 56e and the second electrode 57e come into contact with each other, the inside of the annular member 59 in the opening 81 of the spacer 8 Air is discharged from the vent 59b. Accordingly, it is possible to prevent the bending of the second electrode sheet 57 from being suppressed by the air in the opening 81 of the spacer 8, and to prevent the load detection sensor 5B from erroneously detecting.
  • the diameter of the opening 81 of the spacer 8 of the first embodiment is larger than the diameters of the first electrode 62 and the second electrode 72, whereas the spacer 58 of the present embodiment.
  • the diameter of the opening 58c is smaller than the diameter of the first electrode 56e and the second electrode 57e.
  • the opening 58c of the spacer 58 of this embodiment is located inside the periphery of the first electrode 56e and the second electrode 57e.
  • the annular member 59 is not bonded to the first electrode 56e of the first electrode sheet 56 exposed to the opening 58c of the spacer 58 and the second electrode 57e of the second electrode sheet 57 exposed to the opening 58c.
  • the annular member 59 overlaps the first electrode 56e and the second electrode 57e.
  • the first electrode 56e and the second electrode 57e may include dummy electrodes that are not connected to the first wiring 56w and the second wiring 57w, and the dummy electrodes may overlap the annular member 59.
  • An annular member 59 is interposed between the first electrode 56e and the second electrode 57e. For this reason, even if the thicknesses of the first electrode 56e and the second electrode 57e themselves vary, the distance between the first electrode 56e and the second electrode 57e is held substantially constant by the annular member 59. . Therefore, the variation in the distance between the first electrode 56e and the second electrode 57e in the plurality of load detection sensors 5B can be reduced by the annular member 59. As a result, variation in load necessary for the first electrode 56e and the second electrode 57e to contact each other between the plurality of load detection sensors 5B can be reduced.
  • the sum of the thickness of the spacer 58 and the thickness of the adhesive layer 10 is approximately the same as the sum of the height of the annular member 59, the thickness of the first electrode 56e, and the thickness of the second electrode 57e.
  • the second electrode sheet 57 includes a metal plate 60, and the metal plate 60 is bonded to the resin-made second insulating sheet 57s via the metal adhesive layer 70.
  • Metals are less prone to change in response to changes in environmental temperature than resins, and therefore tend to be less prone to creep and stick.
  • the metal plate 60 since the metal plate 60 is bonded to the resin-made second insulating sheet 57s through the metal adhesive layer 70, the pressing of the second electrode sheet 57 is released, and the position when not pressed. When the metal plate 60 returns to the position, the metal plate 60 can return the resin-made second insulating sheet 57s to the position.
  • the thickness of the second insulating sheet 57s is less than the thickness of the metal plate 60, the thickness of the second insulating sheet 57s is equal to or greater than the thickness of the metal plate 60.
  • the deformation amount of the second insulating sheet 57s, which is a resin can be reduced. That is, the second electrode sheet is formed only by the metal plate 60 without the second insulating sheet 57s. Therefore, it is possible to reduce the load necessary for the first electrode 56e and the second electrode 57e to come into contact with each other due to a temperature change.
  • the thickness of the second insulating sheet 57s is less than the thickness of the first insulating sheet 56s. For this reason, it is possible to suppress the erroneous detection of the load due to the temperature change while making the load detection sensor 5B thinner.
  • FIG. 10 is a cross-sectional view showing the load detection sensor of the third embodiment.
  • the load detection sensor 5 ⁇ / b> C of the present embodiment is different in that a metal sheet 101 is employed instead of the second insulating sheet 71 of the second electrode sheet 7 in the first embodiment.
  • the metal sheet 101 is a thin metal sheet having flexibility, and is adhered to the spacer 8 by the adhesive layer 10.
  • the material of the metal sheet 101 is not particularly limited as long as it is a metal, and examples thereof include copper and stainless steel.
  • a portion of the metal sheet 101 that faces the first electrode 62 through the opening 81 of the spacer 8 is the second electrode 72. That is, a part of the metal sheet 101 also serves as the second electrode 72.
  • a metal layer made of the same material as or different from that of the metal sheet 101 may be disposed as a second electrode 72 at a portion facing the first electrode 62 through the opening 81 of the spacer 8 in the metal sheet 101. .
  • Even such a load detection sensor 5C has the same effects as those described above for the load detection sensor 5A of the first embodiment and the load detection sensor 5B of the second embodiment. Furthermore, in the present embodiment, the metal sheet 101 is employed instead of the second insulating sheet 71.
  • the load detection sensor 5C can suppress erroneous detection of the load applied according to the seating or the like due to creep or pushing rod, and as a result, the load applied according to the seating or the like can be detected appropriately. Can do.
  • FIG. 11 is an exploded view showing the configuration of the load detection sensor of the fourth embodiment
  • FIG. 12 is a view showing the load detection sensor in plan view from the second electrode sheet side.
  • the load detection sensor 5D of the present embodiment includes a first electrode sheet 66, a second electrode sheet 67, a spacer 68, a plurality of annular members 9A to 9D, a communication member 80, and an adhesive layer 10.
  • the adhesive layer 10 is omitted in FIG. 11 for convenience.
  • the first electrode sheet 66 includes a first insulating sheet 66s, first electrodes 66e1 to 66e4, a first terminal 66c1, and a second terminal 66c2.
  • the first insulating sheet 66s is a flexible resin insulating sheet, and has an H shape, for example.
  • the first insulating sheet 66s includes a first main block B1, a second main block B2, a connecting block B3 connecting the first main block B1 and the second main block B2, and a tail block B4 extending from the connecting block. It consists of.
  • the first main block B1 and the second main block B2 are band-like blocks.
  • the connection block B3 is a band-like block that connects intermediate portions in the longitudinal direction of the first main block B1 and the second main block B2.
  • the tail block B4 is smaller than the connection block B3 and is a substantially rectangular block protruding from the end of the intermediate portion in the longitudinal direction of the connection block B3.
  • Examples of the material of the first insulating sheet 56s include resins such as PET, PI, and PEN.
  • the first electrodes 66e1 to 66e4 are made of a conductor layer, for example, a substantially circular metal printing layer.
  • the first electrode 66e1 and the first electrode 66e2 are arranged on one surface of the first main block B1, and in the present embodiment, they are arranged in the same straight line.
  • the first electrode 66e3 and the first electrode 66e4 are disposed on the same surface of the second main block B2 as the surface on which the first electrode 66e1 and the first electrode 66e2 are disposed. Lined up.
  • the first terminal 66c1 and the second terminal 66c2 are made of a conductor layer, for example, a substantially square metal sheet.
  • the first terminal 66c1 and the second terminal 66c2 are disposed on the same surface of the tail block B4 as the surface on which the first electrodes 66e1 to 66e4 are disposed.
  • the first electrode 66e1 and the first electrode 66e2 are electrically connected by the first wiring 66w1, and the first electrode 66e3 and the first electrode 66e4 are electrically connected by the first wiring 66w2.
  • the first wiring 66w1 and the first terminal 66c1 are electrically connected by the first wiring 66w3, and the first wiring 66w2 and the second terminal 66c2 are electrically connected by the first wiring 66w4.
  • the second electrode sheet 67 has a second insulating sheet 67s and a plurality of second electrodes 67e1 to 67e4.
  • the second insulating sheet 67s is a flexible film-like insulating sheet, for example, an H-shape.
  • the second insulating sheet 67s includes a first main block B11, a second main block B12, and a connection block B13 that connects the first main block B11 and the second main block B12.
  • the first main block B11 has the same shape and size as the first main block B1 in the first insulating sheet 66s
  • the second main block B12 has the same shape and size as the second main block B2 in the first insulating sheet 66s.
  • the connecting block B13 has the same shape and size as the connecting block B3 in the first insulating sheet 66s.
  • Examples of the material of the second insulating sheet 67s include resins such as PET, PI, and PEN, as with the first insulating sheet 66s.
  • the material of the second insulating sheet 67s may be the same as or different from the material of the first insulating sheet 66s.
  • the second insulating sheet 67s has an air vent 67op penetrating from one surface side to the other surface side of the second insulating sheet 67s.
  • the air vent 67op is an opening for extracting the air in the openings of the annular members 9A to 9D to the outside of the load detection sensor 5D, and the second electrode 67e1 when the sheet surface of the second electrode sheet 67 is viewed in plan view. It is provided at a position that does not overlap with ⁇ 67e4.
  • the air vent 67op is provided in the connection block B3.
  • the second electrodes 67e1 to 67e4 are made of a conductor layer, for example, a substantially circular metal printing layer.
  • the second electrode 67e1 and the second electrode 67e2 are arranged on one surface of the first main block B11, and the second electrode 67e3 and the second electrode 67e4 are arranged with the second electrodes 67e1 and 67e2 in the second main block B12. It is arranged on the same surface as the surface.
  • the second electrodes 67e1 to 67e4 are the same size as the first electrodes 66e1 to 66e4.
  • the arrangement positions of the second electrodes 67e1 and 67e2 are relatively the same positions as the arrangement positions of the first electrodes 66e1 and 66e2 with respect to the first main block B1, and the arrangement positions of the second electrodes 67e3 and 67e4 are the second main block.
  • the position is relatively the same as the arrangement position of the first electrodes 66e3 and 66e4 with respect to B2.
  • the second electrode 67e1 and the second electrode 67e2 are electrically connected by the second wiring 67w1, and the second electrode 67e3 and the second electrode 67e4 are electrically connected by the second wiring 67w2, and the second wiring 67w1
  • the second wiring 67w2 is electrically connected by the second wiring 67w3.
  • the spacer 68 is disposed between the first electrode sheet 66 and the second electrode sheet 67 and is a flexible resin insulating sheet.
  • the spacer 68 has, for example, an H shape, and includes a first main block B21, a second main block B22, and a connection block B23 that connects the first main block B21 and the second main block B22.
  • the first main block B21 has the same shape and size as the first main block B1 in the first insulating sheet 66s
  • the second main block B22 has the same shape and size as the second main block B2 in the first insulating sheet 66s.
  • the connecting block B23 has the same shape and size as the connecting block B3 in the first insulating sheet 66s.
  • Examples of the material of the spacer 68 include resins such as PET, PI, and PEN, similarly to the first insulating sheet 66s and the second insulating sheet 67s.
  • the material of the spacer 68 may be the same as or different from the material of the first insulating sheet 66s or the second insulating sheet 67s.
  • the first main block B21 of the spacer 68 has openings 68A and 68B penetrating from one surface side of the spacer 68 to the other surface side.
  • the first electrode 66e1 and the second electrode 67e1 face each other through the opening 68A
  • the first electrode 66e2 and the second electrode 67e2 face each other through the opening 68B.
  • the second main block B22 of the spacer 68 has openings 68C and 68D penetrating from one surface side of the spacer 68 to the other surface side.
  • the first electrode 66e3 and the second electrode 67e3 face each other through the opening 68C
  • the first electrode 66e4 and the second electrode 67e4 face each other through the opening 68D.
  • the peripheral shapes of the openings 68A to 68D are, for example, substantially circular, and the diameters of the openings 68A to 68D are larger than the diameters of the first electrodes 66e1 to 66e4. Therefore, the openings 68A to 68D of the present embodiment are arranged around the periphery of the corresponding first electrodes 66e1 to 66e4 when the spacer 68 is overlapped with the first electrode sheet 66 and the second electrode sheet 67 and the spacer 68 is viewed in plan view. Located outside.
  • the spacer 68 has a slit 68b connected to each of the openings 68A to 68D and communicating with each of the openings 68A to 68D.
  • the slit 68b is located inside the edge without opening at the edge of the spacer 68.
  • the shape of the slit 68b is, for example, an H shape.
  • the annular members 9A to 9D have the same configuration as the annular member 9 of the first embodiment, and have vent holes 91A to 91D.
  • the communicating member 80 is a member that communicates the vent holes 91A to 91D of the annular members 9A to 9D and the air vent 67op provided in the second electrode sheet 67, and is disposed in the slit 68b of the spacer 68.
  • the communication member 80 has, for example, an H shape similar to the slit 68b, and is connected to each of the annular members 9A to 9D via the vent holes 91A to 91D of the respective annular members 9A to 9D.
  • the communication member 80 may be connected to each of the annular members 9A to 9D by integral molding, or may be connected to each of the annular members 9A to 9D by a predetermined fixing tool.
  • the communication member 80 has a pair of flat plates arranged in parallel, and the flat plate is a passage that connects the annular members 9A to 9D and the air vent 67op. It may be a passage.
  • the communication member 80 When the communication member 80 is disposed in the slit 68b of the spacer 68 and the spacer 68 is overlapped with the first electrode sheet 66 and the second electrode sheet 67, the second insulation of the second electrode sheet 67 is achieved.
  • the air vent 67op provided in the sheet 67s communicates with the communication member 80. Accordingly, the openings of the annular members 9A to 9D communicate with the air vent 67op through the communication member 80. That is, the communication member 80 becomes an air vent.
  • the load detection sensor 5D is configured by combining the above components. That is, the corresponding annular members 9A to 9D are disposed in the openings 68A to 68D of the spacer 68, and the communication member 80 is disposed in the slit 68b of the spacer 68. In this state, the first electrode sheet 66 is adhered to one surface side of the spacer 68 with the adhesive layer 10, and the second electrode sheet 67 is adhered to the other surface side of the spacer 68 with the adhesive layer 10, thereby detecting the load.
  • a sensor 5D is configured.
  • the annular members 9A to 9D include the first insulating sheet 66s exposed on one opening surface side of the openings 68A to 68D of the spacer 68 and the other opening surface side of the openings 68A to 68D.
  • the second insulating sheet 67s exposed to the surface is in non-adhesive state.
  • the openings 68A to 68D of the annular members 9A to 9D communicate with the air vent 67op provided in the second insulating sheet 67s of the second electrode sheet 67 through the communication member 80, and the outside of the load detection sensor 5D. Communicate with.
  • the first electrodes 66e1 to 66e4 are located inside one opening end of the annular members 9A to 9D, and the second electrodes 67e1 to 67e4 are located inside the other opening end of the annular member 9. To do.
  • the first electrodes 66e1 to 66e4 and the second electrodes 67e1 to 67e4 face each other through the openings 68A to 68D of the annular members 9A to 9D to constitute the switches SW1 to SW4, respectively.
  • the load detection sensor 5D has the same effects as those described above for the load detection sensor 5A of the first embodiment and the load detection sensor 5B of the second embodiment.
  • a plurality of switches each having the first electrode and the second electrode as a set are provided, and openings 68A to 68D of the spacer 68 and annular members 9A to 9D are provided for each of the switches SW1 to SW4.
  • the spacer 68 has a slit 68b that communicates with the openings 68A to 68D, and the second electrode sheet 67 has an air vent 67op.
  • the load detection sensor 5D of the present embodiment is provided with a communication member 80 that is disposed in the slit 68b and communicates the annular members 9A to 9D with the air vent 67op.
  • the second electrode sheet 67 is bent so as to enter the inside of the annular member 9A, and when the first electrode 66e1 and the second electrode 67e1 come into contact with each other, the inside of the openings 68A to 68D of the spacer 68 is reached. Of these, the air inside the annular member 9A is discharged from the air vent 67op to the outside of the load detection sensor 5D through the communication member 80. Similarly, when the second electrode sheet 67 is bent so as to enter the inside of the annular members 9B to 9D, the air inside the annular members 9B to 9D among the openings 68A to 68D of the spacer 68 passes through the communication member 80. The air is discharged from the air vent 67op to the outside of the load detection sensor 5D.
  • FIG. 13 is an exploded view showing the configuration of the load detection sensor of the fifth embodiment.
  • air discharge slits 67s1 to 67s4 are provided in the second electrodes 67e1 to 67e4, respectively.
  • the vent holes 91A to 91D are omitted, respectively, and the annular members 9A to 9D extend in a ring shape without interruption.
  • the load detection sensor 5E of the present embodiment includes a pair of wirings PW1 to PW3 that are separated from each other and are adjacent to each other instead of the second wirings 67w1 to 67w3 of the fourth embodiment. Moreover, in the load detection sensor 5E of this embodiment, it replaces with the communication member 80 of 4th Embodiment, and the communication path formation member 85 is provided.
  • the pair of wirings PW1 to PW3 are arranged on one surface of the second electrode sheet 67 in a state of being separated from each other and adjacent to each other.
  • One end of the pair of wirings PW1 is electrically connected to the second electrode 67e1 and is positioned inside the annular member 9A.
  • the other end of the pair of wirings PW1 is electrically connected to the second electrode 67e2 and is located inside the annular member 9B.
  • One end of the pair of wirings PW2 is electrically connected to the second electrode 67e3 and is located inside the annular member 9C.
  • the other end of the pair of wirings PW2 is electrically connected to the second electrode 67e4 and is located inside the annular member 9D.
  • the pair of wirings PW3 electrically connects one of the pair of wirings PW1 and one of the pair of wirings PW2 adjacent thereto.
  • the pair of wirings PW1 to PW3 are arranged in parallel, but may not be parallel as long as they are separated from each other and adjacent to each other.
  • the communication path forming member 85 is made of, for example, an H-shaped plate and is connected to each of the annular members 9A to 9D.
  • FIG. 14 is a view showing a cross section of the load detection sensor 5E at XX in FIG. As shown in FIG. 14, when the spacer 68 is overlapped with the first electrode sheet 66 and the second electrode sheet 67, the communication path forming member 85 is brought into contact with the pair of wirings PW1, thereby the second electrode sheet. The gap AR between the pair of wirings PW1 is closed from the side opposite to the one surface of 67.
  • the communication path forming member 85 is also brought into contact with the pair of wirings PW2 and PW3, thereby the second electrode sheet 67.
  • the gap AR between the pair of wirings PW2 and PW3 is closed from the side opposite to the one surface.
  • the communication path forming member 85 is not bonded to the pair of wirings PW1 to PW3, the first electrode sheet 66, and the second electrode sheet 67.
  • the communication path forming member 85 causes the gaps between the pair of wirings PW1 to PW3 to be inside the annular members 9A to 9D.
  • Each of the air discharge slits 67s1 to 67s4 of the second electrodes 67e1 to 67e4 located is formed as a communication path that communicates with the air vent 67op.
  • the second electrode sheet 67 is bent so as to enter the inside of the annular member 9A, and when the first electrode 66e1 and the second electrode 67e1 come into contact with each other, Of the openings 68A to 68D, the air inside the annular member 9A flows into the air discharge slit 67s1 of the second electrode 67e1. Then, it flows into the gap AR between the pair of wirings PW1 and PW3 formed by the communication path forming member 85, and is discharged from the air vent 67op to the outside of the load detection sensor through the gap AR.
  • the deflection of the second electrode sheet 67 is suppressed by the air inside the annular members 9A to 9D in the openings 68A to 68D of the spacer 68, as in the fourth embodiment. It can be avoided that the load detection sensor 5E is erroneously detected.
  • the vent holes 91A to 91D do not have to be provided in the annular members 9A to 9D, the durability of the annular members 9A to 9D themselves is improved. Accordingly, the annular members 9A to 9D can support the first electrode sheet 66 and the second electrode sheet 67 more stably. As a result, it is possible to suppress a change in load necessary for the first electrodes 66e1 to 66e4 and the second electrodes 67e1 to 67e4 to contact each other.
  • the communication path forming member 85 itself is not bonded to the pair of wirings PW1 to PW3, the first electrode sheet 66, and the second electrode sheet 67. Therefore, it is possible to avoid filling the gap AR between the pair of wirings PW1 and PW3 formed by the communication path forming member 85 with the adhesive layer. Further, since the communication path forming member 85 itself can support the first electrode sheet 66 and the second electrode sheet 67 without being bonded to the pair of wirings PW1 to PW3 and the first electrode sheet 66, the first electrode sheet. 66 and the adhesion layer 10 between the second electrode sheet and the spacer 68 can be reduced.
  • FIG. 15 is an exploded view showing the configuration of the load detection sensor of the sixth embodiment.
  • the load detection sensor 5F in the present embodiment includes a first electrode sheet 110, a second electrode sheet 120, a spacer 130, and a fitting member 140 as main components.
  • the first electrode sheet 110 includes a first insulating sheet 110s and a first conductive layer 110e.
  • the first insulating sheet 110s is a flexible resin insulating sheet.
  • the first insulating sheet 110s includes a main block 110m and a tail block 110t connected to the main block 110m.
  • the tail block 110t is shaped to be narrower than the main block 110m.
  • An air vent 110h is formed near the center of the main block 110m.
  • Examples of the material of the first insulating sheet 110s include resins such as PET, PI, and PEN.
  • the first conductive layer 110e includes a first electrode 111, a first terminal 113, and a first wiring 112, and is provided on one surface of the first insulating sheet 110s.
  • the first conductive layer 110e and the first insulating sheet 110s are disassembled and described, and the arrangement position of the first conductive layer 110e is indicated by a broken line on the first insulating sheet 110s. .
  • the first electrode 111 is provided on the end side of the main block 110m.
  • the first electrode 111 is made of a conductor layer, for example, a metal printing layer.
  • the first electrode 111 of the present embodiment includes a substantially circular central electrode portion 111p and a substantially circular ring-shaped outer electrode portion 111r that surrounds the outer periphery of the central electrode portion 111p, and the central electrode portion 111p, the outer electrode portion 111r, A gap 111s is formed between the two.
  • the first terminal 113 is made of a conductor layer, for example, a substantially rectangular metal layer.
  • the first terminal 113 is provided on the tail block 110t.
  • the first electrode 111 and the first terminal 113 are electrically connected to each other through the first wiring 112.
  • the first wiring 112 includes a pair of wirings separated from each other.
  • a slit-like gap 112s is formed between the pair of wires.
  • the pair of wirings are connected by a ring portion 112r formed in a ring shape.
  • An opening 112h is formed by the ring portion 112r, and the opening 112h communicates with the gap 112s.
  • the first wiring 112 having a pair of wirings extends to the central electrode part 111p of the first electrode 111, and the gap 112s also extends to the central electrode part 111p.
  • the opening 112h of the first conductive layer 110e and the air vent 110h of the first insulating sheet 110s overlap. That is, when the first electrode sheet 110 is viewed in plan, the ring portion 112r of the first wiring 112 surrounds the air vent 110h of the first insulating sheet 110s.
  • the second electrode sheet 120 includes a second insulating sheet 120s and a second conductive layer 120e.
  • the second insulating sheet 120s is a resin-made insulating sheet similar to the first insulating sheet 110s.
  • the second insulating sheet 120s includes a main block 120m having the same shape as the main block 110m of the first insulating sheet 110s, and a tail block 120t having the same shape as the tail block 110t of the first insulating sheet 110s connected to the main block 120m. Consists of. However, when the first insulating sheet 110s and the second insulating sheet 120s are overlapped, the tail block 110t of the first insulating sheet 110s and the tail block 120t of the second insulating sheet 120s do not overlap each other. Examples of the material of the second insulating sheet 120s include the same material as the material of the first insulating sheet 110s, and the material of the second insulating sheet 120s and the material of the first insulating sheet 110s may be the same or different. .
  • the second conductive layer 120e has a second electrode 121, a second terminal 123, and a second wiring 122, and is provided on one surface of the second insulating sheet 120s.
  • One surface of the second insulating sheet 120s is a surface facing one surface of the first insulating sheet 110s on which the first conductive layer 110e is provided.
  • the second conductive layer 120e and the second insulating sheet 120s are disassembled and described in the same manner as the first electrode sheet 110, and the second conductive layer 120e is disposed on the second insulating sheet 120s. The position is indicated by a broken line.
  • the second electrode 121 is provided on the end side of the main block 120m, and faces the first electrode 111 when the first electrode sheet 110 and the second electrode sheet 120 are overlapped.
  • the second electrode 121 is made of the same conductor layer as the first electrode 111. Similar to the first electrode 111, the second electrode 121 of the present embodiment is composed of a substantially circular central electrode part 121p and a substantially circular ring-shaped outer electrode part 121r that surrounds the outer periphery of the central electrode part 121p. A slit 121s is formed between the portion 121p and the outer electrode portion 121r.
  • the second terminal 123 is composed of a conductor layer, for example, a substantially rectangular metal layer. The second terminal 123 is provided on the tail block 120t. The second electrode 121 and the second terminal 123 are electrically connected to each other via the second wiring 122.
  • the second wiring 122 extends to the central electrode part 121p.
  • the spacer 130 is disposed between the first electrode sheet 110 and the second electrode sheet 120 and is a flexible resin insulating sheet.
  • the spacer 130 has the same outer shape as the main block 120m of the first insulating sheet 110s and the second insulating sheet 120s.
  • Examples of the material of the spacer 130 include the same material as that of the first insulating sheet 110s and the second insulating sheet 120s.
  • the material of the spacer 130 may be the same as or different from the material of the first insulating sheet 110s or the second insulating sheet 120s.
  • An adhesive layer (not shown) that is bonded to the first insulating sheet 110 s and the second insulating sheet 120 s is disposed on both surfaces of the spacer 130.
  • the spacer 130 has an opening 130h.
  • the opening 130h includes a first opening 131 that is a substantially circular opening, and a second opening 132 that is connected to the first opening 131 and is a substantially rectangular slit.
  • the opening 130h is formed of a circular opening and a slit connected to the opening, and has a substantially keyhole shape.
  • the fitting member 140 is a member that is fitted into the opening 130 h of the spacer 130.
  • the fitting member 140 includes an annular member 141 and a communication path forming member 142 connected to the annular member 141, and the annular member 141 and the communication path forming member 142 are integrated.
  • the annular member 141 is formed in a ring shape, and the annular member 141 surrounds the opening 140h.
  • the outer shape of the annular member 141 is circular like the first opening 131 of the opening 130h, and the outer diameter thereof is slightly smaller than the diameter of the first opening 131 so that the outer diameter can be fitted into the first opening 131. Is done. Further, the inner diameter of the annular member 141 is made larger than the central electrode portion 111p of the first electrode 111 and the central electrode portion 121p of the second electrode 121.
  • the communication path forming member 142 has substantially the same shape as the second opening 132 in the opening 130 h of the spacer 130. However, the communication path forming member 142 is formed slightly smaller than the second opening 132 so that it can be fitted into the second opening 132.
  • the material of the fitting member 140 can be the same material as the first insulating sheet 110s, the second insulating sheet 120s, and the spacer 130.
  • the material of the fitting member 140 and the material of the spacer 130, the first insulating sheet 110s, and the second insulating sheet 120s may be the same or different.
  • the spacer 130 and the fitting member 140 are preferably made of the same material. Further, no adhesive layer is disposed on both surfaces of the fitting member 140.
  • the fitting member 140 is fitted into the opening 130 h of the spacer 130, and the first electrode sheet 110, the spacer 130, and the second electrode sheet 120 are overlapped, and when the annular member 141 is viewed in plan, the first electrode sheet 110 is placed inside the opening 140 h of the annular member 141.
  • the central electrode portion 111p of the first electrode 111 and the central electrode portion 121p of the second electrode 121 are located.
  • the portion of the first electrode sheet 110 made of a pair of the first wires 112 is in contact with the communication path forming member 142 up to the ring portion 112r.
  • a pair of wirings of the first wiring 112, the first insulating sheet 110s, and the communication path forming member 142 form a ventilation path.
  • the ventilation path is suppressed from being filled with the adhesive.
  • the gap 112 s between the first wirings 112 made of a pair of wirings extends to the central electrode part 111 p of the first electrode 111. Accordingly, the gap 112s communicates with the opening 140h.
  • the ring portion 112r of the first wiring 112 surrounds the air vent 110h of the first insulating sheet 110s. Accordingly, the air vent 110h communicates with the gap 112s.
  • the opening 140h and the air vent 110h communicate with each other through the ventilation path.
  • the load detection sensor 5F of the present embodiment at least one of the first electrode sheet 110 and the second electrode sheet 120 is bent so as to enter the inside of the opening 140h of the annular member 141, and the first electrode 111 and the second electrode
  • the air in the opening 140h of the annular member 141 is vented through the ventilation path formed by the first wiring 112, the first insulating sheet 110s and the communication path forming member 142 sandwiching the gap 112s. It is discharged from 110h to the outside of the load detection sensor 5F.
  • the load detection sensor 5F of this embodiment as in the fourth embodiment and the fifth embodiment, at least one of the first electrode sheet 110 and the second electrode sheet 120 is bent by the opening 140h of the annular member 141. Suppression by the inner air is suppressed, and erroneous detection by the load detection sensor 5E can be suppressed.
  • the adhesive layer 10 is disposed between both the first electrode sheet and the spacer and between the second electrode sheet and the spacer, but is disposed only in one of them. May be.
  • the spacer is formed by providing a curable resin on the first electrode sheet or the second electrode sheet and curing it.
  • the spacer can be directly bonded to the first electrode sheet or the second electrode sheet.
  • an annular member can be formed by providing and curing a curable resin on the first electrode sheet or the second electrode sheet, and the annular member can be directly joined to the first electrode sheet or the second electrode sheet.
  • the annular member is in contact with both the first electrode sheet and the second electrode sheet, but may be in contact with only one of the first electrode sheet and the second electrode sheet. In short, the annular member may be in contact with at least one of the first electrode sheet and the second electrode sheet.
  • the first electrode sheet is a flexible resin insulating sheet.
  • the first electrode sheet may be a non-flexible substrate or a metal sheet. It may be composed of two layers of an insulating sheet and a metal sheet.
  • the load detection sensor of the present invention has applicability as long as the presence / absence of a load on a detection target to be detected is detected.
  • positions a load detection sensor under the seat cushion of the bed for nursing care is mentioned. Even in such a form, the load detection sensor can detect the load, and information indicating whether a person is present on the seat cushion can be obtained based on the detection result of the load detection sensor. Moreover, it may be used as a switch of an electronic device, and the presence or absence of a load may be detected.
  • a load detection sensor of Comparative Example 1, a load detection sensor of Example 1, and a load detection sensor of Example 2 were prepared, and an experiment was performed in which a load was applied to each load detection sensor in different temperature environments. .
  • a load detection sensor having a configuration in which the annular member 9 is omitted from the load detection sensor 5A in the first embodiment is prepared.
  • the second electrode sheet 7 of the first embodiment is composed of two layers of the second insulating sheet 57s and the metal plate 60 of the second embodiment, and the other components are the first.
  • a load detection sensor having the same components as in the embodiment was prepared.
  • a load detection sensor of Example 2 a load detection sensor corresponding to the load detection sensor 5C of the third embodiment was prepared.
  • the first insulating sheet of each of the load detection sensor of Comparative Example 1, the load detection sensor of Example 1, and the load detection sensor of Example 2 is a sheet of 75 ⁇ m thickness made of PET, and the spacer is a sheet of 50 ⁇ m thickness made of PET. It was.
  • the adhesive layer was an acrylic adhesive layer having a thickness of 25 ⁇ m on the first insulating sheet side, and an acrylic adhesive layer having a thickness of 25 ⁇ m on the second insulating sheet side.
  • the second insulating sheet of each of the load detection sensor of Comparative Example 1 and the load detection sensor of Example 1 was a sheet made of PET and having a thickness of 100 ⁇ m.
  • the metal plate of each of the load detection sensor of Example 1 and the load detection sensor of Example 2 is a 0.1 mm thick sheet made of SUS301, and the adhesive layer between the metal plate and the insulating sheet is 24 ⁇ m thick.
  • the acrylic adhesive layer was used.
  • the load detection sensor of Comparative Example 1 the load detection sensor of Example 1, the diameter of each spacer of the load detection sensor of Example 2, and the load detection sensor of Example 1 and the load detection sensor of Example 2, respectively.
  • the inner diameter and material of the annular member are shown in FIG.
  • the opening diameter of the spacer shown in FIG. 16 means the diameter of the spacer
  • the ring diameter shown in FIG. 16 means the inner diameter of the annular member
  • the ring material shown in FIG. 16 means the material of the annular member.
  • the load detection sensor of the comparative example, the load detection sensor of the first example, and the load detection sensor of the second example are arranged in the respective temperature environments of ⁇ 40 ° C., 25 ° C., and 85 ° C., and the load detection sensor is The load (on load) applied when the electrode sheet was pressed and the pair of electrodes contacted each other was measured.
  • the on load measured in a temperature environment of ⁇ 40 ° C. and the on load measured in a temperature environment of 85 ° C. in percent relative to the on load measured in a temperature environment of 25 ° C. represents.
  • Example 1 and Example 2 provided with the annular member change to 85 ° C. even if the temperature changes to ⁇ 40 ° C. on the basis of normal temperature.
  • the on-load variation at that temperature is small. That is, it has been found that if there is an annular member, the load can be detected in the same manner as in the normal temperature environment, whether the temperature is higher or lower than normal temperature.
  • Example 2 The load detection sensor of Comparative Example 1, the load detection sensor of Example 1, and the load detection sensor of Example 2 are arranged in an air temperature environment of 80 ° C., and the load sensor is 144 from the second electrode sheet side at a pressure of 20 N. Pressed for hours. Then, the on load at normal temperature was measured, and the change rate with respect to the on load at normal temperature measured before the pressing was obtained as the on load change rate after the high temperature constant load test. The result is shown in FIG.
  • Example 1 and Example 2 provided with the annular member change the on-load even if they are pressed for a long time in a high temperature environment.
  • the rate is getting smaller. That is, it has been found that if there is an annular member, the load can be detected in the same manner as in a normal temperature environment even if the ring member is pressed for a long time in a high temperature environment.
  • a load detection sensor of Comparative Example 2 and a load detection sensor of Example 3 were prepared, and an experiment was performed in which a load was applied to each load detection sensor under different temperature environments.
  • a load detection sensor having a configuration in which the annular member 9 is omitted from the load detection sensor 5A in the first embodiment is prepared.
  • a load detection sensor of Example 3 a load detection sensor corresponding to the load detection sensor 5A of the first embodiment was prepared.
  • the first insulating sheet of each of the load detection sensor of Comparative Example 2 and the load detection sensor of Example 3 was a sheet of 100 ⁇ m thickness made of PET, and the spacer was a sheet of 50 ⁇ m thickness made of PET.
  • the adhesive layer of each of the load detection sensor of Comparative Example 2 and the load detection sensor of Example 3 has an acrylic adhesive layer with a thickness of 25 ⁇ m on the first insulating sheet side and an acrylic adhesive with a thickness of 25 ⁇ m on the second insulating sheet side. Layered.
  • the second insulating sheet of each of the load detection sensor of Comparative Example 2 and the load detection sensor of Example 3 was a sheet made of PET and having a thickness of 100 ⁇ m.
  • the opening diameter of the spacer shown in FIG. 17 means the diameter of the spacer
  • the ring diameter shown in FIG. 16 means the inner diameter of the annular member
  • the ring material shown in FIG. 16 means the material of the annular member.
  • the outer diameter of the annular member is 11 mm, and the height of the annular member is 100 ⁇ m.
  • the load detection sensor of Comparative Example 2 and the load detection sensor of Example 3 are arranged in the respective ambient temperatures of ⁇ 40 ° C., 25 ° C., and 85 ° C., and the load detection sensor is pressed from the second electrode sheet side.
  • the load (on load) applied when the pair of electrodes contacted each other was measured.
  • the on load measured in the temperature environment of ⁇ 40 ° C. and the increase or decrease in the on load measured in the temperature environment of 85 ° C. in percent relative to the on load measured in the temperature environment of 25 ° C. represents.
  • Example 3 provided with the annular member has its temperature changed to ⁇ 40 ° C. or 85 ° C. based on the normal temperature. Variation in on-load with temperature is small. That is, it has been found that if there is an annular member, the load can be detected in the same manner as in the normal temperature environment, whether the temperature is higher or lower than normal temperature.

Landscapes

  • Push-Button Switches (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Seats For Vehicles (AREA)

Abstract

荷重検知センサ(5A)は、第1電極(62)を有する第1電極シート(6)と、第1電極(62)と対向する第2電極(72)を有する第2電極シート(7)と、第1電極シート(6)と第2電極シート(7)との間に介在され、第1電極(62)と第2電極(72)との間に開口(81)を有するスペーサ(8)と、開口(81)内に配置される環状部材(9)と、スペーサ(8)と第1電極シート(6)との間及びスペーサ(8)と第2電極シート(7)との間の少なくとも一方に配置される接着層(10)とを備える。環状部材(9)は、開口(81)に露出する第1電極シート(6)及び開口(81)に露出する第2電極シート(7)の少なくとも一方と接し、当該第1電極シート(6)及び第2電極シート(7)の双方に非接着とされる。

Description

荷重検知センサ
 本発明は、荷重検知センサに関し、着座等による荷重を検知する場合に好適なものである。
 車両における安全システムの一つとして、乗車時にシートベルトが非着用であることを警告するアラームシステムが実用化されている。このアラームシステムでは、人の着座が感知されている状態でシートベルトの着用が非感知となる場合に、警告が発せられる。この人の着座を感知する装置として、着座による荷重を検知する荷重検知センサが用いられる場合がある。
 荷重検知センサとして、一対の樹脂製のフィルムと、それぞれのフィルム上に設けられ所定の間隔を隔てて互いに対向する一対の電極とを有する構成が下記特許文献1に開示されている。下記特許文献1に記載されている荷重検知センサの一対のフィルムは、互いに対向する電極間以外に配置される粘着剤により貼り合わされている。
特開平09-315199号公報
 しかし、粘着剤は、一般的に、温度の上昇により軟化する傾向がある。従って、炎天下の自動車の車内の様に高温になる環境に上記特許文献1に記載の荷重検知センサが置かれた場合、各フィルムに設けられる電極が接触するために必要な荷重が低下してしまうことが懸念される。一方、-40℃くらいの低温になる環境に上記特許文献1に記載の荷重検知センサが置かれた場合、粘着剤の硬質化により、各フィルムに設けられる電極が接触するために必要な荷重が増加してしまうことが懸念される。
 また、粘着剤は、長期的に押圧されるとクリープ変形する場合がある。粘着剤がクリープ変形すると、樹脂製のフィルム間の距離が変化し、各フィルムに設けられる電極が接触するために必要な荷重が変化してしまうことが懸念される。
 このように上記特許文献1の荷重検知センサでは、温度変化や経年変化に伴って、フィルムに設けられる電極が接触ために必要な荷重が変化し、適切に荷重を検知することができない虜がある。
 そこで、本発明は、適切に荷重を検知することができる荷重検知センサを提供することを目的とする。
 上記課題を解決するため、本発明の荷重検知センサは、第1電極を有する第1電極シートと、前記第1電極と対向する第2電極を有する第2電極シートと、前記第1電極シートと前記第2電極シートとの間に介在され、前記第1電極と前記第2電極との間に開口を有するスペーサと、前記開口内に配置される環状部材と、前記スペーサと前記第1電極シートとの間及び前記スペーサと前記第2電極シートとの間の少なくとも一方に配置される接着層と、を備え、前記環状部材は、前記開口に露出する前記第1電極シート及び前記開口に露出する前記第2電極シートの少なくとも一方と接し、当該第1電極シート及び第2電極シートの双方に非接着とされることを特徴とする。
 このような荷重検知センサでは、スペーサの開口に露出する第1電極シート及びスペーサの開口に露出する第2電極シートが、その開口内に配置される環状部材に支えられる。この環状部材は、スペーサの開口に露出する第1電極シート及びスペーサの開口に露出する第2電極シートの双方に非接着とされている。このため、第1電極シート及び第2電極シートの少なくとも一方にでも環状部材が接着層で接着される場合に比べると、接着層の温度変化による影響を受けなくなる。
 すなわち、接着層は、高温環境下では軟化し、低温環境下では硬質化し易い傾向にある。このため、環状部材がない場合には、スペーサの開口のエッジ部分おける接着層が温度環境に応じて変化して、そのスペーサの開口に入り込むように撓む第1電極シート及び第2電極シートの撓み方が変化する。この撓み方の変化によって第1電極と第2電極とが接触するために必要な荷重が変化する。これに対し、スペーサの開口内に配置される環状部材は第1電極シート及び第2電極シートの双方に非接着とされるため、環状部材の開口のエッジ部分では接着層による温度環境の変化が生じない。このため、第1電極シート及び第2電極シートの少なくとも一方が押圧されて、スペーサの開口内における環状部材の内側に入り込むように撓む撓み方が概ね変化しない。従って、第1電極シート及び第2電極シートの少なくとも一方にでも環状部材が接着層で接着される場合に比べると、第1電極と第2電極とが接触するために必要な荷重の変化を抑止できる。
 また、環状部材があることで、接着層に荷重が加わりにくくなり、接着層がクリープ変形しづらく、仮に荷重検知センサが長期的に押圧されることで接着層がクリープ変形しても、第1電極シートと第2電極シートとの間の距離は環状部材により概ね一定に保持し得る。この結果、クリープ変形に伴って第1電極と第2電極とが接触するために必要な荷重の変化が低減される。
 こうして、適切に荷重を検知することができる荷重検知センサが実現される。
 また、前記環状部材は、前記第1電極シート及び前記第2電極シートの双方と接することが好ましい。
 このようにした場合、スペーサの開口に露出する第1電極シート及びスペーサの開口に露出する第2電極シートと環状部材との間に隙間がないので、当該第1電極シート及び第2電極シートを環状部材がより安定して支えることができる。従って、第1電極と第2電極とが接触するために必要な荷重の変化をより一段と低減することができる。
 また、前記環状部材の外周面の少なくとも一部は、前記スペーサと離間されることが好ましい。
 荷重検知センサが高温環境下に存在することで、スペーサと第1電極シートとの間及びスペーサと第2電極シートとの間の少なくとも一方に配置される接着層が軟化して開口側に流動したとしても、当該接着層を環状部材とスペーサとの隙間に収めることができる。従って、軟化した接着層が環状部材と第1電極シート又は第2電極シートとの間に流動することが回避される。この結果、第1電極と第2電極とが接触するために必要な荷重の変化をより一段と低減することができる。
 また、前記環状部材と前記スペーサとは同じ材料とされることが好ましい。
 このようにした場合、荷重検知センサが高温環境下に存在することに起因する環状部材とスペーサとの膨張が同程度となる。このため、第1電極シートと第2電極シートとの間の距離は概ね一定に保持される。従って、熱膨張に起因して電極間の距離が変化することが低減される。この結果、荷重の変化をより一段と低減することができる。
 また、前記環状部材は、前記スペーサの前記開口内の空気を抜くための通気口を有することが好ましい。
 このようにした場合、第1電極シート又は第2電極シートがスペーサの開口内における環状部材の内側に入り込むように撓んで、第1電極と第2電極とが接触するときに、スペーサの開口の空気が通気口から排出される。従って、第2電極シートの撓みがスペーサの開口内の空気によって抑制されるといったことが回避され、荷重検知センサが誤検知することを抑止することができる。
 また、前記スペーサは、前記開口に接続されるスリットを有し、前記第1電極シート及び前記第2電極シートの少なくとも一方は、空気抜き口を有し、前記スリット内に配置され、前記環状部材の前記通気口と前記空気抜き口とを連通する連通部材を備えることが好ましい。
 このようにした場合、第1電極シート又は第2電極シートがスペーサの開口内における環状部材の内側に入り込むように撓んで、第1電極と第2電極とが接触するときに、スペーサの開口の空気は連通部材を通じて空気抜き口から荷重検知センサの外部に排出される。従って、第1電極シート又は第2電極シートの撓みがスペーサの開口内の空気によって抑制されるといったことが回避され、荷重検知センサが誤検知することを抑止することができる。
 また、前記スペーサは、前記開口に接続されるスリットを有し、前記第1電極シート及び前記第2電極シートの少なくとも一方は、互いに離間して隣り合う一対の配線と、空気抜き口とを有し、前記一対の配線の端部は、前記環状部材の内側に位置され、前記スリット内に配置され、前記スペーサの前記開口内における前記環状部材の内側と前記空気抜き口とを連通する連通路として前記一対の配線間の隙間を形成する連通路形成部材を備えることが好ましい。
 このようにした場合、第1電極シート及び第2電極シートの少なくとも一方がスペーサの開口内における環状部材の内側に入り込むように撓んで第1電極と第2電極とが接触するときに、スペーサの開口内における環状部材の内側の空気は連通路形成部材によって形成される一対の配線間の隙間を通じて空気抜き口から荷重検知センサの外部に排出される。従って、第1電極シート又は第2電極シートの撓みが環状部材の内側の空気によって抑制されるといったことが回避され、当該空気による電極シートの撓みの抑制により荷重検知センサが誤検知することを抑止することができる。
 また、前記第1電極シートのシート面を平面視した場合に、前記環状部材と前記第1電極及び前記第2電極とは重なることが好ましい。
 このようにした場合、第1電極及び第2電極との間に環状部材が介在する。このため、第1電極及び第2電極自体の厚さにばらつきがあったとしても、環状部材によって、第1電極と第2電極との間の距離は概ね一定に保持される。従って、複数の荷重検知センサにおける第1電極と第2電極との間の距離のばらつきを環状部材によって低減することができ、当該荷重検知センサ間において第1電極と第2電極とが接触するために必要な荷重のばらつきが低減される。
 また、前記スペーサの厚さと前記接着層の厚さとの合計は、前記環状部材の高さと前記第1電極の厚さと前記第2電極の厚さとの合計と同程度とされることが好ましい。
 このようにした場合、環状部材が第1電極シート及び第2電極シートと非接着であっても、スペーサの開口内で環状部材が移動することが抑制される。また、荷重検知センサに荷重が加わっていない無荷重下で、接着層により接着されるスペーサと電極シートとを剥がす方向に応力が生じることを抑止し得る。
 また、前記第1電極シートのシート面を平面視した場合に、前記環状部材と前記第1電極及び前記第2電極とは重ならないことが好ましい。
 このようにした場合、環状部材が第1電極及び第2電極と重なる場合に比べて、当該第1電極及び第2電極にダメージを与え難くすることが可能である。
 また、前記スペーサの厚さと前記接着層の厚さとの合計は、前記環状部材の高さと同程度とされることが好ましい。
 このようにした場合、環状部材が第1絶縁シートと第2絶縁シートと非接着であっても、スペーサの開口内で環状部材が移動することが抑制される。また、荷重検知センサに荷重が加わっていない無荷重下で、接着層により接着されるスペーサと電極シートとを剥がす方向に応力が生じることを抑止し得る。
 以上のように本発明によれば、適切に荷重を検知することができる荷重検知センサを提供することができる。
第1実施形態の荷重検知センサの構成を示す分解図である。 荷重検知センサの構成を示す断面図である。 荷重検知センサのオン状態を示す図である。 第2実施形態の荷重検知センサユニットの構成を示す分解図である。 荷重検知センサユニットが座席装置のSばねに取り付けられた様子を示す断面図である。 第2実施形態における荷重検知センサの分解図である。 第2実施形態における荷重検知センサの断面図である。 荷重検知センサにおける第1電極シートのシート面を平面視した様子を示す図である。 荷重検知センサユニットのオン状態を示す図である。 第3実施形態の荷重検知センサを示す断面図である。 第4実施形態の荷重検知センサの構成を示す分解図である。 荷重検知センサを第2電極シート側から平面視した様子を示す図である。 第5実施形態の荷重検知センサの構成を示す分解図である。 図13のX-Xでの荷重検知センサの断面を示す図である。 第6実施形態の荷重検知センサの構成を示す分解図である。 実験条件の一部と、実験結果とを示す表である。 他の実験条件の一部と、実験結果とを示す表である。
 以下、本発明に係る荷重検知センサユニットの好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図のスケールと、以下の説明に記載のスケールとが異なる場合がある。
(1)第1実施形態
 図1は第1実施形態の荷重検知センサの構成を示す分解図であり、図2は荷重検知センサの構成を示す断面図である。図1、図2に示すように、荷重検知センサ5Aは、第1電極シート6と第2電極シート7とスペーサ8と環状部材9と接着層10とを主な構成要素として備える。なお、接着層10は、便宜上、図1では省略されている。
 第1電極シート6は、第1絶縁シート61及び第1電極62を有する。第1絶縁シート61は、可撓性を有する樹脂製の絶縁シートとされる。第1絶縁シート61の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド(PI)又はポリエチレンナフタレート(PEN)等の樹脂が挙げられる。
 第1電極62は、荷重検知センサ5AのスイッチSW(図2)を構成する一方のスイッチ素子であり、例えば略円形の金属印刷層とされる。この第1電極62は、第1絶縁シート61の一方の表面上に配置され、第1配線63を介して一対の端子の一方と電気的に接続される。
 第2電極シート7は、第2絶縁シート71及び第2電極72を有する。第2絶縁シート71は、第1電極シート6よりも押圧部PP(図2)側に配置され、可撓性を有するフィルム状の絶縁シートとされる。押圧部PPは、荷重検知センサ5AのスイッチSW(図2)を押圧するものであり、例えば荷重検知センサ5Aとは異なる他の部材に固定される。図2では、押圧部PPの先端は平面形状とされているが、凸状の曲面形状とされても良い。また、押圧部PPの先端は第2電極シート7の第2絶縁シート71と非接触とされるが、接触していても良い。第2絶縁シート71の材料としては、第1絶縁シート61と同様に、PET、PI又はPEN等の樹脂が挙げられる。また、第2絶縁シート71の材料と第1絶縁シート61の材料とは同じであっても異なっていても良い。
 第2電極72は、荷重検知センサ5AのスイッチSW(図2)を構成する他方のスイッチ素子であり、例えば略円形の金属印刷層とされる。この第2電極72は、第2絶縁シート71の一方の表面上に配置され、第2配線73を介して一対の端子の他方と電気的に接続される。なお、第2電極72の大きさは、本実施形態では第1電極62と同じ大きさとされる。
 スペーサ8は、第1電極シート6と第2電極シート7との間に介在され、可撓性を有する樹脂製の絶縁シートとされる。スペーサ8の材料としては、第1絶縁シート61及び第2絶縁シート71と同様に、PET、PI又はPEN等の樹脂が挙げられる。なお、スペーサ8の材料と第1絶縁シート61又は第2絶縁シート71の材料とは同じであっても異なっていても良い。
 また、スペーサ8は、スペーサ8の一方の面側から他方の面側にわたって貫通する開口81を有する。開口81の周縁形状は、例えば略円形であり、開口81は、その直径が第1電極62及び第2電極72の直径よりも大きくなるように形成される。
 さらに、スペーサ8は、開口81内の空間と荷重検知センサ5Aの外部の空間とを連通するスリット82を有する。このスリット82は、スペーサ8を第1電極シート6及び第2電極シート7と重ね合わせたときに、エアベントとなる。エアベントは、開口81内の空気を荷重検知センサ5Aの外部に抜くための通路である。
 環状部材9は、スペーサ8の開口81内に配置される環状の部材である。環状部材9の外径はスペーサ8の開口81の直径よりも小さく、環状部材9の内径は第1電極62及び第2電極72の直径よりも大きくされる。環状部材9の高さは、第1絶縁シート61とスペーサ8との間の接着層10の厚さと、第2絶縁シート71とスペーサ8との間の接着層10の厚さと、スペーサ8の厚さとの合計と同程度とされる。なお、環状部材9は、第1電極シート6のシート面を平面視した場合に、環状部材9と第1電極62及び第2電極72とは重ならない。
 このような環状部材9の材料としては、例えば、第1絶縁シート61、第2絶縁シート71、スペーサ8と同様に、PET、PI又はPEN等の樹脂が挙げられる。なお、環状部材9の材料と、スペーサ8、第1絶縁シート61又は第2絶縁シート71の材料とは同じであっても異なっていても良い。但し、スペーサ8や接着層10の膨張により環状部材9との高さが変化することを低減するためには、スペーサ8と環状部材9とが同じ材料とされることが好ましい。
 また、環状部材9は、スペーサ8の開口81内のうち環状部材9の内側すなわち環状部材9の開口内の空気を抜くための通気口91を有する。本実施形態では、通気口91は、環状部材9の高さ方向の一端から他端までにわたって切り込まれるスリットとされているが、環状部材の外周面から内周面までにわたって貫通する貫通孔であっても良い。なお、本実施形態の環状部材9の場合、通気口91によって環状部材9の周方向の一部が途切れている。この環状部材9の周方向に沿った途切れ部位の長さは、その途切れ部位を含む環状部材9の周方向全体の長さの1/5以下であることが好ましい。また、本実施形態では、途切れ部位が1箇所であるが、複数箇所あっても良い。但し、途切れ部位が複数箇所である場合、環状部材9の周方向に沿った途切れ部位の合計の長さは、各箇所の途切れ部位を含む環状部材9の周方向全体の長さの1/3以下であることが好ましい。このように、環状部材9は、輪のような形で延在する限り、1箇所又は断続的に途切れている場合も含まれる。但し、環状部材9が複数の部材に分かれることで組み立て工数が増えることを抑制する観点や、環状部材9が複数の部材に分かれることで振動等で環状部材が偏って配置され荷重が変化することを抑制する観点から、途切れている箇所は、1箇所以下であることが好ましい。
 接着層10は、第1電極シート6の第1絶縁シート61とスペーサ8との間、及び、第2電極シート7の第2絶縁シート71とスペーサ8との間の双方に配置される。この接着層10は、第1絶縁シート61,第2絶縁シート71とスペーサ8とを貼り合わす限り特に限定されない。例えば、粘着剤、接着剤、PETや不織布などの基材の両面に粘着剤や接着剤を設けて構成される両面テープ等が挙げられる。接着層10の材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂や光硬化樹脂等が挙げられる。なお、上記の粘着剤としては、例えば、シリコン系粘着剤、ウレタン系粘着剤、アクリル系粘着剤等が挙げられる。このような接着層10は、第1絶縁シート61,第2絶縁シート71とスペーサ8との間の面全体にわたって配置されていても良く、第1絶縁シート61,第2絶縁シート71とスペーサ8との間の複数の部位に散在して配置されていても良い。また、環状部材9の弾性率が接着層10の弾性率より大きいことが好ましい。
 以上の構成要素を組み合わせることで荷重検知センサ5Aが構成される。すなわち、スペーサ8の開口81内に環状部材9が配置された状態で、スペーサ8の一方の面側に第1電極シート6が接着層10で接着され、スペーサ8の他方の面側に第2電極シート7が接着層10で接着されることで荷重検知センサ5Aが構成される。
 この荷重検知センサ5Aでは、環状部材9は、スペーサ8の開口81の一方の開口面側に露出している第1絶縁シート61と、その開口81の他方の開口面側に露出している第2絶縁シート71との双方に接する。具体的には、環状部材9の一方の端部が第1絶縁シート61における開口81から露出する内周部分と接し、当該環状部材9の他方の端部が第2絶縁シート71における開口81から露出する内周部分と接する。従って、環状部材9は、第1絶縁シート61の開口81から露出する内周部分と第2絶縁シート71の開口81から露出する内周部分とを支え得る。但し、環状部材9は、スペーサ8の開口81の一方の開口面側に露出している第1絶縁シート61と、その開口81の他方の開口面側に露出している第2絶縁シート71との双方に非接着とされる。
 また、荷重検知センサ5Aでは、環状部材9の外周面は、スペーサ8と離間された状態で配置され、環状部材9の通気口91は、スペーサ8のスリット82を通じて、荷重検知センサ5Aの外部と連通する。なお、環状部材9の外周面の一部だけがスペーサ8と接していても良い。つまり、環状部材9の外周面は、少なくともスペーサ8の一部と離間されていれば良い。
 さらに、荷重検知センサ5Aでは、環状部材9における一方の開口端の内側に第1電極62が位置し、環状部材9における他方の開口端の内側に第2電極72が位置する。この環状部材9の内側を介して第1電極62と第2電極72とが互いに対向してスイッチSWを構成する。
 次に、本実施形態の荷重検知センサ5Aによる荷重の検知について説明する。
 図3は、荷重検知センサ5Aのオン状態を示す図である。押圧部PPは、荷重を受けて下方に移動することで、第2電極シート7の第2絶縁シート71のうちスペーサ8側の面とは反対側の面に接触し、当該第2絶縁シート71を押圧する。第2絶縁シート71は押圧部PPの押圧により環状部材9の内側に入り込むように撓むことで、第2電極72が第1電極62に接触して、荷重検知センサ5AのスイッチSWはオン状態となる。このとき、第2電極72と第1電極62とに電気的に接続される図示されない車両用制御ユニットにより荷重が検知される。
 なお、第2絶縁シート71が撓むとき、環状部材9の内側の空気は環状部材9の通気口91を介して環状部材9の外側に排出され、スペーサ8の開口81内の空気はスリット82を介して排出される。従って、第1絶縁シート61及び第2絶縁シート71の撓みが環状部材9の内側及びスペーサ8の開口81内の空気によって抑制されるといったことが回避され、荷重検知センサ5AのスイッチSWは適切にオン状態となる。
 以上のとおり、本実施形態の荷重検知センサ5Aは、第1電極62を有する第1電極シート6と、第1電極62と対向する第2電極72を有する第2電極シート7と、第1電極シート6と第2電極シート7との間に介在され、第1電極62と第2電極72との間に開口81を有するスペーサ8とを備える。また、荷重検知センサ5Aは、スペーサ8の開口81内に配置される環状部材9と、スペーサ8と第1電極シート6との間及びスペーサ8と第2電極シート7との間に配置される接着層10とを備える。
 このような荷重検知センサ5Aでは、スペーサ8の開口81内に環状部材9が配置されるため、第1電極シート6の開口81から露出する内周部分と第2電極シート7の開口81から露出する内周部分とが環状部材9に支えられる。この環状部材9は、スペーサ8の開口81に露出する第1電極シート6及びスペーサ8の開口81に露出する第2電極シート7の双方に非接着とされている。
 このため、第1電極シート6及び第2電極シート7の少なくとも一方にでも環状部材9が接着層10で接着される場合に比べると、接着層の温度変化による影響を受けなくなる。
 すなわち、接着層10は、高温環境下では軟化し、低温環境下では硬質化し易い傾向にある。このため、環状部材9がない場合には、スペーサ8の開口81のエッジ部分おける接着層10が温度環境に応じて変化してそのスペーサ8の開口81に入り込むように撓む第1電極シート6及び第2電極シート7の撓み方が変化する。この撓み方の変化によって第1電極62と第2電極72とが接触するために必要な荷重が変化する。これに対し、本実施形態では、スペーサ8の開口81内に配置される環状部材9は非接着とされるため、環状部材9の開口のエッジ部分では接着層10による温度環境の変化が生じない。このため、第2電極シート7が押圧されて環状部材9の内側に入り込むように撓む撓み方が概ね変化しない。従って、第1電極シート6及び第2電極シート7の少なくとも一方にでも環状部材9が接着層で接着される場合に比べると、第1電極62と第2電極72とが接触するために必要な荷重の変化を抑止できる。
 また、環状部材9があることで、接着層10に荷重が加わりにくくなり、接着層10がクリープ変形しづらく、仮に荷重検知センサ5Aが長期的に押圧されることで接着層10がクリープ変形しても、第1電極シート6と第2電極シート7との間の距離は環状部材9により概ね一定に保持される。この結果、クリープ変形に伴って第1電極62と第2電極72とが接触するために必要な荷重が変化することを低減し得る。
 こうして、適切に荷重を検知することができる荷重検知センサ5Aが実現される。
 また、本実施形態の環状部材9は、スペーサ8の開口81に露出する第1電極シート6及びスペーサ8の開口81に露出する第2電極シート7の双方と接している。
 このため、スペーサ8の開口81に露出する第1電極シート6及びスペーサ8の開口81に露出する第2電極シート7と環状部材9との間に隙間がないので、当該第1電極シート6及び第2電極シート7を環状部材9がより安定して支えることができる。従って、第1電極62と第2電極72とが接触するために必要な荷重の変化をより一段と低減することができる。
 また、本実施形態の環状部材9の外周面は、スペーサ8と離間されている。このため、荷重検知センサ5Aが高温環境下に存在することでスペーサ8と第1電極シート6との間の接着層10及びスペーサ8と第2電極シート7との間の接着層10が軟化して開口81に流動したとしても、環状部材9とスペーサ8との隙間に収めることができる。従って、軟化した接着層10が環状部材9と第1電極シート6や第2電極シート7との間に流動することを回避することができる。この結果、第1電極62と第2電極72とが接触するために必要な荷重の変化をより一段と低減することができる。
 また、本実施形態の環状部材9は、スペーサ8の開口81内における環状部材9の内側の空気を抜くための通気口91を有している。このため、第2電極シート7が環状部材9の内側に入り込むように撓んで、第1電極62と第2電極72とが接触するときに、環状部材9の内側の空気が通気口91から排出される。従って、第2電極シート7の撓みが環状部材9の内側の空気によって抑制されるといったことが回避され、荷重検知センサが誤検知することを抑止することができる。
 なお、環状部材9とスペーサ8とが同じ材料とされた場合、荷重検知センサ5Aが高温環境下に存在することに起因する環状部材9とスペーサ8との膨張が同程度となる。このため、第1電極シート6と第2電極シート7との間の距離は概ね一定に保持される。従って、環状部材9とスペーサ8とが同じ材料とされた場合には、熱膨張に起因して電極間の距離が変化することが低減される。この結果、荷重の変化をより一段と低減することができる。
 また、環状部材9は、第1電極シート6のシート面を平面視した場合に、環状部材9と第1電極62及び第2電極72とは重ならない。このようにすれば、環状部材9が第1電極62及び第2電極72と重なる場合に比べて、当該第1電極62及び第2電極72にダメージを与え難くすることが可能である。
 環状部材9の高さは、第1絶縁シート61とスペーサ8との間の接着層10の厚さと、第2絶縁シート71とスペーサ8との間の接着層10の厚さと、スペーサ8の厚さとの合計と同程度とされる。
 このようにした場合、環状部材9が第1絶縁シート61と第2絶縁シート71と非接着であっても、スペーサ8の開口81内で環状部材9が移動することが抑制される。また、荷重検知センサ5Aに荷重が加わっていない無荷重下で、接着層10により接着されるスペーサと電極シートとを剥がす方向に応力が生じることを抑止し得る。
(2)第2実施形態
 次に、第2実施形態として荷重検知センサユニットを説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図4は第2実施形態の荷重検知センサユニットの構成を示す分解図であり、図5は荷重検知センサユニットが座席装置のSばねに取り付けられた様子を示す断面図である。なお、図5では、便宜上、荷重検知センサ5Bが断面で示されていない。図4、図5に示すように、荷重検知センサユニット100は、サポートプレート2、上部ケース4及び荷重検知センサ5Bを主な構成要素として備える。
 サポートプレート2は、荷重検知センサ5Bが載置される載置部21と、当該載置部21に連結される一対のフック部22とを有している。載置部21は、幅の広いメインブロック載置部21mと、メインブロック載置部21mから延在しメインブロック載置部21mよりも狭い幅とされるテールブロック載置部21tとを含む。本実施形態では、上記フック部22はメインブロック載置部21mに連結している。また、本実施形態では、載置部21及び一対のフック部22は金属板を曲げ加工することで一体に成型されている。なお、サポートプレート2の板厚は例えば0.8mmとされる。
 メインブロック載置部21mのシートクッションSCに対向される側の面には、荷重検知センサ5Bのメインブロック50mが配置される。また、メインブロック載置部21mには、図4に示すようにサポートプレート2を貫通する複数の円形の貫通孔20Hが形成され、さらに、概ね矩形の複数のケース止用開口24が形成されている。
 なお、図5に示すように、メインブロック載置部21mは、車両の座席装置における座席フレームの開口に並べて張り渡される複数のSばねBNのうち互いに対向する2本のSばねBNの間に配置可能な程度の大きさとされる。なお、SばねBNは、S状に蛇行するばねである。
 また、テールブロック載置部21tは、概ね矩形の形状をしており、メインブロック載置部21mを平面視する場合に、一対のフック部22を結ぶ方向と概ね垂直な方向に延在する。このテールブロック載置部21tのシートクッションSCに対向される側の面には、荷重検知センサ5Bのテールブロック50tが配置される。なお、本実施形態では、テールブロック載置部21tの延在方向に垂直な方向の幅は、荷重検知センサ5Bのテールブロック50tの幅よりも小さくされ、テールブロック載置部21tの延在方向の長さは、荷重検知センサ5Bのテールブロック50tの長さよりも小さくされる。
 上部ケース4は、載置部21のメインブロック載置部21mに載置されるメインブロック50mを覆ってメインブロック50mのスイッチSWなどを保護する部材である。また、上部ケース4は、図5に示すように、シートクッションSCに押圧されることで荷重検知センサ5BのスイッチSWを押圧する押圧部材でもある。
 この上部ケース4は、頂壁45及び枠壁48を有する。本実施形態では頂壁45は概ね矩形とされる板状の部材である。また、上部ケース4の枠壁48は複数に分割されて、頂壁45の外周に沿って頂壁45に接続されている。複数に分割されている枠壁48の各間において、フック片47が頂壁45に接続されている。それぞれのフック片47は、サポートプレート2のメインブロック載置部21mにおけるケース止用開口24に嵌め込まれる構成とされる。それぞれのフック片47がケース止用開口24に嵌め込まれることで、サポートプレート2と上部ケース4とのメインブロック載置部21mの載置面方向における相対的な移動が規制される。
 上部ケース4の頂壁45には、サポートプレート2の載置部21に対向される側の底面から突出する押圧部46が設けられている。この押圧部46の先端は平面形状とされる。なお、押圧部46の先端は凸状の曲面形状とされても良い。本実施形態の場合、載置部21に載置される荷重検知センサ5Bを上部ケース4が覆い各ケース止用開口24に対応するフック片47が嵌め込まれた状態では、押圧部46の先端は荷重検知センサ5Bと接触しているが、接触していなくても良い。
 上部ケース4の頂壁45における上面45Sは、図5に示すように、一対のSばねBNに荷重検知センサユニット100が取り付けられた状態では、シートクッションSCの下面と離間しているが、接触していても良い。この上面45Sは平面形状とされる。上面45SはシートクッションSCからの押圧を受ける受圧面であり、当該上面45Sの面積は押圧部46における荷重検知センサ5BのスイッチSWと接触する部分の面積よりも大きくされている。
 なお、上部ケース4は、シートクッションSCよりも硬質な材料から形成されている。従って、上部ケース4の一部である押圧部46もシートクッションSCよりも硬質な材料から形成されている。一般的にシートクッションSCは発泡されたウレタン樹脂からなるため、このような上部ケース4の材料としては、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
 荷重検知センサ5Bは、上記のように、概ね矩形のメインブロック50mと、メインブロック50mに接続されメインブロック50mよりも幅の狭いテールブロック50tとを有する。メインブロック50mにはスイッチSWが設けられている。メインブロック50mの各頂点付近には、貫通孔50Hが形成されている。これら貫通孔50Hは、サポートプレート2の載置部21に形成される複数の貫通孔20Hと重なる位置関係で形成される。テールブロック50tは、メインブロック50mに連結され、メインブロック50mから離れるように延在する。
 図6は第2実施形態における荷重検知センサの分解図であり、図7は第2実施形態における荷重検知センサの断面図である。図6、図7に示すように、本実施形態における荷重検知センサ5Bは、第1電極シート56と第2電極シート57とスペーサ58と環状部材59と接着層10とを主な構成要素として備える。なお、接着層10は、便宜上、図6では省略されている。
 第1電極シート56は、第1絶縁シート56sと、第1電極56eと、第1端子56cとを有する。
 第1絶縁シート56sは、可撓性を有する樹脂製の絶縁シートとされる。この第1絶縁シート56sは、メインブロック56mと、メインブロック56mに接続されるテールブロック56tとから成る。テールブロック56tの形状は、メインブロック56mと反対側の先端部位がテールブロック56tの他の部位よりも狭い幅となっている。また、メインブロック56mには貫通孔56Hが形成されている。なお、貫通孔56Hは、上記荷重検知センサ5Bの貫通孔50Hの一部である。このような第1絶縁シート56sの材料としては、PET、PI又はPEN等の樹脂が挙げられる。
 第1電極56eは、メインブロック56mの概ね中央における一方の面上に設けられている。第1電極56eは、導体の層からなり、例えば略円形の金属印刷層とされる。第1端子56cは、導体の層からなり、例えば略四角形の金属層とされる。第1端子56cは、テールブロック56tの上記先端部位における第1電極56eが設けられている側の面上に設けられている。また、第1電極56eと第1端子56cとは第1配線56wを介して互いに電気的に接続されている。
 第2電極シート57は、第2絶縁シート57sと、金属板60と、金属用接着層70と、第2電極57eと、第2端子57cとを有する。上記第1実施形態の第2電極シート7は、第2絶縁シート71の1層で構成されていたのに対し、本実施形態の第2電極シート57は、第2絶縁シート57sと金属板60との2層で構成されている。
 第2絶縁シート57sは、第1電極シート56よりもシートクッションSC(図4)側に配置され、第1絶縁シート56sと同様に樹脂製の絶縁シートとされる。本実施形態の場合、第2絶縁シート57sの厚さは、第1絶縁シート56sの厚さよりも小さくされ、金属板60の厚さ未満とされる。また、第2絶縁シート57sは、第1絶縁シート56sのメインブロック56mと同じ形状のメインブロック57mと、メインブロック57mに接続され第1絶縁シート56sのテールブロック56tと先端部位以外の形状が同じ形状のテールブロック57tとから成る。テールブロック57tの先端部位はテールブロック57tの他の部位よりも狭い幅とされており、第1絶縁シート56sと第2絶縁シート57sとを重ねたときに、第1絶縁シート56sのテールブロック56tにおける先端部位と第2絶縁シート57sのテールブロック57tにおける先端部位とが互いに重ならないようにされている。また、メインブロック57mには貫通孔57Hが形成されている。なお、貫通孔57Hは、第1絶縁シート56sの貫通孔56Hと同様に、上記荷重検知センサ5Bの貫通孔50Hの一部である。このような第2絶縁シート57sの材料としてはPET、PI又はPEN等の樹脂が挙げられ、第2絶縁シート57sの材料と第1絶縁シート56sの材料とは同じであっても異なっていても良い。
 金属板60は、金属用接着層70により第2絶縁シート57sの一方の面に貼り付けられる。本実施形態では、金属板60は、第2絶縁シート57sの一部であるメインブロック57mのシートクッションSC側の面に貼り付けられる。この金属板60には貫通孔60Hが形成されている。なお、貫通孔60Hは、上記荷重検知センサ5Bの貫通孔50Hの一部である。このような金属板60の材料としては、特に限定するものではないが、例えば銅やステンレス等が挙げられる。
 金属用接着層70は、第2絶縁シート57sのメインブロック57mと金属板60との間に配置される。この金属用接着層70は、第2絶縁シート57sと金属板60とを貼り合わす限り特に限定されない。例えば、粘着剤、接着剤、PETや不織布などの基材の両面に接着層を設けて構成される両面テープ等が挙げられる。金属用接着層70の材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂や光硬化樹脂等が挙げられる。なお、金属用接着層70の材料と、接着層10の材料とは同じであっても異なっていても良い。ここで、金属用接着層70のガラス転移点Tgとしては、85℃以上であることが好ましい。ガラス転移点Tgが、85℃以上であることで、炎天下の自動車の車内の様に高温になる環境においても、流動しづらいため、金属用接着層70の流動による着座の誤検知を抑制することができる。なお、金属用接着層70は、第2絶縁シート57sと金属板60とを貼り合わす限り、第2絶縁シート57sと金属板60との間の面全体にわたって配置されていても良く、第2絶縁シート57sと金属板60との間の複数の部位に散在して配置されていても良い。
 第2電極57eは、第1電極56eと同様の構成とされ、第2絶縁シート57sのメインブロック57mの概ね中央における一方の面上に設けられている。また、第2電極57eが設けられる位置は、第1電極シート56と第2電極シート57とを重ねたときに第1電極56eと重なる位置とされる。第2端子57cは、第1端子56cと同様の構成とされ、テールブロック57tの上記先端部位における第2電極57eが設けられている側の面上に設けられている。また、上記のように、第1絶縁シート56sと第2絶縁シート57sとを重ねるとき、それぞれの絶縁シートの先端部位が互いに重ならないため、第1端子56c及び第2端子57cは、第1絶縁シート56sと第2絶縁シート57sとの間に位置せずに露出する。また、第2電極57eと第2端子57cとは第2配線57wを介して互いに電気的に接続されている。
 スペーサ58は、第1電極シート56及び第2電極シート57の間に配置され、可撓性を有する樹脂製の絶縁シートとされる。このスペーサ58は、メインブロック58mと、メインブロック58mに接続されるテールブロック58tとから成る。メインブロック58mは、外形が第1絶縁シート56s、第2絶縁シート57sのメインブロック56m,57mの外形と同様とされる。テールブロック58tは、第1絶縁シート56s、第2絶縁シート57sのテールブロック56t,57tにおける幅が狭い先端部位を除く形状とされる。このスペーサ58には、第1絶縁シート56s、第2絶縁シート57sと同様にして貫通孔58Hが形成されている。なお、貫通孔58Hは、上記荷重検知センサ5Bの貫通孔50Hの一部である。このようなスペーサ58の材料としては、第1絶縁シート56s及び第2絶縁シート57sと同様に、PET、PI又はPEN等の樹脂が挙げられる。なお、スペーサ58の材料は、第1絶縁シート56s又は第2絶縁シート57sの材料と同じであっても異なっていても良い。
 また、スペーサ58のメインブロック58mは、スペーサ58の一方の面側から他方の面側にわたって貫通する開口58cを有する。この開口58cを介して第1電極56eと第2電極57eとが互いに対向する。開口58cの周縁形状は、例えば略円形であり、開口58cは、その直径が第1電極56e及び第2電極57eの直径よりも小さくなるように形成される。
 上記第1実施形態のスペーサ8の開口81は、その直径が第1電極62及び第2電極72の直径よりも大きくなるように形成された。これに対し、本実施形態のスペーサ58の開口58cは、その直径が第1電極56e及び第2電極57eの直径よりも小さくなるように形成される。従って、本実施形態の開口58cは、スペーサ58を第1電極シート56及び第2電極シート57と重ね合わせた場合、スペーサ58の開口58cは第1電極56e及び第2電極57e周縁の内側に位置する。
 さらに、スペーサ58は、開口58c内の空間と荷重検知センサ5Bの外部の空間とを連通するスリット58bを有する。このスリット58bは、第1電極シート56、スペーサ58、第2電極シート57をそれぞれ重ねたときに、エアベントとなる。エアベントは、開口58c内の空気を荷重検知センサ5Bの外部に抜くための通路である。
 環状部材59は、スペーサ58の開口58c内に配置される環状の部材である。環状部材59の外径はスペーサ58の開口58cの直径よりも小さく、第1電極56e及び第2電極57eの直径よりも小さくされる。
 上記第1実施形態の環状部材9の内径は、第1電極62及び第2電極72の直径よりも大きくされたのに対し、本実施形態の環状部材59の内径及び外径は、ともに、第1電極56e及び第2電極57eの直径よりも小さくされる。従って、図8に示すように、スペーサ58を第1電極シート56及び第2電極シート57と重ね合わせ、第2電極シート57のメインブロック57mのシート面を平面視した場合、本実施形態の環状部材59と第2電極57eとは重なる。また、図7に示すように、環状部材59の高さと第1電極56eの厚さと第2電極57eの厚さとの合計は、第1絶縁シート61及びスペーサ8の間の接着層10の厚さと第2絶縁シート71及びスペーサ8の間の接着層10の厚さとスペーサ8の厚さとの合計と同程度とされる。なお、環状部材59の弾性率は、上記第1実施形態と同様に、接着層10の弾性率より大きいことが好ましい。
 このような環状部材59の材料としては、第1絶縁シート56s、第2絶縁シート57s、スペーサ58と同様に、PET、PI又はPEN等の樹脂が挙げられる。なお、環状部材59の材料と、スペーサ58、第1絶縁シート56s又は第2絶縁シート57sの材料とは同じであっても異なっていても良い。但し、スペーサ58の膨張により環状部材59との高さが変化することを低減するためには、少なくともスペーサ58と環状部材59とが同じ材料とされることが好ましい。
 また、環状部材59は、スペーサ58内の開口58c内のうち環状部材59の内側の空気を抜くための通気口59bを有する。通気口59bは、本実施形態では、環状部材59の高さ方向の一端から他端までにわたって切り込まれるスリットとされているが、環状部材の外周面から内周面までにわたって貫通する貫通孔であっても良い。なお、第1実施形態の環状部材9と同様に、本実施形態の環状部材59は、輪のような形で延在する限り、1箇所又は断続的に途切れている場合も含まれる。但し、途切れている箇所は、1箇所以下であることが好ましい。
 以上の構成要素を組み合わせることで荷重検知センサ5Bが構成される。すなわち、スペーサ58の開口58c内に環状部材59が配置された状態で、スペーサ58の一方の面側に第1電極シート56が接着層10で接着され、スペーサ58の他方の面側に第2電極シート57が接着層10で接着されることで荷重検知センサ5Bが構成される。
 この荷重検知センサ5Bでは、それぞれの貫通孔56H,57H,58Hが互いに重なり、貫通孔50Hとなる。また、スペーサ58の開口58cの一方の開口面側に露出している第1電極シート56の第1電極56eと、その開口58cの他方の開口面側に露出している第2電極シート57の第2電極57eとが互いに対向してスイッチSWを構成する。
 さらに、これら第1電極56e及び第2電極57eの双方に環状部材59が接する。具体的には、環状部材59の一方の端部が開口58cの内周に沿って第1電極シート56の第1電極56eと接し、当該環状部材59の他方の端部が開口58cの内周に沿って第2電極シート57の第2電極57eと接する。従って、環状部材59は、第1電極シート56と第2電極シート57とを支え得る。但し、環状部材59は、第1電極シート56の第1電極56eと接しているが、当該第1電極56eと非接着とされる。同様に、環状部材59は、第2電極シート57の第2電極57eと接しているが、当該第2電極57eと非接着とされる。
 また、荷重検知センサ5Bでは、環状部材59の外周面は、スペーサ58と離間された状態で配置され、環状部材59の通気口59bは、スペーサ58のスリット58bを通じて、荷重検知センサ5Bの外部と連通する。なお、環状部材59の外周面の一部がスペーサ58と接していても良い。つまり、環状部材59の外周面は、少なくともスペーサ58の一部と離間されていれば良い。
 このような荷重検知センサ5Bの第1端子56c及び第2端子57cには、不図示の制御装置に接続される信号ケーブル19がそれぞれ接続される。第1端子56c及び第2端子57cとそれぞれの信号ケーブル19とは導電性ペーストやはんだ付け等により接続される。
 以上の構成の荷重検知センサ5Bは、図4に示すように、サポートプレート2に配置される。具体的には、スイッチSWを有する荷重検知センサ5Bのメインブロック50mがサポートプレート2のメインブロック載置部21m上に配置され、荷重検知センサ5Bのテールブロック50tがサポートプレート2のテールブロック載置部21t上に配置される。また、テールブロック50tに設けられる第1端子56c及び第2端子57cはテールブロック載置部21tからはみ出た状態とされる。従って、第1端子56c及び第2端子57cは、サポートプレート2と重ならない領域に位置する。そして、荷重検知センサ5Bの第1端子56c、第2端子57cに接続されるそれぞれの信号ケーブル19はサポートプレート2から離れるように導出される。
 このように、荷重検知センサ5Bがサポートプレート2上に配置された状態で、信号ケーブル19が接続された第1端子56c及び第2端子57cを含むテールブロック50tの端部は、保護樹脂18により被覆されている。なお、保護樹脂18は、例えば、ポリアミド系、ポリイミド系、オレフィン系、ウレタン系、アクリル系等の熱可塑性樹脂や光硬化樹脂等の樹脂から成る。
 また、上記のように、サポートプレート2に載置される荷重検知センサ5Bを上部ケース4が覆いそれぞれのケース止用開口24にそれぞれのフック片47が嵌め込まれた状態では、押圧部46は、荷重検知センサ5Bの金属板60のうちスイッチSWと重なる位置に先端が接触する。また、この状態では、各リブ49は、荷重検知センサ5Bの貫通孔50H及びサポートプレート2の貫通孔20Hに挿通される。従って、サポートプレート2と第1絶縁シート56sとが接着されていない状態であっても、荷重検知センサ5BのスイッチSWと上部ケース4の押圧部46との相対的な移動が規制される。すなわち、リブ49は、サポートプレート2の面方向おける荷重検知センサ5Bとサポートプレート2との相対的な移動を規制する移動規制部材と理解できる。
 次に、本実施形態の荷重検知センサユニット100による荷重の検知について説明する。
 図9は、荷重検知センサユニットのオン状態を示す図である。座席装置に人が着座すると、シートクッションSCの下面が下方に移動し、シートクッションSCの下面は、上部ケース4の上面45Sに接触して、上面45Sを押圧する。そして、さらにシートクッションSCの下面が下方に移動すると、図9に示すように、押圧部46の先端が、荷重検知センサ5Bにおける第2電極シート57の金属板60を押圧し、金属板60の撓みにより、第2絶縁シート57sのメインブロック57mが環状部材59の内側に入り込むように撓む。このため、第2電極57eは第1電極56eに接触して、荷重検知センサ5BのスイッチSWはオン状態となる。そして、信号ケーブル19に接続される図示せぬ車両用制御ユニットにより着座が検知される。このとき、本実施形態では、第1絶縁シート56sのメインブロック56mのサポートプレート側の面はサポートプレート2に接着されていないため、少なくともスイッチSWの周辺部分は金属板60の撓み方に追随するように変形することができるので、スイッチSWがオンし易い。
 なお、第2電極シート57が撓むとき、環状部材59の開口及びスペーサ58の開口58cの空気はスリット58bを介して排出される。従って、第1電極シート56及び第2電極シート57の撓みが環状部材59の開口及びスペーサ58の開口58c内の空気によって抑制されるといったことが回避され、荷重検知センサ5AのスイッチSWは適切にオン状態となる。
 以上のとおり、本実施形態の荷重検知センサ5Bは、第1電極56eを有する第1電極シート56と、第1電極56eと対向する第2電極57eを有する第2電極シート57と、第1電極シート56と第2電極シート57との間に介在され、第1電極56eと第2電極57eとの間に開口58cを有するスペーサ58とを備える。また、荷重検知センサ5Bは、スペーサ58の開口58c内に配置される環状部材59と、スペーサ58と第1電極シート56との間及びスペーサ58と第2電極シート57との間に配置される接着層10とを備える。
 このような荷重検知センサ5Bでは、スペーサ8の開口81内に環状部材59が配置されるため、第1電極シート56の開口81から露出する内周部分と第2電極シート57の開口81から露出する内周部分とが環状部材59に支えられる。この環状部材59は、スペーサ58の開口58cに露出する第1電極シート56及びスペーサ58の開口58cに露出する第2電極シート57の双方に非接着とされている。
 このため、第1電極シート56及び第2電極シート57の少なくとも一方に環状部材59が接着層10で接着される場合に比べると、接着層の温度変化による影響を受けることを抑制できる。
 すなわち、接着層10は、高温環境下では軟化し、低温環境下では硬質化し易い傾向にある。このため、環状部材59がない場合には、スペーサ58の開口58cのエッジ部分おける接着層10が温度環境に応じて変化してそのスペーサ58の開口58cに入り込むように撓む第1電極シート56及び第2電極シート57の撓み方が変化する。この撓み方の変化によって第1電極56eと第2電極57eとが接触するために必要な荷重が変化する。これに対し、本実施形態では、スペーサ58の開口58c内に配置される環状部材59は非接着とされるため、環状部材59の開口のエッジ部分では接着層10による温度環境の変化が生じない。このため、第2電極シート57が押圧されて環状部材59の開口に入り込むように撓む撓み方が概ね変化しない。従って、第1電極シート56及び第2電極シート57の少なくとも一方に環状部材59が接着層で接着される場合に比べると、第1電極56eと第2電極57eとが接触するために必要な荷重の変化を抑止できる。
 また、環状部材59があることで、接着層10に荷重が加わりにくくなり、接着層10がクリープ変形しづらく、仮に荷重検知センサ5Bが長期的に押圧されることで接着層10がクリープ変形しても、第1電極シート56と第2電極シート57との間の距離は環状部材59により概ね一定に保持することができる。この結果、クリープ変形に伴って第1電極56eと第2電極57eとが接触するために必要な荷重の変化が低減される。
 このように本実施形態の荷重検知センサ5Bによれば、上記第1実施形態の荷重検知センサ5Aと同様に、適切に荷重を検知することができる。
 また、本実施形態の環状部材59は、上記第1実施形態と同様に、スペーサ58の開口58cに露出する第1電極シート56及びスペーサ58の開口58cに露出する第2電極シート57の双方に接している。
 このため、スペーサ58の開口58cに露出する第1電極シート56及びスペーサ58の開口58cに露出する第2電極シート57と環状部材59との間に隙間がないので、当該第1電極シート56及び第2電極シート57を環状部材59がより安定して支えることができる。従って、第1電極56eと第2電極57eとが接触するために必要な荷重の変化をより一段と低減することができる。
 また、本実施形態の環状部材59の外周面は、上記第1実施形態と同様に、スペーサ58と離間されている。このため、荷重検知センサ5Bが高温環境下に存在することでスペーサ58と第1電極シート56との間の接着層10及びスペーサ58と第2電極シート57との間の接着層10が軟化して開口58cに流動したとしても、環状部材59とスペーサ58との隙間に収めることができる。従って、軟化した接着層10が環状部材59と第1電極シート56及び第2電極シート57との間に流動することが回避される。この結果、第1電極56eと第2電極57eとが接触するために必要な荷重の変化をより一段と低減することができる。
 また、本実施形態の環状部材59は、上記第1実施形態と同様に、スペーサ8の開口81内のうち環状部材59の内側の空気を抜くための通気口59bを有している。このため、第2電極シート57が環状部材59の内側に入り込むように撓んで、第1電極56eと第2電極57eとが接触するときに、スペーサ8の開口81内のうち環状部材59の内側の空気が通気口59bから排出される。従って、第2電極シート57の撓みがスペーサ8の開口81内の空気によって抑制されるといったことが回避され、荷重検知センサ5Bが誤検知することを抑止することができる。
 ところで、上記のように、上記第1実施形態のスペーサ8の開口81は、その直径が第1電極62及び第2電極72の直径よりも大きく形成されたのに対し、本実施形態のスペーサ58の開口58cは、その直径が第1電極56e及び第2電極57eの直径よりも小さく形成される。このため、本実施形態のスペーサ58の開口58cは第1電極56e及び第2電極57e周縁の内側に位置する。また、スペーサ58の開口58cに露出する第1電極シート56のうちの第1電極56eと、当該開口58cに露出する第2電極シート57のうちの第2電極57eとに環状部材59が非接着の状態で接する。従って、本実施形態の荷重検知センサ5Bでは、第1電極シート56のシート面を平面視した場合に、環状部材59と第1電極56e及び第2電極57eとは重なる。第1電極56e及び第2電極57eは、第1配線56w、第2配線57wと接続されていないダミー電極を有し、そのダミー電極が環状部材59と重なっていても良い。
 第1電極56e及び第2電極57eとの間に環状部材59が介在する。このため、第1電極56e及び第2電極57e自体の厚さにばらつきがあったとしても、環状部材59によって、第1電極56eとび第2電極57eとの間の距離は概ね一定に保持される。従って、複数の荷重検知センサ5Bにおける第1電極56eと第2電極57eとの間の距離のばらつきを環状部材59によって低減することができる。この結果、複数の荷重検知センサ5B間において第1電極56eと第2電極57eとが接触するために必要な荷重のばらつきが低減され得る。
 また、スペーサ58の厚さと接着層10の厚さとの合計は、環状部材59の高さと第1電極56eの厚さと第2電極57eの厚さとの合計と同程度とされる。
 このため、環状部材59が第1電極シート56及び第2電極シート57と非接着であっても、スペーサ58の開口58c内で環状部材59が移動することが抑制される。また、荷重検知センサ5Bに荷重が加わっていない無荷重下で、接着層10により接着されるスペーサ58と第1電極シート56及び第2電極シート57とを剥がす方向に応力が生じることを抑止し得る。
 また、本実施形態では、第2電極シート57は金属板60を有し、金属板60は金属用接着層70を介して樹脂製の第2絶縁シート57sと接着される。金属は、樹脂に比べて環境温度の変化に応じて可撓性が変化し難いため、クリープが生じ難く押し癖もつき難い傾向にある。しかし、本実施形態では、金属板60は金属用接着層70を介して樹脂製の第2絶縁シート57sと接着されているので、第2電極シート57の押圧が解除され、非押圧時の位置にまで金属板60が戻るときに、当該位置にまで金属板60が樹脂製の第2絶縁シート57sを戻すことができる。従って、荷重検知センサ5Bの周りの環境温度が変化する場合であっても、樹脂製の第2絶縁シート57sに押し癖がつき難くなり、当該押し癖に起因して着座等に応じて加わる荷重の誤検知を抑制することができる。この結果、着座等に応じて加わる荷重を適切に検知することができる。なお、環状部材59と併用されることで、更に適切に着座等に応じて加わる荷重を適切に検知することが可能となる。
 また、本実施形態では、第2絶縁シート57sの厚さが金属板60の厚さ未満とされているため、当該第2絶縁シート57sの厚さが金属板60の厚さ以上である場合に比べて、樹脂である第2絶縁シート57sの変形量を小さくすることができる。つまり、第2絶縁シート57sがなく金属板60のみで第2電極シートが構成される場合に近づくことになる。従って、第1電極56eと第2電極57eとが接触するために必要な荷重が温度変化によりばらつくことを低減できる。
 また、本実施形態では、第2絶縁シート57sの厚さは、第1絶縁シート56sの厚さ未満とされる。このため、荷重検知センサ5Bをより薄くしながらも温度変化による荷重の誤検知を抑制することができる。
(3)第3実施形態
 次に、第3実施形態として荷重検知センサユニットを説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図10は、第3実施形態の荷重検知センサを示す断面図である。図10に示すように、本実施形態の荷重検知センサ5Cは、第1実施形態における第2電極シート7の第2絶縁シート71に代えて金属シート101を採用した点で相違する。
 金属シート101は、可撓性を有する薄厚の金属シートとされ、接着層10によりスペーサ8と接着される。金属シート101の材料としては、金属である限り特に限定するものではないが、例えば銅やステンレスなどが挙げられる。
 本実施形態の場合、この金属シート101においてスペーサ8の開口81を介して第1電極62と対向する部位が第2電極72とされる。すなわち、金属シート101の一部が第2電極72を兼ねている。なお、例えば、金属シート101と同じ材料又は異なる材料の金属層が、第2電極72として、金属シート101においてスペーサ8の開口81を介して第1電極62と対向する部位に配置されても良い。
 このような荷重検知センサ5Cであっても、第1実施形態の荷重検知センサ5A及び第2実施形態の荷重検知センサ5Bについて上述した効果と同様の効果を有する。さらに、本実施形態では、第2絶縁シート71に代えて金属シート101が採用される。
 上記のように、金属は、樹脂に比べて環境温度の変化に応じて可撓性が変化し難いため、クリープが生じ難く押し癖もつき難い傾向にある。従って、この荷重検知センサ5Cでは、クリープや押し癖に起因して着座等に応じて加わる荷重の誤検知を抑制することができ、この結果、着座等に応じて加わる荷重を適切に検知することができる。
(4)第4実施形態
 次に、第4実施形態として荷重検知センサユニットを説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図11は第4実施形態の荷重検知センサの構成を示す分解図であり、図12は荷重検知センサを第2電極シート側から平面視した様子を示す図である。図11、図12に示すように、本実施形態の荷重検知センサ5Dは、第1電極シート66と第2電極シート67とスペーサ68と複数の環状部材9A~9Dと連通部材80と接着層10とを主な構成要素として備える。なお、接着層10は、便宜上、図11では省略されている。
 第1電極シート66は、第1絶縁シート66sと、第1電極66e1~66e4と、第1端子66c1と、第2端子66c2とを有する。
 第1絶縁シート66sは、可撓性を有する樹脂製の絶縁シートとされ、例えばH型形状とされる。この第1絶縁シート66sは、第1メインブロックB1と、第2メインブロックB2と、第1メインブロックB1及び第2メインブロックB2を連結する連結ブロックB3と、連結ブロックから延在するテールブロックB4とからなる。第1メインブロックB1及び第2メインブロックB2は、帯状のブロックとされる。連結ブロックB3は、第1メインブロックB1及び第2メインブロックB2における長手方向の中間部位同士を連結する帯状のブロックとされる。テールブロックB4は、連結ブロックB3よりも小さく、当該連結ブロックB3における長手方向の中間部位の端部から突出する略矩形状のブロックとされる。このような第1絶縁シート56sの材料としては、PET、PI又はPEN等の樹脂が挙げられる。
 第1電極66e1~66e4は、導体の層からなり、例えば略円形の金属印刷層とされる。第1電極66e1及び第1電極66e2は第1メインブロックB1の一方の表面上に配置され、本実施形態では、同一直線状に並ぶ状態とされる。第1電極66e3及び第1電極66e4は、第2メインブロックB2のうち第1電極66e1及び第1電極66e2が配置されている面と同じ表面上に配置され、本実施形態では、同一直線状に並ぶ状態とされる。
 第1端子66c1及び第2端子66c2は、導体の層からなり、例えば略四角形の金属シートとされる。第1端子66c1及び第2端子66c2は、テールブロックB4のうち第1電極66e1~66e4が配置されている面と同じ表面上に配置される。
 第1電極66e1と第1電極66e2とは第1配線66w1により電気的に接続され第1電極66e3及び第1電極66e4とは第1配線66w2により電気的に接続される。また、第1配線66w1と第1端子66c1とは第1配線66w3により電気的に接続され、第1配線66w2と第2端子66c2とは第1配線66w4により電気的に接続される。
 第2電極シート67は、第2絶縁シート67sと、複数の第2電極67e1~67e4とを有する。
 第2絶縁シート67sは、可撓性を有するフィルム状の絶縁シートとされ、例えばH型形状とされる。本実施形態の場合、第2絶縁シート67sは、第1メインブロックB11と、第2メインブロックB12と、第1メインブロックB11及び第2メインブロックB12連結する連結ブロックB13とからなる。第1メインブロックB11は第1絶縁シート66sにおける第1メインブロックB1と同形同大とされ、第2メインブロックB12は第1絶縁シート66sにおける第2メインブロックB2と同形同大とされる。連結ブロックB13は第1絶縁シート66sにおける連結ブロックB3と同形同大とされる。このような第2絶縁シート67sの材料としては、第1絶縁シート66sと同様に、PET、PI又はPEN等の樹脂が挙げられる。なお、第2絶縁シート67sの材料は、第1絶縁シート66sの材料と同じであっても異なっていても良い。
 また、第2絶縁シート67sは、第2絶縁シート67sの一方の面側から他方の面側にわたって貫通する空気抜き口67opを有する。この空気抜き口67opは、環状部材9A~9Dの開口内の空気を荷重検知センサ5Dの外部に抜くための開口であり、第2電極シート67のシート面を平面視した場合に、第2電極67e1~67e4と重ならない位置に設けられる。例えば、空気抜き口67opは、連結ブロックB3に設けられる。
 第2電極67e1~67e4は、導体の層からなり、例えば略円形の金属印刷層とされる。第2電極67e1及び第2電極67e2は第1メインブロックB11の一方の表面上に配置され、第2電極67e3及び第2電極67e4は第2メインブロックB12のうち第2電極67e1及び67e2が配置されている面と同じ表面上に配置される。本実施形態の場合、第2電極67e1~67e4の大きさは第1電極66e1~66e4と同じ大きさとされる。また、第2電極67e1及び67e2の配置位置は第1メインブロックB1に対する第1電極66e1及び66e2の配置位置と相対的に同じ位置とされ、第2電極67e3及び67e4の配置位置は第2メインブロックB2に対する第1電極66e3及び66e4の配置位置と相対的に同じ位置とされる。
 第2電極67e1と第2電極67e2とは第2配線67w1により電気的に接続され、第2電極67e3と第2電極67e4とは第2配線67w2により電気的に接続され、当該第2配線67w1と第2配線67w2とは第2配線67w3により電気的に接続される。
 スペーサ68は、第1電極シート66及び第2電極シート67の間に配置され、可撓性を有する樹脂製の絶縁シートとされる。本実施形態の場合、スペーサ68は、例えばH型形状とされ、第1メインブロックB21と、第2メインブロックB22と、第1メインブロックB21及び第2メインブロックB22を連結する連結ブロックB23とからなる。第1メインブロックB21は第1絶縁シート66sにおける第1メインブロックB1と同形同大とされ、第2メインブロックB22は第1絶縁シート66sにおける第2メインブロックB2と同形同大とされる。連結ブロックB23は第1絶縁シート66sにおける連結ブロックB3と同形同大とされる。このようなスペーサ68の材料としては、第1絶縁シート66s及び第2絶縁シート67sと同様に、PET、PI又はPEN等の樹脂が挙げられる。このようなスペーサ68の材料は、第1絶縁シート66s又は第2絶縁シート67sの材料と同じであっても異なっていても良い。
 また、スペーサ68の第1メインブロックB21は、スペーサ68の一方の面側から他方の面側にわたって貫通する開口68A及び68Bを有する。開口68Aを介して第1電極66e1と第2電極67e1とが互いに対向し、開口68Bを介して第1電極66e2と第2電極67e2とが互いに対向する。同様に、スペーサ68の第2メインブロックB22は、スペーサ68の一方の面側から他方の面側にわたって貫通する開口68C及び68Dを有する。開口68Cを介して第1電極66e3と第2電極67e3とが互いに対向し、開口68Dを介して第1電極66e4と第2電極67e4とが互いに対向する。開口68A~68Dの周縁形状は、例えば略円形であり、開口68A~68Dの直径は、第1電極66e1~66e4の直径よりも大きく形成されている。従って、本実施形態の開口68A~68Dは、スペーサ68を第1電極シート66及び第2電極シート67と重ね合わせて、スペーサ68を平面視する場合に、対応する第1電極66e1~66e4周縁の外側に位置する。
 さらに、スペーサ68は、各開口68A~68Dに接続され、それぞれの開口68A~68Dを連通するスリット68bを有する。このスリット68bは、スペーサ68の縁に開口することなく、当該縁の内側に位置している。本実施形態の場合、スリット68bの形状は、例えばH型形状とされる。
 環状部材9A~9Dは、それぞれ、上記第1実施形態の環状部材9と同じ構成とされ、通気口91A~91Dを有する。
 連通部材80は、それぞれの環状部材9A~9Dの通気口91A~91Dと、第2電極シート67に設けられる空気抜き口67opとを連通する部材であり、スペーサ68のスリット68b内に配置される。この連通部材80は、スリット68bと同様の例えばH型形状とされ、それぞれの環状部材9A~9Dの通気口91A~91Dを介して各環状部材9A~9Dと接続される。なお、連通部材80は、一体成形により環状部材9A~9Dのそれぞれに接続されていても良く、所定の固定具により環状部材9A~9Dのそれぞれに接続されていても良い。また、本実施形態では、連通部材80は、一対の平板を平行に配置し、当該平板間が環状部材9A~9Dと空気抜き口67opとを連通する通路とされているが、溝状又は管状の通路とされていても良い。
 このような連通部材80がスペーサ68のスリット68b内に配置された状態で、当該スペーサ68を第1電極シート66及び第2電極シート67と重ね合わせた場合、第2電極シート67の第2絶縁シート67sに設けられる空気抜き口67opと連通部材80とは連通する。従って、環状部材9A~9Dの開口は、連通部材80を通じて、空気抜き口67opと連通する。すなわち、連通部材80はエアベントとなる。
 以上の構成要素を組み合わせることで荷重検知センサ5Dが構成される。すなわち、スペーサ68の各開口68A~68D内に対応する環状部材9A~9Dが配置され、スペーサ68のスリット68b内に連通部材80が配置される。この状態で、スペーサ68の一方の面側に第1電極シート66が接着層10で接着され、スペーサ68の他方の面側に第2電極シート67が接着層10で接着されることで荷重検知センサ5Dが構成される。
 この荷重検知センサ5Dでは、環状部材9A~9Dは、スペーサ68の開口68A~68Dの一方の開口面側に露出している第1絶縁シート66sと、その開口68A~68Dの他方の開口面側に露出している第2絶縁シート67sとの双方に非接着の状態で接する。また上記のように、環状部材9A~9Dの開口68A~68Dは、連通部材80を通じて、第2電極シート67の第2絶縁シート67sに設けられる空気抜き口67opと連通し、荷重検知センサ5Dの外部と連通する。
 さらに、荷重検知センサ5Dでは、環状部材9A~9Dにおける一方の開口端の内側に第1電極66e1~66e4が位置し、環状部材9における他方の開口端の内側に第2電極67e1~67e4が位置する。この環状部材9A~9Dの開口68A~68Dを介して第1電極66e1~66e4と第2電極67e1~67e4とが互いに対向してそれぞれスイッチSW1~SW4を構成する。
 以上のとおり、上記の荷重検知センサ5Dであっても、第1実施形態の荷重検知センサ5A及び第2実施形態の荷重検知センサ5Bについて上述した効果と同様の効果を有する。さらに、本実施形態では、第1電極と第2電極とを組とするスイッチを複数有し、スイッチSW1~SW4ごとにスペーサ68の開口68A~68Dと、環状部材9A~9Dとが設けられる。また、スペーサ68は、各開口68A~68Dを連通するスリット68bを有し、第2電極シート67は、空気抜き口67opを有する。そして本実施形態の荷重検知センサ5Dには、スリット68b内に配置され、各環状部材9A~9Dと空気抜き口67opとを連通する連通部材80が備えられる。
 この荷重検知センサ5Dでは、第2電極シート67が環状部材9Aの内側に入り込むように撓んで、第1電極66e1と第2電極67e1とが接触するときに、スペーサ68の開口68A~68D内のうち環状部材9Aの内側の空気は連通部材80を通じて空気抜き口67opから荷重検知センサ5Dの外部に排出される。同様に、第2電極シート67が環状部材9B~9Dの内側に入り込むように撓んだときに、スペーサ68の開口68A~68D内のうち環状部材9B~9Dの内側の空気は連通部材80を通じて空気抜き口67opから荷重検知センサ5Dの外部に排出される。
 従って、第2電極シート67の撓みがスペーサ68の開口68A~68D内のうち環状部材9A~9Dの内側の空気によって抑制されるといったことが回避され、荷重検知センサ5Dが誤検知することを抑止することができる。
(5)第5実施形態
 次に、第5実施形態として荷重検知センサユニットを説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図13は、第5実施形態の荷重検知センサの構成を示す分解図である。図13に示すように、本実施形態の荷重検知センサ5Eでは、第2電極67e1~67e4それぞれに空気排出用スリット67s1~67s4が設けられる。また、本実施形態の環状部材9A~9Dではそれぞれ通気口91A~91Dが省略され、当該環状部材9A~9Dは途切れることなく輪状に延在している。
 また、本実施形態の荷重検知センサ5Eでは、第4実施形態の第2配線67w1~67w3に代えて互いに離間して隣り合う一対の配線PW1~PW3が備えられる。また、本実施形態の荷重検知センサ5Eでは、第4実施形態の連通部材80に代えて連通路形成部材85が備えられる。
 一対の配線PW1~PW3は、それぞれ、互いに離間して隣り合う状態で、第2電極シート67の一面上に配置される。一対の配線PW1の一方の端部は、第2電極67e1と電気的に接続され、環状部材9Aの内側に位置される。一対の配線PW1の他方の端部は、第2電極67e2と電気的に接続され、環状部材9Bの内側に位置される。一対の配線PW2の一方の端部は、第2電極67e3と電気的に接続され、環状部材9Cの内側に位置される。一対の配線PW2の他方の端部は、第2電極67e4と電気的に接続され、環状部材9Dの内側に位置される。一対の配線PW3は、一対の配線PW1の一方とそれに隣り合う一対の配線PW2の一方とを電気的に接続している。図13に示す例では、これら一対の配線PW1~PW3は、平行に配置されているが、互いに離間して隣り合う関係にあれば平行でなくても良い。
 連通路形成部材85は、例えばH型形状の板材でなり、それぞれの環状部材9A~9Dと接続される。図14は、図13のX-Xでの荷重検知センサ5Eの断面を示す図である。図14に示すように、連通路形成部材85は、スペーサ68を第1電極シート66及び第2電極シート67と重ね合わせた場合に、一対の配線PW1に当接され、これにより第2電極シート67の一面とは反対側から一対の配線PW1間の隙間ARを閉じる。同様に、連通路形成部材85は、スペーサ68を第1電極シート66及び第2電極シート67と重ね合わせた場合に、一対の配線PW2,PW3にも当接され、これにより第2電極シート67の一面とは反対側から一対の配線PW2,PW3間の隙間ARを閉じる。なお、連通路形成部材85は、一対の配線PW1~PW3、第1電極シート66及び第2電極シート67に非接着とされる。
 従って、連通路形成部材85は、スペーサ68を第1電極シート66及び第2電極シート67と重ね合わせた場合には、一対の配線PW1~PW3間の隙間を、環状部材9A~9Dの内側に位置する第2電極67e1~67e4の空気排出用スリット67s1~67s4のそれぞれと空気抜き口67opとを連通する連通路として形成する。
 このため、本実施形態の荷重検知センサ5Eでは、第2電極シート67が環状部材9Aの内側に入り込むように撓んで、第1電極66e1と第2電極67e1とが接触するときに、スペーサ68の開口68A~68D内のうち環状部材9Aの内側の空気は、第2電極67e1の空気排出用スリット67s1に流れる。そして、連通路形成部材85によって形成される一対の配線PW1,PW3間の隙間ARに流入し、その隙間ARを通じて空気抜き口67opから荷重検知センサの外部に排出される。
 従って、本実施形態の荷重検知センサ5Eでは、上記第4実施形態と同様に、第2電極シート67の撓みがスペーサ68の開口68A~68D内のうち環状部材9A~9Dの内側の空気によって抑制されるといったことが回避され、荷重検知センサ5Eが誤検知することを抑止することができる。これに加えて、本実施形態では、環状部材9A~9Dそれぞれに通気口91A~91Dが設けられなくても良いので、環状部材9A~9D自体の耐久性が向上する。従って、環状部材9A~9Dは、第1電極シート66と第2電極シート67とをより安定して支えることができる。この結果、第1電極66e1~66e4と第2電極67e1~67e4とが接触するために必要な荷重の変化を抑止できる。
 また、本実施形態の荷重検知センサ5Eでは、連通路形成部材85自体が一対の配線PW1~PW3、第1電極シート66及び第2電極シート67と非接着である。このため、連通路形成部材85によって形成される一対の配線PW1,PW3間の隙間ARに接着層で埋めてしまうことを回避できる。また、連通路形成部材85自体が一対の配線PW1~PW3や第1電極シート66と非接着で第1電極シート66と第2電極シート67とを支えることが可能であるため、第1電極シート66及び第2電極シートとスペーサ68との間の接着層10を低減することができる。
(6)第6実施形態
 次に、第6実施形態として荷重検知センサユニットを説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図15は、第6実施形態の荷重検知センサの構成を示す分解図である。図15に示すように、本実施形態における荷重検知センサ5Fは、第1電極シート110と第2電極シート120とスペーサ130と嵌め込み部材140とを主な構成要素として備える。
 第1電極シート110は、第1絶縁シート110sと、第1導電層110eとを有する。
 第1絶縁シート110sは、可撓性を有する樹脂製の絶縁シートとされる。この第1絶縁シート110sは、メインブロック110mと、メインブロック110mに接続されるテールブロック110tとから成る。テールブロック110tは、メインブロック110mよりも幅の狭い形状とされる。また、メインブロック110mの中央付近には空気抜き口110hが形成されている。このような第1絶縁シート110sの材料としては、PET、PI又はPEN等の樹脂が挙げられる。
 第1導電層110eは、第1電極111と、第1端子113と、第1配線112とを有し、第1絶縁シート110sの一方の面上に設けられている。図15では、理解し易いように、第1導電層110eと第1絶縁シート110sとを分解して記載し、第1絶縁シート110sに第1導電層110eの配置位置が破線で示されている。
 第1電極111は、メインブロック110mの端部側に設けられている。第1電極111は、導体の層からなり、例えば金属印刷層とされる。本実施形態の第1電極111は、概ね円形の中央電極部111pと中央電極部111pの外周を囲み概ね円形のリング状の外側電極部111rとから成り、中央電極部111pと外側電極部111rとの間に隙間111sが形成されている。第1端子113は、導体の層からなり、例えば略四角形の金属層とされる。第1端子113は、テールブロック110tに設けられている。また、第1電極111と第1端子113とは第1配線112を介して互いに電気的に接続されている。
 第1配線112は、互いに離間した一対の配線を含み形成されている。これら一対の配線間にスリット状の隙間112sが形成されている。また、これら一対の配線は概ねリング状に形成されたリング部112rで接続されている。リング部112rにより、開口112hが形成されており、開口112hは、隙間112sに連通されている。一対の配線を有する第1配線112は、第1電極111の中央電極部111pまで延在しており、隙間112sも中央電極部111pまで延在している。
 図15において破線で示すように、第1導電層110eが第1絶縁シート110sの一方の面上に配置された状態で、第1導電層110eの開口112hと第1絶縁シート110sの空気抜き口110hとが重なる。つまり、第1電極シート110を平面視すると、第1配線112のリング部112rが第1絶縁シート110sの空気抜き口110hを囲む。
 第2電極シート120は、第2絶縁シート120sと、第2導電層120eとを有する。
 第2絶縁シート120sは、第1絶縁シート110sと同様に樹脂製の絶縁シートとされる。また、第2絶縁シート120sは、第1絶縁シート110sのメインブロック110mと同じ形状のメインブロック120mと、メインブロック120mに接続され第1絶縁シート110sのテールブロック110tと同じ形状のテールブロック120tとから成る。ただし、第1絶縁シート110sと第2絶縁シート120sとを重ねたときに、第1絶縁シート110sのテールブロック110tと第2絶縁シート120sのテールブロック120tとが互いに重ならないようにされている。第2絶縁シート120sの材料としては第1絶縁シート110sの材料と同じ材料が挙げられ、第2絶縁シート120sの材料と第1絶縁シート110sの材料とは同じであっても異なっていても良い。
 第2導電層120eは、第2電極121と、第2端子123と、第2配線122とを有し、第2絶縁シート120sの一方の面上に設けられている。第2絶縁シート120sの一方の面は、第1導電層110eが設けられる第1絶縁シート110sの一方の面と対向する面である。図15では、理解し易いように、第1電極シート110と同様に第2導電層120eと第2絶縁シート120sとを分解して記載し、第2絶縁シート120sに第2導電層120eの配置位置が破線で示されている。
 第2電極121は、メインブロック120mの端部側に設けられており、第1電極シート110と第2電極シート120とが重ねあわされたときに第1電極111と互いに対向する。第2電極121は、第1電極111と同様の導体の層からなる。本実施形態の第2電極121は、第1電極111と同様に、概ね円形の中央電極部121pと中央電極部121pの外周を囲み概ね円形のリング状の外側電極部121rとから成り、中央電極部121pと外側電極部121rとの間にスリット121sが形成されている。第2端子123は、導体の層からなり、例えば略四角形の金属層とされる。第2端子123は、テールブロック120tに設けられている。また、第2電極121と第2端子123とは第2配線122を介して互いに電気的に接続されている。第2配線122は、中央電極部121pまで延在している。
 スペーサ130は、第1電極シート110及び第2電極シート120の間に配置され、可撓性を有する樹脂製の絶縁シートとされる。このスペーサ130は、外形が第1絶縁シート110s、第2絶縁シート120sのメインブロック120mの外形と同様とされる。このようなスペーサ130の材料としては、第1絶縁シート110s及び第2絶縁シート120sと同様の材料を挙げることができる。なお、スペーサ130の材料は、第1絶縁シート110s又は第2絶縁シート120sの材料と同じであっても異なっていても良い。スペーサ130の両面には、第1絶縁シート110sと第2絶縁シート120sとに接着される不図示の接着層が配置されている。
 また、このスペーサ130には、開口130hが形成されている。この開口130hは、概ね円形の開口である第1開口部131と、第1開口部131に接続され、概ね長方形のスリットである第2開口部132とから成る。こうして、開口130hは、円形の開口と、この開口に接続されるスリットから成り、概ね鍵穴形状とされる。
 嵌め込み部材140は、スペーサ130の開口130hに嵌め込まれる部材である。嵌め込み部材140は、環状部材141と、環状部材141に接続される連通路形成部材142とから成り、環状部材141と連通路形成部材142とが一体となっている。
 環状部材141は、リング状に形成され、開口140hを環状部材141が囲む。環状部材141の外形は、開口130hの第1開口部131と同様に円形とされ、その外径は、第1開口部131に嵌め込み可能なように第1開口部131の直径よりも僅かに小さくされる。また、環状部材141の内径は、第1電極111の中央電極部111p及び第2電極121の中央電極部121pよりも大きくされる。
 連通路形成部材142は、スペーサ130の開口130hにおける第2開口部132と概ね同じ形状とされる。ただし、連通路形成部材142は、第2開口部132に嵌め込み可能なように、第2開口部132よりも僅かに小さく形成されている。
 このような嵌め込み部材140の材料としては、第1絶縁シート110s、第2絶縁シート120s、スペーサ130と同様の材料と挙げることができる。なお、嵌め込み部材140の材料と、スペーサ130、第1絶縁シート110s及び第2絶縁シート120sの材料とは同じであっても異なっていても良い。但し、スペーサ130の膨張により、スペーサ130の高さと嵌め込み部材140との高さとが相対的に変化することを低減するために、スペーサ130と嵌め込み部材140とが同じ材料とされることが好ましい。また、嵌め込み部材140の両面には接着層が配置されていない。
 嵌め込み部材140がスペーサ130の開口130hに嵌め込まれ、第1電極シート110とスペーサ130と第2電極シート120とが重ね合わされ、環状部材141を平面視すると、環状部材141の開口140hの内側に第1電極111の中央電極部111pと第2電極121の中央電極部121pとが位置する。また、第1電極シート110の第1配線112の一対の配線から成る部位は、リング部112rまで連通路形成部材142に接している。従って、第5実施形態と同様に本実施形態でも、第1配線112の一対の配線と第1絶縁シート110sと連通路形成部材142とで、通風路が形成される。上記のように、嵌め込み部材140の両面には接着層が配置されていないため、この通風路が接着剤により埋まることが抑制されている。また、上記のように一対の配線から成る第1配線112の間の隙間112sは、第1電極111の中央電極部111pまで延在する。従って、隙間112sは、開口140hと連通する。さらに、上記のように、第1配線112のリング部112rが第1絶縁シート110sの空気抜き口110hを囲む。従って、空気抜き口110hと隙間112sとは連通する。こうして、開口140hと空気抜き口110hとが通風路で連通する。
 従って、本実施形態の荷重検知センサ5Fでは、第1電極シート110及び第2電極シート120の少なくとも一方が環状部材141の開口140hの内側に入り込むように撓んで、第1電極111と第2電極121とが接触するときに、環状部材141の開口140hの空気は、隙間112sを挟む第1配線112と第1絶縁シート110sと連通路形成部材142とにより形成される通風路を介して空気抜き口110hから荷重検知センサ5Fの外部に排出される。
 従って、本実施形態の荷重検知センサ5Fでは、上記第4実施形態、第5実施形態と同様に、第1電極シート110及び第2電極シート120の少なくとも一方の撓みが環状部材141の開口140hの内側の空気によって抑制されることが抑制され、荷重検知センサ5Eが誤検知することを抑止することができる。
(7)変形例
 上記実施形態では、接着層10が第1電極シートとスペーサとの間、及び、第2電極シートとスペーサとの間の双方に配置されたが、いずれか一方だけに配置されていても良い。なお、第1電極シート又は第2電極シートとスペーサとの間の一方に接着層が配置されない場合、例えば、第1電極シート又は第2電極シートに硬化性樹脂を設けて硬化させることによりスペーサを形成し、第1電極シート又は第2電極シートにスペーサを直接接合することができる。なお、第1電極シート又は第2電極シートに硬化性樹脂を設けて硬化させることにより環状部材を形成し、第1電極シート又は第2電極シートに環状部材を直接接合することもできる。
 上記実施形態では、環状部材が第1電極シート及び第2電極シートの双方と接していたが、第1電極シート又は第2電極シートの一方だけと接していても良い。要するに、環状部材は、第1電極シート及び第2電極シートの少なくとも一方と接していれば良い。
 上記実施形態では、第1電極シートのシートが可撓性を有する樹脂製の絶縁シートとされたが、例えば、可撓性を有しない基板とされていても良く、金属シートとされていても良く、絶縁シートと金属シートとの2層で構成されていても良い。
 本発明の荷重検知センサは、荷重を検知すべき検知対象物に対する荷重の有無を検知する限り利用可能性を有する。例えば、介護用ベッドのシートクッションの下方に荷重検知センサを配置する形態が挙げられる。このような形態であっても、荷重検知センサが荷重を検知でき、当該荷重検知センサの検知結果に基づいて、シートクッション上に人が存在しているかを示す情報を得ることができる。また、電子機器のスイッチとして用いられ、荷重の有無を検知してもよい。
 次に、上記実施形態に関する実施例・比較例を挙げて実験した内容について説明する。ただし、本発明は、以下の実施例・比較例に限定されるものではない。
 比較例1の荷重検知センサと、実施例1の荷重検知センサと、実施例2の荷重検知センサとを用意し、それぞれの荷重検知センサに対して異なる気温環境下で荷重を与える実験を行った。
 比較例1の荷重検知センサとして、上記第1実施形態における荷重検知センサ5Aのうち環状部材9を省略した構成の荷重検知センサを用意した。実施例1の荷重検知センサとして、上記第1実施形態の第2電極シート7を上記第2実施形態の第2絶縁シート57sと金属板60との2層で構成しその他の構成要素を上記第1実施形態と同じ構成要素とする荷重検知センサを用意した。実施例2の荷重検知センサとして、上記第3実施形態の荷重検知センサ5Cに相当する荷重検知センサを用意した。
 比較例1の荷重検知センサ、実施例1の荷重検知センサ、実施例2の荷重検知センサそれぞれの第1絶縁シートはPETから成る厚さ75μmのシートとし、スペーサはPETから成る厚さ50μmのシートとした。接着層は、第1絶縁シート側を厚さ25μmのアクリル系接着層とし、第2絶縁シート側を厚さ25μmのアクリル系接着層とした。また、比較例1の荷重検知センサ、実施例1の荷重検知センサそれぞれの第2絶縁シートは、PETから成る厚さ100μmのシートとした。また、実施例1の荷重検知センサ、実施例2の荷重検知センサそれぞれの金属板はSUS301から成る厚さ0.1mmのシートとし、当該金属板と絶縁シートとの間の接着層は厚さ24μmのアクリル系接着層とした。
 さらに、比較例1の荷重検知センサ、実施例1の荷重検知センサ、実施例2の荷重検知センサそれぞれのスペーサの直径、及び、実施例1の荷重検知センサ、実施例2の荷重検知センサそれぞれの環状部材の内径と材質は図16に示す。なお、図16に示すスペーサの開口径はスペーサの直径を意味し、図16に示すリング径は環状部材の内径を意味し、図16に示すリング材質は環状部材の材質を意味する。
(実験1)
 -40℃、25℃、85℃のそれぞれの気温環境下に比較例の荷重検知センサと実施例1の荷重検知センサと実施例2の荷重検知センサとを配置し、当該荷重検知センサを第2電極シート側から押圧して一対の電極が接触した時点で加わっている荷重(オン荷重)を測定した。なお、図16では、25℃の気温環境で測定されたオン荷重に対して、-40℃の気温環境で測定されたオン荷重及び85℃の気温環境で測定されたオン荷重の増減をパーセントで表している。
 図16に示すように、環状部材がない比較例1に比べ、当該環状部材を設けた実施例1及び実施例2のほうが、常温を基準として-40℃に変化しても85℃に変化しても、その温度でのオン荷重のばらつきが小さくなっている。すなわち、環状部材があれば、常温より高温になっても低温になっても、当該常温環境下と同等に荷重を検知することができることが分かった。
(実験2)
 80℃の気温環境下に比較例1の荷重検知センサと実施例1の荷重検知センサと実施例2の荷重検知センサとを配置し、当該荷重センサを20Nの圧力で第2電極シート側から144時間だけ押圧した。その後、常温でのオン荷重を測定し、当該押圧前に測定した常温でのオン荷重に対する変化率を、高温定荷重試験後のオン荷重変化率として得た。この結果を図16に示す。
 図16に示すように、環状部材がない比較例1に比べ、当該環状部材を設けた実施例1及び実施例2のほうが、高温環境下で長期的に押圧され続けても、オン荷重の変化率は小さくなっている。すなわち、環状部材があれば、高温環境下で長期的に押圧され続けても、常温環境下と同等に荷重を検知することができることが分かった。
 また、比較例2の荷重検知センサと、実施例3の荷重検知センサを用意し、それぞれの荷重検知センサに対して異なる気温環境下で荷重を与える実験を行った。
 比較例2の荷重検知センサとして、上記第1実施形態における荷重検知センサ5Aのうち環状部材9を省略した構成の荷重検知センサを用意した。実施例3の荷重検知センサとして、上記第1実施形態の荷重検知センサ5Aに相当する荷重検知センサを用意した。
 比較例2の荷重検知センサ、実施例3の荷重検知センサそれぞれの第1絶縁シートはPETから成る厚さ100μmのシートとし、スペーサはPETから成る厚さ50μmのシートとした。比較例2の荷重検知センサ、実施例3の荷重検知センサそれぞれの接着層は、第1絶縁シート側を厚さ25μmのアクリル系接着層とし、第2絶縁シート側を厚さ25μmのアクリル系接着層とした。比較例2の荷重検知センサ、実施例3の荷重検知センサそれぞれの第2絶縁シートは、PETから成る厚さ100μmのシートとした。
 さらに、比較例2の荷重検知センサ、実施例3の荷重検知センサそれぞれのスペーサの直径、及び、環状部材の内径と材質は図17に示す。図17に示すスペーサの開口径はスペーサの直径を意味し、図16に示すリング径は環状部材の内径を意味し、図16に示すリング材質は環状部材の材質を意味する。なお、環状部材の外径は11mmとし、環状部材の高さは100μmとしている。
 -40℃、25℃、85℃のそれぞれの気温環境下に比較例2の荷重検知センサと実施例3の荷重検知センサとを配置し、当該荷重検知センサを第2電極シート側から押圧して一対の電極が接触した時点で加わっている荷重(オン荷重)を測定した。なお、図17では、25℃の気温環境で測定されたオン荷重に対して、-40℃の気温環境で測定されたオン荷重及び85℃の気温環境で測定されたオン荷重の増減をパーセントで表している。
 図17に示すように、環状部材がない比較例2に比べ、当該環状部材を設けた実施例3のほうが、常温を基準として-40℃に変化しても85℃に変化しても、その温度でのオン荷重のばらつきが小さくなっている。すなわち、環状部材があれば、常温より高温になっても低温になっても、当該常温環境下と同等に荷重を検知することができることが分かった。
5A~5F・・・荷重検知センサ
6,56,66,110・・・第1電極シート
7,57,67,120・・・第2電極シート
8,58,68,130・・・スペーサ
9,9A~9D,59,141・・・環状部材
10・・・接着層
80・・・連通部材
85,142・・・連通路形成部材
101・・・金属シート
SW,SW1~SW4・・・スイッチ

Claims (11)

  1.  第1電極を有する第1電極シートと、
     前記第1電極と対向する第2電極を有する第2電極シートと、
     前記第1電極シートと前記第2電極シートとの間に介在され、前記第1電極と前記第2電極との間に開口を有するスペーサと、
     前記開口内に配置される環状部材と、
     前記スペーサと前記第1電極シートとの間及び前記スペーサと前記第2電極シートとの間の少なくとも一方に配置される接着層と、
    を備え、
     前記環状部材は、前記開口に露出する前記第1電極シート及び前記開口に露出する前記第2電極シートの少なくとも一方と接し、当該第1電極シート及び前記第2電極シートの双方に非接着とされる
    ことを特徴とする荷重検知センサ。
  2.  前記環状部材は、前記第1電極シート及び前記第2電極シートの双方と接する
    ことを特徴とする請求項1に記載の荷重検知センサ。
  3.  前記環状部材の外周面の少なくとも一部は、前記スペーサと離間される
    ことを特徴とする請求項1又は請求項2に記載の荷重検知センサ。
  4.  前記環状部材と前記スペーサとは同じ材料とされる
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の荷重検知センサ。
  5.  前記環状部材は、前記スペーサの前記開口内の空気を抜くための通気口を有する
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の荷重検知センサ。
  6.  前記スペーサは、前記開口に接続されるスリットを有し、
     前記第1電極シート及び前記第2電極シートの少なくとも一方は、空気抜き口を有し、
     前記スリット内に配置され、前記環状部材の前記通気口と前記空気抜き口とを連通する連通部材を備える
    ことを特徴とする請求項5に記載の荷重検知センサ。
  7.  前記スペーサは、前記開口に接続されるスリットを有し、
     前記第1電極シート及び前記第2電極シートの少なくとも一方は、互いに離間して隣り合う一対の配線と、空気抜き口とを有し、
     前記一対の配線の端部は、前記環状部材の内側に位置され、
     前記スリット内に配置され、前記スペーサの前記開口内における前記環状部材の内側と前記空気抜き口とを連通する連通路として前記一対の配線間の隙間を形成する連通路形成部材を備える
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の荷重検知センサ。
  8.  前記第1電極シートのシート面を平面視した場合に、前記環状部材と前記第1電極及び前記第2電極とは重なる
    ことを特徴とする請求項1から請求項7のいずれか1項に記載の荷重検知センサ。
  9.  前記スペーサの厚さと前記接着層の厚さとの合計は、前記環状部材の高さと前記第1電極の厚さと前記第2電極の厚さとの合計と同程度とされる
    ことを特徴とする請求項8に記載の荷重検知センサ。
  10.  前記第1電極シートのシート面を平面視した場合に、前記環状部材と前記第1電極及び前記第2電極とは重ならない
    ことを特徴とする請求項1から請求項7のいずれか1項に記載の荷重検知センサ。
  11.  前記スペーサの厚さと前記接着層の厚さとの合計は、前記環状部材の高さと同程度とされる
    ことを特徴とする請求項10に記載の荷重検知センサ。
PCT/JP2018/007590 2017-02-28 2018-02-28 荷重検知センサ WO2018159704A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18761352.6A EP3591682A4 (en) 2017-02-28 2018-02-28 CHARGE DETECTION SENSOR
CN201880013708.7A CN110326076B (zh) 2017-02-28 2018-02-28 载荷检测传感器
JP2019503079A JP6707710B2 (ja) 2017-02-28 2018-02-28 荷重検知センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037786 2017-02-28
JP2017-037786 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159704A1 true WO2018159704A1 (ja) 2018-09-07

Family

ID=63370143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007590 WO2018159704A1 (ja) 2017-02-28 2018-02-28 荷重検知センサ

Country Status (4)

Country Link
EP (1) EP3591682A4 (ja)
JP (1) JP6707710B2 (ja)
CN (1) CN110326076B (ja)
WO (1) WO2018159704A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203066A (ja) * 2017-06-05 2018-12-27 株式会社フジクラ 荷重検知センサ
JP2020051985A (ja) * 2018-09-28 2020-04-02 株式会社フジクラ 荷重検知センサ及び荷重検知センサユニット
WO2023176902A1 (ja) * 2022-03-15 2023-09-21 シチズン電子株式会社 感圧センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358852A (ja) * 2001-06-01 2002-12-13 Fujikura Ltd メンブレンスイッチ及び感圧センサ
JP2010175312A (ja) * 2009-01-28 2010-08-12 Aisin Seiki Co Ltd 着座検知装置
JP2011233441A (ja) * 2010-04-28 2011-11-17 Toyota Boshoku Corp 織布製スイッチ及びこれを組み込んだ車両用シート
JP2013166532A (ja) * 2012-02-17 2013-08-29 Aisin Seiki Co Ltd 着座荷重検出装置
JP2017033780A (ja) * 2015-08-03 2017-02-09 株式会社フジクラ 荷重検知装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3563501D1 (en) * 1984-05-09 1988-07-28 Hasler Ag Dc/dc converter
JP2002100265A (ja) * 2000-09-25 2002-04-05 Matsushita Electric Ind Co Ltd プッシュスイッチ及びこれを用いた電子機器
JP4051186B2 (ja) * 2001-07-30 2008-02-20 アルプス電気株式会社 多接点スイッチ
WO2005093770A1 (ja) * 2004-03-25 2005-10-06 Shin-Etsu Polymer Co., Ltd. 押釦スイッチ用カバー部材とその製造方法
JP4218614B2 (ja) * 2004-08-27 2009-02-04 アイシン精機株式会社 座席状態検出装置、車両用ヘッドランプの照射方向調節装置及び着座検出装置
ES2412931T3 (es) * 2009-11-20 2013-07-12 Future Technology (Sensors) Ltd Conjuntos sensores
KR20120011136A (ko) * 2010-07-28 2012-02-07 이수호 피씨비 택트 스위치
DE102013206450B4 (de) * 2013-04-11 2016-09-01 Lear Corporation Sitzbelegungssensor und Herstellungsverfahren
JP6283126B2 (ja) * 2015-01-27 2018-02-21 株式会社フジクラ 荷重検知センサユニット
CN106352084A (zh) * 2016-08-31 2017-01-25 苏州宝骅机械技术有限公司 密封状态可监测的密封组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358852A (ja) * 2001-06-01 2002-12-13 Fujikura Ltd メンブレンスイッチ及び感圧センサ
JP2010175312A (ja) * 2009-01-28 2010-08-12 Aisin Seiki Co Ltd 着座検知装置
JP2011233441A (ja) * 2010-04-28 2011-11-17 Toyota Boshoku Corp 織布製スイッチ及びこれを組み込んだ車両用シート
JP2013166532A (ja) * 2012-02-17 2013-08-29 Aisin Seiki Co Ltd 着座荷重検出装置
JP2017033780A (ja) * 2015-08-03 2017-02-09 株式会社フジクラ 荷重検知装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203066A (ja) * 2017-06-05 2018-12-27 株式会社フジクラ 荷重検知センサ
JP2020051985A (ja) * 2018-09-28 2020-04-02 株式会社フジクラ 荷重検知センサ及び荷重検知センサユニット
JP7134813B2 (ja) 2018-09-28 2022-09-12 株式会社フジクラ 荷重検知センサ及び荷重検知センサユニット
WO2023176902A1 (ja) * 2022-03-15 2023-09-21 シチズン電子株式会社 感圧センサ

Also Published As

Publication number Publication date
JPWO2018159704A1 (ja) 2019-11-07
JP6707710B2 (ja) 2020-06-10
CN110326076B (zh) 2022-01-18
EP3591682A1 (en) 2020-01-08
CN110326076A (zh) 2019-10-11
EP3591682A4 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP6283126B2 (ja) 荷重検知センサユニット
WO2018159704A1 (ja) 荷重検知センサ
JP6596170B2 (ja) 荷重検知センサ及び荷重検知センサユニット
EP3421292B1 (en) Load detection sensor unit
WO2018124197A1 (ja) 荷重検知センサユニット
JP6596162B2 (ja) 荷重検知センサユニット
JP2017033780A (ja) 荷重検知装置
JP6751539B2 (ja) 荷重検知センサ、荷重検知センサユニット
JP2017223538A (ja) 荷重検知センサユニット
JP2019033063A (ja) 荷重検知センサ
WO2018101440A1 (ja) 荷重検知センサ及び荷重検知センサユニット
JP6652881B2 (ja) 荷重検知センサユニット
JP6533007B2 (ja) 荷重検知センサユニット
KR102157558B1 (ko) 하중 검지 센서 유닛
JP6596150B2 (ja) 荷重検知センサユニットおよびシート装置
JP6971640B2 (ja) 荷重検知センサ
JP2019186081A (ja) 荷重検知センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761352

Country of ref document: EP

Effective date: 20190930